WO2014190506A1 - 宏微基站同频组网的干扰控制方法及装置 - Google Patents

宏微基站同频组网的干扰控制方法及装置 Download PDF

Info

Publication number
WO2014190506A1
WO2014190506A1 PCT/CN2013/076400 CN2013076400W WO2014190506A1 WO 2014190506 A1 WO2014190506 A1 WO 2014190506A1 CN 2013076400 W CN2013076400 W CN 2013076400W WO 2014190506 A1 WO2014190506 A1 WO 2014190506A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
micro base
micro
cell
service channel
Prior art date
Application number
PCT/CN2013/076400
Other languages
English (en)
French (fr)
Inventor
杨平
陈新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000298.XA priority Critical patent/CN103535063B/zh
Priority to PCT/CN2013/076400 priority patent/WO2014190506A1/zh
Publication of WO2014190506A1 publication Critical patent/WO2014190506A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present invention belongs to the field of communications, and in particular, to an interference control method and apparatus for a macro-base station co-frequency networking. Background technique
  • the purpose of the embodiments of the present invention is to provide an interference control method for a macro-base station in the same frequency grouping network, which is to reduce the uplink interference of the UE to the micro base station in the existing macro-base station co-frequency networking solution.
  • the first aspect provides a method for controlling an interference of a macro-base station in a same-frequency network, including: a micro-base station scanning a radio environment in which the micro-base station is located, and obtaining a scan result; the micro-base station reporting the scan result to the upper-level network element,
  • the scan result includes the signal strength of the scanned cell, so that the upper network element determines, according to the scan result, a cell with the strongest signal strength to the micro base station, and configures the cell.
  • the parameter is configured to the micro base station; after the micro base station runs according to the configuration parameter configured by the upper-level network element, it is determined whether each traffic channel is currently carried by the micro base station; Performing a traffic channel carried by the service, the micro base station acquiring an uplink interference estimation amount of the UE on the traffic channel, and canceling the uplink interference estimation amount in the received uplink signal of the traffic channel.
  • the detecting, by the base station, the radio environment in which the base station is located is: the base station scanning a working frequency point or a cell specified by the upper-level network element.
  • the detecting, by the base station, the wireless environment in which the base station is located is: performing, by the base station, a full-band scanning on a wireless environment in which the base station is located.
  • a second aspect of the present invention provides a method for controlling an interference of a macro-base station in a same frequency group, comprising: receiving a scan result reported by a micro base station, where the scan result includes a signal strength of a cell scanned by the micro base station; Determining, by the scanning result, a cell with the strongest signal strength to the micro base station; acquiring configuration parameters of the cell with the strongest signal strength of the micro base station; and configuring the obtained configuration parameter to the micro base station, So that the micro base station operates according to the acquired configuration parameters.
  • the configuring the configured configuration parameter to the micro base station includes: modifying a cell identifier in the acquired configuration parameter to a cell of the micro base station The identifier is configured to the micro base station.
  • the method further includes: performing, by using the cell identifier of the cell with the strongest signal strength of the micro base station Correlating with the cell identity of the micro base station, to ensure that the micro base station and the cell with the strongest signal strength of the micro base station have the same configuration parameters at all times.
  • a third aspect provides a method for controlling interference of a macro-base station in a same-frequency network, comprising: receiving, by a base station, a detection result of signal output detection of each service channel by the base station, where the base station includes a macro base station or a micro Determining, according to the detection result, whether the base station performs service bearer on the service channel, and notifying the base station to close the service channel on the service channel that the base station does not perform service bearer on the UE Transmit power.
  • a fourth aspect provides a method for controlling interference of a macro-base station in a same frequency group, comprising: performing, by a base station, signal output detection on each of the service channels, and obtaining a detection result; and the base station reporting the detection result to the base station
  • the upper-level network element so that the upper-level network element determines, according to the detection result, whether the base station performs a service bearer on the service channel, and performs the service channel that is not carried by the base station to the UE.
  • the base station receives the notification of the upper-level network element, and turns off its transmit power on the traffic channel.
  • a base station including: a scanning unit, configured to scan a wireless environment in which it is located, to obtain a scan result; a first upper unit, configured to receive the scan result sent by the scanning unit, and The scan result is reported to the upper-level network element, where the scan result includes the scanned cell with the strongest strongest strength, and the configuration parameter of the cell is configured to the micro base station; After the configuration parameters of the upper-level network element are configured, the service parameters of each of the service channels are determined by the micro-base station, and the uplink interference cancellation unit is configured to determine, according to the judgment result of the determining unit, that the micro-base station is not currently used. Performing a traffic channel carried by the service, obtaining an uplink interference estimation amount of the UE on the traffic channel on the traffic channel, and canceling the uplink interference estimation amount in the received uplink signal of the traffic channel.
  • the scanning unit is specifically configured to: scan a working frequency point or a cell specified by the upper-level network element.
  • the scanning unit is specifically configured to: perform a full-band scanning on a wireless environment in which the micro base station is located.
  • the sixth aspect provides an interference control apparatus for a macro-base station in a same frequency group, comprising: a scan result receiving unit, configured to receive a scan result reported by the micro base station, where the scan result includes the micro base station scanning a signal strength of the cell; a first determining unit, configured to receive the scan result sent by the scan result receiving unit, and determine, according to the scan result, a cell with the strongest signal strength to the micro base station; And obtaining, by the first determining unit, the cell with the strongest signal strength of the micro base station, acquiring configuration parameters of the cell with the strongest signal strength of the micro base station And a configuration unit, configured to configure, by the acquiring unit, configuration parameters that are acquired by the acquiring unit to the micro base station, so that the micro base station operates according to the acquired configuration parameters.
  • the configuration unit is specifically configured to: modify a cell identifier in the acquired configuration parameter to a cell identifier of the micro base station, and then configure the cell identifier to the micro base station .
  • the apparatus further includes: an association unit, configured to use the pair of the micro base station to have the strongest signal strength
  • the cell identifier of the cell is associated with the cell identity of the micro base station to ensure that the micro base station and the cell with the strongest signal strength of the micro base station have the same configuration parameters.
  • the seventh aspect provides an interference control apparatus for a macro-base station co-frequency networking, comprising: a detection result receiving unit, configured to receive, by a base station, a detection result of a signal output detection performed by the base station on each service channel, where The base station includes a macro base station or a micro base station, and the second determining unit is configured to receive the detection result sent by the detection result receiving unit, and determine, according to the detection result, whether the base station performs the UE on the traffic channel. And a notification unit, configured to notify the base station to close the transmit power on the traffic channel, for the service channel that is determined by the second determining unit that the base station does not perform service bearer on the UE.
  • the eighth aspect provides a base station, including: a detecting unit, configured to perform signal output detection on each traffic channel to obtain a detection result; and a second reporting unit, configured to receive the detection result sent by the detecting unit, and The detection result is reported to the upper-level network element of the base station, so that the upper-level network element determines, according to the detection result, whether the base station performs service bearer on the service channel, and the closing unit is configured to The service channel that the base station does not carry the service to the UE receives the notification of the upper-level network element, and turns off its transmit power on the traffic channel.
  • a micro base station includes a processor, a memory, a bus, and an antenna, wherein the processor, the memory, and the antenna communicate with each other through the bus; a memory for storing a program; the processor is configured to execute a program stored in the memory; and when the program is executed, the program is configured to: scan a wireless environment in which the base station is located, and obtain a scan As a result, the antenna is used to send the scan result to the upper-level network element, where the scan result includes the cell with the strongest signal strength of the micro-base station, and the configuration parameters of the cell are configured to the micro-base station; The program is further configured to: after running according to the configuration parameter configured by the upper-level network element, determine whether each service channel is currently carried by the micro base station; and for a service channel that is not currently carried by the micro base station, Obtaining an uplink interference estimation amount of the UE on the micro channel by the UE on the traffic channel, and canceling the uplink interference estimation amount in
  • the scanning the wireless environment in which the base station is located is specifically: scanning a working frequency point or a cell specified by the upper-level network element.
  • the scanning the wireless environment in which the base station is located is specifically: performing a full-band scanning on a wireless environment in which the base station is located.
  • an interference control apparatus for a macro-base station co-frequency networking includes a processor, a memory, a bus, and an antenna, wherein the processor, the memory, and the antenna pass through the bus Performing communication with each other;
  • the memory is configured to store a program;
  • the processor is configured to execute a program stored in the memory;
  • the antenna is configured to receive a scan result reported by the micro base station, where the scan result includes a signal strength of the cell scanned by the micro base station; when the program is executed, the method is configured to: determine, according to the scanning result of the antenna, a cell with the strongest signal strength to the micro base station; acquire the pair The configuration parameter of the cell with the strongest signal strength of the micro base station; configuring the obtained configuration parameter to the micro base station, so that the micro base station operates according to the acquired configuration parameter.
  • the configuring the obtained configuration parameter to the micro base station includes: modifying a cell identifier in the acquired configuration parameter to a cell of the micro base station The identifier is configured to the micro base station.
  • the program is further configured to: use the cell of the cell with the strongest signal strength of the micro base station
  • the identifier is associated with the cell identifier of the micro base station to ensure that the micro base station has the same configuration parameter as the cell with the strongest signal strength to the micro base station.
  • an interference control apparatus for a macro-base station co-frequency networking includes a processor, a memory, a bus, and an antenna, wherein the processor, the memory, and the antenna pass the The bus performs communication with each other; the memory is configured to store a program; the processor is configured to execute a program stored in the memory; and the antenna is configured to receive, by the base station, the signal output by the base station to each service channel.
  • the base station includes a macro base station or a micro base station; when the program is executed, the method is configured to: determine, according to the detection result, whether the base station performs service bearer on the service channel on the UE; The service channel that the base station does not carry the service to the UE, the antenna is used to notify the base station to turn off the transmit power on the traffic channel.
  • a base station includes a processor, a memory, a bus, and an antenna, wherein the processor, the memory, and the antenna communicate with each other through the bus;
  • the processor is configured to execute a program stored in the memory; when the program is executed, the program is configured to: perform signal output detection on each traffic channel to obtain a detection result; Reporting the detection result to the upper-level network element of the base station, so that the upper-level network element determines, according to the detection result, whether the base station performs service bearer on the service channel, and performs a service bearer on the service channel;
  • the service channel that carries the service to the UE, the antenna is configured to receive the notification of the upper-level network element, and turn off its transmit power on the traffic channel.
  • the embodiment of the present invention is based on the network architecture of the macro base station and the one or more micro base stations superimposed in the coverage area, and the uplink interference generated by the base station is cancelled in the uplink signal received by the base station by timely estimating the uplink interference generated by the base station.
  • the signal thereby reducing the uplink interference generated by the UE, improves network throughput.
  • 1 is an application scenario diagram of an interference control method for a macro-base station co-frequency networking provided by an embodiment of the present invention
  • 2 is a flowchart of an implementation of an interference control method for a macro-base station co-frequency networking provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of scanning processing of a micro base station of an interference control method for a macro-base station co-frequency networking according to an embodiment of the present invention
  • FIG. 4 is a flowchart of implementing an upper-level network element of an interference control method for a macro-base station co-frequency networking according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an uplink interference cancellation process of a base station of an interference control method for a macro-base station in a same frequency grouping network according to an embodiment of the present invention
  • FIG. 6 is a flowchart of implementing an upper-level network element of an interference control method for a macro-base station co-frequency networking according to another embodiment of the present invention
