WO2014192776A1 - Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode - Google Patents

Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode Download PDF

Info

Publication number
WO2014192776A1
WO2014192776A1 PCT/JP2014/064035 JP2014064035W WO2014192776A1 WO 2014192776 A1 WO2014192776 A1 WO 2014192776A1 JP 2014064035 W JP2014064035 W JP 2014064035W WO 2014192776 A1 WO2014192776 A1 WO 2014192776A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
carbon
carbon powder
fibrous carbon
fibrous
Prior art date
Application number
PCT/JP2014/064035
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 堀井
修一 石本
覚 爪田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to CN201480030785.5A priority Critical patent/CN105247640B/en
Publication of WO2014192776A1 publication Critical patent/WO2014192776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode using a carbon material, an electric double layer capacitor using the electrode, and a method for manufacturing the electrode.
  • carbon powder and fibrous carbon are used as the carbon material.
  • an electric double layer capacitor is composed of a pair of electrodes, a separator existing between them, and a current collecting layer of each electrode.
  • Activated carbon is used as a typical electrode used in the electric double layer capacitor.
  • the manufacturing method of the electrode used for this electric double layer capacitor is a binder of a conductive material such as acetylene black and a resin such as polytetrafluoroethylene or tetrafluoroethylene resin to activated carbon powder which is a typical electrode material.
  • a method of forming a sheet-like polarization electrode by press molding after adding and mixing is known.
  • Such an electric double layer capacitor has a problem of a decrease in capacity during standing at high temperature, which is considered to be caused by a reaction due to a functional group on the surface of activated carbon. Proposals have been made to solve this problem (Patent Document 1).
  • Patent Document 2 An attempt has been made to create a polarizable electrode by mixing activated carbon with a particle size exceeding 1 ⁇ m and a resin binder and then applying the mixture on a current collector, and using it for an electric double layer capacitor.
  • the activated carbon has a large particle diameter, so the diffusion resistance increases, and the internal resistance and low temperature characteristics deteriorate. Further, when forming an electrode with activated carbon having a large particle size and a binder, if a resin binder is used alone as the binder, it is difficult to increase the electrode density, which is disadvantageous in terms of lowering the resistance.
  • an object of the present invention is to provide an electrode having a high electrode density and a low diffusion resistance, an electric double layer capacitor using the electrode, and an electrode manufacturing method in an electrode in which carbon powder and fibrous carbon are mixed. It is.
  • the electrode of the present invention is applied to a current collector by applying a solution in which porous carbon powder having an average particle diameter of less than 100 nm and fibrous carbon are dispersed to a current collector. It was obtained by drying.
  • the fibrous carbon plays a role as a binder, and the carbon powder is uniformly dispersed. Can be held in.
  • Fibrous carbon can also be used in combination with resin binders, so even when resin binders are used, resin binders can be used at a rate that is less likely to affect electrical resistance. Since it is possible to eliminate the influence of the resin binder on the electric resistance, it is possible to reduce the electric resistance of the obtained electrode.
  • the carbon powder may be obtained by activating carbon black.
  • Carbon powder and fibrous carbon are highly dispersed, and the electrode density can be 0.48 g / cc or more.
  • the fibrous carbon may be contained in an amount of 10 to 55% by weight based on the total amount of carbon powder and fibrous carbon.
  • the proportion of mesopores in the pores in the porous carbon powder may be in the range of 5 to 30%.
  • the particle size distribution of the carbon powder constituting the electrode and the aggregate of fibrous carbon has a single peak, and the ratio between the particle size of 50% cumulative value D50 and the particle size of 90% cumulative value D90 of the particle size distribution.
  • D90 / D50 may be 2.5 or less.
  • the particle diameter of the 90% cumulative value D90 of the particle size distribution may be less than 150 ⁇ m.
  • the interval between the fibrous carbons constituting the electrode may be 2 ⁇ m or less.
  • a treatment for causing the jetting of the solution to collide with the porous carbon powder having an average particle size of 100 nm or more and less than 10 ⁇ m and fibrous carbon, or a treatment for applying shear stress and centrifugal force to the solution may be obtained by dispersing in a solution and applying the dispersed solution on a current collector and removing the solvent.
  • An electric double layer capacitor in which this electrode is formed on a current collector is also an embodiment of the present invention.
  • the manufacturing method of the electrode of this invention includes the following processes. (1) A dispersion step of dispersing a porous carbon powder having an average particle diameter of less than 100 nm and fibrous carbon in a solvent. (2) An electrode forming step of applying the solution obtained in the dispersing step onto a current collector, removing the solvent, and forming a carbon powder / fibrous carbon mixed layer on the current collector.
  • the electrode density can be increased and the internal resistance can be decreased. it can. Therefore, an excellent electrode having a large capacity and a small electric resistance and an electric double layer capacitor using the electrode can be obtained.
  • the electrode of this embodiment is manufactured by the following steps (1) and (2).
  • a dispersion step of dispersing carbon powder and fibrous carbon in a solvent is a dispersion step of dispersing carbon powder and fibrous carbon in a solvent.
  • the steps (1) and (2) will be described in detail.
  • the carbon powder used in the present embodiment expresses the main capacity of the electrode.
  • the types of carbon powder include natural plant tissues such as palm, synthetic resins such as phenol, activated carbon derived from fossil fuels such as coal, coke and pitch, ketjen black (hereinafter referred to as KB), acetylene. Examples thereof include carbon black such as black and channel black, carbon nanohorn, amorphous carbon, natural graphite, artificial graphite, graphitized ketjen black, activated carbon, and mesoporous carbon.
  • the carbon powder is preferably used after being subjected to a porous treatment such as activation treatment or opening treatment.
  • the carbon powder activation method varies depending on the raw material used, but conventionally known activation treatments such as a gas activation method and a drug activation method can be usually used.
  • the gas used in the gas activation method include water vapor, air, carbon monoxide, carbon dioxide, hydrogen chloride, oxygen, or a gas composed of a mixture thereof.
  • alkali metal hydroxide such as sodium hydroxide and potassium hydroxide
  • alkaline earth metal hydroxide such as calcium hydroxide
  • boric acid phosphoric acid
  • sulfuric acid hydrochloric acid
  • Inorganic acids such as zinc chloride
  • inorganic salts such as zinc chloride.
  • the carbon powder preferably has a specific surface area in the range of 600 to 2000 m 2 / g.
  • the carbon powder preferably has an average primary particle size of less than 10 ⁇ m, and particularly preferably less than 100 nm.
  • the average particle size of the carbon powder is less than 100 nm, the diffusion resistance is low and the conductivity is high because the particle size is very small.
  • the specific surface area by the porous treatment is large, a high capacity expression effect can be expected. If the average particle diameter of the carbon powder is larger than 100 nm, the ion diffusion resistance in the carbon powder particles increases, and the resistance of the resulting capacitor increases.
  • the average particle diameter is preferably 5 nm or more.
  • the improvement of electrical conductivity is obtained by taking the form which connected the very small carbon powder which made the average particle diameter less than 100 nm individually (in a daisy chain form).
  • the carbon powder activated carbon black is particularly preferable.
  • the effects of the present invention can be achieved by the ultracentrifugation process and the jet mixing process described later as the dispersion method.
  • the electrical conductivity of the carbon powder is preferably in the range of 20 to 1000 S / cm. By setting it as such high conductivity, the obtained electrode can be made low resistance.
  • the following electrical conductivity during compression refers to the thickness when the carbon powder is sandwiched between the electrodes having a cross-sectional area A (cm 2 ) and then compressed and held by applying a constant load to h (cm). Then, the resistance R ( ⁇ ) of the compressed carbon powder was determined by applying a voltage to both ends of the electrode to measure the current, and the value was calculated using the following calculation formula (1).
  • the weight of the carbon material used for the measurement may be an amount that is compressed and held between the electrodes, and the load during compression is such that the shape of the carbon powder does not break and the volume change of the carbon powder. Any load that can be compressed to such an extent that there is no need is present.
  • the proportion of the mesopores (diameter 2 to 50 nm) occupied in the pores of the carbon powder is preferably in the range of 5 to 55%.
  • the proportion of mesopores is less than 5%, there is a problem that it is difficult to expect a reduction in resistance, and when the proportion of mesopores exceeds 55%, there is a problem that it is difficult to manufacture.
  • the proportion of micropores (diameter less than 2 nm) is 95% or more, whereas carbon powder having an average particle size of carbon powder of less than 100 nm is mesopore (diameter 2-50 nm), macropores. The ratio (over 50 nm in diameter) is relatively large.
  • activated carbon In general activated carbon, a large average particle diameter of several microns is used to increase the surface area, and many fine diameters (micropores) are provided. A large number of pores are formed inside the particle, and the area of the inner surface of the particle is about 80% of the entire particle (specific surface area). Ions in the electrolyte must enter the deep part of the pores of the particles, and the diffusion resistance tends to be high. With this activated carbon, it is difficult to reduce the resistance.
  • the average particle diameter of the carbon powder is less than 100 nm, since the diameter is extremely small, the distance to the deep part of the pores of the particles is short, and ions in the electrolytic solution easily move. Therefore, the diffusion resistance is low and the conductivity is high. Further, the specific surface area is large due to the porous treatment. In particular, by increasing the ratio of the small particle diameter and relatively large pores (mesopores) to the above 5 to 55%, ions are more easily moved and diffusion resistance can be further reduced.
  • the fibrous carbon used in this embodiment can efficiently entangle extremely small nano-sized carbon powder between the fibers, and plays a role of a binder.
  • fibrous carbon such as carbon nanotubes (hereinafter referred to as CNT) and carbon nanofibers (hereinafter referred to as CNF).
  • CNT carbon nanotubes
  • CNF carbon nanofibers
  • the CNT used as the fibrous carbon may be a single-walled carbon nanotube with a single graphene sheet, or a multi-walled carbon nanotube (MWCNT) in which two or more graphene sheets are rounded coaxially and the tube wall forms a multilayer, May be mixed.
  • MWCNT multi-walled carbon nanotube
  • the capacity density of CNT itself is so high that there are few layers of the graphene sheet of CNT
  • CNT of the number of layers is 50 layers or less, Preferably the range of 10 layers or less is preferable from the point of capacity density.
  • the outer diameter of the fibrous carbon is desirably 1 to 100 nm, preferably 2 to 70 nm, and more preferably 3 to 40 nm.
  • the length of the fibrous carbon is preferably 50 to 1000 ⁇ m, preferably 70 to 500 ⁇ m, more preferably 100 to 200 ⁇ m.
  • the specific surface area of the fibrous carbon is 100 to 2600 m 2 / g, preferably 200 to 2000 m 2 / g. If the specific surface area is larger than 2600 m 2 / g, the formed electrode tends to expand, and if it is smaller than 100 m 2 / g, the desired electrode density is hardly increased.
  • particle diameter and outer shape of the carbon powder and fibrous carbon were measured by ASTM D3849-04 (also referred to as ASTM particle diameter).
  • the content of the carbon powder and the fibrous carbon is preferably 5 to 50% by weight, particularly 10 to 30% by weight of the fibrous carbon based on the total amount of the carbon powder and the fibrous carbon. If the fibrous carbon exceeds 50% by weight, the electrode itself swells when it is impregnated with the electrolytic solution, which presses the outer case and easily causes the case to swell. On the other hand, if the amount of fibrous carbon is less than 5% by weight, the aggregate of the carbon powder tends to be large and the internal resistance tends to increase. In addition, you may contain the arbitrary component in the range which does not impair the objective of this invention. For example, a dispersing agent, other binders, etc. are mentioned.
  • binders include polyvinyl alcohol, carboxymethyl cellulose, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, acrylonitrile butadiene rubber, and tetrafluoroethylene-hexafluoropropylene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • styrene butadiene rubber acrylonitrile butadiene rubber
  • tetrafluoroethylene-hexafluoropropylene tetrafluoroethylene-hexafluoropropylene.
  • FEP Polymer
  • PEA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EXP vinylidene fluoride-hexafluoropropylene copolymer
  • EXP vinylidene fluoride-chlorotrifluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE vinylidene fluoride-pentafluoropropylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • ECTFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene copolymer and There is a mixture of them.
  • polytetrafluoroethylene and polyvinylidene fluoride are preferable.
  • These resin binders are desirably 3% or less based on the total amount of carbon powder, fibrous carbon, and resin binder. If it exceeds this, the internal resistance tends to increase due to the resin binder.
  • Examples of the solvent for dispersing carbon powder and fibrous carbon in the present embodiment include alcohols such as methanol, ethanol and 2-propanol, hydrocarbon solvents, aromatic solvents, N-methyl-2-pyrrolidone (NMP), and the like.
  • Various solvents such as amide solvents such as N, N-dimethylformamide (DMF), water, those using these solvents singly or those containing two or more types can be used.
  • additives such as a dispersing agent, in this solvent.
  • carbon powder and fibrous carbon are added to a solvent, and a dispersion treatment is performed on the mixed solution.
  • a dispersion treatment is performed on the mixed solution.
  • the carbon powder and the fibrous carbon in the mixed solution are subdivided and homogenized, and dispersed in the solution. That is, the fibrous carbon in the mixed solution before the dispersion treatment is in a state where the carbon fibers are entangled (bundle shape).
  • the dispersion treatment the bundle of fibrous carbon is broken and the fibrous carbon is dispersed in the solution.
  • the mixing method is preferably jet mixing or ultracentrifugation.
  • jet mixing or ultracentrifugation the aggregate of the carbon material is subdivided and the aggregation of the carbon material having an extremely small particle diameter is suppressed, and an electrode having a low internal resistance can be obtained.
  • a mixed solution containing carbon powder and fibrous carbon by a bead mill, rod mill, roller mill, stirring mill, planetary mill, vibration mill, ball mill, homogenizer, homomixer, etc.
  • the carbon powder and the fibrous carbon in the solution are subdivided by stirring.
  • the agglomerated carbon powder can be subdivided and homogenized, and entangled fibrous carbon can be solved.
  • a ball mill capable of obtaining a grinding force is preferable.
  • a pair of nozzles are provided at positions facing each other on the inner wall of the cylindrical chamber.
  • a mixed solution containing carbon powder and fibrous carbon is pressurized by a high-pressure pump and sprayed from a pair of nozzles to cause a frontal collision in the chamber.
  • the bundle of fibrous carbon is pulverized, and can be dispersed and homogenized.
  • the pressure is preferably 100 MPa or more and the concentration is less than 5 g / l.
  • ultracentrifugation is performed on a mixed solution containing carbon powder and fibrous carbon.
  • shear stress and centrifugal force are applied to the carbon powder and fibrous carbon of the mixed solution in a rotating container.
  • the ultracentrifugation process is performed, for example, by a container including an outer cylinder having a claw plate at an opening and a rotating inner cylinder having a through hole.
  • a container including an outer cylinder having a claw plate at an opening and a rotating inner cylinder having a through hole.
  • the carbon powder and fibrous carbon inside the inner cylinder move to the inner wall of the outer cylinder through the through hole of the inner cylinder by the centrifugal force. .
  • the carbon powder and the fibrous carbon collide with the inner wall of the outer cylinder by the centrifugal force of the inner cylinder, and form a thin film and slide up to the upper part of the inner wall.
  • both the shear stress between the inner wall and the centrifugal force from the inner cylinder are simultaneously applied to the carbon powder and the fibrous carbon, and a large mechanical energy is applied to the carbon powder and the fibrous carbon in the mixed solution.
  • the dispersion treatment is preferably performed on a mixed solution in which carbon powder and fibrous carbon are mixed.
  • a solution in which fibrous carbon is added separately is prepared, the dispersion treatment is performed on this solution, and the bundle is formed.
  • the melted fibrous carbon may be obtained, and the fibrous carbon and carbon powder may be mixed to obtain a mixed solution.
  • a solution in which carbon powder is separately added is prepared, and a dispersion treatment is performed on the solution to obtain a finely divided carbon powder.
  • the carbon powder and fibrous carbon may be mixed to obtain a mixed solution.
  • a solution in which fibrous carbon is separately added is prepared, and dispersion treatment is performed on this solution to obtain a fibrous carbon in which the bundle has been broken.
  • a solution in which carbon powder is separately added is prepared.
  • dispersion treatment may be performed to obtain finely divided carbon powder, and these fibrous carbon and carbon powder may be mixed to obtain a mixed solution.
  • These mixed solutions may be subjected to dispersion treatment.
  • this electrode may contain various additives.
  • examples thereof include solid acids such as amorphous silica alumina and amorphous silica magnesia, gas absorbents, and the like.
  • Coating layer forming step the mixed solution that has been subjected to the dispersion step is applied onto the current collector, and the solvent is removed by drying, thereby coating the current collector with carbon powder / fibrous carbon. An electrode having a layer formed can be obtained.
  • the mixed solution on the current collector there is a method of coating the current collector with the mixed solution (various coating methods such as dip coating, spray coating, and ink jet coating are used).
  • a bar coater or a coater is used to apply the mixed solution on the current collector with a uniform thickness.
  • the mixed solution is dried.
  • the solvent in the mixed solution is removed, and a coating layer as a mixed layer of carbon powder / fibrous carbon in which carbon powder and fibrous carbon are deposited is formed on the current collector.
  • an electrode is produced by pressing from the up-down direction of the current collector and the coating layer, so that the coating layer bites into the uneven surface of the current collector and is integrated.
  • the thickness of the coating layer formed on this current collector is preferably about 10-40 ⁇ m. When the SEM image of this coating layer is observed, the distance between the fibrous carbon and the fibrous carbon is 2 ⁇ m or less.
  • the carbon powder is dispersed and supported in fibrous carbon with an interval of 2 ⁇ m or less.
  • a vertical press or a roll press can be used for pressing the current collector and the coating layer.
  • the current collector used in this embodiment can use a conductive material.
  • the conductive material used as the current collector include aluminum foil, platinum, gold, nickel, titanium, steel, and carbon.
  • the shape of the current collector any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.
  • the surface of the current collector may be formed with an uneven surface by etching or the like in advance, or may be a plain surface.
  • an adhesive layer made of a conductive material can be formed in advance.
  • FIG. 2 is an SEM ( ⁇ 40.00 k) of a coating layer of carbon powder / fibrous carbon prepared from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are dispersed by a mixer in the dispersion step. It is a statue.
  • FIG. 3 is an SEM ( ⁇ 40.00 k) image of a coating layer of carbon powder / fibrous carbon produced from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are highly dispersed by a ball mill. is there.
  • FIG. 4 shows an SEM ( ⁇ 40.00k) image of a coating layer of carbon powder / fibrous carbon produced from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are highly dispersed by jet mixing. It is.
  • FIG. 5 shows an SEM ( ⁇ 40.00 k) of a coating layer of carbon powder / fibrous carbon prepared from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are highly dispersed by ultracentrifugation. It is a statue.
  • the fibrous carbon is carried around the carbon powder.
  • Carbon powder / fibrous carbon coating layer prepared from a mixed solution dispersed by a mixer, carbon powder / fibrous carbon coating layer prepared from a mixed solution dispersed by jet mixing, dispersion by ultracentrifugation It can be seen that the shape of the surface of the coating layer becomes denser in the order of the carbon powder / fibrous carbon coating layer produced from the treated mixed solution.
  • the fibrous carbon (CNT) is sparse and the fibrous carbon (CNT) is The interval is wide. That is, in the dispersion treatment by the mixer, the amount of bundled fibrous carbon (CNT) bundles that can be unwound is small, so that the fibrous carbon (CNT) becomes sparse and the gap between the CNTs becomes large. For this reason, it is difficult for the carbon powder to be uniformly dispersed and supported on the fibrous carbon.
  • FIG. 2 there is a portion where the distance between the CNTs is short, such as a gap A between the CNT (1) and the CNT (2).
  • the CNT There is a region where is not observed in the SEM image.
  • the gap C between the CNTs is not less than 2 ⁇ m. That is, it can be seen that CNTs are not sufficiently dispersed and sparse. Further, the carbon powder is not sufficiently subdivided, and the aggregate of the carbon powder exists in a large state exceeding 3 ⁇ m.
  • the gap between the CNTs in the region B was observed with an SEM image and calculated as the maximum linear distance in the region where no CNTs existed.
  • fibrous carbon is used in the carbon powder / fibrous carbon coating layer formed from a solution dispersed by a ball mill, jet mixing, or ultracentrifugation.
  • fibrous carbon are dense and the spacing between fibrous carbons (CNTs) is also narrow. That is, in the dispersion process by ball milling, jet mixing, or ultracentrifugation, bundles of fibrous carbon (CNT) are sufficiently unwound, so that the network of fibrous carbon (CNT) is dense.
  • the carbon powder itself is broken by these dispersion treatments, and the aggregate state of the carbon powder is broken down into small aggregates.
  • the dense mesh-like fibrous carbon is supported in a state of agglomerated carbon powder, and the carbon powder and fibrous carbon are uniformly dispersed.
  • the gap between CNTs was 2 ⁇ m or less, and a gap exceeding 2 ⁇ m could not be confirmed. Since the carbon powder (carbon black) is dispersed and supported on the network fibrous carbon (CNT) as small aggregates of 3 ⁇ m or less, the carbon powder can be highly dispersed.
  • the carbon powder and fibrous carbon in the mixed solution are highly dispersed using a dispersion technique such as jet mixing or ultracentrifugation, thereby increasing the electrode density with a dense and homogeneous coating layer.
  • a dispersion technique such as jet mixing or ultracentrifugation
  • the carbon powder / fibrous carbon coating layer prepared by applying a mixed solution in which the carbon material and the fibrous carbon are dispersed on the current collector and removing the solvent is peeled off from the current collector in a predetermined amount.
  • a so-called normal distribution having a single peak was shown. It turned out that the structure which D90 / D50 shows 2.5 or less is preferable. That is, by using the carbon powder / fibrous carbon coating layer in this range, a uniform surface state and high density are obtained.
  • D90 by setting D90 to 150 ⁇ m or less, a sharp particle size distribution can be obtained, and a uniform surface state and a high-density carbon powder / fibrous carbon coating layer can be obtained.
  • the lower limit of D90 is 1 ⁇ m, and the optimum range is 1 to 50 ⁇ m.
  • the particle size distribution was determined by adding a carbon powder / fibrous carbon coating layer (1 cm 2 ) to an isopropyl alcohol (IPA) solution and dispersing using a homogenizer (24000 rpm, 5 minutes). (Measurement method of particle size distribution).
  • FIG. 6 is a conceptual diagram showing a configuration of a laminated electric double layer capacitor in which an electrode in which a coating layer of carbon powder / fibrous carbon is formed on a current collector is laminated and sealed as an example of the electric double layer capacitor.
  • the laminated electric double layer capacitor includes a positive electrode and a negative electrode 3, a separator 4, an electrolytic solution 5, a laminate film 6, and an external terminal 7.
  • the electrode 3 is an electrode in which the carbon powder / fibrous carbon coating layer of the present embodiment is formed on a current collector.
  • An external terminal 7 for connection to the outside is formed on a part of the electrode 3.
  • a cellulose separator As the separator 4, a cellulose separator, a synthetic fiber nonwoven fabric separator, a mixed paper separator made by mixing cellulose and synthetic fibers, or the like can be used. Polyester, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyimide, fluororesin, polyolefin resin such as polypropylene and polyethylene, non-woven fabric made of fibers such as ceramics and glass, kraft paper, manila paper, esparto paper, and a mixture of these Papermaking or a porous film can be preferably used. When performing reflow soldering, a resin having a heat distortion temperature of 230 ° C. or higher is used. For example, polyphenylene sulfide, polyethylene terephthalate, polyamide, fluororesin, ceramics, glass, or the like can be used.
  • the electrolyte 4 contains one or more electrolytes selected from the group consisting of quaternary ammonium salts or lithium salts. Any quaternary ammonium salt or lithium salt can be used as long as the electrolyte can generate quaternary ammonium ions and lithium ions. It is more preferable to use one or more selected from the group consisting of quaternary ammonium salts and lithium salts.
  • ethyl trimethyl ammonium BF 4 diethyl dimethyl ammonium BF 4 , triethyl methyl ammonium BF 4 , tetraethyl ammonium BF 4 , spiro- (N, N ′)-bipyrrolidinium BF 4 , ethyl trimethyl ammonium PF 6 , diethyl dimethyl ammonium PF 6 , Triethylmethylammonium PF 6 , tetraethylammonium PF 6 , spiro- (N, N ′)-bipyrrolidinium PF 6 , tetramethylammonium bis (oxalato) borate, ethyltrimethylammonium bis (oxalato) borate, diethyldimethylammonium bis (oxalato) borate , Triethylmethylammonium bis (oxalato) borate,
  • the laminate film 6 may be of this type as long as it has flexibility and can seal the capacitor element formed of the electrode 3 and the separator 4 by heat fusion so that the electrolyte does not leak.
  • Generally used films can be used.
  • a typical layer structure used for the laminate film 6 is a structure in which a non-venting layer made of a metal thin film and a heat-sealing layer made of a heat-fusible resin are laminated, or a heat-sealing layer of a non-venting layer.
  • a protective layer made of a film of polyester such as polyethylene terephthalate or nylon is laminated on the surface opposite to the surface. When sealing the capacitor element, the capacitor element is surrounded by facing the heat sealing layer.
  • the number of electrodes 3 and separators 4 forming the capacitor element to be sealed can be arbitrarily set.
  • a capacitor element may be constituted by one electrode and two separators, or a capacitor element may be constituted by a combination of other numbers.
  • the metal thin film constituting the non-breathing layer for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 ⁇ m to 100 ⁇ m can be used.
  • the heat-sealable resin used for the heat-sealable layer is not particularly limited as long as it is a resin that can be heat-sealable.
  • polyesters such as polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyethylene terephthalate.
  • polyamide, ethylene-vinyl acetate copolymer and the like for example, polyesters such as polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyethylene terephthalate.
  • Electrode Density of Electrode The electrode according to the present invention can provide good results in electrode capacity when the electrode density is 0.48 g / cc or more.
  • the “electrode density” described in the present specification is the mass per unit volume of the coating layer obtained by dispersing carbon powder and fibrous carbon in a solvent and coating the current collector. Specifically, in the thickness region (volume) of the coating layer at 1 cm 2 of the coating layer, a value obtained by dividing the weight of the solid content including the electrode material by the volume.
  • the electrode and the electrode manufacturing method according to the present invention can be applied not only to an electric double layer capacitor but also to various capacitors such as an electrochemical capacitor such as a lithium ion capacitor.
  • the electrode and the electrode manufacturing method according to the present invention are not limited to the laminate type electric double layer capacitor, and may be applied to a coin type.
  • the electrode is wound between the positive electrode and the negative electrode via a separator.
  • the present invention can also be applied to various types of capacitors using a cylindrical element or a laminated element laminated with a separator between a positive electrode and a negative electrode.
  • Examples 1 to 4 carbon black having an average particle size of 12 nm (hereinafter referred to as CB) subjected to water vapor activation treatment is used as carbon particles having an average particle size of 100 nm.
  • CB having an average particle diameter of 12 nm is measured so as to be 80 wt% with respect to the total amount of carbon powder and fibrous carbon in the electrode.
  • CNT as a fibrous carbon having an outer diameter of 20 nm and a length of 150 ⁇ m is measured so as to be 20 wt% with respect to the total amount of CB and CNT in the electrode.
  • 1.6 g of CB and 0.4 g of CNT were put into 1 L of a solvent (NMP) to prepare a mixed solution.
  • NMP a solvent
  • 0.02 g of polyvinylidene fluoride (PVDF) was further added to the mixed solution and mixed. The proportion of PVDF in the mixed solution is 1 wt%.
  • Example 1 In Example 1, the above mixed solution was subjected to dispersion treatment by ultracentrifugation dispersion treatment at a centrifugal force of 200000 N (kgms ⁇ 2 ) for 5 minutes to prepare a CB / CNT / NMP dispersion.
  • the dispersion was concentrated by removing the solvent by filtration, and this dispersion was applied onto an aluminum foil as a current collector using a bar coater. Then, it dried at 120 degreeC under normal pressure for 1 hour, NMP used as a solvent was removed, and two electrodes which formed the coating layer of CB / CNT on aluminum foil were obtained, and an electric double layer was passed through a cellulosic separator.
  • Example 2 In Example 2, the above mixed solution was subjected to dispersion treatment three times by jet mixing at a pressure and concentration of 200 MPa, 0.5 g / l, and a carbon powder / fibrous carbon / NMP dispersion was produced. Produced an evaluation cell in the same manner as in Example 1.
  • Example 3 In Example 3, the above mixed solution was stirred for about 30 seconds with a ball mill for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 1 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
  • Example 4 In Example 4, the above mixed solution was stirred for about 30 seconds with a mixer for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 1 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
  • Example 5 carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder, and carbon powder / fibrous carbon / NMP dispersion was used for evaluation in the same manner as in Example 1 A cell was produced.
  • the amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
  • Example 6 carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder and carbon powder / fibrous carbon / NMP dispersion was used for evaluation in the same manner as in Example 2 except that it was used. A cell was produced. The amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
  • Example 7 for evaluation in the same manner as in Example 3 except that carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder and carbon powder / fibrous carbon / NMP dispersion was used. A cell was produced. The amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
  • Example 8 carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder, and carbon powder / fibrous carbon / NMP dispersion was used for evaluation in the same manner as in Example 4 A cell was produced.
  • the amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
  • Comparative Example 1 An evaluation cell was produced in the same manner as in Example 3 except that the mixed solution was changed. Specifically, the activated carbon (raw material: Yasakara) having an average particle diameter of 1 ⁇ m subjected to the steam activation treatment is measured so as to be 80 wt% with respect to the total amount of the activated carbon and CNT in the electrode. Next, CNT is measured as fibrous carbon having an outer diameter of 20 nm and a length of 150 ⁇ m so as to be 20 wt% with respect to the total amount of activated carbon and CNT in the electrode. The total amount of activated carbon and CNT is 50 mg.
  • a total of 50 mg of activated carbon and CNT were mixed with 50 ml of NMP to prepare a mixed solution.
  • An evaluation cell was produced in the same manner as in Example 1 except that this mixed solution was stirred for about 30 seconds with a mixer and dispersed to produce a carbon powder / fibrous carbon / NMP dispersion.
  • the electrode dispersion methods of Examples 1 to 8, Comparative Example 1 and Conventional Example 1 the ratio of binder or fibrous carbon, the ratio of carbon black in the electrode, the electrode density, the electrode capacity of the evaluation cell, the internal It is the table
  • the electrode capacity and the internal resistance show the measurement results after applying voltage at 3 V for 30 minutes.
  • the electrode capacity of the evaluation cell was measured in each environment of 20 ° C. and ⁇ 30 ° C., and the ratio of the capacities (capacity at ⁇ 30 ° C./capacity at 20 ° C.) ⁇ 100% did.
  • Example 1 which is a coating electrode using PVDF as a binder
  • a resin-based binder is used.
  • the internal resistance and the low temperature characteristics were deteriorated.
  • the electrode density and the electrode capacity are showing the high value.
  • the activated carbon particle size is large, the diffusion resistance increases despite the fact that no resin binder is used, and the internal resistance and low-temperature characteristics are degraded.
  • the electrode density of Examples 1 and 5 in which the dispersion process was performed by ultracentrifugation was 0.62 g / cc
  • the electrode density of Examples 2 and 6 in which jet mixing was performed was 0.55 g / cc
  • the electrode density of Examples 3 and 7 performed by the ball mill is 0.60 g / cc, which is higher than 0.50 g / cc. That is, Examples 1 to 3, 5 to 7 in which carbon powder and fibrous carbon are highly dispersed are examples in which internal resistance and low-temperature characteristics are good and the electrode density is high and dispersed by a mixer. It can be seen that the electrode capacity is significantly improved as compared with 4 and 8.
  • KB ketjen black having an average particle diameter of 34 nm subjected to the steam activation treatment is measured so as to be 80 wt% with respect to the total amount of carbon powder and fibrous carbon in the electrode.
  • CNT is measured as fibrous carbon having an outer diameter of 20 nm and a length of 150 ⁇ m so as to be 20 wt% with respect to the total amount of KB and CNT in the electrode.
  • 1.6 g of KB and 0.4 g of CNT were put into 1 L of a solvent (NMP) to prepare a mixed solution.
  • 1M 1 mol / dm 3
  • Example 10 (Example 10) In Example 10, the above mixed solution was dispersed three times by jet mixing at a pressure and concentration of 200 MPa, 0.5 g / l, and a carbon powder / fibrous carbon / NMP dispersion was produced. Produced an evaluation cell in the same manner as in Example 9.
  • Example 11 In Example 11, the above mixed solution was stirred for about 30 seconds with a ball mill for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 9 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
  • Example 12 In Example 12, the above mixed solution was stirred for about 30 seconds with a mixer for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 9 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
  • Table 2 is a table showing the electrode dispersion method, binder or fibrous carbon ratio, ratio of carbon black in the electrode, electrode density, electrode capacity of the evaluation cell, internal resistance, and low temperature characteristics of Examples 9 to 12. It is.
  • the electrode capacity and the internal resistance show the measurement results after voltage application at 3 V for 30 minutes.
  • the electrode capacity of the evaluation cell was measured in each environment of 20 ° C. and ⁇ 30 ° C., and the ratio of the capacities (capacity at ⁇ 30 ° C./capacity at 20 ° C.) ⁇ 100% did.
  • Example 9 in which the dispersion process was performed by ultracentrifugation to highly disperse carbon powder and fibrous carbon, Example 10 in which carbon powder and fibrous carbon were highly dispersed by jet mixing, Carbon powder by ball mill About Example 11 which carried out the high dispersion
  • Example 11 which carried out the high dispersion
  • the electrode density of Example 9 of 0.56 g / cc
  • the electrode density increases. For this reason, it turns out that the electrode capacity is significantly improved as compared with Example 12 dispersed by the mixer.
  • Comparative Example 1 in which internal resistance and low-temperature characteristics have deteriorated has a lower proportion of mesopores than Examples 1 and 9. I understand that.
  • Examples 1 and 9 in which the internal resistance and the low-temperature characteristics are extremely excellent values it can be seen that the resistance is reduced by increasing the proportion of mesopores having a large pore size. By setting the proportion of mesopores to 5 to 55%, the internal resistance and the low temperature characteristics become extremely excellent values.
  • FIG. 7 is a diagram showing the particle size distribution of Examples 1 to 3. .
  • the measurement method was that the carbon powder / fibrous carbon mixed layer (1 cm 2 ) of Examples 1 to 3 was taken out from the current collector, placed in an isopropyl alcohol (IPA) solution, and a homogenizer (24000 rpm, 5 minutes) was used. In the dispersed state, the particle size distribution was measured.
  • IPA isopropyl alcohol
  • FIG. 7 shows that Examples 1 and 2 are so-called normal distributions having a single peak in the particle size distribution. This shows that the electrodes obtained in Examples 1 and 2 have a uniform surface state and high density.
  • Example 1 a sharper particle size distribution can be obtained by setting D90 to be less than 138 ⁇ m.
  • Example 1 and Example 2 it is possible to obtain an optimum electrode with extremely excellent internal resistance and capacity. I understand. Similarly, even when D90 is 150 ⁇ m or less, excellent internal resistance and capacitance can be obtained. On the other hand, when D90 exceeds 150 ⁇ m, the internal resistance and the capacity decrease.
  • Table 5 is a table showing D90 / D50, electrode density, capacity, and internal resistance of the electrodes of Examples 1 to 3.
  • the electrode has a uniform surface state and high density. Therefore, in Examples 1 and 2, the internal resistance and the capacitance can be made excellent values. On the other hand, when the value of D90 / D50 is 2.6 or more, the uniformity of the surface state of the electrode is partially broken, so that the electrode density is lowered.
  • the value of D90 / D50 in the particle size distribution is 2.5 or less, and a sharp peak is obtained to obtain a uniform surface state and high It can be a density. Thereby, the value of internal resistance and a capacity
  • the D90 of the aggregate is set to 150 ⁇ m or less, a sharper particle size distribution can be obtained, and the internal resistance and capacity of the electrode can be made excellent.
  • Table 6 shows the electrode dispersion method of Example 1-1 to Example 1-6, the ratio of fibrous carbon in the electrode, the ratio of the carbon material in the electrode, the electrode density, the electrode capacity of the evaluation cell, and the internal resistance. It is the table
  • the thickness of the cell for evaluation before voltage application is used as a standard, and compared with the thickness after voltage application at 3 V for 30 minutes, the case where the swelling is more than 20% is “x”, in the range of 20 to 10% What was swollen with “ ⁇ ” was evaluated as “ ⁇ ” when it was swollen with less than 10%.
  • Example 2-1 to Example 2-6 Next, the electrode filtered using the mixed solution highly dispersed by jet mixing will be examined.
  • the cells were manufactured in the same manner as the evaluation cell described in Example 2. However, the ratio of CB and CNT contained in the mixed solution is changed as shown in Table 7.
  • Table 7 shows the electrode dispersion methods of Examples 2-1 to 2-6, the ratio of fibrous carbon in the electrodes, the ratio of the carbon material in the electrodes, the electrode density, the electrode capacity of the evaluation cell, and the internal resistance. It is the table
  • Examples 2-1 to 2-6 when the characteristics of Examples 2-1 to 2-6 are compared, good results are obtained with respect to electrode density and capacitance in any of the Examples.
  • Examples 2-2 to 2-6 in which the ratio of CNT was 10 wt% or more were better than those of Example 2-1.
  • Examples 2-1 to 2-4 having a CNT ratio of 30 wt% or less showed better results than Examples 2-5 and 2-6.
  • the electrode density is 0.48 g / cc or more in any of the examples, and good results are obtained for the electrode capacity as compared with Example 3 dispersed by the mixer described in Table 1. ing.
  • SLF sulfolane
  • TEMABF 4 triethylmethylammonium tetrafluoroborate
  • Table 8 shows the dispersion method of the electrodes of Examples 1-7 to 1-9, the type of the electrolyte, the proportion of fibrous carbon in the electrodes, the proportion of the carbon material in the electrodes, the electrode capacity of the evaluation cell, and the low temperature characteristics And a table showing the capacity maintenance rate after 250 hours.
  • the electrode capacity indicates a measurement result after applying a voltage at 3.5 V for 30 minutes.
  • the capacity retention ratio was determined by measuring the electrode capacity after applying voltage at 3.5 V for 30 minutes and the electrode capacity after applying voltage at 3.5 V for 250 hours, and the ratio of the capacity (capacity after applying voltage for 250 hours). / Capacity after voltage application for 30 minutes) ⁇ 100%.
  • the electrode capacity of the evaluation cell was measured in each environment of 20 ° C. and ⁇ 30 ° C., and the ratio of the capacities (capacity at ⁇ 30 ° C./capacity at 20 ° C.) ⁇ 100% did.
  • Example 1-9 in which no sulfolane, sulfolane compound or chain sulfone is used in the electrolyte, the capacity retention rate after 250 hours is shown. Extremely reduced.
  • Example 1-7 using EiPS which is sulfolane and chain sulfone as the electrolyte and in Example 1-8 using 3-MeSLF which is a sulfolane compound having a side chain in the sulfolane and sulfolane skeleton, 250 hours
  • the subsequent capacity retention rate was 95%, and the decrease in electrode capacity over time was suppressed to a small level, and good low temperature characteristics of 90% or more were exhibited.
  • the activated carbon (raw material: Yasakara) having an average particle diameter of 1 ⁇ m subjected to the steam activation treatment is measured so as to be 80 wt% with respect to the total amount of carbon powder and fibrous carbon in the electrode.
  • CNT is measured as fibrous carbon having an outer diameter of 20 nm and a length of 150 ⁇ m so as to be 20 wt% with respect to the total amount of activated carbon and CNT in the electrode.
  • 1.6 g of activated carbon and 0.4 g of CNT were put into a NMP1L solvent to prepare a mixed solution.
  • Example 10-1 In Example 10-1, the above mixed solution was subjected to a dispersion treatment by ultracentrifugation for 5 minutes at a centrifugal force of 200000 N (kgms ⁇ 2 ) to produce an activated carbon / CNT / NMP dispersion.
  • the dispersion is concentrated by removing a part of the solvent by filtration, and this dispersion is coated on an aluminum foil as a current collector using a bar coater, and dried at 120 ° C. for 1 hour under normal pressure.
  • Example 10-2 In Example 10-2, the above mixed solution was dispersed three times by jet mixing at a pressure and concentration of 200 MPa and 0.5 g / l to prepare a carbon powder / fibrous carbon / NMP dispersion.
  • An evaluation cell was produced in the same manner as in Example 10-1, except that
  • Table 9 shows the electrode dispersion method of Examples 10-1, 10-2 and Conventional Example 1, the ratio of fibrous carbon, the ratio of activated carbon in the electrode, the electrode density, the electrode capacity of the evaluation cell, and the internal resistance. It is a table.
  • the electrode capacity and internal resistance show the measurement results after applying voltage at 3 V for 30 minutes.
  • Example 10-1 and 10-2 and Conventional Example 1 are compared.
  • Conventional Example 1 the internal resistance and the low temperature characteristics were degraded.
  • Example 10-1 and Example 10-2 in which ultracentrifugation and jet mixing were performed, activated carbon and CNTs can be highly dispersed, and the electrode density of the obtained electrode was improved.
  • the capacity and internal resistance were excellent values. That is, from Table 9, even when carbon powder having an average particle diameter of 1 ⁇ m is used, an electrode having excellent electrode capacity and low internal resistance can be produced by performing ultracentrifugation and jet mixing as a dispersion method. It is understood that is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This invention provides the following: an electrode comprising a mix of a carbon powder and fibrous carbon wherein the impact of a resin binder or the like is eliminated, the electrical resistance of said electrode is reduced, and said electrode exhibits superb capacity characteristics; an electric double-layer capacitor using said electrode; and a method for manufacturing said electrode. Said method has the one of following steps: a dispersion step in which fibrous carbon and a carbon powder having a grain diameter of less than 100 nm are dispersed in a solvent; or a dispersion step in which fibrous carbon and a carbon powder that has a grain diameter of at least 100 nm but less than 10 µm and has been treated so as to be made porous are dispersed in a solvent via either a process in which jets of a solution are made to collide with each other or a process in which shear stress and centrifugal force are applied to said solution. Said method also has an electrode formation step, after the dispersion step, in which a collector is coated with the solution resulting from the dispersion step, yielding a layer comprising a carbon-powder/fibrous-carbon mix.

