WO2014192091A1 - Method for producing welded steel pipe - Google Patents

Method for producing welded steel pipe Download PDF

Info

Publication number
WO2014192091A1
WO2014192091A1 PCT/JP2013/064852 JP2013064852W WO2014192091A1 WO 2014192091 A1 WO2014192091 A1 WO 2014192091A1 JP 2013064852 W JP2013064852 W JP 2013064852W WO 2014192091 A1 WO2014192091 A1 WO 2014192091A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
center
die
press forming
molding
Prior art date
Application number
PCT/JP2013/064852
Other languages
French (fr)
Japanese (ja)
Inventor
正之 堀江
征哉 田村
俊博 三輪
宏司 堀際
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2013/064852 priority Critical patent/WO2014192091A1/en
Priority to EP13885748.7A priority patent/EP3006128B1/en
Priority to JP2015519536A priority patent/JP6070967B2/en
Priority to RU2015155550A priority patent/RU2621747C1/en
Priority to CN201380076724.8A priority patent/CN105246608B/en
Publication of WO2014192091A1 publication Critical patent/WO2014192091A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • B21D5/015Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments for making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0815Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments

Definitions

  • the present invention relates to a method for manufacturing a large-diameter and thick-walled welded steel pipe used for a line pipe or the like, and more specifically, an open with high roundness by a press bend method in which a plurality of three-point bending press forming is performed. It relates to a method of manufacturing a tube.
  • the above-mentioned open pipe is a state in which the plate ends (open seam edges) facing each other are not welded after the plate material is formed into a cylindrical shape. Refers to the molded product.
  • a steel plate with a predetermined width, length and thickness is press-formed into a U shape and then pressed into an O shape to form an open pipe.
  • UOE steel pipe in which the open pipe is butt welded to form a steel pipe and the diameter thereof is further expanded (expanded) to increase the roundness, is widely used.
  • a great deal of pressure is required, and thus it is necessary to use a large-scale press.
  • Patent Document 1 discloses a punch that constitutes an upper mold, a cradle that is fixed at the position opposite to the punch, and that serves as a bottom dead center of the punch.
  • First and second dies that are arranged opposite to the right and left sides of the cradle and are capable of reciprocating in opposite directions are provided, and the lower die is configured by the cradle, the first die, and the second die.
  • a press mold is disclosed.
  • Patent Document 2 an outer mold in which a concave molding surface having a radius corresponding to the outer diameter is formed to a predetermined length and an inner mold in which a convex molding surface having a radius corresponding to the inner diameter is formed to a predetermined length are brought close to each other.
  • the inner mold with the roller body installed on both sides of the outer mold and receiving the steel plate at a position protruding inward from the extended surface of the outer mold
  • a technique has been disclosed in which the bending is made accurate by bringing the shape close to the outer mold and bending the portion corresponding to the press.
  • Patent Document 3 a steel plate is press-formed, bent, and welded and joined in a state where the groove portions are substantially in contact with each other to form a semi-formed round steel tube, and the entire semi-formed round steel tube is heated.
  • a method for manufacturing a round steel pipe is disclosed in which the forming surface is hot-formed by passing between a plurality of semi-circular forming rolls corresponding to the final radius, and the shape is adjusted.
  • Patent Document 3 requires a heating process in which the shape correction is performed hot, which causes a significant increase in manufacturing cost.
  • strength, toughness, and weldability may be impaired by heating.
  • the present invention has been made in view of the above-described problems of the prior art, and its purpose is to produce a welded steel pipe that can easily produce an open pipe with a small amount of misalignment of the welded portion by the press bend method. To propose a method.
  • the inventors conducted a detailed investigation focusing on changes in the shape of the steel sheet in three-point bending press forming in order to reduce the occurrence of misunderstandings in the welded portion as much as possible. As a result, after multiple press forming (first half press forming) from one width end of the steel sheet toward the width center, multiple press forming (second half press forming) from the opposite end to the width center.
  • a material steel plate is three-point bending press-formed with a pair of dies arranged at a predetermined interval in the steel plate feeding direction and a punch for pressing the steel plate between the pair of dies.
  • a method for producing a welded steel pipe characterized in that a steel plate supported by a die on the center side of the steel plate width is an unformed part.
  • the final pass of the latter half press forming is the following formula (1): ⁇ b ⁇ W ⁇ b ⁇ L b + L n (1)
  • L b Molding range in the final pass of the second half press molding (mm)
  • L n Molding range in final press molding (mm)
  • W Die spacing (mm)
  • ⁇ b Steel sheet position shift rate in the final pass of the second half press forming ( ⁇ )
  • ⁇ b Die position shift rate in the final pass of the second half press forming ( ⁇ ) It is characterized by satisfying.
  • the present invention there is no adverse effect on quality such as a reduction in the thickness of the steel sheet due to the narrow pressure between the lower mold and the upper mold, and the work efficiency is not reduced by replacing the lower mold. There is no need to change the molding conditions in the press molding, and an open tube having no level difference (mismatch) at the butt portion can be obtained.
  • hot shape correction since hot shape correction is not required, it is possible to provide a steel pipe that maintains the characteristics built in the manufacturing stage of the material steel plate.
  • FIG. 1 shows a press using a three-point bending press forming machine having a pair of dies arranged at predetermined intervals in the steel sheet feeding direction and supporting the steel sheet at two locations and a punch for pressing the steel sheet between the dies.
  • molds the open pipe before welding of a welded steel pipe by the bend method is shown typically.
  • FIG. 1 although the steel plate which provided the end bending is used, it is the same also when the end bending is not provided.
  • the three-point bending press forming and the feeding of the steel sheet are repeated a plurality of times (a times) to form the half of the steel sheet into a substantially circular shape.
  • the first half press forming is completed without forming the steel plate center portion C.
  • this process is referred to as “first half press molding”.
  • the three-point bending press forming and feeding are repeated a plurality of times (b times) from the other end of the steel plate, from the B part to the C part, and the remaining half is formed into a substantially circular shape.
  • the forming conditions such as the feed amount of the steel sheet and the number of presses (pass times) are the same as the first half press forming so that the shape of the forming part is the same as the first half press forming. .
  • the steel plate center portion C is not formed. This process is called “second half press molding”.
  • the steel plate after the latter half press forming has a C-shaped shape in which a flat portion remains at the center of the width and the butt portion is greatly opened.
  • the amount of reduction (positional relationship between the die and punch) in the first half press molding and the second half press molding can be arbitrarily selected for each press molding pass to control the molding shape, but the first half press molding and the second half press molding. In order to make the molding shapes of the same the same, it is preferable to make them constant. However, if it is known that the end bending shape, plate thickness, strength, etc. are different between the first half press forming side and the second half press forming side, or if an asymmetric shape is desired in consideration of the subsequent processes, The feed amount, the number of presses, the reduction amount, etc. may be changed between the first half press molding and the second half press molding. In that case, it is preferable to adjust the amount of reduction that can be easily changed on the spot.
  • the feed amount of the steel plate for each pass of the steel plate is not more than the die interval. This is because, when the feed amount exceeds the die interval, an undeformed portion remains in the formed steel sheet, resulting in a result that the roundness of the open pipe and thus the product steel pipe is extremely inferior.
  • FIG. 2 is a schematic diagram for explaining the final pass (a-th) of the first half press molding.
  • the left die in the figure is in contact with the steel plate that has not yet been formed, but the other right die has a steel plate portion with a curvature that has already been formed. Will float from the die. Therefore, when the steel plate is pressed with a punch, the pre-formed side having a curvature is lowered, and press forming starts from a state where the steel plate is inclined.
  • FIG. 3 and FIG. 4 are schematic diagrams for explaining the final pass (b-th) of the latter half press forming.
  • the forming shape changes greatly depending on the relative relationship between the die interval and the feed amount of the steel plate.
  • the right die in the drawing is in contact with the unformed portion on the center side in the width direction of the steel plate.
  • the other left-side die has a steel plate portion having a curvature that has already been formed, so that the steel plate floats from the die. That is, it is the same state as FIG.
  • the shape of the right steel plate is different from the shape of the left steel plate in FIG. 3, and thus, for example, a device (guide or the like) for feeding the steel plate disposed on the machine side of the press machine
  • a device for example, a device for feeding the steel plate disposed on the machine side of the press machine
  • FIG. 5 schematically shows the situation when the steel plate is fed for the final pass of the second half press forming when the feed amount of the same steel plate as in FIG. 4 is relatively small with respect to the die interval.
  • the steel plate In order to send the steel plate to the final pass position, the steel plate is sent toward the steel plate width end side (left side of the figure), but before reaching the final pass position, the center of gravity of the steel plate is the center of the width of the steel plate. Since it exceeds the right side die in the figure on the side, the left side of the steel plate width side is lowered and comes into contact with the left side die.
  • the position at which the left end of the steel plate starts to fall and the position in contact with the die also vary depending on the inertial force when feeding the steel plate and the frictional resistance with the die due to the difference in the surface state of the steel plate, so press forming It also causes variation in range.
  • FIG. 6 shows the positional relationship between the steel plate, the die and the punch when the steel plate is placed in a state before the final pass (b-th) of the second half press forming.
  • L b , L n , W, ⁇ b and ⁇ b shown in the figure are defined as follows.
  • L b Molding range (mm) in the final pass of the second half press molding
  • L n Molding range in final press molding (mm)
  • W Die spacing (mm)
  • ⁇ b Steel sheet position shift rate in the final pass of the second half press forming ( ⁇ )
  • ⁇ b Die position shift rate in the final pass of the second half press forming ( ⁇ )
  • 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1, and when ⁇ is 0.5 the center of L b coincides with the center of the punch, and when ⁇ is smaller than 0.5, L b
  • the center is shifted to the left side from the center of the punch, and when ⁇ is 0.5, the center between the dies and the center of the punch coincide, and when ⁇ is smaller than 0.5, the center of the die is It will shift to the left from the center of the punch.
  • the steel sheet feed amount to the final forming (n-th) after the final pass (b-th) of the second half press forming is ⁇ b
  • the steel plate portion formed by the first half press forming comes into contact with the right die in the drawing, that is, the same state as FIG. ⁇ b ⁇ W ⁇ b ⁇ L b + L n (1) This is when the condition is satisfied.
  • the influence of the die interval W on the force required for the three-point bending press forming will be examined with reference to FIG.
  • the material to be formed (steel plate) is deformed by yielding at the end of the forming range. Therefore, a bending moment necessary for plastic deformation of the material to be formed is present at the end of the forming range.
  • the bending moment required for plastic deformation is a value Mf determined by the thickness of the molding material and the deformation resistance, while the force acting on the molding material from the die is the reaction force P 1 and P received from the die. 4 , and a moment obtained by multiplying this by the distance (L 1 and L 4 ) to the deformation point (end of the forming range) acts.
  • the main welded steel pipe is preferably expanded using a pipe expanding device.
  • the pipe expansion ratio is preferably in the range of 0.5 to 1.2%.
  • the end-bending thick steel plate was subjected to three-point bending press forming with a three-point bending press machine having a force of 100MN and variously changing the steel plate feed amount and the die interval, and the outer diameter was 914.4 mm, the length was 12192 mm, The tube was formed into an open tube having a thickness of 31.8 mm, and the amount of misalignment at the butt portion defined in FIG. 8 was measured.
  • the punch outer peripheral surface of the three-point bending press molding was R315 mm, and the die outer peripheral surface was R100 mm.
  • Table 1 shows the measurement result of the misalignment amount of the butt portion together with the pressing conditions.
  • the pressing conditions the number of passes in the second half of the press molding, bending angle theta b per one pass, forming range L b at the final pass of the second half of the press molding, the range L n in the final press-molding, the final late press molding
  • the punch shift rate ⁇ b , die shift rate ⁇ b, and die interval W in the pass are shown.
  • the bending angle, forming range, punch shift rate and die shift rate per pass are the same as the final pass of the second half press forming, and the first half press forming is the same number of presses as the second half press forming.
  • the misalignment amount of the butt portion is 5 mm or less, which is the correctable range, in any condition, but exceeds the correctable range if the condition of the expression (1) is not satisfied. It can be seen that there is a mistaking amount.
  • Example 2 In the same manner as in Example 1, a thick steel plate having an API X80 Grade strength, an outer diameter of 914.4 mm, a length of 12192 mm, and a plate thickness of 31.8 mm was subjected to three-point bending press forming into an open pipe for a welded steel pipe. At this time, the number of passes of the second half press molding was changed to 9 and 5 times, and the die interval was changed to 360 mm, 380 mm, 620 mm and 640 mm, and the shift amounts ⁇ b and ⁇ b of the final pass in the second half press molding were further changed under the above conditions. Various changes were made.
  • Open pipes for welded steel pipes having various strengths and dimensions were produced in the same manner as in Examples 1 to 3.
  • Table 4 shows the strength grade and dimensions of the product, the radius of the tool used as the end bending condition, the working width (end bending range), the bending angle, and the pressing condition.
  • the punch shifting rate and die shifting rate were set to 0.5.
  • the bending angle per one pass, the molding range, the punch shift rate and the die shift rate are the same as the final pass of the second half press molding.
  • the same press times and conditions were used.
  • the difference in the welded portion of each oven tube thus obtained was measured and evaluated in the same manner as in Example 1, and the results are also shown in Table 4.