  • FIG. 7 is a flowchart of a detection result storage process of an upper-level network element of an interference control method for a macro-base station co-frequency networking according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for implementing an interference control method for a macro-base station co-frequency networking according to another embodiment of the present invention.
  • FIG. 9 is a structural block diagram of an interference control apparatus for a macro-base station co-frequency networking according to an embodiment of the present invention
  • FIG. 10 is a structural block diagram of an interference control apparatus for a macro-base station co-frequency networking according to another embodiment of the present invention
  • FIG. 11 is a block diagram showing the hardware structure of an interference control apparatus for a macro-base station co-frequency networking according to an embodiment of the present invention
  • FIG. 12 is a block diagram showing the hardware structure of an interference control apparatus for a macro-base station co-frequency networking according to another embodiment of the present invention. Embodiments of the invention
  • the embodiment of the present invention reduces the uplink in the uplink signal received by the base station by estimating the uplink interference generated by the UE in time based on the network architecture of the macro base station and the one or more micro base stations superimposed in the coverage area.
  • the interference signal thereby reducing the uplink interference generated by the UE, improves the network throughput.
  • FIG. 1 shows an application scenario of an interference control method for a macro base station co-frequency networking provided by an embodiment of the present invention. For convenience of description, only parts related to the present embodiment are shown.
  • the application scenario adopts a Heterogeneous Network (Hetnet) structure, and is configured by multiple base stations with different coverage capabilities, including multiple coverages of the macro base station 11 and the macro base station 11 .
  • the micro base station 12 thereby implementing deployment of a plurality of micro cells in one macro cell.
  • both the macro base station 11 and the micro base station 12 operate at the same working frequency point, and the transmission power of the micro base station 12 is much smaller than that of the macro base station 11.
  • the macro base station 11 and the micro base station 12 have a NodeB function defined by the complete 3rd Generation Partnership Project (3GPP), and the base station passes the lub interface and the radio network controller.
  • Radio Network Controller, RNC Radio Network Controller
  • the RNC is connected to the core network (Core Network, CN) through the Iu interface.
  • FIG. 1 a plurality of network architectures as shown in FIG. 1 may exist at the same time, and are not shown in FIG. 1 for convenience of drawing.
  • FIG. 2 is a flowchart of an implementation of an interference control method for a macro base station co-frequency networking according to an embodiment of the present invention.
  • an execution entity of the process is a micro base station in the network architecture shown in FIG.
  • the implementation process is detailed as follows:
  • the base station scans the wireless environment in which it is located to obtain a scan result.
  • an operation and maintenance link is automatically established with the upper-level network element, and the wireless environment in which it is located is scanned.
  • the micro base station can be scanned by a receiver independent of the micro base station, or can be used by the micro base station.
  • the virtual virtual module for implementing the receiver function performs scanning, for example, by using the receiving function implemented by the service channel of the micro base station.
  • the upper-level network element may be an RNC common to the base stations in the network architecture shown in FIG. 1, or an operation support system (OSS) common to the base stations.
  • OSS operation support system
  • the scanning may be performed according to the working frequency point and the cell specified by the upper-level network element, where the designated working frequency point may be determined according to the working frequency of the base station, and the designated cell may also be used according to the The co-frequency networking situation of the micro base station is determined, and may be a macro cell in which the micro base station is located.
  • the scanning process is as shown in FIG. 3, and is output to the decision module 32 through the filter 31 of the micro base station, and the decision threshold may be set by the system default or by the user, and the decision module 32 is higher than the decision threshold.
  • the cell is determined to be a valid cell, and the system message is demodulated by the parsing module 33 to obtain information such as the cell identifier, the working frequency, and the scrambling code of the cell, and finally the sending result is sent to the superior by the sending module 34.
  • Network element is
  • the base station sends the scan result to the upper-level network element, where the scan result includes the signal strength of the cell scanned by the receiver, so that the upper-level network element according to the scan As a result, a cell with the strongest signal strength to the micro base station is determined, and configuration parameters of the cell are configured to the micro base station.
  • the upper-level network element After the micro-base station reports the scan result to the upper-level network element, the upper-level network element identifies the cell with the strongest signal strength to the micro-base station according to the scan result, and based on the configuration parameter of the cell, The cell identifier is modified to be the cell identifier of the micro base station, so that the modified configuration parameter is configured to the micro base station, so that the micro base station starts running according to the set of configuration parameters.
  • the process of parameter configuration for the micro base station can be as shown in FIG. 4:
  • a cell with the strongest signal strength to the micro base is determined.
  • the upper-level network element can obtain the cell identifier of the cell with the strongest signal strength from the scan result, thereby determining the cell with the strongest signal strength to the micro base station.
  • the configuration parameter of the cell with the strongest signal strength of the micro base station is obtained.
  • the obtained configuration parameter is configured to the micro base station, so that the micro base station operates according to the acquired configuration parameter.
  • the cell identifier in the configuration configuration parameter is modified to be the cell identifier of the micro base station, thereby generating the configuration parameter of the micro base station.
  • the upper-level network element after the upper-level network element configures the configuration parameter for the base station, the upper-level network element further associates the cell identifier of the micro-base station with the cell identifier of the cell with the strongest signal strength of the micro-base station, The above two base stations are configured to have the same configuration parameters. Once the configuration parameters of the cell with the strongest signal strength of the micro base station are changed, the upper network element also reconfigures the configuration parameters of the micro base station to make the micro base station The configuration parameters are also changed accordingly.
  • the cell with the strongest signal strength to the micro base station is a macro cell that performs the same frequency grouping with the micro base station.
  • the association process of the foregoing cell identifier may be as follows: After the configuration parameters of the micro base station are generated, the corresponding association relationship table is stored in the upper-level network element, as shown in Table 1:
  • the Site name (i) represents the i-th base station name
  • the Cell ID (i) represents the cell identifier corresponding to the i-th base station.
  • the upper-level network element automatically generates configuration parameters of the macro base station related thereto for the micro base station, and does not require additional configuration operations, thereby implementing network planning operations and implementing The real base of the micro base station is plug and play.
  • the embodiment shown in FIG. 4 is applicable to the case where the micro base station is deployed in the coverage area of multiple macro base stations. If the micro base station is deployed only in the coverage area of one macro base station, the configuration parameters of the micro base station are directly The same configuration parameter (except the cell identifier) of the macro base station; if the micro base station does not detect other cells during the receiver scanning process, the micro base station configures the parameters according to the automatic planning of the ordinary micro base station, that is, the micro The base station selects a configuration parameter of a macro base station that has been started, automatically generates configuration parameters of the micro base station, and the micro base station starts according to the automatically generated configuration parameters.
  • the micro base station acquires an uplink interference estimation amount of the UE to the micro base station on the traffic channel, and receives the uplink of the traffic channel.
  • the uplink interference estimate is cancelled in the signal.
  • the micro base station does not need to receive an uplink signal of the UE accessing the traffic channel. In this case, the uplink signal needs to be eliminated. Because the parameter configuration of the upper-level network element, the micro-base station operates with the same configuration parameters as the macro-base station of the macro-cell in which it is located. Therefore, for the same traffic channel, the usage rules of the micro-base station and the macro base station using the same configuration parameters for the service channel are also Similarly, the detection result of the same base station and the macro base station for the same traffic channel may also be considered as being sent by the same UE.
  • the micro base station can estimate the uplink interference estimation of the UE to the local base station by using the uplink signal from the UE detected by the base station of the service channel on the traffic channel. Therefore, the uplink interference estimator is offset in the uplink signal of the traffic channel received by the micro base station, so as to reduce the uplink interference.
  • the antenna of the micro base station receives the uplink signal S_in(t) of all UEs in the working range of the micro base station, For the UE in which the service is not carried by the micro base station, the micro base station may obtain the uplink of the part of the UE to the base station from the related data that is reported to the upper-level network element by the base station that performs the service bearer for the part of the UE.
  • the uplink interference estimator therefore, S_in(t) - ⁇ S'_out, that is, the offset of the uplink interference signal on the traffic channel is achieved.
  • the method of the embodiment of Figure 2 requires each base station to cyclically detect each traffic channel to keep the uplink interference signal cancelled.
  • One of the loop processes of the base station can be as shown in Figure 5:
  • an uplink signal of all UEs in the working range of the micro base station on the traffic channel n is obtained.
  • the uplink interference estimator is cancelled in the uplink signal.
  • the receiver of the micro base station is always in an operating state for detecting the uplink channel in real time.
  • the base station operates with the same configuration parameter as the macro base station of the macro cell in which the base station is located.
  • the micro base station reduces the uplink interference generated by the UE in time, thereby reducing the received uplink signal.
  • the uplink interference signal is removed, thereby reducing the uplink interference generated by the UE and improving the network throughput.
  • FIG. 6 is a flowchart of an implementation of an interference control method for a macro-base station in a same-frequency network according to another embodiment of the present invention.
  • an execution entity is a higher-level network element of each base station in a same-frequency network. Said as follows:
  • each base station performs signal output detection on each of the service channels in order to obtain the detection result of the service channel for each of the service channels, and reports the detection result to the upper-level network element.
  • the detection result reported by each base station if the detection result of a certain traffic channel is greater than the preset threshold, it indicates that the base station detects the UE access on the traffic channel, otherwise, the base station does not have the service channel. UE access is detected.
  • the obtained detection result may include any one of the following: a signal to interference plus noise ratio (SINR) detected on the traffic channel, and a signal dry 4 ratio ( Signalto Interference Ratio (SIR), Reference Signal Receiving Power (RSRP).
  • SINR Signal to Interference Ratio
  • RSRP Reference Signal Receiving Power
  • the upper-level network element can determine, in all the service channels, that the service channel with the UE access is detected by more than one of the plurality of base stations.
  • a table as shown in Table 2 may be established in the upper-level network element, and used to manage the detection result reported by the base station, where the Site ID is the base station identifier, the Cell ID is the cell identifier, and D (i) is Signal output value of the nth traffic channel
  • the flow shown in FIG. 7 can be used to store and update the table 2 in real time:
  • S702 Determine whether D (i) is greater than a preset threshold, if yes, execute S703, otherwise i+1, and repeatedly execute S701.
  • S703 The D (i) and the base station identifier of the base station reporting the channel detection result and the corresponding cell identifier are stored in corresponding positions in Table 2, and then i+1, and S701 is repeatedly executed.
  • the upper-level network element can update and maintain the table 2 in real time according to the reporting situation of the base station, and can also be discovered in time when a new UE performs service connection, so that the upper-level network element is timely.
  • a service bearer base station is determined for the new UE.
  • the step S702 determining whether D(i) is greater than a preset threshold may also be performed by each base station before reporting the channel detection result, and each base station determines the signal output of each traffic channel detected by the base station. Whether the value D (i) is greater than the preset threshold, so that the detection result is self-introduced
  • the filtering is performed, and the filtered detection result is reported to the upper-level network element.
  • the upper-level network element does not need to perform the judgment process of S702, and directly stores the obtained detection result in the corresponding position of Table 2.
  • the UE when only one of the base stations that the UE accesses is detected on a certain traffic channel, it is obvious that the UE performs the service bearer on the service channel, and the certain base station is
  • the detection result about the service channel is the largest among the plurality of base stations.
  • the base station is determined to be a bearer base station, and the bearer base station is configured to perform service bearer on the service channel for the UE.
  • the service channel that does not perform service bearer on the UE by the base station is notified, and the base station is notified to turn off the transmit power on the traffic channel.
  • the base station After determining that all the traffic channels that the base station does not carry the service bearer to the UE, the base station is notified to turn off the transmit power of the transmitter on the traffic channel, so that the UE does not establish a service connection with multiple base stations at the same time, in one service Multiple radio links exist on the channel at the same time, which causes network interference, which leads to the failure of some of the wireless links, which improves the network throughput.
