JP2006032371A - Electric double layer capacitor and its fabrication process - Google Patents

Electric double layer capacitor and its fabrication process Download PDF

Info

Publication number
JP2006032371A
JP2006032371A JP2004204171A JP2004204171A JP2006032371A JP 2006032371 A JP2006032371 A JP 2006032371A JP 2004204171 A JP2004204171 A JP 2004204171A JP 2004204171 A JP2004204171 A JP 2004204171A JP 2006032371 A JP2006032371 A JP 2006032371A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
electric double
double layer
layer capacitor
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004204171A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nishi
泰彦 西
Torataro Minegishi
寅太郎 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004204171A priority Critical patent/JP2006032371A/en
Publication of JP2006032371A publication Critical patent/JP2006032371A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and high capacity electric double layer capacitor inexpensively by a convenient process. <P>SOLUTION: A porous conductive film 1 is employed as a current collector and since it is used as a filter for low pressure suction filtering 6 polarizable electrode solution 5 where carbon nanotubes 2 and micropowder active carbon 3 are dispersed uniformly using an ultrasonic wave and a substance containing the carbon nanotubes 2 is laminated on the porous conductive film 1, contact area between the current collector and the carbon nanotubes can be increased. In the vicinity of a thin hole 4, a contact surface only between the current collector and the carbon nanotubes 2 is constituted and contact resistance between the current collector and the polarizable electrode is reduced. Furthermore, a good contact surface having no void on the interface is formed by suction force. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気二重層コンデンサに関し、特にカーボンナノチューブを用いた電気二重層コンデンサおよびその製造方法に関するものである。   The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor using carbon nanotubes and a method for manufacturing the same.

従来、電気二重層コンデンサでは、イオン透過性および非電子伝導性を有するポリプロピレン不織布等のセパレータの両側に活性炭などの炭素材料と電解液とから構成される分極性電極層が形成され、その両側に非イオン透過性および電子伝導性を有するアルミ等の集電体が設けられ、セパレータの両面の各周囲と集電体との間に絶縁ゴム等からなる枠状のガスケットが設置された構造となっている。   Conventionally, in an electric double layer capacitor, a polarizable electrode layer composed of a carbon material such as activated carbon and an electrolytic solution is formed on both sides of a separator such as a polypropylene nonwoven fabric having ion permeability and non-electron conductivity, and both sides thereof are formed. A current collector made of aluminum or the like having non-ion permeability and electron conductivity is provided, and a frame-shaped gasket made of insulating rubber or the like is installed between each periphery of the separator and the current collector. ing.

集電体上に活性炭ベースの電極層を形成した平板状の正極と負極をセパレータを介して交互に積層し、この積層体をケースに収め、ケース内に電解液を注入して電極層中に浸透させてなる積層型の電気二重層コンデンサが提案されている(例えば、特許文献1参照。)。   A plate-like positive electrode and negative electrode in which an activated carbon-based electrode layer is formed on a current collector are alternately laminated via separators, and this laminate is placed in a case, and an electrolytic solution is injected into the case to enter the electrode layer. A multilayer electric double layer capacitor that has been infiltrated has been proposed (for example, see Patent Document 1).

また、集電体上に活性炭粒子よりも電気伝導度が大きく内部抵抗が小さいカーボンナノチューブを積層した電気二重層コンデンサも提案されている(例えば、特許文献2、特許文献3または特許文献4参照。)。   In addition, an electric double layer capacitor in which a carbon nanotube having a higher electrical conductivity and lower internal resistance than activated carbon particles is stacked on a current collector has also been proposed (see, for example, Patent Document 2, Patent Document 3 or Patent Document 4). ).

また、分極性電極の内部抵抗を十分に低減する目的のため、活性炭粒子とカーボンナノチューブとの混合物を分極性電極として用いた電気二重層コンデンサも提案されている(例えば、特許文献5参照。)。   In addition, for the purpose of sufficiently reducing the internal resistance of the polarizable electrode, an electric double layer capacitor using a mixture of activated carbon particles and carbon nanotubes as a polarizable electrode has also been proposed (see, for example, Patent Document 5). .

