WO2014192673A1 - Thermoplastic resin composition and method for producing same - Google Patents

Thermoplastic resin composition and method for producing same Download PDF

Info

Publication number
WO2014192673A1
WO2014192673A1 PCT/JP2014/063785 JP2014063785W WO2014192673A1 WO 2014192673 A1 WO2014192673 A1 WO 2014192673A1 JP 2014063785 W JP2014063785 W JP 2014063785W WO 2014192673 A1 WO2014192673 A1 WO 2014192673A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
copolymer
thermoplastic resin
resin composition
Prior art date
Application number
PCT/JP2014/063785
Other languages
French (fr)
Japanese (ja)
Inventor
高本達也
落合伸一郎
小林定之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480030727.2A priority Critical patent/CN105246968B/en
Priority to JP2014528765A priority patent/JP6464746B2/en
Publication of WO2014192673A1 publication Critical patent/WO2014192673A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/06Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene-diene terpolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles

Definitions

  • ABS Since ABS has a double bond in the main chain, there is a problem in weather resistance, and butadiene as a raw material is derived from crude oil, and there is a concern that the cost will increase due to a rise in the price of crude oil.
  • AES has excellent weather resistance because it does not have a double bond in the main chain, and the raw material can also be produced from natural gas, so it is not easily affected by the price of crude oil.
  • the amount is more preferably 15% by mass or less.
  • the blending amount of the (a2) aromatic vinyl monomer is preferably 5 to 99.99% by mass.
  • the amount is more preferably 20% by mass or more.
  • the heat resistance of a molded article can be improved by making the compounding quantity of (a2) component into 99.99 mass% or less.
  • the amount is more preferably 90% by mass or less.
  • the blending amount of the (a3) vinyl cyanide monomer is preferably 1 to 60% by mass.
  • the method for producing the copolymer (B) used in the present invention is not particularly limited, and the component (b1), the component (b2) and, if necessary, the component (b3) are mixed into a bulk polymerization method, a suspension polymerization method, an emulsion weight. It can be obtained by polymerization using a known polymerization method such as a combination method, a solution polymerization method, a bulk-suspension polymerization method and a solution-bulk polymerization method.
  • thermoplastic resin composition of the present invention can be obtained by blending (D) an ethylene rubber polymer (hereinafter sometimes referred to as “rubber polymer (D)”), if necessary. .
  • rubber polymer (D) an ethylene rubber polymer
  • the impact resistance of the molded product can be further improved.
  • the amount of each component in the thermoplastic resin composition of the present invention is 0.1 to 95 parts by weight of the copolymer (A) to 100 parts by weight of the total of (A) to (D).
  • the blending amount of the copolymer (A) is less than 0.1 parts by mass, a graft product of the copolymer (A) and the rubbery polymer (C) is hardly formed, and the copolymer (A) and Since the effect of improving the compatibility with the rubber polymer (C) cannot be obtained, the impact resistance and appearance of the molded product tend to be lowered.
  • the blending amount of the peroxide (E) in the thermoplastic resin composition of the present invention is preferably 0.1 to 1 part by mass with respect to 100 parts by mass in total of (A) to (D).
  • the thermoplastic resin composition of the present invention can be obtained by blending (F) an ethylene polymer (hereinafter sometimes referred to as “ethylene polymer (F)”) as necessary. By blending the ethylene polymer (F), the impact resistance and gloss of the molded product can be further improved.
  • the phosphorus compound is not particularly limited as long as it is an organic or inorganic compound containing phosphorus, and examples thereof include ammonium polyphosphate, polyphosphazene, phosphate, phosphonate, phosphinate, and phosphine oxide. Of these, aromatic phosphates can be particularly preferably used.
  • the shape of the filler may be fibrous or non-fibrous, or a combination of fibrous filler and non-fibrous filler may be used.
  • the fibrous filler include glass fiber, glass milled fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, and stone powder. Examples thereof include fibers and metal fibers.
  • the rising temperature of the storage elastic modulus in the dynamic viscoelasticity measurement is an index representing the flexibility of the rubber polymer (C) in the thermoplastic resin composition.
  • the rubbery polymer (C) tends to lose its inherent properties of the rubbery polymer (C) with changes such as the formation of a graft product by reaction with the polymer (A) described above.
  • the thermoplastic resin composition attention is paid to the rising temperature of the storage elastic modulus as an index indicating the original characteristics of the rubber polymer (C), and this is the glass transition temperature of the rubber polymer (C) +20. It is characterized by being below °C.
  • thermoplastic resin composition obtained by blending the copolymer (A) or the copolymer (B) having a weight average molecular weight within the above-mentioned preferred range
  • thermoplastic resin composition obtained by blending the rubbery polymer (C) having a modified amount in the above-mentioned preferred range Use of a thermoplastic resin composition obtained by blending the above-mentioned (E) peroxide.
  • E thermoplastic resin composition obtained by blending the above-mentioned
  • the rising temperature of the storage elastic modulus and the average particle diameter of the rubbery polymer (C) in the dynamic viscoelasticity measurement of the thermoplastic resin composition can be measured by preparing a test piece from the molded product. . Under general molding conditions, the rise temperature of the storage elastic modulus and the average particle diameter of the rubbery polymer (C) are not changed.
  • the molding temperature is 220 ° C.
  • the mold temperature is 60 ° C.
  • injection time 10 seconds
  • cooling time 20 seconds
  • molding pressure pressure from which all resin is filled in the mold (molding lower limit pressure) + 2MPa Make it.
  • the storage elastic modulus is measured in a bending mode using a DMS6100 manufactured by Seiko Instruments Inc. after cutting a test piece having a length of 45 mm and a width of 12.8 mm from a molded product having a thickness of 3 mm molded according to the above conditions.
  • the measurement conditions are a frequency of 0.5 Hz, a distance between chucks of 20 mm, a heating rate of 2 ° C./min, and ⁇ 100 ° C. to 0 ° C.
  • the reaction of (A) and (C) proceeds more efficiently, and the surface gloss of the molded product is increased. Can be improved.
  • Components such as the aforementioned additives can be blended at any stage.
  • the copolymer (A), if necessary, the copolymer (B), the rubbery polymer (C), if necessary, may be blended together with the rubbery polymer (D).
  • (D) may be blended after melt-kneading, or may be blended in advance with at least one of the above-mentioned (A) to (D) and melt-kneaded, and then the remaining components may be blended.
  • the kneading temperature refers to the set temperature of the cylinder of the twin screw extruder. What is necessary is just to provide at least one zone set to the said temperature between a polymer fusion
  • the kneading temperature 1 ° C. or more higher than the glass transition temperature of the polymer having the highest glass transition temperature among the polymers to be used, the viscosity can be lowered moderately and the melt kneading can be carried out more sufficiently.
  • the molded product of the present invention can be usefully used as a structural material by utilizing excellent impact resistance and appearance.
  • Various gears and various cases Sensor, LED lamp, connector, socket, resistor, relay case, switch, coil bobbin, capacitor, variable capacitor case, optical pickup, oscillator, terminal board, transformer, plug, printed wiring board, tuner, speaker, microphone, headphones, Electrical and electronic parts such as small motors, magnetic head bases, power modules, housings, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts.
  • PC printer, display, CRT display, fax, copy, word processor, notebook computer, mobile phone, PHS, DVD drive, PD drive, flexible disk drive and other storage device housing, chassis, relay, switch, case member, transformer member Electrical and electronic equipment parts such as coil bobbins; machine parts, agricultural materials, horticultural materials, fishery materials, civil engineering and construction materials, and other various uses.
  • the weight average molecular weight in terms of polystyrene was measured by gel permeation chromatography and found to be 170,000.
  • the glass transition temperature determined by DSC measurement was 115 ° C.
  • the DSC measurement conditions were as follows: sample 10 mg, in a nitrogen atmosphere, from ⁇ 80 ° C. to 150 ° C. with a temperature modulation rate of ⁇ 1 ° C. and a temperature modulation period of 60 seconds at a temperature increase rate of 5 ° C./min
  • L is the length from the raw material supply port to the discharge port
  • D is the diameter of the screw (the same applies hereinafter).
  • the cylinder set temperature after the polymer melt was adjusted to 230 ° C.
  • the screw configuration of the extruder was composed of a kneading disk and a flight screw.
  • the storage elastic modulus is plotted on the vertical axis, the temperature is plotted on the horizontal axis, and the temperature corresponding to the point at which the tangent of the plateau region of the storage modulus intersects with the tangent of the portion where the slope becomes a straight line after rising is expressed as the rising temperature of the storage elastic modulus. It was.
  • the deflection temperature under load was measured according to ASTM D648 (load: 1.82 MPa) using a test piece cut out from a molded product molded under the above conditions. The deflection temperature under load was measured for each of the two test pieces, and the average value was taken as the deflection temperature under load.
  • Residual emulsifier 1 g of pellets obtained in each Example and Comparative Example were extracted with methanol, filtered with 0.5 ⁇ m filter paper, the filtrate was concentrated, and then dried with a vacuum dryer to extract components. The presence or absence of was determined by visual observation.
  • the cylinder set temperature after the polymer melting part was adjusted to 150 ° C.
  • Comparative Example 2 Pellets were obtained in the same manner as in Comparative Example 1 except that each component and the blending ratio were changed as shown in Table 1.
  • Table 1 shows the results of evaluation of each property by the above method using the obtained pellets.
  • thermoplastic resin composition of the present invention can be used for various applications such as electric / electronic parts, home appliances, OA equipment, automobile parts, and mechanical mechanism parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of providing: a thermoplastic resin composition which enables the production of a molded article having an excellent balance between impact resistance and stiffness and also having excellent appearance; and a method for producing the thermoplastic resin composition. The present invention is a thermoplastic resin composition comprising 0.1 to 95 parts by mass of (A) a copolymer of (a1) a vinyl monomer having a reactive functional group, (a2) an aromatic vinyl monomer and (a3) a vinyl cyanide monomer, 0 to 94.9 parts by mass of (B) a copolymer of (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer, 5 to 40 parts by mass of (C) an ethylene rubbery polymer having a reactive functional group, and 0 to 35 parts by mass of (D) an ethylene rubbery polymer (wherein the sum total of the amounts of the components (A), (B), (C) and (D) is 100 parts by mass), said thermoplastic resin composition being characterized in that the rising start temperature of the storage elastic modulus of the composition in a dynamic viscoelasticity measurement is a temperature that is higher by 20ºC than the glass transition temperature of (C) the ethylene rubbery polymer having a reactive functional group or lower, and (C) the ethylene rubbery polymer having a reactive functional group is dispersed at an average particle diameter of 0.6 μm or less.