  • FIG. 8 is a flowchart of an implementation of an interference control method for a macro-base station co-frequency networking provided by another embodiment of the present invention.
  • the execution body of the process is the base station in FIG. 1 (a macro base station or a micro-base station).
  • Base station as detailed below:
  • the base station performs signal output detection on each traffic channel to obtain a detection result.
  • the base station performs signal output detection on each traffic channel in turn according to the traffic channel number, and obtains the detection result of each traffic channel.
  • the detection result may include any one of the following: SINR, SIR, and RSRP detected on the traffic channel.
  • the base station may also filter the detection result obtained by the S801 and report it to the upper-level network element. Specifically, the base station determines whether the detection result of each service channel is greater than a preset threshold, and then filters the detection result to report the detection result that is greater than the preset threshold to the upper-level network element.
  • the base station reports the detection result to an upper-level network element of the base station, so that The upper network element determines, according to the detection result, whether the base station performs service bearer on the service channel on the UE. Notifying the base station whether to perform service bearer.
  • the upper-level network element may be based on the obtained detection result reported by the base station and other base stations under the upper-level network element according to the same
  • the detection result reported by the method determines whether the base station performs service bearer on the service channel on the UE.
  • the UE When it is detected that only one of the base stations is accessed by the UE on a certain traffic channel, it is obvious that the UE carries the service bearer on the traffic channel, which is the base station.
  • the UE When a base station that has UE access is detected on a certain traffic channel, in addition to the base station, there are other base stations, and the upper-level network elements of the base stations are based on the received detection results for the service channel.
  • the base station that determines the maximum detection result of the traffic channel is determined by the base station to perform service bearer for the UE.
  • the base station if the base station does not detect the detection result that is greater than the preset threshold when the base station performs the signal output detection in S901, it indicates that the base station does not currently perform service bearer on the service channel of the UE. Then, the base station can directly turn off the transmit power of its receiver on the traffic channel.
  • the base station receives the notification of the upper-level network element, and closes its transmit power on the traffic channel, for the service channel that the base station does not perform service bearer on the UE.
  • the base station if the base station does not need a traffic channel for performing service bearer on the UE, the base station turns off the transmit power of the receiver on the traffic channel, that is, the base station does not transmit on the traffic channel, reducing the entire same
  • the downlink transmit power of the frequency network system reduces downlink interference and increases the throughput of the system.
  • the embodiment of the present invention is based on a network architecture in which the macro base station and the one or more micro base stations superimposed in the coverage area are deployed in the same frequency, and can determine that the UE performs a service connection with one of the base stations according to signal propagation loss between the UE and each base station. , thereby turning off the transmitter of the base station that is not connected to the UE on the relevant traffic channel, reducing network interference, and improving network throughput.
  • FIG. 9 is a diagram showing the structure of an interference control system for a macro base station co-frequency networking according to an embodiment of the present invention.
  • the apparatus includes an upper-level network element and a plurality of micro-base stations connected to the upper-level network element, respectively, for respectively operating the macro base station according to the embodiment of FIG. 2 of the present invention and the embodiment of FIG. 4 of the present invention. Interference control method for the same frequency network. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the device in a micro base station, includes:
  • the scanning unit 901 scans the wireless environment in which it is located to obtain a scan result.
  • the first reporting unit 902 receives the scan result sent by the scanning unit 901, and reports the scan result to the upper-level network element, where the scan result includes the signal strength of the scanned cell, and the cell is
  • the configuration parameters are configured for the micro base station.
  • the determining unit 903 determines, after running according to the configuration parameter configured by the upper-level network element, whether each traffic channel is currently carried by the micro base station.
  • the uplink interference cancellation unit 904 acquires, for the traffic channel that is not currently carried by the micro base station, the uplink interference estimation of the UE on the traffic channel, and The uplink interference estimate is cancelled in the received uplink signal of the traffic channel.
  • the scanning unit 901 is specifically configured to:
  • the scanning unit 901 is specifically configured to:
  • the device includes:
  • the scan result receiving unit 905 receives the scan result reported by the micro base station, where the scan result includes the signal strength of the cell scanned by the micro base station;
  • the first determining unit 906 receives the scan result sent by the scan result receiving unit 905, and determines, according to the scan result, a cell with the strongest signal strength to the micro base station;
  • the obtaining unit 907 is configured to acquire the configuration parameter of the cell with the strongest signal strength of the micro base station according to the cell with the strongest signal strength of the micro base station that is determined by the first determining unit 906;
  • the configuration unit 908 configures the configuration parameters acquired by the obtaining unit 907 to the micro base station, so that the micro base station operates according to the acquired configuration parameters.
  • the configuration unit 908 is specifically configured to:
  • the device further includes:
  • An association unit configured to associate a cell identifier of the cell with the strongest signal strength of the micro base station with a cell identifier of the micro base station, to ensure the signal strength of the micro base station and the pair of the micro base station at a moment
  • the strongest cell configuration has the same configuration parameters.
  • the embodiment of the present invention reduces the uplink in the uplink signal received by the base station by estimating the uplink interference generated by the UE in time based on the network architecture of the macro base station and the one or more micro base stations superimposed in the coverage area.
  • the interference signal thereby reducing the uplink interference generated by the UE, improves the network throughput.
  • FIG. 10 is a structural block diagram of an interference control system for a macro-base station co-frequency networking provided by an embodiment of the present invention.
  • the device includes an upper-level network element and a plurality of base stations connected to the upper-level network element.
  • the macro base station or the micro base station is used to separately perform the interference control method of the macro-base station co-frequency networking described in the embodiment of FIG. 6 of the present invention and the embodiment of FIG. 7 of the present invention.
  • FIG. 10 is a structural block diagram of an interference control system for a macro-base station co-frequency networking provided by an embodiment of the present invention.
  • the device includes an upper-level network element and a plurality of base stations connected to the upper-level network element.
  • the macro base station or the micro base station is used to separately perform the interference control method of the macro-base station co-frequency networking described in the embodiment of FIG. 6 of the present invention and the embodiment of FIG. 7 of the present invention.
  • FIG. 10 is a structural block diagram of an interference control system for a macro
  • the device in a higher-level network element, includes:
  • the detection result receiving unit 1001 receives the detection result of the signal output detection performed by the base station reported by the base station on each of the traffic channels, and the base station includes a macro base station or a micro base station.
  • the second determining unit 1002 receives the detection result sent by the detection result receiving unit 1001, and determines, according to the detection result, whether the base station performs service bearer on the service channel.
  • the notifying unit 1003, for the second determining unit determines, by the second determining unit, the traffic channel that the base station does not perform service bearer for the UE, and notifies the base station to turn off the transmit power on the traffic channel.
  • the device includes:
  • the detecting unit 1004 performs signal output detection on each traffic channel to obtain a detection result.
  • the second reporting unit 1005 receives the detection result sent by the detecting unit 1004, and reports the detection result to the upper-level network element of the base station, so that the upper-level network element determines the base station according to the detection result. Whether to carry the service bearer on the UE on the traffic channel.
  • the closing unit 1006 for the traffic channel that the base station does not carry the service bearer to the UE, receives the notification of the upper-level network element, and turns off its transmit power on the traffic channel.
  • the embodiment of the present invention is based on a network architecture in which the macro base station and the one or more micro base stations superimposed in the coverage area are deployed in the same frequency, and can determine that the UE performs a service connection with one of the base stations according to signal propagation loss between the UE and each base station. , thereby turning off the transmitter of the base station that is not connected to the UE on the relevant traffic channel, reducing network interference, and improving network throughput.
  • FIG. 11 is a block diagram showing the hardware structure of an interference control system for a macro-base station co-frequency networking according to an embodiment of the present invention.
  • the device includes an upper-level network element and multiple connected to the upper-level network element.
  • the base station is used for separately performing the interference control method of the macro-base station co-frequency networking described in the embodiment of FIG. 2 of the present invention and the embodiment of FIG. 4 of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the apparatus in the micro base station 111, the apparatus includes a processor 1111, a memory 1112, a bus 1113, and an antenna 1114.
  • the processor 1111, the memory 1112, and the antenna 1114 communicate with each other through the bus 1113;
  • the memory 1112 is configured to store a program
  • the processor 1111 is configured to execute a program stored in the memory 1112;
  • the program is also used to:
  • the scanning the wireless environment in which the base station is located is specifically:
  • the scanning the wireless environment in which the base station is located is specifically:
  • the apparatus includes a processor 1121, a memory 1122, a bus 1123, and an antenna 1124.
  • the processor 1121, the memory 1122, and the antenna 1124 communicate with each other through the bus 1123;
  • the memory 1122 is configured to store a program
  • the antenna 1124 is configured to receive a scan result reported by the micro base station, where the scan result includes a signal strength of a cell scanned by the micro base station;
  • the processor 1121 is configured to execute a program stored in the memory 1122. When the program is executed, the program is used to:
  • the configuring the obtained configuration parameter to the micro base station includes:
  • Modifying the cell identifier in the obtained configuration parameter to the cell identifier of the micro base station The micro base station is set.
  • the program is further configured to:
  • the embodiment of the present invention reduces the uplink in the uplink signal received by the base station by estimating the uplink interference generated by the UE in time based on the network architecture of the macro base station and the one or more micro base stations superimposed in the coverage area.
  • the interference signal thereby reducing the uplink interference generated by the UE, improves the network throughput.
  • FIG. 12 is a block diagram showing the hardware structure of an interference control system for a macro-base station co-frequency networking according to an embodiment of the present invention.
  • the device includes an upper-level network element and multiple connected to the upper-level network element.
  • the base station including the macro base station or the micro base station, is used to respectively perform the interference control method of the macro-base station co-frequency networking described in the embodiment of FIG. 6 of the present invention and the embodiment of FIG. 7 of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the apparatus in the upper network element 121, includes a processor 1211, a memory 1212, a bus 1213, and an antenna 1214.
  • the processor 1211, the memory 1212, and the antenna 1214 communicate with each other through the bus 1213;
  • the memory 1212 is configured to store a program
  • the processor 1211 is configured to execute a program stored in the memory 1212;
  • the antenna 1214 is configured to receive, by the base station, a detection result of performing signal output detection on each service channel by the base station, where the base station includes a macro base station or a micro base station;
  • the antenna 1214 is used for Notifying the base station to turn off the transmit power on the traffic channel.
  • the apparatus includes a processor 1221, a memory 1222, a bus 1223, and an antenna 1224.
  • the processor 1221, the memory 1222, and the antenna 1224 communicate with each other through the bus 1223;
  • the memory 1222 is configured to store a program
  • the processor 1221 is configured to execute a program stored in the memory 1222, and when executed, the program is used to:
  • the upper-level network element determines, according to the detection result, whether the base station performs service bearer on the service channel on the UE;
  • the antenna 1224 is configured to receive the notification of the upper-level network element, and turn off its transmit power on the traffic channel.
  • the embodiment of the present invention is based on a network architecture in which the macro base station and the one or more micro base stations superimposed in the coverage area are deployed in the same frequency, and can determine that the UE performs a service connection with one of the base stations according to signal propagation loss between the UE and each base station. , thereby turning off the transmitter of the base station that is not connected to the UE on the relevant traffic channel, reducing network interference, and improving network throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明适用于通信领域,提供了宏微基站同频组网的干扰控制方法及装置,包括:基站扫描其所处的无线环境,得到扫描结果;所述基站将所述扫描站信号强度最强的小区,并将该小区的配置参数配置给所述微基站;所述微基站分别判断每个业务信道当前是否由所述微基站进行业务承载;对于当前不由所述微基站进行业务承载的业务信道,所述微基站获取在该业务信道上UE对所述微基站的上行干扰估计量,并在接收到的该业务信道的上行信号中抵消所述上行干扰估计量。本发明基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部署的网络架构,减少了由UE产生的上行干扰,提高了网络吞吐量。