さらに、集電体と分極性電極との接合に関して、集電体としてポリエチレンフィルム等の導電性フィルムを用い、分極性電極として熱分解法(CVD法)により合成したカーボンナノチューブを用いて、導電性フィルムを加熱冷却することによりカーボンナノチューブを導電性フィルム上に垂直転写する電気二重層コンデンサも提案されている(例えば、特許文献6参照。)。
特開平4−154106号公報 特開平10−321482号公報 特開2000−124079号公報 特開2003−234254号公報 特開2003−257797号公報 特開2004−30926号公報
Furthermore, with regard to the joining of the current collector and the polarizable electrode, a conductive film such as a polyethylene film is used as the current collector, and the carbon nanotubes synthesized by the thermal decomposition method (CVD method) are used as the polarizable electrode. An electric double layer capacitor that vertically transfers carbon nanotubes onto a conductive film by heating and cooling the film has also been proposed (see, for example, Patent Document 6).
JP-A-4-154106 JP 10-32482 A JP 2000-1224079 A JP 2003-234254 A JP 2003-257797 A JP 2004-30926 A

しかしながら、従来のような電気二重層コンデンサでは、活性炭を分極性電極として用いた場合、活性炭は一般に電気抵抗値が大きいため分極性電極の内部抵抗が大きくなって、大きな電流を取り出せない問題や、活性炭は粒子状であるため電極単位体積当たりの表面積に限界があった。また、カーボンナノチューブを分極性電極として用いた場合、集電体とカーボンナノチューブを接合する工程が複雑で設備も大掛かりとなり製造コストが増加する問題があり、また集電体との密着性が十分でないと、当初予定していた内部抵抗の低減が図られず、十分な効果を発揮できないという問題があった。   However, in the conventional electric double layer capacitor, when activated carbon is used as the polarizable electrode, activated carbon generally has a large electric resistance value, so the internal resistance of the polarizable electrode is increased, and a large current cannot be taken out, Since activated carbon is particulate, there is a limit to the surface area per unit electrode volume. In addition, when carbon nanotubes are used as polarizable electrodes, there is a problem in that the process of joining the current collector and the carbon nanotubes is complicated and the equipment becomes large, resulting in an increase in manufacturing cost, and the adhesion with the current collector is not sufficient. However, there was a problem that the internal resistance that was initially planned could not be reduced and sufficient effects could not be exhibited.

そこで、本発明の目的は、簡便な方法により、小型で大容量の電気二重層コンデンサを安価に提供することにある。   Therefore, an object of the present invention is to provide a small-sized and large-capacity electric double layer capacitor at a low cost by a simple method.

本発明者は、上述の課題を解決すべく鋭意研究した結果、電極単位体積当たりの表面積が大きく、小型で大容量の電気二重層コンデンサを実現した。また、簡便な方法により、集電体と分極性電極の複合膜を製造する方法を開発し、性能の優れた電気二重層コンデンサを安価に提供することが可能となった。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has realized a small and large-capacity electric double layer capacitor having a large surface area per unit electrode volume. In addition, a method for producing a composite film of a current collector and a polarizable electrode has been developed by a simple method, and an electric double layer capacitor having excellent performance can be provided at low cost.

すなわち、本発明は、以下のような特徴を有している。   That is, the present invention has the following features.

[1]集電体となる多孔性導電膜に、分極性電極となるアーク放電法により合成されたカーボンナノチューブを含む物質を積層させた一対の複合膜を、カーボンナノチューブを含む物質を積層させた側同士を互いに接触しないように対向させてなることを特徴とする電気二重層コンデンサ。   [1] A pair of composite films obtained by laminating a material containing carbon nanotubes synthesized by an arc discharge method serving as a polarizable electrode on a porous conductive film serving as a current collector is laminated with a material containing carbon nanotubes. An electric double layer capacitor characterized in that the sides face each other so as not to contact each other.

[2]前記カーボンナノチューブを含む物質として、カーボンナノチューブと微粉末活性炭との複合材料を用いることを特徴とする前記[1]に記載の電気二重層コンデンサ。   [2] The electric double layer capacitor according to [1], wherein a composite material of carbon nanotubes and finely powdered activated carbon is used as the substance containing the carbon nanotubes.

[3]前記[1]または[2]に記載の電気二重層コンデンサを製造するに際し、前記カーボンナノチューブを含む物質を溶液に分散させ、多孔性導電膜をフィルターとして減圧吸引ろ過することにより、多孔性導電膜上にカーボンナノチューブを含む物質を積層させることを特徴とする電気二重層コンデンサの製造方法。   [3] In manufacturing the electric double layer capacitor according to [1] or [2], a substance containing the carbon nanotubes is dispersed in a solution, and a porous conductive film is used as a filter to perform vacuum suction filtration. A method for producing an electric double layer capacitor comprising laminating a substance containing carbon nanotubes on a conductive conductive film.

