WO2014189585A1 - Wellbore fluids comprising mineral particles and methods relating thereto - Google Patents
Wellbore fluids comprising mineral particles and methods relating thereto Download PDFInfo
- Publication number
- WO2014189585A1 WO2014189585A1 PCT/US2014/019845 US2014019845W WO2014189585A1 WO 2014189585 A1 WO2014189585 A1 WO 2014189585A1 US 2014019845 W US2014019845 W US 2014019845W WO 2014189585 A1 WO2014189585 A1 WO 2014189585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- wellbore
- mineral particles
- fluid
- manganese
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 492
- 239000002245 particle Substances 0.000 title claims abstract description 487
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 433
- 239000011707 mineral Substances 0.000 title claims abstract description 433
- 238000000034 method Methods 0.000 title claims description 52
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 85
- 238000005553 drilling Methods 0.000 claims abstract description 75
- 238000004891 communication Methods 0.000 claims abstract description 8
- 235000010755 mineral Nutrition 0.000 claims description 429
- -1 AI2S1O5 Inorganic materials 0.000 claims description 166
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 93
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 69
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 57
- 239000011575 calcium Substances 0.000 claims description 51
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 47
- 230000005484 gravity Effects 0.000 claims description 47
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 claims description 45
- 239000011777 magnesium Substances 0.000 claims description 44
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 41
- 239000011572 manganese Substances 0.000 claims description 39
- 239000010949 copper Substances 0.000 claims description 38
- 229910052749 magnesium Inorganic materials 0.000 claims description 36
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 35
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 35
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 34
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 34
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 33
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 33
- 229910052791 calcium Inorganic materials 0.000 claims description 33
- 229910052909 inorganic silicate Inorganic materials 0.000 claims description 33
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 32
- 229910052742 iron Inorganic materials 0.000 claims description 31
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Inorganic materials [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims description 30
- 239000011787 zinc oxide Substances 0.000 claims description 30
- GNTDGMZSJNCJKK-UHFFFAOYSA-N Vanadium(V) oxide Inorganic materials O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 29
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 claims description 29
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 27
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 27
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 26
- 229910052845 zircon Inorganic materials 0.000 claims description 26
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 25
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 claims description 25
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 24
- 239000011656 manganese carbonate Substances 0.000 claims description 24
- 235000006748 manganese carbonate Nutrition 0.000 claims description 24
- 229940093474 manganese carbonate Drugs 0.000 claims description 24
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 24
- 229910052776 Thorium Inorganic materials 0.000 claims description 23
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 23
- 239000011734 sodium Substances 0.000 claims description 23
- PTVDYARBVCBHSL-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu] PTVDYARBVCBHSL-UHFFFAOYSA-N 0.000 claims description 20
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 19
- 239000000395 magnesium oxide Substances 0.000 claims description 19
- 238000001556 precipitation Methods 0.000 claims description 19
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 18
- 239000000292 calcium oxide Substances 0.000 claims description 18
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 18
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 18
- 229910052593 corundum Inorganic materials 0.000 claims description 17
- 229910001691 hercynite Inorganic materials 0.000 claims description 17
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 17
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 229910052841 tephroite Inorganic materials 0.000 claims description 16
- 229910052847 thorite Inorganic materials 0.000 claims description 16
- 229910052770 Uranium Inorganic materials 0.000 claims description 15
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 claims description 15
- 229910052715 tantalum Inorganic materials 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 14
- 229910052684 Cerium Inorganic materials 0.000 claims description 13
- 229940073609 bismuth oxychloride Drugs 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 claims description 13
- 229910000018 strontium carbonate Inorganic materials 0.000 claims description 13
- 229910000014 Bismuth subcarbonate Inorganic materials 0.000 claims description 12
- 239000005751 Copper oxide Substances 0.000 claims description 12
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 12
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 claims description 12
- 229910000431 copper oxide Inorganic materials 0.000 claims description 12
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 claims description 12
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 claims description 12
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 12
- 229910021646 siderite Inorganic materials 0.000 claims description 12
- 239000011667 zinc carbonate Substances 0.000 claims description 12
- 235000004416 zinc carbonate Nutrition 0.000 claims description 12
- 229910000003 Lead carbonate Inorganic materials 0.000 claims description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 11
- 229910052924 anglesite Inorganic materials 0.000 claims description 11
- 229910052797 bismuth Inorganic materials 0.000 claims description 11
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 11
- 229910052840 fayalite Inorganic materials 0.000 claims description 11
- 229910000015 iron(II) carbonate Inorganic materials 0.000 claims description 11
- 229910000471 manganese heptoxide Inorganic materials 0.000 claims description 11
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 claims description 11
- MFEVGQHCNVXMER-UHFFFAOYSA-L 1,3,2$l^{2}-dioxaplumbetan-4-one Chemical compound [Pb+2].[O-]C([O-])=O MFEVGQHCNVXMER-UHFFFAOYSA-L 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 229910052972 bournonite Inorganic materials 0.000 claims description 10