Description

宏微基站同频组网的干扰控制方法及装置 技术领域
本发明属于通信领域, 尤其涉及一种宏微基站同频组网的干扰控制方法及 装置。 背景技术
近年来, 移动互联网得到了蓬勃发展, 运营商的网络覆盖不断延伸, 随时 随地地上网成为了可能; 同时, 智能终端业务越来越丰富, 由此对移动网络容 量造成了极大沖击, 容易频繁引起小区拥塞, 影响网络性能。 为了提高网络容 量, 可以在宏小区 (Macro cell ) 的覆盖范围内迭加微小区 ( Micro cell ) 。
在微基站与宏基站同频组网的情况下, 在二者的覆盖范围内存在软切换区 域, 在软切换区域中的用户设备(User Equipment, UE )若工作在宏小区, 由 于其处于宏小区边缘, 发射功率较大, 会对微基站形成上行干扰, 从而抬高微 基站的底躁, 降低微基站的容量。 技术问题
本发明实施例的目的在于提供一种宏微基站同频组网的干扰控制方法, 旨在减 少现有的宏微基站同频组网方案中 UE对微基站的上行干扰。 技术解决方案
第一方面, 提供一种宏微基站同频组网的干扰控制方法, 包括: 微基站扫 描其所处的无线环境, 得到扫描结果; 所述微基站将所述扫描结果上报给上级 网元, 所述扫描结果中包括了扫描到的小区的信号强度, 以使所述上级网元根 据所述扫描结果确定出对所述微基站信号强度最强的小区, 并将该小区的配置 参数配置给所述微基站; 所述微基站在根据所述上级网元配置的配置参数运行 之后, 分别判断每个业务信道当前是否由所述微基站进行业务承载; 对于当前 不由所述微基站进行业务承载的业务信道,所述微基站获取在该业务信道上 UE 对所述微基站的上行干扰估计量, 并在接收到的该业务信道的上行信号中抵消 所述上行干扰估计量。
在第一方面的第一种可能的实现方式中, 所述 基站扫描其所处的无线环 境具体为: 所述 基站扫描所述上级网元指定的工作频点或小区。
在第一方面的第二种可能的实现方式中, 所述 基站扫描其所处的无线环 境具体为: 所述 基站对其所处的无线环境进行全频段扫描。
第二方面, 提供了一种宏微基站同频组网的干扰控制方法, 包括: 接收微 基站上报的扫描结果, 所述扫描结果中包括了所述微基站扫描到的小区的信号 强度; 根据所述扫描结果, 确定出对所述微基站信号强度最强的小区; 获取所 述对所述微基站信号强度最强的小区的配置参数; 将获取到的配置参数配置给 所述微基站, 以使所述微基站根据所述获取到的配置参数运行。
在第二方面的第一种可能的实现方式中, 所述将获取到的配置参数配置给 所述微基站包括: 将所述获取到的配置参数中的小区标识修改为所述微基站的 小区标识后配置给所述微基站。
结合第一方面或者第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述方法还包括: 将所述对所述微基站信号强度最强的小区的小区 标识与所述微基站的小区标识进行关联, 以时刻保证所述微基站与所述对所述 微基站信号强度最强的小区配置有相同的配置参数。
第三方面, 提供了一种宏微基站同频组网的干扰控制方法, 包括: 接收基 站上报的所述基站对每个业务信道进行信号输出检测的检测结果, 所述基站包 括宏基站或微基站; 根据所述检测结果确定所述基站是否在所述业务信道上对 UE进行业务承载; 对于所述基站未对 UE进行业务承载的所述业务信道, 通知 所述基站关闭在该业务信道上的发射功率。 第四方面, 提供了一种宏微基站同频组网的干扰控制方法, 包括: 基站对 每个业务信道进行信号输出检测, 得到检测结果; 所述基站将所述检测结果上 报给所述基站的上级网元, 以使所述上级网元根据所述检测结果, 确定所述基 站是否在所述业务信道上对 UE进行业务承载; 对于所述基站未对 UE进行业 务承载的所述业务信道, 所述基站接收所述上级网元的通知, 关闭其在该业务 信道上的发射功率。
第五方面, 提供了一种 基站, 包括: 扫描单元, 用于扫描其所处的无线 环境, 得到扫描结果; 第一上 单元, 用于接收所述扫描单元发送的所述扫描 结果, 并将所述扫描结果上报给上级网元, 所述扫描结果中包括了扫描到的小 强度最强的小区, 并将该小区的配置参数配置给所述微基站; 判断单元, 用于 在根据所述上级网元配置的配置参数运行之后, 分别判断每个业务信道当前是 否由所述微基站进行业务承载; 上行干扰抵消单元, 用于根据所述判断单元的 判断结果, 对于当前不由所述微基站进行业务承载的业务信道, 获取在该业务 信道上 UE对所述微基站的上行干扰估计量, 并在接收到的该业务信道的上行 信号中抵消所述上行干扰估计量。
在第五方面的第一种可能的实现方式中, 所述扫描单元具体用于: 扫描所 述上级网元指定的工作频点或小区。
在第五方面的第二种可能的实现方式中, 所述扫描单元具体用于: 对所述 微基站所处的无线环境进行全频段扫描。
第六方面, 提供了一种宏微基站同频组网的干扰控制装置, 包括: 扫描结 果接收单元, 用于接收微基站上报的扫描结果, 所述扫描结果中包括了所述微 基站扫描到的小区的信号强度; 第一确定单元, 用于接收所述扫描结果接收单 元发送的所述扫描结果, 并根据所述扫描结果, 确定出对所述微基站信号强度 最强的小区; 获取单元, 用于根据所述第一确定单元确定出的所述对所述微基 站信号强度最强的小区, 获取所述对所述微基站信号强度最强的小区的配置参 数; 配置单元, 用于将所述获取单元获取到的配置参数配置给所述微基站, 以 使所述微基站根据所述获取到的配置参数运行。
在第六方面的第一种可能的实现方式中, 所述配置单元具体用于: 将所述 获取到的配置参数中的小区标识修改为所述微基站的小区标识后配置给所述微 基站。
结合第六方面或者第六方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述装置还包括: 关联单元, 用于将所述对所述微基站信号强度最 强的小区的小区标识与所述微基站的小区标识进行关联, 以时刻保证所述微基 站与所述对所述微基站信号强度最强的小区配置有相同的配置参数。
第七方面, 提供了一种宏微基站同频组网的干扰控制装置, 包括: 检测结 果接收单元, 用于接收基站上报的所述基站对每个业务信道进行信号输出检测 的检测结果, 所述基站包括宏基站或微基站; 第二确定单元, 用于接收所述检 测结果接收单元发送的所述检测结果, 并根据所述检测结果确定所述基站是否 在所述业务信道上对 UE进行业务承载; 通知单元, 用于对于所述第二确定单 元确定出的所述基站未对 UE进行业务承载的所述业务信道, 通知所述基站关 闭在该业务信道上的发射功率。
第八方面, 提供了一种基站, 包括: 检测单元, 用于对每个业务信道进行 信号输出检测, 得到检测结果; 第二上报单元, 用于接收所述检测单元发送的 检测结果, 并将所述检测结果上报给所述基站的上级网元, 以使所述上级网元 根据所述检测结果,确定所述基站是否在所述业务信道上对 UE进行业务承载; 关闭单元, 用于对于所述基站未对 UE进行业务承载的所述业务信道, 接收所 述上级网元的通知, 关闭其在该业务信道上的发射功率。
第九方面, 提供了一种微基站, 所述微基站包括处理器、 存储器、 总线和 天线, 其中所述处理器、 所述存储器和所述天线通过所述总线进行相互间的通 信; 所述存储器, 用于存储程序; 所述处理器用于执行所述存储器中存储的程 序; 所述程序在被执行时, 用于: 扫描所述 基站所处的无线环境, 得到扫描 结果; 所述天线用于将所述扫描结果上 给上级网元, 所述扫描结果中包括了 微基站信号强度最强的小区, 并将该小区的配置参数配置给所述微基站; 所述 程序还用于: 在根据所述上级网元配置的配置参数运行之后, 分别判断每个业 务信道当前是否由所述微基站进行业务承载; 对于当前不由所述微基站进行业 务承载的业务信道,获取在该业务信道上 UE对所述微基站的上行干扰估计量, 并在接收到的该业务信道的上行信号中抵消所述上行干扰估计量。
在第九方面的第一种可能的实现方式中, 所述扫描所述 基站所处的无线 环境具体为: 扫描所述上级网元指定的工作频点或小区。
在第九方面的第二种可能的实现方式中, 所述扫描所述 基站所处的无线 环境具体为: 对所述 基站所处的无线环境进行全频段扫描。
第十方面, 提供了一种宏微基站同频组网的干扰控制装置, 所述装置包括 处理器、 存储器、 总线和天线, 其中所述处理器、 所述存储器和所述天线通过 所述总线进行相互间的通信; 所述存储器, 用于存储程序; 所述处理器用于执 行所述存储器中存储的程序; 所述天线用于接收微基站上报的扫描结果, 所述 扫描结果中包括了所述微基站扫描到的小区的信号强度;所述程序在被执行时, 用于: 根据所述天线的所述扫描结果, 确定出对所述微基站信号强度最强的小 区; 获取所述对所述微基站信号强度最强的小区的配置参数; 将获取到的配置 参数配置给所述微基站, 以使所述微基站根据所述获取到的配置参数运行。
在第十方面的第一种可能的实现方式中, 所述将获取到的配置参数配置给 所述微基站包括: 将所述获取到的配置参数中的小区标识修改为所述微基站的 小区标识后配置给所述微基站。
结合第十方面或者第十方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述程序还用于: 将所述对所述微基站信号强度最强的小区的小区 标识与所述微基站的小区标识进行关联, 以时刻保证所述微基站与所述对所述 微基站信号强度最强的小区配置有相同的配置参数。 第十一方面, 提供了一种宏微基站同频组网的干扰控制装置, 所述装置包 括处理器、 存储器、 总线和天线, 其中所述处理器、 所述存储器和所述天线通 过所述总线进行相互间的通信; 所述存储器, 用于存储程序; 所述处理器用于 执行所述存储器中存储的程序; 所述天线用于接收基站上报的所述基站对每个 业务信道进行信号输出检测的检测结果, 所述基站包括宏基站或微基站; 所述 程序在被执行时, 用于: 根据所述检测结果确定所述基站是否在所述业务信道 上对 UE进行业务承载;对于所述基站未对 UE进行业务承载的所述业务信道, 所述天线用于通知所述基站关闭在该业务信道上的发射功率。
第十二方面, 提供了一种基站, 所述基站包括处理器、 存储器、 总线和天 线,其中所述处理器、所述存储器和所述天线通过所述总线进行相互间的通信; 所述存储器, 用于存储程序; 所述处理器用于执行所述存储器中存储的程序; 所述程序在被执行时, 用于: 对每个业务信道进行信号输出检测, 得到检测结 果; 所述天线用于将所述检测结果上报给所述基站的上级网元, 以使所述上级 网元根据所述检测结果, 确定所述基站是否在所述业务信道上对 UE进行业务 承载; 对于所述基站未对 UE进行业务承载的所述业务信道, 所述天线用于接 收所述上级网元的通知, 关闭其在该业务信道上的发射功率。 有益效果
本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 通过及时地估计由 UE产生的上行干扰, 从而在基站接收到的 上行信号中抵消上行干扰信号, 由此减少了由 UE产生的上行干扰, 提高了网 络吞吐量。 附图说明
图 1是本发明实施例提供的宏微基站同频组网的干扰控制方法所适用的应 用场景图; 图 2是本发明实施例提供的宏微基站同频组网的干扰控制方法微基站的实 现流程图;
图 3是本发明实施例提供的宏微基站同频组网的干扰控制方法微基站的扫 描处理示意图;
图 4是本发明实施例提供的宏微基站同频组网的干扰控制方法上级网元的 实现流程图;
图 5是本发明实施例提供的宏微基站同频组网的干扰控制方法基站的上行 干扰消除流程示意图;
图 6是本发明另一实施例提供的宏微基站同频组网的干扰控制方法上级网 元的实现流程图;
图 7是本发明另一实施例提供的宏微基站同频组网的干扰控制方法上级网 元的检测结果存储流程图;
图 8是本发明另一实施例提供的宏微基站同频组网的干扰控制方法基站的 实现流程图;
图 9是本发明实施例提供的宏微基站同频组网的干扰控制装置的结构框图; 图 10是本发明另一实施例提供的宏微基站同频组网的干扰控制装置的结 构框图;
图 11 是本发明实施例提供的宏微基站同频组网的干扰控制装置的硬件结 构框图;