[4]前記[1]または[2]に記載の電気二重層コンデンサを製造するに際し、予め膜状またはテープ状に形成された前記カーボンナノチューブを含む物質を多孔性導電膜上に重ね、その上から溶液を浸透させ、反対側より減圧吸引して溶液を排出し、多孔性導電膜上にカーボンナノチューブを含む物質を積層させることを特徴とする電気二重層コンデンサの製造方法。   [4] When manufacturing the electric double layer capacitor according to [1] or [2], a substance containing the carbon nanotubes previously formed into a film shape or a tape shape is overlaid on the porous conductive film, A method for producing an electric double-layer capacitor comprising: infiltrating a solution from the substrate, discharging the solution under reduced pressure from the opposite side, discharging the solution, and laminating a substance containing carbon nanotubes on the porous conductive film.

本発明による電気二重層コンデンサは、集電体としての多孔性導電膜上に、分極性電極としてのカーボンナノチューブを含む物質を積層させた複合膜を備えた構造としているので、小型で大容量の電気二重層コンデンサとなっている。また、簡便な方法により、集電体と分極性電極の複合膜を製造することができるので、性能の優れた電気二重層コンデンサを安価に提供することができる。   The electric double layer capacitor according to the present invention has a structure including a composite film in which a substance containing carbon nanotubes as a polarizable electrode is laminated on a porous conductive film as a current collector. It is an electric double layer capacitor. In addition, since a composite film of a current collector and a polarizable electrode can be produced by a simple method, an electric double layer capacitor having excellent performance can be provided at low cost.

以下、図面を用いて、本発明の電気二重層コンデンサおよびその製造方法についての実施形態を説明する。   Embodiments of an electric double layer capacitor and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.

カーボンナノチューブ(CNT)は、炭素原子が6角形に規則正しく並んだグラフェンが円筒形に丸まってできた直径ナノサイズの長微細炭素繊維で、グラフェンの筒が一重のものが単層カーボンナノチューブ(SWCNT)で、その直径は1〜数nmである。   Carbon nanotubes (CNT) are nano-sized long fine carbon fibers made by rounding graphene in which carbon atoms are regularly arranged in a hexagonal shape, and single-walled carbon nanotubes (SWCNT) are graphene tubes The diameter is 1 to several nm.

また、グラフェンの筒が同心状に何重にも重なっているものが多層カーボンナノチューブ(MWCNT)で、その直径は数nm〜数十nmである。   Further, multi-walled carbon nanotubes (MWCNTs) in which graphene tubes are concentrically overlapped with each other have a diameter of several nanometers to several tens of nanometers.

カーボンナノチューブの合成方法としては、主としてアーク放電法と熱分解法(CVD法)があり、一般にアーク放電法により合成されたカーボンナノチューブは、CVD法により合成されたカーボンナノチューブに比べて結晶性が良好であり、強度や電気伝導度が優れている特徴がある。また、コンデンサの分極性電極としての性能の一評価である面積比容量を調査したところ、表1に示すように、アーク放電法によるカーボンナノチューブの面積比容量は、CVD法のそれに比べ倍近い高い値を示した。   Carbon nanotubes are mainly synthesized by arc discharge method and pyrolysis method (CVD method). Generally, carbon nanotubes synthesized by arc discharge method have better crystallinity than carbon nanotubes synthesized by CVD method. And is characterized by excellent strength and electrical conductivity. Further, when the area specific capacity, which is one evaluation of the performance of the capacitor as a polarizable electrode, was investigated, as shown in Table 1, the area specific capacity of the carbon nanotubes by the arc discharge method is nearly twice as high as that of the CVD method. The value is shown.

Figure 2006032371
Figure 2006032371

コンデンサとしての特性を発揮するためには、上記の面積比容量が高いことと比表面積が大きいことが必要であるが、比表面積は賦活処理等により増加させることが可能であるのに対し、面積比容量は素材特有の性質であり容易に変化させることは困難である。アーク放電法によるカーボンナノチューブの面積比容量が高い理由は、その結晶性の高さに起因するものと考えられる。   In order to exhibit the characteristics as a capacitor, it is necessary that the above-mentioned specific area capacity is high and the specific surface area is large, but the specific surface area can be increased by activation treatment etc. Specific capacity is a property unique to the material and is difficult to change easily. The reason why the area specific capacity of carbon nanotubes by the arc discharge method is high is considered to be due to its high crystallinity.