Description

熱可塑性樹脂組成物およびその製造方法Thermoplastic resin composition and method for producing the same
 本発明は、熱可塑性樹脂組成物およびその製造方法に関する。 The present invention relates to a thermoplastic resin composition and a method for producing the same.
 アクリロニトリル/ブタジエン/スチレン共重合体(ABS)は、加工性と外観に優れ、かつポリスチレンよりも強度や剛性が高く、さらに耐熱性や耐薬品性にも優れていることから、家電製品、OA機器のみならず、自動車部品、建材などさらに広い用途で用いられている。また、ゴム成分にエチレン系のゴムを使用したアクリロニトリル/エチレン系ゴム/スチレン共重合体(AES)も広く使用されている。 Acrylonitrile / butadiene / styrene copolymer (ABS) is excellent in processability and appearance, has higher strength and rigidity than polystyrene, and is also excellent in heat resistance and chemical resistance. It is used not only for automobile parts and building materials, but also for a wider range of applications. Also, acrylonitrile / ethylene rubber / styrene copolymer (AES) using ethylene rubber as a rubber component is widely used.
 ABSは主鎖に二重結合を持つことから、耐候性に課題があり、また、原料のブタジエンは原油由来であり、原油価格の高騰によるコスト上昇の懸念がある。一方AESは主鎖に二重結合を持たないことから耐候性に優れ、また原料は天然ガスからも製造できるため、原油価格の影響を受けにくい。 Since ABS has a double bond in the main chain, there is a problem in weather resistance, and butadiene as a raw material is derived from crude oil, and there is a concern that the cost will increase due to a rise in the price of crude oil. On the other hand, AES has excellent weather resistance because it does not have a double bond in the main chain, and the raw material can also be produced from natural gas, so it is not easily affected by the price of crude oil.
 AESの製造方法としては、例えば、エチレン系ゴム質重合体を大容量の溶媒に乳化させ、かかるエチレン系ゴム質重合体ラテックスの存在下にアクリロニトリルなどのビニル系単量体とスチレンなどの芳香族ビニル系単量体を乳化グラフト重合する手法などが知られている(例えば、特許文献1参照)。しかしながら、かかる煩雑な製造プロセスにより得られるAESは、乳化剤などの不純物が混入しやすく、耐衝撃性や剛性が低下する傾向があった。 As a method for producing AES, for example, an ethylene rubber polymer is emulsified in a large-capacity solvent, and a vinyl monomer such as acrylonitrile and an aromatic such as styrene in the presence of the ethylene rubber polymer latex. A technique of emulsion graft polymerization of a vinyl monomer is known (for example, see Patent Document 1). However, AES obtained by such a complicated manufacturing process tends to be mixed with impurities such as an emulsifier, and tends to decrease impact resistance and rigidity.
 また、溶融混練手法によりAESなどの熱可塑性樹脂組成物を製造する方法としては、例えば、(I)芳香族ビニル単量体単位およびエポキシ基を有するビニル単量体単位を必須の単量体単位とする共重合体と(II)不飽和ジカルボン酸無水物単量体単位及び/又は不飽和カルボン酸単量体単位で変性された変性ポリオレフィン系重合体とを原料として、溶融混合する方法などが提案されている(例えば、特許文献2~3参照)。しかしながら、かかる方法では、(I)と(II)との反応を効率的に進めることが困難であり、耐衝撃性、剛性、外観のバランスが不十分である課題があった。 Moreover, as a method for producing a thermoplastic resin composition such as AES by a melt-kneading technique, for example, (I) an aromatic vinyl monomer unit and a vinyl monomer unit having an epoxy group are essential monomer units. And (II) an unsaturated dicarboxylic acid anhydride monomer unit and / or a modified polyolefin polymer modified with an unsaturated carboxylic acid monomer unit as a raw material, and a melt-mixing method, etc. It has been proposed (see, for example, Patent Documents 2 to 3). However, in this method, it is difficult to efficiently proceed the reaction between (I) and (II), and there is a problem that the balance between impact resistance, rigidity, and appearance is insufficient.
特公昭49-14549号公報(英国特許出願公開第1323506号明細書)Japanese Patent Publication No.49-14549 (UK Patent Application Publication No. 1323506) 特開平6-9840号公報JP-A-6-9840 特開平11-228769号公報JP-A-11-228769
 本発明は、上記課題を解決し、耐衝撃性と剛性のバランスに優れ、さらに、外観に優れた成形品を得ることのできる熱可塑性樹脂組成物およびその製造方法を提供することをその課題とするものである。 The present invention is to solve the above problems, to provide a thermoplastic resin composition that is excellent in the balance between impact resistance and rigidity, and that can obtain a molded product excellent in appearance, and a method for producing the same. To do.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、熱可塑性樹脂組成物におけるゴム成分の貯蔵弾性率の立ち上がり温度と平均粒子径を特定範囲にすることにより、上記課題を解決することを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have solved the above problems by setting the rising temperature and the average particle diameter of the storage elastic modulus of the rubber component in the thermoplastic resin composition within a specific range. As a result, the present invention has been completed.
 本発明の熱可塑性樹脂組成物は、以下の構成を有する。
(A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体0.1~95質量部、
(B)(b1)芳香族ビニル系単量体と(b2)シアン化ビニル系単量体との共重合体0~94.9質量部、
(C)反応性官能基(ii)を有するエチレン系ゴム質重合体5~40質量部および
(D)エチレン系ゴム質重合体0~35質量部
(ただし、(A)、(B)、(C)および(D)の合計は100質量部)を配合して得られる熱可塑性樹脂組成物であって、動的粘弾性測定における貯蔵弾性率の立ち上がり温度が前記(C)反応性官能基(ii)を有するエチレン系ゴム質重合体のガラス転移温度+20℃以下であり、かつ(C)反応性官能基(ii)を有するエチレン系ゴム質重合体が平均粒子径0.6μm以下で分散している熱可塑性樹脂組成物。
The thermoplastic resin composition of the present invention has the following constitution.
(A) Copolymer of (a1) vinyl monomer having reactive functional group (i), (a2) aromatic vinyl monomer and (a3) vinyl cyanide monomer 0.1 ~ 95 parts by mass,
(B) a copolymer of (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer, 0 to 94.9 parts by mass,
(C) 5 to 40 parts by mass of an ethylene rubbery polymer having a reactive functional group (ii) and (D) 0 to 35 parts by mass of an ethylene rubbery polymer (provided that (A), (B), ( C) and (D) is a thermoplastic resin composition obtained by blending 100 parts by mass), and the rising temperature of the storage elastic modulus in dynamic viscoelasticity measurement is the above-mentioned (C) reactive functional group ( The glass transition temperature of the ethylene rubber polymer having ii) is not higher than 20 ° C. and (C) the ethylene rubber polymer having a reactive functional group (ii) is dispersed with an average particle diameter of 0.6 μm or less. A thermoplastic resin composition.
 そして前記熱可塑性樹脂組成物の製造方法として、本発明は以下の構成を有する。
(A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体0.1~95質量部、
(B)(b1)芳香族ビニル系単量体と(b2)シアン化ビニル系単量体との共重合体0~94.9質量部、
(C)反応性官能基(ii)を有するエチレン系ゴム質重合体5~40質量部および
(D)エチレン系ゴム質重合体0~35質量部
(ただし、(A)、(B)、(C)および(D)の合計は100質量部)を、二軸押出機を用いたカオス混合により溶融混練する前記熱可塑性樹脂組成物の製造方法。
And as a manufacturing method of the said thermoplastic resin composition, this invention has the following structures.
(A) Copolymer of (a1) vinyl monomer having reactive functional group (i), (a2) aromatic vinyl monomer and (a3) vinyl cyanide monomer 0.1 ~ 95 parts by mass,
(B) a copolymer of (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer, 0 to 94.9 parts by mass,
(C) 5 to 40 parts by mass of an ethylene rubbery polymer having a reactive functional group (ii) and (D) 0 to 35 parts by mass of an ethylene rubbery polymer (provided that (A), (B), ( C) and (D) are 100 parts by mass). The method for producing the thermoplastic resin composition, wherein the mixture is melt kneaded by chaos mixing using a twin screw extruder.
 本発明の熱可塑性樹脂組成物によれば、耐衝撃性、剛性、外観に優れた成形品を提供することができる。 According to the thermoplastic resin composition of the present invention, a molded product excellent in impact resistance, rigidity and appearance can be provided.
 以下に本発明の熱可塑性樹脂組成物について具体的に説明する。 Hereinafter, the thermoplastic resin composition of the present invention will be specifically described.
 <共重合体(A)>
 本発明の熱可塑性樹脂組成物は、(A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体(以下この共重合体を「共重合体(A)」と記載する場合がある)を配合して得ることができる。また、これらと共重合可能な(a4)他のビニル系単量体をさらに共重合したものであってもよい。共重合体(A)が後述する反応性官能基(ii)を有するエチレン系ゴム質重合体(C)(以下「ゴム質重合体(C)」と記載する場合がある)と反応し、グラフト物を生成することによって、共重合体(A)とゴム質重合体(C)との相溶性が向上し、熱可塑性樹脂組成物を成形して得られる成形品の耐衝撃性と外観を向上させることができる。
<Copolymer (A)>
The thermoplastic resin composition of the present invention comprises (A) (a1) a vinyl monomer having a reactive functional group (i), (a2) an aromatic vinyl monomer, and (a3) a vinyl cyanide monomer. It can be obtained by blending with a copolymer (hereinafter, this copolymer may be referred to as “copolymer (A)”). Further, (a4) other vinyl monomers copolymerizable with these may be further copolymerized. The copolymer (A) reacts with an ethylene-based rubbery polymer (C) having a reactive functional group (ii) to be described later (hereinafter sometimes referred to as “rubbery polymer (C)”), and then grafted. By forming the product, the compatibility between the copolymer (A) and the rubbery polymer (C) is improved, and the impact resistance and appearance of the molded product obtained by molding the thermoplastic resin composition are improved. Can be made.
 本発明で用いる共重合体(A)に使用される(a1)反応性官能基(i)を有するビニル系単量体としては、後述するゴム質重合体(C)の反応性官能基と反応する官能基を有するビニル系単量体であれば、特に限定されない。(a1)成分における反応性官能基(i)としては、例えば、エポキシ基、アミノ基、水酸基等が挙げられる。特に衝撃強度をより向上させる面から、エポキシ基が好ましい。 As the vinyl monomer having a reactive functional group (i) used in the copolymer (A) used in the present invention, it reacts with a reactive functional group of a rubbery polymer (C) described later. If it is a vinyl-type monomer which has a functional group to do, it will not specifically limit. Examples of the reactive functional group (i) in the component (a1) include an epoxy group, an amino group, and a hydroxyl group. In particular, an epoxy group is preferable from the viewpoint of further improving the impact strength.
 (a1)反応性官能基(i)を有するビニル系単量体の例としては、例えば、エポキシ基を有するビニル系単量体として、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン-p-グリシジルエーテルおよびp-グリシジルスチレンなどが挙げられる。これらを2種以上用いてもよい。 (A1) Examples of vinyl monomers having a reactive functional group (i) include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and glycidyl itaconate as vinyl monomers having an epoxy group. Allyl glycidyl ether, styrene-p-glycidyl ether, p-glycidyl styrene, and the like. Two or more of these may be used.
 本発明で用いる共重合体(A)に使用される(a2)芳香族ビニル系単量体は、反応性官能基(i)およびシアノ基を有しない芳香族ビニル系単量体であれば特に限定されない。例えば、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、p-エチルスチレン、m-エチルスチレン、o-エチルスチレン、t-ブチルスチレンなどが挙げられる。これらを2種以上用いてもよい。特にスチレンが好ましく使用される。 The (a2) aromatic vinyl monomer used in the copolymer (A) used in the present invention is particularly an aromatic vinyl monomer having no reactive functional group (i) and cyano group. It is not limited. Examples thereof include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, t-butylstyrene and the like. Two or more of these may be used. In particular, styrene is preferably used.
 本発明で用いる共重合体(A)に使用される(a3)シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられる。これらを2種以上用いてもよい。特にアクリロニトリルが好ましく使用される。 Examples of the (a3) vinyl cyanide monomer used in the copolymer (A) used in the present invention include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like. Two or more of these may be used. In particular, acrylonitrile is preferably used.
 必要に応じて使用される(a1)成分、(a2)成分、(a3)成分と共重合可能な(a4)他のビニル系単量体としては、例えば、アクリル酸またはメタクリル酸のメチル、エチル、プロピル、n-ブチル、イソブチルエステル化物などの(メタ)アクリル酸エステル系単量体や、マレイミド、N-メチルマレイミドおよびN-フェニルマレイミドなどのマレイミド系単量体などが挙げられる。これらを2種以上用いてもよい。(メタ)アクリル酸エステル系単量体は、靭性および色調の向上を目的とする場合に好ましく用いられる。一方、マレイミド系単量体は、耐熱性および難燃性の向上を目的とする場合に好ましく用いられる。 (A4) Other vinyl monomers copolymerizable with the components (a1), (a2), and (a3) used as necessary include, for example, methyl or ethyl of acrylic acid or methacrylic acid (Meth) acrylic acid ester monomers such as propyl, n-butyl and isobutyl esterified compounds, and maleimide monomers such as maleimide, N-methylmaleimide and N-phenylmaleimide. Two or more of these may be used. A (meth) acrylic acid ester monomer is preferably used for the purpose of improving toughness and color tone. On the other hand, maleimide monomers are preferably used for the purpose of improving heat resistance and flame retardancy.
 本発明で用いる共重合体(A)を構成する各単量体(a1)~(a4)の合計100質量%中、(a1)反応性官能基(i)を有するビニル系単量体の配合量は0.01~20質量%が好ましい。(a1)成分の配合量を0.01質量%以上とすることにより、共重合体(A)と後述するゴム質重合体(C)との反応をより効果的に進め、得られる成形品の耐衝撃性と外観をより向上させることができる。この量は0.1質量%以上がより好ましい。一方、(a1)成分の配合量を20質量%以下とすることにより、流動性を高め、成形加工性を向上させることができる。さらにはその量が15質量%以下であることがより好ましい。(a2)芳香族ビニル系単量体の配合量は、5~98.99質量%が好ましい。(a2)成分の配合量を5質量%以上とすることにより、成形加工性と成形品の剛性をより向上させることができる。その量は20質量%以上がより好ましい。一方、(a2)成分の配合量を98.99質量%以下とすることにより、成形品の耐熱性を向上させることができる。その量は90質量%以下がより好ましい。(a3)シアン化ビニル系単量体の配合量は、1~60質量%が好ましい。(a3)成分の配合量を1質量%以上とすることにより、成形品の剛性と耐熱性をより向上させることができる。一方、(a3)成分の配合量を60質量%以下とすることにより、成形加工性と成形品の剛性をより向上させることができる。また、共重合体(A)とゴム質重合体(C)との相溶性が向上し、熱可塑性樹脂組成物を成形して得られる成形品の耐衝撃性と外観をより向上させることができる。その量は45質量%以下がより好ましい。さらに(a4)他のビニル系単量体を共重合する場合には、(a4)成分の配合量は90質量%以下が好ましい。(a4)成分の配合量を90質量%以下とすることにより、成形加工性、成形品の剛性をより向上させることができる。その量は79質量%以下がより好ましい。 Blending of (a1) a vinyl monomer having a reactive functional group (i) in a total of 100% by mass of the monomers (a1) to (a4) constituting the copolymer (A) used in the present invention The amount is preferably 0.01 to 20% by mass. (A1) By making the compounding quantity of a component 0.01 mass% or more, reaction of a copolymer (A) and the rubbery polymer (C) mentioned later can be advanced more effectively, and the molded article obtained Impact resistance and appearance can be further improved. This amount is more preferably 0.1% by mass or more. On the other hand, when the blending amount of the component (a1) is 20% by mass or less, the fluidity can be improved and the molding processability can be improved. Further, the amount is more preferably 15% by mass or less. The blending amount of the (a2) aromatic vinyl monomer is preferably 5 to 99.99% by mass. By setting the blending amount of the component (a2) to 5% by mass or more, the moldability and the rigidity of the molded product can be further improved. The amount is more preferably 20% by mass or more. On the other hand, the heat resistance of a molded article can be improved by making the compounding quantity of (a2) component into 99.99 mass% or less. The amount is more preferably 90% by mass or less. The blending amount of the (a3) vinyl cyanide monomer is preferably 1 to 60% by mass. By setting the blending amount of the component (a3) to 1% by mass or more, the rigidity and heat resistance of the molded product can be further improved. On the other hand, when the blending amount of the component (a3) is 60% by mass or less, the moldability and the rigidity of the molded product can be further improved. In addition, the compatibility between the copolymer (A) and the rubbery polymer (C) is improved, and the impact resistance and appearance of a molded product obtained by molding the thermoplastic resin composition can be further improved. . The amount is more preferably 45% by mass or less. Further, when (a4) another vinyl monomer is copolymerized, the amount of the component (a4) is preferably 90% by mass or less. (A4) By making the compounding quantity of a component into 90 mass% or less, moldability and the rigidity of a molded product can be improved more. The amount is more preferably 79% by mass or less.
 本発明で用いる共重合体(A)の重量平均分子量は、1万以上30万以下が好ましい。共重合体(A)の重量平均分子量を1万以上とすることにより、成形品の耐衝撃性と剛性をより向上させることができる。その分子量は3万以上がより好ましく、5万以上が最も好ましい。一方、共重合体(A)の重量平均分子量を30万以下とすることにより、成形加工性を向上させ、また、光沢ムラを低減させることができる。分子量は25万以下がより好ましく、20万以下が最も好ましい。(A)の重量平均分子量が低いほどグラフト鎖が短くなることで、成形時に(C)の分子が引き伸ばされにくくなり、光沢ムラを低減することができるものと考える。なお、共重合体(A)の重量平均分子量とは、ヘキサフルオロイソプロパノール(HFIP)溶液を用いて、ゲルパーミエーションクロマトグラフ測定により得られる、ポリスチレン換算値を言う。共重合体(A)が複数種配合される場合、複数の共重合体(A)全体の重量平均分子量が上記範囲内にあることが好ましい。 The weight average molecular weight of the copolymer (A) used in the present invention is preferably 10,000 or more and 300,000 or less. By making the weight average molecular weight of the copolymer (A) 10,000 or more, the impact resistance and rigidity of the molded product can be further improved. The molecular weight is more preferably 30,000 or more, and most preferably 50,000 or more. On the other hand, when the weight average molecular weight of the copolymer (A) is 300,000 or less, molding processability can be improved and gloss unevenness can be reduced. The molecular weight is more preferably 250,000 or less, and most preferably 200,000 or less. It is considered that the lower the weight average molecular weight of (A), the shorter the graft chain, the more difficult it is for the molecules of (C) to be stretched during molding, and the reduction in gloss unevenness. In addition, the weight average molecular weight of a copolymer (A) means the polystyrene conversion value obtained by a gel permeation chromatograph measurement using a hexafluoro isopropanol (HFIP) solution. When multiple types of copolymer (A) are mix | blended, it is preferable that the weight average molecular weight of the whole some copolymer (A) exists in the said range.
 本発明で用いる共重合体(A)の製造法には特に制限がなく、例えば、前記(a1)成分、(a2)成分、(a3)成分および必要により(a4)成分を原料として、塊状重合法、懸濁重合法、乳化重合法、溶液重合法、塊状-懸濁重合法および溶液-塊状重合法などの公知の重合法を用いて重合することにより得ることができる。 There are no particular restrictions on the method for producing the copolymer (A) used in the present invention. For example, the above-mentioned component (a1), component (a2), component (a3), and if necessary, using the component (a4) as a raw material, It can be obtained by polymerization using a known polymerization method such as a combination method, suspension polymerization method, emulsion polymerization method, solution polymerization method, bulk-suspension polymerization method and solution-bulk polymerization method.
 <共重合体(B)>
 本発明の熱可塑性樹脂組成物は、必要に応じて、(b1)芳香族ビニル系単量体と(b2)シアン化ビニル系単量体との共重合体(以下「共重合体(B)」と記載する場合がある)を配合して得ることができる。共重合体(B)を配合することにより、成形加工性と成形品の剛性を向上させることができる。共重合体(B)は、(b1)芳香族ビニル系単量体および(b2)シアン化ビニル系単量体を共重合した重合体であればよく、これらと共重合可能な(b3)他のビニル系単量体をさらに共重合したものであってもよい。
<Copolymer (B)>
If necessary, the thermoplastic resin composition of the present invention comprises a copolymer of (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer (hereinafter referred to as “copolymer (B)”). In some cases). By blending the copolymer (B), the moldability and the rigidity of the molded product can be improved. The copolymer (B) may be a polymer obtained by copolymerizing (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer, and (b3) other copolymerizable with these. Further, a vinyl monomer may be copolymerized.
 (b1)芳香族ビニル系単量体としては、反応性官能基を有しない芳香族ビニル系単量体であれば特に限定されない。例えば、先に(a2)として例示した単量体などが挙げられる。それらを2種以上用いてもよい。特にスチレンが好ましく使用される。 (B1) The aromatic vinyl monomer is not particularly limited as long as it is an aromatic vinyl monomer having no reactive functional group. For example, the monomer etc. which were illustrated previously as (a2) are mentioned. Two or more of them may be used. In particular, styrene is preferably used.
 (b2)シアン化ビニル系単量体としては、例えば、先に(a3)として例示した単量体などが挙げられる。それらを2種以上用いてもよい。特にアクリロニトリルが好ましく使用される。 (B2) Examples of the vinyl cyanide monomer include the monomers exemplified above as (a3). Two or more of them may be used. In particular, acrylonitrile is preferably used.
 また、必要に応じて使用される(b1)成分、(b2)成分と共重合可能な(b3)他のビニル系単量体としては、例えば、先に(a4)として例示した単量体などが挙げられる。それらを2種以上用いてもよい。(メタ)アクリル酸エステル系単量体は、靭性および色調の向上を目的とする場合に好ましく用いられる。一方、マレイミド系単量体は、耐熱性および難燃性の向上を目的とする場合に好ましく用いられる。 In addition, as the other vinyl-based monomer (b3) copolymerizable with the component (b1) and the component (b2) used as necessary, for example, the monomer previously exemplified as (a4), etc. Is mentioned. Two or more of them may be used. A (meth) acrylic acid ester monomer is preferably used for the purpose of improving toughness and color tone. On the other hand, maleimide monomers are preferably used for the purpose of improving heat resistance and flame retardancy.