Abstract

In this method that is for producing a welded steel pipe by means of a press bending method and that produces a steel pipe by causing a starting-material steel plate to be three-point bend press-molded into an open pipe by means of a pair of dies, which are disposed at a predetermined distance in the direction of steel plate transfer, and a punch, which presses the steel plate between the pair of dies, and then welding the open pipe, after performing a plurality of repetitions of first-half press molding from one end in the widthwise direction of the steel plate towards the center in the widthwise direction (but excepting the center in the widthwise direction), performing a plurality of repetitions of second-half press molding from the other end in the widthwise direction towards the center in the widthwise direction (but excepting the center in the widthwise direction), and when finally performing final press molding in the center in the widthwise direction to result in an open pipe, causing the portion of the steel plate supported at the dies at the center side in the widthwise direction of the steel plate at the final pass of the second-half press molding to be an unmolded portion, thus producing an open pipe having a small amount of irregularity in the welded portion.

Description

溶接鋼管の製造方法Manufacturing method of welded steel pipe
 本発明は、ラインパイプ等に使用される、大径かつ厚肉の溶接鋼管の製造方法に関し、具体的には、複数回の3点曲げプレス成形を行うプレスベンド法により真円度の高いオープン管を製造する方法に関するものである。なお、本発明において、上記オープン管(open seam pipe)とは、素材である板材を円筒状に成形した後、互いに向かい合う板端部(オープンシームエッジ(open seam edges))が溶接されていない状態の成形品を指す。 The present invention relates to a method for manufacturing a large-diameter and thick-walled welded steel pipe used for a line pipe or the like, and more specifically, an open with high roundness by a press bend method in which a plurality of three-point bending press forming is performed. It relates to a method of manufacturing a tube. In the present invention, the above-mentioned open pipe (open seam pipe) is a state in which the plate ends (open seam edges) facing each other are not welded after the plate material is formed into a cylindrical shape. Refers to the molded product.
 ラインパイプ等に使用される大径かつ厚肉の鋼管としては、所定の幅、長さ、厚さを有する鋼板をU字状にプレス成形した後、O字状にプレス成形してオープン管とし、その後、そのオープン管を突合せ溶接して鋼管とし、さらにその直径を拡大(拡管)して真円度を高めた、いわゆる「UOE鋼管」が広く普及している。しかし、このUOE鋼管を製造するには、鋼板をU字状、O字状にプレス成形する際、多大な圧力が必要となるため、大規模なプレス機を使用する必要がある。 For large diameter and thick steel pipes used for line pipes, etc., a steel plate with a predetermined width, length and thickness is press-formed into a U shape and then pressed into an O shape to form an open pipe. Thereafter, the so-called “UOE steel pipe”, in which the open pipe is butt welded to form a steel pipe and the diameter thereof is further expanded (expanded) to increase the roundness, is widely used. However, in order to manufacture this UOE steel pipe, when a steel plate is press-formed into a U shape or an O shape, a great deal of pressure is required, and thus it is necessary to use a large-scale press.
 そこで、大径かつ厚肉の鋼管を製造する際のプレス圧力を軽減する技術として、例えば、鋼板の幅方向端部に曲げ(いわゆる端曲げ(edge crimping))を付与した後、鋼板を幅方向に所定量ずつ送りながら複数回の3点曲げプレスを行なって鋼板をほぼ円形のオープン管に成形した後、上記オープン管の開口部を突合せ溶接した後、形状を矯正して鋼管とするプレスベンド法による鋼管の製造方法が実用化されている。 Therefore, as a technique for reducing the pressing pressure when manufacturing a large-diameter and thick-walled steel pipe, for example, bending (so-called edge-crimping) is applied to the end of the steel plate in the width direction, and then the steel plate is processed in the width direction. Press bend to make a steel pipe after correcting the shape after forming a steel plate into a substantially circular open tube by performing a three-point bending press several times while feeding a predetermined amount to A method of manufacturing a steel pipe by the method has been put into practical use.
 しかし、上記のプレスベンド法では、鋼板幅方向のプレス成形が別々であるため、鋼板の板厚や強度のわずかな変動によって曲げ形状に差異が生じやすい。その結果、オープン管を突合せした際、突合せ部に段差が生じ、溶接部の目違いの原因となる。この溶接部の目違いは、内圧により生じる周方向の引張応力の局部集中を引き起こすことから、製品の信頼性を大きく損なうことになる。 However, in the press bend method described above, since the press forming in the width direction of the steel sheet is separate, the bending shape is likely to vary due to slight fluctuations in the thickness and strength of the steel sheet. As a result, when the open pipe is butted, a step is generated at the butt portion, which causes a mistake in the welded portion. This misunderstanding of the welded portion causes local concentration of the tensile stress in the circumferential direction caused by the internal pressure, which greatly impairs the reliability of the product.
 この溶接部の目違いを防止するためには、鋼板幅方向でプレス条件(例えば、圧下量)を微妙に調整してやる必要があるため、自動化し、大量生産する際の障害となっていた。また、溶接部に目違いが生じた場合、左右の突合せ部を拘束して溶接するが、この際、鋼板が高強度材や厚肉材の場合では大きな拘束力が必要となるため、製造可能範囲が限定されるという問題もある。 In order to prevent this weld from being mistaken, it is necessary to finely adjust the press conditions (for example, the amount of reduction) in the width direction of the steel sheet, which has been an obstacle to automation and mass production. Also, if there is a mistake in the welded part, the right and left butt parts are restrained and welded. However, if the steel plate is a high-strength or thick-walled material, a large restraining force is required, so it can be manufactured. There is also the problem that the range is limited.
 斯かる問題点に対応する技術として、例えば、特許文献1には、上型を構成するポンチと、同ポンチに対峙して設置位置を固定され同ポンチの下死点となる受け台と、同受け台を挟んで左右両側に対峙して配置され対向方向に往復動可能の第1、第2のダイスを設け、前記受け台、第1のダイス、および第2のダイスにより下型を構成したプレス成形金型が開示されている。また、特許文献2には、外径に対応する半径の凹状成形面を所定長さに形成した外型と、内径に対応する半径の凸状成形面を所定長さ形成した内型を接近させ、両金型の間でプレス相当部分を曲げ形成するとともに、外型の両側外方に設置したローラ体で、外型の延長面よりも内側に突出した位置で鋼板を受け止めた状態で内型を外型に接近させ、プレス相当部分の近くを曲げる状態とすることにより、曲げ形成を正確にする技術が開示されている。また、特許文献3には、鋼板をプレス成形し、曲げ形成し、開先の部分を相当接させた状態で溶接接合して半成形丸鋼管を形成し、この半成形丸鋼管の全体を加熱したのち、その成形面を最終半径に対応する半円状とした複数の成形ロール間に通して熱間成形して、形状を整える丸鋼管の製造方法が開示されている。 As a technique corresponding to such a problem, for example, Patent Document 1 discloses a punch that constitutes an upper mold, a cradle that is fixed at the position opposite to the punch, and that serves as a bottom dead center of the punch. First and second dies that are arranged opposite to the right and left sides of the cradle and are capable of reciprocating in opposite directions are provided, and the lower die is configured by the cradle, the first die, and the second die. A press mold is disclosed. In Patent Document 2, an outer mold in which a concave molding surface having a radius corresponding to the outer diameter is formed to a predetermined length and an inner mold in which a convex molding surface having a radius corresponding to the inner diameter is formed to a predetermined length are brought close to each other. In addition to bending the press equivalent part between both molds, the inner mold with the roller body installed on both sides of the outer mold and receiving the steel plate at a position protruding inward from the extended surface of the outer mold A technique has been disclosed in which the bending is made accurate by bringing the shape close to the outer mold and bending the portion corresponding to the press. Further, in Patent Document 3, a steel plate is press-formed, bent, and welded and joined in a state where the groove portions are substantially in contact with each other to form a semi-formed round steel tube, and the entire semi-formed round steel tube is heated. After that, a method for manufacturing a round steel pipe is disclosed in which the forming surface is hot-formed by passing between a plurality of semi-circular forming rolls corresponding to the final radius, and the shape is adjusted.
特開平11-129031号公報Japanese Patent Laid-Open No. 11-129031 特開2007-090406号公報JP 2007-090406 A 特開2005-324255号公報JP 2005-324255 A
 しかしながら、上記の特許文献1に記載の方法では、下死点では、鋼板がポンチと受け台で挟圧されるため、板厚が減じる。そのため、狭圧される範囲が局部的な場合には、管厚が不均一となり、所定の寸法を満足できないおそれがある。また、特許文献2に記載の方法では、曲げ形成する範囲の全域を外型と内型で狭圧することによって、特許文献1の問題点を解決しているものの、適正な内型、外型寸法が、鋼管の直径や管厚によって異なるため、多様な寸法の金型を準備する必要があると共に、金型交換頻度が増加するため、生産性が悪いという問題がある。また、特許文献3に記載の方法では、形状矯正を熱間で行う加熱工程が必要となるため、著しい製造コストの増大を招く。また、加工熱処理プロセスで製造された鋼板を素材に用いる場合には、加熱により、強度や靭性、溶接性を損ねるおそれもある。 However, in the method described in Patent Document 1, the plate thickness is reduced at the bottom dead center because the steel plate is clamped between the punch and the cradle. Therefore, when the narrowed range is local, the tube thickness becomes non-uniform, and there is a possibility that a predetermined dimension cannot be satisfied. Further, in the method described in Patent Document 2, although the problem of Patent Document 1 is solved by narrowing the entire range of the bending formation with the outer mold and the inner mold, the proper inner mold and outer mold dimensions are solved. However, since it differs depending on the diameter and thickness of the steel pipe, it is necessary to prepare molds with various dimensions, and the frequency of mold replacement increases, resulting in poor productivity. In addition, the method described in Patent Document 3 requires a heating process in which the shape correction is performed hot, which causes a significant increase in manufacturing cost. Moreover, when using the steel plate manufactured by the thermomechanical process for a raw material, there exists a possibility that intensity | strength, toughness, and weldability may be impaired by heating.