なお、上記の測定は、電解液にテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液(濃度=0.5mol/L)を用い、三極式セルにて行った。電流密度は40mA/g、測定電位領域は2〜4V vs. Li/Li+である。   In addition, said measurement was performed by the tripolar cell, using the propylene carbonate solution (concentration = 0.5 mol / L) of tetraethylammonium tetrafluoroborate for electrolyte solution. The current density is 40 mA / g, and the measurement potential region is 2 to 4 V vs. Li / Li +.

これらの結果より、電気二重層コンデンサの分極性電極にアーク放電法によるカーボンナノチューブを用いることにより、小型で大容量の電気二重層コンデンサを実現することが可能である。さらに、分極性電極として、カーボンナノチューブ同士の隙間に微粉末活性炭を充填することによって、単位体積当たりの容量をさらに高めることができる。   From these results, it is possible to realize a small-sized and large-capacity electric double layer capacitor by using a carbon nanotube by an arc discharge method for the polarizable electrode of the electric double layer capacitor. Furthermore, the capacity | capacitance per unit volume can be further raised by filling fine powder activated carbon in the clearance gap between carbon nanotubes as a polarizable electrode.

しかしながら、実際に小型で大容量の電気二重層コンデンサを実現するためには、以下の2つの課題がある。
(1)分極性電極の内部抵抗ならびに集電体と分極性電極の接触抵抗を低減する。
(2)集電体と分極性電極の薄膜化を達成する。
However, in order to realize a small and large-capacity electric double layer capacitor, there are the following two problems.
(1) The internal resistance of the polarizable electrode and the contact resistance between the current collector and the polarizable electrode are reduced.
(2) Achieve a reduction in the thickness of the current collector and polarizable electrode.

上記(1)の課題に対し、分極性電極として、結晶性が良好で電気伝導度の高い、アーク放電法により合成されたカーボンナノチューブを含む物質を用いることによって、分極性電極の内部抵抗は低減できるが、集電体との接触抵抗を低減させるためには、更なる工夫が必要である。集電体との接触抵抗を低減させるためには、集電体とカーボンナノチューブの接触面積を増加させる必要があるが、不純物として含まれる非晶質炭素や微粉末活性炭が両者の間に介在すると、接触抵抗を増加させる要因となる。   In response to the above problem (1), the internal resistance of the polarizable electrode is reduced by using a material containing carbon nanotubes synthesized by arc discharge method with good crystallinity and high electrical conductivity as the polarizable electrode. Although it is possible, further ingenuity is required to reduce the contact resistance with the current collector. In order to reduce the contact resistance with the current collector, it is necessary to increase the contact area between the current collector and the carbon nanotube. However, if amorphous carbon or fine powdered activated carbon contained as an impurity is interposed between the two, , Which increases the contact resistance.

そこで、図1および図2に示すように、集電体として多孔性導電膜1を用い、これをフィルターとして、カーボンナノチューブ2と微粉末活性炭3とを超音波等を用いて均一に分散させた分極性電極溶液5を減圧吸引ろ過6することにより、多孔性導電膜1上にカーボンナノチューブ2を含む物質が積層するため、集電体とカーボンナノチューブの接触面積を増加させることができる。つまり、多孔性導電膜1をフィルターとして用いることにより、ろ過初期は不純物の非晶質炭素や微粉末活性炭は、細孔4より排出されるが、カーボンナノチューブ2は長さが数μm以上もあるため細孔4を透過することはなく、多孔性導電膜1上に積層することになる。ある程度カーボンナノチューブ2が細孔4を塞いだ後は、溶液は透過するものの、非晶質炭素や微粉末活性炭3も透過できずに積層していく。よって、細孔4付近では、集電体とカーボンナノチューブ2のみの接触面が構成され、集電体と分極性電極の接触抵抗が低減される。また、吸引力により、界面に空洞のない、良好な接触面を形成することができる。溶液は、分極性電極素材が均一に分散するものなら何でも良く、水やアルコールなどが使用できる。分極性電極の積層後は、ヒーター7等を用いた乾燥により溶液を除去する。   Therefore, as shown in FIGS. 1 and 2, a porous conductive film 1 is used as a current collector, and this is used as a filter, and carbon nanotubes 2 and finely powdered activated carbon 3 are uniformly dispersed using ultrasonic waves or the like. By subjecting the polarizable electrode solution 5 to suction filtration 6 under reduced pressure, a substance containing the carbon nanotubes 2 is laminated on the porous conductive film 1, so that the contact area between the current collector and the carbon nanotubes can be increased. In other words, by using the porous conductive film 1 as a filter, impurity amorphous carbon and finely powdered activated carbon are discharged from the pores 4 at the beginning of filtration, but the carbon nanotubes 2 are several μm or more in length. Therefore, it does not permeate the pores 4 and is laminated on the porous conductive film 1. After the carbon nanotubes 2 block the pores 4 to some extent, the solution permeates, but the amorphous carbon and fine powder activated carbon 3 cannot be permeated and are laminated. Therefore, in the vicinity of the pore 4, a contact surface of only the current collector and the carbon nanotube 2 is formed, and the contact resistance between the current collector and the polarizable electrode is reduced. In addition, a good contact surface having no void at the interface can be formed by the suction force. The solution may be anything as long as the polarizable electrode material is uniformly dispersed, and water or alcohol can be used. After lamination of the polarizable electrode, the solution is removed by drying using a heater 7 or the like.