 本発明で用いる共重合体(B)を構成する各単量体(b1)~(b3)の合計100質量%中、(b1)芳香族ビニル系単量体の配合量は5~99質量%が好ましい。(b1)成分の配合量を5質量%以上とすることにより、成形加工性と成形品の剛性をより向上させることができる。その量は20質量%以上がより好ましい。一方、(b1)成分の配合量を99質量%以下とすることにより、成形品の耐熱性を向上させることができ、さらには90質量%以下がより好ましい。(b2)シアン化ビニル系単量体の配合量は、1~60質量%が好ましい。(b2)成分の配合量を1質量%以上とすることにより、成形品の耐熱性を向上させることができる。一方、(b2)成分の配合量を60質量%以下とすることにより、成形加工性を向上させることができる。その量は45質量%以下がより好ましい。さらに(b3)他のビニル系単量体を共重合する場合には、(b3)成分の配合量は90質量%以下が好ましい。(b3)成分の配合量を90質量%以下とすることにより、成形加工性、成形品の剛性および耐熱性を向上させることができ、さらには79質量%以下がより好ましい。 Of the total 100% by mass of each of the monomers (b1) to (b3) constituting the copolymer (B) used in the present invention, the blending amount of the (b1) aromatic vinyl monomer is 5 to 99% by mass. Is preferred. By setting the blending amount of the component (b1) to 5% by mass or more, the moldability and the rigidity of the molded product can be further improved. The amount is more preferably 20% by mass or more. On the other hand, the heat resistance of a molded product can be improved by making the compounding quantity of (b1) component into 99 mass% or less, and also 90 mass% or less is more preferable. (B2) The amount of the vinyl cyanide monomer is preferably 1 to 60% by mass. By setting the blending amount of the component (b2) to 1% by mass or more, the heat resistance of the molded product can be improved. On the other hand, when the blending amount of the component (b2) is 60% by mass or less, molding processability can be improved. The amount is more preferably 45% by mass or less. Further, when (b3) another vinyl monomer is copolymerized, the blending amount of the component (b3) is preferably 90% by mass or less. By adjusting the blending amount of the component (b3) to 90% by mass or less, molding processability, rigidity of the molded product and heat resistance can be improved, and 79% by mass or less is more preferable.
 本発明で用いる共重合体(B)の重量平均分子量は、10万以上30万以下が好ましい。共重合体(B)の重量平均分子量を10万以上とすることにより、成形品の耐衝撃性と剛性をより向上させることができる。一方、共重合体(B)の重量平均分子量を30万以下とすることにより、成形加工性を向上させることができる。分子量としては25万以下がより好ましく、20万以下が最も好ましい。なお、共重合体(B)の重量平均分子量とは、ヘキサフルオロイソプロパノール(HFIP)溶液を用いて、ゲルパーミエーションクロマトグラフ測定により得られる、ポリスチレン換算値を言う。共重合体(B)を複数種配合する場合、複数の共重合体(B)全体の重量平均分子量が上記範囲内にあることが好ましい。 The weight average molecular weight of the copolymer (B) used in the present invention is preferably from 100,000 to 300,000. By setting the weight average molecular weight of the copolymer (B) to 100,000 or more, the impact resistance and rigidity of the molded product can be further improved. On the other hand, moldability can be improved by making the weight average molecular weight of a copolymer (B) into 300,000 or less. The molecular weight is more preferably 250,000 or less, and most preferably 200,000 or less. In addition, the weight average molecular weight of a copolymer (B) means the polystyrene conversion value obtained by a gel permeation chromatograph measurement using a hexafluoroisopropanol (HFIP) solution. When blending a plurality of types of copolymers (B), it is preferable that the weight average molecular weight of the whole of the plurality of copolymers (B) is within the above range.
 本発明で用いる共重合体(B)の製造法には特に制限がなく、前記(b1)成分、(b2)成分および必要により(b3)成分を、塊状重合法、懸濁重合法、乳化重合法、溶液重合法、塊状-懸濁重合法および溶液-塊状重合法など公知の重合法を用いて重合することにより得ることができる。 The method for producing the copolymer (B) used in the present invention is not particularly limited, and the component (b1), the component (b2) and, if necessary, the component (b3) are mixed into a bulk polymerization method, a suspension polymerization method, an emulsion weight. It can be obtained by polymerization using a known polymerization method such as a combination method, a solution polymerization method, a bulk-suspension polymerization method and a solution-bulk polymerization method.
 <ゴム質重合体(C)>
 本発明の熱可塑性樹脂組成物は、ゴム質重合体(C)を配合して得ることができる。ゴム質重合体(C)を配合することで、成形品の耐衝撃性を向上させることができる。
<Rubber polymer (C)>
The thermoplastic resin composition of the present invention can be obtained by blending the rubber polymer (C). By blending the rubber polymer (C), the impact resistance of the molded product can be improved.
 本発明で用いるゴム質重合体(C)を構成するゴム成分としては、エチレンを重合成分とする重合体であればよく、必要に応じて他の不飽和単量体との共重合体であってもよい。例えば、エチレン重合体、エチレン/α-オレフィン共重合体が挙げられる。ここで、「/」は共重合体を示す。エチレン/α-オレフィン共重合体としては、エチレンと炭素数3~12のα-オレフィンとの共重合体が好ましく、例えば、エチレン/プロピレン共重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、エチレン/オクテン共重合体などが挙げられる。これらを2種以上配合してもよい。ゴム質重合体(C)の反応性官能基(ii)としては、上で説明した反応性官能基(i)と反応するものが好ましい。例えば、カルボキシル基や酸無水物基などが挙げられる。反応性官能基を2種以上有してもよい。本発明においては、酸無水物基がより好ましい。 The rubber component constituting the rubbery polymer (C) used in the present invention may be a polymer containing ethylene as a polymerization component, and may be a copolymer with another unsaturated monomer as necessary. May be. Examples thereof include an ethylene polymer and an ethylene / α-olefin copolymer. Here, “/” indicates a copolymer. The ethylene / α-olefin copolymer is preferably a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms, such as an ethylene / propylene copolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer. Examples thereof include a polymer and an ethylene / octene copolymer. Two or more of these may be blended. As the reactive functional group (ii) of the rubber polymer (C), those reactive with the reactive functional group (i) described above are preferable. Examples thereof include a carboxyl group and an acid anhydride group. You may have 2 or more types of reactive functional groups. In the present invention, an acid anhydride group is more preferable.
 例えば、反応性官能基(ii)として酸無水物基を有するエチレン系ゴム質重合体(C)を得たい場合、エチレン/α-オレフィン共重合体などの前述のゴム成分に、酸無水物と過酸化物を反応させることにより製造することができる。また、例えば、反応性官能基としてカルボキシル基を有するエチレン系ゴム質重合体(C)を得たい場合、前述のゴム成分と不飽和カルボン酸を共重合することにより製造することができる。酸無水物としては、例えば、無水マレイン酸、無水1,2-ジメチルマレイン酸、無水エチルマレイン酸、無水イタコン酸、無水フェニルマレイン酸、無水シトラコン酸などが挙げられ、特に無水マレイン酸が好ましく使用される。不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸などが挙げられる。 For example, when it is desired to obtain an ethylene-based rubbery polymer (C) having an acid anhydride group as the reactive functional group (ii), an acid anhydride and an acid anhydride are added to the rubber component such as an ethylene / α-olefin copolymer. It can be produced by reacting a peroxide. For example, when it is desired to obtain an ethylene-based rubbery polymer (C) having a carboxyl group as a reactive functional group, it can be produced by copolymerizing the aforementioned rubber component and an unsaturated carboxylic acid. Examples of the acid anhydride include maleic anhydride, 1,2-dimethylmaleic anhydride, ethylmaleic anhydride, itaconic anhydride, phenylmaleic anhydride, citraconic anhydride, and maleic anhydride is preferably used. Is done. Examples of the unsaturated carboxylic acid include acrylic acid and methacrylic acid.
 また、酸無水物基を有するエチレン系ゴム質重合体は、市販品を用いることができる。市販品としては、例えば、三井化学株式会社製無水マレイン酸変性エチレン-ブテン共重合体(“タフマー”(登録商標)MH7020、MH5040)などが挙げられる。 Moreover, a commercially available product can be used as the ethylene-based rubbery polymer having an acid anhydride group. Examples of commercially available products include maleic anhydride-modified ethylene-butene copolymers (“Tuffmer” (registered trademark) MH7020, MH5040) manufactured by Mitsui Chemicals, Inc.
 本発明で用いるゴム質重合体(C)の反応性官能基(ii)による変性量は、色調向上および各種物性のバランスの面からゴム質重合体(C)全体の0.1~10質量%が好ましい。例えば、反応性官能基(ii)として酸無水物基を有するゴム質重合体(C)の場合、ゴム質重合体(C)の酸変性量は、ゴム質重合体(C)をキシレンにより130℃で溶解した溶液から、滴定液として水酸化カリウムの0.02mol/Lエタノール溶液(アルドリッチ製)を用い、指示薬としてフェノールフタレインの1%エタノール溶液を用いて、測定することができる。 The amount of modification by the reactive functional group (ii) of the rubbery polymer (C) used in the present invention is 0.1 to 10% by mass of the whole rubbery polymer (C) from the viewpoint of improving the color tone and balancing various physical properties. Is preferred. For example, in the case of the rubbery polymer (C) having an acid anhydride group as the reactive functional group (ii), the amount of acid modification of the rubbery polymer (C) is 130 with the xylene of the rubbery polymer (C). It can be measured from a solution dissolved at 0 ° C. using a 0.02 mol / L ethanol solution (manufactured by Aldrich) of potassium hydroxide as a titrant and a 1% ethanol solution of phenolphthalein as an indicator.
 本発明で用いるゴム質重合体(C)のガラス転移温度は、-10℃以下が好ましく、-30℃以下がより好ましく、-45℃以下がさらに好ましい。ゴム質重合体(C)のガラス転移温度が-10℃以下であれば、成形品の耐衝撃性をより向上させることができる。なお、本発明において、ゴム質重合体(C)のガラス転移温度は、DSC測定(示差走査熱量測定)により求めることができる。DSC測定は、示差走査熱量計(DSCQ200(TAInstruments社製))を用いて行うことができる。測定条件は試料10mg、窒素雰囲気下、-80℃から150℃まで昇温速度5℃/分で温度変調振幅±1℃、温度変調周期60秒で昇温する条件とする。 The glass transition temperature of the rubbery polymer (C) used in the present invention is preferably −10 ° C. or lower, more preferably −30 ° C. or lower, and further preferably −45 ° C. or lower. If the glass transition temperature of the rubber polymer (C) is −10 ° C. or lower, the impact resistance of the molded product can be further improved. In the present invention, the glass transition temperature of the rubbery polymer (C) can be determined by DSC measurement (differential scanning calorimetry). The DSC measurement can be performed using a differential scanning calorimeter (DSCQ200 (manufactured by TA Instruments)). The measurement conditions are as follows: 10 mg of sample, under a nitrogen atmosphere, the temperature is increased from −80 ° C. to 150 ° C. at a temperature increase rate of 5 ° C./min with a temperature modulation amplitude of ± 1 ° C. and a temperature modulation period of 60 seconds.
 <ゴム質重合体(D)>
 本発明の熱可塑性樹脂組成物は、必要に応じて、(D)エチレン系ゴム質重合体(以下「ゴム質重合体(D)」と記載する場合がある)を配合して得ることができる。ゴム質重合体(D)を配合することで、成形品の耐衝撃性をより向上させることができる。
<Rubber polymer (D)>
The thermoplastic resin composition of the present invention can be obtained by blending (D) an ethylene rubber polymer (hereinafter sometimes referred to as “rubber polymer (D)”), if necessary. . By blending the rubber polymer (D), the impact resistance of the molded product can be further improved.
 本発明で用いるゴム質重合体(D)としては、エチレンと炭素数3~12のα-オレフィンとの共重合体が好ましく、例えば、エチレン/α-オレフィン共重合体、エチレン/プロピレン共重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、エチレン/オクテン共重合体などが挙げられる。これらを2種以上配合してもよい。 The rubbery polymer (D) used in the present invention is preferably a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms, such as an ethylene / α-olefin copolymer or an ethylene / propylene copolymer. Ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / octene copolymer, and the like. Two or more of these may be blended.
 本発明で用いるゴム質重合体(D)のガラス転移温度は、-10℃以下が好ましく、-30℃以下がより好ましく、-45℃以下がさらに好ましい。ゴム質重合体(D)のガラス転移温度が-10℃以下であれば、成形品の耐衝撃性をより向上させることができる。なお、本発明において、ゴム質重合体(D)のガラス転移温度は、DSC測定(示差走査熱量測定)により求めることができる。DSC測定は、示差走査熱量計(DSCQ200(TAInstruments社製))を用いて行うことができる。測定条件は試料10mg、窒素雰囲気下、-80℃から150℃まで昇温速度5℃/分で温度変調振幅±1℃、温度変調周期60秒で昇温する条件とする。 The glass transition temperature of the rubbery polymer (D) used in the present invention is preferably −10 ° C. or lower, more preferably −30 ° C. or lower, and further preferably −45 ° C. or lower. If the glass transition temperature of the rubbery polymer (D) is −10 ° C. or less, the impact resistance of the molded product can be further improved. In the present invention, the glass transition temperature of the rubber polymer (D) can be determined by DSC measurement (differential scanning calorimetry). The DSC measurement can be performed using a differential scanning calorimeter (DSCQ200 (manufactured by TA Instruments)). The measurement conditions are as follows: 10 mg of sample, under a nitrogen atmosphere, the temperature is increased from −80 ° C. to 150 ° C. at a temperature increase rate of 5 ° C./min with a temperature modulation amplitude of ± 1 ° C. and a temperature modulation period of 60 seconds.
 本発明の熱可塑性樹脂組成物における各成分の配合量は、(A)~(D)の合計100質量部に対して、共重合体(A)0.1~95質量部、共重合体(B)0~94.9質量部、ゴム質重合体(C)5~40質量部、ゴム質重合体(D)0~35質量部である。共重合体(A)の配合量が0.1質量部未満であると、共重合体(A)とゴム質重合体(C)とのグラフト物が生成しにくく、共重合体(A)とゴム質重合体(C)との相溶性の向上効果が得られないことから、成形品の耐衝撃性と外観が低下する傾向がある。共重合体(A)の配合量は1質量部以上が好ましい。一方、共重合体(A)の配合量が95質量部を超えると、相対的にゴム質重合体(C)の配合量が低くなるため、成形品の耐衝撃性が低下する傾向がある。共重合体(A)の配合量は90質量部以下が好ましい。また、共重合体(B)の配合量が94.9質量部を超えると、相対的に共重合体(A)およびゴム質重合体(C)の配合量が低くなるため、成形品の耐衝撃性が低下する傾向がある。また、ゴム質重合体(C)の配合量が5質量部未満であると、共重合体(A)とゴム質重合体(C)とのグラフト物が生成しにくく、成形品の耐衝撃性が低下する。ゴム質重合体(C)の配合量は10質量部以上が好ましい。一方、ゴム質重合体(C)の配合量が40質量部を超えると、成形加工性と成形品の剛性が低下する傾向がある。ゴム質重合体(C)の配合量は30質量部以下が好ましく、20質量部以下がさらに好ましい。また、共重合体(D)の配合量が35質量部を超えると、相対的に共重合体(A)とゴム質重合体(C)の配合量が低くなるため、成形品の耐衝撃性が低下する傾向がある。共重合体(D)の配合量は20質量部以下が好ましい。 The amount of each component in the thermoplastic resin composition of the present invention is 0.1 to 95 parts by weight of the copolymer (A) to 100 parts by weight of the total of (A) to (D). B) 0 to 94.9 parts by mass, rubbery polymer (C) 5 to 40 parts by mass, and rubbery polymer (D) 0 to 35 parts by mass. When the blending amount of the copolymer (A) is less than 0.1 parts by mass, a graft product of the copolymer (A) and the rubbery polymer (C) is hardly formed, and the copolymer (A) and Since the effect of improving the compatibility with the rubber polymer (C) cannot be obtained, the impact resistance and appearance of the molded product tend to be lowered. The blending amount of the copolymer (A) is preferably 1 part by mass or more. On the other hand, when the blending amount of the copolymer (A) exceeds 95 parts by mass, the blending amount of the rubbery polymer (C) becomes relatively low, and the impact resistance of the molded product tends to be lowered. The blending amount of the copolymer (A) is preferably 90 parts by mass or less. Further, when the blending amount of the copolymer (B) exceeds 94.9 parts by mass, the blending amounts of the copolymer (A) and the rubber-like polymer (C) are relatively low, so There is a tendency for impact properties to decrease. Further, when the blending amount of the rubbery polymer (C) is less than 5 parts by mass, a graft product of the copolymer (A) and the rubbery polymer (C) is difficult to be generated, and the impact resistance of the molded product. Decreases. The amount of the rubber polymer (C) is preferably 10 parts by mass or more. On the other hand, when the blending amount of the rubber polymer (C) exceeds 40 parts by mass, the moldability and the rigidity of the molded product tend to decrease. The amount of the rubber polymer (C) is preferably 30 parts by mass or less, and more preferably 20 parts by mass or less. Further, if the blending amount of the copolymer (D) exceeds 35 parts by mass, the blending amount of the copolymer (A) and the rubbery polymer (C) becomes relatively low, so that the impact resistance of the molded product. Tends to decrease. The blending amount of the copolymer (D) is preferably 20 parts by mass or less.
 <過酸化物(E)>
 本発明の熱可塑性樹脂組成物は、必要に応じて、(E)過酸化物(以下「過酸化物(E)」と記載する場合がある)を配合して得ることができる。過酸化物(E)が、共重合体(A)とゴム質重合体(C)との反応を促進させ、成形品の耐衝撃性をより向上させることができる。過酸化物としては、例えば、ベンゾイルパーオキシド、ジクミルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、クメンハイドロパーオキシド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキシン-3などを挙げることができる。また、過酸化物(E)は市販品を用いることができる。市販品としては、例えば、日油株式会社製(“パーヘキサ”(登録商標)25B)などが挙げられる。これらを2種以上配合してもよい。
<Peroxide (E)>
The thermoplastic resin composition of the present invention can be obtained by blending (E) peroxide (hereinafter sometimes referred to as “peroxide (E)”) as necessary. The peroxide (E) can promote the reaction between the copolymer (A) and the rubbery polymer (C), and can further improve the impact resistance of the molded product. Examples of the peroxide include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, cumene hydroperoxide, 2,5-dimethyl-2,5-di-t. -Butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, and the like. A commercially available product can be used as the peroxide (E). As a commercial item, the NOF Corporation make ("Perhexa" (trademark) 25B) etc. are mentioned, for example. Two or more of these may be blended.
 本発明の熱可塑性樹脂組成物における過酸化物(E)の配合量は、(A)~(D)の合計100質量部に対して、0.1~1質量部が好ましい。共重合体(E)の配合量を0.1質量部以上とすることにより、成形品の耐衝撃性をより向上させることができる。一方、過酸化物(E)の配合量を1質量部以下とすることにより、ゲル化などの副反応を抑制できる。
<エチレン系重合体(F)>
 本発明の熱可塑性樹脂組成物は、必要に応じて、(F)エチレン系重合体(以下「エチレン系重合体(F)」と記載する場合がある)を配合して得ることができる。エチレン系重合体(F)を配合することで、成形品の耐衝撃性および光沢をより向上させることができる。
The blending amount of the peroxide (E) in the thermoplastic resin composition of the present invention is preferably 0.1 to 1 part by mass with respect to 100 parts by mass in total of (A) to (D). By setting the blending amount of the copolymer (E) to 0.1 parts by mass or more, the impact resistance of the molded product can be further improved. On the other hand, by setting the blending amount of the peroxide (E) to 1 part by mass or less, side reactions such as gelation can be suppressed.
<Ethylene polymer (F)>
The thermoplastic resin composition of the present invention can be obtained by blending (F) an ethylene polymer (hereinafter sometimes referred to as “ethylene polymer (F)”) as necessary. By blending the ethylene polymer (F), the impact resistance and gloss of the molded product can be further improved.
 本発明で用いるエチレン系重合体(F)を構成する成分としては、エチレンを単量体成分とし、反応性官能基(i)と反応する官能基を有する重合体であればよく、必要に応じて他の不飽和単量体との共重合体であってもよい。例えば、エチレン重合体、エチレン/α-オレフィン共重合体が挙げられる。ここで、「/」は共重合体を示す。エチレン/α-オレフィン共重合体としては、エチレンと炭素数3~12のα-オレフィンとの共重合体が好ましく、例えば、エチレン/プロピレン共重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、エチレン/オクテン共重合体などが挙げられる。これらを2種以上配合してもよい。エチレン系重合体(F)の反応性官能基としては、上で説明した反応性官能基(i)と反応するものが好ましい。例えば、カルボキシル基や酸無水物基などが挙げられる。反応性官能基を2種以上有してもよい。本発明においては、酸無水物基が好ましい。 The component constituting the ethylene polymer (F) used in the present invention may be any polymer having a functional group that reacts with the reactive functional group (i) using ethylene as a monomer component. It may be a copolymer with other unsaturated monomers. Examples thereof include an ethylene polymer and an ethylene / α-olefin copolymer. Here, “/” indicates a copolymer. The ethylene / α-olefin copolymer is preferably a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms, such as an ethylene / propylene copolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer. Examples thereof include a polymer and an ethylene / octene copolymer. Two or more of these may be blended. As the reactive functional group of the ethylene polymer (F), those reactive with the reactive functional group (i) described above are preferable. Examples thereof include a carboxyl group and an acid anhydride group. You may have 2 or more types of reactive functional groups. In the present invention, an acid anhydride group is preferred.
 また、酸無水物基を有するエチレン系重合体は、市販品を用いることができる。市販品としては、例えば、三井化学株式会社製酸変性エチレン系重合体(“ハイワックス”(登録商標)1105A、2203A)などが挙げられる。 Also, commercially available products can be used as the ethylene polymer having an acid anhydride group. Examples of commercially available products include acid-modified ethylene polymers (“High Wax” (registered trademark) 1105A, 2203A) manufactured by Mitsui Chemicals, Inc.