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、プレスベンド法で溶接部の目違い量の小さいオープン管を簡便に製造することができる溶接鋼管の製造方法を提案することにある。 The present invention has been made in view of the above-described problems of the prior art, and its purpose is to produce a welded steel pipe that can easily produce an open pipe with a small amount of misalignment of the welded portion by the press bend method. To propose a method.
 発明者らは、溶接部の目違いの発生を極力低減するため、3点曲げプレス成形における鋼板形状の変化に着目して詳細な調査を行った。その結果、鋼板の一方の幅端部から幅中央に向かって複数回のプレス成形(前半プレス成形)した後、反対側の端部から幅中央に向かって複数回のプレス成形(後半プレス成形)し、最後に幅中央部をプレス成形するオープン管の製造方法においては、前半プレス成形の最終パスでは、鋼板をダイにセットしたときには、一方のダイは未成形の鋼板と接触し、もう一方のダイは既に成形された鋼板と接触しているのに対して、後半プレス成形の最終パスでは、設定する鋼板の送り量によっては、両方のダイとも既に成形された鋼板と接触することがあり、斯かる場合には、前半プレス成形と後半プレス成形における加工形状に差異が生じて、オープン管の突合せ部に大きな目違いが発生すること、したがって、上記目違いを防止するためには、後半プレス成形の最終パスにおいて、板幅中央側のダイに未成形の鋼板が位置するようにしてやる必要があることを見出し、本発明を開発するに至った。 The inventors conducted a detailed investigation focusing on changes in the shape of the steel sheet in three-point bending press forming in order to reduce the occurrence of misunderstandings in the welded portion as much as possible. As a result, after multiple press forming (first half press forming) from one width end of the steel sheet toward the width center, multiple press forming (second half press forming) from the opposite end to the width center. However, in the manufacturing method of the open tube in which the center part of the width is finally formed, in the final pass of the first half press forming, when the steel plate is set on the die, one die comes into contact with the unformed steel plate, and the other While the die is in contact with the already formed steel plate, in the final pass of the second half press forming, depending on the feed amount of the set steel plate, both dies may contact the already formed steel plate, In such a case, there is a difference in the processing shape between the first half press molding and the second half press molding, and a large mistake occurs in the butt portion of the open pipe. Therefore, in order to prevent the above mistake In the final pass of the second half of the press molding, it found that the steel sheet of the unshaped the plate width center side of the die needs to'll so as to be positioned, has led to the development of the present invention.
[規則91に基づく訂正 09.07.2014] 
 すなわち、本発明は、素材鋼板を、鋼板送り方向に所定の間隔をおいて配設された1対のダイと、前記1対のダイ間で鋼板を押圧するパンチとで3点曲げプレス成形してオープン管とした後、当該オープン管を溶接して鋼管を製造する方法において、前記鋼板の一方の幅端部から幅中央に向かって(ただし、幅中央を残して)前半プレス成形した後、反対側の幅端部から幅中央に向かって(ただし、幅中央を残して)後半プレス成形し、最後に幅中央を最終プレス成形してオープン管とする際、前記後半プレス成形の最終パスで鋼板幅中央側のダイに支持される鋼板を未成形部分とすることを特徴とする溶接鋼管の製造方法である。
[Correction 09.07.2014 based on Rule 91]
That is, according to the present invention, a material steel plate is three-point bending press-formed with a pair of dies arranged at a predetermined interval in the steel plate feeding direction and a punch for pressing the steel plate between the pair of dies. In the method of manufacturing a steel pipe by welding the open pipe after the open pipe, from the width end of one of the steel plates toward the width center (however, leaving the width center) after the first half press molding, When the second half press-molding is performed from the opposite width end toward the width center (however, leaving the width center) and finally the center of the width is finally press-molded to form an open tube, A method for producing a welded steel pipe, characterized in that a steel plate supported by a die on the center side of the steel plate width is an unformed part.
 本発明の溶接鋼管の製造方法は、前記後半プレス成形の最終パスが、下記(1)式;
      記
 β・W<α・L+L ・・・(1)
 ここで、L:後半プレス成形の最終パスにおける成形範囲(mm)
     L:最終プレス成形における成形範囲(mm)
     W:ダイ間隔(mm)
     α:後半プレス成形の最終パスにおける鋼板位置のずらし率(-)
     β:後半プレス成形の最終パスにおけるダイ位置のずらし率(-)
を満たすことを特徴とする。
In the method for producing a welded steel pipe according to the present invention, the final pass of the latter half press forming is the following formula (1):
Β b · W <α b · L b + L n (1)
Here, L b : Molding range in the final pass of the second half press molding (mm)
L n : Molding range in final press molding (mm)
W: Die spacing (mm)
α b : Steel sheet position shift rate in the final pass of the second half press forming (−)
β b : Die position shift rate in the final pass of the second half press forming (−)
It is characterized by satisfying.
 本発明によれば、下型と上型の狭圧による鋼板板厚の減厚といった品質への悪影響や、下型を交換することによる作業能率の低下を招くことなく、さらに、前半と後半のプレス成形における成形条件を変える必要がなく、突合せ部の段差(目違い)のないオープン管を得ることができる。また、本発明によれば、熱間での形状矯正が不要となるので、素材鋼板の製造段階で造り込んだ特性を維持したままの鋼管を提供することが可能となる。 According to the present invention, there is no adverse effect on quality such as a reduction in the thickness of the steel sheet due to the narrow pressure between the lower mold and the upper mold, and the work efficiency is not reduced by replacing the lower mold. There is no need to change the molding conditions in the press molding, and an open tube having no level difference (mismatch) at the butt portion can be obtained. In addition, according to the present invention, since hot shape correction is not required, it is possible to provide a steel pipe that maintains the characteristics built in the manufacturing stage of the material steel plate.
本発明のオープン管の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the open pipe | tube of this invention. 前半プレス成形の最終パスを説明する模式図である。It is a schematic diagram explaining the last pass of the first half press molding. 鋼板の送り量がダイ間隔に対して相対的に大きい場合の、後半プレス成形の最終パスを説明する模式図である。It is a schematic diagram explaining the final pass of the latter half press forming when the feed amount of the steel sheet is relatively large with respect to the die interval. 鋼板の送り量がダイ間隔に対して相対的に小さい場合の、後半プレス成形の最終パスを説明する模式図である。It is a schematic diagram explaining the final pass of the latter half press forming when the feed amount of a steel plate is relatively small with respect to the die interval. 鋼板の送り量がダイ間隔に対して相対的に小さい場合の、後半プレス成形の最終パスにおける鋼板送りを説明する模式図である。It is a schematic diagram explaining the steel plate feed in the final pass of the latter half press forming when the feed amount of the steel plate is relatively small with respect to the die interval. 後半プレス成形の最終パス前の状態に鋼板を配置した時の鋼板、ダイおよびパンチの位置関係を示す図である。It is a figure which shows the positional relationship of a steel plate, die | dye, and a punch when the steel plate is arrange | positioned in the state before the last pass of the second half press forming. ダイ間隔Wが3点曲げプレス成形に必要な力量に及ぼす影響について説明する図である。It is a figure explaining the influence which die space | interval W exerts on the force required for three-point bending press molding. オープン管の突き合わせ部の目違い量を説明する図である。It is a figure explaining the amount of mistakes of the butting part of an open pipe.
 以下、本発明の実施の形態について具体的に説明する。
 図1は、鋼板送り方向に所定の間隔をおいて配置され、鋼板を2箇所で支持する1対のダイと、上記鋼板をダイ間で押圧するパンチを有する3点曲げプレス成形機を用いるプレスベンド法により、溶接鋼管の溶接前のオープン管を成形する工程を模式的に示したものである。なお、図1においては、端曲げを付与した鋼板を用いているが、端曲げが付与されていない場合も同様である。
Hereinafter, embodiments of the present invention will be specifically described.
FIG. 1 shows a press using a three-point bending press forming machine having a pair of dies arranged at predetermined intervals in the steel sheet feeding direction and supporting the steel sheet at two locations and a punch for pressing the steel sheet between the dies. The process which shape | molds the open pipe before welding of a welded steel pipe by the bend method is shown typically. In addition, in FIG. 1, although the steel plate which provided the end bending is used, it is the same also when the end bending is not provided.
