WO2014192347A1 - Optical sensor inspection system and optical sensor inspection method - Google Patents

Optical sensor inspection system and optical sensor inspection method Download PDF

Info

Publication number
WO2014192347A1
WO2014192347A1 PCT/JP2014/054946 JP2014054946W WO2014192347A1 WO 2014192347 A1 WO2014192347 A1 WO 2014192347A1 JP 2014054946 W JP2014054946 W JP 2014054946W WO 2014192347 A1 WO2014192347 A1 WO 2014192347A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensor
light
inspection
image data
screen
Prior art date
Application number
PCT/JP2014/054946
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 藤井
雄亮 増田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2015519694A priority Critical patent/JP5897213B2/en
Publication of WO2014192347A1 publication Critical patent/WO2014192347A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to an inspection system and an inspection method for an optical sensor provided on a moving body.
  • detection light is emitted from the optical sensor provided in the vehicle toward the front of the vehicle.
  • the detection light is applied to the obstacle, and the obstacle is detected by the light sensor receiving the reflected light reflected from the obstacle.
  • a screen is irradiated with detection light from the optical sensor, and an irradiation range of the optical sensor is grasped based on a light pattern projected on the screen (for example, Patent Document 1). reference).
  • the present invention solves the above-described problems, and provides an inspection system and an inspection method capable of detecting the position of the light emitting portion and the optical pattern of the optical sensor and detecting the irradiation direction of the optical sensor provided on the moving body. This is the issue.
  • the present invention provides an optical sensor inspection system provided on a moving body, and a translucent screen on which detection light is emitted from the optical sensor, and a light emitting unit of the optical sensor And an imaging device that captures the light pattern of the detection light that has passed through the screen, and an inspection device that receives the light-emitting unit and the captured image data of the light pattern from the imaging device.
  • the inspection apparatus includes a vertical angle detection unit that detects a vertical angle in an irradiation direction of the photosensor from the position of the light emitting unit and the position of the light pattern in the captured image data. Is desirable.
  • the inspection apparatus includes a left-right angle detection unit that detects a left-right angle of the irradiation direction of the photosensor from the position of the light emitting unit and the position of the light pattern in the captured image data. It is desirable. In these configurations, it is possible to detect a deviation (vertical angle, horizontal angle) with respect to the reference angle in the irradiation direction of the optical sensor.
  • the inspection apparatus when the inspection apparatus includes a rotation angle detection unit that detects a rotation angle of the optical pattern of the captured image data, a shift (rotation angle) with respect to a reference angle around the optical axis of the optical sensor. ) Can be detected.
  • the inspection apparatus includes a trapezoidal distortion correction unit that corrects a trapezoidal distortion of the optical pattern of the captured image data.
  • a trapezoidal distortion correction unit that corrects a trapezoidal distortion of the optical pattern of the captured image data.
  • the screen can be freely moved in and out of the moving area of the moving body, and the imaging device is disposed outside the moving area of the moving body. It is desirable to make it easy to move to the next step.
  • the imaging device is installed on a gate-shaped support base provided in a region for inspecting the optical axis of the light of the mobile body, and the mobile body can pass through the support body. It is desirable that
  • the imaging device is any one of an infrared camera, a color camera, and a monochrome camera.
  • the step of irradiating the screen with the detection light from the optical sensor provided on the moving body, and the light emitting unit and the optical pattern by the imaging device And a step of detecting an irradiation direction of the light sensor from the position of the light emitting unit and the position of the light pattern in the photographed image data.
  • the inspection apparatus includes a trapezoidal distortion correction unit that corrects the trapezoidal distortion of the optical pattern of the captured image data, and the inspection apparatus corrects the trapezoidal distortion of the optical pattern of the captured image data. After that, it is desirable to detect the irradiation direction of the detection light by the inspection apparatus.
  • the screen is raised and the light emitting unit is photographed by the photographing device.
  • the moving body can be moved.
  • the moving body includes a sensor control device that controls the optical sensor.
  • a signal input device is connected to the sensor control device, and the optical sensor does not detect an obstacle from the signal input device to the sensor control device. It is desirable to input a normal pseudo signal indicating the above.
  • the moving body includes a device control apparatus that controls an apparatus mounted on the moving body, a sensor control apparatus that controls the optical sensor, the device control apparatus, and the sensor control apparatus. And a central control device for controlling.
  • the central control device has a normal movement mode in which the moving body performs a collision avoidance operation when an obstacle detection signal is input from the optical sensor to the sensor control device.
  • the central control unit can switch to the in-factory movement mode in which the moving body does not execute the collision avoiding operation even when the detection signal is input to the sensor control unit. desirable.
  • the central control unit is switched to the in-factory movement mode, so that even if the optical sensor detects peripheral equipment or an operator, the moving body performs a collision avoidance operation. Can be prevented. Thereby, the moving body can smoothly enter and leave the inspection area. Moreover, it can prevent that a mobile body and peripheral equipment contact, and can prevent damage to a mobile body and peripheral equipment.
  • the positions of the light emitting part and the optical pattern of the optical sensor are detected from the captured image data, and the irradiation direction of the optical sensor is determined based on the positional relationship between the light emitting part and the optical pattern. Since it can be detected, the mounting position and mounting angle of the optical sensor can be accurately adjusted so that the optical sensor irradiates a predetermined range.
  • (A) is the figure which showed the picked-up image data before correcting trapezoid distortion
  • (b) is the figure which showed the picked-up image data after correcting trapezoid distortion.
  • (A) is explanatory drawing which showed determination of the up-down angle of the irradiation direction of detection light
  • (b) is explanatory drawing which showed the shift
  • (A) is explanatory drawing which showed determination of the left-right angle of the irradiation direction of detection light
  • (b) is explanatory drawing which showed the shift
  • (A) is explanatory drawing of the structure which inputs a normal pseudo signal into a sensor control apparatus
  • (b) is explanatory drawing of the structure which switches a central control apparatus to the movement mode in a factory.
  • an optical sensor 2 that detects an obstacle in front of the vehicle 1 is used in a collision prevention device for a vehicle 1 that is a four-wheeled vehicle (a “moving body” in the claims).
  • An inspection system 10 and an inspection method for inspection will be described.
  • the optical sensor 2 is attached to the front end of the ceiling surface, the inner surface of the windshield, and the like in the interior of the vehicle 1.
  • the light sensor 2 has a light emitting portion 2a facing forward, and emits infrared detection light (light in the wavelength region of invisible light) toward the front of the vehicle 1 from the light emitting portion 2a. Further, when the obstacle is irradiated with the detection light, the optical sensor 2 receives the reflected light reflected from the obstacle.
  • the mounting position of the optical sensor 2 can be detected.
  • difference with respect to the reference value of the up-and-down angle of the irradiation direction of the detection light irradiated from the light emission part 2a of the optical sensor 2 is detectable.
  • FIG. 6A it is possible to detect a deviation from the reference value of the left-right angle in the irradiation direction of the detection light.
  • FIG. 8 it is possible to detect a deviation of the rotation angle of the detection light from the reference value.
  • the inspection system 10 is provided in an area for inspecting the optical axis of the headlight of the vehicle 1 in the inspection process of the automobile production line.
  • the inspection system 10 includes a screen 20 disposed in front of the vehicle 1 placed on the facing device 3, a support base 30 disposed in front of the vehicle 1 placed on the facing device 3, and an optical sensor. 2 and a photographing device 40 for photographing the screen 20, and an inspection device 50 (see FIG. 2) to which photographed image data is input from the photographing device 40.
  • the facing device 3 includes four roller support portions 3 a provided on the floor surface 4.
  • the roller support portion 3a includes a pair of rollers 3b arranged at the front and rear, and the wheel 1a of the vehicle 1 is placed thereon.
  • the vehicle 1 By placing each wheel 1a of the vehicle 1 on each roller support portion 3a, the vehicle 1 can be positioned in the front-rear direction. Moreover, the wheel 1a can be driven on the roller support part 3a, and the instrument of the vehicle 1 can be test
  • the screen 20 is disposed in front of the windshield of the vehicle 1 so as to face the light emitting portion 2 a of the optical sensor 2.
  • the front surface 21 of the screen 20 is disposed on a vertical line that passes through the axle of the wheel 1 a in front of the vehicle 1.
  • the rear surface 22 of the screen 20 is irradiated with detection light from the optical sensor 2.
  • the screen 20 can be raised and lowered by a lifting device (not shown). By raising the screen 20, the screen 20 can be moved outside the moving region (a position higher than the vehicle 1) when the vehicle 1 is moved forward.
  • the screen 20 is a semi-light transmission type screen in which the detection light applied to the rear surface 22 is transmitted to the front surface 21.
  • the detection light is irradiated on the rear surface 22 of the screen 20
  • the light pattern 100 of the detection light is displayed on the front surface 21.
  • the light pattern 100 composed of three rectangular figures of the central region 110 and the left and right regions 120 is displayed on the front surface 21 of the screen 20.
  • the support table 30 is a gate-shaped frame body that supports an upper frame 32 by four support columns 31 erected on the floor surface 4.
  • the vehicle 1 faces the support base 30.
  • the width of the left and right support columns 31 and the height of the upper frame 32 are set so that the support table 30 allows the vehicle 1 to pass through the support table 30 when the vehicle 1 is moved forward.
  • the imaging device 40 is an infrared camera or a monochrome camera that can capture light in a region close to the wavelength region of visible light.
  • the imaging device 40 is attached to the support base 30 and images the light emitting portion 2a of the optical sensor 2 and the front surface 21 of the screen 20 from obliquely above. Further, the photographing device 40 outputs the photographed captured image data to an inspection device 50 (see FIG. 2) described later.
  • the photographing device 40 is suspended from the upper frame 32 of the support base 30 and is disposed outside the moving region (a position higher than the vehicle 1) when the vehicle 1 is moved forward.
  • the imaging device 40 may be separately installed on a gate-shaped frame in which an optical axis inspection device for inspecting the optical axis of the headlight of the vehicle 1 is installed.
  • an optical axis inspection device for inspecting the optical axis of the headlight of the vehicle 1 is installed.
  • the light in the wavelength region of invisible light that can be captured by the monochrome camera is light in a region close to the wavelength region of visible light, so the amount of light is small.
  • the visible light is also imaged and dazzled. Therefore, it is preferable to attach a visible light cut filter in front of the light receiving unit of the monochrome camera.
  • a color camera that can capture light in a region close to the wavelength region of visible light may be used.
  • the photographing device 40 photographs the light pattern 100 (see FIG. 2) projected on the front surface 21 of the screen 20 with the screen 20 lowered, and photographs the light emitting unit 2a with the screen 20 raised. .
  • the inspection device 50 includes a storage unit 51 that stores captured image data, a trapezoidal distortion correction unit 52 that corrects trapezoidal distortion of the light pattern 100 of the captured image data, and upper and lower directions of the detection light irradiation direction.
  • Vertical angle detection means 53 for detecting the angle
  • left / right angle detection means 54 for detecting the left / right angle of the irradiation direction of the detection light
  • rotation angle detection means 55 for detecting the rotation angle of the detection light
  • the irradiation direction of the detection light Determination means 56 for determining the rotation angle of the detection light.
  • the inspection device 50 is a computer that detects the irradiation direction and the rotation angle of the detection light. Each process in the inspection apparatus 50 is realized by executing a program stored in the storage unit 51 by the CPU.
  • the storage unit 51 stores photographed image data and various programs. Further, the storage means 51 stores the height Ha between the reference point O set on the front surface 21 of the screen 20 and the floor surface 4 (see FIG. 5). Note that the mounting position of the imaging device 40 is adjusted so that the reference point O is arranged at the center position of the captured image data after the trapezoidal distortion correction.
  • the storage means 51 stores a distance L1 between the light emitting unit 2a and the front surface 21 of the screen 20 (see FIG. 5). The distance L1 is different for each model of the vehicle 1, and the storage unit 51 stores the distances L1 of a plurality of models.
  • the storage means 51 stores pixel distance data (resolution) in which the vertical and horizontal sizes of one pixel of the captured image data correspond to the actual distance of the front surface 21 of the screen 20.
  • the pixel distance data indicates how many mm of the front surface 21 of the screen 20 corresponds to the size of one pixel in the captured image data.
  • the pixel distance data is obtained by photographing the four points at predetermined intervals set on the front surface 21 of the screen 20 in advance by the photographing device 40 during the calibration of the photographing device 40, and obtaining the number of pixels between the two points in the photographed image data. Is calculated by
  • the trapezoidal distortion correction means 52 corrects trapezoidal distortion generated in the image of the light emitting unit 2a and the light pattern 100 of the captured image data, and converts it into captured image data after correcting the trapezoidal distortion.
  • the imaging device 40 is disposed above the screen 20. Therefore, the photographing device 40 photographs the light pattern 100 projected on the light emitting unit 2a and the front surface 21 of the screen 20 from obliquely above. For this reason, as shown in FIG. 3A, trapezoidal distortion occurs in the light emitting unit 2a and the light pattern 100 of the captured image data.
  • the trapezoidal distortion correcting unit 52 corrects the distance from the reference point O (center position) of the captured image data to the point group constituting the light spot of the light emitting unit 2a and the light point group constituting the light pattern 100. That is, the trapezoidal distortion correcting means 52 aims to correctly represent the position of the captured image data from the reference point O with respect to the point group constituting the light spot of the light emitting unit 2a and the light point group constituting the light pattern 100. Correct as As a result, as shown in FIG. 3B, trapezoidal distortion is eliminated from the contours of the light emitting section 2a and the light pattern 100 in the captured image data.