 本発明で用いるエチレン系重合体(F)の重量平均分子量は、500以上3万以下が好ましい。共重合体(A)の重量平均分子量を500以上とすることにより、成形品の耐衝撃性と剛性をより向上させることができる。その分子量は700以上がより好ましく、1000以上が最も好ましい。一方、エチレン系重合体(F)の重量平均分子量を3万以下とすることにより、ゴム質重合体(C)との相溶性が向上し、光沢ムラを低減させることができる。分子量は2万以下がより好ましく、1万以下が最も好ましい。 The weight average molecular weight of the ethylene polymer (F) used in the present invention is preferably 500 or more and 30,000 or less. By setting the weight average molecular weight of the copolymer (A) to 500 or more, the impact resistance and rigidity of the molded product can be further improved. The molecular weight is more preferably 700 or more, and most preferably 1000 or more. On the other hand, by setting the weight average molecular weight of the ethylene polymer (F) to 30,000 or less, compatibility with the rubber polymer (C) is improved, and uneven gloss can be reduced. The molecular weight is more preferably 20,000 or less, and most preferably 10,000 or less.
 本発明の熱可塑性樹脂組成物におけるエチレン系重合体(F)の配合量は、(A)~(D)および(F)の合計100質量部に対して、0.1~10質量部が好ましい。エチレン系重合体(F)の配合量を0.1質量部以上とすることにより、成形品の耐衝撃性をより向上させることができる。一方、エチレン系重合体(F)の配合量を10質量部以下とすることにより、成形品の耐衝撃性低下を抑制できる。 The blending amount of the ethylene polymer (F) in the thermoplastic resin composition of the present invention is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of (A) to (D) and (F). . By setting the blending amount of the ethylene polymer (F) to 0.1 parts by mass or more, the impact resistance of the molded product can be further improved. On the other hand, the impact resistance fall of a molded article can be suppressed by making the compounding quantity of an ethylene-type polymer (F) into 10 mass parts or less.
 本発明の熱可塑性樹脂組成物は、本発明の効果を損なわない範囲で、さらに、難燃剤、充填材、他の熱可塑性樹脂、熱硬化性樹脂、軟質熱可塑性樹脂、各種添加剤または改質剤を配合して、得てもよい。 The thermoplastic resin composition of the present invention is within the range that does not impair the effects of the present invention, and further, flame retardant, filler, other thermoplastic resin, thermosetting resin, soft thermoplastic resin, various additives or modifications You may obtain by mix | blending an agent.
 本発明の熱可塑性樹脂組成物に難燃剤を配合することにより、難燃性を向上させることができる。難燃剤には特に制限はなく、いわゆる一般の難燃剤配合することができる。例えば、リン系化合物、ハロゲン系有機化合物、メラミン等の窒素含有有機化合物、水酸化マグネシウム、水酸化アルミニウム等の無機化合物、ポリオルガノシロキサン系化合物、酸化ヒ素、酸化アンチモン、酸化ビスマス、酸化鉄、酸化亜鉛、酸化スズなどの金属酸化物、シリカなどが挙げられる。これらを2種以上配合してもよい。リン系化合物、ハロゲン系有機化合物が好ましく、特に好ましくはリン系化合物である。 Flame retardancy can be improved by blending a flame retardant with the thermoplastic resin composition of the present invention. There is no restriction | limiting in particular in a flame retardant, So-called general flame retardant can be mix | blended. For example, phosphorus compounds, halogen organic compounds, nitrogen-containing organic compounds such as melamine, inorganic compounds such as magnesium hydroxide and aluminum hydroxide, polyorganosiloxane compounds, arsenic oxide, antimony oxide, bismuth oxide, iron oxide, oxidation Examples thereof include metal oxides such as zinc and tin oxide, and silica. Two or more of these may be blended. A phosphorus compound and a halogen organic compound are preferable, and a phosphorus compound is particularly preferable.
 上記リン系化合物としては、リンを含有する有機または無機化合物であれば特に制限はなく、例えば、ポリリン酸アンモニウム、ポリホスファゼン、ホスフェート、ホスホネート、ホスフィネートおよびホスフィンオキシドなどが挙げられる。中でも、芳香族ホスフェートが特に好ましく使用できる。 The phosphorus compound is not particularly limited as long as it is an organic or inorganic compound containing phosphorus, and examples thereof include ammonium polyphosphate, polyphosphazene, phosphate, phosphonate, phosphinate, and phosphine oxide. Of these, aromatic phosphates can be particularly preferably used.
 ハロゲン系有機化合物としては、例えば、ヘキサクロロペンタジエン、ヘキサブロモジフェニル、オクタブロモジフェニルオキシド、トリブロモフェノキシメタン、デカブロモジフェニル、デカブロモジフェニルオキシド、オクタブロモジフェニルオキシド、テトラブロモビスフェノールA、テトラブロモフタルイミド、ヒキサブロモブテン、トリクロロテトラブロモフェニル-トリフォスフェート、ヘキサブロモシクロドデカンやこれらを各種置換基で変性した化合物などが挙げられる。これらを2種以上配合してもよい。 Examples of the halogen-based organic compound include hexachloropentadiene, hexabromodiphenyl, octabromodiphenyl oxide, tribromophenoxymethane, decabromodiphenyl, decabromodiphenyl oxide, octabromodiphenyl oxide, tetrabromobisphenol A, tetrabromophthalimide, Examples include sabromobutene, trichlorotetrabromophenyl-triphosphate, hexabromocyclododecane, and compounds obtained by modifying these with various substituents. Two or more of these may be blended.
 難燃剤を配合する場合、一般に(A)成分、(B)成分、(C)成分、(D)成分の合計100質量部に対して、0.1~30質量部の範囲で用いられ、1~20質量部の範囲がより好ましい。難燃剤を0.1質量部以上配合することにより、難燃効果を発揮させることができ、30質量部以下配合することにより、成形品の機械強度と耐熱性を向上させることができる。 When a flame retardant is blended, it is generally used in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass in total of the components (A), (B), (C) and (D). A range of ˜20 parts by mass is more preferred. By blending 0.1 part by mass or more of the flame retardant, the flame retardant effect can be exhibited, and by blending 30 parts by mass or less, the mechanical strength and heat resistance of the molded product can be improved.
 本発明の熱可塑性樹脂組成物に充填材を配合することにより、成形品の強度および寸法安定性等を向上させることができる。充填材の形状は繊維状であっても非繊維状であってもよく、繊維状充填材と非繊維状充填材を組み合わせて用いてもよい。繊維状充填材としては、例えば、ガラス繊維、ガラスミルドファイバー、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられる。非繊維状充填材としては、例えば、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの金属炭酸塩、硫酸カルシウム、硫酸バリウムなどの金属硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの金属水酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素および炭化珪素などが挙げられる。これらは中空であってもよく、さらにはこれら充填材を2種以上配合することも可能である。また、これら充填材は、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で予備処理されたものでもよく、成形品の機械強度をより向上させることができる。 By blending a filler with the thermoplastic resin composition of the present invention, the strength and dimensional stability of the molded product can be improved. The shape of the filler may be fibrous or non-fibrous, or a combination of fibrous filler and non-fibrous filler may be used. Examples of the fibrous filler include glass fiber, glass milled fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, and stone powder. Examples thereof include fibers and metal fibers. Non-fibrous fillers include, for example, silicates such as wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate, alumina, silicon oxide, magnesium oxide, oxidation Metal oxides such as zirconium, titanium oxide and iron oxide, metal carbonates such as calcium carbonate, magnesium carbonate and dolomite, metal sulfates such as calcium sulfate and barium sulfate, magnesium hydroxide, calcium hydroxide and aluminum hydroxide Examples thereof include metal hydroxide, glass beads, ceramic beads, boron nitride and silicon carbide. These may be hollow, and two or more of these fillers may be blended. In addition, these fillers may be pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound to further improve the mechanical strength of the molded product. Can be made.
 充填材を配合する場合、その配合量は特に制限はないが、通常、(A)成分、(B)成分、(C)成分および(D)成分の合計100質量部に対して0.1~200質量部配合される。 When the filler is blended, the blending amount is not particularly limited, but usually 0.1 to 0.1 parts by mass with respect to a total of 100 parts by mass of the components (A), (B), (C) and (D). 200 parts by mass is blended.
 本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない範囲において、前記(A)~(D)成分以外の熱可塑性樹脂、熱硬化性樹脂、軟質熱可塑性樹脂を配合してもかまわない。熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、芳香族または脂肪族ポリカーボネート樹脂、ポリアリレート樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、芳香族または脂肪族ポリケトン樹脂、フッ素樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ビニルエステル系樹脂、ポリウレタン樹脂、酢酸セルロース樹脂、ポリビニルアルコール樹脂などが挙げられる。熱硬化性樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂などが挙げられる。軟質熱可塑性樹脂としては、例えば、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体などが挙げられる。 The thermoplastic resin composition of the present invention may be blended with a thermoplastic resin other than the components (A) to (D), a thermosetting resin, or a soft thermoplastic resin within a range not impairing the effects of the present invention. It doesn't matter. Examples of the thermoplastic resin include polyethylene resin, polypropylene resin, acrylic resin, polyamide resin, polyphenylene sulfide resin, polyether ether ketone resin, polyester resin, polysulfone resin, polyether sulfone resin, aromatic or aliphatic polycarbonate resin, poly Arylate resin, polyphenylene oxide resin, polyacetal resin, polyimide resin, polyetherimide resin, chlorinated polyethylene resin, chlorinated polypropylene resin, aromatic or aliphatic polyketone resin, fluorine resin, polyvinyl chloride resin, polyvinylidene chloride resin, Examples thereof include vinyl ester resins, polyurethane resins, cellulose acetate resins, and polyvinyl alcohol resins. Examples of the thermosetting resin include phenol resin, melamine resin, polyester resin, silicone resin, and epoxy resin. Examples of the soft thermoplastic resin include an ethylene / glycidyl methacrylate copolymer, a polyester elastomer, a polyamide elastomer, an ethylene / propylene terpolymer, and an ethylene / butene-1 copolymer.
 他の熱可塑性樹脂、熱硬化性樹脂または軟質熱可塑性樹脂を配合する場合、それらの合計配合量は、(A)成分、(B)成分、(C)成分および(D)成分の合計100質量部に対して、30質量部以下が好ましく、10質量部以下がより好ましい。 When other thermoplastic resins, thermosetting resins or soft thermoplastic resins are blended, the total blending amount is 100 masses of the total of (A) component, (B) component, (C) component and (D) component. 30 parts by mass or less is preferable with respect to parts, and 10 parts by mass or less is more preferable.
 本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない範囲において、各種添加剤を配合してもよい。添加剤としては、例えば、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン化合物などの可塑剤、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、ポリオレフィン系化合物、シリコーン系化合物、長鎖脂肪族エステル系化合物、長鎖脂肪族アミド系化合物などの離型剤、防食剤、着色防止剤、酸化防止剤、熱安定剤、ステアリン酸リチウム、ステアリン酸アルミニウムなどの滑剤、紫外線防止剤、着色剤、発泡剤などが挙げられる。 In the thermoplastic resin composition of the present invention, various additives may be blended as long as the effects of the present invention are not impaired. Examples of the additives include plasticizers such as polyalkylene oxide oligomer compounds, thioether compounds, ester compounds, and organic phosphorus compounds, crystal nucleating agents such as talc, kaolin, organic phosphorus compounds, polyether ether ketone, and polyolefins. Release agents such as compounds, silicone compounds, long chain aliphatic ester compounds, long chain aliphatic amide compounds, anticorrosives, anti-coloring agents, antioxidants, thermal stabilizers, lithium stearate, aluminum stearate, etc. And lubricants, UV inhibitors, colorants, foaming agents, and the like.
 <熱可塑性樹脂組成物>
 本発明の熱可塑性樹脂組成物は、動的粘弾性測定における貯蔵弾性率の立ち上がり温度が前記ゴム質重合体(C)のガラス転移温度+20℃以下であり、かつゴム質重合体(C)が平均粒子径0.6μm以下で分散していることを特徴とする。なお、ここでいうゴム質重合体(C)の分散粒子は、ゴム質重合体(C)と前述の重合体(A)とのグラフト物であってもよい。
<Thermoplastic resin composition>
In the thermoplastic resin composition of the present invention, the rising temperature of the storage elastic modulus in dynamic viscoelasticity measurement is the glass transition temperature of the rubbery polymer (C) + 20 ° C. or less, and the rubbery polymer (C) is Dispersed with an average particle diameter of 0.6 μm or less. The dispersed particles of the rubbery polymer (C) mentioned here may be a graft product of the rubbery polymer (C) and the polymer (A) described above.
 動的粘弾性測定における貯蔵弾性率の立ち上がり温度は、熱可塑性樹脂組成物におけるゴム質重合体(C)の柔軟性を表す指標である。ゴム質重合体(C)は、前述の重合体(A)との反応によりグラフト物を生成するなどの変化に伴い、本来ゴム質重合体(C)の有する特性が失われやすい傾向にある。本発明においては、熱可塑性樹脂組成物において、ゴム質重合体(C)本来の特性を示す指標として、貯蔵弾性率の立ち上がり温度に着目し、これがゴム質重合体(C)のガラス転移温度+20℃以下であることを特徴とする。貯蔵弾性率の立ち上がり温度がゴム質重合体(C)のガラス転移温度に近いほど、熱可塑性樹脂組成物中において、ゴム質重合体(C)が本来有する特性(柔軟性)が保たれていることを示す。貯蔵弾性率の立ち上がり温度がゴム質重合体(C)のガラス転移温度+20℃よりも高い場合、ゴム質重合体(C)の柔軟性が損なわれ、成形品の耐衝撃性が低下する。貯蔵弾性率の立ち上がり温度はゴム質重合体(C)のガラス転移温度+15℃以下が好ましい。 The rising temperature of the storage elastic modulus in the dynamic viscoelasticity measurement is an index representing the flexibility of the rubber polymer (C) in the thermoplastic resin composition. The rubbery polymer (C) tends to lose its inherent properties of the rubbery polymer (C) with changes such as the formation of a graft product by reaction with the polymer (A) described above. In the present invention, in the thermoplastic resin composition, attention is paid to the rising temperature of the storage elastic modulus as an index indicating the original characteristics of the rubber polymer (C), and this is the glass transition temperature of the rubber polymer (C) +20. It is characterized by being below ℃. As the rise temperature of the storage elastic modulus is closer to the glass transition temperature of the rubber polymer (C), the inherent property (flexibility) of the rubber polymer (C) is maintained in the thermoplastic resin composition. It shows that. When the rising temperature of the storage elastic modulus is higher than the glass transition temperature of the rubbery polymer (C) + 20 ° C., the flexibility of the rubbery polymer (C) is impaired, and the impact resistance of the molded product is lowered. The rising temperature of the storage elastic modulus is preferably the glass transition temperature of the rubbery polymer (C) + 15 ° C. or less.
 また、ゴム質重合体(C)の平均粒子径が0.6μm以下であることは、ゴム質重合体(C)がより微細な粒子で分散していることを表す。したがって、熱可塑性樹脂組成物の分散構造がより均一となり、ゴム質重合体(C)が本来有する柔軟性を十分に発揮することができ、成形品の耐衝撃性および光沢を向上させることができる。0.5μm以下が好ましく、0.4μm以下がより好ましい。ゴム質重合体(C)の平均粒子径が0.6μmを超える場合、成形品の耐衝撃性および光沢が低下する。 Further, the average particle size of the rubber polymer (C) being 0.6 μm or less indicates that the rubber polymer (C) is dispersed with finer particles. Therefore, the dispersion structure of the thermoplastic resin composition becomes more uniform, the rubber polymer (C) can fully exhibit the inherent flexibility, and the impact resistance and gloss of the molded product can be improved. . 0.5 μm or less is preferable, and 0.4 μm or less is more preferable. When the average particle diameter of the rubber polymer (C) exceeds 0.6 μm, the impact resistance and gloss of the molded product are lowered.
 従来、ゴム質重合体の分散性を高めるためには、ゴム質重合体に多量のグラフト鎖を必要としたが、グラフト鎖の増加に伴い熱可塑性樹脂組成物の柔軟性が低下し、成形品の耐衝撃性が低下することがあった。一方、熱可塑性樹脂組成物においてゴム質重合体の柔軟性を保とうとすると、ゴム質重合体の平均粒子径が大きくなることから、やはり成形品の耐衝撃性が低下することがあった。本発明においては、例えば、重量平均分子量が前述の好ましい範囲にある共重合体(A)や共重合体(B)を配合して得られる熱可塑性樹脂組成物を用いること、反応性官能基の変性量が前述の好ましい範囲にあるゴム質重合体(C)を配合して得られる熱可塑性樹脂組成物を用いること、前述の(E)過酸化物を配合して得られる熱可塑性樹脂組成物を用いることや、後述する製造方法を用いることなどの手段により、熱可塑性樹脂組成物において、ゴム質重合体(C)の柔軟性を保ちながら微細分散させることができ、成形品の耐衝撃性を大きく向上させることができる。 Conventionally, in order to increase the dispersibility of the rubber polymer, a large amount of the graft chain was required for the rubber polymer. However, as the graft chain increased, the flexibility of the thermoplastic resin composition decreased, and the molded product In some cases, the impact resistance of the resin deteriorated. On the other hand, if it is attempted to maintain the flexibility of the rubbery polymer in the thermoplastic resin composition, the average particle diameter of the rubbery polymer becomes large, and the impact resistance of the molded product may also decrease. In the present invention, for example, the use of a thermoplastic resin composition obtained by blending the copolymer (A) or the copolymer (B) having a weight average molecular weight within the above-mentioned preferred range, Use of a thermoplastic resin composition obtained by blending the rubbery polymer (C) having a modified amount in the above-mentioned preferred range, and a thermoplastic resin composition obtained by blending the above-mentioned (E) peroxide. Can be finely dispersed while maintaining the flexibility of the rubbery polymer (C) in the thermoplastic resin composition by means such as using a manufacturing method described later, and the impact resistance of the molded product. Can be greatly improved.
 本発明において、熱可塑性樹脂組成物の動的粘弾性測定における貯蔵弾性率の立ち上がり温度およびゴム質重合体(C)の平均粒子径は、成形品から試験片を作製して測定することができる。一般的な成形条件であれば、貯蔵弾性率の立ち上がり温度およびゴム質重合体(C)の平均粒子径は変化しないが、本発明においては、成形温度:220℃、金型温度:60℃、射出速度:100mm/秒、射出時間:10秒、冷却時間:20秒、成形圧力:金型に樹脂が全て充填される圧力(成形下限圧力)+2MPaの条件で射出成形した成形品から試験片を作製する。 In the present invention, the rising temperature of the storage elastic modulus and the average particle diameter of the rubbery polymer (C) in the dynamic viscoelasticity measurement of the thermoplastic resin composition can be measured by preparing a test piece from the molded product. . Under general molding conditions, the rise temperature of the storage elastic modulus and the average particle diameter of the rubbery polymer (C) are not changed. In the present invention, the molding temperature is 220 ° C., the mold temperature is 60 ° C., Injection speed: 100 mm / second, injection time: 10 seconds, cooling time: 20 seconds, molding pressure: pressure from which all resin is filled in the mold (molding lower limit pressure) + 2MPa Make it.
 貯蔵弾性率は、前記条件により成形した3mm厚の成形品から、長さ45mm、幅12.8mmの試験片を切り出し、セイコーインスツルメンツ社製DMS6100を用いて、曲げモードにて測定する。測定条件は、周波数0.5Hz、チャック間距離20mm、昇温速度2℃/分、-100℃~0℃とする。縦軸に貯蔵弾性率、横軸に温度をとり、貯蔵弾性率のプラトー領域の接線と、立ち上がり後に傾きが直線となる部分の接線とが交わる点に対応する温度を、貯蔵弾性率の立ち上がり温度とする。 The storage elastic modulus is measured in a bending mode using a DMS6100 manufactured by Seiko Instruments Inc. after cutting a test piece having a length of 45 mm and a width of 12.8 mm from a molded product having a thickness of 3 mm molded according to the above conditions. The measurement conditions are a frequency of 0.5 Hz, a distance between chucks of 20 mm, a heating rate of 2 ° C./min, and −100 ° C. to 0 ° C. The storage elastic modulus is plotted on the vertical axis, the temperature is plotted on the horizontal axis, and the temperature corresponding to the point at which the tangent of the plateau region of the storage modulus intersects with the tangent of the portion where the slope becomes a straight line after rising is expressed as the rising temperature of the storage elastic modulus. And
 また、ゴム質重合体(C)の平均粒子径は、前記条件により成形した成形品から超薄切片を切り出したサンプルについて、透過型電子顕微鏡を用いて1000倍に拡大して観察を行い、観察部位を写真撮影する。この電子顕微鏡写真から、分散相を形成するゴム質重合体(C)を無作為に100個選び、各々の長径を測定し、その数平均値を平均粒子径とする。 Further, the average particle diameter of the rubber polymer (C) is observed by magnifying the sample obtained by cutting an ultrathin section from the molded article molded under the above conditions by 1000 times using a transmission electron microscope. Take a picture of the area. From this electron micrograph, 100 rubbery polymers (C) forming a dispersed phase are randomly selected, the major axis of each is measured, and the number average value is taken as the average particle size.