 まず、前半のプレス成形として、図1のA部からC部に向かい、3点曲げプレス成形と鋼板の送りを複数回(a回)繰返して鋼板の片半分を略円形状に成形する。このとき、鋼板中心部Cは成形せずに、前半のプレス成形を完了する。本明細書では、この工程を「前半プレス成形」と称する。 First, as the first half press forming, from the A part to the C part in FIG. 1, the three-point bending press forming and the feeding of the steel sheet are repeated a plurality of times (a times) to form the half of the steel sheet into a substantially circular shape. At this time, the first half press forming is completed without forming the steel plate center portion C. In this specification, this process is referred to as “first half press molding”.
 続いて、鋼板の他方の端であるB部からC部に向かって3点曲げプレス成形と送りを複数回(b回)繰返し、残りの片半分を略円形状に成形する。この後半プレス成形は、成形部の形状が、前半プレス成形と同一となるようにするため、鋼板の送り量やプレス回数(パス回数)等の成形条件を前半プレス成形と同じにするのが好ましい。また、この後半プレス成形においても、鋼板中心部Cは成形しない。この工程を「後半プレス成形」と称する。この後半プレス成形後の鋼板は、幅中心部に平坦部分が残り、突合せ部が大きく開口したC字状の形となる。 Subsequently, the three-point bending press forming and feeding are repeated a plurality of times (b times) from the other end of the steel plate, from the B part to the C part, and the remaining half is formed into a substantially circular shape. In this latter half press forming, it is preferable that the forming conditions such as the feed amount of the steel sheet and the number of presses (pass times) are the same as the first half press forming so that the shape of the forming part is the same as the first half press forming. . Further, even in the latter half press forming, the steel plate center portion C is not formed. This process is called “second half press molding”. The steel plate after the latter half press forming has a C-shaped shape in which a flat portion remains at the center of the width and the butt portion is greatly opened.
 最後に、素材鋼板幅中心部の平坦部分を3点曲げプレス成形して、突合せ部の開きを閉じる。この工程を「最終プレス成形」と称する。 Finally, the flat part at the center of the width of the steel plate is subjected to three-point bending press forming, and the butt opening is closed. This process is referred to as “final press molding”.
 上記の前半プレス成形および後半プレス成形における圧下量(ダイとパンチの位置関係)は、プレス成形のパス毎に任意に選択して成形形状を制御することができるが、前半プレス成形と後半プレス成形の成形形状を同一とするためには一定とするのが好ましい。ただし、端曲げ形状や板厚、強度等が、前半プレス成形側と後半プレス成形側で異なることがわかっている場合や、以降の工程を考慮して非対称な形状が望ましい場合には、鋼板の送り量やプレス回数、圧下量等を前半プレス成形と後半プレス成形で変更する場合がある。その場合には、その場での変更が容易な圧下量を調整することが好ましい。 The amount of reduction (positional relationship between the die and punch) in the first half press molding and the second half press molding can be arbitrarily selected for each press molding pass to control the molding shape, but the first half press molding and the second half press molding. In order to make the molding shapes of the same the same, it is preferable to make them constant. However, if it is known that the end bending shape, plate thickness, strength, etc. are different between the first half press forming side and the second half press forming side, or if an asymmetric shape is desired in consideration of the subsequent processes, The feed amount, the number of presses, the reduction amount, etc. may be changed between the first half press molding and the second half press molding. In that case, it is preferable to adjust the amount of reduction that can be easily changed on the spot.
 なお、上記鋼板の1回のパス毎の鋼板の送り量は、ダイ間隔以下とすることが好ましい。というのは、送り量がダイ間隔を超えると、成形後の鋼板に未変形部分が残存することになるため、オープン管ひいては製品鋼管の真円度が著しく劣る結果になるからである。 In addition, it is preferable that the feed amount of the steel plate for each pass of the steel plate is not more than the die interval. This is because, when the feed amount exceeds the die interval, an undeformed portion remains in the formed steel sheet, resulting in a result that the roundness of the open pipe and thus the product steel pipe is extremely inferior.
 図2は、前半プレス成形の最終パス(a回目)を説明する模式図である。鋼板の送りが完了した時点では、図中の左側ダイは、まだ成形されていない鋼板と接しているが、もう一方の右側ダイは、既に成形が終わった曲率を有する鋼板部分がくるため、鋼板はダイから浮いた状態となる。そのため、パンチで鋼板を押圧すると、曲率を有する既成形側が下がり、鋼板が傾いた状態からプレス成形が開始することになる。さらに、プレス成形開始時における上記左右の違いに加え、プレス中には、既成形側が多く引き込まれるため、パンチ下死点における鋼板の成形領域は、上金型の中心に対して非対称となる。 FIG. 2 is a schematic diagram for explaining the final pass (a-th) of the first half press molding. When the feeding of the steel plate is completed, the left die in the figure is in contact with the steel plate that has not yet been formed, but the other right die has a steel plate portion with a curvature that has already been formed. Will float from the die. Therefore, when the steel plate is pressed with a punch, the pre-formed side having a curvature is lowered, and press forming starts from a state where the steel plate is inclined. Furthermore, in addition to the difference between the left and right at the start of press forming, a large amount of the pre-formed side is drawn during the press, so that the forming region of the steel plate at the punch bottom dead center is asymmetric with respect to the center of the upper die.
 一方、図3および図4は、後半プレス成形の最終パス(b回目)を説明する模式図である。この後半プレス成形では、ダイの間隔と鋼板の送り量との相対関係によって、成形形状が大きく変化する。例えば、図3に示したように、鋼板の送り量がダイ間隔に対して相対的に大きい場合には、図中の右側ダイは、鋼板の幅方向中心側の未成形部と接しているが、もう一方の左側ダイは、既に成形が終わった曲率を有する鋼板部分がくるため、鋼板はダイから浮いた状態となる。すなわち、前述した図2と、左右が異なるが、同じ状態となっている。 On the other hand, FIG. 3 and FIG. 4 are schematic diagrams for explaining the final pass (b-th) of the latter half press forming. In the latter half press forming, the forming shape changes greatly depending on the relative relationship between the die interval and the feed amount of the steel plate. For example, as shown in FIG. 3, when the feed amount of the steel plate is relatively large with respect to the die interval, the right die in the drawing is in contact with the unformed portion on the center side in the width direction of the steel plate. The other left-side die has a steel plate portion having a curvature that has already been formed, so that the steel plate floats from the die. That is, it is the same state as FIG.
 これに対して、図4に示したように、鋼板の送り量がダイ間隔に対して相対的に小さい場合には、図中の右側ダイにも、前半プレス成形で加工された鋼板部分がくるため、左右両方のダイは既成形部分と接することになる。比較のため、図4中に、図2の鋼板位置を左右反転し、破線で示した。このときのプレス成形開始時(図4(b))における鋼板の傾き量は、図2のときより小さくなり、パンチ下死点(図4(c))での変形領域は、図2の時と異なってくる。このため、左右の形状に差異が生じることになる。 On the other hand, as shown in FIG. 4, when the feed amount of the steel sheet is relatively small with respect to the die interval, the steel sheet portion processed by the first half press forming also comes to the right die in the figure. Therefore, both the left and right dies are in contact with the already formed part. For comparison, the position of the steel plate in FIG. 2 is reversed left and right in FIG. At this time, the amount of inclination of the steel plate at the start of press forming (FIG. 4B) is smaller than that in FIG. 2, and the deformation region at the punch bottom dead center (FIG. 4C) is as shown in FIG. And different. For this reason, a difference arises in a right-and-left shape.
 また、図4の場合、パンチ下死点時の形状の違いに加え、プレス成形を開始するときのパンチ位置も、図2や図3の場合と同じにはならないので、前半プレス成形と同じ圧下量では成形後の形状に違いが発生する。 In addition, in the case of FIG. 4, in addition to the difference in the shape at the bottom dead center of the punch, the punch position at the start of press molding is not the same as in the case of FIG. 2 or FIG. A difference occurs in the shape after molding in quantity.
 さらに、図4の場合、右側の鋼板の形状が、図3の左側の鋼板形状とは異なっているため、例えば、プレス機の機側に配設された鋼板を送るための装置(ガイド等)で、鋼板位置を設定する場合に、図3に示した前半プレス成形の時と同じガイド位置では、セットした鋼板の位置がずれることになり、成形形状の差異につながる。 Further, in the case of FIG. 4, the shape of the right steel plate is different from the shape of the left steel plate in FIG. 3, and thus, for example, a device (guide or the like) for feeding the steel plate disposed on the machine side of the press machine Thus, when setting the steel plate position, the set steel plate is displaced at the same guide position as in the first half press forming shown in FIG. 3, leading to a difference in forming shape.
 図5は、図4と同じ鋼板の送り量がダイ間隔に対して相対的に小さい場合における、後半プレス成形の最終パスのために鋼板を送るときの状況を模式的に示したものである。最終パスの位置へと鋼板を送るためには、鋼板幅端部側(図の左側)に向けて鋼板を送ることになるが、最終パス位置に達する前に鋼板の重心が、鋼板の幅中心側の図中の右側ダイを超えるため、左側の鋼板幅端部側が下がり、左側ダイと接する状態となる。この際の、鋼板の左側端部が下がり始める位置や、ダイと接する位置は、鋼板を送る際の慣性力や、鋼板の表面状態の違いによるダイとの摩擦抵抗によっても異なるため、プレス成形する範囲のばらつきの原因ともなる。 FIG. 5 schematically shows the situation when the steel plate is fed for the final pass of the second half press forming when the feed amount of the same steel plate as in FIG. 4 is relatively small with respect to the die interval. In order to send the steel plate to the final pass position, the steel plate is sent toward the steel plate width end side (left side of the figure), but before reaching the final pass position, the center of gravity of the steel plate is the center of the width of the steel plate. Since it exceeds the right side die in the figure on the side, the left side of the steel plate width side is lowered and comes into contact with the left side die. At this time, the position at which the left end of the steel plate starts to fall and the position in contact with the die also vary depending on the inertial force when feeding the steel plate and the frictional resistance with the die due to the difference in the surface state of the steel plate, so press forming It also causes variation in range.