  • the trapezoidal distortion correction unit 52 corrects the trapezoidal distortion of the light pattern 100 using a known image processing method.
  • the vertical angle detection means 53 includes a height H1 (see FIG. 5) between the light pattern 100 projected on the front surface 21 of the screen 20 and the floor surface 4, and the light emitting unit 2a and the floor surface. 4 is detected, and the vertical angle ⁇ 1 (see FIG. 5) in the irradiation direction of the detection light is detected.
  • the vertical direction (Y-axis direction) between the reference point O and the center position P1 of the central area 110 of the light pattern 100. ) Is calculated.
  • the height Y1 from the reference point O of the screen 20 to the center position P1 of the light pattern 100 projected on the screen 20 is calculated as shown in FIG.
  • the height H1 between the center position P1 of the light pattern 100 projected on the screen 20 and the floor surface 4 is calculated.
  • the trapezoidal distortion of the light pattern 100 of the photographed image data is corrected by the trapezoidal distortion correction means 52, the center position of the light pattern 100 projected on the screen 20 based on the light pattern 100 of the photographed image data.
  • the height H1 between P1 and the floor surface 4 can be calculated accurately and easily.
  • the vertical angle detection means 53 calculates the number of pixels between the reference point O and the light emitting unit 2a in the vertical direction (Y-axis direction) in the captured image data after trapezoidal distortion correction. By multiplying the number of pixels by the pixel distance data, the height Y2 from the reference point O of the screen 20 to the light emitting unit 2a is calculated. By adding this height Y2 to the height Ha of the reference point O of the screen 20, the height H2 between the light emitting portion 2a and the floor surface 4 is calculated.
  • the vertical angle detection means 53 uses the distance L1 between the light emitting portion 2a and the front surface 21 of the screen 20 and the above-described heights H1 and H2 to detect the detection light with respect to the horizontal line according to the following formula 1.
  • the vertical angle ⁇ 1 in the irradiation direction is detected, and the detection result is output to the determination means 56 (see FIG. 2).
  • ⁇ 1 arctan ((H2 ⁇ H1) / L1) (Formula 1)
  • the left-right angle detection means 54 is a distance W1 in the left-right direction between the light pattern 100 projected on the front surface 21 of the screen 20 and the center position in the left-right direction (vehicle width direction) of the vehicle 1 (FIG. 7). And a distance W2 (see FIG. 7) between the light emitting unit 2a and the center position in the vehicle width direction of the vehicle 1 is calculated, and a left-right angle ⁇ 2 (see FIG. 7) in the detection light irradiation direction is detected.
  • the reference point O see FIG. 6B
  • the reference point O of the captured image data after the trapezoidal distortion correction is arranged at the center position in the vehicle width direction of the vehicle 1. The mounting position has been adjusted.
  • the left / right angle detection means 54 in the captured image data after trapezoidal distortion correction, the left / right direction (X-axis direction) between the reference point O and the center position P 1 of the central region 110 of the light pattern 100. ) Is calculated.
  • the distance W1 in the left-right direction from the reference point O of the screen 20 to the center position P1 of the light pattern 100 projected on the screen 20 is calculated as shown in FIG.
  • the left / right angle detection means 54 calculates the number of pixels between the reference point O and the light emitting unit 2a in the left / right direction (X-axis direction) in the captured image data after trapezoidal distortion correction. By multiplying the pixel distance data by the pixel distance data, the distance W2 in the left-right direction from the reference point O of the screen 20 to the light emitting unit 2a is calculated.
  • the left / right angle detection means 54 uses the distance L1 and the distances W1, W2 between the light emitting portion 2a and the front surface 21 of the screen 20 to detect the vehicle 1 in the front-rear direction according to the following equation (2).
  • the left-right angle ⁇ 2 in the light irradiation direction is detected, and the detection result is output to the determination means 56 (see FIG. 2).
  • ⁇ 2 arctan ((W1-W2) / L1) (Formula 2)
  • the rotation angle detection means 55 detects a rotation angle around the optical axis of the light pattern 100 with respect to the horizontal line. As shown in FIG. 9, the rotation angle detection means 55 detects the angle between the upper side of the central area 110 of the light pattern 100 and the horizontal line in the captured image data after the trapezoidal distortion correction, so that the light with respect to the horizontal line is detected. The rotation angle ⁇ 3 around the optical axis of the pattern 100 is detected, and the detection result is output to the determination means 56 (see FIG. 2).
  • the determination unit 56 includes the vertical angle ⁇ 1 (see FIG. 5) of the detection light irradiation direction input from the vertical angle detection unit 53 and the detection light irradiation direction stored in the storage unit 51 in advance. Is compared with the reference value of the vertical angle of. Then, as shown in FIG. 4A, the determination unit 56 determines whether the vertical angle in the irradiation direction of the detection light emitted from the sensor 2 is within an allowable range, and displays it on a display unit such as a monitor. Output the judgment result.
  • the determination unit 56 includes the left and right angle ⁇ 2 (see FIG. 7) of the detection light irradiation direction input from the left and right angle detection unit 54, and the detection light stored in the storage unit 51 in advance. The reference value of the left and right angle in the irradiation direction is compared. Then, as shown in FIG. 6A, the determination unit 56 determines whether or not the left and right angle of the irradiation direction of the detection light emitted from the optical sensor 2 is within an allowable range, and displays such as a monitor. The judgment result is output to.
  • the determination unit 56 includes the rotation angle ⁇ 3 (see FIG. 9) around the optical axis of the detection light input from the rotation angle detection unit 55 and the detection light stored in advance in the storage unit 51. Are compared with the reference value of the rotation angle around the optical axis. Then, as shown in FIG. 8, the determination unit 56 determines whether or not the rotation angle around the optical axis of the detection light emitted from the optical sensor 2 is within an allowable range, and determines the display unit such as a monitor. Output the result.
  • step S ⁇ b> 1 in FIG. 10 the vehicle 1 is placed on the facing device 3, and the vehicle 1 is directly facing the support base 30 (step S ⁇ b> 1 in FIG. 10).
  • the screen 20 can be moved upward to prevent contact between the vehicle 1 and the screen 20.
  • the screen 20 is lowered, the screen 20 is disposed in front of the vehicle 1, and the detection light is irradiated on the rear surface 22 of the screen 20 from the light emitting unit 2 a of the optical sensor 2 (step S ⁇ b> 2 in FIG. 10). .
  • the detection light applied to the rear surface 22 of the screen 20 is transmitted through the front surface 21, and the light pattern 100 of the detection light is displayed on the front surface 21.
  • the light pattern 100 projected on the front surface 21 of the screen 20 is photographed by the photographing device 40, and the photographed image data is stored in the storage means 51 of the inspection device 50 (step S3 in FIG. 10).
  • the screen 20 is raised, the light emitting unit 2a is photographed by the photographing device 40, and the photographed image data is stored in the storage means 51 of the inspection device 50 (step S4 in FIG. 10).
  • the trapezoidal distortion of the light pattern 100 of the captured image data stored in the storage unit 51 is corrected by the trapezoidal distortion correction unit 52 (step S5 in FIG. 10).
  • the vertical angle detection means 53 detects the height H2 (see FIG. 5) between the light emitting unit 2a and the floor surface 4 and the vertical angle ⁇ 1 (see FIG. 5) of the irradiation direction of the detection light with respect to the horizontal line. A detection result is output to the determination means 56 (step S6 of FIG. 10).
  • the distance W2 (see FIG. 7) between the light emitting portion 2a and the center position in the left / right direction of the vehicle 1, and the left / right angle ⁇ 2 of the detection light irradiation direction with respect to the front / rear direction of the vehicle 1 ) And the detection result is output to the determination means 56 (step S7 in FIG. 10).
  • the rotation angle detection means 55 detects the rotation angle ⁇ 3 (see FIG. 9) around the optical axis of the detection light with respect to the horizontal line, and outputs the detection result to the determination means 56 (step S8 in FIG. 10).
  • the determination unit 56 displays the vertical and horizontal angles in the irradiation direction of the detection light and the determination result of the detection light on the display unit (step S9 in FIG. 10).
  • the worker adjusts the mounting position (mounting angle) of the optical sensor 2 based on the determination result of the determination unit 56 to irradiate the predetermined area with the detection light from the optical sensor 2.
  • the vehicle 1 After the adjustment of the irradiation direction of the optical sensor 2 is completed, the vehicle 1 is moved below the screen 20 and inside the support base 30 to move to the next process.
  • the positions of the light emitting unit 2a and the optical pattern 100 of the optical sensor 2 are detected from the captured image data, and the light emitting unit 2a and the optical pattern are detected. Since the irradiation direction of the optical sensor 2 can be detected based on the positional relationship with the optical sensor 100, the mounting position and the mounting angle of the optical sensor 2 are accurately adjusted so that the optical sensor 2 irradiates a predetermined range. be able to.
  • the inspection apparatus 50 since the inspection apparatus 50 includes the trapezoidal distortion correction unit 52 that corrects the trapezoidal distortion of the optical pattern 100 of the captured image data, the detection accuracy of the positions of the light emitting unit 2a and the optical pattern 100 of the optical sensor 2, the optical sensor The detection accuracy of the irradiation direction 2 can be increased.
  • the screen 20 can be moved inside and outside the moving area of the vehicle 1, and the photographing device 40 is arranged outside the moving area of the vehicle 1. It is easy to move the vehicle 1 to the next process after the completion of the inspection of No. 2.
  • FIG. 11A when the optical sensor 2 detects peripheral equipment or an operator during inspection of the optical sensor 2 and the vehicle 1 performs a collision avoiding operation such as a sudden stop, the vehicle 1 is inspected in the inspection area A2. Cannot enter and exit. Further, when the traveling vehicle 1 performs the collision avoidance operation in the inspection area A2, there is a possibility that the vehicle 1 and the peripheral equipment come into contact with each other.
  • the inspection operator connects the signal input device 5a from the outside of the vehicle 1 to the sensor control device 5 of the vehicle 1, so that the vehicle 1 collides.
  • the avoidance action is not executed.
  • the sensor control device 5 is an electronic control device that controls the optical sensor 2 mounted on the vehicle 1.
  • the optical sensor 2 and the sensor control device 5 are integrally formed, but the optical sensor 2 and the sensor control device 5 may be formed separately and connected by a cable.
  • the signal input device 5a is an electronic control device for extracting information stored in an electronic storage medium or the like connected to an electronic control device or the like mounted on the vehicle 1 or the like in the assembly line. This is a portable information terminal used by an inspection operator or the like. Then, the signal input device 5a outputs a normal pseudo signal indicating, in a pseudo manner, that the optical sensor 2 has not detected an obstacle to the sensor control device 5.
  • the sensor control device 5 determines that the optical sensor 2 does not detect an obstacle even if the optical sensor 2 detects an obstacle. To do. Thereby, even if the optical sensor 2 detects an obstacle, the vehicle 1 enters a state where the collision avoidance operation is not executed.
  • a normal pseudo signal is continuously input from the input device 5a to the sensor control device 5.
  • the vehicle 1 executes a collision avoidance operation when the optical sensor 2 detects an obstacle. It can be returned to the state.
  • the central control device 6 is an electronic control device connected to a plurality of device control devices 7 and sensor control devices 5 mounted on the vehicle 1 by a CAN (Controller Area Network) standardized by the ISO standard. An abnormal signal indicating that the optical sensor 2 has detected an obstacle is input from the sensor control device 5 to the central control device 6.
  • the device control device 7 is an electronic control device that controls various devices such as an engine and a brake, and is, for example, a fuel injection control device 7a or a brake fluid pressure control device 7b.
  • the central controller 6 has a normal movement mode that causes the vehicle 1 to execute a collision avoidance operation when an abnormal signal is input from the sensor controller 5. At the normal time of traveling on a general road, the central controller 6 is set to the normal movement mode.
  • the central control device 6 has an in-factory movement mode that does not cause the vehicle 1 to execute a collision avoidance operation even when an abnormal signal is input from the sensor control device 5. Then, after the optical sensor 2 is assembled to the vehicle 1 until the vehicle 1 is shipped from the factory, the central controller 6 is switched from the normal movement mode to the in-factory movement mode.
  • the control mode of the central control device 6 is switched by connecting a computer to the central control device 6 and switching a plurality of mode programs written in the electronic storage medium of the central control device 6 by this computer.
  • the vehicle 1 can be prevented from executing the collision avoiding operation, and therefore the vehicle 1 can be smoothly moved in the factory. Can do. Further, contact between the vehicle 1 and peripheral equipment can be prevented, and damage to the vehicle 1 and peripheral equipment can be prevented.
  • the central controller 6 only needs to be set to the factory movement mode at least when the optical sensor 2 is inspected.
  • the computer connected to the central control device 6 is used to switch the mode / program written in the electronic storage medium of the central control device 6 so that the in-factory movement mode can be used. It can be switched to the normal movement mode. Further, the in-factory movement mode program written in the electronic storage medium of the central controller 6 may be rewritten to a normal movement mode program.
  • the present invention has been described above, but the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • the light emitting unit 2 a of the optical sensor 2 and the light pattern 100 projected on the front surface 21 of the screen 20 are separately photographed by the photographing device 40, but the light emitting unit 2 a You may install the imaging device 40 so that the light pattern 100 can be image
  • the screen 20 may be lowered and the light pattern 100 projected on the screen 20 may be photographed by the photographing device 40.
  • the inspection immediately after the inspection by the inspection system is completed.
  • the vehicle 1 can be moved in the traveling direction.
  • the optical sensor 2 provided in the vehicle 1 which is a four-wheeled vehicle is inspected using the inspection system and the inspection method of the present invention has been described.
  • the present invention can be applied to various types of moving bodies, and can be applied to moving bodies such as two-wheeled vehicles and autonomous bipedal walking robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Input (AREA)