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052965 gersdorffite Inorganic materials 0.000 claims description 10
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 10
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical compound [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 claims description 10
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 10
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 10
- MSBGPEACXKBQSX-UHFFFAOYSA-N (4-fluorophenyl) carbonochloridate Chemical compound FC1=CC=C(OC(Cl)=O)C=C1 MSBGPEACXKBQSX-UHFFFAOYSA-N 0.000 claims description 9
- 229910004613 CdTe Inorganic materials 0.000 claims description 9
- 229910001308 Zinc ferrite Inorganic materials 0.000 claims description 9
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 claims description 9
- 229910052923 celestite Inorganic materials 0.000 claims description 9
- 150000002148 esters Chemical class 0.000 claims description 9
- 239000011019 hematite Substances 0.000 claims description 9
- 229910052595 hematite Inorganic materials 0.000 claims description 9
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 9
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 claims description 9
- QXYJCZRRLLQGCR-UHFFFAOYSA-N molybdenum(IV) oxide Inorganic materials O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 239000004408 titanium dioxide Substances 0.000 claims description 9
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 9
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 claims description 8
- 241001676573 Minium Species 0.000 claims description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 8
- 229910000421 cerium(III) oxide Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- QDOXWKRWXJOMAK-UHFFFAOYSA-N chromium(III) oxide Inorganic materials O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 8
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 claims description 8
- 239000010431 corundum Substances 0.000 claims description 8
- 239000010459 dolomite Substances 0.000 claims description 8
- 229910000514 dolomite Inorganic materials 0.000 claims description 8
- 229910001676 gahnite Inorganic materials 0.000 claims description 8
- 229910052867 ilvaite Inorganic materials 0.000 claims description 8
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 claims description 8
- LQKOJSSIKZIEJC-UHFFFAOYSA-N manganese(2+) oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+2].[Mn+2].[Mn+2] LQKOJSSIKZIEJC-UHFFFAOYSA-N 0.000 claims description 8
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 8
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 8
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 8
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 8
- 229910001738 pearceite Inorganic materials 0.000 claims description 8
- XSSPKPCFRBQLBU-UHFFFAOYSA-N thorium(iv) orthosilicate Chemical compound [Th+4].[O-][Si]([O-])([O-])[O-] XSSPKPCFRBQLBU-UHFFFAOYSA-N 0.000 claims description 8
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 claims description 8
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 8
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 claims description 7
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 7
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 claims description 7
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 7
- QUEDYRXQWSDKKG-UHFFFAOYSA-M [O-2].[O-2].[V+5].[OH-] Chemical compound [O-2].[O-2].[V+5].[OH-] QUEDYRXQWSDKKG-UHFFFAOYSA-M 0.000 claims description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 7
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 7
- 150000002170 ethers Chemical class 0.000 claims description 7
- AQRDGTBNWBTFKJ-UHFFFAOYSA-N molybdenum;dihydrate Chemical compound O.O.[Mo] AQRDGTBNWBTFKJ-UHFFFAOYSA-N 0.000 claims description 7
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 7
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 7
- DUSYNUCUMASASA-UHFFFAOYSA-N oxygen(2-);vanadium(4+) Chemical compound [O-2].[O-2].[V+4] DUSYNUCUMASASA-UHFFFAOYSA-N 0.000 claims description 7
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims description 7
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims description 7
- YIIYNAOHYJJBHT-UHFFFAOYSA-N uranium;dihydrate Chemical compound O.O.[U] YIIYNAOHYJJBHT-UHFFFAOYSA-N 0.000 claims description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 7
- CCVYRRGZDBSHFU-UHFFFAOYSA-N (2-hydroxyphenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC=C1O CCVYRRGZDBSHFU-UHFFFAOYSA-N 0.000 claims description 6
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 claims description 6
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 claims description 6
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 claims description 6
- HCJMNOSIAGSZBM-UHFFFAOYSA-N 6-methylsalicylic acid Chemical compound CC1=CC=CC(O)=C1C(O)=O HCJMNOSIAGSZBM-UHFFFAOYSA-N 0.000 claims description 6
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 claims description 6
- 239000005770 Eugenol Substances 0.000 claims description 6
- QSACCXVHEVWNMX-UHFFFAOYSA-N N-acetylanthranilic acid Chemical compound CC(=O)NC1=CC=CC=C1C(O)=O QSACCXVHEVWNMX-UHFFFAOYSA-N 0.000 claims description 6
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 claims description 6
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 claims description 6
- 150000001343 alkyl silanes Chemical class 0.000 claims description 6
- 229960002217 eugenol Drugs 0.000 claims description 6
- 229960001867 guaiacol Drugs 0.000 claims description 6
- ONWPLBKWMAUFGZ-UHFFFAOYSA-N methyl 2-acetyloxybenzoate Chemical compound COC(=O)C1=CC=CC=C1OC(C)=O ONWPLBKWMAUFGZ-UHFFFAOYSA-N 0.000 claims description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 6
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 6
- 150000003021 phthalic acid derivatives Chemical class 0.000 claims description 6
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 claims description 6
- 229960004889 salicylic acid Drugs 0.000 claims description 6
- 229960004025 sodium salicylate Drugs 0.000 claims description 6
- 229910001887 tin oxide Inorganic materials 0.000 claims description 6
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 claims description 6
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 claims description 6
- 235000012141 vanillin Nutrition 0.000 claims description 6
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 description 63
- 230000015572 biosynthetic process Effects 0.000 description 60
- 238000005755 formation reaction Methods 0.000 description 60
- 239000000654 additive Substances 0.000 description 57
- 239000004568 cement Substances 0.000 description 42
- 239000002585 base Substances 0.000 description 34
- 239000011133 lead Substances 0.000 description 33
- 230000015556 catabolic process Effects 0.000 description 31
- 238000006731 degradation reaction Methods 0.000 description 31
- 239000000047 product Substances 0.000 description 27