 上記に説明したように、図4のように、鋼板の送り量がダイ間隔に対して相対的に小さい場合には、前半プレス成形と後半プレス成形とで最終パスにおいて変形を受ける範囲が異なると共に、図5のように、鋼板送り時の被成形材の姿勢が不安定になるため、プレス成形後の鋼板形状に左右で差が生じることになる。 As described above, as shown in FIG. 4, when the feed amount of the steel sheet is relatively small with respect to the die interval, the range subject to deformation in the final pass differs between the first half press forming and the second half press forming. As shown in FIG. 5, since the posture of the material to be formed at the time of feeding the steel plate becomes unstable, a difference occurs between the left and right in the shape of the steel plate after press forming.
 そこで、発明者らは、後半プレス成形で、図4のような状態とならないためのプレス条件を検討した。
 図6に、後半プレス成形の最終パス(b回目)前の状態に鋼板を配置した時の鋼板、ダイおよびパンチの位置関係を示す。ここで、図中に示した、L,L,W,αおよびβはそれぞれ以下のように定義する。
 L:後半プレス成形の最終パスにおける成形範囲(mm)
 L:最終プレス成形における成形範囲(mm)
 W:ダイ間隔(mm)
 α:後半プレス成形の最終パスにおける鋼板位置のずらし率(-)
 β:後半プレス成形の最終パスにおけるダイ位置のずらし率(-)
 ただし、0≦α≦1、0≦β≦1であり、αが0.5のとき、Lの中心とパンチの中心が一致し、αが0.5より小さい場合には、Lの中心がパンチの中心より左側にずれることになり、また、βが0.5のとき、ダイ間の中心とパンチの中心が一致し、βが0.5より小さい場合には、ダイの中心がパンチの中心より左側にずれることになる。またこの場合、後半プレス成形の最終パス(b回目)後、最終成形(n回目)への鋼板送り量は、α×L+L/2となる。
Therefore, the inventors examined the press conditions for preventing the state as shown in FIG. 4 in the latter half press forming.
FIG. 6 shows the positional relationship between the steel plate, the die and the punch when the steel plate is placed in a state before the final pass (b-th) of the second half press forming. Here, L b , L n , W, α b and β b shown in the figure are defined as follows.
L b : Molding range (mm) in the final pass of the second half press molding
L n : Molding range in final press molding (mm)
W: Die spacing (mm)
α b : Steel sheet position shift rate in the final pass of the second half press forming (−)
β b : Die position shift rate in the final pass of the second half press forming (−)
However, 0 ≦ α ≦ 1, 0 ≦ β ≦ 1, and when α is 0.5, the center of L b coincides with the center of the punch, and when α is smaller than 0.5, L b The center is shifted to the left side from the center of the punch, and when β is 0.5, the center between the dies and the center of the punch coincide, and when β is smaller than 0.5, the center of the die is It will shift to the left from the center of the punch. In this case, the steel sheet feed amount to the final forming (n-th) after the final pass (b-th) of the second half press forming is α b × L b + L n / 2.
 図6からわかるように、前半プレス成形で成形した鋼板部分が、図中の右側ダイと接するようになる、すなわち、図2と同じ状態になるのは、
 β・W<α・L+L ・・・(1)
の条件を満たすときである。
 ここで、パンチの中心と、ダイ間の中心が一致し、かつ、最終パスにおける鋼板成形範囲の中心が一致する場合、すなわち、α=0.5、β=0.5の場合には、
 W<L+2L ・・・(2)
となり、さらに、L=Lの場合には、すわなち、α=0.5、β=0.5でかつ鋼板送り量が一定の場合には、
 W<3L ・・・(3)
となり、鋼板送り量は、ダイ間隔Wの1/3以上に設定する必要があることがわかる。
As can be seen from FIG. 6, the steel plate portion formed by the first half press forming comes into contact with the right die in the drawing, that is, the same state as FIG.
β b · W <α b · L b + L n (1)
This is when the condition is satisfied.
Here, when the center of the punch is coincident with the center between the dies and the center of the steel sheet forming range in the final pass is coincident, that is, when α = 0.5 and β = 0.5,
W <L b + 2L n (2)
Further, when L b = L n , that is, when α = 0.5, β = 0.5 and the steel sheet feed amount is constant,
W <3L b (3)
Thus, it is understood that the steel sheet feed amount needs to be set to 1/3 or more of the die interval W.
 次に、ダイ間隔Wが、3点曲げプレス成形に必要な力量に及ぼす影響について、図7を用いて検討する。
 3点曲げ成形においては、成形範囲の端部が降伏することで被成形材(鋼板)は変形するので、成形範囲の端部には、被成形材が塑性変形するのに必要な曲げモーメントが作用しなければならない。ここで、塑性変形に必要な曲げモーメントは、被成形材の厚さや変形抵抗で定まる値Mであり、一方、被成形材にダイから作用する力は、ダイから受ける反力PおよびPであり、これに変形点(成形範囲の端部)までの距離(それぞれL、L)を乗じたモーメントが作用することになる。そして、P×LおよびP×Lのいずれか1以上がMを上回ったときに、変形を開始する。
 しかし、ダイ間隔が狭くなると、距離LおよびLも小さくなるので、変形に要する反力PおよびPが大きくなり、プレス機の力量を超えることになり、この場合には成形不可能となる。したがって、3点曲げプレス成形におけるダイ間隔には、プレス機の力量や被成形材の寸法、強度から定まる下限値が存在する。
Next, the influence of the die interval W on the force required for the three-point bending press forming will be examined with reference to FIG.
In three-point bending, the material to be formed (steel plate) is deformed by yielding at the end of the forming range. Therefore, a bending moment necessary for plastic deformation of the material to be formed is present at the end of the forming range. Must act. Here, the bending moment required for plastic deformation is a value Mf determined by the thickness of the molding material and the deformation resistance, while the force acting on the molding material from the die is the reaction force P 1 and P received from the die. 4 , and a moment obtained by multiplying this by the distance (L 1 and L 4 ) to the deformation point (end of the forming range) acts. Then, when any one or more of P 1 × L 1 and P 4 × L 4 exceeds M f , the deformation is started.
However, when the die interval is reduced, the distances L 1 and L 4 are also reduced, so that the reaction forces P 1 and P 4 required for the deformation are increased and exceed the force of the press machine, and in this case, molding is impossible. It becomes. Accordingly, there is a lower limit value determined by the amount of force of the press, the size of the material to be molded, and the strength of the die interval in the three-point bending press molding.
 上記のプレス条件でプレス成形したオープン管を用いて鋼管を製造するには、たとえば、連続仮付け溶接装置を用いてオープン管のオープンシームエッジを連続仮付け溶接した後、内面溶接、外面溶接の順で本溶接を実施すればよい。次いで、上記本溶接した鋼管に対しては、鋼管の真円度を高めるため、拡管装置を用いて拡管を施すことが好ましい。上記拡管率(=(拡管後の管の外径-拡管前の管の外径)/拡管前の管の外径×100(%))は、通常、0.3~1.5%の範囲であるが、真円度の改善効果と拡管装置に要求される能力とのバランスを図る観点から、拡管率は0.5~1.2%の範囲とするのが好ましい。 In order to manufacture a steel pipe using an open pipe press-molded under the above press conditions, for example, after continuous tack welding of an open seam edge of an open pipe using a continuous tack welding apparatus, internal welding and external welding are performed. What is necessary is just to implement this welding in order. Next, in order to increase the roundness of the steel pipe, the main welded steel pipe is preferably expanded using a pipe expanding device. The above expansion ratio (= (outer diameter of pipe after expansion−outer diameter of pipe before expansion) / outer diameter of pipe before expansion × 100 (%)) is usually in the range of 0.3 to 1.5%. However, from the viewpoint of balancing the effect of improving the roundness and the ability required of the pipe expansion device, the pipe expansion ratio is preferably in the range of 0.5 to 1.2%.
 板幅2755mm、長さ12192mm、板厚31.8mmで、強度がAPI X80Grade(実績引張強さ759~778MPa)の厚鋼板を、エッジミラーで端面加工を施して板幅2745.3mmとした後、両幅の板端から210mmの範囲を、R280mmの金型を用いて曲げ角18度の端曲げを施した。
 次いで、上記端曲げを施した厚鋼板を、力量100MNの3点曲げプレス機で、鋼板送り量とダイ間隔を種々に変えて3点曲げプレス成形し、外径914.4mm、長さ12192mm、管厚31.8mmのオープン管に成形し、図8に定義した突合せ部の目違い量を測定した。なお、上記3点曲げプレス成形のパンチ外周面はR315mm、ダイ外周面はR100mmのものを用いた。
After a plate width of 2755 mm, a length of 12192 mm, a plate thickness of 31.8 mm and a strength of API X80 Grade (actual tensile strength of 759 to 778 MPa) is subjected to end face processing with an edge mirror to a plate width of 2745.3 mm, End bending of a bending angle of 18 degrees was performed in the range of 210 mm from the plate ends of both widths using a R280 mm mold.
Next, the end-bending thick steel plate was subjected to three-point bending press forming with a three-point bending press machine having a force of 100MN and variously changing the steel plate feed amount and the die interval, and the outer diameter was 914.4 mm, the length was 12192 mm, The tube was formed into an open tube having a thickness of 31.8 mm, and the amount of misalignment at the butt portion defined in FIG. 8 was measured. The punch outer peripheral surface of the three-point bending press molding was R315 mm, and the die outer peripheral surface was R100 mm.
 表1に、上記突合せ部の目違い量の測定結果を、プレス条件と併せて示した。なお、プレス条件としては、後半プレス成形のパス回数、パス1回当りの曲げ角θ、後半プレス成形の最終パスにおける成形範囲L、最終プレス成形における成形範囲L、後半プレス成形の最終パスにおけるパンチずらし率α、ダイずらし率βおよびダイ間隔Wを示した。後半プレス成形のその他のパスも、パス1回当たりの曲げ角、成形範囲、パンチずらし率およびダイずらし率は、後半プレス成形の最終パスと同じとし、前半プレス成形は後半プレス成形と同じプレス回数、条件とした。
 また、表1中の備考欄に記載された「力量不足」は、ダイ間隔が狭く、プレス機の力量不足でプレス成形できなかったことを示している。一方、プレス力量が能力範囲内であった条件については、5本ずつオープン管を成形したときの目違い量の最小値と最大値を示した。
 また、表1中に示した突合せ部の目違い量の評価は、本実施例に用いた溶接鋼管の製造ラインに設置された仮付溶接時の拘束機の修正能力から、目違い量が5mm以下を合格(○)、5mm超えを不合格(×)と判定した。