さらに、上記(2)の課題に対しても、減圧吸引ろ過法により、薄く均一な分極性電極層を形成することができる。つまり、分極性電極の積層厚さは、溶液の電極素材濃度と吸引能力および吸引時間により制御することができる。帯状の集電体を用いて連続的に分極性電極を積層させることもできる。この場合、分極性電極の積層厚さは、溶液の電極素材濃度と吸引能力、吸引面の長さおよび集電体の移動速度により制御することになる。   Furthermore, a thin and uniform polarizable electrode layer can also be formed by the vacuum suction filtration method for the above problem (2). That is, the lamination thickness of the polarizable electrode can be controlled by the electrode material concentration of the solution, the suction capability, and the suction time. A polarizable electrode can be continuously laminated using a strip-shaped current collector. In this case, the lamination thickness of the polarizable electrode is controlled by the electrode material concentration and the suction ability of the solution, the length of the suction surface, and the moving speed of the current collector.

多孔性導電膜の孔径は、非晶質炭素や微粉末活性炭よりも大きく、カーボンナノチューブを透過しないものが良く、具体的には0.1〜5μm、望ましくは0.4〜2μmの範囲が適している。カーボンナノチューブに混合する微粉末活性炭の粒径は、0.01〜2μm、望ましくは0.1〜1μmの範囲が適している。また、カーボンナノチューブのサイズは、直径が1〜100nm、望ましくは4〜20nm、長さが1〜100μm、望ましくは5〜20μmの範囲が適している。   The pore diameter of the porous conductive film is larger than that of amorphous carbon or finely powdered activated carbon, and does not permeate carbon nanotubes. Specifically, a range of 0.1 to 5 μm, preferably 0.4 to 2 μm is suitable. ing. The particle size of the finely powdered activated carbon mixed with the carbon nanotubes is 0.01 to 2 μm, preferably 0.1 to 1 μm. The size of the carbon nanotube is suitably in the range of 1 to 100 nm in diameter, desirably 4 to 20 nm, 1 to 100 μm in length, desirably 5 to 20 μm.

また、予め膜状またはテープ状に形成されたカーボンナノチューブを含む物質を分極性電極として用い、それを集電体である多孔性導電膜上に重ね、その上から溶液を浸透させて、反対側より減圧吸引して溶液を排出し、集電体と分極性電極の複合膜を製造することもできる。この場合も界面付近の非晶質炭素や微粉末活性炭が取り除かれ、集電体と分極性電極の接触抵抗が低減され、界面に空洞等のない、良好な接触面を形成できる。さらに、予め分極性電極の膜厚を管理できるので、より精密に膜厚管理が可能となる。   In addition, a material containing carbon nanotubes previously formed into a film shape or a tape shape is used as a polarizable electrode, and this is overlaid on a porous conductive film as a current collector, and the solution is infiltrated from it onto the opposite side. It is also possible to produce a composite film of a current collector and a polarizable electrode by sucking the solution under reduced pressure and discharging the solution. Also in this case, the amorphous carbon and fine powder activated carbon in the vicinity of the interface are removed, the contact resistance between the current collector and the polarizable electrode is reduced, and a good contact surface without a cavity or the like at the interface can be formed. Furthermore, since the film thickness of the polarizable electrode can be managed in advance, the film thickness can be managed more precisely.