Description

電極、その電極を用いた電気二重層キャパシタ、及び電極の製造方法Electrode, electric double layer capacitor using the electrode, and method for manufacturing electrode
 本発明は、炭素材料を利用した電極、該電極を用いた電気二重層キャパシタ、及び電極の製造方法に関する。特に、炭素材料としては、炭素粉末及び繊維状炭素を利用する。 The present invention relates to an electrode using a carbon material, an electric double layer capacitor using the electrode, and a method for manufacturing the electrode. In particular, carbon powder and fibrous carbon are used as the carbon material.
 従来、電気二重層キャパシタは、一対の電極と、この間に存在するセパレータと、それぞれの電極の集電層とから構成される。電気二重層キャパシタに使用される代表的な電極には、活性炭が用いられている。 Conventionally, an electric double layer capacitor is composed of a pair of electrodes, a separator existing between them, and a current collecting layer of each electrode. Activated carbon is used as a typical electrode used in the electric double layer capacitor.
 この電気二重層キャパシタに使用される電極の製造方法は、代表的な電極の材料である活性炭粉末に、アセチレンブラック等の導電性物質及びポリテトラフルオロエチレン、四フッ化エチレン樹脂等の樹脂をバインダーとして添加して混合した後、加圧成型してシート状の分極電極を形成する方法が知られている。またこの他には、この混合物を溶媒に含ませ集電体に塗布する方法(コーティング法)が挙げられる。 The manufacturing method of the electrode used for this electric double layer capacitor is a binder of a conductive material such as acetylene black and a resin such as polytetrafluoroethylene or tetrafluoroethylene resin to activated carbon powder which is a typical electrode material. A method of forming a sheet-like polarization electrode by press molding after adding and mixing is known. In addition to this, there is a method (coating method) in which the mixture is contained in a solvent and applied to a current collector.
 このような電気二重層キャパシタは、活性炭の表面の官能基による反応が原因と思われる高温放置中の容量の低下という問題点がある。この問題点を解決すべく提案がなされている(特許文献1)。 Such an electric double layer capacitor has a problem of a decrease in capacity during standing at high temperature, which is considered to be caused by a reaction due to a functional group on the surface of activated carbon. Proposals have been made to solve this problem (Patent Document 1).
 そこで、大容量化を目的として、粒子径が1μmを超える活性炭と樹脂系バインダーを混合した後、集電体上に塗布することで分極性電極を作成し、電気二重層キャパシタに用いた試みがある(特許文献2)。 Therefore, for the purpose of increasing the capacity, an attempt has been made to create a polarizable electrode by mixing activated carbon with a particle size exceeding 1 μm and a resin binder and then applying the mixture on a current collector, and using it for an electric double layer capacitor. Yes (Patent Document 2).
特開2001-237149号公報JP 2001-237149 A 特開2000-124079号公報JP 2000-1224079 A
 このような電気二重層キャパシタの電極では、活性炭の粒子径が大きいため拡散抵抗が上がり、内部抵抗や低温特性が劣化してしまう。また、粒子の大きな活性炭とバインダーと電極を形成する場合、バインダーとして樹脂系バインダーを単独で使用すると、電極密度を高くすることが困難であり、低抵抗化の面では不利であった。 In the electrode of such an electric double layer capacitor, the activated carbon has a large particle diameter, so the diffusion resistance increases, and the internal resistance and low temperature characteristics deteriorate. Further, when forming an electrode with activated carbon having a large particle size and a binder, if a resin binder is used alone as the binder, it is difficult to increase the electrode density, which is disadvantageous in terms of lowering the resistance.
 そこで、本発明の目的は、炭素粉末と繊維状炭素を混合した電極において、電極密度が高く拡散抵抗を低くした電極、その電極を用いた電気二重層キャパシタ、及び電極の製造方法を提供することである。 Accordingly, an object of the present invention is to provide an electrode having a high electrode density and a low diffusion resistance, an electric double layer capacitor using the electrode, and an electrode manufacturing method in an electrode in which carbon powder and fibrous carbon are mixed. It is.
 前記の目的を達成するため、本発明の電極は、平均粒子径が100nm未満の多孔質化処理した炭素粉末と、繊維状炭素と、を分散させた溶液を集電体上に塗布し、溶媒を乾燥して得られたことを特徴とする。炭素粉末と繊維状炭素を混合した溶液を集電体上に塗布し、溶媒を除去して得られた電極においては、繊維状炭素がバインダー的な役割を果たし、炭素粉末を均一に分散した状態で保持することができる。繊維状炭素は、樹脂系のバインダーと併用し使用することも可能であるので、樹脂系のバインダーを用いる場合にでも、樹脂系バインダーを電気抵抗に対して影響が出にくい割合で用いることが可能であり、樹脂系バインダーの電気抵抗への影響を排除することが可能であるため、得られる電極の電気抵抗を小さくすることが可能である。 In order to achieve the above object, the electrode of the present invention is applied to a current collector by applying a solution in which porous carbon powder having an average particle diameter of less than 100 nm and fibrous carbon are dispersed to a current collector. It was obtained by drying. In the electrode obtained by applying a mixed solution of carbon powder and fibrous carbon on the current collector and removing the solvent, the fibrous carbon plays a role as a binder, and the carbon powder is uniformly dispersed. Can be held in. Fibrous carbon can also be used in combination with resin binders, so even when resin binders are used, resin binders can be used at a rate that is less likely to affect electrical resistance. Since it is possible to eliminate the influence of the resin binder on the electric resistance, it is possible to reduce the electric resistance of the obtained electrode.
 前記炭素粉末は、カーボンブラックを賦活処理したものであることを特徴としても良い。 The carbon powder may be obtained by activating carbon black.
 炭素粉末と繊維状炭素とが高分散され、その電極密度が0.48g/cc以上とすることもできる。 Carbon powder and fibrous carbon are highly dispersed, and the electrode density can be 0.48 g / cc or more.
 前記繊維状炭素は、炭素粉末と繊維状炭素の合計量に対して10~55重量%含有することもできる。 The fibrous carbon may be contained in an amount of 10 to 55% by weight based on the total amount of carbon powder and fibrous carbon.
 前記多孔質化処理した炭素粉末における孔のうち、メソ孔の占める割合が5~30%の範囲であっても良い。 The proportion of mesopores in the pores in the porous carbon powder may be in the range of 5 to 30%.
 電極を構成する炭素粉末と繊維状炭素の凝集体の粒度分布が単一のピークを有し、前記粒度分布の50%累積値D50の粒子径と、90%累積値D90の粒子径との比D90/D50が、2.5以下であることを特徴としても良い。 The particle size distribution of the carbon powder constituting the electrode and the aggregate of fibrous carbon has a single peak, and the ratio between the particle size of 50% cumulative value D50 and the particle size of 90% cumulative value D90 of the particle size distribution. D90 / D50 may be 2.5 or less.
 前記粒度分布の90%累積値D90の粒子径が150μm未満であっても良い。 The particle diameter of the 90% cumulative value D90 of the particle size distribution may be less than 150 μm.
 電極を構成する前記繊維状炭素同士の間隔が2μm以下であっても良い。 The interval between the fibrous carbons constituting the electrode may be 2 μm or less.
 また、平均粒子径が100nm以上且つ10μm未満の多孔質化処理した炭素粉末と繊維状炭素とを溶液の噴射流同士を衝突させる処理、または、前記溶液に対してずり応力と遠心力を加える処理で溶液中に分散させ、分散させた溶液を集電体上に塗布し、溶媒を除去して得られたことを特徴としてもよい。 Also, a treatment for causing the jetting of the solution to collide with the porous carbon powder having an average particle size of 100 nm or more and less than 10 μm and fibrous carbon, or a treatment for applying shear stress and centrifugal force to the solution The dispersion may be obtained by dispersing in a solution and applying the dispersed solution on a current collector and removing the solvent.
 また、この電極を集電体の上に形成した電気二重層キャパシタも本発明の一態様である。 An electric double layer capacitor in which this electrode is formed on a current collector is also an embodiment of the present invention.
 さらに、前記の目的を達成しうるため、本発明の電極の製造方法は、以下の工程を含むものである。
(1)平均粒子径が100nm未満の多孔質化処理した炭素粉末と、繊維状炭素とを溶媒中に分散させる分散工程。
(2)前記分散工程で得られた溶液を集電体上に塗布し、溶媒を除去して集電体上に炭素粉末/繊維状炭素の混合層を形成する電極形成工程。
Furthermore, since the said objective can be achieved, the manufacturing method of the electrode of this invention includes the following processes.
(1) A dispersion step of dispersing a porous carbon powder having an average particle diameter of less than 100 nm and fibrous carbon in a solvent.
(2) An electrode forming step of applying the solution obtained in the dispersing step onto a current collector, removing the solvent, and forming a carbon powder / fibrous carbon mixed layer on the current collector.
 本発明によれば、炭素粉末と繊維状炭素を分散させた溶液を集電体上に塗布し、溶媒を除去して得られた電極においては、電極密度を高く且つ内部抵抗を低くすることができる。そのため、容量が大きく電気抵抗が小さい優れた電極およびその電極を用いた電気二重層キャパシタを得ることができる。 According to the present invention, in an electrode obtained by applying a solution in which carbon powder and fibrous carbon are dispersed on a current collector and removing the solvent, the electrode density can be increased and the internal resistance can be decreased. it can. Therefore, an excellent electrode having a large capacity and a small electric resistance and an electric double layer capacitor using the electrode can be obtained.
本実施形態に係る電極の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the electrode which concerns on this embodiment. ミキサーで炭素粉末と繊維状炭素とを分散させた溶液を集電体上に塗布して溶媒を除去して得られた炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。An SEM (× 40.00k) image of the coating layer of carbon powder / fibrous carbon obtained by applying a solution in which carbon powder and fibrous carbon are dispersed on a current collector by a mixer and removing the solvent. is there. ボールミルで炭素粉末と繊維状炭素とを分散させた溶液を集電体上に塗布して溶媒を除去して得られた炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。A SEM (× 40.00k) image of a coating layer of carbon powder / fibrous carbon obtained by applying a solution in which carbon powder and fibrous carbon are dispersed by a ball mill on a current collector and removing the solvent. is there. ジェットミキシングで炭素粉末と繊維状炭素とを高分散させた溶液を集電体上に塗布して溶媒を除去して得られた炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。SEM (× 40.00k) of coating layer of carbon powder / fibrous carbon obtained by applying a solution in which carbon powder and fibrous carbon are highly dispersed by jet mixing on a current collector and removing the solvent It is a statue. 超遠心処理で炭素粉末と繊維状炭素とを高分散させた溶液を集電体上に塗布して溶媒を除去して得られた炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。An SEM (× 40.00k) of a coating layer of carbon powder / fibrous carbon obtained by applying a solution in which carbon powder and fibrous carbon are highly dispersed by ultracentrifugation to a current collector and removing the solvent. ) 本実施形態に係るラミネート形電気二重層キャパシタの構成を示す概念図である。It is a conceptual diagram which shows the structure of the laminate type electrical double layer capacitor which concerns on this embodiment. 本実施形態の実施例1~3の炭素粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the carbon powder of Examples 1-3 of this embodiment.
 以下、本発明を実施する形態について、説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 Hereinafter, embodiments for carrying out the present invention will be described. In addition, this invention is not limited to embodiment described below.
 本実施形態の電極は、図1に示すように、次の(1)(2)の工程により製造される。
(1)炭素粉末と、繊維状炭素とを溶媒中に分散させる分散工程。
(2)前記分散工程で得られた溶液を集電体上に塗布し、溶媒を除去して集電体上に炭素粉末/繊維状炭素のコーティング層を形成するコーティング層形成工程。
 以下では、(1)(2)の工程について詳述する。
As shown in FIG. 1, the electrode of this embodiment is manufactured by the following steps (1) and (2).
(1) A dispersion step of dispersing carbon powder and fibrous carbon in a solvent.
(2) A coating layer forming step of applying the solution obtained in the dispersing step onto a current collector, removing the solvent, and forming a carbon powder / fibrous carbon coating layer on the current collector.
Hereinafter, the steps (1) and (2) will be described in detail.
 (1)分散工程
 分散工程では、炭素粉末と繊維状炭素とを溶媒中に分散させる。
(1) Dispersing step In the dispersing step, carbon powder and fibrous carbon are dispersed in a solvent.
 本実施形態で使用する炭素粉末は、電極の主たる容量を発現するものである。炭素粉末の種類としては、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とする活性炭、ケッチェンブラック(以下、KB)、アセチレンブラック、チャネルブラックなどのカーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、活性炭、メソポーラス炭素などを挙げることができる。 The carbon powder used in the present embodiment expresses the main capacity of the electrode. The types of carbon powder include natural plant tissues such as palm, synthetic resins such as phenol, activated carbon derived from fossil fuels such as coal, coke and pitch, ketjen black (hereinafter referred to as KB), acetylene. Examples thereof include carbon black such as black and channel black, carbon nanohorn, amorphous carbon, natural graphite, artificial graphite, graphitized ketjen black, activated carbon, and mesoporous carbon.
 また、炭素粉末は賦活処理や開口処理などの多孔質化処理を施して使用するのが好ましい。炭素粉末の賦活方法としては、用いる原料により異なるが、通常、ガス賦活法、薬剤賦活法などの従来公知の賦活処理を用いることができる。ガス賦活法に用いるガスとしては、水蒸気、空気、一酸化炭素、二酸化炭素、塩化水素、酸素またはこれらを混合したものからなるガスが挙げられる。また、薬剤賦活法に用いる薬剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物;ホウ酸、リン酸、硫酸、塩酸等の無機酸類;または塩化亜鉛などの無機塩類などが挙げられる。この賦活処理の際には必要に応じて炭素粉末に加熱処理が施される。なお、これらの賦活処理以外にも炭素粉末に孔を形成する開口処理を用いても良い。 The carbon powder is preferably used after being subjected to a porous treatment such as activation treatment or opening treatment. The carbon powder activation method varies depending on the raw material used, but conventionally known activation treatments such as a gas activation method and a drug activation method can be usually used. Examples of the gas used in the gas activation method include water vapor, air, carbon monoxide, carbon dioxide, hydrogen chloride, oxygen, or a gas composed of a mixture thereof. In addition, as a chemical used in the chemical activation method, alkali metal hydroxide such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxide such as calcium hydroxide; boric acid, phosphoric acid, sulfuric acid, hydrochloric acid Inorganic acids such as zinc chloride; or inorganic salts such as zinc chloride. In this activation treatment, the carbon powder is heat-treated as necessary. In addition to these activation treatments, an opening treatment for forming holes in the carbon powder may be used.
 また、炭素粉末は比表面積が、600~2000m/gの範囲にあるものが望ましい。炭素粉末はその一次粒子の平均粒子径としては10μm未満が望ましく、その中でも特に100nm未満が望ましい。特に炭素粉末の平均粒子径が100nm未満であると、極めて小さい粒子径であるため拡散抵抗が低くその導電率は高い。また多孔質化処理による比表面積が大きいため高容量発現効果を期待することができる。炭素粉末の平均粒子径が100nmより大きいと、炭素粉末の粒子内のイオン拡散抵抗が大きくなり、結果として得られるキャパシタの抵抗が高くなってしまう。一方炭素粉末の凝集状況を考慮すると、平均粒子径は5nm以上が好ましい。なお、平均粒子径が100nm未満とした極めて小さな炭素粉末を個々に連結(数珠つなぎ状)した形態をとることで導電率の向上が得られる。炭素粉末としては特に賦活したカーボンブラックが好ましい。また、炭素粉末の平均粒子径としては10μm未満の場合にでも、分散方法として後述する超遠心処理及びジェットミキシングによる処理により、本発明の効果を奏することが可能である。 The carbon powder preferably has a specific surface area in the range of 600 to 2000 m 2 / g. The carbon powder preferably has an average primary particle size of less than 10 μm, and particularly preferably less than 100 nm. In particular, when the average particle size of the carbon powder is less than 100 nm, the diffusion resistance is low and the conductivity is high because the particle size is very small. Moreover, since the specific surface area by the porous treatment is large, a high capacity expression effect can be expected. If the average particle diameter of the carbon powder is larger than 100 nm, the ion diffusion resistance in the carbon powder particles increases, and the resistance of the resulting capacitor increases. On the other hand, considering the agglomeration state of the carbon powder, the average particle diameter is preferably 5 nm or more. In addition, the improvement of electrical conductivity is obtained by taking the form which connected the very small carbon powder which made the average particle diameter less than 100 nm individually (in a daisy chain form). As the carbon powder, activated carbon black is particularly preferable. Moreover, even when the average particle diameter of the carbon powder is less than 10 μm, the effects of the present invention can be achieved by the ultracentrifugation process and the jet mixing process described later as the dispersion method.
 また、炭素粉末の導電率は、20~1000S/cmの範囲が好ましい。このような高導電率とすることで、得られた電極をより低抵抗とすることができる。この炭素粉末の導電性を評価する方法として、次の圧縮時導電率で測定する。ここで、圧縮時導電率とは、炭素粉末を断面積A(cm)の電極間に挟んだ後、これに一定荷重をかけて圧縮して保持した時の厚さをh(cm)とし、その後電極の両端に電圧をかけて電流を測定して圧縮された炭素粉末の抵抗R(Ω)を求めて、次の計算式(1)を用いて算出した値である。 The electrical conductivity of the carbon powder is preferably in the range of 20 to 1000 S / cm. By setting it as such high conductivity, the obtained electrode can be made low resistance. As a method for evaluating the conductivity of the carbon powder, the following electrical conductivity during compression is used. Here, the electrical conductivity during compression refers to the thickness when the carbon powder is sandwiched between the electrodes having a cross-sectional area A (cm 2 ) and then compressed and held by applying a constant load to h (cm). Then, the resistance R (Ω) of the compressed carbon powder was determined by applying a voltage to both ends of the electrode to measure the current, and the value was calculated using the following calculation formula (1).
 圧縮時導電率(S / c m ) = h / ( A × R )・・・・式(1)
 式(1)中、Aは電極の断面積(cm2)を示し、hは炭素粉末を電極間に挟みこれに一定荷重をかけて体積が変化しなくなるまで圧縮して保持した時の厚さ(cm)を示し、Rは圧縮された炭素粉末の抵抗(Ω)を示す。
Electrical conductivity during compression (S / cm) = h / (A x R) ··· Formula (1)
In the formula (1), A indicates the cross-sectional area (cm 2 ) of the electrode, and h indicates the thickness when the carbon powder is sandwiched between the electrodes and a certain load is applied to this to compress and hold until the volume does not change. (Cm), R represents the resistance (Ω) of the compressed carbon powder.
 なお、測定に用いる炭素材料の重量は、圧縮されて電極間に保持される量であればよく、また、圧縮時の荷重は、炭素粉末の形状破壊が起こらない程度でかつ炭素粉末の体積変化がない程度にまで圧縮できる荷重であればよい。 The weight of the carbon material used for the measurement may be an amount that is compressed and held between the electrodes, and the load during compression is such that the shape of the carbon powder does not break and the volume change of the carbon powder. Any load that can be compressed to such an extent that there is no need is present.
 さらに、炭素粉末の平均粒子径が100nm未満の場合、炭素粉末の孔のうちメソ孔(直径2~50nm)の占める割合が5~55%の範囲が好ましい。メソ孔の占める割合が5%未満の場合は、抵抗の低減が見込めにくいという問題があり、メソ孔の占める割合が55%超の場合は、製造しにくいという問題がある。一般的な活性炭では、ミクロ孔(直径2nm未満)の割合が95%以上であるのに対し、炭素粉末の平均粒子径が100nm未満の炭素粉末は、メソ孔(直径2~50nm)、マクロ孔(直径50nm超)の割合が、比較的多くなる。 Furthermore, when the average particle diameter of the carbon powder is less than 100 nm, the proportion of the mesopores (diameter 2 to 50 nm) occupied in the pores of the carbon powder is preferably in the range of 5 to 55%. When the proportion of mesopores is less than 5%, there is a problem that it is difficult to expect a reduction in resistance, and when the proportion of mesopores exceeds 55%, there is a problem that it is difficult to manufacture. In general activated carbon, the proportion of micropores (diameter less than 2 nm) is 95% or more, whereas carbon powder having an average particle size of carbon powder of less than 100 nm is mesopore (diameter 2-50 nm), macropores. The ratio (over 50 nm in diameter) is relatively large.
 一般的な活性炭では、表面積を大きくするために平均粒子径を数ミクロンと大きいものを用い、且つ細かな径(ミクロ孔)をたくさん設けている。粒子の内部に多数の孔が空いており、この粒子の内部表面の面積が粒子全体の約8割の面積(比表面積)となる。粒子の孔の深部まで電解液中のイオンが入り込まなければならず、拡散抵抗が高くなりやすい傾向があり、この活性炭では抵抗を下げにくい。 In general activated carbon, a large average particle diameter of several microns is used to increase the surface area, and many fine diameters (micropores) are provided. A large number of pores are formed inside the particle, and the area of the inner surface of the particle is about 80% of the entire particle (specific surface area). Ions in the electrolyte must enter the deep part of the pores of the particles, and the diffusion resistance tends to be high. With this activated carbon, it is difficult to reduce the resistance.