 本発明の熱可塑性樹脂組成物は、例えば、前記共重合体(A)、必要により共重合体(B)、ゴム質重合体(C)、必要によりゴム質重合体(D)および必要によりその他成分を、二軸押出機で、カオス混合により溶融混練することにより得ることができる。カオス混合により溶融混練することで、共重合体(A)とゴム質重合体(C)を均一かつ効率的に反応させることができる。本発明においては、例えば、重量平均分子量が1万以上30万以下である共重合体(A)と、酸変性量が0.1~10質量%であるゴム質重合体(C)を使用し、カオス混合による溶融混練を行うことで、上記特性を有する熱可塑性樹脂組成物を容易に得ることができる。共重合体(B)および/またはゴム質重合体(D)を配合してなる熱可塑性樹脂組成物の場合、少なくとも前記(A)および(C)を、二軸押出機を用いたカオス混合により溶融混練した後、前記(B)および/または(D)をさらに配合して溶融混練することが好ましい。前記(A)および(C)を、二軸押出機を用いたカオス混合により溶融混練した後、前記(B)および/または(D)をさらに配合し溶融混練する条件としては、カオス混合であってもよいし、通常の溶融混練であってもよい。前記(A)および(C)を、二軸押出機を用いたカオス混合により溶融混練することにより、前記(A)と(C)の反応をより効率的に進行させ、成形品の表面光沢を向上させることができる。前述の添加剤などの成分は、任意の段階で配合することができる。例えば、前記共重合体(A)、必要により共重合体(B)、ゴム質重合体(C)、必要によりゴム質重合体(D)とともに配合してもよいし、予め前記(A)~(D)を溶融混練した後に配合してもよいし、予め前記(A)~(D)の少なくとも1種に配合して溶融混練した後、残りの成分を配合してもよい。 The thermoplastic resin composition of the present invention includes, for example, the copolymer (A), if necessary, a copolymer (B), a rubbery polymer (C), if necessary, a rubbery polymer (D), and other if necessary The components can be obtained by melt kneading by chaotic mixing in a twin screw extruder. By melt-kneading by chaos mixing, the copolymer (A) and the rubbery polymer (C) can be reacted uniformly and efficiently. In the present invention, for example, a copolymer (A) having a weight average molecular weight of 10,000 to 300,000 and a rubbery polymer (C) having an acid modification amount of 0.1 to 10% by mass are used. By performing melt kneading by chaos mixing, a thermoplastic resin composition having the above characteristics can be easily obtained. In the case of a thermoplastic resin composition obtained by blending the copolymer (B) and / or the rubbery polymer (D), at least the above (A) and (C) are mixed by chaos mixing using a twin screw extruder. After melt-kneading, it is preferable to further blend (B) and / or (D) and melt-knead. The conditions for further blending (B) and / or (D) above after melt-kneading (A) and (C) by chaos mixing using a twin-screw extruder and then melt-kneading are chaotic mixing. Or it may be ordinary melt-kneading. By melting and kneading (A) and (C) by chaos mixing using a twin screw extruder, the reaction of (A) and (C) proceeds more efficiently, and the surface gloss of the molded product is increased. Can be improved. Components such as the aforementioned additives can be blended at any stage. For example, the copolymer (A), if necessary, the copolymer (B), the rubbery polymer (C), if necessary, may be blended together with the rubbery polymer (D). (D) may be blended after melt-kneading, or may be blended in advance with at least one of the above-mentioned (A) to (D) and melt-kneaded, and then the remaining components may be blended.
 カオス混合について説明する。2つの流体の混合を考えた場合、初期の2流体の境界面上のすべての点に対して、その位置を初期値として流体粒子の運動を支配する方程式を解くと、境界面の時間発展を求めることができる。2流体がすみやかに混合するためには、この境界面は小さい間隔で折りたたまれていく必要があることから、境界面の面積は急激に増加しなければならず、最初に、ごく近くにいた境界面上の2点間の距離は、急激に増大する必要がある。この様に、流体の運動を支配する方程式の解で、2点間の距離が、時間と共に指数関数的に増大するカオス解をもつ混合のことをカオス混合と呼ぶ。カオス混合は、例えば、Chaos, Solitons & Fractals Vol.6 p425-438に記載されている。 Explain chaotic mixing. Considering the mixing of two fluids, solving the equation governing the motion of fluid particles with their positions as initial values for all points on the boundary surface of the initial two fluids, the time evolution of the boundary surface is Can be sought. In order for the two fluids to mix quickly, this boundary surface must be folded at small intervals, so the area of the boundary surface must increase rapidly, and at first the boundary that was very close The distance between two points on the surface needs to increase rapidly. In this way, a mixture having a chaotic solution in which the distance between two points exponentially increases with time in a solution of an equation governing fluid motion is called chaotic mixing. Chaos mixing is described, for example, in Chaos, “Solitons” & “Fractals” Vol.6 “p425-438”.
 本発明において、カオス混合は、粒子追跡法(particle tracking method)において、線長さをL、初期線長さをLとするとき、仮想的な線の伸びの対数(lnL/L)が、2以上となることが好ましい。仮想的な線の伸びの対数(lnL/L)が大きい場合、流体の運動を支配する方程式の解で、2点間の距離が、時間と共に指数関数的に増大しやすいことを意味している。かかる粒子追跡法は、時間t=0で評価するスクリューの上流面の断面内に1000個の粒子の初期位置をランダムに決め、解析によって求めた評価するスクリューの速度場に伴う移動をシミュレーションにより追跡する方法である。スクリューが時間t=Tだけ回転した後、各粒子の座標の履歴の記録から、最も粒子の存在確率が高い時間をt=tp、またこのときの線長さをLとして、仮想的な線の伸びの対数(lnL/L)を求めることができる。粒子追跡法は、例えば、Journal of Non-Newtonian Fluid Mechanics Vol.91, Issues 2-3, 1 July 2000, p273-295に記載されている。
カオス混合による混練温度として、使用する重合体の中で最もガラス転移温度の高い重合体を基準として、そのガラス転移温度より、1~150℃高いゾーンを設けることが好ましい。ここで、混練温度とは、二軸押出機のシリンダーの設定温度を指す。ポリマー溶融部以降ダイヘッドまでの間に、上記温度に設定したゾーンを少なくとも一部設ければよい。混練温度を、使用する重合体の中で最もガラス転移温度の高い重合体のガラス転移温度より、1℃以上高くすることにより、粘度を適度に低下させ、より十分に溶融混練することができる。またガラス転移温度+150℃以下とすることにより、引き伸ばしが十分に進みやすく、カオス混合状態をより容易に形成することができる。
In the present invention, the chaotic mixing is performed by the logarithm of the imaginary line elongation (lnL / L 0 ) when the line length is L and the initial line length is L 0 in the particle tracking method. 2 or more is preferable. When the logarithm of the imaginary line stretch (lnL / L 0 ) is large, it means that the distance between the two points tends to increase exponentially with time in the solution of the equation governing the fluid motion. Yes. In this particle tracking method, the initial position of 1000 particles is randomly determined in the cross section of the upstream face of the screw to be evaluated at time t = 0, and the movement accompanying the velocity field of the evaluated screw obtained by analysis is tracked by simulation. It is a method to do. After the screw rotates for time t = T, from the record of the coordinate history of each particle, the time when the probability of existence of the particle is the highest is t = tp, and the line length at this time is L. The logarithm of elongation (lnL / L 0 ) can be obtained. The particle tracking method is described in, for example, Journal of Non-Newtonian Fluid Mechanics Vol. 91, Issues 2-3, 1 July 2000, p273-295.
As a kneading temperature by chaos mixing, it is preferable to provide a zone 1 to 150 ° C. higher than the glass transition temperature based on the polymer having the highest glass transition temperature among the polymers to be used. Here, the kneading temperature refers to the set temperature of the cylinder of the twin screw extruder. What is necessary is just to provide at least one zone set to the said temperature between a polymer fusion | melting part and die head. By making the kneading temperature 1 ° C. or more higher than the glass transition temperature of the polymer having the highest glass transition temperature among the polymers to be used, the viscosity can be lowered moderately and the melt kneading can be carried out more sufficiently. Moreover, by setting it as glass transition temperature +150 degrees C or less, extending | stretching can fully advance easily and a chaos mixed state can be formed more easily.
 カオス混合状態を発生させるために有効なスクリューとして、粒子追跡法において、lnL/Lが2以上となるスクリューが好ましく、3以上となるスクリューがより好ましく、4以上となるスクリューがさらに好ましい。 As an effective screw for generating chaotic mixing state, the particle tracking method is preferably screw lnL / L 0 is 2 or more, more preferably screw is 3 or more, still more preferably a screw to be 4 or more.
 かかるカオス混合状態を発生させることに有効な2軸押出機のスクリューとしては、例えば、ニーディングディスクよりなり、ディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に0°<θ<90°の範囲内にあるツイストニーディングディスクが挙げられる。さらには、フライトスクリューからなり、フライト部にスクリュー先端側から後端側に向けて樹脂通路が形成されているバックミキシングスクリューをツイストニーディングディスクと交互に組み合わせることで、カオス混合をより効果的に生じさせることができる。 As a screw of a twin-screw extruder effective for generating such a chaotic mixed state, for example, a screw made of a kneading disk, the helical angle θ which is the angle between the top of the disk front side and the top of the rear side is a screw. And twist kneading discs in the range of 0 ° <θ <90 ° in the half rotation direction. Furthermore, chaos mixing is made more effective by combining back mixing screws with twist kneading discs, which are composed of flight screws, and in which resin passages are formed in the flight section from the screw front side to the rear end side. Can be generated.
 本発明では、二軸押出機のスクリューの全長に対する、カオス混合により溶融混練するゾーン(カオス混合ゾーン)の合計の長さの割合が、5~80%の範囲であることが好ましい。カオス混合ゾーンの割合を5%以上とすることにより、効率的に引き伸ばし、折り畳みを行うことができる。10%以上がより好ましく、15%以上がさらに好ましい。一方、カオス混合ゾーンの割合を80%以下とすることにより、押出加工性を向上させることができる。70%以下がより好ましく、60%以下がさらに好ましい。また、本発明において、二軸押出機のカオス混合ゾーンは、スクリュー内の特定の位置に偏在することなく、全域に渡って配置されることが好ましい。 In the present invention, it is preferable that the ratio of the total length of the melt-kneading zone (chaos mixing zone) by chaotic mixing to the total length of the screw of the twin screw extruder is in the range of 5 to 80%. By setting the ratio of the chaos mixing zone to 5% or more, it can be efficiently stretched and folded. 10% or more is more preferable, and 15% or more is more preferable. On the other hand, when the ratio of the chaos mixing zone is 80% or less, the extrusion processability can be improved. 70% or less is more preferable, and 60% or less is more preferable. Moreover, in this invention, it is preferable that the chaos mixing zone of a twin-screw extruder is arrange | positioned over the whole region, without uneven distribution in the specific position in a screw.
 本発明の熱可塑性樹脂組成物は、通常公知の射出成形、押出成形、真空圧空成形、インフレーション成形、ブロー成形などの任意の方法で成形することができる。成形品の形状は、特に限定されず、例えば、フィルム、シート、繊維・布、不織布、各種射出成形形状などが挙げられる。また、他の材料との複合体とすることもでき、塗装、メッキ等を施して用いることもできる。 The thermoplastic resin composition of the present invention can be molded by any method such as generally known injection molding, extrusion molding, vacuum / pressure molding, inflation molding, blow molding and the like. The shape of the molded product is not particularly limited, and examples thereof include films, sheets, fibers / clothes, nonwoven fabrics, and various injection molded shapes. Moreover, it can also be set as a composite with another material, and can also be used after painting, plating, etc.
 本発明の成形品は、優れた耐衝撃性、外観をいかして、構造材料として有用に用いることができる。例えば、以下の物品である。各種ギヤー、各種ケース。センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品。発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーター、継電器、電力用接点、開閉器、遮断機、ナイフスイッチ、他極ロッド、電機部品キャビネット、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・コンパクトディスク、DVDなどの音声機器部品。照明部品、冷蔵庫部品、エアコン部品、エアコン室外機、タイプライター部品、ワードプロセッサー部品などに代表される家庭、事務電気製品部品。オフィスコンピューター関連部品、電話機関連部品、携帯電話関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品、ライター、タイプライターなどに代表される機械関連部品。顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品。オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシオメーターベース、エアーインテークノズルスノーケル、インテークマニホールド、エアフローメーター、エアポンプ、燃料ポンプ、エンジン冷却水ジョイント、サーモスタットハウジング、キャブレターメインボディー、キャブレタースペーサー、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECUハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、燃料関係・排気系・吸気系等の各種チューブ、各種タンク、燃料関係・排気系・吸気系等の各種ホース、各種クリップ、排気ガスバルブ等の各種バルブ、各種パイプ、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、ブレーキパッド摩耗センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアコン用サーモスタットベース、エアコンパネルスイッチ基板、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、ステップモーターローター、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、トルクコントロールレバー、スタータースイッチ、スターターリレー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、デュストリビューター、サンバイザーブラケット、各種モーターハウジング、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、ホーンターミナル、ウィンドウォッシャーノズル、ワイパーアーム、モール、ミラーハウジング、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、ラジエターグリル、グリルエプロンカバーフレーム、ランプリフレクター、ランプソケット、ランプハウジング、ランプベゼル、ドアハンドルなどの自動車外装材、センターコンソール、インストルメントパネル、インパネコア、インパネパッド、グローブボックス、ハンドルコラム、アームレスト、レバーパーキング、フロントピラートリム、ドアトリム、ピラートリム、コンソールボックスなどの自動車内装材、ワイヤーハーネスコネクター、SMJコネクター、PCBコネクター、ドアグロメットコネクター、ヒューズ用コネクターなどの各種コネクターなどの自動車部品。パソコン、プリンター、ディスプレイ、CRTディスプレイ、ファックス、コピー、ワープロ、ノートパソコン、携帯電話、PHS、DVDドライブ、PDドライブ、フレキシブルディスクドライブなどの記憶装置のハウジング、シャーシ、リレー、スイッチ、ケース部材、トランス部材、コイルボビンなどの電気・電子機器部品;機械部品、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、その他各種用途に有用である。 The molded product of the present invention can be usefully used as a structural material by utilizing excellent impact resistance and appearance. For example, the following articles. Various gears and various cases. Sensor, LED lamp, connector, socket, resistor, relay case, switch, coil bobbin, capacitor, variable capacitor case, optical pickup, oscillator, terminal board, transformer, plug, printed wiring board, tuner, speaker, microphone, headphones, Electrical and electronic parts such as small motors, magnetic head bases, power modules, housings, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts. Generator, Electric motor, Transformer, Current transformer, Voltage regulator, Rectifier, Inverter, Relay, Power contact, Switch, Circuit breaker, Knife switch, Other pole rod, Electric parts cabinet, VTR parts, TV parts, Iron Audio equipment parts such as hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio compact discs, DVDs. Household and office electrical product parts such as lighting parts, refrigerator parts, air conditioner parts, air conditioner outdoor units, typewriter parts, word processor parts, etc. Office computer related parts, telephone related parts, mobile phone related parts, facsimile related parts, copier related parts, cleaning jigs, oilless bearings, stern bearings, submersible bearings, motor parts, lighters, typewriters, etc. Machine-related parts represented by Optical equipment such as microscopes, binoculars, cameras, and watches, and precision machine related parts. Alternator terminal, alternator connector, IC regulator, light meter potentiometer base, air intake nozzle snorkel, intake manifold, air flow meter, air pump, fuel pump, engine coolant joint, thermostat housing, carburetor main body, carburetor spacer, engine Mount, ignition hobbin, ignition case, clutch bobbin, sensor housing, idle speed control valve, vacuum switching valve, ECU housing, vacuum pump case, inhibitor switch, rotation sensor, acceleration sensor, distributor cap, coil base, actuator case for ABS , Radiator Top and bottom, cooling fan, fan shroud, engine cover, cylinder head cover, oil cap, oil pan, oil filter, fuel cap, fuel strainer, distributor cap, vapor canister housing, air cleaner housing, timing belt cover, brake Booster parts, various cases, fuel / exhaust / intake system tubes, tanks, fuel / exhaust / intake system hoses, various clips, exhaust gas valves and other valves, pipes, exhaust gas Sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air Thermostat base, air conditioning panel switch board, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, step motor rotor, brake piston, solenoid bobbin, engine oil filter, ignition Equipment case, torque control lever, starter switch, starter relay, safety belt parts, register blade, washer lever, window regulator handle, window regulator handle knob, passing light lever, distributor, sun visor bracket, various motor housings, roof rail , Fender, garnish, bumper, door mirror stay, haunter Automobiles such as minal, window washer nozzle, wiper arm, molding, mirror housing, spoiler, hood louver, wheel cover, wheel cap, radiator grill, grill apron cover frame, lamp reflector, lamp socket, lamp housing, lamp bezel, door handle Exterior materials, center console, instrument panel, instrument panel core, instrument panel pad, glove box, handle column, armrest, lever parking, front pillar trim, door trim, pillar trim, console box and other automotive interior materials, wire harness connector, SMJ connector, PCB Automotive parts such as connectors, door grommet connectors, and various connectors such as fuse connectors. PC, printer, display, CRT display, fax, copy, word processor, notebook computer, mobile phone, PHS, DVD drive, PD drive, flexible disk drive and other storage device housing, chassis, relay, switch, case member, transformer member Electrical and electronic equipment parts such as coil bobbins; machine parts, agricultural materials, horticultural materials, fishery materials, civil engineering and construction materials, and other various uses.
 本発明をさらに具体的に説明するために、以下、実施例および比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。まず、実施例および比較例に用いた成分について説明する。 In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples. First, components used in Examples and Comparative Examples will be described.
 [参考例1](A-1)共重合体
 スチレン75.7質量部、アクリロニトリル24質量部、グリシジルメタクリレート0.3質量部からなる単量体混合物を懸濁重合し、ビーズ状の共重合体(A-1)を調製した。各単量体単位の含有率は、スチレン単位75.7質量%、アクリロニトリル単位24質量%、グリシジルメタクリレート単位0.3質量%であった。得られた共重合体(A-1)のヘキサフルオロイソプロパノール(HFIP)溶液を用いて、ゲルパーミエーションクロマトグラフ測定によりポリスチレン換算の重量平均分子量を測定したところ、17万であった。DSC測定(示差走査熱量測定)により求めたガラス転移温度は115℃であった。DSC測定条件は、試料10mg、窒素雰囲気下、-80℃から150℃まで昇温速度5℃/分で温度変調振幅±1℃、温度変調周期60秒で昇温する条件とした。
Reference Example 1 (A-1) Copolymer Suspension polymerization of a monomer mixture composed of 75.7 parts by mass of styrene, 24 parts by mass of acrylonitrile, and 0.3 parts by mass of glycidyl methacrylate resulted in a bead-shaped copolymer. (A-1) was prepared. The content of each monomer unit was 75.7% by mass of styrene units, 24% by mass of acrylonitrile units, and 0.3% by mass of glycidyl methacrylate units. Using a hexafluoroisopropanol (HFIP) solution of the obtained copolymer (A-1), the weight average molecular weight in terms of polystyrene was measured by gel permeation chromatography and found to be 170,000. The glass transition temperature determined by DSC measurement (differential scanning calorimetry) was 115 ° C. The DSC measurement conditions were as follows: sample 10 mg, in a nitrogen atmosphere, from −80 ° C. to 150 ° C. with a temperature modulation rate of ± 1 ° C. and a temperature modulation period of 60 seconds at a temperature increase rate of 5 ° C./min
 [参考例2](A-2)共重合体
 スチレン74.5質量部、アクリロニトリル22.5質量部、グリシジルメタクリレート3質量部からなる単量体混合物を懸濁重合し、ビーズ状の共重合体(A-2)を調製した。各単量体単位の含有率は、スチレン単位74.5質量%、アクリロニトリル単位22.5質量%、グリシジルメタクリレート単位3質量%であった。得られた共重合体(A-2)のHFIP溶液を用いて、ゲルパーミエーションクロマトグラフ測定によりポリスチレン換算の重量平均分子量を測定したところ、11万であった。DSC測定により求めたガラス転移温度は110℃であった。なお、DSC測定条件は参考例1と同様とした。
Reference Example 2 (A-2) Copolymer Suspension polymerization of a monomer mixture comprising 74.5 parts by mass of styrene, 22.5 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate resulted in a bead-shaped copolymer. (A-2) was prepared. The content of each monomer unit was 74.5% by mass of styrene units, 22.5% by mass of acrylonitrile units, and 3% by mass of glycidyl methacrylate units. Using a HFIP solution of the obtained copolymer (A-2), the weight average molecular weight in terms of polystyrene was measured by gel permeation chromatography and found to be 110,000. The glass transition temperature determined by DSC measurement was 110 ° C. The DSC measurement conditions were the same as in Reference Example 1.
 [参考例3](A-3)共重合体
 スチレン72質量部、アクリロニトリル22質量部、グリシジルメタクリレート6質量部からなる単量体混合物を懸濁重合し、ビーズ状の共重合体(A-3)を調製した。各単量体単位の含有率は、スチレン単位72質量%、アクリロニトリル単位22質量%、グリシジルメタクリレート単位6質量%であった。得られた共重合体(A-3)のHFIP溶液を用いて、ゲルパーミエーションクロマトグラフ測定によりポリスチレン換算の重量平均分子量を測定したところ、7万であった。DSC測定により求めたガラス転移温度は109℃であった。なお、DSC測定条件は参考例1と同様とした。
[Reference Example 3] (A-3) Copolymer A monomer mixture consisting of 72 parts by mass of styrene, 22 parts by mass of acrylonitrile, and 6 parts by mass of glycidyl methacrylate was subjected to suspension polymerization to produce a bead-like copolymer (A-3). ) Was prepared. The content of each monomer unit was 72% by mass of styrene units, 22% by mass of acrylonitrile units, and 6% by mass of glycidyl methacrylate units. When the weight average molecular weight in terms of polystyrene was measured by gel permeation chromatography using the HFIP solution of the obtained copolymer (A-3), it was 70,000. The glass transition temperature determined by DSC measurement was 109 ° C. The DSC measurement conditions were the same as in Reference Example 1.