- 238000009826 distribution Methods 0.000 description 26
- 239000000839 emulsion Substances 0.000 description 25
- 229920000642 polymer Polymers 0.000 description 22
- 238000004064 recycling Methods 0.000 description 22
- 238000000576 coating method Methods 0.000 description 21
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 20
- 238000011084 recovery Methods 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 18
- 239000004094 surface-active agent Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 230000008901 benefit Effects 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000035699 permeability Effects 0.000 description 16
- 239000010428 baryte Substances 0.000 description 15
- 229910052601 baryte Inorganic materials 0.000 description 15
- 239000000945 filler Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 12
- 238000000227 grinding Methods 0.000 description 12
- 239000003381 stabilizer Substances 0.000 description 12
- 229910052955 covellite Inorganic materials 0.000 description 11
- 239000003638 chemical reducing agent Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 206010017076 Fracture Diseases 0.000 description 8
- 241000950638 Symphysodon discus Species 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 229910052951 chalcopyrite Inorganic materials 0.000 description 8
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 8
- 239000004088 foaming agent Substances 0.000 description 8
- HOQADATXFBOEGG-UHFFFAOYSA-N isofenphos Chemical compound CCOP(=S)(NC(C)C)OC1=CC=CC=C1C(=O)OC(C)C HOQADATXFBOEGG-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 208000010392 Bone Fractures Diseases 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 7
- 229910052948 bornite Inorganic materials 0.000 description 7
- 239000004927 clay Substances 0.000 description 7
- 229910052953 millerite Inorganic materials 0.000 description 7
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 7
- 229910052683 pyrite Inorganic materials 0.000 description 7
- 239000005060 rubber Substances 0.000 description 7
- 239000004576 sand Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 6
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 description 6
- 229910052956 cinnabar Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000012065 filter cake Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 229910052960 marcasite Inorganic materials 0.000 description 6
- 229910001741 miargyrite Inorganic materials 0.000 description 6
- 230000000149 penetrating effect Effects 0.000 description 6
- 229910052968 proustite Inorganic materials 0.000 description 6
- 229910052950 sphalerite Inorganic materials 0.000 description 6
- 229910052984 zinc sulfide Inorganic materials 0.000 description 6
- 229910052946 acanthite Inorganic materials 0.000 description 5
- 239000002518 antifoaming agent Substances 0.000 description 5
- 239000003139 biocide Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 230000000593 degrading effect Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910052949 galena Inorganic materials 0.000 description 5
- 239000003349 gelling agent Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 229910052961 molybdenite Inorganic materials 0.000 description 5
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000001376 precipitating effect Effects 0.000 description 5
- 239000002455 scale inhibitor Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- FSJWWSXPIWGYKC-UHFFFAOYSA-M silver;silver;sulfanide Chemical compound [SH-].[Ag].[Ag+] FSJWWSXPIWGYKC-UHFFFAOYSA-M 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- 229910000164 yttrium(III) phosphate Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 229910052971 enargite Inorganic materials 0.000 description 4
- 239000010881 fly ash Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 229910052954 pentlandite Inorganic materials 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 229910052967 pyrargyrite Inorganic materials 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 229910052959 stibnite Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- 229910002665 PbTe Inorganic materials 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 229910052964 arsenopyrite Inorganic materials 0.000 description 3
- 159000000009 barium salts Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- FWIZHMQARNODNX-UHFFFAOYSA-L dibismuth;oxygen(2-);carbonate Chemical compound [O-2].[O-2].[Bi+3].[Bi+3].[O-]C([O-])=O FWIZHMQARNODNX-UHFFFAOYSA-L 0.000 description 3
- ZXOKVTWPEIAYAB-UHFFFAOYSA-N dioxido(oxo)tungsten Chemical compound [O-][W]([O-])=O ZXOKVTWPEIAYAB-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000010436 fluorite Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011028 pyrite Substances 0.000 description 3
- 229910052952 pyrrhotite Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 3
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 3
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 3
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229910002688 Ag2Te Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229910052849 andalusite Inorganic materials 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 229940036348 bismuth carbonate Drugs 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- IKNAJTLCCWPIQD-UHFFFAOYSA-K cerium(3+);lanthanum(3+);neodymium(3+);oxygen(2-);phosphate Chemical compound [O-2].[La+3].[Ce+3].[Nd+3].[O-]P([O-])([O-])=O IKNAJTLCCWPIQD-UHFFFAOYSA-K 0.000 description 2
- 229910052947 chalcocite Inorganic materials 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- KYRUBSWVBPYWEF-UHFFFAOYSA-N copper;iron;sulfane;tin Chemical compound S.S.S.S.[Fe].[Cu].[Cu].[Sn] KYRUBSWVBPYWEF-UHFFFAOYSA-N 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- GMZOPRQQINFLPQ-UHFFFAOYSA-H dibismuth;tricarbonate Chemical compound [Bi+3].[Bi+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GMZOPRQQINFLPQ-UHFFFAOYSA-H 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000011396 hydraulic cement Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 229910052973 jamesonite Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- TYYHXOUGFIRONY-UHFFFAOYSA-D lead(2+);trioxido(oxo)-$l^{5}-arsane;chloride Chemical compound [Cl-].[Pb+2].[Pb+2].[Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O TYYHXOUGFIRONY-UHFFFAOYSA-D 0.000 description 2
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- ZWXOQTHCXRZUJP-UHFFFAOYSA-N manganese(2+);manganese(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+3].[Mn+3] ZWXOQTHCXRZUJP-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052590 monazite Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- UXBZSSBXGPYSIL-UHFFFAOYSA-N phosphoric acid;yttrium(3+) Chemical compound [Y+3].OP(O)(O)=O UXBZSSBXGPYSIL-UHFFFAOYSA-N 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Inorganic materials [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- IHBMMJGTJFPEQY-UHFFFAOYSA-N sulfanylidene(sulfanylidenestibanylsulfanyl)stibane Chemical compound S=[Sb]S[Sb]=S IHBMMJGTJFPEQY-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229910052970 tennantite Inorganic materials 0.000 description 2