 これに対して、炭素粉末の平均粒子径が100nm未満の場合は、極めて小さい径であるため、粒子の孔の深部までの距離が短く電解液中のイオンが移動しやすい。よって、拡散抵抗が低く、その導電率は高くなる。また多孔質化処理により比表面積が大きい。特に、この小さい粒子径で且つ比較的大きめの孔(メソ孔)の占める割合を上述の5~55%のように増やすことでイオンがより移動しやくなり拡散抵抗をさらに低減することができる。 On the other hand, when the average particle diameter of the carbon powder is less than 100 nm, since the diameter is extremely small, the distance to the deep part of the pores of the particles is short, and ions in the electrolytic solution easily move. Therefore, the diffusion resistance is low and the conductivity is high. Further, the specific surface area is large due to the porous treatment. In particular, by increasing the ratio of the small particle diameter and relatively large pores (mesopores) to the above 5 to 55%, ions are more easily moved and diffusion resistance can be further reduced.
 本実施形態で使用する繊維状炭素は、繊維と繊維の間に極めて小さいナノサイズの炭素粉末を効率的に絡めることができるものであり、バインダー的な役割を担う。繊維状炭素の種類としては、カーボンナノチューブ(以下、CNT)、カーボンナノファイバ(以下、CNF)などの繊維状炭素を挙げることができる。なお、この繊維状炭素に対しても、繊維状炭素の先端や壁面に穴をあける開口処理や賦活処理を用いても良い。 The fibrous carbon used in this embodiment can efficiently entangle extremely small nano-sized carbon powder between the fibers, and plays a role of a binder. Examples of the type of fibrous carbon include fibrous carbon such as carbon nanotubes (hereinafter referred to as CNT) and carbon nanofibers (hereinafter referred to as CNF). In addition, you may use the opening process and activation process which make a hole in the front-end | tip and wall surface of fibrous carbon also with respect to this fibrous carbon.
 繊維状炭素として使用するCNTは、グラフェンシートが1層である単層カーボンナノチューブでも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよく、それらが混合されていてもよい。また、CNTのグラフェンシートの層数が少ないほど、CNT自身の容量密度が高いため、層数が50層以下、好ましくは10層以下の範囲のCNTが容量密度の点から好ましい。 The CNT used as the fibrous carbon may be a single-walled carbon nanotube with a single graphene sheet, or a multi-walled carbon nanotube (MWCNT) in which two or more graphene sheets are rounded coaxially and the tube wall forms a multilayer, May be mixed. Moreover, since the capacity density of CNT itself is so high that there are few layers of the graphene sheet of CNT, CNT of the number of layers is 50 layers or less, Preferably the range of 10 layers or less is preferable from the point of capacity density.
 繊維状炭素の外径は1~100nm、好ましくは2~70nm、さらには3~40nmの範囲にあることが望ましい。また、繊維状炭素の長さは50~1000μm、好ましくは70~500μm、さらには100~200μmの範囲にあるものが好ましい。 The outer diameter of the fibrous carbon is desirably 1 to 100 nm, preferably 2 to 70 nm, and more preferably 3 to 40 nm. The length of the fibrous carbon is preferably 50 to 1000 μm, preferably 70 to 500 μm, more preferably 100 to 200 μm.
 また、繊維状炭素の比表面積は100~2600m/g、好ましくは200~2000m/gの範囲にあるものが望ましい。比表面積が2600m/gより大きいと形成された電極が膨張しやすくなり、100m/gより小さいと所望の電極密度が上がりにくくなる。 The specific surface area of the fibrous carbon is 100 to 2600 m 2 / g, preferably 200 to 2000 m 2 / g. If the specific surface area is larger than 2600 m 2 / g, the formed electrode tends to expand, and if it is smaller than 100 m 2 / g, the desired electrode density is hardly increased.
 なお、前記炭素粉末や繊維状炭素の粒子径や外形は、ASTMD3849-04(ASTM粒子径とも言う)によって測定した。 Note that the particle diameter and outer shape of the carbon powder and fibrous carbon were measured by ASTM D3849-04 (also referred to as ASTM particle diameter).
 炭素粉末と繊維状炭素の含有率は、炭素粉末と繊維状炭素の合計量に対し、繊維状炭素が5~50重量%、特には10~30重量%含有されていることが好ましい。繊維状炭素が50重量%を超えると、電解液含浸時に電極自体が膨れてしまい、外装ケースを圧迫し、ケース膨れが生じやすくなってしまう。また、繊維状炭素が5重量%より少ないと炭素粉末の凝集体が大きくなり、内部抵抗が上昇する傾向がある。なお、本発明の目的を損なわない範囲で任意成分を含んでいても良い。例えば、分散剤や他のバインダーなどが挙げられる。なお、他のバインダーとしては、ポリビニルアルコール、カルボキシメチルセルロース、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジェンゴム、アクリロニトリルブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PEA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレンーテトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレンーテトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、および、それらの混合物がある。中でも、ポリテトラフルオロエチレンおよびポリフッ化ビニリデンが好ましい。これらの樹脂バインダーは、炭素粉末、繊維状炭素及び樹脂バインダーの合計量に対して3%以下が望ましい。これを超えると樹脂バインダーにより内部抵抗が増加する傾向がある。 The content of the carbon powder and the fibrous carbon is preferably 5 to 50% by weight, particularly 10 to 30% by weight of the fibrous carbon based on the total amount of the carbon powder and the fibrous carbon. If the fibrous carbon exceeds 50% by weight, the electrode itself swells when it is impregnated with the electrolytic solution, which presses the outer case and easily causes the case to swell. On the other hand, if the amount of fibrous carbon is less than 5% by weight, the aggregate of the carbon powder tends to be large and the internal resistance tends to increase. In addition, you may contain the arbitrary component in the range which does not impair the objective of this invention. For example, a dispersing agent, other binders, etc. are mentioned. Other binders include polyvinyl alcohol, carboxymethyl cellulose, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, acrylonitrile butadiene rubber, and tetrafluoroethylene-hexafluoropropylene. Polymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PEA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer Polymer (ETFE), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafur Ethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene copolymer, and There is a mixture of them. Of these, polytetrafluoroethylene and polyvinylidene fluoride are preferable. These resin binders are desirably 3% or less based on the total amount of carbon powder, fibrous carbon, and resin binder. If it exceeds this, the internal resistance tends to increase due to the resin binder.
 本実施形態で炭素粉末と繊維状炭素とを分散させる溶媒としては、メタノール、エタノールや2-プロパノールなどのアルコール、炭化水素系溶媒、芳香族系溶媒、N-メチル-2-ピロリドン(NMP)やN,N-ジメチルホルムアミド(DMF)などのアミド系溶媒、水、これらの溶媒を単独で使用するものや2種類以上を混合するものなどの各種溶媒を使用することができる。またこの溶媒中には分散剤などの添加剤を加えてもよい。 Examples of the solvent for dispersing carbon powder and fibrous carbon in the present embodiment include alcohols such as methanol, ethanol and 2-propanol, hydrocarbon solvents, aromatic solvents, N-methyl-2-pyrrolidone (NMP), and the like. Various solvents such as amide solvents such as N, N-dimethylformamide (DMF), water, those using these solvents singly or those containing two or more types can be used. Moreover, you may add additives, such as a dispersing agent, in this solvent.
 本実施形態の分散工程では、溶媒中に炭素粉末と繊維状炭素とを加えて、混合した混合溶液に対して、分散処理を行う。なお、この混合溶液には任意成分として前述の樹脂バインダーも添加した状態で分散処理を行ってもよい。分散処理を行うことで、混合溶液中の炭素粉末と繊維状炭素とを細分化及び均一化し、溶液中に分散させる。つまり、分散処理前の混合溶液中の繊維状炭素は、炭素繊維同士がからみあった状態(バンドル状)である。分散処理を行うことにより、繊維状炭素のバンドルが解れ、繊維状炭素が溶液中に分散する。分散方法としては、ミキサー、ジェットミキシング(噴流衝合)、または、超遠心処理、その他超音波処理などを使用する。なかでも炭素粉末と繊維状炭素の高分散化や得られた電極の電極密度の向上を考慮すると、分散方法としては、ジェットミキシング又は超遠心処理が好ましい。このようなジェットミキシング又は超遠心処理を用いることで、炭素材料の凝集体が細分化されるとともに極めて小さい粒子径である炭素材料の凝集が抑制され、内部抵抗の低い電極を得ることができる。 In the dispersion step of the present embodiment, carbon powder and fibrous carbon are added to a solvent, and a dispersion treatment is performed on the mixed solution. In addition, you may perform a dispersion process in the state which added the above-mentioned resin binder as an arbitrary component to this mixed solution. By performing the dispersion treatment, the carbon powder and the fibrous carbon in the mixed solution are subdivided and homogenized, and dispersed in the solution. That is, the fibrous carbon in the mixed solution before the dispersion treatment is in a state where the carbon fibers are entangled (bundle shape). By performing the dispersion treatment, the bundle of fibrous carbon is broken and the fibrous carbon is dispersed in the solution. As a dispersion method, a mixer, jet mixing (jet collision), ultracentrifugation, or other ultrasonic treatment is used. Among these, considering the high dispersion of carbon powder and fibrous carbon and the improvement of the electrode density of the obtained electrode, the mixing method is preferably jet mixing or ultracentrifugation. By using such jet mixing or ultracentrifugation, the aggregate of the carbon material is subdivided and the aggregation of the carbon material having an extremely small particle diameter is suppressed, and an electrode having a low internal resistance can be obtained.
 ミキサーによる分散方法では、炭素粉末と繊維状炭素とを含む混合溶液に対して、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ボールミル、ホモジナイザー、ホモミキサーなどにより、物理的な力を加え、溶液中の炭素粉末と繊維状炭素とを撹拌することにより細分化する。炭素粉末に対して外力を加えることで、凝集した炭素粉末を細分化及び均一化するとともに、絡み合った繊維状炭素を解すことができる。中でも粉砕力が得られるボールミルが好ましい。 In the dispersion method using a mixer, physical force is applied to a mixed solution containing carbon powder and fibrous carbon by a bead mill, rod mill, roller mill, stirring mill, planetary mill, vibration mill, ball mill, homogenizer, homomixer, etc. In addition, the carbon powder and the fibrous carbon in the solution are subdivided by stirring. By applying an external force to the carbon powder, the agglomerated carbon powder can be subdivided and homogenized, and entangled fibrous carbon can be solved. Among these, a ball mill capable of obtaining a grinding force is preferable.
 ジェットミキシングによる分散方法では、筒状のチャンバの内壁の互いに対向する位置に一対のノズルを設ける。炭素粉末と繊維状炭素とを含む混合溶液を、高圧ポンプにより加圧し、一対のノズルより噴射してチャンバ内で正面衝突させる。これにより、繊維状炭素のバンドルが粉砕され、分散及び均質化することができる。ジェットミキシングの条件としては、圧力は100MPa以上、濃度は5g/l未満が好ましい。 In the dispersion method by jet mixing, a pair of nozzles are provided at positions facing each other on the inner wall of the cylindrical chamber. A mixed solution containing carbon powder and fibrous carbon is pressurized by a high-pressure pump and sprayed from a pair of nozzles to cause a frontal collision in the chamber. Thereby, the bundle of fibrous carbon is pulverized, and can be dispersed and homogenized. As conditions for jet mixing, the pressure is preferably 100 MPa or more and the concentration is less than 5 g / l.
 超遠心処理による分散方法では、炭素粉末と繊維状炭素とを含む混合溶液に対して超遠心処理を行う。超遠心処理は、旋回する容器内で混合溶液の炭素粉末及び繊維状炭素にずり応力と遠心力を加える。 In the dispersion method using ultracentrifugation, ultracentrifugation is performed on a mixed solution containing carbon powder and fibrous carbon. In ultracentrifugation, shear stress and centrifugal force are applied to the carbon powder and fibrous carbon of the mixed solution in a rotating container.
 超遠心処理は、例えば、開口部にせき板を有する外筒と、貫通孔有し旋回する内筒からなる容器により行われる。この容器の内筒内部に混合溶液を投入し、内筒を旋回することによってその遠心力で内筒内部の炭素粉末と繊維状炭素が内筒の貫通孔を通って外筒の内壁に移動する。この時、炭素粉末と繊維状炭素は内筒の遠心力によって外筒の内壁に衝突し、薄膜状となって内壁の上部へずり上がる。この状態では炭素粉末と繊維状炭素には内壁との間のずり応力と内筒からの遠心力の双方が同時に加わり、混合溶液中の炭素粉末及び繊維状炭素に大きな機械的エネルギーが加わることになる。 The ultracentrifugation process is performed, for example, by a container including an outer cylinder having a claw plate at an opening and a rotating inner cylinder having a through hole. By introducing the mixed solution into the inner cylinder of this container and turning the inner cylinder, the carbon powder and fibrous carbon inside the inner cylinder move to the inner wall of the outer cylinder through the through hole of the inner cylinder by the centrifugal force. . At this time, the carbon powder and the fibrous carbon collide with the inner wall of the outer cylinder by the centrifugal force of the inner cylinder, and form a thin film and slide up to the upper part of the inner wall. In this state, both the shear stress between the inner wall and the centrifugal force from the inner cylinder are simultaneously applied to the carbon powder and the fibrous carbon, and a large mechanical energy is applied to the carbon powder and the fibrous carbon in the mixed solution. Become.
 この超遠心処理においては、混合溶液中の炭素粉末及び繊維状炭素にずり応力と遠心力の双方の機械的エネルギーが同時に加えられることによって、この機械的なエネルギーが、混合溶液中の炭素粉末及び繊維状炭素を均一化及び細分化させる。 In this ultracentrifugation process, mechanical energy of both shear stress and centrifugal force is simultaneously applied to the carbon powder and fibrous carbon in the mixed solution, so that the mechanical energy is reduced to the carbon powder and Uniform and subdivide the fibrous carbon.
 なお、分散処理は炭素粉末と繊維状炭素とを混合した混合溶液に対して行うことが好ましいが、別途繊維状炭素を投入した溶液を準備し、この溶液に対して分散処理を行い、バンドルが解けた繊維状炭素を得、この繊維状炭素と炭素粉末とを混合して混合溶液を得ても良い。また、別途炭素粉末を投入した溶液を準備し、この溶液に対して分散処理を行い、細分化した炭素粉末を得、この炭素粉末と繊維状炭素とを混合して混合溶液を得ても良い。さらには、別途繊維状炭素を投入した溶液を準備し、この溶液に対して分散処理を行い、バンドルが解けた繊維状炭素を得、同じく別途炭素粉末を投入した溶液を準備し、この溶液に対して分散処理を行い、細分化した炭素粉末を得、これらの繊維状炭素と炭素粉末とを混合して混合溶液を得てもよい。これらの混合溶液についても、分散処理を施すと良い。 The dispersion treatment is preferably performed on a mixed solution in which carbon powder and fibrous carbon are mixed. However, a solution in which fibrous carbon is added separately is prepared, the dispersion treatment is performed on this solution, and the bundle is formed. The melted fibrous carbon may be obtained, and the fibrous carbon and carbon powder may be mixed to obtain a mixed solution. Alternatively, a solution in which carbon powder is separately added is prepared, and a dispersion treatment is performed on the solution to obtain a finely divided carbon powder. The carbon powder and fibrous carbon may be mixed to obtain a mixed solution. . Furthermore, a solution in which fibrous carbon is separately added is prepared, and dispersion treatment is performed on this solution to obtain a fibrous carbon in which the bundle has been broken. Similarly, a solution in which carbon powder is separately added is prepared. Alternatively, dispersion treatment may be performed to obtain finely divided carbon powder, and these fibrous carbon and carbon powder may be mixed to obtain a mixed solution. These mixed solutions may be subjected to dispersion treatment.
 また、この電極には、各種の添加剤等を含有しても良い。例えば、無定形シリカアルミナ又は無定形シリカマグネシアなどの固体酸やガス吸収剤などが挙げられる。 Further, this electrode may contain various additives. Examples thereof include solid acids such as amorphous silica alumina and amorphous silica magnesia, gas absorbents, and the like.
 (2)コーティング層形成工程
 コーティング層形成工程では、分散工程を経た混合溶液を集電体上に塗布し、溶媒を乾燥により除去することで、集電体上に炭素粉末/繊維状炭素のコーティング層が形成された電極を得られる。
(2) Coating layer forming step In the coating layer forming step, the mixed solution that has been subjected to the dispersion step is applied onto the current collector, and the solvent is removed by drying, thereby coating the current collector with carbon powder / fibrous carbon. An electrode having a layer formed can be obtained.
 混合溶液を集電体上に塗布する方法としては、集電体に対して混合溶液をコーティング(ディップコーティング、スプレーコーティングやインクジェットコーティングなどの各種のコーティング手法が用いられる)する方法がある。コーティングでは、バーコーターやコーターを用い、混合溶液を集電体上に均一な厚さで塗布する。その後、混合溶液を乾燥させる。これにより、混合溶液中の溶媒を除去し、炭素粉末と繊維状炭素が堆積した炭素粉末/繊維状炭素の混合層としてのコーティング層が集電体上に形成される。さらに、集電体およびコーティング層の上下方向からプレスし、コーティング層を集電体の凹凸面に食い込ませて一体化することで電極が作製される。この集電体上に形成されたコーティング層の厚さは、10-40μm程度が好ましい。このコーティング層のSEM像を観察すると、繊維状炭素と繊維状炭素との間隔が2μm以下となる。炭素粉末は、2μm以下の間隔の繊維状炭素に分散し、担持する。集電体およびコーティング層のプレスには、垂直プレスまたはロールプレス等を用いることができる。 As a method of applying the mixed solution on the current collector, there is a method of coating the current collector with the mixed solution (various coating methods such as dip coating, spray coating, and ink jet coating are used). In the coating, a bar coater or a coater is used to apply the mixed solution on the current collector with a uniform thickness. Thereafter, the mixed solution is dried. As a result, the solvent in the mixed solution is removed, and a coating layer as a mixed layer of carbon powder / fibrous carbon in which carbon powder and fibrous carbon are deposited is formed on the current collector. Furthermore, an electrode is produced by pressing from the up-down direction of the current collector and the coating layer, so that the coating layer bites into the uneven surface of the current collector and is integrated. The thickness of the coating layer formed on this current collector is preferably about 10-40 μm. When the SEM image of this coating layer is observed, the distance between the fibrous carbon and the fibrous carbon is 2 μm or less. The carbon powder is dispersed and supported in fibrous carbon with an interval of 2 μm or less. For pressing the current collector and the coating layer, a vertical press or a roll press can be used.
 本実施形態で使用する集電体は、導電材料を用いることができる。集電体として使用する導電性材料としては、アルミニウム箔、白金、金、ニッケル、チタン、鋼、カーボンなどが挙げられる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。また、集電体の表面は、予めエッチング処理などによる凹凸面を形成してもよく、またプレーン面であってもよい。なお、これらの集電体には、その表面に炭素粉末/繊維状炭素のコーティング層との密着性を高めるため、導電性材料からなる接着層を予め形成することもできる。 The current collector used in this embodiment can use a conductive material. Examples of the conductive material used as the current collector include aluminum foil, platinum, gold, nickel, titanium, steel, and carbon. As the shape of the current collector, any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted. Further, the surface of the current collector may be formed with an uneven surface by etching or the like in advance, or may be a plain surface. In addition, in order to improve the adhesiveness with the coating layer of carbon powder / fibrous carbon on the surface of these current collectors, an adhesive layer made of a conductive material can be formed in advance.
 図2は、分散工程において、ミキサーで炭素粉末(カーボンブラック)と繊維状炭素(CNT)とを分散させた溶液中から作製した炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。
 図3は、ボールミルで、炭素粉末(カーボンブラック)と繊維状炭素(CNT)とを高分散させた溶液中から作製した炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。
 図4は、ジェットミキシングで、炭素粉末(カーボンブラック)と繊維状炭素(CNT)とを高分散させた溶液中から作製した炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。
 図5は、超遠心処理で、炭素粉末(カーボンブラック)と繊維状炭素(CNT)とを高分散させた溶液中から作製した炭素粉末/繊維状炭素のコーティング層のSEM(×40.00k)像である。
FIG. 2 is an SEM (× 40.00 k) of a coating layer of carbon powder / fibrous carbon prepared from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are dispersed by a mixer in the dispersion step. It is a statue.
FIG. 3 is an SEM (× 40.00 k) image of a coating layer of carbon powder / fibrous carbon produced from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are highly dispersed by a ball mill. is there.
FIG. 4 shows an SEM (× 40.00k) image of a coating layer of carbon powder / fibrous carbon produced from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are highly dispersed by jet mixing. It is.
FIG. 5 shows an SEM (× 40.00 k) of a coating layer of carbon powder / fibrous carbon prepared from a solution in which carbon powder (carbon black) and fibrous carbon (CNT) are highly dispersed by ultracentrifugation. It is a statue.
 図3~5に示すように、炭素粉末/繊維状炭素のコーティング層においては、繊維状炭素が炭素粉末を絡めて担持している。ミキサーによる分散処理を行った混合溶液から作製した炭素粉末/繊維状炭素のコーティング層、ジェットミキシングによる分散処理を行った混合溶液から作製した炭素粉末/繊維状炭素のコーティング層、超遠心処理による分散処理を行った混合溶液から作製した炭素粉末/繊維状炭素のコーティング層の順で、コーティング層の表面の形状も緻密になることがわかる。 As shown in FIGS. 3 to 5, in the carbon powder / fibrous carbon coating layer, the fibrous carbon is carried around the carbon powder. Carbon powder / fibrous carbon coating layer prepared from a mixed solution dispersed by a mixer, carbon powder / fibrous carbon coating layer prepared from a mixed solution dispersed by jet mixing, dispersion by ultracentrifugation It can be seen that the shape of the surface of the coating layer becomes denser in the order of the carbon powder / fibrous carbon coating layer produced from the treated mixed solution.