Table 1 shows the measurement result of the misalignment amount of the butt portion together with the pressing conditions. As the pressing conditions, the number of passes in the second half of the press molding, bending angle theta b per one pass, forming range L b at the final pass of the second half of the press molding, the range L n in the final press-molding, the final late press molding The punch shift rate α b , die shift rate β b, and die interval W in the pass are shown. For the other passes of the latter half of press forming, the bending angle, forming range, punch shift rate and die shift rate per pass are the same as the final pass of the second half press forming, and the first half press forming is the same number of presses as the second half press forming. , And conditions.
In addition, “insufficient strength” described in the remarks column of Table 1 indicates that the die interval is narrow, and press molding could not be performed due to insufficient strength of the press. On the other hand, regarding the conditions where the pressing force amount was within the capability range, the minimum value and the maximum value of the misalignment amount when five open pipes were formed were shown.
In addition, the evaluation of the amount of misalignment of the butt portion shown in Table 1 is based on the ability to correct the restraint machine at the time of tack welding installed in the welded steel pipe production line used in this example. The following was determined to be acceptable (O) and exceeding 5 mm as unacceptable (x).
 表1から、後半プレス成形の最終パスをα=0.5、β=0.5とし、かつ、本発明の(1)式の条件を満たす条件で後半プレス成形の最終パスを行った場合には、いずれの条件においても、突合せ部の目違い量が修正可能範囲である5mm以下となっているのに対して、(1)式の条件を満たさない条件では、修正可能範囲を超える目違い量が発生していることがわかる。 From Table 1, the final pass of the second half press forming was performed under the condition that α b = 0.5, β b = 0.5 and the condition of the formula (1) of the present invention was satisfied. In any case, the misalignment amount of the butt portion is 5 mm or less, which is the correctable range, in any condition, but exceeds the correctable range if the condition of the expression (1) is not satisfied. It can be seen that there is a mistaking amount.
[規則91に基づく訂正 09.07.2014] 
Figure WO-DOC-TABLE-1
[Correction 09.07.2014 based on Rule 91]
Figure WO-DOC-TABLE-1
 実施例1と同様にして、強度がAPI X80Grade、外径914.4mm、長さ12192mm、板厚31.8mmの厚鋼板を、溶接鋼管用のオープン管に3点曲げプレス成形した。この際、後半プレス成形のパス回数を9回と5回、ダイ間隔を360mm、380mm、620mmおよび640mmに変更し、さらに上記各条件において後半プレス成形における最終パスのずらし量α、βを種々に変更した。後半プレス成形のその他のパスも、パス1回当たりの曲げ角および成形範囲は最終パスと同じとし、パンチずらし率およびダイずらし率はともに0.5とした。また、前半プレス成形は、後半プレス成形と同じプレス回数、条件とした。
 斯くして得られた各オーブン管の溶接部の目違い量を、実施例1と同様にして測定して評価し、その結果を表2に示した。
In the same manner as in Example 1, a thick steel plate having an API X80 Grade strength, an outer diameter of 914.4 mm, a length of 12192 mm, and a plate thickness of 31.8 mm was subjected to three-point bending press forming into an open pipe for a welded steel pipe. At this time, the number of passes of the second half press molding was changed to 9 and 5 times, and the die interval was changed to 360 mm, 380 mm, 620 mm and 640 mm, and the shift amounts α b and β b of the final pass in the second half press molding were further changed under the above conditions. Various changes were made. For the other passes of the latter half press forming, the bending angle and forming range per pass were the same as those of the final pass, and the punch shifting rate and die shifting rate were both 0.5. In the first half press molding, the same number of press operations and conditions as in the second half press molding were used.
The difference in the welded portion of each oven tube thus obtained was measured and evaluated in the same manner as in Example 1, and the results are shown in Table 2.
 表2から、本発明の(1)式の条件を満たす条件で後半プレス成形の最終パスを行った場合には、α、βの値によらず、オープン管の溶接部の目違い量が修正可能範囲の小さな値となっていること、また、目違い量が大きい場合でも、α、βを(1)式の条件を満たす適切な値に変更することで、目違い量を修正可能な範囲に低減することができることがわかる。 From Table 2, when the final pass of the second half press forming is performed under the condition that satisfies the condition of the expression (1) of the present invention, the amount of misalignment of the welded portion of the open pipe regardless of the values of α b and β b Is a small value within the correctable range, and even if the misalignment amount is large, by changing α b and β b to appropriate values satisfying the condition of equation (1), It turns out that it can reduce to the range which can be corrected.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1、2と同様にして、強度がAPI X80Gradeで、外径914.4mm、長さ12192mm、管厚31.8mmの溶接鋼管用のオープン管を製造した。この際、後半プレス成形のパス回数を9回、ダイ間隔を360mmと380mmに設定し、さらに、後半プレス成形の最終パスにおける成形範囲Lと最終プレス成形における成形範囲Lを、表3に示したように種々に変更した。また、後半プレス成形の最終パスにおける曲げ角θと、最終プレス成形における曲げ角θについても、表3に示したように変化させた。後半プレス成形のその他のパスも、パス1回当たりの曲げ角、成形範囲、パンチずらし率およびダイずらし率は、後半プレス成形の最終パスと同じとし、前半プレス成形は後半プレス成形と同じプレス回数、条件とした。
 斯くして得られた各オーブン管の溶接部の目違い量を、実施例1と同様にして測定して評価し、その結果を表3に併記した。
In the same manner as in Examples 1 and 2, an open pipe for a welded steel pipe having an API X80 Grade strength, an outer diameter of 914.4 mm, a length of 12192 mm, and a pipe thickness of 31.8 mm was manufactured. At this time, the number of passes of the second half press molding was set to nine, the die interval was set to 360 mm and 380 mm, and the molding range L b in the final pass of the second half press molding and the molding range L n in the final press molding are shown in Table 3. Various changes were made as indicated. Further, the bending angle θ b in the final pass of the second half press molding and the bending angle θ n in the final press molding were also changed as shown in Table 3. For the other passes of the latter half of press forming, the bending angle, forming range, punch shift rate and die shift rate per pass are the same as the final pass of the second half press forming, and the first half press forming is the same number of presses as the second half press forming. , And conditions.
The difference in the welded portion of each oven tube thus obtained was measured and evaluated in the same manner as in Example 1, and the results are also shown in Table 3.
 表3から、本発明の(1)式の条件を満たす条件で3点曲げプレス成形を行った場合には、成形範囲LやLの大きさによらず、オープン管の溶接部の目違い量が修正可能範囲より小さな値に低減できていることがわかる。特に、後半プレス成形のパス回数が5回と少ないときでも、最終プレスの成形範囲Lを大きくすることで、目違い量を修正可能な範囲に小さく抑えられることがわかる。 From Table 3, when the 3-point bending press forming was performed by equation (1) satisfies the conditions of the present invention, regardless of the size of the forming range L b and L n, eye welds open pipe It can be seen that the difference amount can be reduced to a value smaller than the correctable range. In particular, the second half even when the number of passes of the press molding 5 times and less, by increasing the molding range L n to the last press, it can be seen that the suppressed small correctable range tongue and groove volume.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~3と同様にして、各種の強度や寸法を有する溶接鋼管用のオープン管を製造した。表4に、製品の強度グレードおよび寸法と、端曲げ条件として使用した工具の半径、加工幅(端曲げの範囲)、曲げ角およびプレス条件を示した。なお、パンチずらし率およびダイずらし率は、0.5とした。また、後半プレス成形のその他のパスも、パス1回当たりの曲げ角、成形範囲、パンチずらし率およびダイずらし率は、後半プレス成形の最終パスと同じとし、前半プレス成形は、後半プレス成形と同じプレス回数、条件とした。
 斯くして得られた各オーブン管の溶接部の目違い量を、実施例1と同様にして測定して評価し、その結果を表4に併記した。
Open pipes for welded steel pipes having various strengths and dimensions were produced in the same manner as in Examples 1 to 3. Table 4 shows the strength grade and dimensions of the product, the radius of the tool used as the end bending condition, the working width (end bending range), the bending angle, and the pressing condition. The punch shifting rate and die shifting rate were set to 0.5. In the other passes of the second half press molding, the bending angle per one pass, the molding range, the punch shift rate and the die shift rate are the same as the final pass of the second half press molding. The same press times and conditions were used.
The difference in the welded portion of each oven tube thus obtained was measured and evaluated in the same manner as in Example 1, and the results are also shown in Table 4.
 表4から、本発明の(1)式の条件を満たす条件で3点曲げプレス成形を行った場合には、鋼管の強度やサイズによって生じる成形範囲や曲げ角の違いにかかわらず、オープン管の溶接部の目違い量が修正可能な範囲に小さく抑えられていることがわかる。 From Table 4, when three-point bending press molding is performed under the conditions satisfying the condition of the expression (1) of the present invention, regardless of differences in the molding range and bending angle caused by the strength and size of the steel pipe, It can be seen that the amount of misalignment of the welded portion is kept small within a correctable range.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (2)