- 229910052969 tetrahedrite Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 2
- 229910052821 vanadinite Inorganic materials 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- OHBKNWDVVSUTRV-UHFFFAOYSA-N 1-(prop-2-enoylamino)propane-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)CNC(=O)C=C OHBKNWDVVSUTRV-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000003044 Closed Fractures Diseases 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- UIFOTCALDQIDTI-UHFFFAOYSA-N arsanylidynenickel Chemical compound [As]#[Ni] UIFOTCALDQIDTI-UHFFFAOYSA-N 0.000 description 1
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229920005557 bromobutyl Polymers 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- YFRNYWVKHCQRPE-UHFFFAOYSA-N buta-1,3-diene;prop-2-enoic acid Chemical compound C=CC=C.OC(=O)C=C YFRNYWVKHCQRPE-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- ATZQZZAXOPPAAQ-UHFFFAOYSA-M caesium formate Chemical compound [Cs+].[O-]C=O ATZQZZAXOPPAAQ-UHFFFAOYSA-M 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229920005556 chlorobutyl Polymers 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical class [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 229910052963 cobaltite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- IZRICFNDFRWBBG-UHFFFAOYSA-N ethenesulfonic acid;3-hydroxypropyl prop-2-enoate Chemical compound OS(=O)(=O)C=C.OCCCOC(=O)C=C IZRICFNDFRWBBG-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229920005560 fluorosilicone rubber Polymers 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- RPOCFUQMSVZQLH-UHFFFAOYSA-N furan-2,5-dione;2-methylprop-1-ene Chemical compound CC(C)=C.O=C1OC(=O)C=C1 RPOCFUQMSVZQLH-UHFFFAOYSA-N 0.000 description 1
- 229910001677 galaxite Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- KAEAMHPPLLJBKF-UHFFFAOYSA-N iron(3+) sulfide Chemical compound [S-2].[S-2].[S-2].[Fe+3].[Fe+3] KAEAMHPPLLJBKF-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- TWJXYBSUGSKHPM-UHFFFAOYSA-N manganese;sulfane Chemical compound S.[Mn] TWJXYBSUGSKHPM-UHFFFAOYSA-N 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910000973 osmiridium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/032—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/40—Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
- C04B24/42—Organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/30—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
- C04B26/32—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
- C09K8/467—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
- C09K8/48—Density increasing or weighting additives
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/08—Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
Definitions
- the present invention relates to mineral particles that provide for wellbore fluids with tailorable properties and capabilities, and methods relating thereto.
- a variety of wellbore operations are performed, e.g., drilling operations, cementing operations, and stimulation operations.
- One physical property of the wellbore fluids used in conjunction with these wellbore operations is density.
- density For example during drilling operations, the density of a wellbore fluid must be carefully controlled so as to exert sufficient pressure to stabilize the walls of the wellbore, e.g. , to prevent blowouts, while simultaneously not exerting excess pressure that can cause damage to the surrounding subterranean formation.
- the density of spacer fluids and cementing operations must be carefully balanced so as to minimize or prevent mixing of other wellbore fluids on either side of the spacer fluid (e.g., a drilling fluid and a cementing fluid).
- weighting agents used in the exploration recovery of hydrocarbons.
- barite particles
- the complexity of wellbore fluids often increases.
- Wellbore fluid complexity can lead to negative synergistic effects between wellbore additives, including barite.
- the present invention relates to mineral particles that provide for wellbore fluids with tailorable properties and capabilities, and methods relating thereto.
- One embodiment of the present invention provides for a wellbore drilling assembly that includes a pump in fluid communication with a wellbore via a feed pipe; and a wellbore fluid disposed in at least one selected from the group consisting of the pump, the feed pipe, the wellbore, and any combination thereof, wherein the wellbore fluid has a density of about 7 ppg to about 50 ppg and comprises a base fluid and a plurality of linkable mineral particles.
- a wellbore drilling assembly that includes a pump in fluid communication with a wellbore via a feed pipe; a drill string with drill bit attached to the distal end of the drill string; and a wellbore fluid in contact with the drill bit, wherein the wellbore fluid has a density of about 7 ppg to about 50 ppg and comprises a base fluid, a plurality of linkable mineral particles, and a linking agent.
- Yet another embodiment of the present invention provides for a wellbore drilling assembly that includes a pump capable of introducing a fluid into a wellbore via a feed pipe; a fluid processing unit capable of receiving the fluid from a wellbore via an interconnecting flow line; and a wellbore fluid disposed in at least one selected from the group consisting of the pump, the feed pipe, the wellbore, the interconnecting flow line, the fluid processing unit, and any combination thereof, wherein the wellbore fluid has a density of about 7 ppg to about 50 ppg and comprises a base fluid, a plurality of linkable mineral particles, and a linking agent.
- Figures 1A-B illustrate examples of theoretical multi-modal diameter distributions for particles.
- Figure 2 illustrates exemplary recovery and recycling processes according to at least some embodiments described herein .
- Figure 3 illustrates an exemplary wellbore drilling assembly for use in conjunction with the mineral particles, related fluids, and related methods described herein .
- the present invention relates to mineral particles that provide for wellbore fluids with tailorable properties and capabilities, and methods relating thereto.
- the present invention provides for, in some embodiments, mineral particles that can be used in subterranean applications as unique weighting agents.
- the mineral particles described herein may advantageously have multiple properties that provide for desirable effects that other wellbore additives would traditionally provide for (e.g. , viscosifiers) .
- the mineral particles described herein may advantageously serve as weighting agents and other wellbore additives select viscosifiers, cement particles, sag control additives, proppants, and the like), which may allow for the production of wellbore fluids with tailorable properties and capabilities using minimal types of wellbore additives.