 また、図2に示すように、ミキサー(ホモジナイザー)により分散させた溶液から作成した炭素粉末/繊維状炭素のコーティング層においては、繊維状炭素(CNT)が疎らで、繊維状炭素(CNT)同士の間隔も広い。すなわち、ミキサーによる分散処理では、バンドル状の繊維状炭素(CNT)のバンドルが解ける量が少ないため、繊維状炭素(CNT)がまばらとなり、CNT同士の隙間が大きくなる。このため炭素粉末が均一に繊維状炭素に分散担持されにくい。 Moreover, as shown in FIG. 2, in the carbon powder / fibrous carbon coating layer prepared from the solution dispersed by the mixer (homogenizer), the fibrous carbon (CNT) is sparse and the fibrous carbon (CNT) is The interval is wide. That is, in the dispersion treatment by the mixer, the amount of bundled fibrous carbon (CNT) bundles that can be unwound is small, so that the fibrous carbon (CNT) becomes sparse and the gap between the CNTs becomes large. For this reason, it is difficult for the carbon powder to be uniformly dispersed and supported on the fibrous carbon.
 図2においては、CNT(1)とCNT(2)との隙間Aなど、CNT同士の距離が短い部分もあるが、CNT(1)~CNT(4)の間の領域Bのように、CNTがSEM像で観察されない領域が存在する。このような領域Bにおいては、少なからずCNTとCNTとの隙間Cが2μmを超える。つまり、CNTは十分に分散しておらず、疎らであることが分かる。また、炭素粉末の細分化も十分に行われず、炭素粉末の凝集体も3μmを超える大きな状態で存在する。まばらなCNTに対して、大きな凝集体の炭素粉末が担持するため、炭素粉末がCNTに均一に分散担持されず、電極容量や内部抵抗の改善がされにくい。領域BのCNTとCNTとの隙間は、SEM像で観察し、CNTが存在しない領域の最大直線距離として計算した。 In FIG. 2, there is a portion where the distance between the CNTs is short, such as a gap A between the CNT (1) and the CNT (2). However, like the region B between the CNT (1) and the CNT (4), the CNT There is a region where is not observed in the SEM image. In such a region B, the gap C between the CNTs is not less than 2 μm. That is, it can be seen that CNTs are not sufficiently dispersed and sparse. Further, the carbon powder is not sufficiently subdivided, and the aggregate of the carbon powder exists in a large state exceeding 3 μm. Since large aggregate carbon powder is supported on sparse CNTs, the carbon powder is not uniformly dispersed and supported on the CNTs, and it is difficult to improve electrode capacity and internal resistance. The gap between the CNTs in the region B was observed with an SEM image and calculated as the maximum linear distance in the region where no CNTs existed.
 一方、図3~5に示すように、ボールミル、ジェットミキシング、または超遠心処理、による分散処理により分散させた溶液から作成した炭素粉末/繊維状炭素のコーティング層においては、繊維状炭素(CNT)が密で、繊維状炭素(CNT)同士の間隔も狭い。すなわち、ボールミル、ジェットミキシング、または超遠心処理による分散処理では、バンドル状の繊維状炭素(CNT)のバンドルが十分に解けるため、繊維状炭素(CNT)の網目状も密となる。また、炭素粉末自体もこれらの分散処理によって、その炭素粉末の凝集状態が崩れ、小さな凝集体に細分化される。密な網目状の繊維状炭素には、炭素粉末が細分化された凝集体の状態で担持され、炭素粉末と繊維状炭素が均一に分散されている。 On the other hand, as shown in FIGS. 3 to 5, in the carbon powder / fibrous carbon coating layer formed from a solution dispersed by a ball mill, jet mixing, or ultracentrifugation, fibrous carbon (CNT) is used. Are dense and the spacing between fibrous carbons (CNTs) is also narrow. That is, in the dispersion process by ball milling, jet mixing, or ultracentrifugation, bundles of fibrous carbon (CNT) are sufficiently unwound, so that the network of fibrous carbon (CNT) is dense. Also, the carbon powder itself is broken by these dispersion treatments, and the aggregate state of the carbon powder is broken down into small aggregates. The dense mesh-like fibrous carbon is supported in a state of agglomerated carbon powder, and the carbon powder and fibrous carbon are uniformly dispersed.
 また、図3~5においては、CNTとCNTとの隙間が2μm以下であり、2μmを超える隙間は確認できなかった。炭素粉末(カーボンブラック)は、3μm以下の小さな凝集体として網目状の繊維状炭素(CNT)に分散して担持するので、炭素粉末を高分散させることができる。 Further, in FIGS. 3 to 5, the gap between CNTs was 2 μm or less, and a gap exceeding 2 μm could not be confirmed. Since the carbon powder (carbon black) is dispersed and supported on the network fibrous carbon (CNT) as small aggregates of 3 μm or less, the carbon powder can be highly dispersed.
 なお、SEM像については、図2~5と同様の条件で集電体上に形成された炭素粉末/繊維状炭素のコーティング層をそれぞれ無作為に3箇所撮影したものを観察したところ、いずれにおいても上記の形態が得られていることを確認した。 As for the SEM image, the carbon powder / fibrous carbon coating layer formed on the current collector under the same conditions as in FIGS. Also confirmed that the above-mentioned form was obtained.
 この炭素粉末/繊維状炭素のコーティング層を集電体上に形成した電極では、バインダー的な役割を担う繊維状炭素を用いた混合溶液を集電体上に塗布し、乾燥して溶媒を除去することにより集電体上にコーティング層を作製することで樹脂系バインダーの添加量を抑制して低抵抗化をすることができる。さらには、炭素粉末の平均粒子径を100nm未満と極めて小さい粒子径とすることで、炭素粉末自体の拡散抵抗を低減し、電極の抵抗をさらに低減させることができる。また、炭素粉末として極めて小さい粒子径を用いているため、炭素粉末が凝集しやくなり、これにより得られるコーティング層は低密度の傾向となる。しかしながら、混合溶液中での炭素粉末と繊維状炭素とをジェットミキシングや超遠心処理などの分散手法を用いて高分散させることで、コーティング層を緻密・均質な形態として電極密度を高め、従来のミクロンサイズの炭素粉末を用いた電極と同等レベルの容量を得ることができる優れた電極を実現できる。 In an electrode in which this carbon powder / fibrous carbon coating layer is formed on a current collector, a mixed solution using fibrous carbon, which plays a role of a binder, is applied on the current collector and dried to remove the solvent. By doing so, it is possible to reduce the resistance by preparing a coating layer on the current collector and suppressing the addition amount of the resin binder. Furthermore, by setting the average particle size of the carbon powder to a very small particle size of less than 100 nm, the diffusion resistance of the carbon powder itself can be reduced, and the resistance of the electrode can be further reduced. In addition, since an extremely small particle diameter is used as the carbon powder, the carbon powder tends to aggregate, and the resulting coating layer tends to have a low density. However, the carbon powder and fibrous carbon in the mixed solution are highly dispersed using a dispersion technique such as jet mixing or ultracentrifugation, thereby increasing the electrode density with a dense and homogeneous coating layer. An excellent electrode capable of obtaining the same level of capacity as an electrode using micron-sized carbon powder can be realized.
 次に、この電極の状態について検討する。炭素材料及び繊維状炭素を分散した混合溶液を集電体上に塗布し、溶媒を除去して作製した炭素粉末/繊維状炭素のコーティング層を、所定分量を集電体から剥離し、所定の溶液に分散した際の粒度分布(50%累積値:D50(メジアン径)、90%累積値:D90)を検討したところ、単一のピークを有している所謂正規分布を示し、粒度分布のD90/D50が2.5以下を示す構成が好ましいことが分かった。つまり、この範囲の炭素粉末/繊維状炭素のコーティング層とすることで、均一の表面状態及び高密度となる。また、D90を150μm以下とすることで、先鋭な粒度分布が得られ、均一の表面状態及び高密度な炭素粉末/繊維状炭素のコーティング層を得ることができる。D90の下限は、1μmであり、最適範囲は、1~50μmである。なお、粒度分布は、炭素粉末/繊維状炭素のコーティング層(1cm)をイソプロピルアルコール(IPA)溶液に投入し、ホモジナイザー(24000rpm、5分間)を使用して分散させた状態で、粒度分布を測定した(粒度分布の測定方法)。 Next, the state of this electrode will be examined. The carbon powder / fibrous carbon coating layer prepared by applying a mixed solution in which the carbon material and the fibrous carbon are dispersed on the current collector and removing the solvent is peeled off from the current collector in a predetermined amount. When the particle size distribution (50% cumulative value: D50 (median diameter), 90% cumulative value: D90) when dispersed in the solution was examined, a so-called normal distribution having a single peak was shown. It turned out that the structure which D90 / D50 shows 2.5 or less is preferable. That is, by using the carbon powder / fibrous carbon coating layer in this range, a uniform surface state and high density are obtained. Moreover, by setting D90 to 150 μm or less, a sharp particle size distribution can be obtained, and a uniform surface state and a high-density carbon powder / fibrous carbon coating layer can be obtained. The lower limit of D90 is 1 μm, and the optimum range is 1 to 50 μm. It should be noted that the particle size distribution was determined by adding a carbon powder / fibrous carbon coating layer (1 cm 2 ) to an isopropyl alcohol (IPA) solution and dispersing using a homogenizer (24000 rpm, 5 minutes). (Measurement method of particle size distribution).
 図6は電気二重層キャパシタの一例として、炭素粉末/繊維状炭素のコーティング層を集電体上に形成した電極をラミネート封止したラミネート形電気二重層キャパシタの構成を示す概念図である。ラミネート形電気二重層キャパシタは、正極及び負極の電極3、セパレータ4、電解液5、ラミネートフィルム6、外部端子7からなる。 FIG. 6 is a conceptual diagram showing a configuration of a laminated electric double layer capacitor in which an electrode in which a coating layer of carbon powder / fibrous carbon is formed on a current collector is laminated and sealed as an example of the electric double layer capacitor. The laminated electric double layer capacitor includes a positive electrode and a negative electrode 3, a separator 4, an electrolytic solution 5, a laminate film 6, and an external terminal 7.
 電極3は、本実施形態の炭素粉末/繊維状炭素のコーティング層を集電体上に形成した電極である。この電極3には、その一部に外部への接続用の外部端子7が形成されている。 The electrode 3 is an electrode in which the carbon powder / fibrous carbon coating layer of the present embodiment is formed on a current collector. An external terminal 7 for connection to the outside is formed on a part of the electrode 3.
 セパレータ4はセルロース系セパレータ、合成繊維不織布系セパレータやセルロースと合成繊維を混抄した混抄セパレータなどが使用できる。ポリエステル、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリイミド、フッ素樹脂、ポリプロピレンやポリエチレン等のポリオレフィン系樹脂、セラミクスやガラス等々の繊維からなる不織布やクラフト紙、マニラ紙、エスパルト紙、これらの混抄紙あるいは多孔質フィルム等を好適に用いることが出来る。リフローハンダ付けを行なう場合には、熱変形温度が230℃以上の樹脂を用いる。例えば、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリアミド、フッ素樹脂やセラミクス、ガラス等を用いることが出来る。 As the separator 4, a cellulose separator, a synthetic fiber nonwoven fabric separator, a mixed paper separator made by mixing cellulose and synthetic fibers, or the like can be used. Polyester, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyimide, fluororesin, polyolefin resin such as polypropylene and polyethylene, non-woven fabric made of fibers such as ceramics and glass, kraft paper, manila paper, esparto paper, and a mixture of these Papermaking or a porous film can be preferably used. When performing reflow soldering, a resin having a heat distortion temperature of 230 ° C. or higher is used. For example, polyphenylene sulfide, polyethylene terephthalate, polyamide, fluororesin, ceramics, glass, or the like can be used.
 正極及び負極の電極3および電極間に介在されたセパレータ4に含浸される電解質5としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルイソプロピルスルホン、エチルメチルスルホン、エチルイソブチルスルホンなどの鎖状スルホン、スルホラン、3-メチルスルホラン、γ-ブチロラクトン、アセトニトリル、1,2-ジメトキシエタン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、ニトロメタン、エチレングリコール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、水又はこれらの混合物を使用することができる。また、電解質4としては、第4級アンモニウム塩またはリチウム塩からなる群から選ばれる一種以上の電解質が含有されている。第4級アンモニウムイオンやリチウムイオンを生成し得る電解質であれば、あらゆる第4級アンモニウム塩またはリチウム塩を用いることができる。第4級アンモニウム塩およびリチウム塩からなる群より選ばれる一種以上を用いることがより好ましい。特に、エチルトリメチルアンモニウムBF、ジエチルジメチルアンモニウムBF、トリエチルメチルアンモニウムBF、テトラエチルアンモニウムBF、スピロ-(N,N’)-ビピロリジニウムBF、エチルトリメチルアンモニウムPF、ジエチルジメチルアンモニウムPF、トリエチルメチルアンモニウムPF、テトラエチルアンモニウムPF、スピロ-(N,N’)-ビピロリジニウムPF、テトラメチルアンモニウムビス(オキサラト)ボレート、エチルトリメチルアンモニウムビス(オキサラト)ボレート、ジエチルジメチルアンモニウムビス(オキサラト)ボレート、トリエチルメチルアンモニウムビス(オキサラト)ボレート、テトラエチルアンモニウムビス(オキサラト)ボレート、スピロ-(N,N’)-ビピロリジニウムビス(オキサラト)ボレート、テトラメチルアンモニウムジフルオロオキサラトボレート、エチルトリメチルアンモニウムジフルオロオキサラトボレート、ジエチルジメチルアンモニウムジフルオロオキサラトボレート、トリエチルメチルアンモニウムジフルオロオキサラトボレート、テトラエチルアンモニウムジフルオロオキサラトボレート、スピロ-(N,N’)-ビピロリジニウムジフルオロオキサラトボレート、LiBF、LiPF、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、メチルエチルピロリジニウムテトラフルオロボレート等が好ましい。 As the electrolyte 5 impregnated in the positive electrode and negative electrode 3 and the separator 4 interposed between the electrodes, ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl isopropyl sulfone, Chain sulfones such as ethyl methyl sulfone and ethyl isobutyl sulfone, sulfolane, 3-methyl sulfolane, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, 2-methyltetrahydrofuran 1,3-dioxolane, nitromethane, ethylene glycol, ethylene glycol dimethyl ether, ethylene glycol die It can be used ether, water or mixtures thereof. The electrolyte 4 contains one or more electrolytes selected from the group consisting of quaternary ammonium salts or lithium salts. Any quaternary ammonium salt or lithium salt can be used as long as the electrolyte can generate quaternary ammonium ions and lithium ions. It is more preferable to use one or more selected from the group consisting of quaternary ammonium salts and lithium salts. In particular, ethyl trimethyl ammonium BF 4 , diethyl dimethyl ammonium BF 4 , triethyl methyl ammonium BF 4 , tetraethyl ammonium BF 4 , spiro- (N, N ′)-bipyrrolidinium BF 4 , ethyl trimethyl ammonium PF 6 , diethyl dimethyl ammonium PF 6 , Triethylmethylammonium PF 6 , tetraethylammonium PF 6 , spiro- (N, N ′)-bipyrrolidinium PF 6 , tetramethylammonium bis (oxalato) borate, ethyltrimethylammonium bis (oxalato) borate, diethyldimethylammonium bis (oxalato) borate , Triethylmethylammonium bis (oxalato) borate, tetraethylammonium bis (oxalato) borate, spiro -(N, N ')-bipyrrolidinium bis (oxalato) borate, tetramethylammonium difluorooxalatoborate, ethyltrimethylammonium difluorooxalatoborate, diethyldimethylammonium difluorooxalatoborate, triethylmethylammonium difluorooxalatoborate, Tetraethylammonium difluorooxalatoborate, spiro- (N, N ′)-bipyrrolidinium difluorooxalatoborate, LiBF 4 , LiPF 6 , lithium bis (oxalato) borate, lithium difluorooxalatoborate, methylethylpyrrolidinium tetra Fluoroborate and the like are preferable.
 ラミネートフィルム6としては、柔軟性を有しており、かつ電解液が漏洩しないように熱融着によって電極3及びセパレータ4で形成されたキャパシタ素子を封止できるものであれば、この種のキャパシタに一般に用いられるフィルムを用いることができる。ラミネートフィルム6に用いられる代表的な層構成としては、金属薄膜などからなる非通気層と熱融着性樹脂からなる熱融着層とを積層した構成、あるいは、非通気層の熱融着層と反対側の面にさらに、ポリエチレンテレフタレートなどのポリエステルやナイロン等のフィルムからなる保護層を積層した構成が挙げられる。キャパシタ素子を封止するに際しては、熱融着層を対向させてキャパシタ素子を包囲する。また、封止するキャパシタ素子を形成する電極3及びセパレータ4の枚数は、任意の枚数とすることができる。例えば、1枚の電極と2枚のセパレータよりキャパシタ素子を構成しても、それ以外の枚数の組み合わせでキャパシタ素子を構成しても良い。 The laminate film 6 may be of this type as long as it has flexibility and can seal the capacitor element formed of the electrode 3 and the separator 4 by heat fusion so that the electrolyte does not leak. Generally used films can be used. A typical layer structure used for the laminate film 6 is a structure in which a non-venting layer made of a metal thin film and a heat-sealing layer made of a heat-fusible resin are laminated, or a heat-sealing layer of a non-venting layer. Further, a configuration in which a protective layer made of a film of polyester such as polyethylene terephthalate or nylon is laminated on the surface opposite to the surface. When sealing the capacitor element, the capacitor element is surrounded by facing the heat sealing layer. Further, the number of electrodes 3 and separators 4 forming the capacitor element to be sealed can be arbitrarily set. For example, a capacitor element may be constituted by one electrode and two separators, or a capacitor element may be constituted by a combination of other numbers.
 非通気層を構成する金属薄膜としては、例えば、厚さ10μm~100μmの、Al、Ti、Ti合金、Fe、ステンレス、Mg合金などの箔を用いることができる。熱融着層に用いられる熱融着性樹脂としては、熱融着が可能な樹脂であれば特に制限はなく、例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル等、ポリアミド、エチレン-酢酸ビニル共重合体などが挙げられる。 As the metal thin film constituting the non-breathing layer, for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 μm to 100 μm can be used. The heat-sealable resin used for the heat-sealable layer is not particularly limited as long as it is a resin that can be heat-sealable. For example, polyesters such as polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyethylene terephthalate. And polyamide, ethylene-vinyl acetate copolymer and the like.
 (3)電極の電極密度
 本発明に係る電極は、その電極密度を0.48g/cc以上とすることにより、電極容量において良好な結果が得られる。
(3) Electrode Density of Electrode The electrode according to the present invention can provide good results in electrode capacity when the electrode density is 0.48 g / cc or more.
 なお、本願明細書に記載の「電極密度」とは、炭素粉末と繊維状炭素とを溶媒中に分散させ、集電体に塗布して得られたコーティング層の単位体積当たりの質量とする。具体的には、コーティング層の1cmにおけるコーティング層の厚み領域(体積)において、電極材料を含む固形分の重さを該体積で除した値とする。 The “electrode density” described in the present specification is the mass per unit volume of the coating layer obtained by dispersing carbon powder and fibrous carbon in a solvent and coating the current collector. Specifically, in the thickness region (volume) of the coating layer at 1 cm 2 of the coating layer, a value obtained by dividing the weight of the solid content including the electrode material by the volume.
 (4)本発明に係る電極の適用形態
 本発明に係る電極及び電極の製造方法は、電気二重層キャパシタに限らず、リチウムイオンキャパシタなどの電気化学キャパシタなど、各種キャパシタに適用することができる。
 また、本発明に係る電極及び電極の製造方法は、ラミネート型の電気二重層キャパシタに限らず、コイン型に適用してもよく、また、正極電極及び負極電極の間にセパレータを介して巻回した円筒型素子や正極電極及び負極電極の間にセパレータを介して積層した積層型素子を使用した各種キャパシタにも適用できる。
(4) Application Form of Electrode According to the Present Invention The electrode and the electrode manufacturing method according to the present invention can be applied not only to an electric double layer capacitor but also to various capacitors such as an electrochemical capacitor such as a lithium ion capacitor.
In addition, the electrode and the electrode manufacturing method according to the present invention are not limited to the laminate type electric double layer capacitor, and may be applied to a coin type. Further, the electrode is wound between the positive electrode and the negative electrode via a separator. The present invention can also be applied to various types of capacitors using a cylindrical element or a laminated element laminated with a separator between a positive electrode and a negative electrode.
[第1の特性比較]
(平均粒子径12nmのカーボンブラックにおける電極の特性比較)
 本発明の電極を用いた電気二重層キャパシタの特性を確認する。本実施例及び比較例では、以下の条件により電極を作成し、当該電極を用いて電気二重層キャパシタを作成して各種特性を測定した。本特性比較で使用する実施例1~8、及び、比較例1、従来例1は、次の方法により作製した。
[First characteristic comparison]
(Comparison of electrode characteristics in carbon black having an average particle diameter of 12 nm)
The characteristics of the electric double layer capacitor using the electrode of the present invention will be confirmed. In this example and comparative example, an electrode was prepared under the following conditions, an electric double layer capacitor was prepared using the electrode, and various characteristics were measured. Examples 1 to 8 used in this characteristic comparison, Comparative Example 1 and Conventional Example 1 were produced by the following method.
(混合溶液の作製)
 実施例1~4では、平均粒子径が100nmの炭素粒子として、水蒸気賦活処理した平均粒子径12nmのカーボンブラック(以下、CB)を使用する。平均粒子径12nmのCBを電極内の炭素粉末と繊維状炭素との合計量に対して80wt%となるように計り取る。次に、外径20nm、長さ150μmの繊維状炭素としてCNTを、電極内のCBとCNTとの合計量に対して20wt%となるように計り取る。CB1.6gとCNT0.4gとを1Lの溶媒(NMP)に投入し、混合溶液を作製した。
 また、実施例4~6、従来例1では、上記混合溶液にポリフッ化ビニリデン(PVDF)0.02gを、混合溶液にさらに投入し混合した。混合溶液中の、PVDFの割合は、1wt%である。
(Preparation of mixed solution)
In Examples 1 to 4, carbon black having an average particle size of 12 nm (hereinafter referred to as CB) subjected to water vapor activation treatment is used as carbon particles having an average particle size of 100 nm. CB having an average particle diameter of 12 nm is measured so as to be 80 wt% with respect to the total amount of carbon powder and fibrous carbon in the electrode. Next, CNT as a fibrous carbon having an outer diameter of 20 nm and a length of 150 μm is measured so as to be 20 wt% with respect to the total amount of CB and CNT in the electrode. 1.6 g of CB and 0.4 g of CNT were put into 1 L of a solvent (NMP) to prepare a mixed solution.
In Examples 4 to 6 and Conventional Example 1, 0.02 g of polyvinylidene fluoride (PVDF) was further added to the mixed solution and mixed. The proportion of PVDF in the mixed solution is 1 wt%.
(実施例1)