Abstract

Disclosed is an inspection system (10) for an optical sensor (2) that is provided in a vehicle (1). The inspection system is provided with: a semi light transmitting screen (20) to be irradiated with detection light from the optical sensor (2); a photographing apparatus (40) that photographs a light emitting section (2a) of the optical sensor (2), and an optical pattern (100) of the detection light that has passed through the screen (20); and an inspection apparatus (50) to which photographed image data of the light emitting section (2a) and the optical pattern (100) are inputted from the photographing apparatus (40). With such configuration, the irradiation direction of the optical sensor (2) can be detected on the basis of the positional relationship between the light emitting section (2a) and the optical pattern (100).

Description

光センサの検査システムおよび光センサの検査方法Optical sensor inspection system and optical sensor inspection method
 本発明は、移動体に設けられた光センサの検査システムおよび検査方法に関する。 The present invention relates to an inspection system and an inspection method for an optical sensor provided on a moving body.
 車両の衝突防止装置では、車両に設けられた光センサから車両の前方に向けて検出光を照射している。車両の前方に障害物が存在している場合には、検出光が障害物に照射され、障害物から反射した反射光を光センサが受光することで障害物を検出している。 In the vehicle collision prevention device, detection light is emitted from the optical sensor provided in the vehicle toward the front of the vehicle. When an obstacle is present in front of the vehicle, the detection light is applied to the obstacle, and the obstacle is detected by the light sensor receiving the reflected light reflected from the obstacle.
 車両製造時に光センサを検査する方法としては、光センサから検出光をスクリーンに照射し、スクリーンに映し出された光パターンに基づいて、光センサの照射範囲を把握している(例えば、特許文献1参照)。 As a method for inspecting an optical sensor at the time of manufacturing a vehicle, a screen is irradiated with detection light from the optical sensor, and an irradiation range of the optical sensor is grasped based on a light pattern projected on the screen (for example, Patent Document 1). reference).
特許4061822号公報Japanese Patent No. 4061822
 しかしながら、前記した検査方法では、光センサの発光部と光パターンとの位置関係を検出することができないため、光センサの照射方向を検出することができないという問題がある。 However, in the inspection method described above, there is a problem that it is impossible to detect the irradiation direction of the optical sensor because the positional relationship between the light emitting portion of the optical sensor and the optical pattern cannot be detected.
 本発明は、前記した問題を解決し、光センサの発光部および光パターンの位置を検出し、移動体に設けられた光センサの照射方向を検出することができる検査システムおよび検査方法を提供することを課題とする。 The present invention solves the above-described problems, and provides an inspection system and an inspection method capable of detecting the position of the light emitting portion and the optical pattern of the optical sensor and detecting the irradiation direction of the optical sensor provided on the moving body. This is the issue.
 前記課題を解決するため、本発明は、移動体に設けられた光センサの検査システムであって、前記光センサから検出光が照射される半光透過型のスクリーンと、前記光センサの発光部と前記スクリーンを透過した前記検出光の光パターンとを撮影する撮影装置と、前記撮影装置から前記発光部および前記光パターンの撮影画像データが入力される検査装置と、を備えている。 In order to solve the above-mentioned problems, the present invention provides an optical sensor inspection system provided on a moving body, and a translucent screen on which detection light is emitted from the optical sensor, and a light emitting unit of the optical sensor And an imaging device that captures the light pattern of the detection light that has passed through the screen, and an inspection device that receives the light-emitting unit and the captured image data of the light pattern from the imaging device.
 この構成では、撮影画像データから光センサの発光部および光パターンの位置を検出し、発光部と光パターンとの位置関係に基づいて、光センサの照射方向を検出することができる。 In this configuration, it is possible to detect the position of the light emitting portion and the light pattern of the light sensor from the captured image data, and to detect the irradiation direction of the light sensor based on the positional relationship between the light emitting portion and the light pattern.
 前記した検査システムにおいて、前記検査装置は、前記撮影画像データにおける前記発光部の位置と前記光パターンの位置とから前記光センサの照射方向の上下角度を検出する上下角度検出手段を備えていることが望ましい。
 また、前記した検査システムにおいて、前記検査装置は、前記撮影画像データにおける前記発光部の位置と前記光パターンの位置とから前記光センサの照射方向の左右角度を検出する左右角度検出手段を備えていることが望ましい。
 これらの構成では、光センサの照射方向の基準角度に対するずれ(上下角度、左右角度)を検出することができる。
In the inspection system described above, the inspection apparatus includes a vertical angle detection unit that detects a vertical angle in an irradiation direction of the photosensor from the position of the light emitting unit and the position of the light pattern in the captured image data. Is desirable.
In the inspection system described above, the inspection apparatus includes a left-right angle detection unit that detects a left-right angle of the irradiation direction of the photosensor from the position of the light emitting unit and the position of the light pattern in the captured image data. It is desirable.
In these configurations, it is possible to detect a deviation (vertical angle, horizontal angle) with respect to the reference angle in the irradiation direction of the optical sensor.
 前記した検査システムにおいて、前記検査装置が前記撮影画像データの前記光パターンの回転角度を検出する回転角度検出手段を備えている場合には、光センサの光軸周りの基準角度に対するずれ(回転角度)を検出することができる。 In the inspection system described above, when the inspection apparatus includes a rotation angle detection unit that detects a rotation angle of the optical pattern of the captured image data, a shift (rotation angle) with respect to a reference angle around the optical axis of the optical sensor. ) Can be detected.
 前記した検査システムにおいて、前記検査装置は、前記撮影画像データの前記光パターンの台形歪を補正する台形歪補正手段を備えていることが望ましい。
 この構成では、スクリーン上の光パターンを斜めの方向から撮影したときに、撮影画像データの光パターンに生じる台形歪(キーストーン歪ともいう)を補正することができる。これにより、光センサの発光部および光パターンの位置の検出精度、光センサの照射方向の検出精度を高めることができる。
In the inspection system described above, it is preferable that the inspection apparatus includes a trapezoidal distortion correction unit that corrects a trapezoidal distortion of the optical pattern of the captured image data.
With this configuration, it is possible to correct trapezoidal distortion (also referred to as keystone distortion) that occurs in the optical pattern of the captured image data when the optical pattern on the screen is captured from an oblique direction. Thereby, the detection accuracy of the position of the light emission part of a photosensor and a light pattern, and the detection accuracy of the irradiation direction of a photosensor can be improved.
 前記した検査システムにおいて、前記スクリーンを前記移動体の移動領域の内外に移設自在にするとともに、前記撮影装置を前記移動体の移動領域外に配置することで、光センサの検査完了後に、移動体を次工程に移動し易くすることが望ましい。 In the inspection system described above, the screen can be freely moved in and out of the moving area of the moving body, and the imaging device is disposed outside the moving area of the moving body. It is desirable to make it easy to move to the next step.
 前記した検査システムにおいて、前記撮影装置は、前記移動体のライトの光軸を検査するための領域に設けられた門形の支持台に設置されており、前記移動体が前記支持体内を通過可能であることが望ましい。 In the inspection system described above, the imaging device is installed on a gate-shaped support base provided in a region for inspecting the optical axis of the light of the mobile body, and the mobile body can pass through the support body. It is desirable that
 前記した検査システムにおいて、前記検出光が不可視光波長の光である場合には、前記撮影装置は、赤外線カメラ、カラーカメラおよびモノクロカメラのいずれかであることが望ましい。 In the inspection system described above, when the detection light is light having an invisible light wavelength, it is preferable that the imaging device is any one of an infrared camera, a color camera, and a monochrome camera.
 前記した検査システムを用いた光センサの検査方法としては、前記移動体に設けられた前記光センサから前記スクリーンに前記検出光を照射する段階と、前記撮影装置によって前記発光部および前記光パターンを撮影する段階と、前記検査装置において、前記撮影画像データにおける前記発光部の位置と前記光パターンの位置とから前記光センサの照射方向を検出する段階と、を備えている。 As an inspection method of the optical sensor using the inspection system described above, the step of irradiating the screen with the detection light from the optical sensor provided on the moving body, and the light emitting unit and the optical pattern by the imaging device And a step of detecting an irradiation direction of the light sensor from the position of the light emitting unit and the position of the light pattern in the photographed image data.
 この構成では、撮影画像データから光センサの発光部および光パターンの位置を検出し、発光部と光パターンとの位置関係に基づいて、光センサの照射方向を検出することができる。 In this configuration, it is possible to detect the position of the light emitting portion and the light pattern of the light sensor from the captured image data, and to detect the irradiation direction of the light sensor based on the positional relationship between the light emitting portion and the light pattern.
 前記した検査方法において、前記検査装置が前記撮影画像データの前記光パターンの台形歪を補正する台形歪補正手段を備えており、前記検査装置によって前記撮影画像データの前記光パターンの台形歪を補正した後に、前記検査装置によって前記検出光の照射方向を検出することが望ましい。 In the inspection method described above, the inspection apparatus includes a trapezoidal distortion correction unit that corrects the trapezoidal distortion of the optical pattern of the captured image data, and the inspection apparatus corrects the trapezoidal distortion of the optical pattern of the captured image data. After that, it is desirable to detect the irradiation direction of the detection light by the inspection apparatus.
 この構成では、撮影画像データの光パターンに生じる台形歪を補正することで、光センサの発光部および光パターンの位置の検出精度、光センサの照射方向の検出精度を高めることができる。 In this configuration, by correcting the trapezoidal distortion generated in the light pattern of the captured image data, it is possible to improve the detection accuracy of the position of the light emitting unit and the light pattern of the photosensor and the detection direction of the irradiation direction of the photosensor.
 前記撮影装置によって前記発光部および前記光パターンを撮影する段階において、前記撮影装置によって前記光パターンを撮影した後に、前記スクリーンを上昇させて、前記撮影装置によって前記発光部を撮影した場合には、検査システムによる検査が完了すると直ぐに移動体を移動させることができる。 In the step of photographing the light emitting unit and the light pattern by the photographing device, after photographing the light pattern by the photographing device, the screen is raised and the light emitting unit is photographed by the photographing device. As soon as the inspection by the inspection system is completed, the moving body can be moved.
 前記した光センサの検査方法において、前記移動体は、前記光センサを制御するセンサ制御装置を備えている。そして、前記光センサを検査する各段階において、前記センサ制御装置には信号入力装置を接続し、前記信号入力装置から前記センサ制御装置に対して、前記光センサが障害物を検出していないことを擬似的に示している正常疑似信号を入力することが望ましい。 In the above-described optical sensor inspection method, the moving body includes a sensor control device that controls the optical sensor. In each step of inspecting the optical sensor, a signal input device is connected to the sensor control device, and the optical sensor does not detect an obstacle from the signal input device to the sensor control device. It is desirable to input a normal pseudo signal indicating the above.
 光センサの検査時に、移動体が急停止等の衝突回避動作を実行すると、移動体を検査領域に進入および退出させるのが難しくなるとともに、移動体と周辺設備とが接触する虞がある。前記した構成では、光センサの検査時に、信号入力装置からセンサ制御装置に正常疑似信号を入力することで、光センサが周辺設備や作業者を検出した場合でも、移動体が衝突回避動作を実行するのを防ぐことができる。これにより、移動体を検査領域にスムーズに進入および退出させることができる。また、移動体と周辺設備とが接触するのを防ぐことができ、移動体や周辺設備の損傷を防ぐことができる。 When performing a collision avoidance operation such as a sudden stop when the optical sensor is inspected, it is difficult for the moving body to enter and exit the inspection area, and the mobile body and the peripheral equipment may come into contact with each other. In the configuration described above, when the optical sensor is inspected, a normal pseudo signal is input from the signal input device to the sensor control device, so that even when the optical sensor detects peripheral equipment or an operator, the moving body performs a collision avoidance operation. Can be prevented. Thereby, the moving body can smoothly enter and leave the inspection area. Moreover, it can prevent that a mobile body and peripheral equipment contact, and can prevent damage to a mobile body and peripheral equipment.
 前記した光センサの検査方法において、前記移動体は、前記移動体に搭載された装置を制御するデバイス制御装置と、前記光センサを制御するセンサ制御装置と、前記デバイス制御装置および前記センサ制御装置を制御する中央制御装置と、を備えている。前記中央制御装置は、前記センサ制御装置に前記光センサから障害物の検出信号が入力されたときに、前記移動体に衝突回避動作を実行させる通常移動モードを有している。そして、前記光センサを検査する各段階において、前記中央制御装置は、前記センサ制御装置に前記検出信号が入力されても、前記移動体に衝突回避動作を実行させない工場内移動モードに切り替えることが望ましい。 In the above-described optical sensor inspection method, the moving body includes a device control apparatus that controls an apparatus mounted on the moving body, a sensor control apparatus that controls the optical sensor, the device control apparatus, and the sensor control apparatus. And a central control device for controlling. The central control device has a normal movement mode in which the moving body performs a collision avoidance operation when an obstacle detection signal is input from the optical sensor to the sensor control device. In each stage of inspecting the optical sensor, the central control unit can switch to the in-factory movement mode in which the moving body does not execute the collision avoiding operation even when the detection signal is input to the sensor control unit. desirable.
 この構成では、工場内において、少なくとも光センサの検査時に、中央制御装置を工場内移動モードに切り替えることで、光センサが周辺設備や作業者を検出した場合でも、移動体が衝突回避動作を実行するのを防ぐことができる。これにより、移動体を検査領域にスムーズに進入および退出させることができる。また、移動体と周辺設備とが接触するのを防ぐことができ、移動体や周辺設備の損傷を防ぐことができる。 In this configuration, at least when the optical sensor is inspected in the factory, the central control unit is switched to the in-factory movement mode, so that even if the optical sensor detects peripheral equipment or an operator, the moving body performs a collision avoidance operation. Can be prevented. Thereby, the moving body can smoothly enter and leave the inspection area. Moreover, it can prevent that a mobile body and peripheral equipment contact, and can prevent damage to a mobile body and peripheral equipment.
 本発明の光センサの検査システムおよび検査方法では、撮影画像データから光センサの発光部および光パターンの位置を検出し、発光部と光パターンとの位置関係に基づいて、光センサの照射方向を検出することができるため、光センサが所定の範囲を照射するように、光センサの取付位置および取付角度を的確に調整することができる。 In the optical sensor inspection system and inspection method of the present invention, the positions of the light emitting part and the optical pattern of the optical sensor are detected from the captured image data, and the irradiation direction of the optical sensor is determined based on the positional relationship between the light emitting part and the optical pattern. Since it can be detected, the mounting position and mounting angle of the optical sensor can be accurately adjusted so that the optical sensor irradiates a predetermined range.