图 12是本发明另一实施例提供的宏微基站同频组网的干扰控制装置的硬 件结构框图。 本发明的实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。 本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 通过及时地估计由 UE产生的上行干扰, 从而在基站接收到的 上行信号中减去上行干扰信号, 由此减少了由 UE产生的上行干扰, 提高了网 络吞吐量。
图 1示出了本发明实施例提供的宏 基站同频组网的干扰控制方法所适用 的应用场景, 为了便于说明, 仅示出了与本实施例相关的部分。
参照图 1 , 该应用场景采用异构网络 ( Heterogeneous Network, Hetnet ) 的 结构, 由多个覆盖能力各异的基站迭加组网, 其中, 包括宏基站 11 和宏基站 11覆盖范围内的多个微基站 12,从而实现在一个宏小区中部署多个微小区。在 图 1所示的网络架构中, 宏基站 11和微基站 12均工作在相同的工作频点, 且 微基站 12的发射功率远小于宏基站 11。
在图 1所示的网络架构中, 宏基站 11与微基站 12具备完全的第三代合作 伙伴计划( The 3rd Generation Partnership Project, 3GPP )所定义的 NodeB功能, 基站通过 lub接口与无线网络控制器( Radio Network Controller, RNC )连接, RNC则通过 Iu接口与核心网 ( Core Network, CN )连接。
需要说明的是, 在实际的应用场景中, 可能会同时存在多个如图 1所示的 网络架构, 为了便于描绘, 在图 1中不一一示出。
以下对本发明实施例提供的宏微基站同频组网的干扰控制方法进行详细阐 述:
图 2示出了本发明实施例提供的宏 基站同频组网的干扰控制方法的实现 流程图, 在本实施例中, 流程的执行主体为图 1所示的网络架构中的微基站, 其实现流程详述如下:
在 S201中, 基站扫描其所处的无线环境, 得到扫描结果。
在本实施例中, 当微基站上电后, 与其上级网元自动建立操作维护链路 ( Operation and Maintenance Link, OML ) , 并对其所处的无线环境进行扫描。 其中, 微基站可以通过独立于微基站的接收机进行扫描, 也可以通过微基站当 中虚拟的用于实现接收机功能的模块进行扫描, 例如, 利用微基站的业务通道 所实现的接收功能来进行扫描。
在本发明实施例中, 上级网元可以为图 1 所示网络架构中的基站共同的 RNC, 或者这些基站共同的运营支撑系统( Operation Support System, OSS ) 。
作为本发明的一个实施例, 可以根据其上级网元指定的工作频点和小区来 进行扫描, 其中, 指定的工作频点可以根据该 基站的工作频点来确定, 指定 的小区也可以根据该微基站的同频组网情况来确定, 可以是该微基站所处的宏 小区。
作为本发明的另一实施例, 也可以无需 基站的上级网元指定扫描条件, 而是对微基站所处的无线环境进行全频段扫描。
在本实施例中,扫描处理过程如图 3所示,经过微基站的滤波器 31输出给 判决模块 32 ,其判决门限可以为系统默认或者用户自行设置,通过判决模块 32 , 高于该判决门限的小区被判决为是有效小区,则通过解析模块 33对该小区进行 系统消息解调, 获取该小区的小区标识、 工作频点和扰码等信息, 最终通过发 送模块 34将扫描结果发送给上级网元。
在 S202 中, 所述 基站将所述扫描结果上才艮给上级网元, 所述扫描结果 中包括了所述接收机扫描到的小区的信号强度, 以使所述上级网元根据所述扫 描结果确定出对所述微基站信号强度最强的小区, 并将该小区的配置参数配置 给所述微基站。
在微基站将扫描结果上报给其上级网元之后,上级网元会根据该扫描结果, 识别出对该微基站信号强度最强的小区, 以该小区的配置参数为基础, 将配置 参数中的小区标识修改为该微基站的小区标识, 从而将修改后的这套配置参数 配置给该微基站, 以使该微基站根据这套配置参数开工运行。
具体地, 在微基站的上级网元中, 为微基站进行参数配置的流程可以如图 4所示:
在 S401中,接收微基站上报的扫描结果,所述扫描结果中包括了该微基站 通过接收机扫描到的小区的信号强度。
在 S402中, 根据所述扫描结果, 确定出对所述微基信号强度最强的小区。 具体地, 上级网元可以从扫描结果中获取到信号强度最强的小区的小区标 识, 从而确定出对微基站信号强度最强的小区。
在 S403中, 获取所述对所述微基站信号强度最强的小区的配置参数。 在 S404中,将获取到的配置参数配置给所述微基站, 以使所述微基站根据 所述获取到的配置参数运行。
具体地,在 S403获取到对微基站信号强度最强的小区的配置参数之后,通 过将该配置配置参数中的小区标识修改为微基站的小区标识, 从而生成微基站 的配置参数。
在本实施例中, 当上级网元在为 基站配置了配置参数之后, 上级网元还 通过将该微基站的小区标识与对该微基站信号强度最强的小区的小区标识进行 关联, 以时刻保证上述两个基站配置有相同的配置参数, 一旦对该微基站信号 强度最强的小区的配置参数发生了变化, 则上级网元也对该微基站的配置参数 进行重配置, 使微基站的配置参数也作出相应变化。
通常, 对微基站信号强度最强的小区即为与该微基站进行同频组网的宏小 区。 上述小区标识的关联过程可以如下: 生成微基站的配置参数之后, 在上级 网元中存储相应的关联关系表, 如表 1所示:
表 1
Figure imgf000012_0001
其中, Site name ( i )表示第 i个基站名, Cell ID ( i )表示和第 i个基站对 应的小区标识。 通过图 4所示的实施例, 依据微基站的扫描结果, 上级网元自动为该微基 站生成与其相关的宏基站的配置参数, 不需要额外的配置操作, 从而筒化了网 络规划操作, 实现了微基站真正意义上的即插即用。
需要说明的是, 图 4所述实施例适用于微基站部署在多个宏基站的覆盖区 域内的情况, 若微基站仅部署在一个宏基站的覆盖区域内, 则微基站的配置参 数直接为与该宏基站完全相同的配置参数(除了小区标识) ; 而若微基站在接 收机扫描过程中没有检测到其他小区, 则微基站按照普通微基站自动规划的方 式配置参数, 即, 为该微基站选择一个已经开工的宏基站的配置参数, 自动生 成该微基站的配置参数, 微基站按照自动生成的配置参数开工。
在 S203 中, 所述微基站在根据所述上级网元配置的配置参数运行之后, 分别判断每个业务信道当前是否由所述微基站进行业务承载。
在 S204 中, 对于当前不由所述微基站进行业务承载的业务信道, 所述微 基站获取在该业务信道上 UE对所述微基站的上行干扰估计量, 并在接收到的 该业务信道的上行信号中抵消所述上行干扰估计量。
在本实施例中, 对于当前不由微基站进行业务承载的业务信道, 则该微基 站不需要接收到接入该业务信道的 UE的上行信号, 此时, 需要对这部分上行 信号进行消除。 由于通过上级网元的参数配置, 微基站与其所处宏小区的宏基 站采用相同的配置参数运行, 因此, 对于相同业务信道, 采用相同配置参数的 微基站与宏基站对业务信道的使用规律也相同, 该微基站与宏基站对于同一业 务信道的检测结果也可以被认为是相同 UE发出的。 基于上述相同配置参数的 运行环境, 微基站能够通过对该业务信道进行业务承载的基站在该业务信道上 所检测到的来自 UE的上行信号,来估计出 UE对本微基站的上行干扰估计量, 从而在微基站接收到的该业务信道的上行信号中抵消这部分上行干扰估计量, 达到减少上行干扰的目的。
具体地, 在当前时刻 t, 对于微基站来说, 在某个业务信道 n上, 通过该微 基站的天线会接收到该微基站工作范围内的所有 UE的上行信号 S_in ( t ) , 同 时, 对于其中并不由该微基站进行业务承载的 UE, 微基站可以从对这部分 UE 进行业务承载的基站所上报给上级网元的相关数据中, 获取到这部分 UE对其 承载基站的上行信号, 并将该上行信号估计为这部分 UE对该微基站的上行信 号, 从而获取到这部分 UE的上行信号总和∑S'_out, 这部分上行信号总和即为 该业务信道上 UE对敫基站的上行干扰估计量, 因此, 将 S_in ( t ) -∑S'_out, 即实现了对该业务信道上的上行干扰信号的抵消。
图 2实施例所述方法需要每个基站循环检测每个业务信道, 以保持上行干 扰信号的消除, 基站的其中一个循环过程可以如图 5所示:
在 S501中, 初始化业务信道号 n=0。
在 S502中, 判断业务信道 n是否由本基站进行业务承载, 是则 n=n+l , 重 复执行 S502, 否则执行 S503。
在 S503中, 获取对业务信道 n的上行干扰估计量。
在 S504中,获取业务信道 n上该微基站工作范围内的所有 UE的上行信号。 在 S505中, 在上行信号中抵消上行干扰估计量。
在 S506中, η=η+1 , 若 n=n ( max ) , 则 η=0, 重复执行 S502。
在本实施例中, 微基站的接收机始终处于运行状态, 用于实时地对上行信 道进行检测。
本发明实施例中, 基站与其所处宏小区的宏基站采用相同的配置参数运 行, 在该运行条件下, 微基站通过及时地估计由 UE产生的上行干扰, 从而在 接收到的上行信号中减去上行干扰信号, 由此减少了由 UE产生的上行干扰, 提高了网络吞吐量。
同时, 基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部署的网 络架构, 针对基站工作过程中存在的下行干扰, 能够根据 UE与各基站之间的 信号传播损耗来确定该 UE与其中一个基站进行业务连接, 从而关闭与该 UE 非业务连接的基站在相关业务信道上的发射机, 减少网络下行干扰, 提高网络 吞吐量。 图 6示出了本发明另一实施例提供的宏微基站同频组网的干扰控制方法的 实现流程, 在本实施例中, 执行主体为同频组网的各基站的上级网元, 详述如 下:
在 S601中,接收基站上报的所述基站对每个业务信道进行信号输出检测的 检测结果, 所述基站包括宏基站或微基站。
在本实施例中, 每个基站均会依次对每个业务信道进行信号输出检测, 以 获取到该基站对每个业务信道的检测结果, 并将检测结果一一上报给其上级网 元。
在 S602中, 根据所述检测结果确定所述基站是否在所述业务信道上对 UE 进行业务承载。
在每个基站上报的检测结果中, 若存在某个业务信道的检测结果大于预设 门限, 则表明该基站在该业务信道上检测到了 UE接入, 否则, 表明该基站在 该业务信道上没有检测到 UE接入。
具体地,根据检测对象的不同,获取到的检测结果可以包括以下任意一项: 在业务信道上检测到的信号与干扰加噪声比 (Signal to Interferenceplus Noise Ratio, SINR ) 、 信号干 4尤比( Signalto Interference Ratio , SIR ) 、 参考信号接 收功率( Reference Signal Receiving Power, RSRP ) 。 以 SINR为例, 当有 UE 接入该业务信道时, 在该业务信道上检测到的 SINR就会增大很多, 高于某一 预设阈值; 而当没有 UE接入该业务信道时, 基站在该业务信道上只检测到底 噪。 若检测结果为 SIR或者 RSRP时, 基本也是基于相同的上述原理来判断是 否有 UE接入业务信道。
由此, 根据接收到的每个基站上报的检测结果, 上级网元即能够在所有业 务信道中确定出同时被多个基站中的一个以上基站检测出有 UE接入的业务信 道。
在具体实现中, 可以在上级网元建立如表 2所示的表格, 用于管理基站上 报的检测结果, 其中, Site ID为基站标识, Cell ID为小区标识, D ( i ) 为 第 n个业务信道的信号输出值
表 2
Figure imgf000016_0001
且对于每一个基站上报的检测结果, 均可以采用如图 7所示的流程来实时 地对表 2进行存储、 更新:
S701:读取检测结果中第 i个业务信道的信号输出值 D(i),初始化时 i=l。
S702: 判断 D (i)是否大于预设门限, 是则执行 S703, 否则 i+1, 重复执 行 S701。
S703: 将 D (i)以及上报该信道检测结果的基站的基站标识及其对应的小 区标识存储在表 2的相应位置, 之后 i+1, 重复执行 S701。