 実施例1では、上記の混合溶液に対して、遠心力200000N(kgms-2)で5分間、超遠心分散処理による分散処理を行い、CB/CNT/NMP分散液を作製した。この分散液を濾過により溶媒を除去して濃縮し、この分散液を集電体であるアルミニウム箔の上にバーコーターを利用して塗布した。その後、常圧下120℃にて1時間乾燥して溶媒となるNMPを除去してアルミニウム箔上にCB/CNTのコーティング層を形成した2枚の電極を得、セルロース系セパレータを介して電気二重層キャパシタ素子を作製した(電極面積:2.1cm)。そして、1M(=1mol/dm)の四フッ化ホウ酸テトラエチルアンモニウムを含むプロピレンカーボネート溶液を電解液として素子に含浸した後、ラミネートフィルムを用いて熱封止し、評価用セル(電気二重層キャパシタ)を作製した。
(Example 1)
In Example 1, the above mixed solution was subjected to dispersion treatment by ultracentrifugation dispersion treatment at a centrifugal force of 200000 N (kgms −2 ) for 5 minutes to prepare a CB / CNT / NMP dispersion. The dispersion was concentrated by removing the solvent by filtration, and this dispersion was applied onto an aluminum foil as a current collector using a bar coater. Then, it dried at 120 degreeC under normal pressure for 1 hour, NMP used as a solvent was removed, and two electrodes which formed the coating layer of CB / CNT on aluminum foil were obtained, and an electric double layer was passed through a cellulosic separator. A capacitor element was produced (electrode area: 2.1 cm 2 ). Then, after impregnating the element with a propylene carbonate solution containing 1M (= 1 mol / dm 3 ) tetraethylammonium tetrafluoroborate as an electrolytic solution, the element was heat sealed using a laminate film, and an evaluation cell (electric double layer) Capacitor).
(実施例2)
 実施例2では、上記混合溶液に対して、ジェットミキシングにて200MPa,0.5g/lの圧力及び濃度で3回の分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例1と同様の方法で評価用セルを作製した。
(Example 2)
In Example 2, the above mixed solution was subjected to dispersion treatment three times by jet mixing at a pressure and concentration of 200 MPa, 0.5 g / l, and a carbon powder / fibrous carbon / NMP dispersion was produced. Produced an evaluation cell in the same manner as in Example 1.
(実施例3)
 実施例3では、上記混合溶液を、ボールミルで約30秒間撹拌して分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例1と同様の方法で評価用セルを作製した。
(Example 3)
In Example 3, the above mixed solution was stirred for about 30 seconds with a ball mill for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 1 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
(実施例4)
 実施例4では、上記混合溶液を、ミキサーで約30秒間撹拌して分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例1と同様の方法で評価用セルを作製した。
Example 4
In Example 4, the above mixed solution was stirred for about 30 seconds with a mixer for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 1 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
(実施例5)
 実施例5では、炭素粉末/繊維状炭素/NMP分散液にバインダーとして更にPVDFを混合した、炭素粉末/繊維状炭素/NMP分散液を使用した以外は、実施例1と同様の方法で評価用セルを作製した。PVDFの添加量は、炭素粉末、繊維状炭素及びPVDFの全体量に対して1%としている。
(Example 5)
In Example 5, carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder, and carbon powder / fibrous carbon / NMP dispersion was used for evaluation in the same manner as in Example 1 A cell was produced. The amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
(実施例6)
 実施例6では、炭素粉末/繊維状炭素/NMP分散液にバインダーとして更にPVDFを混合した、炭素粉末/繊維状炭素/NMP分散液を使用した以外は、実施例2と同様の方法で評価用セルを作製した。PVDFの添加量は、炭素粉末、繊維状炭素及びPVDFの全体量に対して1%としている。
(Example 6)
In Example 6, carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder and carbon powder / fibrous carbon / NMP dispersion was used for evaluation in the same manner as in Example 2 except that it was used. A cell was produced. The amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
(実施例7)
 実施例7では、炭素粉末/繊維状炭素/NMP分散液にバインダーとして更にPVDFを混合した、炭素粉末/繊維状炭素/NMP分散液を使用した以外は、実施例3と同様の方法で評価用セルを作製した。PVDFの添加量は、炭素粉末、繊維状炭素及びPVDFの全体量に対して1%としている。
(Example 7)
In Example 7, for evaluation in the same manner as in Example 3 except that carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder and carbon powder / fibrous carbon / NMP dispersion was used. A cell was produced. The amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
(実施例8)
 実施例8では、炭素粉末/繊維状炭素/NMP分散液にバインダーとして更にPVDFを混合した、炭素粉末/繊維状炭素/NMP分散液を使用した以外は、実施例4と同様の方法で評価用セルを作製した。PVDFの添加量は、炭素粉末、繊維状炭素及びPVDFの全体量に対して1%としている。
(Example 8)
In Example 8, carbon powder / fibrous carbon / NMP dispersion was further mixed with PVDF as a binder, and carbon powder / fibrous carbon / NMP dispersion was used for evaluation in the same manner as in Example 4 A cell was produced. The amount of PVDF added is 1% with respect to the total amount of carbon powder, fibrous carbon, and PVDF.
(比較例1)
 比較例1では、上記混合溶液を変更して実施例3と同様の方法で評価用セルを作製した。具体的には、水蒸気賦活処理した平均粒子径1μmの活性炭(原料:やしがら)を電極内の活性炭とCNTとの合計量に対して80wt%となるように計り取る。次に、外径20nm、長さ150μmの繊維状炭素としてCNTを、電極内の活性炭とCNTとの合計量に対して20wt%となるように計り取る。活性炭とCNTとは、合計50mgとなるようにする。合計50mgの活性炭とCNTを、50mlのNMPと混合させて混合溶液を作製した。この混合溶液に対して、ミキサーで約30秒間撹拌させて分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例1と同様の方法で評価用セルを作製した。
(Comparative Example 1)
In Comparative Example 1, an evaluation cell was produced in the same manner as in Example 3 except that the mixed solution was changed. Specifically, the activated carbon (raw material: Yasakara) having an average particle diameter of 1 μm subjected to the steam activation treatment is measured so as to be 80 wt% with respect to the total amount of the activated carbon and CNT in the electrode. Next, CNT is measured as fibrous carbon having an outer diameter of 20 nm and a length of 150 μm so as to be 20 wt% with respect to the total amount of activated carbon and CNT in the electrode. The total amount of activated carbon and CNT is 50 mg. A total of 50 mg of activated carbon and CNT were mixed with 50 ml of NMP to prepare a mixed solution. An evaluation cell was produced in the same manner as in Example 1 except that this mixed solution was stirred for about 30 seconds with a mixer and dispersed to produce a carbon powder / fibrous carbon / NMP dispersion.
(従来例1)
 従来例1では、水蒸気賦活処理した平均粒子径1μmの活性炭(原料:やしがら)と、ケッチェンブラック(以下、KB)を電極内の炭素粉末と樹脂バインダーとの合計量に対して95wt%となるように計り取る。次に、樹脂バインダーとしてPVDFを、電極内の活性炭とPVDFとの合計量に対して5wt%となるように計り取る。活性炭とPVDFとは、合計50mgとなるようにする。合計50mgの活性炭とPVDFを、50mlのNMPと混合させて作製した混合溶液を用いている。この混合溶液を、集電体となるアルミニウム箔の上に塗布し、常圧下120℃にて1時間乾燥し、2枚の電極体を得、セルロース系セパレータを介して電気二重層キャパシタ素子を作製した(電極面積:2.1cm)。そして、1M(=1mol/dm)の四フッ化ホウ酸テトラエチルアンモニウムを含むプロピレンカーボネート溶液を電解液として素子に含浸した後、ラミネートフィルムを用いて熱封止し、評価用セル(電気二重層キャパシタ)を作製した。
(Conventional example 1)
In Conventional Example 1, activated carbon (raw material: Yasugara) having an average particle diameter of 1 μm subjected to steam activation treatment and ketjen black (hereinafter referred to as KB) is 95 wt% with respect to the total amount of carbon powder and resin binder in the electrode. Measure so that Next, PVDF as a resin binder is measured so that it may become 5 wt% with respect to the total amount of activated carbon and PVDF in an electrode. The total amount of activated carbon and PVDF is 50 mg. A mixed solution prepared by mixing a total of 50 mg of activated carbon and PVDF with 50 ml of NMP is used. This mixed solution is applied onto an aluminum foil serving as a current collector and dried at 120 ° C. for 1 hour under normal pressure to obtain two electrode bodies, and an electric double layer capacitor element is produced through a cellulose separator. (Electrode area: 2.1 cm 2 ). Then, after impregnating the element with a propylene carbonate solution containing 1M (= 1 mol / dm 3 ) tetraethylammonium tetrafluoroborate as an electrolytic solution, the element was heat sealed using a laminate film, and an evaluation cell (electric double layer) Capacitor).
 表1において、実施例1~8、比較例1及び従来例1の電極の分散方法、バインダー又は繊維状炭素の割合、電極内のカーボンブラックの割合、電極密度、評価用セルの電極容量、内部抵抗及び低温特性を示した表である。実施例1~8、及び従来例1の評価用セルについて、電極容量及び内部抵抗は、3Vで30分間電圧印加後の測定結果を示す。低温特性は、20℃及び-30℃のそれぞれの環境下で評価用セルの電極容量を測定し、その容量の比(-30℃での容量/20℃での容量)×100%の値とした。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the electrode dispersion methods of Examples 1 to 8, Comparative Example 1 and Conventional Example 1, the ratio of binder or fibrous carbon, the ratio of carbon black in the electrode, the electrode density, the electrode capacity of the evaluation cell, the internal It is the table | surface which showed resistance and a low temperature characteristic. For the evaluation cells of Examples 1 to 8 and Conventional Example 1, the electrode capacity and the internal resistance show the measurement results after applying voltage at 3 V for 30 minutes. For the low temperature characteristics, the electrode capacity of the evaluation cell was measured in each environment of 20 ° C. and −30 ° C., and the ratio of the capacities (capacity at −30 ° C./capacity at 20 ° C.) × 100% did.
Figure JPOXMLDOC01-appb-T000001
 表1からは、実施例1~8、比較例1及び従来例1の各特性を比較すると、バインダーとしてPVDFを使用したコーティング電極である従来例1では、樹脂系のバインダーを用いているため、その樹脂バインダーを少量としたにもかかわらず、内部抵抗及び低温特性が劣化している値となった。また、本発明と同様に混合溶液をコーティングした比較例1については、電極密度及び電極容量が高い値を示している。しかし、活性炭の粒子径が大きいため樹脂バインダーを使用していないにもかかわらず拡散抵抗が上がり、内部抵抗や低温特性が劣化している値となった。 From Table 1, the characteristics of Examples 1 to 8, Comparative Example 1 and Conventional Example 1 are compared. In Conventional Example 1, which is a coating electrode using PVDF as a binder, a resin-based binder is used. Despite the small amount of the resin binder, the internal resistance and the low temperature characteristics were deteriorated. Moreover, about the comparative example 1 which coated the mixed solution similarly to this invention, the electrode density and the electrode capacity are showing the high value. However, since the activated carbon particle size is large, the diffusion resistance increases despite the fact that no resin binder is used, and the internal resistance and low-temperature characteristics are degraded.
 これに対して、実施例1~8では、粒子径の極めて小さい炭素粉末を用い、混合溶液を集電体上にコーティングすることで、内部抵抗及び低温特性が極めて優れた値となった。 In contrast, in Examples 1 to 8, carbon powder having an extremely small particle diameter was used, and the mixed solution was coated on the current collector, so that the internal resistance and the low temperature characteristics were extremely excellent.
 特に、分散工程を超遠心処理により行った実施例1、5の電極密度は0.62g/ccであり、ジェットミキシングを行った実施例2、6の電極密度は0.55g/ccであり、ボールミルにより行った実施例3、7の電極密度は0.60g/ccであり0.50g/cc以上の高密度となる。すなわち、炭素粉末と繊維状炭素とを高分散させた実施例1~3、5~7については、内部抵抗及び低温特性が良好であるとともに電極密度が高密度となり、ミキサーで分散させた実施例4、8に比べて電極容量が大幅に向上していることが分かる。 In particular, the electrode density of Examples 1 and 5 in which the dispersion process was performed by ultracentrifugation was 0.62 g / cc, and the electrode density of Examples 2 and 6 in which jet mixing was performed was 0.55 g / cc. The electrode density of Examples 3 and 7 performed by the ball mill is 0.60 g / cc, which is higher than 0.50 g / cc. That is, Examples 1 to 3, 5 to 7 in which carbon powder and fibrous carbon are highly dispersed are examples in which internal resistance and low-temperature characteristics are good and the electrode density is high and dispersed by a mixer. It can be seen that the electrode capacity is significantly improved as compared with 4 and 8.
[第2の特性比較]
(平均粒子径34nmのケッチェンブラックにおける比較)
 本特性比較では、第1の特性比較において水蒸気賦活処理した平均粒子径12nmのCBを使用したのに代えて、平均粒子径34nmのケッチェンブラックを使用した電極を用いた電気二重層キャパシタの特性を確認する。本実施例及び比較例では、以下の条件により電極を作成し、当該電極を用いて電気二重層キャパシタを作成して各種特性を測定した。
[Second characteristic comparison]
(Comparison with Ketjen Black having an average particle size of 34 nm)
In this characteristic comparison, instead of using the CB having an average particle diameter of 12 nm subjected to the steam activation treatment in the first characteristic comparison, the characteristics of the electric double layer capacitor using the electrode using the ketjen black having an average particle diameter of 34 nm are used. Confirm. In this example and comparative example, an electrode was prepared under the following conditions, an electric double layer capacitor was prepared using the electrode, and various characteristics were measured.
(混合溶液の作製)
 実施例9~10では、水蒸気賦活処理した平均粒子径34nmのケッチェンブラック(以下、KB)を電極内の炭素粉末と繊維状炭素との合計量に対して80wt%となるように計り取る。次に、外径20nm、長さ150μmの繊維状炭素としてCNTを、電極内のKBとCNTとの合計量に対して20wt%となるように計り取る。KB1.6gとCNT0.4gとを1Lの溶媒(NMP)に投入し、混合溶液を作製した。
(Preparation of mixed solution)
In Examples 9 to 10, ketjen black (hereinafter referred to as KB) having an average particle diameter of 34 nm subjected to the steam activation treatment is measured so as to be 80 wt% with respect to the total amount of carbon powder and fibrous carbon in the electrode. Next, CNT is measured as fibrous carbon having an outer diameter of 20 nm and a length of 150 μm so as to be 20 wt% with respect to the total amount of KB and CNT in the electrode. 1.6 g of KB and 0.4 g of CNT were put into 1 L of a solvent (NMP) to prepare a mixed solution.
(実施例9)
 実施例9では、上記の混合溶液に対して、実施例1と同じ条件で電気二重層キャパシタ素子を作製した(電極面積:2.1cm)。そして、1M(=1mol/dm)の四フッ化ホウ酸テトラエチルアンモニウムを含むプロピレンカーボネート溶液を電解液として素子に含浸した後、ラミネートフィルムを用いて熱封止し、評価用セル(電気二重層キャパシタ)を作製した。
Example 9
In Example 9, an electric double layer capacitor element was produced for the above mixed solution under the same conditions as in Example 1 (electrode area: 2.1 cm 2 ). Then, after impregnating the element with a propylene carbonate solution containing 1M (= 1 mol / dm 3 ) tetraethylammonium tetrafluoroborate as an electrolytic solution, the element was heat sealed using a laminate film, and an evaluation cell (electric double layer) Capacitor).
(実施例10)
 実施例10では、上記混合溶液に対して、ジェットミキシングにて200MPa,0.5g/lの圧力及び濃度で3回の分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例9と同様の方法で評価用セルを作製した。
(Example 10)
In Example 10, the above mixed solution was dispersed three times by jet mixing at a pressure and concentration of 200 MPa, 0.5 g / l, and a carbon powder / fibrous carbon / NMP dispersion was produced. Produced an evaluation cell in the same manner as in Example 9.
(実施例11)
 実施例11では、上記混合溶液を、ボールミルで約30秒間撹拌して分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例9と同様の方法で評価用セルを作製した。
(Example 11)
In Example 11, the above mixed solution was stirred for about 30 seconds with a ball mill for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 9 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
(実施例12)
 実施例12では、上記混合溶液を、ミキサーで約30秒間撹拌して分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例9と同様の方法で評価用セルを作製した。
Example 12
In Example 12, the above mixed solution was stirred for about 30 seconds with a mixer for dispersion treatment, and the evaluation cell was prepared in the same manner as in Example 9 except that a carbon powder / fibrous carbon / NMP dispersion was produced. Produced.
 表2は、実施例9~12の電極の分散方法、バインダー又は繊維状炭素の割合、電極内のカーボンブラックの割合、電極密度、評価用セルの電極容量、内部抵抗及び低温特性を示した表である。実施例9~12の評価用セルについて、電極容量及び内部抵抗は、3Vで30分間電圧印加後の測定結果を示す。低温特性は、20℃及び-30℃のそれぞれの環境下で評価用セルの電極容量を測定し、その容量の比(-30℃での容量/20℃での容量)×100%の値とした。
Figure JPOXMLDOC01-appb-T000002
Table 2 is a table showing the electrode dispersion method, binder or fibrous carbon ratio, ratio of carbon black in the electrode, electrode density, electrode capacity of the evaluation cell, internal resistance, and low temperature characteristics of Examples 9 to 12. It is. For the evaluation cells of Examples 9 to 12, the electrode capacity and the internal resistance show the measurement results after voltage application at 3 V for 30 minutes. For the low temperature characteristics, the electrode capacity of the evaluation cell was measured in each environment of 20 ° C. and −30 ° C., and the ratio of the capacities (capacity at −30 ° C./capacity at 20 ° C.) × 100% did.
Figure JPOXMLDOC01-appb-T000002
 表2からは、実施例9~12では、実施例1~4と同様に、粒子径の極めて小さい炭素粉末を用い、混合溶液を集電体上にコーティングすることで、内部抵抗及び低温特性が極めて優れた値となった。 From Table 2, in Examples 9 to 12, as in Examples 1 to 4, carbon powder having an extremely small particle diameter was used, and the mixed solution was coated on the current collector, whereby the internal resistance and low temperature characteristics were reduced. The value was extremely excellent.
 特に、分散工程を超遠心処理により行い、炭素粉末と繊維状炭素とを高分散させた実施例9、ジェットミキシングにより炭素粉末と繊維状炭素とを高分散させた実施例10、ボールミルにより炭素粉末と繊維状炭素とを高分散させた実施例11については、内部抵抗及び低温特性が良好である。また、実施例9の電極密度0.56g/cc、実施例10の電極密度0.50g/cc、実施例11の電極密度0.54g/ccからわかるように電極密度は高くなる。このため、ミキサーで分散させた実施例12に比べて電極容量が大幅に向上していることが分かる。 In particular, Example 9 in which the dispersion process was performed by ultracentrifugation to highly disperse carbon powder and fibrous carbon, Example 10 in which carbon powder and fibrous carbon were highly dispersed by jet mixing, Carbon powder by ball mill About Example 11 which carried out the high dispersion | distribution of carbon fiber and carbon, internal resistance and a low temperature characteristic are favorable. Moreover, as can be seen from the electrode density of Example 9 of 0.56 g / cc, the electrode density of Example 10 of 0.50 g / cc, and the electrode density of Example 11 of 0.54 g / cc, the electrode density increases. For this reason, it turns out that the electrode capacity is significantly improved as compared with Example 12 dispersed by the mixer.
 以上より、平均粒子径12nmのCBを平均粒子径34nmのKBに代えて作成した電気二重層キャパシタにおいても、内部抵抗及び低温特性を電極密度が0.48g/cc以上と極めて高くすることができる。 As described above, even in an electric double layer capacitor prepared by replacing CB with an average particle diameter of 12 nm with KB with an average particle diameter of 34 nm, the internal resistance and low temperature characteristics can be extremely increased to an electrode density of 0.48 g / cc or more. .
[第3の特性比較]
 本特性比較では、炭素粒子の状態、電極を構成する炭素粉末と凝集体の粒度分布についての比較を行う。
(炭素粒子の状態)
 実施例1と比較例1の電極に用いた炭素材料をそれぞれ分析したら次のような状況であった。測定方法は窒素ガス吸着法で行った。比表面積はBET法で算出した。
Figure JPOXMLDOC01-appb-T000003
[Third characteristic comparison]
In this characteristic comparison, a comparison is made regarding the state of carbon particles and the particle size distribution of the carbon powder and aggregates constituting the electrode.
(State of carbon particles)
When the carbon materials used for the electrodes of Example 1 and Comparative Example 1 were analyzed, it was as follows. The measurement method was a nitrogen gas adsorption method. The specific surface area was calculated by the BET method.
Figure JPOXMLDOC01-appb-T000003
 表3において、実施例1、9と比較例1の各特性を比較すると、内部抵抗や低温特性が劣化した比較例1は、実施例1、9と比較して、メソ孔が占める割合が低いことがわかる。一方、内部抵抗及び低温特性が極めて優れた値となった実施例1、9では、孔サイズが大きいメソ孔が占める割合が増えることにより、抵抗が低減されることが分かる。メソ孔の占める割合を5~55%とすることで、内部抵抗及び低温特性が極めて優れた値となる。 In Table 3, when the characteristics of Examples 1 and 9 and Comparative Example 1 are compared, Comparative Example 1 in which internal resistance and low-temperature characteristics have deteriorated has a lower proportion of mesopores than Examples 1 and 9. I understand that. On the other hand, in Examples 1 and 9 in which the internal resistance and the low-temperature characteristics are extremely excellent values, it can be seen that the resistance is reduced by increasing the proportion of mesopores having a large pore size. By setting the proportion of mesopores to 5 to 55%, the internal resistance and the low temperature characteristics become extremely excellent values.
(電極における炭素粉末と凝集体の粒度分布)
 次に、高分散させた混合溶液を集電体上に塗布し、溶媒を除去して得られた電極について検討する。実施例1~3の電極に用いた炭素材料をそれぞれ分析した。表4は、実施例1~3の50%累積値:D50(メジアン径)、90%累積値:D90を示す表であり、図7は、実施例1~3の粒度分布を示す図である。測定方法は、実施例1~3の炭素粉末/繊維状炭素の混合層(1cm)を集電体上から取り出し、イソプロピルアルコール(IPA)溶液に投入し、ホモジナイザー(24000rpm、5分間)を使用して分散させた状態で、粒度分布を測定した。