本実施形態の検査システムを示した側面図である。It is the side view which showed the inspection system of this embodiment. 本実施形態の検査装置を示した構成図である。It is the block diagram which showed the inspection apparatus of this embodiment. (a)は台形歪を補正する前の撮影画像データを示した図、(b)は台形歪を補正した後の撮影画像データを示した図である。(A) is the figure which showed the picked-up image data before correcting trapezoid distortion, (b) is the figure which showed the picked-up image data after correcting trapezoid distortion. (a)は検出光の照射方向の上下角度の判定を示した説明図、(b)は撮影画像データにおける光パターンの上下方向のずれを示した説明図である。(A) is explanatory drawing which showed determination of the up-down angle of the irradiation direction of detection light, (b) is explanatory drawing which showed the shift | offset | difference of the up-down direction of the light pattern in picked-up image data. 本実施形態の上下角度検出手段における上下角度の検出に用いられる各種の数値を示した説明図である。It is explanatory drawing which showed the various numerical values used for the detection of the up-down angle in the up-down angle detection means of this embodiment. (a)は検出光の照射方向の左右角度の判定を示した説明図、(b)は撮影画像データにおける光パターンの左右方向のずれを示した説明図である。(A) is explanatory drawing which showed determination of the left-right angle of the irradiation direction of detection light, (b) is explanatory drawing which showed the shift | offset | difference of the left-right direction of the light pattern in picked-up image data. 本実施形態の左右角度検出手段における左右角度の検出に用いられる各種の数値を示した説明図である。It is explanatory drawing which showed the various numerical values used for the detection of the left-right angle in the left-right angle detection means of this embodiment. 検出光の回転角度の判定を示した説明図である。It is explanatory drawing which showed determination of the rotation angle of a detection light. 撮影画像データにおける光パターンの回転角度のずれを示した説明図である。It is explanatory drawing which showed the shift | offset | difference of the rotation angle of the light pattern in picked-up image data. 本実施形態の検査方法のフローチャートである。It is a flowchart of the inspection method of this embodiment. (a)はセンサ制御装置に正常疑似信号を入力する構成の説明図、(b)は中央制御装置を工場内移動モードに切り替える構成の説明図である。(A) is explanatory drawing of the structure which inputs a normal pseudo signal into a sensor control apparatus, (b) is explanatory drawing of the structure which switches a central control apparatus to the movement mode in a factory.
 本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 本実施形態では、図1に示すように、四輪自動車である車両1(特許請求の範囲における「移動体」)の衝突防止装置において、車両1の前方の障害物を検出する光センサ2を検査するための検査システム10および検査方法について説明する。
Embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
In the present embodiment, as shown in FIG. 1, an optical sensor 2 that detects an obstacle in front of the vehicle 1 is used in a collision prevention device for a vehicle 1 that is a four-wheeled vehicle (a “moving body” in the claims). An inspection system 10 and an inspection method for inspection will be described.
 光センサ2は、車両1の室内において天井面の前端部やフロントガラスの内面等に取り付けられている。光センサ2は発光部2aが前方に向けられており、発光部2aから車両1の前方に向けて赤外線の検出光(不可視光の波長領域の光)を照射する。また、障害物に検出光が照射されると、障害物から反射した反射光を光センサ2が受光する。 The optical sensor 2 is attached to the front end of the ceiling surface, the inner surface of the windshield, and the like in the interior of the vehicle 1. The light sensor 2 has a light emitting portion 2a facing forward, and emits infrared detection light (light in the wavelength region of invisible light) toward the front of the vehicle 1 from the light emitting portion 2a. Further, when the obstacle is irradiated with the detection light, the optical sensor 2 receives the reflected light reflected from the obstacle.
 本実施形態の検査システム10および検査方法では、光センサ2の取付位置を検出することができる。また、図4(a)に示すように、光センサ2の発光部2aから照射される検出光の照射方向の上下角度の基準値に対するずれを検出することができる。また、図6(a)に示すように、検出光の照射方向の左右角度の基準値に対するずれを検出することができる。さらに、図8に示すように、検出光の回転角度の基準値に対するずれを検出することができる。 In the inspection system 10 and the inspection method of the present embodiment, the mounting position of the optical sensor 2 can be detected. Moreover, as shown to Fig.4 (a), the shift | offset | difference with respect to the reference value of the up-and-down angle of the irradiation direction of the detection light irradiated from the light emission part 2a of the optical sensor 2 is detectable. In addition, as shown in FIG. 6A, it is possible to detect a deviation from the reference value of the left-right angle in the irradiation direction of the detection light. Furthermore, as shown in FIG. 8, it is possible to detect a deviation of the rotation angle of the detection light from the reference value.
 検査システム10は、図1に示すように、自動車製造ラインの検査工程において、車両1のヘッドライトの光軸を検査するための領域に設けられている。検査システム10は、正対装置3に載置された車両1の前方に配置されるスクリーン20と、正対装置3に載置された車両1の前方に配置される支持台30と、光センサ2およびスクリーン20を撮影する撮影装置40と、撮影装置40から撮影画像データが入力される検査装置50(図2参照)と、を備えている。 As shown in FIG. 1, the inspection system 10 is provided in an area for inspecting the optical axis of the headlight of the vehicle 1 in the inspection process of the automobile production line. The inspection system 10 includes a screen 20 disposed in front of the vehicle 1 placed on the facing device 3, a support base 30 disposed in front of the vehicle 1 placed on the facing device 3, and an optical sensor. 2 and a photographing device 40 for photographing the screen 20, and an inspection device 50 (see FIG. 2) to which photographed image data is input from the photographing device 40.
 正対装置3は、床面4に設けられた四つのローラ支持部3aを備えている。ローラ支持部3aは、前後に配置された一対のローラ3bからなり、車両1の車輪1aが載置される。車両1の各車輪1aを各ローラ支持部3aに載せることで、車両1を前後方向に位置決めすることができる。また、ローラ支持部3a上で車輪1aを駆動させて、車両1の計器類を検査することができる。 The facing device 3 includes four roller support portions 3 a provided on the floor surface 4. The roller support portion 3a includes a pair of rollers 3b arranged at the front and rear, and the wheel 1a of the vehicle 1 is placed thereon. By placing each wheel 1a of the vehicle 1 on each roller support portion 3a, the vehicle 1 can be positioned in the front-rear direction. Moreover, the wheel 1a can be driven on the roller support part 3a, and the instrument of the vehicle 1 can be test | inspected.
 スクリーン20は、車両1のフロントガラスの前方において、光センサ2の発光部2aに対峙して配置されている。スクリーン20の前面21は、車両1の前方の車輪1aの車軸を通過する鉛直線上に配置されている。スクリーン20の後面22には光センサ2から検出光が照射される。
 スクリーン20は、図示しない昇降装置によって昇降自在となっている。スクリーン20を上昇させることで、車両1を前進させたときの移動領域外(車両1よりも高い位置)にスクリーン20を移設することができる。
The screen 20 is disposed in front of the windshield of the vehicle 1 so as to face the light emitting portion 2 a of the optical sensor 2. The front surface 21 of the screen 20 is disposed on a vertical line that passes through the axle of the wheel 1 a in front of the vehicle 1. The rear surface 22 of the screen 20 is irradiated with detection light from the optical sensor 2.
The screen 20 can be raised and lowered by a lifting device (not shown). By raising the screen 20, the screen 20 can be moved outside the moving region (a position higher than the vehicle 1) when the vehicle 1 is moved forward.
 スクリーン20は、後面22に照射された検出光が前面21に透過する半光透過型のスクリーンである。図2に示すように、スクリーン20の後面22に検出光が照射されると、前面21に検出光の光パターン100が映し出される。
 本実施形態では、スクリーン20の後面22に検出光が照射されると、中央領域110および左右領域120の三つの矩形の図形からなる光パターン100がスクリーン20の前面21に映し出される。
The screen 20 is a semi-light transmission type screen in which the detection light applied to the rear surface 22 is transmitted to the front surface 21. As shown in FIG. 2, when the detection light is irradiated on the rear surface 22 of the screen 20, the light pattern 100 of the detection light is displayed on the front surface 21.
In the present embodiment, when the detection light is irradiated on the rear surface 22 of the screen 20, the light pattern 100 composed of three rectangular figures of the central region 110 and the left and right regions 120 is displayed on the front surface 21 of the screen 20.
 支持台30は、図1に示すように、床面4に立設された四本の支柱31によって上枠32を支持している門形の枠体である。車両1を正対装置3に載置したときに車両1は支持台30に正対する。
 支持台30は、車両1を前進させたときに、車両1が支持台30内を通過することができるように、左右の支柱31の幅および上枠32の高さが設定されている。
As shown in FIG. 1, the support table 30 is a gate-shaped frame body that supports an upper frame 32 by four support columns 31 erected on the floor surface 4. When the vehicle 1 is placed on the facing device 3, the vehicle 1 faces the support base 30.
The width of the left and right support columns 31 and the height of the upper frame 32 are set so that the support table 30 allows the vehicle 1 to pass through the support table 30 when the vehicle 1 is moved forward.
 撮影装置40は、赤外線カメラや可視光の波長領域に近接する領域の光を撮像できるモノクロカメラである。撮影装置40は、支持台30に取り付けられており、光センサ2の発光部2aおよびスクリーン20の前面21を斜め上方から撮影する。また、撮影装置40は、撮影した撮影画像データを後記する検査装置50(図2参照)に出力する。
 撮影装置40は、支持台30の上枠32に吊り下げられており、車両1を前進させたときの移動領域外(車両1よりも高い位置)に配置されている。
The imaging device 40 is an infrared camera or a monochrome camera that can capture light in a region close to the wavelength region of visible light. The imaging device 40 is attached to the support base 30 and images the light emitting portion 2a of the optical sensor 2 and the front surface 21 of the screen 20 from obliquely above. Further, the photographing device 40 outputs the photographed captured image data to an inspection device 50 (see FIG. 2) described later.
The photographing device 40 is suspended from the upper frame 32 of the support base 30 and is disposed outside the moving region (a position higher than the vehicle 1) when the vehicle 1 is moved forward.
 なお、撮影装置40は、車両1のヘッドライトの光軸を検査するための光軸検査装置が設置されている門形の枠体に別途設置してもよい。その場合にモノクロカメラを用いる場合には、モノクロカメラが撮像することができる不可視光の波長領域の光は、可視光の波長領域に近接する領域の光であるため光量が少なく、モノクロカメラが通常の可視光も同時に撮像して眩惑する場合もある。そこで、モノクロカメラの受光部の前に可視光カットフィルタを付けることが好ましい。撮影装置40としては、可視光の波長領域に近接する領域の光を撮像可能なカラーカメラを用いてもよい。 Note that the imaging device 40 may be separately installed on a gate-shaped frame in which an optical axis inspection device for inspecting the optical axis of the headlight of the vehicle 1 is installed. In that case, when using a monochrome camera, the light in the wavelength region of invisible light that can be captured by the monochrome camera is light in a region close to the wavelength region of visible light, so the amount of light is small. In some cases, the visible light is also imaged and dazzled. Therefore, it is preferable to attach a visible light cut filter in front of the light receiving unit of the monochrome camera. As the imaging device 40, a color camera that can capture light in a region close to the wavelength region of visible light may be used.
 撮影装置40は、スクリーン20を下降させた状態で、スクリーン20の前面21に映し出された光パターン100(図2参照)を撮影するとともに、スクリーン20を上昇させた状態で発光部2aを撮影する。 The photographing device 40 photographs the light pattern 100 (see FIG. 2) projected on the front surface 21 of the screen 20 with the screen 20 lowered, and photographs the light emitting unit 2a with the screen 20 raised. .
 検査装置50は、図2に示すように、撮影画像データを記憶する記憶手段51と、撮影画像データの光パターン100の台形歪を補正する台形歪補正手段52と、検出光の照射方向の上下角度を検出する上下角度検出手段53と、検出光の照射方向の左右角度を検出する左右角度検出手段54と、検出光の回転角度を検出する回転角度検出手段55と、検出光の照射方向および検出光の回転角度を判定する判定手段56と、を備えている。 As shown in FIG. 2, the inspection device 50 includes a storage unit 51 that stores captured image data, a trapezoidal distortion correction unit 52 that corrects trapezoidal distortion of the light pattern 100 of the captured image data, and upper and lower directions of the detection light irradiation direction. Vertical angle detection means 53 for detecting the angle, left / right angle detection means 54 for detecting the left / right angle of the irradiation direction of the detection light, rotation angle detection means 55 for detecting the rotation angle of the detection light, and the irradiation direction of the detection light and Determination means 56 for determining the rotation angle of the detection light.
 検査装置50は、検出光の照射方向および回転角度を検出するコンピュータである。検査装置50における各処理は、記憶手段に51に記憶されているプログラムがCPUによって実行されることで具現化される。 The inspection device 50 is a computer that detects the irradiation direction and the rotation angle of the detection light. Each process in the inspection apparatus 50 is realized by executing a program stored in the storage unit 51 by the CPU.
 記憶手段51には、撮影画像データが記憶されるとともに、各種のプログラムが記憶されている。
 また、記憶手段51には、スクリーン20の前面21に設定された基準点Oと床面4との間の高さHaが記憶されている(図5参照)。なお、台形歪補正後の撮影画像データの中心位置に基準点Oが配置されるように、撮影装置40の取付位置が調整されている。
 また、記憶手段51には、発光部2aとスクリーン20の前面21との間の距離L1が記憶されている(図5参照)。この距離L1は、車両1の機種ごとに異なるものであり、記憶手段51には、複数の機種の距離L1が記憶されている。
The storage unit 51 stores photographed image data and various programs.
Further, the storage means 51 stores the height Ha between the reference point O set on the front surface 21 of the screen 20 and the floor surface 4 (see FIG. 5). Note that the mounting position of the imaging device 40 is adjusted so that the reference point O is arranged at the center position of the captured image data after the trapezoidal distortion correction.
The storage means 51 stores a distance L1 between the light emitting unit 2a and the front surface 21 of the screen 20 (see FIG. 5). The distance L1 is different for each model of the vehicle 1, and the storage unit 51 stores the distances L1 of a plurality of models.
 また、記憶手段51には、撮影画像データの一画素の縦横の大きさをスクリーン20の前面21の実際の距離に対応させた画素距離データ(分解能)が記憶されている。
 画素距離データは、撮影画像データにおける一画素の大きさが、スクリーン20の前面21の何mmに相当するかを示したものである。
 画素距離データは、予め撮影装置40の校正作業時に、スクリーン20の前面21に設定された所定間隔の四点を、撮影装置40によって撮影し、撮影画像データにおける二点間の画素数を求めることで算出される。
The storage means 51 stores pixel distance data (resolution) in which the vertical and horizontal sizes of one pixel of the captured image data correspond to the actual distance of the front surface 21 of the screen 20.
The pixel distance data indicates how many mm of the front surface 21 of the screen 20 corresponds to the size of one pixel in the captured image data.
The pixel distance data is obtained by photographing the four points at predetermined intervals set on the front surface 21 of the screen 20 in advance by the photographing device 40 during the calibration of the photographing device 40, and obtaining the number of pixels between the two points in the photographed image data. Is calculated by
 台形歪補正手段52は、撮影画像データの発光部2aおよび光パターン100の画像に生じた台形歪を補正して、台形歪補正後の撮影画像データに変換するものである。
 本実施形態では、撮影装置40がスクリーン20よりも上方に配置されている。したがって、撮影装置40は斜め上方から発光部2aおよびスクリーン20の前面21に映し出された光パターン100を撮影している。そのため、図3(a)に示すように、撮影画像データの発光部2aおよび光パターン100に台形歪が生じてしまう。
The trapezoidal distortion correction means 52 corrects trapezoidal distortion generated in the image of the light emitting unit 2a and the light pattern 100 of the captured image data, and converts it into captured image data after correcting the trapezoidal distortion.