- the use of the mineral particles described herein in wellbore fluids for multiple purposes may reduce the complexity, and consequently the cost, of such wellbore fluids.
- the mineral particles described herein may, in some embodiments, have additional advantages over traditional barite weighting agents.
- the weighting agents produced can include up to about 21% sand, which can be abrasive to many wellbore tools.
- the minerals described herein may advantageously be less abrasive, as described further herein, thereby prolonging the life of wellbore tools (e.g. , pumps, drill bits, drill string, and a casing) .
- the mineral particles described herein may, in some embodiments, be degradable, which allows for unique opportunities for cleanup and cementing operations, as described further herein.
- the mineral particles described herein may, in some embodiments, be recovered and recycled for use in other mineral applications (e.g. , smelting). The recycling of the mineral particles further reduces costs and environmental impact of the exploration and recovery of hydrocarbons.
- wellbore additives and/or wellbore fluids may comprise the mineral particles described herein. Such wellbore additives and/or wellbore fluids may be used in conjunction with a plurality of wellbore operations.
- wellbore operation refers to any treatment or operation suitable for use in conjunction with a wellbore and/or subterranean formation, e.g. , drilling operations, lost circulation operations, fracturing operations, cementing operations, completion operations, and the like.
- mineral particles encompasses single types of mineral particles and combinations of more than one type of mineral particle described herein. Distinctions between types of mineral particles may, in some embodiments, be defined by at least one of mineral composition, production method, average diameter, diameter distribution, shape, presence or absence of coating, coating composition, and the like, and any combination thereof.
- the mineral particles described herein suitable for, inter alia, increasing the density of wellbore fluids described herein may have a specific gravity ranging from a lower limit of about 2.6, 3, 4, 4.5, 5, or 5.5 to an upper limit of about 20, 15, 10, 9, 8, or 7, and wherein the specific gravity may range from any lower limit to any upper limit and encompasses any subset therebetween.
- the mineral particles described herein may comprise traditional minerals and/or non-traditional minerals useful for weighting a wellbore fluid, which may depend on, inter alia, the application, the desired wellbore fluid properties, the availability of the minerals, and the like, and any combination thereof.
- Examples of traditional minerals useful for weighting a wellbore fluid include, but are not limited to, BaS0 4 , CaC0 3 , (Ca,Mg)C0 3 , FeC0 3 , Fe 2 0 3 , a- Fe 2 0 3 , a-FeO(OH), Fe 3 0 4 , FeTi0 3 , (Fe,Mg)Si0 4 , SrS0 4 , MnO, Mn0 2 , Mn 2 0 3 , Mn 3 0 4 , Mn 2 0 7 , MnO(OH), (Mn 2+ ,Mn 3+ ) 2 0 4 , and suitable combinations thereof.
- Some embodiments described herein may involve grinding bulk mineral materials so as to yield the mineral particles described herein.
- Additional examples of traditional minerals in their native form may include, but are not limited to, barite, calcium carbonate, dolomite, hematite, siderite, magnetite, manganese dioxide, manganese (IV) oxide, manganese oxide, manganese tetraoxide, manganese (II) oxide, manganese (III) oxide, and suitable combinations thereof.
- non-traditional minerals useful for weighting a wellbore fluid include, but are not limited to, Agl, AgCI, AgBr, AgCuS, AgS, Ag 2 S, Ag 3 SbS 3 , AgSbS 2 , AgSbS 2 , Ag 5 SbS 4 , (AgFe 2 S 3 ), Ag 3 AsS 3 , Ag 3 AsS 3 , Cu(Ag,Cu)6Ag 9 As 2 Sii, [(Ag,Cu) 6 (Sb,As)2S7][Ag 9 CuS4], Ag 3 AuTe 2 , (Ag,Au)Te 2 , Ag 2 Te, Al 2 0 3 , AI 2 Si0 5 , AsSb, (Co,Ni,Fe)As 3 , PtAs 2 , AuTe 2 , BaC0 3 , BaO, BeO, Bi, BiOCI, (BiO) 2 C0 3 , Bi0 3 , Bi 2 S 3 ,
- non-traditional minerals in their native form may include, but are not limited to, acanthite, alamandite,lastite, altaite, aluminum oxide, andalusite, anglesite, antimony sulfide, antimony tin oxide, antimony trioxide, argentite, arsenopyrite, awaruite, barium carbonate, barium oxide, bastnaesite, beryllium oxide, birnessite, bismite, bismuth, bismuth oxycarbonates, bismuth oxychloride, bismuth sulfide, bismuth sulfide, bismuth trioxide, bismuth (III) oxide, bixbyite, bornite, boulangerite, bournonite, brannerite, braunite, bravoite, bromyrite, cadimum sulfide, cadimum telluride, calaverite, calcium oxide, calomel, carrollite, cassiterite,
- the mineral particles described herein may be produced by grinding methods, precipitation methods, melt form plasma methods, etching bulk minerals, or any combination thereof, each where applicable based on, inter alia, the composition of the mineral particle.
- grinding refers to mechanically breaking down the material into smaller pieces and encompasses milling, Raymond milling, roller milling, ball milling, and grinding, machine grinding, crushing, and the like.
- the terms “median diameter” and “diameter distribution” refers to a weight median diameter and a weight diameter distribution, respectively, wherein the diameter is based on the largest dimension of the particles. For example, rod-like particles would have diameter distributions and the like based on the length of the rod-like particles. As used herein, the term “median diameter” refers to a diameter distribution wherein 50% of the particles are smaller than a given value.