Figure JPOXMLDOC01-appb-T000004
(Particle size distribution of carbon powder and aggregates at the electrode)
Next, the electrode obtained by applying the highly dispersed mixed solution on the current collector and removing the solvent will be examined. The carbon materials used for the electrodes of Examples 1 to 3 were analyzed. Table 4 is a table showing 50% cumulative value: D50 (median diameter) and 90% cumulative value: D90 of Examples 1 to 3, and FIG. 7 is a diagram showing the particle size distribution of Examples 1 to 3. . The measurement method was that the carbon powder / fibrous carbon mixed layer (1 cm 2 ) of Examples 1 to 3 was taken out from the current collector, placed in an isopropyl alcohol (IPA) solution, and a homogenizer (24000 rpm, 5 minutes) was used. In the dispersed state, the particle size distribution was measured.
Figure JPOXMLDOC01-appb-T000004
 図7からは、実施例1及び2は、粒度分布において、単一のピークを有している所謂正規分布であることがわかる。これにより、実施例1及び2で得られた電極は均一の表面状態及び高密度となることがわかる。 FIG. 7 shows that Examples 1 and 2 are so-called normal distributions having a single peak in the particle size distribution. This shows that the electrodes obtained in Examples 1 and 2 have a uniform surface state and high density.
 さらに、表4からは、D90を138μm未満とすることでより先鋭な粒度分布が得られ、実施例1及び実施例2においては、内部抵抗及び容量が極めて優れた最適な電極を得ることができることかわかる。同様に、D90が150μm以下でも、優れた内部抵抗及び容量を得ることができる。一方、D90が150μmを超えると内部抵抗及び容量が低下する。 Furthermore, from Table 4, a sharper particle size distribution can be obtained by setting D90 to be less than 138 μm. In Example 1 and Example 2, it is possible to obtain an optimum electrode with extremely excellent internal resistance and capacity. I understand. Similarly, even when D90 is 150 μm or less, excellent internal resistance and capacitance can be obtained. On the other hand, when D90 exceeds 150 μm, the internal resistance and the capacity decrease.
 また、実施例1~3の電極のD90/D50、電極密度、容量、内部抵抗をそれぞれ分析した。表5は、実施例1~3の電極のD90/D50、電極密度、容量、内部抵抗を示す表である。
Figure JPOXMLDOC01-appb-T000005
Further, D90 / D50, electrode density, capacity, and internal resistance of the electrodes of Examples 1 to 3 were analyzed. Table 5 is a table showing D90 / D50, electrode density, capacity, and internal resistance of the electrodes of Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000005
 表5からは、D90/D50の値を2.5以下とし、粒度分布においてシャープなピークとすることで、電極は、均一の表面状態及び高密度となる。そのため、実施例1、2では、内部抵抗及び容量を優れた値とすることができる。一方、D90/D50の値が2.6以上では、電極の表面状態の均一が部分的に崩れることにより、電極密度が低下する。 From Table 5, by setting the value of D90 / D50 to 2.5 or less and making it a sharp peak in the particle size distribution, the electrode has a uniform surface state and high density. Therefore, in Examples 1 and 2, the internal resistance and the capacitance can be made excellent values. On the other hand, when the value of D90 / D50 is 2.6 or more, the uniformity of the surface state of the electrode is partially broken, so that the electrode density is lowered.
 以上より、平均粒子径が100nm未満の炭素粉末と繊維状炭素の凝集体において、その粒度分布におけるD90/D50の値を2.5以下とし、シャープなピークとすることで均一の表面状態及び高密度とすることができる。これにより、内部抵抗及び容量の値を優れたものとすることができる。特に、凝集体のD90を150μm以下とすることでより先鋭な粒度分布が得られ、電極の内部抵抗及び容量の値を優れたものとすることができる。 From the above, in the aggregate of carbon powder and fibrous carbon having an average particle diameter of less than 100 nm, the value of D90 / D50 in the particle size distribution is 2.5 or less, and a sharp peak is obtained to obtain a uniform surface state and high It can be a density. Thereby, the value of internal resistance and a capacity | capacitance can be made excellent. In particular, by setting the D90 of the aggregate to 150 μm or less, a sharper particle size distribution can be obtained, and the internal resistance and capacity of the electrode can be made excellent.
[第4の特性比較]
(バインダーの割合に基づく特性比較)
(実施例1-1~実施例1-1)
 前記実施例1に記載の評価用セルと同様に作製した。但し、混合溶液に含まれるCBとCNTの割合を表6のとおり変更している。
[Fourth characteristic comparison]
(Characteristic comparison based on binder ratio)
(Example 1-1 to Example 1-1)
It was fabricated in the same manner as the evaluation cell described in Example 1. However, the ratio of CB and CNT contained in the mixed solution is changed as shown in Table 6.
 表6は、実施例1-1~実施例1-6の電極の分散方法、電極内の繊維状炭素の割合、電極内の炭素材料の割合、電極密度、評価用セルの電極容量、内部抵抗及びケース膨れ状況を示した表である。なおケース膨れ状況については、電圧印加前の評価用セルの厚みを規準とし、3Vで30分間電圧印加後の厚みと比較し、20%超膨れたものを「×」、20~10%の範囲で膨れたものを「△」、10%未満で膨れたものを「○」として評価した。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows the electrode dispersion method of Example 1-1 to Example 1-6, the ratio of fibrous carbon in the electrode, the ratio of the carbon material in the electrode, the electrode density, the electrode capacity of the evaluation cell, and the internal resistance. It is the table | surface which showed the case swelling condition. For the case swelling, the thickness of the cell for evaluation before voltage application is used as a standard, and compared with the thickness after voltage application at 3 V for 30 minutes, the case where the swelling is more than 20% is “x”, in the range of 20 to 10% What was swollen with “△” was evaluated as “◯” when it was swollen with less than 10%.
Figure JPOXMLDOC01-appb-T000006
 表6からは、実施例1-1~1-6の各特性を比較すると、いずれの実施例においても電極密度及び静電容量について良好な結果が得られていることがわかる。内部抵抗については、CNTの割合が10wt%以上の実施例1-2~1-6が実施例1-1に比べて良好な結果となった。またケースの膨れ状況については、CNTの割合が30wt%以下の実施例1-1~1-4が、実施例1-5、1-6に比べて良好な結果となった。また、電極密度においては、いずれの実施例においても、表1に記載のミキサーにて分散させた実施例4と比較して電極容量について良好な結果が得られている。 From Table 6, it can be seen that, when the characteristics of Examples 1-1 to 1-6 are compared, good results are obtained with respect to electrode density and capacitance in any of the Examples. As for the internal resistance, Examples 1-2 to 1-6 in which the ratio of CNTs was 10 wt% or more showed better results than Example 1-1. As for the case swelling, Examples 1-1 to 1-4 having a CNT ratio of 30 wt% or less showed better results than Examples 1-5 and 1-6. Moreover, in the electrode density, a favorable result was obtained for the electrode capacity in any example as compared with Example 4 dispersed by the mixer described in Table 1.
(実施例2-1~実施例2-6)
 次に、ジェットミキシングによって高分散させた混合溶液を用いて濾過した電極について検討する。実施例2-1~実施例2-6では、前記実施例2に記載の評価用セルと同様に作製した。但し、混合溶液に含まれるCBとCNTの割合を表7のとおり変更している。
(Example 2-1 to Example 2-6)
Next, the electrode filtered using the mixed solution highly dispersed by jet mixing will be examined. In Examples 2-1 to 2-6, the cells were manufactured in the same manner as the evaluation cell described in Example 2. However, the ratio of CB and CNT contained in the mixed solution is changed as shown in Table 7.
 表7は、実施例2-1~実施例2-6の電極の分散方法、電極内の繊維状炭素の割合、電極内の炭素材料の割合、電極密度、評価用セルの電極容量、内部抵抗及びケース膨れ状況を示した表である。
Figure JPOXMLDOC01-appb-T000007
Table 7 shows the electrode dispersion methods of Examples 2-1 to 2-6, the ratio of fibrous carbon in the electrodes, the ratio of the carbon material in the electrodes, the electrode density, the electrode capacity of the evaluation cell, and the internal resistance. It is the table | surface which showed the case swelling condition.
Figure JPOXMLDOC01-appb-T000007
 表7からは、実施例2-1~2-6の各特性を比較すると、いずれの実施例においても電極密度及び静電容量について良好な結果が得られている。内部抵抗については、CNTの割合が10wt%以上の実施例2-2~2-6が実施例2-1に比べて良好な結果となった。またケースの膨れ状況については、CNTの割合が30wt%以下の実施例2-1~2-4が、実施例2-5、2-6に比べて良好な結果となった。また、電極密度においては、いずれの実施例においても、0.48g/cc以上であり、表1に記載のミキサーにて分散させた実施例3と比較して電極容量について良好な結果が得られている。 From Table 7, when the characteristics of Examples 2-1 to 2-6 are compared, good results are obtained with respect to electrode density and capacitance in any of the Examples. As for the internal resistance, Examples 2-2 to 2-6 in which the ratio of CNT was 10 wt% or more were better than those of Example 2-1. Regarding the swollen state of the case, Examples 2-1 to 2-4 having a CNT ratio of 30 wt% or less showed better results than Examples 2-5 and 2-6. Further, the electrode density is 0.48 g / cc or more in any of the examples, and good results are obtained for the electrode capacity as compared with Example 3 dispersed by the mixer described in Table 1. ing.
[第5の特性比較]
(電解液に基づく特性比較)
 第5の特性比較では、超遠心処理による分散工程により、炭素粉末と繊維状炭素とを高分散させて作成した電極を、表8に記載の電解液に含浸して電気二重層キャパシタを作成して各種特性を測定した。
[Fifth characteristic comparison]
(Characteristic comparison based on electrolyte)
In the fifth characteristic comparison, an electric double layer capacitor was prepared by impregnating an electrolyte prepared in Table 8 with an electrode prepared by highly dispersing carbon powder and fibrous carbon by a dispersion process by ultracentrifugation. Various characteristics were measured.
(実施例1-7~1-9)
 前記実施例1に記載の評価用セルと同様に作製した。但し、電気二重層キャパシタ素子を含浸させる電解液を、実施例1-7では1.4M(=1.4mol/dm3)のTEMABF4(四フッ化ホウ酸トリエチルメチルアンモニウム)を含むSLF(スルホラン)とEiPS(エチルイソプロピルスルホン)に変更した。同様に、実施例1-8では1.4MのTEMABF4を含むSLFと3-MeSLF(3-メチルスルホラン)に、実施例1-9では1.4MのTEMABF4を含むPC(プロピレンカーボネート)に変更した。
(Examples 1-7 to 1-9)
It was fabricated in the same manner as the evaluation cell described in Example 1. However, the electrolyte solution impregnating the electric double layer capacitor element was SLF (sulfolane) containing 1.4 M (= 1.4 mol / dm 3) TEMABF 4 (triethylmethylammonium tetrafluoroborate) in Example 1-7. Changed to EiPS (ethyl isopropyl sulfone). Similarly, in Example 1-8, SLF and 3-MeSLF (3-methylsulfolane) containing 1.4 M TEMABF4 were used, and in Example 1-9, PC (propylene carbonate) containing 1.4 M TEMABF4 was used. .
 表8は、実施例1-7~1-9の電極の分散方法、電解液の種類、電極内の繊維状炭素の割合、電極内の炭素材料の割合、評価用セルの電極容量、低温特性及び250時間後の容量維持率を示した表である。電極容量は、3.5Vで30分間電圧印加した後の測定結果を示す。容量維持率は、3.5Vで30分間電圧印加した後の電極容量と、3.5Vで250時間電圧印加した後の電極容量を測定し、その容量の比(250時間電圧印加した後の容量/30分間電圧印加した後の容量)×100%の値とした。低温特性は、20℃及び-30℃のそれぞれの環境下で評価用セルの電極容量を測定し、その容量の比(-30℃での容量/20℃での容量)×100%の値とした。
Figure JPOXMLDOC01-appb-T000008
Table 8 shows the dispersion method of the electrodes of Examples 1-7 to 1-9, the type of the electrolyte, the proportion of fibrous carbon in the electrodes, the proportion of the carbon material in the electrodes, the electrode capacity of the evaluation cell, and the low temperature characteristics And a table showing the capacity maintenance rate after 250 hours. The electrode capacity indicates a measurement result after applying a voltage at 3.5 V for 30 minutes. The capacity retention ratio was determined by measuring the electrode capacity after applying voltage at 3.5 V for 30 minutes and the electrode capacity after applying voltage at 3.5 V for 250 hours, and the ratio of the capacity (capacity after applying voltage for 250 hours). / Capacity after voltage application for 30 minutes) × 100%. For the low temperature characteristics, the electrode capacity of the evaluation cell was measured in each environment of 20 ° C. and −30 ° C., and the ratio of the capacities (capacity at −30 ° C./capacity at 20 ° C.) × 100% did.
Figure JPOXMLDOC01-appb-T000008
 表8からは、実施例1-7~1-9の各特性を比較すると、電解液にスルホラン、スルホラン化合物又は鎖状スルホンを使用しない実施例1-9においては250時間後の容量維持率が極端に低減している。一方、電解液にスルホランと鎖状スルホンであるEiPSを使用した実施例1-7、スルホランとスルホラン骨格に側鎖を有するスルホラン化合物である3-MeSLFを使用した実施例1-8では、250時間後の容量維持率が95%と、時間経過による電極容量の低下が少なく抑えられると共に、90%以上の良好な低温特性を示した。本特性比較では、超遠心分散処理による分散方法を使用したが、ジェットミキシング、及びボールミルによる分散方法を使用した場合にでも、電解液としてスルホランと、スルホラン骨格に側鎖を有するスルホラン化合物又は鎖状スルホンを使用することで、同様の効果を奏することが可能となる。 From Table 8, the characteristics of Examples 1-7 to 1-9 are compared. In Example 1-9 in which no sulfolane, sulfolane compound or chain sulfone is used in the electrolyte, the capacity retention rate after 250 hours is shown. Extremely reduced. On the other hand, in Example 1-7 using EiPS which is sulfolane and chain sulfone as the electrolyte, and in Example 1-8 using 3-MeSLF which is a sulfolane compound having a side chain in the sulfolane and sulfolane skeleton, 250 hours The subsequent capacity retention rate was 95%, and the decrease in electrode capacity over time was suppressed to a small level, and good low temperature characteristics of 90% or more were exhibited. In this characteristic comparison, a dispersion method by ultracentrifugation dispersion treatment was used. Even when jet mixing and a ball mill dispersion method were used, sulfolane and a sulfolane compound having a side chain in the sulfolane skeleton or a chain-like structure were used. By using sulfone, the same effect can be obtained.
 以上のように電気二重層キャパシタ素子を含浸させる電解液としてスルホランと、スルホラン骨格に側鎖を有するスルホラン化合物又はスルホランと鎖状スルホンとを組み合わせて使用することより、低温特性と長時間経過後の容量維持率との点で優れた電気二重層キャパシタを作製することが可能となる。 As described above, by using sulfolane as an electrolyte for impregnating the electric double layer capacitor element and using a sulfolane compound having a side chain in the sulfolane skeleton or a combination of sulfolane and a chain sulfone, low temperature characteristics and after a long time have passed. It is possible to produce an electric double layer capacitor that is superior in terms of capacity retention.
[第6の特性比較]
 第1及び第2の特性比較では、平均粒子径12nm及び平均粒子径34nmの炭素粉末の場合についての特性を比較した。本特性比較では、平均粒子径が1μmの炭素粉末の電極を用いた電気二重層キャパシタの特性を確認する。本特性比較の実施例及び比較例では、以下の条件により電極を作成し、当該電極を用いて電気二重層キャパシタを作成して各種特性を測定した。本特性比較で使用する実施例10-1、10-2、及び、従来例1は、次の方法により作製した。
[Sixth characteristic comparison]
In the first and second characteristic comparisons, the characteristics of carbon powder having an average particle diameter of 12 nm and an average particle diameter of 34 nm were compared. In this characteristic comparison, characteristics of an electric double layer capacitor using a carbon powder electrode having an average particle diameter of 1 μm are confirmed. In Examples and Comparative Examples of this characteristic comparison, an electrode was prepared under the following conditions, an electric double layer capacitor was prepared using the electrode, and various characteristics were measured. Examples 10-1, 10-2 and Conventional Example 1 used in this characteristic comparison were manufactured by the following method.
(混合溶液の作製)
 まず、水蒸気賦活処理した平均粒子径1μmの活性炭(原料:やしがら)を電極内の炭素粉末と繊維状炭素との合計量に対して80wt%となるように計り取る。次に、外径20nm、長さ150μmの繊維状炭素としてCNTを、電極内の活性炭とCNTとの合計量に対して20wt%となるように計り取る。活性炭1.6gとCNT0.4gとをNMP1Lの溶媒に投入し、混合溶液を作製した。
(Preparation of mixed solution)
First, the activated carbon (raw material: Yasakara) having an average particle diameter of 1 μm subjected to the steam activation treatment is measured so as to be 80 wt% with respect to the total amount of carbon powder and fibrous carbon in the electrode. Next, CNT is measured as fibrous carbon having an outer diameter of 20 nm and a length of 150 μm so as to be 20 wt% with respect to the total amount of activated carbon and CNT in the electrode. 1.6 g of activated carbon and 0.4 g of CNT were put into a NMP1L solvent to prepare a mixed solution.
(実施例10-1)
 実施例10-1では、上記の混合溶液に対して、遠心力200000N(kgms-2)で5分間、超遠心処理による分散処理を行い、活性炭/CNT/NMP分散液を作製した。この分散液を濾過により溶媒の一部を除去して濃縮し、この分散液を集電体であるアルミニウム箔にバーコーターを利用してコーティングし、常圧下120℃にて1時間乾燥して溶媒となるNMPを除去してアルミニウム箔上に活性炭/CNTの混合層を形成した2枚の電極を得、セルロース系セパレータを介して電気二重層キャパシタ素子を作製した(電極面積:2.1cm)。そして、1M(=1mol/dm)の四フッ化ホウ酸テトラエチルアンモニウムを含むプロピレンカーボネート溶液を電解液として素子に含浸した後、ラミネートフィルムを用いて熱封止し、評価用セル(電気二重層キャパシタ)を作製した。
(Example 10-1)
In Example 10-1, the above mixed solution was subjected to a dispersion treatment by ultracentrifugation for 5 minutes at a centrifugal force of 200000 N (kgms −2 ) to produce an activated carbon / CNT / NMP dispersion. The dispersion is concentrated by removing a part of the solvent by filtration, and this dispersion is coated on an aluminum foil as a current collector using a bar coater, and dried at 120 ° C. for 1 hour under normal pressure. NMP was removed to obtain two electrodes in which a mixed layer of activated carbon / CNT was formed on an aluminum foil, and an electric double layer capacitor element was produced through a cellulose-based separator (electrode area: 2.1 cm 2 ) . Then, after impregnating the element with a propylene carbonate solution containing 1M (= 1 mol / dm 3 ) tetraethylammonium tetrafluoroborate as an electrolytic solution, the element was heat sealed using a laminate film, and an evaluation cell (electric double layer) Capacitor).
(実施例10-2)
 実施例10-2では、上記混合溶液に対して、ジェットミキシングにて200MPa,0.5g/lの圧力及び濃度で3回の分散処理を行い、炭素粉末/繊維状炭素/NMP分散液を作製した以外は実施例10-1と同様の方法で評価用セルを作製した。
(Example 10-2)
In Example 10-2, the above mixed solution was dispersed three times by jet mixing at a pressure and concentration of 200 MPa and 0.5 g / l to prepare a carbon powder / fibrous carbon / NMP dispersion. An evaluation cell was produced in the same manner as in Example 10-1, except that
 表9は、実施例10-1、10-2及び従来例1の電極の分散方法、繊維状炭素の割合、電極内の活性炭の割合、電極密度、評価用セルの電極容量及び内部抵抗を示した表である。実施例10-1、10-2、従来例1の評価用セルについて、電極容量及び内部抵抗は、3Vで30分間電圧印加後の測定結果を示す。
Figure JPOXMLDOC01-appb-T000009
Table 9 shows the electrode dispersion method of Examples 10-1, 10-2 and Conventional Example 1, the ratio of fibrous carbon, the ratio of activated carbon in the electrode, the electrode density, the electrode capacity of the evaluation cell, and the internal resistance. It is a table. For the evaluation cells of Examples 10-1 and 10-2 and Conventional Example 1, the electrode capacity and internal resistance show the measurement results after applying voltage at 3 V for 30 minutes.
Figure JPOXMLDOC01-appb-T000009
 表9において、実施例10-1、10-2、及び、従来例1の各特性を比較する。従来例1については、内部抵抗や低温特性が劣化している値となった。これに対して超遠心処理及びジェットミキシングを行った実施例10-1、実施例10-2では、活性炭とCNTとを高分散させることができ、得られた電極の電極密度が向上し、電極容量並びに内部抵抗が優れた値となった。すなわち、表9からは、平均粒子径が1μmの炭素粉末を使用した場合にでも、分散方法を超遠心処理及びジェットミキシング処理することにより、優れた電極容量並びに低内部抵抗の電極を作成することが可能であることがわかる。 In Table 9, the characteristics of Examples 10-1 and 10-2 and Conventional Example 1 are compared. For Conventional Example 1, the internal resistance and the low temperature characteristics were degraded. On the other hand, in Example 10-1 and Example 10-2 in which ultracentrifugation and jet mixing were performed, activated carbon and CNTs can be highly dispersed, and the electrode density of the obtained electrode was improved. The capacity and internal resistance were excellent values. That is, from Table 9, even when carbon powder having an average particle diameter of 1 μm is used, an electrode having excellent electrode capacity and low internal resistance can be produced by performing ultracentrifugation and jet mixing as a dispersion method. It is understood that is possible.
 以上のように本特性比較においては、平均粒子径が1μmの炭素粉末について特性比較を行ったが、平均粒子径が10μm未満の炭素粉末を使用した場合にでも、分散方法を超遠心処理及びジェットミキシングによる処理することにより、本発明の効果を奏することが可能である。 As described above, in this characteristic comparison, the characteristics of carbon powder having an average particle diameter of 1 μm were compared. However, even when carbon powder having an average particle diameter of less than 10 μm was used, the dispersion method was changed to ultracentrifugation and jet. The effects of the present invention can be achieved by performing processing by mixing.
1  …負極ケース
2  …電解質
3  …電極
4  …セパレータ
5  …電極
6  …正極ケース
7  …ガスケット
DESCRIPTION OF SYMBOLS 1 ... Negative electrode case 2 ... Electrolyte 3 ... Electrode 4 ... Separator 5 ... Electrode 6 ... Positive electrode case 7 ... Gasket