In the present embodiment, the imaging device 40 is disposed above the screen 20. Therefore, the photographing device 40 photographs the light pattern 100 projected on the light emitting unit 2a and the front surface 21 of the screen 20 from obliquely above. For this reason, as shown in FIG. 3A, trapezoidal distortion occurs in the light emitting unit 2a and the light pattern 100 of the captured image data.
 台形歪補正手段52は、撮影画像データの基準点O(中心位置)から、発光部2aの光点を構成する点群および光パターン100を構成する光の点群までの距離を補正する。すなわち、台形歪補正手段52は、発光部2aの光点を構成する点群および光パターン100を構成する光の点群について、撮影画像データの基準点Oからの位置を正しく表現することを目的として補正する。これにより、図3(b)に示すように、撮影画像データにおける発光部2aおよび光パターン100の輪郭から台形歪がなくなる。なお、台形歪補正手段52は、公知の画像処理方法を用いて光パターン100の台形歪を補正している。 The trapezoidal distortion correcting unit 52 corrects the distance from the reference point O (center position) of the captured image data to the point group constituting the light spot of the light emitting unit 2a and the light point group constituting the light pattern 100. That is, the trapezoidal distortion correcting means 52 aims to correctly represent the position of the captured image data from the reference point O with respect to the point group constituting the light spot of the light emitting unit 2a and the light point group constituting the light pattern 100. Correct as As a result, as shown in FIG. 3B, trapezoidal distortion is eliminated from the contours of the light emitting section 2a and the light pattern 100 in the captured image data. The trapezoidal distortion correction unit 52 corrects the trapezoidal distortion of the light pattern 100 using a known image processing method.
 上下角度検出手段53は、図2に示すように、スクリーン20の前面21に映し出された光パターン100と床面4との間の高さH1(図5参照)、および発光部2aと床面4との間の高さH2(図5参照)を検出するとともに、検出光の照射方向の上下角度θ1(図5参照)を検出する。 As shown in FIG. 2, the vertical angle detection means 53 includes a height H1 (see FIG. 5) between the light pattern 100 projected on the front surface 21 of the screen 20 and the floor surface 4, and the light emitting unit 2a and the floor surface. 4 is detected, and the vertical angle θ1 (see FIG. 5) in the irradiation direction of the detection light is detected.
 上下角度検出手段53では、図4(b)に示すように、台形歪補正後の撮影画像データにおいて、基準点Oと光パターン100の中央領域110の中心位置P1との上下方向(Y軸方向)の間の画素数を算出する。この画素数に画素距離データを掛けることで、図5に示すように、スクリーン20の基準点Oからスクリーン20に映し出された光パターン100の中心位置P1までの高さY1を算出する。この高さY1をスクリーン20の基準点Oの高さHaに加えることで、スクリーン20に映し出された光パターン100の中心位置P1と床面4との間の高さH1を算出する。このとき、撮影画像データの光パターン100は、台形歪補正手段52によって台形歪が補正されているため、撮影画像データの光パターン100に基づいて、スクリーン20に映し出された光パターン100の中心位置P1と床面4との間の高さH1を正確かつ簡単に算出することができる。 In the vertical angle detection means 53, as shown in FIG. 4B, in the captured image data after the trapezoidal distortion correction, the vertical direction (Y-axis direction) between the reference point O and the center position P1 of the central area 110 of the light pattern 100. ) Is calculated. By multiplying the number of pixels by the pixel distance data, the height Y1 from the reference point O of the screen 20 to the center position P1 of the light pattern 100 projected on the screen 20 is calculated as shown in FIG. By adding this height Y1 to the height Ha of the reference point O of the screen 20, the height H1 between the center position P1 of the light pattern 100 projected on the screen 20 and the floor surface 4 is calculated. At this time, since the trapezoidal distortion of the light pattern 100 of the photographed image data is corrected by the trapezoidal distortion correction means 52, the center position of the light pattern 100 projected on the screen 20 based on the light pattern 100 of the photographed image data. The height H1 between P1 and the floor surface 4 can be calculated accurately and easily.
 また、上下角度検出手段53(図2参照)では、台形歪補正後の撮影画像データにおいて、基準点Oと発光部2aとの上下方向(Y軸方向)の間の画素数を算出する。この画素数に画素距離データを掛けることで、スクリーン20の基準点Oから発光部2aまでの高さY2を算出する。この高さY2をスクリーン20の基準点Oの高さHaに加えることで、発光部2aと床面4との間の高さH2を算出する。 Also, the vertical angle detection means 53 (see FIG. 2) calculates the number of pixels between the reference point O and the light emitting unit 2a in the vertical direction (Y-axis direction) in the captured image data after trapezoidal distortion correction. By multiplying the number of pixels by the pixel distance data, the height Y2 from the reference point O of the screen 20 to the light emitting unit 2a is calculated. By adding this height Y2 to the height Ha of the reference point O of the screen 20, the height H2 between the light emitting portion 2a and the floor surface 4 is calculated.
 さらに、上下角度検出手段53(図2参照)では、発光部2aとスクリーン20の前面21との間の距離L1および前記した高さH1,H2を用いて、以下の式1によって水平線に対する検出光の照射方向の上下角度θ1を検出し、その検出結果を判定手段56(図2参照)に出力する。
 θ1=arctan((H2-H1)/L1)  (式1)
Further, the vertical angle detection means 53 (see FIG. 2) uses the distance L1 between the light emitting portion 2a and the front surface 21 of the screen 20 and the above-described heights H1 and H2 to detect the detection light with respect to the horizontal line according to the following formula 1. The vertical angle θ1 in the irradiation direction is detected, and the detection result is output to the determination means 56 (see FIG. 2).
θ1 = arctan ((H2−H1) / L1) (Formula 1)
 左右角度検出手段54は、図2に示すように、スクリーン20の前面21に映し出された光パターン100と車両1の左右方向(車幅方向)の中央位置との左右方向の距離W1(図7参照)、発光部2aと車両1の車幅方向の中央位置との距離W2(図7参照)を算出するとともに、検出光の照射方向の左右角度θ2(図7参照)を検出する。
 なお、図7に示すように、台形歪補正後の撮影画像データの基準点O(図6(b)参照)が車両1の車幅方向の中央位置に配置されるように、撮影装置40の取付位置が調整されている。
As shown in FIG. 2, the left-right angle detection means 54 is a distance W1 in the left-right direction between the light pattern 100 projected on the front surface 21 of the screen 20 and the center position in the left-right direction (vehicle width direction) of the vehicle 1 (FIG. 7). And a distance W2 (see FIG. 7) between the light emitting unit 2a and the center position in the vehicle width direction of the vehicle 1 is calculated, and a left-right angle θ2 (see FIG. 7) in the detection light irradiation direction is detected.
Note that as shown in FIG. 7, the reference point O (see FIG. 6B) of the captured image data after the trapezoidal distortion correction is arranged at the center position in the vehicle width direction of the vehicle 1. The mounting position has been adjusted.
 左右角度検出手段54では、図6(b)に示すように、台形歪補正後の撮影画像データにおいて、基準点Oと光パターン100の中央領域110の中心位置P1との左右方向(X軸方向)の間の画素数を算出する。この画素数に画素距離データを掛けることで、図7に示すように、スクリーン20の基準点Oからスクリーン20に映し出された光パターン100の中心位置P1までの左右方向の距離W1を算出する。 In the left / right angle detection means 54, as shown in FIG. 6 (b), in the captured image data after trapezoidal distortion correction, the left / right direction (X-axis direction) between the reference point O and the center position P 1 of the central region 110 of the light pattern 100. ) Is calculated. By multiplying the number of pixels by the pixel distance data, the distance W1 in the left-right direction from the reference point O of the screen 20 to the center position P1 of the light pattern 100 projected on the screen 20 is calculated as shown in FIG.
 また、左右角度検出手段54(図2参照)では、台形歪補正後の撮影画像データにおいて、基準点Oと発光部2aとの左右方向(X軸方向)の間の画素数を算出する。この画素数に画素距離データを掛けることで、スクリーン20の基準点Oから発光部2aまでの左右方向の距離W2を算出する。 Also, the left / right angle detection means 54 (see FIG. 2) calculates the number of pixels between the reference point O and the light emitting unit 2a in the left / right direction (X-axis direction) in the captured image data after trapezoidal distortion correction. By multiplying the pixel distance data by the pixel distance data, the distance W2 in the left-right direction from the reference point O of the screen 20 to the light emitting unit 2a is calculated.
 さらに、左右角度検出手段54(図2参照)では、発光部2aとスクリーン20の前面21との間の距離L1および距離W1,W2を用いて、以下の式2によって車両1の前後方向に対する検出光の照射方向の左右角度θ2を検出し、その検出結果を判定手段56(図2参照)に出力する。
 θ2=arctan((W1-W2)/L1)  (式2)
Further, the left / right angle detection means 54 (see FIG. 2) uses the distance L1 and the distances W1, W2 between the light emitting portion 2a and the front surface 21 of the screen 20 to detect the vehicle 1 in the front-rear direction according to the following equation (2). The left-right angle θ2 in the light irradiation direction is detected, and the detection result is output to the determination means 56 (see FIG. 2).
θ2 = arctan ((W1-W2) / L1) (Formula 2)
 回転角度検出手段55は、図2に示すように、水平線に対する光パターン100の光軸周りの回転角度を検出するものである。
 回転角度検出手段55では、図9に示すように、台形歪補正後の撮影画像データにおいて、光パターン100の中央領域110の上辺と水平線との角度を画像処理によって検出することで、水平線に対する光パターン100の光軸周りの回転角度θ3を検出し、その検出結果を判定手段56(図2参照)に出力する。
As shown in FIG. 2, the rotation angle detection means 55 detects a rotation angle around the optical axis of the light pattern 100 with respect to the horizontal line.
As shown in FIG. 9, the rotation angle detection means 55 detects the angle between the upper side of the central area 110 of the light pattern 100 and the horizontal line in the captured image data after the trapezoidal distortion correction, so that the light with respect to the horizontal line is detected. The rotation angle θ3 around the optical axis of the pattern 100 is detected, and the detection result is output to the determination means 56 (see FIG. 2).
 判定手段56は、図2に示すように、上下角度検出手段53から入力された検出光の照射方向の上下角度θ1(図5参照)と、記憶手段51に予め記憶された検出光の照射方向の上下角度の基準値とを比較する。そして、判定手段56は、図4(a)に示すように、センサ2から照射された検出光の照射方向の上下角度が許容範囲内であるか否かを判定し、モニタ等の表示手段に判定結果を出力する。 As shown in FIG. 2, the determination unit 56 includes the vertical angle θ1 (see FIG. 5) of the detection light irradiation direction input from the vertical angle detection unit 53 and the detection light irradiation direction stored in the storage unit 51 in advance. Is compared with the reference value of the vertical angle of. Then, as shown in FIG. 4A, the determination unit 56 determines whether the vertical angle in the irradiation direction of the detection light emitted from the sensor 2 is within an allowable range, and displays it on a display unit such as a monitor. Output the judgment result.
 また、判定手段56は、図2に示すように、左右角度検出手段54から入力された検出光の照射方向の左右角度θ2(図7参照)と、記憶手段51に予め記憶された検出光の照射方向の左右角度の基準値とを比較する。そして、判定手段56は、図6(a)に示すように、光センサ2から照射された検出光の照射方向の左右角度が許容範囲内であるか否かを判定し、モニタ等の表示手段に判定結果を出力する。 Further, as shown in FIG. 2, the determination unit 56 includes the left and right angle θ2 (see FIG. 7) of the detection light irradiation direction input from the left and right angle detection unit 54, and the detection light stored in the storage unit 51 in advance. The reference value of the left and right angle in the irradiation direction is compared. Then, as shown in FIG. 6A, the determination unit 56 determines whether or not the left and right angle of the irradiation direction of the detection light emitted from the optical sensor 2 is within an allowable range, and displays such as a monitor. The judgment result is output to.
 また、判定手段56は、図2に示すように、回転角度検出手段55から入力された検出光の光軸周りの回転角度θ3(図9参照)と、記憶手段51に予め記憶された検出光の光軸周りの回転角度の基準値とを比較する。そして、判定手段56は、図8に示すように、光センサ2から照射された検出光の光軸周りの回転角度が許容範囲内であるか否かを判定し、モニタ等の表示手段に判定結果を出力する。 Further, as shown in FIG. 2, the determination unit 56 includes the rotation angle θ3 (see FIG. 9) around the optical axis of the detection light input from the rotation angle detection unit 55 and the detection light stored in advance in the storage unit 51. Are compared with the reference value of the rotation angle around the optical axis. Then, as shown in FIG. 8, the determination unit 56 determines whether or not the rotation angle around the optical axis of the detection light emitted from the optical sensor 2 is within an allowable range, and determines the display unit such as a monitor. Output the result.
 以上のような検査システム10を用いた光センサ2の検査方法について説明する。
 まず、図1に示すように、車両1を正対装置3に載置し、車両1を支持台30に正対させる(図10のステップS1)。車両1を正対装置3に載置するときには、スクリーン20を上方に移設しておくことで、車両1とスクリーン20との接触を防ぐことができる。
An inspection method for the optical sensor 2 using the above-described inspection system 10 will be described.
First, as shown in FIG. 1, the vehicle 1 is placed on the facing device 3, and the vehicle 1 is directly facing the support base 30 (step S <b> 1 in FIG. 10). When the vehicle 1 is placed on the facing device 3, the screen 20 can be moved upward to prevent contact between the vehicle 1 and the screen 20.
 図2に示すように、スクリーン20を下降させ、車両1の前方にスクリーン20を配置し、光センサ2の発光部2aから検出光をスクリーン20の後面22に照射する(図10のステップS2)。
 スクリーン20の後面22に照射された検出光は前面21に透過し、前面21に検出光の光パターン100が映し出される。
As shown in FIG. 2, the screen 20 is lowered, the screen 20 is disposed in front of the vehicle 1, and the detection light is irradiated on the rear surface 22 of the screen 20 from the light emitting unit 2 a of the optical sensor 2 (step S <b> 2 in FIG. 10). .
The detection light applied to the rear surface 22 of the screen 20 is transmitted through the front surface 21, and the light pattern 100 of the detection light is displayed on the front surface 21.
 スクリーン20の前面21に映し出された光パターン100を撮影装置40によって撮影し、撮影画像データを検査装置50の記憶手段51に記憶させる(図10のステップS3)。 The light pattern 100 projected on the front surface 21 of the screen 20 is photographed by the photographing device 40, and the photographed image data is stored in the storage means 51 of the inspection device 50 (step S3 in FIG. 10).
 続いて、スクリーン20を上昇させ、撮影装置40によって発光部2aを撮影して、撮影画像データを検査装置50の記憶手段51に記憶させる(図10のステップS4)。 Subsequently, the screen 20 is raised, the light emitting unit 2a is photographed by the photographing device 40, and the photographed image data is stored in the storage means 51 of the inspection device 50 (step S4 in FIG. 10).
 検査装置50では、記憶手段51に記憶された撮影画像データの光パターン100の台形歪を台形歪補正手段52によって補正する(図10のステップS5)。 In the inspection apparatus 50, the trapezoidal distortion of the light pattern 100 of the captured image data stored in the storage unit 51 is corrected by the trapezoidal distortion correction unit 52 (step S5 in FIG. 10).
 また、上下角度検出手段53では、発光部2aと床面4との間の高さH2(図5参照)、水平線に対する検出光の照射方向の上下角度θ1(図5参照)を検出し、その検出結果を判定手段56に出力する(図10のステップS6)。 Further, the vertical angle detection means 53 detects the height H2 (see FIG. 5) between the light emitting unit 2a and the floor surface 4 and the vertical angle θ1 (see FIG. 5) of the irradiation direction of the detection light with respect to the horizontal line. A detection result is output to the determination means 56 (step S6 of FIG. 10).
 また、左右角度検出手段54では、発光部2aと車両1の左右方向の中央位置との距離W2(図7参照)、車両1の前後方向に対する検出光の照射方向の左右角度θ2(図7参照)を検出し、その検出結果を判定手段56に出力する(図10のステップS7)。 Further, in the left / right angle detection means 54, the distance W2 (see FIG. 7) between the light emitting portion 2a and the center position in the left / right direction of the vehicle 1, and the left / right angle θ2 of the detection light irradiation direction with respect to the front / rear direction of the vehicle 1 ) And the detection result is output to the determination means 56 (step S7 in FIG. 10).