- the mineral particles described herein produced by grinding methods may have a median diameter ranging from a lower limit of about 100 nm, 250 nm, 500 nm, 1 micron, or 5 microns to an upper limit of about 5000 microns, 2500 microns, 1000 microns, 500 microns, 100 microns, 75 microns, 50 microns, 25 microns, or 10 microns, and wherein the median diameter may range from any lower limit to any upper limit and encompasses any subset therebetween.
- larger particle sizes may be appropriate in some instances, e.g. , mineral particles used in lost circulation or proppant compositions and methods.
- the median diameter of the mineral particles may range from a lower limit of about 350 microns, 500 microns, or 1 mm to an upper limit of about 15 mm, 10 mm, or 5 mm, and wherein the median diameter may range from any lower limit to any upper limit and encompasses any subset therebetween.
- Some embodiments of the present invention may involve precipitating particles from two or more salts in aqueous solutions so as to yield the mineral particles described herein (or precursors to mineral particles described herein, e.g. , particles that can be further calcined to yield mineral particles described herein).
- some embodiments of the present invention may involve precipitating manganese carbonate from manganese (II) salts in aqueous solutions with alkali metal carbonates so as to yield the mineral particles described herein that comprise manganese carbonate.
- Examples of other salts that may be used in producing precipitated mineral particles may include salts ⁇ e.g., fluorides, chlorides, bromides, iodides, acetates, formates, citrates, sulfates, carbonates, hydroxides, phosphates, silicates, molybdates, tungstates, vanadates, titanates, chromates, and the like) of barium, bismuth, chromium, cobalt, copper, gold, iron, lead, nickel, strontium, tin, zinc, manganese, tungsten, aluminum, silver, cerium, magnesium, zirconium, titanium, calcium, antimony, lead, and the like, and any combination thereof.
- salts ⁇ e.g., fluorides, chlorides, bromides, iodides, acetates, formates, citrates, sulfates, carbonates, hydroxides, phosphates, silicates, molybdates, tungstates
- Some precipitation embodiments described herein may further involve adjusting the pH of the aqueous solution, adjusting the temperature of the aqueous solution, adding morphology modifiers to the aqueous solution, adding aqueous-miscible organic liquids (e.g. , an alcohol or acetone) to the aqueous solution, using capping agents (e.g., compounds with moieties that interact with the crystal being formed so as to stop, slow, and/or direct growth of the crystal), and any combination thereof.
- capping agents e.g., compounds with moieties that interact with the crystal being formed so as to stop, slow, and/or direct growth of the crystal
- the foregoing may be useful in regulating the average diameter, diameter distribution, and shape of the mineral particles described herein. For example, increasing the pH and/or temperature may increase the average diameter of the mineral particles described herein.
- additional polyelectrolytes may be used to synthesize mineral particles having a desired non-spherical shape.
- the particles produced by precipitation may be calcined to yield mineral particles described herein. Calcining may, inter alia, increase the mechanical properties (e.g., crush strength) of the mineral particles, yield a corresponding oxide (e.g. , manganese carbonate to manganese oxide, calcium carbonate to calcium oxide, bismuth carbonate to bismuth oxycarbonate or bismuth oxide, zirconium hydroxide to zirconium oxide, or magnesium hydroxide to magnesium oxide), or any combination thereof.
- a corresponding oxide e.g. , manganese carbonate to manganese oxide, calcium carbonate to calcium oxide, bismuth carbonate to bismuth oxycarbonate or bismuth oxide, zirconium hydroxide to zirconium oxide, or magnesium hydroxide to magnesium oxide
- Examples of mineral particles that can be produced with precipitation methods may include, but are not limited to, Agl, AgCI, AgBr, AgCuS, AgS, Ag 2 S, Al 2 0 3 , AsSb, AuTe 2 , BaC0 3 , BaS0 4 , BaCr0 4 , BaO, BeO, BiOCI, (BiO) 2 C0 3 , Bi0 3 , Bi 2 S 3 , Bi 2 0 3 , CaO, CaF 2 , CaW0 4 , CaC0 3 , (Ca,Mg)C0 3 , CdS, CdTe, Ce 2 0 3 , CoAsS, Cr 2 0 3 , CuO, Cu 2 0, CuS, Cu 2 S, CuS 2 , CugS 5 , CuFeS 2 , Cu 5 FeS 4 , CuS ⁇ Co 2 S 3 , Fe 2+ Al 2 0 4 , Fe 2 Si0 4
- combination of more than one salt may be used to form precipitated particles with two or more of the foregoing precipitates in substantially homogeneous domain.
- strontium and barium salts may be utilized in forming precipitated particles that comprise (Ba,Sr)S0 4 or (Ba,Sr)C0 3 .
- barium salts may be used in forming precipitated particles that comprise Ba(S0 4 ,Cr0 4 ).
- Examples of other substantially homogeneous domains may include, but are not limited to, suitable mixtures of barium, strontium, calcium, zinc, iron, cobalt, manganese, lead, tin, and the like, and any combination thereof in the form of sulfates, carbonates, hydroxide, oxides, sulfides, chromates and the like, and any combination thereof.
- Some embodiments may involve forming precipitated mineral particles with discrete domains that comprise at least one of the foregoing precipitates.
- a calcium carbonate particle may be formed by precipitation and then barium salts added so as to precipitate barium carbonate on at least a portion of the surface of the calcium carbonate precipitated particle.
- a higher specific gravity composition like those comprising bismuth may be precipitated and then a different composition precipitated thereon.
- Precipitating a second composition on a first composition may allow for the first composition to be formed with a desired shape and the second composition to increase the specific gravity of the particle, which may allow for a desired higher specific gravity particle with a desired shape that may be difficult to achieve otherwise.