  1. 素材鋼板を、鋼板送り方向に所定の間隔をおいて配設された1対のダイと、前記1対のダイ間で鋼板を押圧するパンチとで3点曲げプレス成形してオープン管とした後、当該オープン管を溶接して鋼管を製造する方法において、
    前記鋼板の一方の幅端部から幅中央に向かって(ただし、幅中央を残して)複数回の前半プレス成形した後、反対側の幅端部から幅中央に向かって(ただし、幅中央を残して)複数回の後半プレス成形し、最後に幅中央を最終プレス成形してオープン管とする際、
    前記後半プレス成形の最終パスで鋼板幅中央側のダイに支持される鋼板を未成形部分とすることを特徴とする溶接鋼管の製造方法。
    After the raw steel plate is made into an open pipe by three-point bending press forming with a pair of dies arranged at a predetermined interval in the steel plate feeding direction and a punch for pressing the steel plate between the pair of dies. In the method of manufacturing a steel pipe by welding the open pipe,
    From one width end of the steel sheet toward the center of the width (however, leaving the width center) multiple times of the first half press forming, from the width end of the opposite side toward the center of the width (however, the width center (Leave) When the second half press molding is performed multiple times, and finally the center of the width is final press molded to form an open pipe.
    A method of manufacturing a welded steel pipe, characterized in that a steel plate supported by a die on the center side of the steel plate width is an unformed portion in the final pass of the latter half press forming.
  2. 前記後半プレス成形の最終パスが、下記(1)式を満たすことを特徴とする請求項1に記載の溶接鋼管の製造方法。
          記
     β・W<α・L+L ・・・(1)
     ここで、L:後半プレス成形の最終パスにおける成形範囲(mm)
         L:最終プレス成形における成形範囲(mm)
         W:ダイ間隔(mm)
         α:後半プレス成形の最終パスにおける鋼板位置のずらし率(-)
         β:後半プレス成形の最終パスにおけるダイ位置のずらし率(-)
     