 [参考例4](B-1)共重合体
 スチレン70質量部、アクリロニトリル30質量部からなる単量体混合物を懸濁重合し、ビーズ状の共重合体(B-1)を調製した。各単量体単位の含有率は、スチレン単位70質量%、アクリロニトリル単位30質量%であった。得られた共重合体(B-1)のHFIP溶液を用いて、ゲルパーミエーションクロマトグラフ測定によりポリスチレン換算の重量平均分子量を測定したところ、15万であった。DSC測定により求めたガラス転移温度は110℃であった。なお、DSC測定条件は参考例1と同様とした。
[Reference Example 4] (B-1) Copolymer A monomer mixture comprising 70 parts by mass of styrene and 30 parts by mass of acrylonitrile was subjected to suspension polymerization to prepare a bead-shaped copolymer (B-1). The content of each monomer unit was 70% by mass of styrene units and 30% by mass of acrylonitrile units. The polystyrene equivalent weight average molecular weight was measured by gel permeation chromatography using the HFIP solution of the obtained copolymer (B-1) and found to be 150,000. The glass transition temperature determined by DSC measurement was 110 ° C. The DSC measurement conditions were the same as in Reference Example 1.
 [参考例5]グラフト共重合体1
 三井化学株式会社製エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体(EPDM)(三井EPT X-3012P)57質量部を、二塩化エチレン200質量部を添加したn-ヘキサン400質量部に溶解した。次に、アクリロニトリル10質量部、スチレン33質量部および過酸化ベンゾイル17質量部を加え、65℃で10時間窒素雰囲気下で重合した。重合後、重合反応液を大過剰のメタノールに注ぎ、析出した沈殿物を分離し、真空乾燥を経てグラフト重合体1を得た。
[Reference Example 5] Graft copolymer 1
57 parts by mass of an ethylene / propylene / 5-ethylidene-2-norbornene copolymer (EPDM) (Mitsui EPT X-3012P) manufactured by Mitsui Chemicals, Ltd. was added to 400 parts by mass of n-hexane to which 200 parts by mass of ethylene dichloride was added. Dissolved. Next, 10 parts by mass of acrylonitrile, 33 parts by mass of styrene and 17 parts by mass of benzoyl peroxide were added, and polymerization was performed at 65 ° C. for 10 hours in a nitrogen atmosphere. After the polymerization, the polymerization reaction solution was poured into a large excess of methanol, the deposited precipitate was separated, and the graft polymer 1 was obtained through vacuum drying.
 [参考例6]樹脂組成物1
 (A-2)共重合体43質量部、下記(C-1)ゴム質重合体57質量部を、スクリュー回転数を200rpmとした二軸スクリュー押出機(JSW社製TEX30XSSST)(L/D=45.5)に供給して溶融混練した。なお、ここでLは原料供給口から吐出口までの長さ、Dはスクリューの径である(以下同じ)。ポリマー溶融部以降のシリンダー設定温度は、230℃に調整した。また、押出機のスクリュー構成は、ニーディングディスクおよびフライトスクリューからなるものとした。ニーディングディスクとしては、ディスク先端側の頂部とその後面側の頂部との角度である螺旋角度θが、スクリューの半回転方向に0°<θ<90°の範囲内にあるツイストニーディングディスクを使用した。ニーディングディスクとしては、スクリュー先端側から後端側に向けて樹脂通路が形成されているバックミキシングスクリューを使用した。ニーディングディスクおよびフライトスクリューを交互に組み合わせ、カオス混合しつつ溶融混練するゾーン(カオス混合ゾーン)の合計の長さが、押出機のスクリューの全長に対して50%となるようにした。以下このスクリュー構成をAタイプという。なお、本条件について、JSW社製、押出機内CAE解析ソフトSCREWFLOW-MULTIを用いて、時間t=0でスクリューの上流面の断面内に1000個の粒子の初期位置をランダムに決め、解析によって求めた評価するスクリューの速度場に伴う移動をシミュレーションにより追跡し、線長さ(L)、初期線長さ(L)とするときの仮想的な線の伸びの対数(lnL/L)を求めた結果、lnL/Lは4.3であった。ダイから吐出されたガットをすぐに氷水中に急冷し、構造を固定した後、ストランドカッターでペレタイズしペレットを得た。
[Reference Example 6] Resin composition 1
(A-2) 43 parts by mass of a copolymer and 57 parts by mass of the following (C-1) rubbery polymer, a twin screw extruder (TEX30XSSST manufactured by JSW) with a screw rotation speed of 200 rpm (L / D = 45.5) and melt-kneaded. Here, L is the length from the raw material supply port to the discharge port, and D is the diameter of the screw (the same applies hereinafter). The cylinder set temperature after the polymer melt was adjusted to 230 ° C. The screw configuration of the extruder was composed of a kneading disk and a flight screw. As a kneading disk, a twist kneading disk in which the spiral angle θ, which is the angle between the top on the front end of the disk and the top on the rear side, is in the range of 0 ° <θ <90 ° in the half rotation direction of the screw. used. As the kneading disk, a back mixing screw in which a resin passage is formed from the screw front end side toward the rear end side was used. The kneading disk and the flight screw were alternately combined so that the total length of the melt kneading zone while mixing with chaos (chaos mixing zone) was 50% of the total length of the extruder screw. Hereinafter, this screw configuration is referred to as A type. For this condition, the initial position of 1000 particles in the cross section of the upstream surface of the screw was randomly determined at time t = 0 using the in-extruder CAE analysis software SCREWFLOW-MULTI from JSW, and obtained by analysis. the movement associated with the velocity field of the screw evaluating monitored by simulation, line length of the (L), the initial line length imaginary line of extension of the logarithm of the time to (L 0) (lnL / L 0) the results obtained, lnL / L 0 was 4.3. The gut discharged from the die was immediately cooled in ice water to fix the structure, and then pelletized with a strand cutter to obtain pellets.
 (C-1)ゴム質重合体
 三井化学株式会社製無水マレイン酸変性エチレン-ブテン共重合体(“タフマー”(登録商標)MH5040、DSC測定により求めたガラス転移温度-65℃)を使用した。なお、DSC測定条件は参考例1と同様とした。
(C-1) Rubber polymer A maleic anhydride-modified ethylene-butene copolymer ("Toughmer" (registered trademark) MH5040, glass transition temperature -65 ° C determined by DSC measurement) manufactured by Mitsui Chemicals, Inc. was used. The DSC measurement conditions were the same as in Reference Example 1.
 (D-1)ゴム質重合体
 三井化学株式会社製エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体(EPDM)(三井EPT X-3012P、DSC測定により求めたガラス転移温度-51℃)を使用した。なお、DSC測定条件は参考例1と同様とした。
(D-1) Rubber polymer Ethylene / propylene / 5-ethylidene-2-norbornene copolymer (EPDM) manufactured by Mitsui Chemicals, Inc. (Mitsui EPT X-3012P, glass transition temperature -51 ° C. determined by DSC measurement) It was used. The DSC measurement conditions were the same as in Reference Example 1.
 (E-1)過酸化物
 日油株式会社製2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン(“パーヘキサ”(登録商標)25B)を使用した。
(E-1) Peroxide 2,5-dimethyl-2,5-di-t-butylperoxyhexane (“Perhexa” (registered trademark) 25B) manufactured by NOF Corporation was used.
 (F-1)エチレン系重合体
 三井化学株式会社製酸変性ポリオレフィン(“ハイワックス”(登録商標)1105A、分子量1500)を使用した。
(F-1) Ethylene Polymer An acid-modified polyolefin (“High Wax” (registered trademark) 1105A, molecular weight 1500) manufactured by Mitsui Chemicals, Inc. was used.
 次に、各実施例および比較例における評価方法について説明する。各実施例および比較例により得られたペレットから、住友重機械工業(株)製射出成形機(SE75DUZ)を用いて、成形温度:220℃、金型温度:60℃、射出速度:100mm/秒、射出時間:10秒、冷却時間:20秒、成形圧力:金型に樹脂が全て充填される圧力(成形下限圧力)+2MPaの条件で、下記各項目に記載の試験片を射出成形した。 Next, evaluation methods in each example and comparative example will be described. From the pellets obtained in each of the examples and comparative examples, using an injection molding machine (SE75DUZ) manufactured by Sumitomo Heavy Industries, Ltd., molding temperature: 220 ° C., mold temperature: 60 ° C., injection speed: 100 mm / second , Injection time: 10 seconds, cooling time: 20 seconds, molding pressure: test pieces described in the following items were injection molded under the conditions of pressure (molding lower limit pressure) at which the resin is completely filled in the mold + 2 MPa.
 (1)平均粒子径
 前記条件により成形した3mm厚の成形品から超薄切片を切り出したサンプルについて、透過型電子顕微鏡(HITACHI、ELECTRON MICROSCOPE H-700)にて1000倍に拡大して観察を行い、観察部位を写真撮影した。この電子顕微鏡写真から分散相を形成するゴム質重合体(C)を無作為に100個選び、各々の長径を測定し、その数平均値を平均粒子径とした。
(1) Average particle diameter A sample obtained by cutting out an ultrathin section from a molded product having a thickness of 3 mm molded according to the above conditions was observed with a transmission electron microscope (HITACHI, ELECTRON MICROSCOPE H-700) at a magnification of 1000 times. The observation site was photographed. From this electron micrograph, 100 rubbery polymers (C) forming a dispersed phase were randomly selected, the major axis of each was measured, and the number average value was taken as the average particle size.
 (2)貯蔵弾性率の立ち上がり温度
 前記条件により成形した3mm厚の成形品から、長さ45mm、幅12.8mmの試験片を切り出し、セイコーインスツルメンツ社製DMS6100を用い、曲げモードにて、貯蔵弾性率を測定した。測定条件は、周波数0.5Hz、チャック間距離20mm、昇温速度2℃/分、-100℃~0℃とした。縦軸に貯蔵弾性率、横軸に温度をとり、貯蔵弾性率のプラトー領域の接線と、立ち上がり後に傾きが直線となる部分の接線とが交わる点に対応する温度を、貯蔵弾性率の立ち上がり温度とした。
(2) Rise temperature of storage elastic modulus A test piece having a length of 45 mm and a width of 12.8 mm was cut out from a molded product having a thickness of 3 mm molded according to the above conditions, and storage elasticity was measured in a bending mode using a DMS6100 manufactured by Seiko Instruments Inc. The rate was measured. The measurement conditions were a frequency of 0.5 Hz, a distance between chucks of 20 mm, a heating rate of 2 ° C./min, and −100 ° C. to 0 ° C. The storage elastic modulus is plotted on the vertical axis, the temperature is plotted on the horizontal axis, and the temperature corresponding to the point at which the tangent of the plateau region of the storage modulus intersects with the tangent of the portion where the slope becomes a straight line after rising is expressed as the rising temperature of the storage elastic modulus. It was.
 (3)耐衝撃性
 前記条件により成形した1/4インチ厚み試験片を用いて、ASTM D-256に従い、ノッチ付Izod衝撃強度を23℃にて測定した。各6本の試験片について衝撃強度を測定し、その平均値をIzod衝撃強度とした。また、Izod衝撃試験後のサンプルを目視観察し、延性破壊、脆性破壊を判断した。
(3) Impact resistance Notched Izod impact strength was measured at 23 ° C. according to ASTM D-256 using a 1/4 inch thickness test piece molded according to the above conditions. The impact strength was measured for each of six test pieces, and the average value was defined as Izod impact strength. Further, the sample after the Izod impact test was visually observed to determine ductile fracture and brittle fracture.
 (4)曲げ弾性率
 前記条件により成形した1/4インチ厚み試験片を用いて、ASTM D790に従い、曲げ弾性率を評価した。各3本の試験片について曲げ弾性率を測定し、その平均値を曲げ弾性率とした。
(4) Flexural modulus The flexural modulus was evaluated according to ASTM D790 using a 1/4 inch thickness test piece molded according to the above conditions. The bending elastic modulus was measured for each of the three test pieces, and the average value was taken as the bending elastic modulus.
 (5)耐熱性(荷重たわみ温度)
 前記条件により成形した成形品から切り出した試験片を用いて、ASTM D648(荷重:1.82MPa)に従い荷重たわみ温度を測定した。各2本の試験片について荷重たわみ温度を測定し、その平均値を荷重たわみ温度とした。
(5) Heat resistance (deflection temperature under load)
The deflection temperature under load was measured according to ASTM D648 (load: 1.82 MPa) using a test piece cut out from a molded product molded under the above conditions. The deflection temperature under load was measured for each of the two test pieces, and the average value was taken as the deflection temperature under load.
 (6)外観
 前記条件により成形した3mm厚の成形品表面を目視観察し、以下基準により光沢ムラを評価した。
(6) Appearance The surface of a molded product having a thickness of 3 mm molded under the above conditions was visually observed, and gloss unevenness was evaluated according to the following criteria.
 A:光沢ムラ無し
 B:一部に光沢ムラが見られる
 C:全体的に光沢ムラが見られる
 (7)表面光沢
 前記条件により成形した80mm×80mm×3mm厚みの試験片中央部の表面光沢を、デジタル変角光沢計(スガ試験機(株)製「UGV-5D」)を用いて、入射角60度で測定した。3回測定した平均値を光沢度とした。
A: No gloss unevenness B: Partial gloss unevenness C: Overall gloss unevenness (7) Surface gloss Surface gloss at the center of a test piece of 80 mm × 80 mm × 3 mm thickness molded according to the above conditions Using a digital variable gloss meter (“UGV-5D” manufactured by Suga Test Instruments Co., Ltd.), the measurement was performed at an incident angle of 60 degrees. The average value measured three times was defined as the glossiness.
 (8)残存乳化剤
 各実施例および比較例により得られたペレット1gをメタノールにて抽出した後、0.5μmろ紙にてろ過し、ろ液を濃縮後、真空乾燥機で乾燥して、抽出成分の有無を目視観察により判別した。
(8) Residual emulsifier 1 g of pellets obtained in each Example and Comparative Example were extracted with methanol, filtered with 0.5 μm filter paper, the filtrate was concentrated, and then dried with a vacuum dryer to extract components. The presence or absence of was determined by visual observation.
 (実施例1~5、7、8)
 表1に示す各成分を表1に示す配合割合で、スクリュー回転数を200rpmとした二軸スクリュー押出機(JSW社製TEX30XSSST)(L/D=45.5)に供給して溶融混練した。ポリマー溶融部以降のシリンダー設定温度は、150℃に調整した。また、押出機のスクリュー構成は、Aタイプのスクリュー構成を用いた。なお、本条件について、日本製鋼所製、押出機内CAE解析ソフトSCREWFLOW-MULTIを用いて、時間t=0でスクリューの上流最先部分の流体に1000個の仮想粒子の初期位置をランダムに決め、スクリュー回転数=200rpm、樹脂温度=150℃、溶融粘度=3000Pa・sとして、解析によって求めた評価するスクリューの速度場に伴う移動をシミュレーションにより追跡し、線長さ(L)、初期線長さ(L)とするときのlnL/Lを求めた結果、lnL/Lは4.2であった。
(Examples 1 to 5, 7, 8)
Each component shown in Table 1 was supplied to a twin screw extruder (TEX30XSSST, manufactured by JSW) (L / D = 45.5) (L / D = 45.5) at a blending ratio shown in Table 1 and a screw rotation speed of 200 rpm, and melt kneaded. The cylinder set temperature after the polymer melting part was adjusted to 150 ° C. Moreover, the screw structure of the extruder used the A type screw structure. For this condition, the initial position of 1000 virtual particles is randomly determined in the fluid at the upstream end of the screw at time t = 0, using the in-extruder CAE analysis software SCREWFLOW-MULTI, manufactured by Nippon Steel. Assuming that the screw rotation speed is 200 rpm, the resin temperature is 150 ° C., and the melt viscosity is 3000 Pa · s, the movement accompanying the velocity field of the screw to be evaluated obtained by analysis is traced by simulation, and the line length (L) and initial line length As a result of obtaining lnL / L 0 when (L 0 ), lnL / L 0 was 4.2.
 ダイから吐出されたガットをすぐに氷水中に急冷し、構造を固定した後、ストランドカッターでペレタイズしペレットを得た。得られたペレットを用いて、前記方法により各特性を評価した結果を表1に示す。 ガ The gut discharged from the die was immediately cooled in ice water to fix the structure, and then pelletized with a strand cutter to obtain pellets. Table 1 shows the results of evaluation of each property by the above method using the obtained pellets.
 (実施例6)
 前記(B-1)と前記参考例6に記載の方法により得られた樹脂組成物1とを実施例3と同一組成となるよう表1に示す配合割合で、スクリュー回転数を200rpmとした二軸スクリュー押出機(JSW社製TEX30XSSST)(L/D=45.5)に供給して溶融混練した。ポリマー溶融部以降のシリンダー設定温度は、150℃に調整した。また、押出機のスクリュー構成は、Aタイプのスクリュー構成を用いた。なお、本条件について、JSW社製、押出機内CAE解析ソフトSCREWFLOW-MULTIを用いて、時間t=0でスクリューの上流最先部分の流体に1000個の仮想粒子の初期位置をランダムに決め、スクリュー回転数=200rpm、樹脂温度150℃、溶融粘度=2600Pa・sとして、解析によって求めた評価するスクリューの速度場に伴う移動をシミュレーションにより追跡し、線長さ(L)、初期線長さ(L)とするときlnL/Lを求めた結果、lnL/Lは4.1であった。
(Example 6)
(B-1) and the resin composition 1 obtained by the method described in Reference Example 6 were mixed at the mixing ratio shown in Table 1 so as to have the same composition as Example 3, and the screw rotation speed was 200 rpm. It supplied to the screw extruder (TEX30XSSST by JSW) (L / D = 45.5), and was melt-kneaded. The cylinder set temperature after the polymer melting part was adjusted to 150 ° C. Moreover, the screw structure of the extruder used the A type screw structure. For this condition, the initial position of 1000 virtual particles is randomly determined in the fluid at the upstream end of the screw at time t = 0 using the in-extruder CAE analysis software SCREWFLOW-MULTI from JSW. Assuming that the rotational speed is 200 rpm, the resin temperature is 150 ° C., and the melt viscosity is 2600 Pa · s, the movement accompanying the speed field of the screw to be evaluated obtained by analysis is traced by simulation, and the line length (L) and initial line length (L 0) and the result of obtaining the lnL / L 0 when, lnL / L 0 was 4.1.
 ダイから吐出されたガットをすぐに氷水中に急冷し、構造を固定した後、ストランドカッターでペレタイズしペレットを得た。得られたペレットを用いて、前記方法により各特性を評価した結果を表1に示す。 ガ The gut discharged from the die was immediately cooled in ice water to fix the structure, and then pelletized with a strand cutter to obtain pellets. Table 1 shows the results of evaluation of each property by the above method using the obtained pellets.
 (比較例1)
 表1に示す各成分を表1に示す配合割合で、スクリュー回転数を200rpmとした二軸スクリュー押出機(JSW社製TEX30XSSST)(L/D=45.5)に供給して溶融混練した。ポリマー溶融部以降のシリンダー設定温度は、230℃に調整した。また、スクリュー構成は、L/D=22、28の位置から、一般のニーディングディスク(L/D=3.8)を設けたものとした。このスクリュー構成をBタイプという。スクリュー回転数=200rpm、樹脂温度230℃、溶融粘度=500Pa・sとして、実施例1と同様にlnL/Lを求めたところ、lnL/Lは1.5であった。
(Comparative Example 1)
Each component shown in Table 1 was supplied to a twin screw extruder (TEX30XSSST, manufactured by JSW) (L / D = 45.5) (L / D = 45.5) at a blending ratio shown in Table 1 and a screw rotation speed of 200 rpm, and melt kneaded. The cylinder set temperature after the polymer melt was adjusted to 230 ° C. Moreover, the screw structure shall have provided the general kneading disk (L / D = 3.8) from the position of L / D = 22,28. This screw configuration is called B type. When lnL / L 0 was determined in the same manner as in Example 1 with a screw rotation speed of 200 rpm, a resin temperature of 230 ° C., and a melt viscosity of 500 Pa · s, lnL / L 0 was 1.5.
 ダイから吐出されたガットをすぐに氷水中に急冷し、構造を固定した後、ストランドカッターでペレタイズしペレットを得た。得られたペレットを用いて、前記方法により各特性を評価した結果を表2に示す。 ガ The gut discharged from the die was immediately cooled in ice water to fix the structure, and then pelletized with a strand cutter to obtain pellets. Table 2 shows the results of evaluation of each property by the above method using the obtained pellets.
 (比較例2)
 各成分と配合割合を表1に示すとおりに変更したこと以外は比較例1と同様にしてペレットを得た。スクリュー回転数=200rpm、樹脂温度=230℃、溶融粘度=500Pa・sとして、実施例1と同様にlnL/Lを求めたところ、lnL/Lは1.5であった。得られたペレットを用いて、前記方法により各特性を評価した結果を表1に示す。
(Comparative Example 2)
Pellets were obtained in the same manner as in Comparative Example 1 except that each component and the blending ratio were changed as shown in Table 1. When lnL / L 0 was determined in the same manner as in Example 1 with screw rotation speed = 200 rpm, resin temperature = 230 ° C., melt viscosity = 500 Pa · s, lnL / L 0 was 1.5. Table 1 shows the results of evaluation of each property by the above method using the obtained pellets.
 (比較例3~4)
 各成分と配合割合を表1に示すとおりに変更したこと以外は実施例1と同様にしてペレットを得た。スクリュー回転数=200rpm、樹脂温度=150℃、溶融粘度=3000Pa・sとして、実施例1と同様にlnL/Lを求めたところ、lnL/Lは4.2であった。得られたペレットを用いて、前記方法により各特性を評価した結果を表2に示す。
(Comparative Examples 3 to 4)
Pellets were obtained in the same manner as in Example 1 except that each component and the blending ratio were changed as shown in Table 1. When lnL / L 0 was determined in the same manner as in Example 1 with screw rotation speed = 200 rpm, resin temperature = 150 ° C., and melt viscosity = 3000 Pa · s, lnL / L 0 was 4.2. Table 2 shows the results of evaluation of each property by the above method using the obtained pellets.
 (比較例5)
 シリンダー設定温度を230℃に、スクリュー構成を、L/D=22、28の位置から、一般のニーディングディスク(L/D=3.8)を設けたスクリュー構成(Bタイプ)に変更したこと以外は実施例1と同様にしてペレットを得た。スクリュー回転数=200rpm、樹脂温度=230℃、溶融粘度=500Pa・sとして、実施例1と同様にlnL/Lを求めたところ、lnL/Lは1.5であった。得られたペレットを用いて、前記方法により各特性を評価した結果を表2に示す。
(Comparative Example 5)
The cylinder set temperature was changed to 230 ° C, and the screw configuration was changed from the position of L / D = 22, 28 to a screw configuration (B type) with a general kneading disk (L / D = 3.8). Except for the above, pellets were obtained in the same manner as in Example 1. When lnL / L 0 was determined in the same manner as in Example 1 with screw rotation speed = 200 rpm, resin temperature = 230 ° C., melt viscosity = 500 Pa · s, lnL / L 0 was 1.5. Table 2 shows the results of evaluation of each property by the above method using the obtained pellets.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の熱可塑性樹脂組成物は、電気・電子部品、家電製品、OA機器、自動車部品、機械機構部品など種々の用途に用いることができる。 The thermoplastic resin composition of the present invention can be used for various applications such as electric / electronic parts, home appliances, OA equipment, automobile parts, and mechanical mechanism parts.