このようにして製造された集電体と分極性電極の複合膜を用いて、コイン型電気二重層コンデンサを製造した。図3に製造した電気二重層コンデンサの構造を示す。図3において、集電体8と分極性電極9が一体となった複合膜がポリプロピレン製不織布のセパレータ10を介して合い対峙した構造となっている。乾燥窒素雰囲気下において、グローブボックス内で電解液(テトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液(濃度=1mol/L))を容器11内に注入し複合膜を含浸させた後、ポリプロピレン製ガスケット12を用いて容器11をステンレス鋼製の蓋材13で封口した。こうして、コイン型電気二重層コンデンサを作製した。   A coin-type electric double layer capacitor was manufactured using the composite film of the current collector and polarizable electrode thus manufactured. FIG. 3 shows the structure of the manufactured electric double layer capacitor. In FIG. 3, a composite film in which the current collector 8 and the polarizable electrode 9 are integrated has a structure in which they face each other through a separator 10 made of polypropylene nonwoven fabric. In a dry nitrogen atmosphere, an electrolyte solution (a solution of tetraethylammonium tetrafluoroborate in propylene carbonate (concentration = 1 mol / L)) was injected into the container 11 in a glove box and impregnated with the composite membrane. The container 11 was sealed with a stainless steel lid 13. Thus, a coin-type electric double layer capacitor was produced.

集電体として、孔径約1〜5μmのシリコーンゲル多孔質導電体膜を使用し、分極性電極として、アーク放電法により合成された多層カーボンナノチューブに平均粒径約1μmの微粉末活性炭を1:1の重量割合で混合したものを用いた。分極性電極を分散させる溶液としてメタノールを使用し、約100μmの厚さに積層させた。このコンデンサの単位集電体面積における電気容量を測定したところ、約10000μF/cm2であり、活性炭による一般的な電気二重層コンデンサの約10倍の電気容量を示した。 A silicon gel porous conductor film having a pore diameter of about 1 to 5 μm is used as a current collector, and fine powder activated carbon having an average particle diameter of about 1 μm is applied to a multi-walled carbon nanotube synthesized by an arc discharge method as a polarizable electrode 1: What was mixed in the weight ratio of 1 was used. Methanol was used as a solution for dispersing the polarizable electrode, and the layers were laminated to a thickness of about 100 μm. When the electric capacity in the unit current collector area of this capacitor was measured, it was about 10000 μF / cm 2 , indicating an electric capacity about 10 times that of a general electric double layer capacitor made of activated carbon.

本発明による集電体と分極性電極の複合膜を示す図である。It is a figure which shows the composite film of the collector and polarizable electrode by this invention. 本発明による集電体と分極性電極の複合膜を製造する方法を示す図である。It is a figure which shows the method to manufacture the composite film of the electrical power collector and polarizable electrode by this invention. 本発明による電気二重層コンデンサの縦断面図である。It is a longitudinal cross-sectional view of the electric double layer capacitor by this invention.

符号の説明Explanation of symbols

1 多孔性導電膜
2 カーボンナノチューブ
3 微粉末活性炭
4 細孔
5 分極性電極溶液
6 吸引口
7 ヒーター
8 集電体
9 分極性電極
10 セパレータ
11 容器
12 ガスケット
13 蓋材
DESCRIPTION OF SYMBOLS 1 Porous conductive film 2 Carbon nanotube 3 Fine powder activated carbon 4 Pore 5 Polarized electrode solution 6 Suction port 7 Heater 8 Current collector 9 Polarized electrode 10 Separator 11 Container 12 Gasket 13 Lid

Claims (4)