 また、回転角度検出手段55は、水平線に対する検出光の光軸周りの回転角度θ3(図9参照)を検出し、その検出結果を判定手段56に出力する(図10のステップS8)。 Further, the rotation angle detection means 55 detects the rotation angle θ3 (see FIG. 9) around the optical axis of the detection light with respect to the horizontal line, and outputs the detection result to the determination means 56 (step S8 in FIG. 10).
 判定手段56では、検出光の照射方向の上下角度、左右角度および検出光の判定結果を表示手段に表示する(図10のステップS9)。 The determination unit 56 displays the vertical and horizontal angles in the irradiation direction of the detection light and the determination result of the detection light on the display unit (step S9 in FIG. 10).
 作業者は、判定手段56の判定結果に基づいて、光センサ2の取付位置(取付角度)を調整することで、光センサ2から検出光を所定の領域に照射させる。 The worker adjusts the mounting position (mounting angle) of the optical sensor 2 based on the determination result of the determination unit 56 to irradiate the predetermined area with the detection light from the optical sensor 2.
 光センサ2の照射方向の調整が完了した後に、車両1をスクリーン20の下方および支持台30内を通過させて次工程に移動させる。 After the adjustment of the irradiation direction of the optical sensor 2 is completed, the vehicle 1 is moved below the screen 20 and inside the support base 30 to move to the next process.
 以上のような光センサ2の検査システム10および検査方法では、図2に示すように、撮影画像データから光センサ2の発光部2aおよび光パターン100の位置を検出し、発光部2aと光パターン100との位置関係に基づいて、光センサ2の照射方向を検出することができるため、光センサ2が所定の範囲を照射するように、光センサ2の取付位置および取付角度を的確に調整することができる。 In the inspection system 10 and the inspection method for the optical sensor 2 as described above, as shown in FIG. 2, the positions of the light emitting unit 2a and the optical pattern 100 of the optical sensor 2 are detected from the captured image data, and the light emitting unit 2a and the optical pattern are detected. Since the irradiation direction of the optical sensor 2 can be detected based on the positional relationship with the optical sensor 100, the mounting position and the mounting angle of the optical sensor 2 are accurately adjusted so that the optical sensor 2 irradiates a predetermined range. be able to.
 また、検査装置50は、撮影画像データの光パターン100の台形歪を補正する台形歪補正手段52を備えているため、光センサ2の発光部2aおよび光パターン100の位置の検出精度、光センサ2の照射方向の検出精度を高めることができる。 In addition, since the inspection apparatus 50 includes the trapezoidal distortion correction unit 52 that corrects the trapezoidal distortion of the optical pattern 100 of the captured image data, the detection accuracy of the positions of the light emitting unit 2a and the optical pattern 100 of the optical sensor 2, the optical sensor The detection accuracy of the irradiation direction 2 can be increased.
 また、検査システム10では、図1に示すように、スクリーン20を車両1の移動領域の内外に移設自在であるとともに、撮影装置40が車両1の移動領域外に配置されているため、光センサ2の検査完了後に、車両1を次工程に移動し易くなっている。 In the inspection system 10, as shown in FIG. 1, the screen 20 can be moved inside and outside the moving area of the vehicle 1, and the photographing device 40 is arranged outside the moving area of the vehicle 1. It is easy to move the vehicle 1 to the next process after the completion of the inspection of No. 2.
 次に、前記した光センサ2の検査時に、車両1が衝突回避動作を実行するのを防ぐための構成について説明する。
 図11(a)に示すように、光センサ2の検査時に、光センサ2が周辺設備や作業者を検出し、車両1が急停止等の衝突回避動作を実行すると、車両1を検査領域A2に進入および退出させることができない。また、検査領域A2内において、走行状態の車両1が衝突回避動作を実行すると、車両1と周辺設備とが接触する虞がある。
 そこで、本実施形態では、検査領域A2の前工程側の領域A1において、車両1のセンサ制御装置5に、検査オペレータが車両1の外部から信号入力装置5aを接続することで、車両1が衝突回避動作を実行しないようにしている。
Next, a configuration for preventing the vehicle 1 from executing the collision avoidance operation when the optical sensor 2 is inspected will be described.
As shown in FIG. 11A, when the optical sensor 2 detects peripheral equipment or an operator during inspection of the optical sensor 2 and the vehicle 1 performs a collision avoiding operation such as a sudden stop, the vehicle 1 is inspected in the inspection area A2. Cannot enter and exit. Further, when the traveling vehicle 1 performs the collision avoidance operation in the inspection area A2, there is a possibility that the vehicle 1 and the peripheral equipment come into contact with each other.
Therefore, in the present embodiment, in the area A1 on the previous process side of the inspection area A2, the inspection operator connects the signal input device 5a from the outside of the vehicle 1 to the sensor control device 5 of the vehicle 1, so that the vehicle 1 collides. The avoidance action is not executed.
 センサ制御装置5は、車両1に搭載された光センサ2を制御する電子制御装置である。なお、本実施形態では、光センサ2とセンサ制御装置5とが一体に形成されているが、光センサ2とセンサ制御装置5とを別体に形成し、ケーブルによって接続してもよい。 The sensor control device 5 is an electronic control device that controls the optical sensor 2 mounted on the vehicle 1. In the present embodiment, the optical sensor 2 and the sensor control device 5 are integrally formed, but the optical sensor 2 and the sensor control device 5 may be formed separately and connected by a cable.
 信号入力装置5aは、車両1等に搭載された電子制御装置等に接続され、その電子制御装置等の電子記憶媒体等に記憶された情報を抽出するための電子制御装置であり、組立ラインにおいて検査オペレータ等が使用する携帯用情報端末である。そして、信号入力装置5aは、センサ制御装置5に対して、光センサ2が障害物を検出していないことを擬似的に示している正常疑似信号を出力する。 The signal input device 5a is an electronic control device for extracting information stored in an electronic storage medium or the like connected to an electronic control device or the like mounted on the vehicle 1 or the like in the assembly line. This is a portable information terminal used by an inspection operator or the like. Then, the signal input device 5a outputs a normal pseudo signal indicating, in a pseudo manner, that the optical sensor 2 has not detected an obstacle to the sensor control device 5.
 信号入力装置5aからセンサ制御装置5に正常疑似信号が入力されると、センサ制御装置5は、光センサ2が障害物を検出しても、光センサ2が障害物を検出していないと判断する。これにより、光センサ2が障害物を検出しても、車両1が衝突回避動作を実行しない状態となる。 When a normal pseudo signal is input from the signal input device 5a to the sensor control device 5, the sensor control device 5 determines that the optical sensor 2 does not detect an obstacle even if the optical sensor 2 detects an obstacle. To do. Thereby, even if the optical sensor 2 detects an obstacle, the vehicle 1 enters a state where the collision avoidance operation is not executed.
 本実施形態では、車両1を領域A1から検査領域A2に進入させる段階、検査領域A2内で光センサ2を検査する各段階、および車両1を検査領域A2から領域A3に退出させる段階において、信号入力装置5aからセンサ制御装置5に正常疑似信号が入力され続ける。
 これにより、光センサ2の検査時に車両1が衝突回避動作を実行するのを防ぐことができるため、車両1を検査領域A2にスムーズに進入および退出させることができる。また、車両1と周辺設備とが接触するのを防ぐことができ、車両1や周辺設備の損傷を防ぐことができる。
In the present embodiment, in the stage in which the vehicle 1 enters the inspection area A2 from the area A1, the respective stages in which the optical sensor 2 is inspected in the inspection area A2, and the stage in which the vehicle 1 exits from the inspection area A2 to the area A3, A normal pseudo signal is continuously input from the input device 5a to the sensor control device 5.
Thereby, since it can prevent that the vehicle 1 performs collision avoidance operation | movement at the time of the test | inspection of the optical sensor 2, the vehicle 1 can be smoothly entered into and exited from the inspection area A2. Moreover, it can prevent that the vehicle 1 and peripheral equipment contact, and can prevent damage to the vehicle 1 and peripheral equipment.
 なお、領域A3において、センサ制御装置5から信号入力装置5aを、検査オペレータが車両1の外部へ取り外すことで、光センサ2が障害物を検出したときに、車両1が衝突回避動作を実行する状態に戻すことができる。 In the area A3, when the inspection operator removes the signal input device 5a from the sensor control device 5 to the outside of the vehicle 1, the vehicle 1 executes a collision avoidance operation when the optical sensor 2 detects an obstacle. It can be returned to the state.
 また、前記した光センサ2の検査方法において、車両1が衝突回避動作を実行するのを防ぐための他の構成としては、図11(b)に示すように、車両1の中央制御装置6の制御モードを切り替える方法がある。 Further, in the inspection method of the optical sensor 2 described above, as another configuration for preventing the vehicle 1 from executing the collision avoidance operation, as shown in FIG. There is a method for switching the control mode.
 中央制御装置6は、車両1に搭載された複数のデバイス制御装置7およびセンサ制御装置5に、ISO規格で標準化されているCAN(Controller Area Network)によって接続されている電子制御装置である。中央制御装置6には、光センサ2が障害物を検出したことを示す異常信号がセンサ制御装置5から入力される。
 デバイス制御装置7は、エンジンやブレーキ等の各種装置を制御する電子制御装置であり、例えば、燃料噴射制御装置7aやブレーキ液圧制御装置7bである。
 中央制御装置6は、センサ制御装置5から異常信号が入力されたときに、車両1に衝突回避動作を実行させる通常移動モードを有している。一般道路を走行している通常時は、中央制御装置6は通常移動モードに設定されている。
The central control device 6 is an electronic control device connected to a plurality of device control devices 7 and sensor control devices 5 mounted on the vehicle 1 by a CAN (Controller Area Network) standardized by the ISO standard. An abnormal signal indicating that the optical sensor 2 has detected an obstacle is input from the sensor control device 5 to the central control device 6.
The device control device 7 is an electronic control device that controls various devices such as an engine and a brake, and is, for example, a fuel injection control device 7a or a brake fluid pressure control device 7b.
The central controller 6 has a normal movement mode that causes the vehicle 1 to execute a collision avoidance operation when an abnormal signal is input from the sensor controller 5. At the normal time of traveling on a general road, the central controller 6 is set to the normal movement mode.
 また、中央制御装置6は、センサ制御装置5から異常信号が入力されても、車両1に衝突回避動作を実行させない工場内移動モードを有している。
 そして、車両1に光センサ2を組み付けた後から、車両1が工場から出荷されるまでの間は、中央制御装置6を通常移動モードから工場内移動モードに切り替える。
 なお、中央制御装置6の制御モードの切り替えは、中央制御装置6にコンピュータを接続し、このコンピュータによって、中央制御装置6の電子記憶媒体に書き込まれた複数のモード・プログラムを切り替えている。
In addition, the central control device 6 has an in-factory movement mode that does not cause the vehicle 1 to execute a collision avoidance operation even when an abnormal signal is input from the sensor control device 5.
Then, after the optical sensor 2 is assembled to the vehicle 1 until the vehicle 1 is shipped from the factory, the central controller 6 is switched from the normal movement mode to the in-factory movement mode.
The control mode of the central control device 6 is switched by connecting a computer to the central control device 6 and switching a plurality of mode programs written in the electronic storage medium of the central control device 6 by this computer.
 これにより、工場内において、光センサ2が周辺設備や作業者を検出した場合でも、車両1が衝突回避動作を実行するのを防ぐことができるため、工場内で車両1をスムーズに移動させることができる。また、車両1と周辺設備との接触を防ぐことができ、車両1や周辺設備の損傷を防ぐことができる。
 なお、中央制御装置6は、少なくとも光センサ2の検査時に工場内移動モードに設定されていればよい。
Accordingly, even when the optical sensor 2 detects peripheral equipment or an operator in the factory, the vehicle 1 can be prevented from executing the collision avoiding operation, and therefore the vehicle 1 can be smoothly moved in the factory. Can do. Further, contact between the vehicle 1 and peripheral equipment can be prevented, and damage to the vehicle 1 and peripheral equipment can be prevented.
The central controller 6 only needs to be set to the factory movement mode at least when the optical sensor 2 is inspected.
 また、光センサ2の検査後や車両1の出荷時には、中央制御装置6に接続したコンピュータによって、中央制御装置6の電子記憶媒体に書き込まれたモード・プログラムを切り替えることで、工場内移動モードから通常移動モードに切り替えることができる。また、中央制御装置6の電子記憶媒体に書き込まれた工場内移動モードのプログラムを、通常移動モードのプログラムに書き換えてもよい。 In addition, after the inspection of the optical sensor 2 or at the time of shipment of the vehicle 1, the computer connected to the central control device 6 is used to switch the mode / program written in the electronic storage medium of the central control device 6 so that the in-factory movement mode can be used. It can be switched to the normal movement mode. Further, the in-factory movement mode program written in the electronic storage medium of the central controller 6 may be rewritten to a normal movement mode program.
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に変更が可能である。
 本実施形態では、図2に示すように、光センサ2の発光部2aとスクリーン20の前面21に映し出された光パターン100とを撮影装置40によって別々に撮影しているが、発光部2aと光パターン100とを同時に撮影することができるように撮影装置40を設置してもよい。
The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
In the present embodiment, as shown in FIG. 2, the light emitting unit 2 a of the optical sensor 2 and the light pattern 100 projected on the front surface 21 of the screen 20 are separately photographed by the photographing device 40, but the light emitting unit 2 a You may install the imaging device 40 so that the light pattern 100 can be image | photographed simultaneously.
 また、光センサ2の発光部2aを撮影装置40によって撮影した後に、スクリーン20を下降させ、スクリーン20に映し出された光パターン100を撮影装置40によって撮影してもよい。しかしながら、本実施形態のように、光パターン100を撮影装置40によって撮影した後に、スクリーン20を上昇させて、発光部2aを撮影装置40によって撮影した場合には、検査システムによる検査が完了すると直ぐに車両1を進行方向に移動させることができる。 Alternatively, after the light emitting unit 2a of the optical sensor 2 is photographed by the photographing device 40, the screen 20 may be lowered and the light pattern 100 projected on the screen 20 may be photographed by the photographing device 40. However, as in this embodiment, when the light pattern 100 is imaged by the imaging device 40 and then the screen 20 is raised and the light emitting unit 2a is imaged by the imaging device 40, the inspection immediately after the inspection by the inspection system is completed. The vehicle 1 can be moved in the traveling direction.
 本実施形態では、図1に示すように、本発明の検査システムおよび検査方法を用いて、四輪自動車である車両1に設けられた光センサ2を検査する場合について説明したが、本発明は各種の移動体に適用可能であり、例えば、二輪自動車や自律二足歩行ロボット等の移動体に適用可能である。 In the present embodiment, as shown in FIG. 1, the case where the optical sensor 2 provided in the vehicle 1 which is a four-wheeled vehicle is inspected using the inspection system and the inspection method of the present invention has been described. The present invention can be applied to various types of moving bodies, and can be applied to moving bodies such as two-wheeled vehicles and autonomous bipedal walking robots.
 1   車両(移動体)
 1a  車輪
 2   光センサ
 2a  発光部
 3   正対装置
 3a  ローラ支持部
 5   センサ制御装置
 5a  信号入力装置
 6   中央制御装置
 7   デバイス制御装置
 10  検査システム
 20  スクリーン
 21  前面
 22  後面
 30  支持台
 40  撮影装置
 50  検査装置
 51  記憶手段
 52  台形歪補正手段
 53  上下角度検出手段
 54  左右角度検出手段
 55  回転角度検出手段
 56  判定手段
 100 光パターン
 110 中央領域
 120 左右領域
1 Vehicle (moving body)
DESCRIPTION OF SYMBOLS 1a Wheel 2 Optical sensor 2a Light emission part 3 Direct-facing apparatus 3a Roller support part 5 Sensor control apparatus 5a Signal input device 6 Central control apparatus 7 Device control apparatus 10 Inspection system 20 Screen 21 Front surface 22 Rear surface 30 Support stand 40 Imaging apparatus 50 Inspection apparatus 51 Storage means 52 Trapezoidal distortion correction means 53 Vertical angle detection means 54 Horizontal angle detection means 55 Rotation angle detection means 56 Determination means 100 Optical pattern 110 Central area 120 Left and right area