- the higher specific gravity particle may be the first composition and the second composition precipitated thereon may enable linking of the particles or reduce the abrasiveness of the particles (described further herein).
- the mineral particles produced by precipitation may be calcined to yield precipitated particles described herein. Calcining may, inter alia, increase the mechanical properties (e.g. , crush strength) of the precipitated particles, yield a corresponding oxide (e.g. , manganese carbonate to manganese oxide, calcium carbonate to calcium oxide, bismuth carbonate to bismuth oxycarbonate or bismuth oxide, zirconium hydroxide to zirconium oxide, or magnesium hydroxide to magnesium oxide), or any combination thereof.
- a corresponding oxide e.g. , manganese carbonate to manganese oxide, calcium carbonate to calcium oxide, bismuth carbonate to bismuth oxycarbonate or bismuth oxide, zirconium hydroxide to zirconium oxide, or magnesium hydroxide to magnesium oxide
- the precipitated mineral particles described herein may be shaped as spherical, ovular, substantially spherical, substantially ovular, discus, platelet, flake, toroidal (such as donut-shaped), dendritic, acicular, spiked with a substantially spherical or ovular shape (such as a sea urchin), spiked with a discus or platelet shape, rod-like, fibrous (such as high-aspect ratio shapes), polygonal (such as cubic or pyramidal), faceted (such as the shape of crystals), star or floral shaped (such as a tripod or tetrapod where rods or the like extend from a central point), or any hybrid thereof (e.g.
- dumbbell-shape spherical, ovular, substantially spherical, and substantially ovular-shaped precipitated mineral particles may be useful in producing wellbore fluids that are less abrasive to wellbore tools and/or decrease viscosity as compared to ground mineral particles.
- platelet, flake, acicular, spiked with a discus or platelet shape, rod-like, and fibrous- shaped precipitated mineral particles may be useful in producing wellbore fluids with less sag and/or greater viscosity as compared to ground mineral particles.
- the precipitated mineral particles described herein may have a median diameter ranging from a lower limit of about 5 nm, 10 nm, 20 nm, 50 nm, 100 nm, 250 nm, 500 nm, or 1 micron to an upper limit of about 100 microns, 50 microns, 25 microns, 10 microns, 5 microns, 1 micron, or 750 nm, and wherein the median diameter may range from any lower limit to any upper limit and encompasses any subset therebetween .
- precipitation methods may be used to yield larger sizes of mineral particles that are millimeters or larger in size. For example, precipitated mineral particles having a median diameter of about 1- 10 mm may be used as proppants or lost circulation materials.
- the precipitated particles may be ground to achieve a desired size and/or shape.
- Methods that involve precipitation and then grinding may advantageously allow for production of higher purity precipitated particles as compared to particles produced by grinding bulk minerals. Further, such methods may allow for reduced cost while maintaining high purity as compared to some precipitation methods with steps to control particle size.
- larger precipitated particles may be directly added to a mined mineral and undergo the same grinding process such that the ground product may have a higher purity than the mineral alone.
- large particles of barium sulfate may formed by precipitation and added to mined barite with high levels of contaminants (e.g. , greater than 15% sand) such that the ground product is higher purity, which yields a less abrasive, higher specific gravity weighting agent that is of greater value in the industry.
- the conditions under which the precipitated particles are formed may be manipulated so as to assist in controlling or directing the characteristics of the precipitated particles (e.g., shape, median diameter, diameter distribution, narrow diameter distribution, density, hardness, and the like) .
- characteristics of the precipitated particles e.g., shape, median diameter, diameter distribution, narrow diameter distribution, density, hardness, and the like
- conditions that can be manipulated may include, but are not limited to, pH, temperature, chemical composition of morphology modifiers, concentration of morphology modifiers, concentration of the salts used in the production of the precipitated particles, and the like, and any combination thereof.
- increasing the pH and/or temperature may increase the median diameter of the precipitated particles.
- the term "morphology modifiers" refers to chemicals that are used during the formation of precipitated particles that effect the characteristics of the precipitated particles.
- morphology modifiers may include, but are not limited to, polymers, surfactants, electrolytes, hydrogen peroxide, silicates and other similar inorganic materials, aqueous-miscible organic liquids, and the like, and any combination thereof.
- morphology modifiers may include, but are not limited to, polymers, surfactants, electrolytes, hydrogen peroxide, silicates and other similar inorganic materials, aqueous-miscible organic liquids, and the like, and any combination thereof.
- the wellbore additives and/or the wellbore fluids may comprise the mineral particles described herein having a multimodal diameter distribution (e.g., bimodal, trimodal, and so on) .
- the wellbore additives and/or the wellbore fluids may comprise the mineral particles described herein having a multimodal diameter distribution such that at least one mode has an average diameter (or peak diameter) ranging from a lower limit of about 5 nm, 10 nm, 20 nm, 50 nm, 100 nm, 250 nm, 500 nm, or 1 micron to an upper limit of about 50 microns, 10 microns, 5 microns, 1 micron, or 500 nm and at least one mode has an average diameter ranging from a lower limit of about 10 microns, 25 microns, 50 microns, or 100 microns to an upper limit of about 5000 microns, 2500 microns, 1000 microns, 500 microns, 100 microns
- Figures 1A- B illustrate appropriate multimodal diameter distributions for use in wellbore fluids.
- Figure 1A illustrates a bimodal diameter distribution with a first mode average diameter of about 1 micron and a second mode average diameter of about 25 microns.
- Figure I B illustrates a trimodal diameter distribution with a first mode average diameter of about 5 microns, a second mode average diameter of about 50 microns, and a third mode average diameter of about 90 microns.