通过图 7所示步骤, 直至读取完该基站上报的检测结果中所有的信号输出 值, 即完成了对表 2的一次存储或者更新。
表 2在建立完成之后, 上级网元可以根据基站的上报情况, 对表 2进行实 时的更新、 维护, 且一旦有新的 UE进行业务连接, 也能够被及时地发现, 以 使上级网元及时为新的 UE确定业务承载基站。
作为本发明的一个实施例, S702判断 D ( i )是否大于预设门限的步骤也可 以由各个基站在将信道检测结果上报之前执行, 各个基站通过判断其检测到的 每个业务信道的信号输出值 D (i)是否大于预设门限, 从而自行对检测结果进 行过滤,并将过滤后的检测结果上报给上级网元,上级网元无需执行 S702的判 断过程, 直接将获取到的检测结果存储在表 2的相应位置。
在本实施例中, 当在某条业务信道上检测出有 UE接入的基站只有一个时, 则显然, 对该 UE在该业务信道上进行业务承载的一定是该基站, 而当在某条 业务信道上检测出有 UE接入的基站有多个时,则根据 S601接收到的每个基站 对每个业务信道的检测结果, 在这多个基站中将关于该业务信道的检测结果最 大的基站确定为承载基站, 该承载基站用于对该 UE在该业务信道上进行业务 承载。
在 S603中, 对于所述基站未对 UE进行业务承载的所述业务信道, 通知所 述基站关闭在该业务信道上的发射功率。
在确定了基站未对 UE进行业务承载的所有业务信道之后, 通知基站关闭 其发射机在该业务信道上发射功率, 由此, 不会出现该 UE同时与多个基站建 立业务连接, 在一个业务信道上同时存在多条无线链路, 产生网络干扰, 进而 导致其中部分无线链路失效的情况出现, 提高了网络吞吐量。
图 8示出了本发明另一实施例提供的宏微基站同频组网的干扰控制方法的 实现流程图, 在本实施例中, 流程的执行主体为图 1中的基站 (宏基站或者微 基站) , 详述如下:
在 S801中, 基站对每个业务信道进行信号输出检测, 得到检测结果。 在本实施例中, 基站按照业务信道号, 依次对每个业务信道进行信号输出 检测, 获取到每个业务信道的检测结果。 其中, 检测结果可以包括以下任意一 项: 在业务信道上检测到的 SINR、 SIR, RSRP。
作为本发明的一个实施例,基站也可以对 S801获取到的检测结果进行过滤 之后再上报给其上级网元。 具体地, 基站通过判断其检测到的每个业务信道的 检测结果是否大于预设门限, 从而自行对检测结果进行过滤, 将大于预设门限 的检测结果上报给上级网元。
在 S802 中, 所述基站将所述检测结果上报给所述基站的上级网元, 以使 所述上级网元根据所述检测结果, 确定所述基站是否在所述业务信道上对 UE 进行业务承载。 通知所述基站是否进行业务承载。
在本实施例中,在基站将 S801生成的信道检测结果上报给其上级网元之后 , 上级网元可以依据获取到的该基站上报的检测结果以及该上级网元之下的其他 基站依据相同的方法上报的检测结果, 如本发明前述实施例所述, 确定基站是 否在该业务信道上对 UE进行业务承载。
其中, 当在某条业务信道上检测出有 UE接入的只有本基站一个时, 则显 然, 对该 UE在该业务信道上进行业务承载的一定是本基站。 而当在某条业务 信道上检测出有 UE接入的基站除了本基站, 还有其他基站时, 则这些基站的 上级网元根据接收到的关于该业务信道的所有检测结果, 在这多个基站中将关 于该业务信道的检测结果最大的基站确定为对 UE进行业务承载。
在本实施例中,对于某条业务信道,若本基站在 S901进行信号输出检测时, 没有检测到大于预设门限的检测结果, 则表示本基站当前并不对 UE在该业务 信道上进行业务承载, 则本基站可以直接关闭其接收机在该业务信道上的发射 功率。
在 S803中, 对于所述基站未对 UE进行业务承载的所述业务信道, 所述基 站接收所述上级网元的通知, 关闭其在该业务信道上的发射功率。
在本实施例中, 对于该基站不需要对 UE进行业务承载的业务信道, 则该 基站关闭接收机在该业务信道上的发射功率, 即该基站在该业务信道上不进行 发射, 减少整个同频组网系统的下行发射功率, 进而减少下行干扰, 增加了系 统的吞吐量。
本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 能够根据 UE与各基站之间的信号传播损耗来确定该 UE与其 中一个基站进行业务连接, 从而关闭与该 UE非业务连接的基站在相关业务信 道上的发射机, 减少网络干扰, 提高网络吞吐量。
图 9示出了本发明实施例提供的宏 基站同频组网的干扰控制系统的结构 框图, 如图 9所示, 该装置包括了上级网元以及与该上级网元连接的多个微基 站, 用于分别运行本发明图 2实施例以及本发明图 4实施例所述的宏 基站同 频组网的干扰控制方法。 为了便于说明, 仅示出了与本实施例相关的部分。
参照图 9, 在微基站中, 该装置包括:
扫描单元 901 , 扫描其所处的无线环境, 得到扫描结果。
第一上报单元 902, 接收所述扫描单元 901发送的所述扫描结果, 并将所 述扫描结果上报给上级网元,所述扫描结果中包括了扫描到的小区的信号强度, 并将该小区的配置参数配置给所述微基站。
判断单元 903 , 在根据所述上级网元配置的配置参数运行之后, 分别判断 每个业务信道当前是否由所述微基站进行业务承载。
上行干扰抵消单元 904, 根据所述判断单元 903的判断结果, 对于当前不 由所述微基站进行业务承载的业务信道, 获取在该业务信道上 UE对所述微基 站的上行干扰估计量 , 并在接收到的该业务信道的上行信号中抵消所述上行干 扰估计量。
可选地, 所述扫描单元 901具体用于:
扫描所述上级网元指定的工作频点或小区。
可选地, 所述扫描单元 901具体用于:
对所述微基站所处的无线环境进行全频段扫描。
在上级网元中, 该装置包括:
扫描结果接收单元 905 , 接收微基站上报的扫描结果, 所述扫描结果中包 括了所述微基站扫描到的小区的信号强度;
第一确定单元 906,接收所述扫描结果接收单元 905发送的所述扫描结果, 并根据所述扫描结果, 确定出对所述微基站信号强度最强的小区;
获取单元 907, 根据所述第一确定单元 906确定出的所述对所述微基站信 号强度最强的小区, 获取所述对所述微基站信号强度最强的小区的配置参数; 配置单元 908 ,将所述获取单元 907获取到的配置参数配置给所述微基站, 以使所述微基站根据所述获取到的配置参数运行。
可选地, 所述配置单元 908具体用于:
将所述获取到的配置参数中的小区标识修改为所述微基站的小区标识后配 置给所述微基站。
可选地, 所述装置还包括:
关联单元, 用于将所述对所述微基站信号强度最强的小区的小区标识与所 述微基站的小区标识进行关联, 以时刻保证所述微基站与所述对所述微基站信 号强度最强的小区配置有相同的配置参数。
本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 通过及时地估计由 UE产生的上行干扰, 从而在基站接收到的 上行信号中减去上行干扰信号, 由此减少了由 UE产生的上行干扰, 提高了网 络吞吐量。
图 10 示出了本发明实施例提供的宏微基站同频组网的干扰控制系统的结 构框图,如图 10所示,该装置包括了上级网元以及与该上级网元连接的多个基 站, 包括宏基站或微基站, 用于分别运行本发明图 6实施例以及本发明图 7实 施例所述的宏微基站同频组网的干扰控制方法。 为了便于说明, 仅示出了与本 实施例相关的部分。
参照图 10, 在上级网元中, 该装置包括:
检测结果接收单元 1001 ,接收基站上报的所述基站对每个业务信道进行信 号输出检测的检测结果, 所述基站包括宏基站或微基站。
第二确定单元 1002, 接收所述检测结果接收单元 1001发送的所述检测结 果, 并根据所述检测结果确定所述基站是否在所述业务信道上对 UE进行业务 承载。
通知单元 1003, 对于所述第二确定单元确定 1002 出的所述基站未对 UE 进行业务承载的所述业务信道,通知所述基站关闭在该业务信道上的发射功率。 在基站中, 该装置包括:
检测单元 1004, 对每个业务信道进行信号输出检测, 得到检测结果。 第二上报单元 1005, 接收所述检测单元 1004发送的检测结果, 并将所述 检测结果上报给所述基站的上级网元, 以使所述上级网元根据所述检测结果, 确定所述基站是否在所述业务信道上对 UE进行业务承载。
关闭单元 1006, 对于所述基站未对 UE进行业务承载的所述业务信道, 接 收所述上级网元的通知, 关闭其在该业务信道上的发射功率。
本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 能够根据 UE与各基站之间的信号传播损耗来确定该 UE与其 中一个基站进行业务连接, 从而关闭与该 UE非业务连接的基站在相关业务信 道上的发射机, 减少网络干扰, 提高网络吞吐量。
图 11 示出了本发明实施例提供的宏微基站同频组网的干扰控制系统的硬 件结构框图,如图 11所示,该装置包括了上级网元以及与该上级网元连接的多 个基站, 用于分别运行本发明图 2实施例以及本发明图 4实施例所述的宏微基 站同频组网的干扰控制方法。为了便于说明,仅示出了与本实施例相关的部分。
参照图 11 , 在微基站 111 中, 该装置包括处理器 1111、 存储器 1112、 总 线 1113和天线 1114,
其中所述处理器 1111、 所述存储器 1112和所述天线 1114通过所述总线 1113进行相互间的通信;
所述存储器 1112, 用于存储程序;
所述处理器 1111用于执行所述存储器 1112中存储的程序;
所述程序在被执行时, 用于:
扫描所述 基站所处的无线环境, 得到扫描结果; 了扫描到的小区的信号强度, 以使所述上级网元根据所述扫描结果确定出对所 述微基站信号强度最强的小区, 并将该小区的配置参数配置给所述微基站; 所述程序还用于:
在根据所述上级网元配置的配置参数运行之后, 分别判断每个业务信道当 前是否由所述微基站进行业务承载;
对于当前不由所述微基站进行业务承载的业务信道, 获取在该业务信道上 UE对所述微基站的上行干扰估计量, 并在接收到的该业务信道的上行信号中 抵消所述上行干扰估计量。
可选地, 所述扫描所述 基站所处的无线环境具体为:
扫描所述上级网元指定的工作频点或小区。
可选地, 所述扫描所述 基站所处的无线环境具体为:
对所述微基站所处的无线环境进行全频段扫描。
在上级网元 112中, 该装置包括处理器 1121、 存储器 1122、 总线 1123和 天线 1124,
其中所述处理器 1121、 所述存储器 1122和所述天线 1124通过所述总线 1123进行相互间的通信;
所述存储器 1122, 用于存储程序;
所述天线 1124用于接收微基站上报的扫描结果,所述扫描结果中包括了所 述微基站扫描到的小区的信号强度;
所述处理器 1121用于执行所述存储器 1122中存储的程序, 所述程序在被 执行时, 用于:
根据所述天线 1124的所述扫描结果,确定出对所述微基站信号强度最强的 小区;
获取所述对所述微基站信号强度最强的小区的配置参数;
将获取到的配置参数配置给所述微基站, 以使所述微基站根据所述获取到 的配置参数运行。
可选地, 所述将获取到的配置参数配置给所述微基站包括:
将所述获取到的配置参数中的小区标识修改为所述微基站的小区标识后配 置给所述微基站。
可选地, 所述程序还用于:
将所述对所述微基站信号强度最强的小区的小区标识与所述微基站的小区 标识进行关联, 以时刻保证所述微基站与所述对所述微基站信号强度最强的小 区配置有相同的配置参数。
本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 通过及时地估计由 UE产生的上行干扰, 从而在基站接收到的 上行信号中减去上行干扰信号, 由此减少了由 UE产生的上行干扰, 提高了网 络吞吐量。
图 12 示出了本发明实施例提供的宏微基站同频组网的干扰控制系统的硬 件结构框图,如图 12所示,该装置包括了上级网元以及与该上级网元连接的多 个基站, 包括宏基站或微基站, 用于分别运行本发明图 6实施例以及本发明图 7 实施例所述的宏微基站同频组网的干扰控制方法。 为了便于说明, 仅示出了 与本实施例相关的部分。