Claims (9)

  1. (A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体0.1~95質量部、
    (B)(b1)芳香族ビニル系単量体と(b2)シアン化ビニル系単量体との共重合体0~94.9質量部、
    (C)反応性官能基(ii)を有するエチレン系ゴム質重合体5~40質量部および
    (D)エチレン系ゴム質重合体0~35質量部
    (ただし、(A)、(B)、(C)および(D)の合計は100質量部)を配合して得られる熱可塑性樹脂組成物であって、動的粘弾性測定における貯蔵弾性率の立ち上がり温度が前記(C)反応性官能基(ii)を有するエチレン系ゴム質重合体のガラス転移温度+20℃以下であり、かつ(C)反応性官能基(ii)を有するエチレン系ゴム質重合体が平均粒子径0.6μm以下で分散している熱可塑性樹脂組成物。
    (A) Copolymer of (a1) vinyl monomer having reactive functional group (i), (a2) aromatic vinyl monomer and (a3) vinyl cyanide monomer 0.1 ~ 95 parts by mass,
    (B) a copolymer of (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer, 0 to 94.9 parts by mass,
    (C) 5 to 40 parts by mass of an ethylene rubbery polymer having a reactive functional group (ii) and (D) 0 to 35 parts by mass of an ethylene rubbery polymer (provided that (A), (B), ( C) and (D) is a thermoplastic resin composition obtained by blending 100 parts by mass), and the rising temperature of the storage elastic modulus in dynamic viscoelasticity measurement is the above-mentioned (C) reactive functional group ( The glass transition temperature of the ethylene rubber polymer having ii) is not higher than 20 ° C. and (C) the ethylene rubber polymer having a reactive functional group (ii) is dispersed with an average particle diameter of 0.6 μm or less. A thermoplastic resin composition.
  2. 前記(A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体の重量平均分子量が1万以上30万以下である請求項1記載の熱可塑性樹脂組成物。 Weight of copolymer of (A) (a1) vinyl monomer having reactive functional group (i), (a2) aromatic vinyl monomer and (a3) vinyl cyanide monomer The thermoplastic resin composition according to claim 1, wherein the average molecular weight is 10,000 or more and 300,000 or less.
  3. 前記(A)、(B)、(C)および(D)の合計100質量部に対し、さらに(E)過酸化物0.1~1質量部を配合して得られるものである請求項1または2に記載の熱可塑性樹脂組成物。 2. The composition obtained by further blending (E) 0.1 to 1 part by mass of peroxide with respect to a total of 100 parts by mass of (A), (B), (C) and (D). Or the thermoplastic resin composition of 2.
  4. 前記(B)(b1)芳香族ビニル系単量体と(b2)シアン化ビニル系単量体との共重合体の重量平均分子量が10万以上30万以下である請求項1~3のいずれかに記載の熱可塑性樹脂組成物。 The weight average molecular weight of the copolymer of (B) (b1) aromatic vinyl monomer and (b2) vinyl cyanide monomer is 100,000 or more and 300,000 or less. The thermoplastic resin composition according to claim 1.
  5. 前記(A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体における反応性官能基(i)がエポキシ基である請求項1~4のいずれかに記載の熱可塑性樹脂組成物。 Reaction in the copolymer of (A) (a1) vinyl monomer having reactive functional group (i), (a2) aromatic vinyl monomer and (a3) vinyl cyanide monomer The thermoplastic resin composition according to any one of claims 1 to 4, wherein the functional functional group (i) is an epoxy group.
  6. 前記(C)反応性官能基(ii)を有するエチレン系ゴム質重合体における反応性官能基(ii)が酸無水物基である請求項1~5のいずれかに記載の熱可塑性樹脂組成物。 6. The thermoplastic resin composition according to claim 1, wherein the reactive functional group (ii) in the ethylene-based rubbery polymer having the reactive functional group (ii) is an acid anhydride group. .
  7. (A)(a1)反応性官能基(i)を有するビニル系単量体と(a2)芳香族ビニル系単量体と(a3)シアン化ビニル系単量体との共重合体0.1~95質量部、
    (B)(b1)芳香族ビニル系単量体と(b2)シアン化ビニル系単量体との共重合体0~94.9質量部、
    (C)反応性官能基(ii)を有するエチレン系ゴム質重合体5~40質量部および
    (D)エチレン系ゴム質重合体0~35質量部
    (ただし、(A)、(B)、(C)および(D)の合計は100質量部)を、二軸押出機を用いたカオス混合により溶融混練する請求項1~6いずれかに記載の熱可塑性樹脂組成物の製造方法。
    (A) Copolymer of (a1) vinyl monomer having reactive functional group (i), (a2) aromatic vinyl monomer and (a3) vinyl cyanide monomer 0.1 ~ 95 parts by mass,
    (B) a copolymer of (b1) an aromatic vinyl monomer and (b2) a vinyl cyanide monomer, 0 to 94.9 parts by mass,
    (C) 5 to 40 parts by mass of an ethylene rubbery polymer having a reactive functional group (ii) and (D) 0 to 35 parts by mass of an ethylene rubbery polymer (provided that (A), (B), ( The method for producing a thermoplastic resin composition according to any one of claims 1 to 6, wherein the total of C) and (D) is 100 parts by mass) by chaos mixing using a twin screw extruder.
  8. カオス混合が、粒子追跡法において、線長さ(L)、初期線長さ(L)とするとき、仮想的な線の伸びの対数(lnL/L)が2以上となるカオス混合である請求項7記載の熱可塑性樹脂組成物の製造方法。 Chaotic mixing is a chaotic mixing in which the logarithm of the imaginary line elongation (lnL / L 0 ) is 2 or more when the line length (L) and the initial line length (L 0 ) are used in the particle tracking method. A method for producing a thermoplastic resin composition according to claim 7.
  9. 少なくとも前記(A)および(C)を、二軸押出機においてカオス混合により溶融混練した後、前記(B)および/または(D)をさらに配合して溶融混練する工程を有する請求項7または8記載の熱可塑性樹脂組成物の製造方法。 9. The method according to claim 7, further comprising the step of melt-kneading at least the (A) and (C) by further blending the (B) and / or (D) after being melt-kneaded by chaos mixing in a twin-screw extruder. The manufacturing method of the thermoplastic resin composition of description.
PCT/JP2014/063785 2013-05-28 2014-05-26 Thermoplastic resin composition and method for producing same WO2014192673A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480030727.2A CN105246968B (en) 2013-05-28 2014-05-26 Thermoplastic resin composition and its manufacture method
JP2014528765A JP6464746B2 (en) 2013-05-28 2014-05-26 Thermoplastic resin composition and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013111506 2013-05-28
JP2013-111506 2013-05-28
JP2013178038 2013-08-29
JP2013-178038 2013-08-29
JP2014014030 2014-01-29
JP2014-014030 2014-01-29