集電体となる多孔性導電膜に、分極性電極となるアーク放電法により合成されたカーボンナノチューブを含む物質を積層させた一対の複合膜を、カーボンナノチューブを含む物質を積層させた側同士を互いに接触しないように対向させてなることを特徴とする電気二重層コンデンサ。   A pair of composite films made by laminating a material containing carbon nanotubes synthesized by an arc discharge method that becomes a polarizable electrode on a porous conductive film that becomes a current collector, and the sides on which the materials containing carbon nanotubes are laminated An electric double layer capacitor characterized by being opposed so as not to contact each other. 前記カーボンナノチューブを含む物質として、カーボンナノチューブと微粉末活性炭との複合材料を用いることを特徴とする請求項1に記載の電気二重層コンデンサ。   2. The electric double layer capacitor according to claim 1, wherein a composite material of carbon nanotubes and finely powdered activated carbon is used as the substance containing the carbon nanotubes. 請求項1または2に記載の電気二重層コンデンサを製造するに際し、前記カーボンナノチューブを含む物質を溶液に分散させ、多孔性導電膜をフィルターとして減圧吸引ろ過することにより、多孔性導電膜上にカーボンナノチューブを含む物質を積層させることを特徴とする電気二重層コンデンサの製造方法。   When manufacturing the electric double layer capacitor according to claim 1 or 2, carbon is deposited on the porous conductive film by dispersing the substance containing the carbon nanotubes in a solution and performing vacuum suction filtration using the porous conductive film as a filter. A method of manufacturing an electric double layer capacitor, comprising laminating a substance containing nanotubes. 請求項1または2に記載の電気二重層コンデンサを製造するに際し、予め膜状またはテープ状に形成された前記カーボンナノチューブを含む物質を多孔性導電膜上に重ね、その上から溶液を浸透させ、反対側より減圧吸引して溶液を排出し、多孔性導電膜上にカーボンナノチューブを含む物質を積層させることを特徴とする電気二重層コンデンサの製造方法。   In producing the electric double layer capacitor according to claim 1 or 2, a substance containing the carbon nanotubes previously formed in a film shape or a tape shape is overlaid on the porous conductive film, and the solution is infiltrated from above. A method for producing an electric double layer capacitor, comprising sucking a solution under reduced pressure from the opposite side to discharge the solution, and laminating a substance containing carbon nanotubes on the porous conductive film.
JP2004204171A 2004-07-12 2004-07-12 Electric double layer capacitor and its fabrication process Pending JP2006032371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204171A JP2006032371A (en) 2004-07-12 2004-07-12 Electric double layer capacitor and its fabrication process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204171A JP2006032371A (en) 2004-07-12 2004-07-12 Electric double layer capacitor and its fabrication process

Publications (1)

Publication Number Publication Date
JP2006032371A true JP2006032371A (en) 2006-02-02

Family

ID=35898397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204171A Pending JP2006032371A (en) 2004-07-12 2004-07-12 Electric double layer capacitor and its fabrication process

Country Status (1)