参照图 12, 在上级网元 121中, 该装置包括处理器 1211、 存储器 1212、 总线 1213和天线 1214,
其中所述处理器 1211、 所述存储器 1212和所述天线 1214通过所述总线 1213进行相互间的通信;
所述存储器 1212, 用于存储程序;
所述处理器 1211用于执行所述存储器 1212中存储的程序;
所述天线 1214 用于接收基站上报的所述基站对每个业务信道进行信号输 出检测的检测结果, 所述基站包括宏基站或微基站;
所述程序在被执行时, 用于:
根据所述检测结果确定所述基站是否在所述业务信道上对 UE进行业务承 载;
对于所述基站未对 UE进行业务承载的所述业务信道,所述天线 1214用于 通知所述基站关闭在该业务信道上的发射功率。
在基站 122中, 该装置包括处理器 1221、 存储器 1222、 总线 1223和天线 1224,
其中所述处理器 1221、 所述存储器 1222和所述天线 1224通过所述总线 1223进行相互间的通信;
所述存储器 1222, 用于存储程序;
所述处理器 1221用于执行所述存储器 1222中存储的程序, 所述程序在被 执行时, 用于:
对每个业务信道进行信号输出检测, 得到检测结果; 上级网元根据所述检测结果, 确定所述基站是否在所述业务信道上对 UE进行 业务承载;
对于所述基站未对 UE进行业务承载的所述业务信道,所述天线 1224用于 接收所述上级网元的通知, 关闭其在该业务信道上的发射功率。
本发明实施例基于宏基站与其覆盖范围内迭加的一个或多个微基站同频部 署的网络架构, 能够根据 UE与各基站之间的信号传播损耗来确定该 UE与其 中一个基站进行业务连接, 从而关闭与该 UE非业务连接的基站在相关业务信 道上的发射机, 减少网络干扰, 提高网络吞吐量。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种宏微基站同频组网的干扰控制方法, 其特征在于, 包括:
基站扫描其所处的无线环境, 得到扫描结果;
所述微基站将所述扫描结果上 给上级网元, 所述扫描结果中包括了扫描 站信号强度最强的小区, 并将该小区的配置参数配置给所述微基站;
所述微基站在根据所述上级网元配置的配置参数运行之后, 分别判断每个 业务信道当前是否由所述微基站进行业务承载;
对于当前不由所述微基站进行业务承载的业务信道, 所述微基站获取在该 业务信道上 UE对所述微基站的上行干扰估计量, 并在接收到的该业务信道的 上行信号中抵消所述上行干扰估计量。
2、如权利要求 1所述的方法, 其特征在于, 所述微基站扫描其所处的无线 环境具体为:
所述 基站扫描所述上级网元指定的工作频点或小区。
3、 如权利要求 1所述的方法, 其特征在于, 所述微基站扫描其所处的无线 环境具体为:
所述微基站对其所处的无线环境进行全频段扫描。
4、 一种宏 基站同频组网的干扰控制方法, 其特征在于, 包括: 接收微基站上报的扫描结果, 所述扫描结果中包括了所述微基站扫描到的 小区的信号强度;
根据所述扫描结果, 确定出对所述微基站信号强度最强的小区; 获取所述对所述微基站信号强度最强的小区的配置参数;
将获取到的配置参数配置给所述微基站, 以使所述微基站根据所述获取到 的配置参数运行。
5、如权利要求 4所述的方法, 其特征在于, 所述将获取到的配置参数配置 给所述微基站包括: 将所述获取到的配置参数中的小区标识修改为所述微基站的小区标识后配 置给所述微基站。
6、 如权利要求 4或 5所述的方法, 其特征在于, 所述方法还包括: 将所述对所述微基站信号强度最强的小区的小区标识与所述微基站的小区 标识进行关联, 以时刻保证所述微基站与所述对所述微基站信号强度最强的小 区配置有相同的配置参数。
7、 一种宏 基站同频组网的干扰控制方法, 其特征在于, 包括: 接收基站上报的所述基站对每个业务信道进行信号输出检测的检测结果, 所述基站包括宏基站或微基站;
根据所述检测结果确定所述基站是否在所述业务信道上对 UE进行业务承 载;
对于所述基站未对 UE进行业务承载的所述业务信道, 通知所述基站关闭 在该业务信道上的发射功率。
8、 一种宏 基站同频组网的干扰控制方法, 其特征在于, 包括: 基站对每个业务信道进行信号输出检测, 得到检测结果;
所述基站将所述检测结果上报给所述基站的上级网元, 以使所述上级网元 根据所述检测结果,确定所述基站是否在所述业务信道上对 UE进行业务承载; 对于所述基站未对 UE进行业务承载的所述业务信道, 所述基站接收所述 上级网元的通知, 关闭其在该业务信道上的发射功率。
9、 一种微基站, 其特征在于, 包括:
扫描单元, 用于扫描其所处的无线环境, 得到扫描结果;
第一上 单元, 用于接收所述扫描单元发送的所述扫描结果, 并将所述扫 描结果上报给上级网元, 所述扫描结果中包括了扫描到的小区的信号强度, 以 并将该小区的配置参数配置给所述微基站;
判断单元, 用于在根据所述上级网元配置的配置参数运行之后, 分别判断 每个业务信道当前是否由所述微基站进行业务承载;
上行干扰抵消单元, 用于根据所述判断单元的判断结果, 对于当前不由所 述微基站进行业务承载的业务信道, 获取在该业务信道上 UE对所述微基站的 上行干扰估计量, 并在接收到的该业务信道的上行信号中抵消所述上行干扰估 计量。
10、 如权利要求 9所述的微基站, 其特征在于, 所述扫描单元具体用于: 扫描所述上级网元指定的工作频点或小区。
11、 如权利要求 9所述的微基站, 其特征在于, 所述扫描单元具体用于: 对所述微基站所处的无线环境进行全频段扫描。
12、 一种宏 基站同频组网的干扰控制装置, 其特征在于, 包括: 扫描结果接收单元, 用于接收微基站上报的扫描结果, 所述扫描结果中包 括了所述微基站扫描到的小区的信号强度;
第一确定单元, 用于接收所述扫描结果接收单元发送的所述扫描结果, 并 根据所述扫描结果, 确定出对所述微基站信号强度最强的小区;
获取单元, 用于根据所述第一确定单元确定出的所述对所述微基站信号强 度最强的小区, 获取所述对所述微基站信号强度最强的小区的配置参数;
配置单元, 用于将所述获取单元获取到的配置参数配置给所述微基站, 以 使所述微基站根据所述获取到的配置参数运行。
13、 如权利要求 12所述的装置, 其特征在于, 所述配置单元具体用于: 将所述获取到的配置参数中的小区标识修改为所述微基站的小区标识后配 置给所述微基站。
14、 如权利要求 12或 13所述的装置, 其特征在于, 所述装置还包括: 关联单元, 用于将所述对所述微基站信号强度最强的小区的小区标识与所 述微基站的小区标识进行关联, 以时刻保证所述微基站与所述对所述微基站信 号强度最强的小区配置有相同的配置参数。
15、 一种宏 基站同频组网的干扰控制装置, 其特征在于, 包括: 检测结果接收单元, 用于接收基站上报的所述基站对每个业务信道进行信 号输出检测的检测结果, 所述基站包括宏基站或微基站;
第二确定单元, 用于接收所述检测结果接收单元发送的所述检测结果, 并 根据所述检测结果确定所述基站是否在所述业务信道上对 UE进行业务承载; 通知单元, 用于对于所述第二确定单元确定出的所述基站未对 UE进行业 务^载的所述业务信道, 通知所述基站关闭在该业务信道上的发射功率。
16、 一种基站, 其特征在于, 包括:
检测单元, 用于对每个业务信道进行信号输出检测, 得到检测结果; 第二上报单元, 用于接收所述检测单元发送的检测结果, 并将所述检测结 果上报给所述基站的上级网元, 以使所述上级网元根据所述检测结果, 确定所 述基站是否在所述业务信道上对 UE进行业务承载;
关闭单元, 用于对于所述基站未对 UE进行业务承载的所述业务信道, 接 收所述上级网元的通知, 关闭其在该业务信道上的发射功率。
17、 一种微基站, 其特征在于, 所述微基站包括处理器、 存储器、 总线和 天线, 其中所述处理器、 所述存储器和所述天线通过所述总线进行相互间的通 信;
所述存储器, 用于存储程序;
所述处理器用于执行所述存储器中存储的程序;
所述程序在被执行时, 用于:
扫描所述 基站所处的无线环境, 得到扫描结果;
基站信号强度最强的小区, 并将该小区的配置参数配置给所述微基站;
所述程序还用于:
在根据所述上级网元配置的配置参数运行之后, 分别判断每个业务信道当 前是否由所述微基站进行业务承载; 对于当前不由所述微基站进行业务承载的业务信道, 获取在该业务信道上
UE对所述微基站的上行干扰估计量, 并在接收到的该业务信道的上行信号中 抵消所述上行干扰估计量。
18、如权利要求 17所述的微基站, 其特征在于, 所述扫描所述微基站所处 的无线环境具体为:
扫描所述上级网元指定的工作频点或小区。
19、如权利要求 17所述的微基站, 其特征在于, 所述扫描所述微基站所处 的无线环境具体为:
对所述微基站所处的无线环境进行全频段扫描。
20、 一种宏微基站同频组网的干扰控制装置, 其特征在于, 所述装置包括 处理器、 存储器、 总线和天线, 其中所述处理器、 所述存储器和所述天线通过 所述总线进行相互间的通信;
所述存储器, 用于存储程序;
所述处理器用于执行所述存储器中存储的程序;
所述天线用于接收 基站上 的扫描结果, 所述扫描结果中包括了所述 基站扫描到的小区的信号强度;
所述程序在被执行时, 用于:
根据所述天线的所述扫描结果,确定出对所述微基站信号强度最强的小区; 获取所述对所述微基站信号强度最强的小区的配置参数;
将获取到的配置参数配置给所述微基站, 以使所述微基站根据所述获取到 的配置参数运行。
21、如权利要求 20所述的装置, 其特征在于, 所述将获取到的配置参数配 置给所述微基站包括:
将所述获取到的配置参数中的小区标识修改为所述微基站的小区标识后配 置给所述微基站。
22、 如权利要求 20或 21所述的装置, 其特征在于, 所述程序还用于: 将所述对所述微基站信号强度最强的小区的小区标识与所述微基站的小区 标识进行关联, 以时刻保证所述微基站与所述对所述微基站信号强度最强的小 区配置有相同的配置参数。
23、 一种宏微基站同频组网的干扰控制装置, 其特征在于, 所述装置包括 处理器、 存储器、 总线和天线, 其中所述处理器、 所述存储器和所述天线通过 所述总线进行相互间的通信;
所述存储器, 用于存储程序;
所述处理器用于执行所述存储器中存储的程序;
所述天线用于接收基站上报的所述基站对每个业务信道进行信号输出检测 的检测结果, 所述基站包括宏基站或微基站;
所述程序在被执行时, 用于:
根据所述检测结果确定所述基站是否在所述业务信道上对 UE进行业务承 载;
对于所述基站未对 UE进行业务^载的所述业务信道, 所述天线用于通知 所述基站关闭在该业务信道上的发射功率。
24、一种基站, 其特征在于, 所述基站包括处理器、存储器、 总线和天线, 其中所述处理器、 所述存储器和所述天线通过所述总线进行相互间的通信; 所述存储器, 用于存储程序;
所述处理器用于执行所述存储器中存储的程序;
所述程序在被执行时, 用于:
对每个业务信道进行信号输出检测, 得到检测结果;
所述天线用于将所述检测结果上报给所述基站的上级网元, 以使所述上级 网元根据所述检测结果, 确定所述基站是否在所述业务信道上对 UE进行业务 承载;
对于所述基站未对 UE进行业务承载的所述业务信道, 所述天线用于接收 所述上级网元的通知, 关闭其在该业务信道上的发射功率。
PCT/CN2013/076400 2013-05-29 2013-05-29 宏微基站同频组网的干扰控制方法及装置 WO2014190506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380000298.XA CN103535063B (zh) 2013-05-29 2013-05-29 宏微基站同频组网的干扰控制方法及装置
PCT/CN2013/076400 WO2014190506A1 (zh) 2013-05-29 2013-05-29 宏微基站同频组网的干扰控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076400 WO2014190506A1 (zh) 2013-05-29 2013-05-29 宏微基站同频组网的干扰控制方法及装置