Publications (1)

Publication Number Publication Date
WO2014192673A1 true WO2014192673A1 (en) 2014-12-04

Family

ID=51988705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063785 WO2014192673A1 (en) 2013-05-28 2014-05-26 Thermoplastic resin composition and method for producing same

Country Status (4)

Country Link
JP (1) JP6464746B2 (en)
CN (1) CN105246968B (en)
TW (1) TW201502148A (en)
WO (1) WO2014192673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183205A (en) * 2015-03-25 2016-10-20 三井化学株式会社 Polymer composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109177014A (en) * 2018-10-30 2019-01-11 海安亚鼎机电制造有限公司 The processing method of staircase part
WO2020240935A1 (en) * 2019-05-27 2020-12-03 中越パルプ工業株式会社 Melt mixture, melt mixture production method, composition, composition production method, and molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543758A (en) * 1991-05-23 1993-02-23 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH069840A (en) * 1992-06-23 1994-01-18 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH0711081A (en) * 1993-06-28 1995-01-13 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH07118508A (en) * 1993-10-27 1995-05-09 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH09302173A (en) * 1996-05-10 1997-11-25 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH11106579A (en) * 1997-10-07 1999-04-20 Denki Kagaku Kogyo Kk Production of thermoplastic resin composition
JPH11116751A (en) * 1997-10-20 1999-04-27 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH11228769A (en) * 1998-02-16 1999-08-24 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025872A (en) * 2010-07-26 2012-02-09 Daimaru Sangyo Kk Fiber-reinforced thermoplastic resin composition and method for producing the fiber-reinforced thermoplastic resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543758A (en) * 1991-05-23 1993-02-23 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH069840A (en) * 1992-06-23 1994-01-18 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH0711081A (en) * 1993-06-28 1995-01-13 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH07118508A (en) * 1993-10-27 1995-05-09 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH09302173A (en) * 1996-05-10 1997-11-25 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its production
JPH11106579A (en) * 1997-10-07 1999-04-20 Denki Kagaku Kogyo Kk Production of thermoplastic resin composition
JPH11116751A (en) * 1997-10-20 1999-04-27 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH11228769A (en) * 1998-02-16 1999-08-24 Denki Kagaku Kogyo Kk Thermoplastic resin composition and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183205A (en) * 2015-03-25 2016-10-20 三井化学株式会社 Polymer composition

Also Published As

Publication number Publication date
CN105246968A (en) 2016-01-13
JPWO2014192673A1 (en) 2017-02-23
CN105246968B (en) 2018-02-16
TW201502148A (en) 2015-01-16
JP6464746B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP4788824B2 (en) Method for producing thermoplastic resin composition
KR101267713B1 (en) Styrene resin composition and process for producing the same
JP4600016B2 (en) Thermoplastic resin composition and method for producing the same
JP2005187809A (en) Resin composition and its production process
JP2006347151A (en) Manufacturing method for thermoplastic resin composition
JP2006241201A (en) Styrene-based resin composition and method for producing the same
US20220235217A1 (en) Resin composition, method for producing resin composition, and molded article
JP5494526B2 (en) Polyphenylene sulfide resin composition and molded article thereof
JP6464746B2 (en) Thermoplastic resin composition and method for producing the same
JP2007197695A (en) Method for producing styrenic resin composition and its molded article
JP2002129014A (en) Polyphenylene sulfide resin composition and its molded article
KR101949555B1 (en) Thermoplastic resin composition and molded article of same
JP4096410B2 (en) Thermoplastic resin composition and connector
JP2011153294A (en) Reinforced styrenic resin composition and molding comprising the same
JP2009007533A (en) Styrene-based resin composition and molded article molded from the same
JP2009068005A (en) Thermoplastic resin composition and molded article formed of it
JP4946367B2 (en) Styrenic resin composition and method for producing the same
JP2013053289A (en) Polypropylene resin composition and method of manufacturing the same
JP2011132523A (en) Styrene resin composition and molded product consisting of the same
JP5167585B2 (en) Styrenic resin composition
JP3950796B2 (en) Thermoplastic resin composition and molded article
WO2021153123A1 (en) Energy-absorbing member
JP2016102151A (en) Polyphenylene sulfide resin composition and molded article containing the same
JP2002265768A (en) Electroconductive resin composition and molded article made therefrom
JP2010254967A (en) Styrene-based resin composition and molded product composed of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804445

Country of ref document: EP

Kind code of ref document: A1