Claims (17)

  1.  粒子径が100nm未満の多孔質化処理した炭素粉末と、繊維状炭素と、を分散させた溶液を集電体上に塗布し、溶媒を除去して得られたことを特徴とする電極。 An electrode obtained by applying a solution in which a porous carbon powder having a particle size of less than 100 nm and fibrous carbon is dispersed on a current collector and removing the solvent.
  2.  前記炭素粉末は、カーボンブラックを賦活処理したものであることを特徴とする請求項1に記載の電極。 The electrode according to claim 1, wherein the carbon powder is obtained by activating carbon black.
  3.  炭素粉末と繊維状炭素とが高分散され、その電極密度が0.48g/cc以上であることを特徴とする請求項1または請求項2に記載の電極。 The electrode according to claim 1 or 2, wherein the carbon powder and the fibrous carbon are highly dispersed, and the electrode density is 0.48 g / cc or more.
  4.  前記繊維状炭素は、炭素粉末と繊維状炭素の合計量に対して10~55重量%含有されていることを特徴とする請求項1乃至3何れか1項に記載の電極。 4. The electrode according to claim 1, wherein the fibrous carbon is contained in an amount of 10 to 55% by weight based on the total amount of carbon powder and fibrous carbon.
  5.  前記多孔質化処理した炭素粉末における孔のうち、メソ孔の占める割合が5~30%の範囲であることを特徴とする請求項1乃至4の何れか1項に記載の電極。 The electrode according to any one of claims 1 to 4, wherein the proportion of mesopores in the pores of the carbon powder subjected to the porous treatment is in the range of 5 to 30%.
  6.  電極を構成する炭素粉末と繊維状炭素の凝集体の粒度分布が単一のピークを有し、
     前記粒度分布の50%累積値D50の粒子径と、90%累積値D90の粒子径との比D90/D50が、2.5以下であることを特徴とする請求項1乃至5の何れか1項に記載の電極。
    The particle size distribution of the aggregate of carbon powder and fibrous carbon constituting the electrode has a single peak,
    The ratio D90 / D50 between the particle diameter of the 50% cumulative value D50 and the particle diameter of the 90% cumulative value D90 of the particle size distribution is 2.5 or less. The electrode according to item.
  7.  前記粒度分布の90%累積値D90の粒子径が150μm以下であることを特徴とする請求項6に記載の電極。 The electrode according to claim 6, wherein a particle diameter of a 90% cumulative value D90 of the particle size distribution is 150 µm or less.
  8.  電極を構成する前記繊維状炭素同士の間隔が2μm以下であることを特徴とする請求項1乃至7の何れか1項に記載の電極。 The electrode according to any one of claims 1 to 7, wherein an interval between the fibrous carbons constituting the electrode is 2 µm or less.
  9.  粒子径が100nm以上且つ10μm未満の多孔質化処理した炭素粉末と、繊維状炭素とを、溶液の噴射流同士を衝突させる処理、または、前記溶液に対してずり応力と遠心力を加える処理で分散させた溶液を集電体上に塗布し、溶媒を除去して得られたことを特徴とする電極。 In the treatment of making the porous carbon powder having a particle diameter of 100 nm or more and less than 10 μm and fibrous carbon collide with the jets of the solution, or the treatment of applying shear stress and centrifugal force to the solution An electrode obtained by applying the dispersed solution on a current collector and removing the solvent.
  10.  請求項1乃至9のいずれかの電極を集電体の上に形成した電気二重層キャパシタ。 An electric double layer capacitor in which the electrode according to any one of claims 1 to 9 is formed on a current collector.
  11.  前記電極と、スルホランと、スルホラン骨格に側鎖を有するスルホラン化合物又は鎖状スルホンとの混合物を含む電解液を用いた請求項10に記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 10, wherein an electrolytic solution containing a mixture of the electrode, sulfolane, and a sulfolane compound having a side chain in the sulfolane skeleton or a chain sulfone is used.
  12.  粒子径が100nm未満の多孔質化処理した炭素粉末と、繊維状炭素と、を溶媒中に分散させる分散工程と、
     前記分散工程で得られた溶液を集電体上に塗布し、溶媒を除去して集電体上に炭素粉末/繊維状炭素の混合層を形成する電極形成工程と
     を備えたことを特徴とする電極の製造方法。
    A dispersion step of dispersing a porous carbon powder having a particle diameter of less than 100 nm and fibrous carbon in a solvent;
    An electrode forming step of applying the solution obtained in the dispersion step onto a current collector and removing the solvent to form a mixed layer of carbon powder / fibrous carbon on the current collector. A method for manufacturing an electrode.
  13.  前記炭素粉末は、カーボンブラックを賦活処理したものであることを特徴とする請求項12に記載の電極の製造方法。 The method for producing an electrode according to claim 12, wherein the carbon powder is obtained by activating carbon black.
  14.  前記分散工程は、前記溶液の噴射流同士を衝突させる処理であることを特徴とする請求項12または請求項13に記載の電極の製造方法。 14. The electrode manufacturing method according to claim 12, wherein the dispersion step is a process of causing the jets of the solution to collide with each other.
  15.  前記分散工程は、前記溶液に対してずり応力と遠心力を加える処理であることを特徴とする請求項12または請求項13に記載の電極の製造方法。 14. The method for manufacturing an electrode according to claim 12, wherein the dispersing step is a process of applying a shear stress and a centrifugal force to the solution.
  16.  前記分散工程は、前記溶液にボールミルにより物理的な力を加える処理であることを特徴とする請求項12または請求項13に記載の電極の製造方法。 14. The method for producing an electrode according to claim 12, wherein the dispersing step is a process of applying a physical force to the solution by a ball mill.
  17.  粒子径が100nm以上且つ10μm未満の多孔質化処理した炭素粉末と繊維状炭素とを溶媒中に分散させる分散工程と、
     前記分散工程で得られた溶液を集電体上に塗布し、溶媒を除去して集電体上に炭素粉末/繊維状炭素の混合層を形成する電極形成工程と、
     を備え、
     前記分散工程は、前記溶液の噴射流同士を衝突させる処理、または前記溶液に対してずり応力と、遠心力を加える処理であること、
     を特徴とする電極の製造方法。
     