Publications (1)

Publication Number Publication Date
WO2014190506A1 true WO2014190506A1 (zh) 2014-12-04

Family

ID=49935421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076400 WO2014190506A1 (zh) 2013-05-29 2013-05-29 宏微基站同频组网的干扰控制方法及装置

Country Status (2)

Country Link
CN (1) CN103535063B (zh)
WO (1) WO2014190506A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113854B (zh) * 2014-07-08 2018-03-27 京信通信系统(中国)有限公司 一种侦听包含下行公共信道的子帧的方法及装置
CN106559816A (zh) * 2015-09-29 2017-04-05 中兴通讯股份有限公司 小区干扰检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790171A (zh) * 2009-01-23 2010-07-28 华为技术有限公司 微基站和宏基站间数据帧调整方法、系统及微基站配置中心
CN101820683A (zh) * 2009-02-26 2010-09-01 中兴通讯股份有限公司 干扰控制信息的传输方法
CN102711124A (zh) * 2012-06-08 2012-10-03 北京邮电大学 一种双层网络中毫微微小区的功率分配方法
CN102960014A (zh) * 2012-08-30 2013-03-06 华为技术有限公司 一种处理通信业务的方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470037B (en) * 2009-05-07 2013-07-10 Picochip Designs Ltd Methods and devices for reducing interference in an uplink
US9565011B2 (en) * 2009-06-04 2017-02-07 Qualcomm Incorporated Data transmission with cross-subframe control in a wireless network
CN102711123A (zh) * 2012-06-08 2012-10-03 北京邮电大学 一种密集部署家庭基站网络中干扰抑制的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790171A (zh) * 2009-01-23 2010-07-28 华为技术有限公司 微基站和宏基站间数据帧调整方法、系统及微基站配置中心
CN101820683A (zh) * 2009-02-26 2010-09-01 中兴通讯股份有限公司 干扰控制信息的传输方法
CN102711124A (zh) * 2012-06-08 2012-10-03 北京邮电大学 一种双层网络中毫微微小区的功率分配方法
CN102960014A (zh) * 2012-08-30 2013-03-06 华为技术有限公司 一种处理通信业务的方法、装置及系统

Also Published As

Publication number Publication date
CN103535063A (zh) 2014-01-22
CN103535063B (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6360161B2 (ja) 免許不要周波数帯におけるキャリア感知適応送信(csat)
CN111034094B (zh) 用于无线通信的方法、设备、装置和介质
US9775048B2 (en) Performance of a user equipment (UE) in unlicensed spectrum
EP3081043B1 (en) Carrier sense adaptive transmission (csat) coordination in unlicensed spectrum
US20150063150A1 (en) Measurement reporting in unlicensed spectrum
US20150163823A1 (en) Interference classification-based carrier sense adaptive transmission (csat) in unlicensed spectrum
JP2016534587A5 (zh)
US9955503B2 (en) Carrier sense adaptive transmission (CSAT) communication scheme detection and mitigation in unlicensed spectrum
CN110226359A (zh) 用于在非锚定载波上传送随机接入消息的方法
CN110291735A (zh) 用可配置的控制信道监测来控制极简载波操作
US9930589B2 (en) Detection and recovery from loss of small cell connection
US9906974B2 (en) Channel quality measurement and reporting in a dual connectivity scenario
CN103826247B (zh) 一种异构网中对无线链路进行监测的方法
WO2015018235A1 (zh) 下行功率调整的通知方法及装置、获取方法及装置
WO2016161771A1 (zh) 一种最小化路测方法及装置
WO2014190506A1 (zh) 宏微基站同频组网的干扰控制方法及装置
US9847856B2 (en) Apparatus and method for time domain ICIC with muting pattern comprising fixed and optional parts
CN104412661A (zh) 在具有两个或更多个调制解调器的移动设备中的失去服务扫描
KR102204048B1 (ko) 무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885711

Country of ref document: EP

Kind code of ref document: A1