Country Link
JP (1) JP2006032371A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836131B1 (en) 2006-10-19 2008-06-09 삼성전기주식회사 Nano-wire capacitor and manufacturing method thereof
JP2009246306A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Electrode for electric double-layer capacitor, and manufacturing method thereof
CN101937774A (en) * 2010-06-23 2011-01-05 中国科学院物理研究所 Preparation method of winding type super capacitor
WO2014129540A1 (en) * 2013-02-20 2014-08-28 日本ケミコン株式会社 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
WO2014192776A1 (en) * 2013-05-27 2014-12-04 日本ケミコン株式会社 Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode
WO2015072370A1 (en) * 2013-11-13 2015-05-21 本田技研工業株式会社 Carbon fiber membrane
JP2015122393A (en) * 2013-12-24 2015-07-02 日本ケミコン株式会社 Electric double layer capacitor
JP2023508762A (en) * 2020-03-24 2023-03-03 矢崎総業株式会社 Supercapacitor cells with high-purity binder-free carbonaceous electrodes
CN117542956A (en) * 2024-01-10 2024-02-09 北京郅航科技有限公司 Electrode plate, preparation method thereof and secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836131B1 (en) 2006-10-19 2008-06-09 삼성전기주식회사 Nano-wire capacitor and manufacturing method thereof
JP2009246306A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Electrode for electric double-layer capacitor, and manufacturing method thereof
CN101937774A (en) * 2010-06-23 2011-01-05 中国科学院物理研究所 Preparation method of winding type super capacitor
EP2960913A4 (en) * 2013-02-20 2016-10-05 Nippon Chemicon Electrode, electric double-layer capacitor using same, and electrode manufacturing method
KR102320546B1 (en) * 2013-02-20 2021-11-01 닛뽄 케미콘 가부시끼가이샤 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
US9997301B2 (en) 2013-02-20 2018-06-12 Nippon Chemi-Con Corporation Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode
JP2015005721A (en) * 2013-02-20 2015-01-08 日本ケミコン株式会社 Electrode, electric double layer capacitor using the same, and method for manufacturing electrode
TWI620214B (en) * 2013-02-20 2018-04-01 Nippon Chemicon Electrode, electric double-layer capacitor using the same, and manufacturing method of electrode
JPWO2014129540A1 (en) * 2013-02-20 2017-02-02 日本ケミコン株式会社 Electrode, electric double layer capacitor using the electrode, and method for manufacturing electrode
CN104956455A (en) * 2013-02-20 2015-09-30 日本贵弥功株式会社 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
KR20150119849A (en) * 2013-02-20 2015-10-26 닛뽄 케미콘 가부시끼가이샤 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
WO2014129540A1 (en) * 2013-02-20 2014-08-28 日本ケミコン株式会社 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
CN105247640A (en) * 2013-05-27 2016-01-13 日本贵弥功株式会社 Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode
JP2014229886A (en) * 2013-05-27 2014-12-08 日本ケミコン株式会社 Electrode, electric double layer capacitor using electrode, and method for manufacturing electrode
WO2014192776A1 (en) * 2013-05-27 2014-12-04 日本ケミコン株式会社 Electrode, electric double-layer capacitor using said electrode, and method for manufacturing said electrode
JP6077134B2 (en) * 2013-11-13 2017-02-08 本田技研工業株式会社 Carbon fiber membrane
JPWO2015072370A1 (en) * 2013-11-13 2017-03-16 本田技研工業株式会社 Carbon fiber membrane
WO2015072370A1 (en) * 2013-11-13 2015-05-21 本田技研工業株式会社 Carbon fiber membrane
US10020123B2 (en) 2013-11-13 2018-07-10 Honda Motor Co., Ltd. Carbon fiber membrane
JP2015122393A (en) * 2013-12-24 2015-07-02 日本ケミコン株式会社 Electric double layer capacitor
JP2023508762A (en) * 2020-03-24 2023-03-03 矢崎総業株式会社 Supercapacitor cells with high-purity binder-free carbonaceous electrodes
JP2023511783A (en) * 2020-03-24 2023-03-22 矢崎総業株式会社 Stable aqueous dispersion of carbon
CN117542956A (en) * 2024-01-10 2024-02-09 北京郅航科技有限公司 Electrode plate, preparation method thereof and secondary battery
CN117542956B (en) * 2024-01-10 2024-03-29 北京郅航科技有限公司 Electrode plate, preparation method thereof and secondary battery

Similar Documents

Publication Publication Date Title
Shao et al. High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO 2 nanorod and graphene/Ag hybrid thin-film electrodes
Wu et al. Highly densified carbon electrode materials towards practical supercapacitor devices
Zhang et al. Carbon-based materials as supercapacitor electrodes
Zhang et al. Graphene-based materials as supercapacitor electrodes
Xu et al. Holey graphene frameworks for highly efficient capacitive energy storage
US10692660B2 (en) Three-dimensional graphene framework-based high-performance supercapacitors
Frackowiak et al. Supercapacitor electrodes from multiwalled carbon nanotubes
US8427811B2 (en) Electrode for electric double layer capacitor and method for producing the same
Huang et al. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films
Lin et al. Engineering 2D materials: a viable pathway for improved electrochemical energy storage
US20130314844A1 (en) Method of preparing reduced graphene oxide foam
Ye et al. A rapid heat pressing strategy to prepare fluffy reduced graphene oxide films with meso/macropores for high-performance supercapacitors
He et al. The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications
Chen et al. Graphene based integrated tandem supercapacitors fabricated directly on separators
CN107331523A (en) A kind of active carbon/carbon/graphene composite material and its preparation method and application
KR101614299B1 (en) Manufacturing method of ultracapacitor electrode with high density and supercapacitor cell using the ultracapacitor electrode manufactured by the method
JP2000124079A (en) Electric double-layer capacitor
Du et al. A Three‐Layer All‐In‐One Flexible Graphene Film Used as an Integrated Supercapacitor
KR101728720B1 (en) Graphene composite comprising three dimensional carbon nanotube pillars and method of fabricating thereof
US9786445B2 (en) Supercapacitor configurations with graphene-based electrodes and/or peptide
WO2015126464A2 (en) Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for ultrathin planar supercapacitors
JP5304153B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
JP2006032371A (en) Electric double layer capacitor and its fabrication process
JP2002231585A (en) Electric double-layered capacitor
US9378900B2 (en) Solid electrochemical supercapacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215