     
    A dispersion step of dispersing a porous carbon powder having a particle diameter of 100 nm or more and less than 10 μm and fibrous carbon in a solvent;
    An electrode forming step of applying the solution obtained in the dispersion step onto a current collector, removing the solvent, and forming a carbon powder / fibrous carbon mixed layer on the current collector;
    With
    The dispersion step is a process of causing the jets of the solution to collide with each other, or a process of applying shear stress and centrifugal force to the solution;
    An electrode manufacturing method characterized by the above.


PCT/JP2014/064035 2013-05-27 2014-05-27 Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode WO2014192776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480030785.5A CN105247640B (en) 2013-05-27 2014-05-27 The manufacturing method of electrode, the double layer capacitor for having used the electrode and electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-111383 2013-05-27
JP2013111383A JP6375593B2 (en) 2013-05-27 2013-05-27 Electrode, electric double layer capacitor using the electrode, and method for manufacturing electrode

Publications (1)

Publication Number Publication Date
WO2014192776A1 true WO2014192776A1 (en) 2014-12-04

Family

ID=51988804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064035 WO2014192776A1 (en) 2013-05-27 2014-05-27 Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode

Country Status (3)

Country Link
JP (1) JP6375593B2 (en)
CN (1) CN105247640B (en)
WO (1) WO2014192776A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072370A1 (en) * 2013-11-13 2015-05-21 本田技研工業株式会社 Carbon fiber membrane
US11450488B2 (en) 2016-12-02 2022-09-20 Fastcap Systems Corporation Composite electrode
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
EP4128298A4 (en) * 2020-03-24 2024-05-01 Yazaki Corporation Supercapacitor cell with high-purity binder-free carbonaceous electrode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139435A (en) * 2016-01-29 2017-08-10 日本ケミコン株式会社 Electrode, capacitor using the same, and electrode manufacturing method
CN106450465A (en) * 2016-11-21 2017-02-22 珠海光宇电池有限公司 Preparation method of slurry of lithium-ion battery
CN108766775B (en) * 2018-05-25 2019-05-28 常州大学 A kind of preparation method and applications of ultralow temperature high capacity supercapacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306591A (en) * 1995-03-07 1996-11-22 Asahi Glass Co Ltd Electric double-layer capacitor
JP2006032371A (en) * 2004-07-12 2006-02-02 Jfe Engineering Kk Electric double layer capacitor and its fabrication process
JP2009272454A (en) * 2008-05-08 2009-11-19 Showa Denko Kk Electric double layer capacitor
JP2010034300A (en) * 2008-07-29 2010-02-12 Jfe Chemical Corp Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor
JP2010087302A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Electrode for electric double-layer capacitor, and method of manufacturing the same
JP2012049389A (en) * 2010-08-27 2012-03-08 Nippon Carbon Co Ltd Method of producing active carbon for capacitor and active carbon

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200979A (en) * 2006-01-24 2007-08-09 Tokai Univ Electric double-layer capacitor
CN102431993A (en) * 2011-09-22 2012-05-02 安徽工业大学 Method for preparing mesoporous carbon material for electrochemical capacitor by using rice hulls as raw materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306591A (en) * 1995-03-07 1996-11-22 Asahi Glass Co Ltd Electric double-layer capacitor
JP2006032371A (en) * 2004-07-12 2006-02-02 Jfe Engineering Kk Electric double layer capacitor and its fabrication process
JP2009272454A (en) * 2008-05-08 2009-11-19 Showa Denko Kk Electric double layer capacitor
JP2010034300A (en) * 2008-07-29 2010-02-12 Jfe Chemical Corp Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor
JP2010087302A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Electrode for electric double-layer capacitor, and method of manufacturing the same
JP2012049389A (en) * 2010-08-27 2012-03-08 Nippon Carbon Co Ltd Method of producing active carbon for capacitor and active carbon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072370A1 (en) * 2013-11-13 2015-05-21 本田技研工業株式会社 Carbon fiber membrane
JP6077134B2 (en) * 2013-11-13 2017-02-08 本田技研工業株式会社 Carbon fiber membrane
JPWO2015072370A1 (en) * 2013-11-13 2017-03-16 本田技研工業株式会社 Carbon fiber membrane
US10020123B2 (en) 2013-11-13 2018-07-10 Honda Motor Co., Ltd. Carbon fiber membrane
US11450488B2 (en) 2016-12-02 2022-09-20 Fastcap Systems Corporation Composite electrode
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
US11848449B2 (en) 2019-07-05 2023-12-19 Fastcap Systems Corporation Electrodes for energy storage devices
EP4128298A4 (en) * 2020-03-24 2024-05-01 Yazaki Corporation Supercapacitor cell with high-purity binder-free carbonaceous electrode

Also Published As

Publication number Publication date
JP2014229886A (en) 2014-12-08
CN105247640A (en) 2016-01-13
JP6375593B2 (en) 2018-08-22
CN105247640B (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6569526B2 (en) Electrode, electric double layer capacitor using the electrode, and method for manufacturing electrode
WO2014192776A1 (en) Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode
KR101056734B1 (en) Electrode of high density supercapacitor and method of manufacturing the same
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
WO2013073526A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
JP2008227481A (en) Conductive slurry, electrode slurry and electrode for electric double-layer capacitor using the slurry
KR20150132394A (en) Graphene / carbon compositions
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP6428628B2 (en) Method for producing composite particles for electrochemical devices
WO2022085694A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
JP5045761B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
WO2020080520A1 (en) Capacitor, and capacitor electrode
JP2013098575A (en) Electrode active material composition and method of manufacturing the same, and electrochemical capacitor with the same
JP2017092303A (en) Active carbon for electrode for high potential capacitor, manufacturing method thereof, and electric double-layer capacitor with the active carbon
CN108496233B (en) Capacitor with a capacitor element
WO2017131016A1 (en) Electrode, capacitor in which electrode is used, and method for manufacturing electrode
JP6848877B2 (en) Electrodes, capacitors using the electrodes, and methods for manufacturing electrodes
JP6754657B2 (en) Non-aqueous lithium storage element
JP2006245386A (en) Electric double layer capacitor using very thin carbon fiber and/or very thin activated carbon fiber as subsidiary conductive material
JP2015122393A (en) Electric double layer capacitor
JP2024076543A (en) Positive electrode precursor
JP2022086445A (en) Non-aqueous alkali metal storage element
JP2010109189A (en) Electrode for electric double layer capacitor
JP2009224561A (en) Metal oxide particle-containing polarizable electrode, and electric double layer capacitor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804535

Country of ref document: EP

Kind code of ref document: A1