Claims (13)

  1.  移動体に設けられた光センサの検査システムであって、
     前記光センサから検出光が照射される半光透過型のスクリーンと、
     前記光センサの発光部と前記スクリーンを透過した前記検出光の光パターンとを撮影する撮影装置と、
     前記撮影装置から前記発光部および前記光パターンの撮影画像データが入力される検査装置と、を備えていることを特徴とする検査システム。
    An inspection system for an optical sensor provided on a moving body,
    A semi-transmissive screen that is irradiated with detection light from the optical sensor;
    A photographing device for photographing the light pattern of the light sensor and the light pattern of the detection light transmitted through the screen;
    An inspection system comprising: an inspection device to which the light emitting unit and captured image data of the light pattern are input from the imaging device.
  2.  前記検査装置は、
     前記撮影画像データにおける前記発光部の位置と前記光パターンの位置とから前記光センサの照射方向の上下角度を検出する上下角度検出手段を備えていることを特徴とする請求の範囲第1項に記載の検査システム。
    The inspection device includes:
    The upper and lower angle detection means for detecting an upper and lower angle in an irradiation direction of the optical sensor from the position of the light emitting unit and the position of the light pattern in the photographed image data is provided. The inspection system described.
  3.  前記検査装置は、
     前記撮影画像データにおける前記発光部の位置と前記光パターンの位置とから前記光センサの照射方向の左右角度を検出する左右角度検出手段を備えていることを特徴とする請求の範囲第1項または請求の範囲第2項に記載の検査システム。
    The inspection device includes:
    The left or right angle detecting means for detecting a left and right angle in an irradiation direction of the photosensor from a position of the light emitting unit and a position of the light pattern in the photographed image data. The inspection system according to claim 2.
  4.  前記検査装置は、前記撮影画像データの前記光パターンの回転角度を検出する回転角度検出手段を備えていることを特徴とする請求の範囲第1項または請求の範囲第2項に記載の検査システム。 3. The inspection system according to claim 1, wherein the inspection apparatus includes a rotation angle detection unit that detects a rotation angle of the light pattern of the captured image data. .
  5.  前記検査装置は、
     前記撮影画像データの前記光パターンの台形歪を補正する台形歪補正手段を備えていることを特徴とする請求の範囲第1項または請求の範囲第2項に記載の検査システム。
    The inspection device includes:
    3. The inspection system according to claim 1, further comprising trapezoidal distortion correction means for correcting trapezoidal distortion of the optical pattern of the captured image data.
  6.  前記スクリーンは、前記移動体の移動領域の内外に移設自在であり、
     前記撮影装置は、前記移動体の移動領域外に配置されていることを特徴とする請求の範囲第1項または請求の範囲第2項に記載の検査システム。
    The screen can be moved inside and outside the moving area of the moving body,
    The inspection system according to claim 1 or claim 2, wherein the imaging device is arranged outside a moving region of the moving body.
  7.  前記撮影装置は、前記移動体のライトの光軸を検査するための領域に設けられた門形の支持台に設置されており、
     前記移動体が前記支持体内を通過可能であることを特徴とする請求の範囲第1項または請求の範囲第2項に記載の検査システム。
    The imaging device is installed on a gate-shaped support base provided in an area for inspecting the optical axis of the light of the moving body,
    The inspection system according to claim 1 or 2, wherein the movable body can pass through the support body.
  8.  前記検出光は不可視光波長の光であり、
     前記撮影装置は、赤外線カメラ、カラーカメラおよびモノクロカメラのいずれかであることを特徴とする請求の範囲第1項または請求の範囲第2項に記載の検査システム。
    The detection light is invisible light wavelength light,
    The inspection system according to claim 1 or 2, wherein the photographing device is any one of an infrared camera, a color camera, and a monochrome camera.
  9.  請求の範囲第1項に記載された検査システムを用いた光センサの検査方法であって、
     前記光センサから前記スクリーンに前記検出光を照射する段階と、
     前記撮影装置によって前記発光部および前記光パターンを撮影する段階と、
     前記検査装置において、前記撮影画像データにおける前記発光部の位置と前記光パターンの位置とから前記光センサの照射方向を検出する段階と、を備えていることを特徴とする光センサの検査方法。
    An inspection method for an optical sensor using the inspection system according to claim 1,
    Irradiating the screen with the detection light from the optical sensor;
    Photographing the light emitting unit and the light pattern by the photographing device;
    A method for inspecting an optical sensor, comprising: detecting an irradiation direction of the optical sensor from a position of the light emitting unit and a position of the light pattern in the photographed image data.
  10.  前記検査装置は、前記撮影画像データの前記光パターンの台形歪を補正する台形歪補正手段を有しており、
     前記検査装置によって前記撮影画像データの前記光パターンの台形歪を補正した後に、前記検査装置によって前記検出光の照射方向を検出することを特徴とする請求の範囲第9項に記載の光センサの検査方法。
    The inspection apparatus includes a trapezoidal distortion correction unit that corrects a trapezoidal distortion of the light pattern of the captured image data.
    The optical sensor according to claim 9, wherein an irradiation direction of the detection light is detected by the inspection device after correcting the trapezoidal distortion of the optical pattern of the captured image data by the inspection device. Inspection method.
  11.  前記撮影装置によって前記発光部および前記光パターンを撮影する段階において、
     前記撮影装置によって前記光パターンを撮影した後に、前記スクリーンを上昇させて、前記撮影装置によって前記発光部を撮影することを特徴とする請求の範囲第9項または請求の範囲第10項に記載の光センサの検査方法。
    In the step of photographing the light emitting unit and the light pattern by the photographing device,
    11. The range according to claim 9 or claim 10, wherein after shooting the light pattern by the shooting device, the screen is raised and the light emitting unit is shot by the shooting device. Inspection method for optical sensors.
  12.  前記移動体は、前記光センサを制御するセンサ制御装置を備え、
     前記光センサを検査する各段階において、前記センサ制御装置には信号入力装置が接続され、
     前記信号入力装置から前記センサ制御装置に対して、前記光センサが障害物を検出していないことを擬似的に示している正常疑似信号が入力されることを特徴とする請求の範囲第9項に記載の光センサの検査方法。
    The moving body includes a sensor control device that controls the optical sensor,
    In each stage of inspecting the optical sensor, a signal input device is connected to the sensor control device,
    10. The normal pseudo signal indicating, in a pseudo manner, that the optical sensor is not detecting an obstacle from the signal input device to the sensor control device. The inspection method of the optical sensor as described in 2.
  13.  前記移動体は、
     前記移動体に搭載された装置を制御するデバイス制御装置と、
     前記光センサを制御するセンサ制御装置と、
     前記デバイス制御装置および前記センサ制御装置を制御する中央制御装置と、を備え、
     前記中央制御装置は、前記センサ制御装置に前記光センサから障害物の検出信号が入力されたときに、前記移動体に衝突回避動作を実行させる通常移動モードを有しており、
     前記光センサを検査する各段階において、前記中央制御装置は、前記センサ制御装置に前記検出信号が入力されても、前記移動体に衝突回避動作を実行させない工場内移動モードに切り替えられることを特徴とする請求の範囲第9項に記載の光センサの検査方法。
    The moving body is
    A device control apparatus for controlling an apparatus mounted on the moving body;
    A sensor control device for controlling the optical sensor;
    A central control device for controlling the device control device and the sensor control device,
    The central control device has a normal movement mode that causes the moving body to perform a collision avoidance operation when an obstacle detection signal is input from the optical sensor to the sensor control device,
    In each stage of inspecting the optical sensor, the central control unit is switched to a factory movement mode that does not cause the moving body to perform a collision avoidance operation even when the detection signal is input to the sensor control unit. An inspection method for an optical sensor according to claim 9.
PCT/JP2014/054946 2013-05-31 2014-02-27 Optical sensor inspection system and optical sensor inspection method WO2014192347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519694A JP5897213B2 (en) 2013-05-31 2014-02-27 Optical sensor inspection system and optical sensor inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013115879 2013-05-31
JP2013-115879 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192347A1 true WO2014192347A1 (en) 2014-12-04