     
    The method for manufacturing a welded steel pipe according to claim 1, wherein a final pass of the latter half press forming satisfies the following expression (1).
    Β b · W <α b · L b + L n (1)
    Here, L b : Molding range in the final pass of the second half press molding (mm)
    L n : Molding range in final press molding (mm)
    W: Die spacing (mm)
    α b : Steel sheet position shift rate in the final pass of the second half press forming (−)
    β b : Die position shift rate in the final pass of the second half press forming (−)

PCT/JP2013/064852 2013-05-29 2013-05-29 Method for producing welded steel pipe WO2014192091A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/064852 WO2014192091A1 (en) 2013-05-29 2013-05-29 Method for producing welded steel pipe
EP13885748.7A EP3006128B1 (en) 2013-05-29 2013-05-29 Method of manufacturing a welded steel pipe
JP2015519536A JP6070967B2 (en) 2013-05-29 2013-05-29 Manufacturing method of welded steel pipe
RU2015155550A RU2621747C1 (en) 2013-05-29 2013-05-29 Method for producing welded steel pipe
CN201380076724.8A CN105246608B (en) 2013-05-29 2013-05-29 The manufacture method of welded still pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064852 WO2014192091A1 (en) 2013-05-29 2013-05-29 Method for producing welded steel pipe

Publications (1)

Publication Number Publication Date
WO2014192091A1 true WO2014192091A1 (en) 2014-12-04

Family

ID=51988165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064852 WO2014192091A1 (en) 2013-05-29 2013-05-29 Method for producing welded steel pipe

Country Status (5)

Country Link
EP (1) EP3006128B1 (en)
JP (1) JP6070967B2 (en)
CN (1) CN105246608B (en)
RU (1) RU2621747C1 (en)
WO (1) WO2014192091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210259A1 (en) * 2015-06-03 2016-12-08 Sms Group Gmbh Method for producing slotted tubes from sheet metal panels

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709638B2 (en) * 2016-03-10 2020-06-17 日立造船株式会社 Welding method of steel pipe and joint in steel pipe structure
JP6566231B1 (en) * 2018-03-30 2019-08-28 Jfeスチール株式会社 Steel plate end bending method and apparatus, and steel pipe manufacturing method and equipment
CN112638558B (en) * 2018-09-14 2022-12-16 杰富意钢铁株式会社 Method for manufacturing steel pipe and press die
CN109500118B (en) * 2018-12-26 2023-06-09 重庆龙煜精密铜管有限公司 Anti-jump moving core head and copper pipe reducing drawing anti-jump method
CN112024723A (en) * 2020-08-21 2020-12-04 江苏恒高电气制造有限公司 GIL small-angle shell bending device
CN112659563A (en) * 2020-11-27 2021-04-16 常州安一智能科技有限公司 Barrel filter screen hot-pressing splicing equipment and working method thereof
DE102020215088A1 (en) * 2020-12-01 2022-06-02 Sms Group Gmbh Process for the production of slotted tubes
CN114570784B (en) * 2021-12-24 2022-12-06 钢一控股集团有限公司 Forming device of large-diameter stainless steel pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166059A (en) * 1996-12-06 1998-06-23 Mitsubishi Heavy Ind Ltd Plate bending method
JPH11129031A (en) 1997-10-29 1999-05-18 Mitsubishi Heavy Ind Ltd Press forming die
JP2004082219A (en) * 2002-07-15 2004-03-18 Sms Meer Gmbh Device for manufacturing tube from metal plate
JP2005324255A (en) 2005-06-17 2005-11-24 Nakajima Steel Pipe Co Ltd Method for manufacturing round steel tube
JP2007090406A (en) 2005-09-30 2007-04-12 Nakajima Steel Pipe Co Ltd Producing facility for round steel tube
JP2012170977A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Method of manufacturing steel pipe
JP2012250285A (en) * 2011-05-31 2012-12-20 Sms Meer Gmbh Method of and device for producing slit tube from plate material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE525415A (en) *
JPS5118253A (en) * 1974-08-06 1976-02-13 Osaka Tetsuen Kikai Kk KOKANSEIKEIYO PURESUSOCHI
FI74414C (en) * 1980-08-18 1988-02-08 Sl Tuotanto Oy ANORDING FOR FRAMSTAELLNING AV ETT METALLROER.
RU2090281C1 (en) * 1996-08-05 1997-09-20 Акционерное общество открытого типа "УралЛУКтрубмаш" Method of making welded steel tubes
JP2003251406A (en) * 2002-02-27 2003-09-09 Jfe Steel Kk Method and equipment array for fabricating welded tube
WO2009023973A1 (en) * 2007-08-21 2009-02-26 Soutec Soudronic Ag Apparatus and process for shaping a tube from a metal sheet
EP2258493B1 (en) * 2008-03-31 2017-06-28 JFE Steel Corporation Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor
DE102008027807B4 (en) * 2008-06-06 2011-05-12 Eisenbau Krämer mbH Method for producing a large steel pipe
WO2012092909A1 (en) * 2011-01-07 2012-07-12 Technische Universität Dortmund Method for incrementally forming sheet metal structures, in particular for forming pipes or the like

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166059A (en) * 1996-12-06 1998-06-23 Mitsubishi Heavy Ind Ltd Plate bending method
JPH11129031A (en) 1997-10-29 1999-05-18 Mitsubishi Heavy Ind Ltd Press forming die
JP2004082219A (en) * 2002-07-15 2004-03-18 Sms Meer Gmbh Device for manufacturing tube from metal plate
JP2005324255A (en) 2005-06-17 2005-11-24 Nakajima Steel Pipe Co Ltd Method for manufacturing round steel tube
JP2007090406A (en) 2005-09-30 2007-04-12 Nakajima Steel Pipe Co Ltd Producing facility for round steel tube
JP2012170977A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Method of manufacturing steel pipe
JP2012250285A (en) * 2011-05-31 2012-12-20 Sms Meer Gmbh Method of and device for producing slit tube from plate material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210259A1 (en) * 2015-06-03 2016-12-08 Sms Group Gmbh Method for producing slotted tubes from sheet metal panels
DE102015210259B4 (en) * 2015-06-03 2016-12-15 Sms Group Gmbh Method for producing slotted tubes from sheet metal panels
US11097326B2 (en) 2015-06-03 2021-08-24 Sms Group Gmbh Method for producing open-seam pipes from sheet metal panels

Also Published As

Publication number Publication date
JP6070967B2 (en) 2017-02-01
CN105246608A (en) 2016-01-13
EP3006128A4 (en) 2016-06-29
EP3006128B1 (en) 2018-10-24
RU2621747C1 (en) 2017-06-07
CN105246608B (en) 2018-01-02
EP3006128A1 (en) 2016-04-13
JPWO2014192091A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6070967B2 (en) Manufacturing method of welded steel pipe
EP3127624B1 (en) Bending-press forming tool
CA2967914C (en) Method of producing steel pipe and press die used for same
JP2012170977A (en) Method of manufacturing steel pipe
CN110461488B (en) Press die and method for manufacturing steel pipe
KR910009151B1 (en) Method for making thin-walled metal pipes
CN105246609B (en) The manufacture method of the press-processing method and steel pipe of steel pipe
EP2883627B1 (en) Method of producing steel pipe
JP6566231B1 (en) Steel plate end bending method and apparatus, and steel pipe manufacturing method and equipment
JP6566232B1 (en) Steel plate end bending method and apparatus, and steel pipe manufacturing method and equipment
WO2019188001A1 (en) Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
CN112638558B (en) Method for manufacturing steel pipe and press die
JPH10258312A (en) Manufacture of welded tube excellent in roundness
JP2018015796A (en) Bending correction method and bending correction device for linear steel sheet pile
JP2019177398A (en) Bending method of end of steel plate and device, and manufacturing method of steel pipe and equipment
WO2019188002A1 (en) Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
JP2015167973A (en) Manufacturing method for thi-walled electric-resistance weld pipe
JP2005199292A (en) Method for manufacturing welded tube having high workability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519536

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013885748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P1584/2015

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015155550

Country of ref document: RU

Kind code of ref document: A