Family

ID=51988391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054946 WO2014192347A1 (en) 2013-05-31 2014-02-27 Optical sensor inspection system and optical sensor inspection method

Country Status (2)

Country Link
JP (1) JP5897213B2 (en)
WO (1) WO2014192347A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018194324A (en) * 2017-05-12 2018-12-06 株式会社バンザイ Vehicle dimension measurement device
WO2018226390A1 (en) 2017-06-09 2018-12-13 Waymo Llc Lidar optics alignment systems and methods
EP3588001A1 (en) * 2018-06-21 2020-01-01 Mahle Aftermarket Italy S.p.A. System and method of calibrating an optical sensor mounted on board of a vehicle
WO2020214427A1 (en) * 2019-04-17 2020-10-22 Waymo Llc Multi-sensor synchronization measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438617A (en) * 1987-08-04 1989-02-08 Yaskawa Denki Seisakusho Kk Measuring apparatus of light distribution
JPH06221960A (en) * 1993-01-26 1994-08-12 Honda Motor Co Ltd Measuring method and device for light source position and optical axis of head light
JP2003270036A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Infrared image pickup device
JP4061822B2 (en) * 2000-06-26 2008-03-19 松下電工株式会社 Infrared module characteristics measurement method
JP2009067347A (en) * 2007-09-18 2009-04-02 Koito Mfg Co Ltd Optical axis inspection method and optical axis inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438617A (en) * 1987-08-04 1989-02-08 Yaskawa Denki Seisakusho Kk Measuring apparatus of light distribution
JPH06221960A (en) * 1993-01-26 1994-08-12 Honda Motor Co Ltd Measuring method and device for light source position and optical axis of head light
JP4061822B2 (en) * 2000-06-26 2008-03-19 松下電工株式会社 Infrared module characteristics measurement method
JP2003270036A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Infrared image pickup device
JP2009067347A (en) * 2007-09-18 2009-04-02 Koito Mfg Co Ltd Optical axis inspection method and optical axis inspection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018194324A (en) * 2017-05-12 2018-12-06 株式会社バンザイ Vehicle dimension measurement device
WO2018226390A1 (en) 2017-06-09 2018-12-13 Waymo Llc Lidar optics alignment systems and methods
EP3610288A4 (en) * 2017-06-09 2020-12-23 Waymo LLC Lidar optics alignment systems and methods
EP3588001A1 (en) * 2018-06-21 2020-01-01 Mahle Aftermarket Italy S.p.A. System and method of calibrating an optical sensor mounted on board of a vehicle
WO2020214427A1 (en) * 2019-04-17 2020-10-22 Waymo Llc Multi-sensor synchronization measurement device
CN113677584A (en) * 2019-04-17 2021-11-19 伟摩有限责任公司 Multi-sensor synchronous measuring equipment
US11269066B2 (en) 2019-04-17 2022-03-08 Waymo Llc Multi-sensor synchronization measurement device
CN113677584B (en) * 2019-04-17 2022-09-06 伟摩有限责任公司 Multi-sensor synchronous measuring equipment

Also Published As

Publication number Publication date
JP5897213B2 (en) 2016-03-30
JPWO2014192347A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
KR101526424B1 (en) Inspection device and method of head up display for vehicle
US11836947B2 (en) System for calibrating a vehicle camera
KR102395276B1 (en) Apparatus for inspecting driver assistance system of vehicle and method for controlling the same
KR101787304B1 (en) Calibration method, calibration device, and computer program product
US8272748B2 (en) Projection-type display apparatus and method for performing projection adjustment
JP5897213B2 (en) Optical sensor inspection system and optical sensor inspection method
CN107560834B (en) Vehicle headlamp alignment system and method
JP4461091B2 (en) Position detection apparatus and correction method thereof
JP2019156641A (en) Image processing device for fork lift and control program
US8342222B2 (en) Method for mounting a tyre on a rim to form a motor vehicle wheel and for demounting a tyre from a rim and apparatus therefore
JPWO2017179453A1 (en) Inspection device, inspection method
KR101776740B1 (en) Head up display automatic compensation method and compensation system
JP2001252883A (en) Movable robot system
US9970751B2 (en) Optical axis angle inspection device
CN107643049B (en) System and method for detecting vehicle position on wagon balance based on monocular structured light
US20110169954A1 (en) Maneuvering assisting apparatus
US20200366883A1 (en) Stereo camera device
WO2016091813A1 (en) Image calibration and monitoring apparatus and image calibration and monitoring method
JP7054739B2 (en) Vehicle inspection system
JP2009208561A (en) Driver photographing system and driver photographing method
JP2006153768A (en) Position detection system and its correction method
JP4622637B2 (en) In-vehicle camera attitude correction device and in-vehicle camera attitude correction method
JP2013024735A (en) Mobile body and movement surface detection system
US20180295342A1 (en) Image apparatus for detecting abnormality of distance image
JP2023536676A (en) ADAS calibration system for calibrating at least one headlamp of a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803877

Country of ref document: EP

Kind code of ref document: A1