- the mode(s) of a diameter distribution may independently be considered to have a narrow diameter distribution . That is, at least one mode of a diameter distribution (including monomodal) may have a standard deviation of about 2% or less of the peak diameter for the given mode (e.g. , about 0.1% to about 2% or any subset therebetween) .
- precipitation methods may be advantageously employed to achieve narrow diameter distributions of mineral particles described herein .
- the mineral particles described herein may have a coating on at least a portion of the surface of the mineral particles.
- coating does not imply any particular degree of coating on the particle.
- coat does not imply 100% coverage by the coating on the particle.
- a coating may, in some embodiments, be covalently and/or noncovalently associate with the mineral particles described herein.
- a coating suitable for use in conjunction with the mineral particles described herein may include, but are not limited to, polymers, surfactants, and any combination thereof. Coatings may, in some embodiments, assist in the suspension of the mineral particles and/or the compatibility of the mineral particles with a wellbore fluid and/or wellbore operation.
- a coating like an alkyl amine may, in some embodiments, associate with the surface of the mineral particles so as to render the mineral particle more hydrophobic, which may enhance the suspendability of the mineral particles in oil-based fluids.
- a coating may be applied during production of the mineral particles described herein.
- grinding production methods may, in some embodiments, be conducted in the presence of polymers, surfactants, or the like suitable for use as a coating .
- precipitation production methods may be conducted in the presence of polymers, surfactants, or the like suitable for use as a coating .
- polymers, surfactants, or the like in a production method of the mineral particles described herein should be chosen so as not to significantly impact the production in a negative manner.
- Polymers suitable for use in conjunction with the coated mineral particles described herein may, in some embodiments, have a molecular weight ranging from a lower limit of about 10,000 g/mol, 25,000 g/mol, 100,000 g/mol, or 250,000 g/mol to an upper limit of about 2,000,000 g/mol, 1,000,000 g/mol, 500,000 g/mol, or 250,000 g/mol, and wherein the molecular weight may range from any lower limit to any upper limit and encompasses any subset therebetween.
- polymers suitable for use in conjunction with the coated mineral particles described herein may, in some embodiments, include, but are not limited to, homopolymers or copolymers of monomers selected from the group comprising : acrylic acid, itaconic acid, maleic acid or anhydride, hydroxypropyl acrylate vinylsulphonic acid, acrylamido 2-propane sulphonic acid, acrylamide, methacrylamide, hydrolyzed acrylamide, styrene sulphonic acid, acrylic phosphate esters, methyl vinyl ether, vinyl acetate, stearyl methacrylate, butylacrylate, vinyl pyrrolidone, glycols (ethylene glycol, propylene glycol, and butylene glycol), and the like, salts thereof where appropriate, any derivative thereof, and any combination thereof.
- monomers selected from the group comprising : acrylic acid, itaconic acid, maleic acid or anhydride, hydroxypropyl acrylate vinylsulphonic acid, acrylamido
- Examples of commercially available polymers may include Pluronic® surfactants (polyethylene oxide-polypropylene oxide-polyethylene oxide triblock polymers, available from BASF), Tetronic® surfactants (tetra-functional block copolymers based on ethylene oxide and propylene oxide, available from BASF), and the like, and any combination thereof.
- Pluronic® surfactants polyethylene oxide-polypropylene oxide-polyethylene oxide triblock polymers, available from BASF
- Tetronic® surfactants tetra-functional block copolymers based on ethylene oxide and propylene oxide, available from BASF
- surfactants suitable for use in conjunction with the coated mineral particles described herein may, in some embodiments, include, but are not limited to, oleic acid, monobasic fatty acids, polybasic fatty acids, alkylbenzene sulfonic acids, alkane sulfonic acids, linear alpha-olefin sulfonic acid, phospholipids, betaines, and the like, salts thereof where appropriate, any derivative thereof, and any combination thereof.
- surfactants examples include Brij® surfactants (ethoxylated fatty alcohols, available from Sigma-Aldrich), Triton® surfactants (ethoxylated fatty alkylphenols, available from Sigma-Aldrich), and the like, and any combination thereof.
- Brij® surfactants ethoxylated fatty alcohols, available from Sigma-Aldrich
- Triton® surfactants ethoxylated fatty alkylphenols, available from Sigma-Aldrich
- coatings may comprise consolidating agents that generally comprise any compound that is capable of minimizing particulate migration, which may be suitable for methods and compositions relating to proppant packs, gravel packs, and the like.
- Suitable consolidating agents may include, but are not limited to, non-aqueous tackifying agents, aqueous tackifying agents, emulsified tackifying agents, silyl-modified polyamide compounds, resins, crosslinkable aqueous polymer compositions, polymerizable organic monomer compositions, consolidating agent emulsions, zeta-potential modifying aggregating compositions, silicon-based resins, and binders. Combinations and/or derivatives of these also may be suitable.
- Nonlimiting examples of suitable non-aqueous tackifying agents may be found in U.S. Patent Nos. 7,392,847, 7,350,579, 5,853,048; 5,839,510; and 5,833,000.
- Nonlimiting examples of suitable aqueous tackifying agents may be found in U.S. Patent Nos. 8,076,271, 7, 131,491, 5,249,627 and 4,670,501.
- Nonlimiting examples of suitable crosslinkable aqueous polymer compositions may be found in U.S. Patent Application Publication No. 2010/0160187 and U.S. Patent No. 8, 136,595.
- Nonlimiting examples of suitable silyl-modified polyamide compounds may be found in U.S. Patent No. 6,439,309.
- Nonlimiting examples of suitable resins may be found in U.S. Patent Nos. 7,673,686; 7,153,575; 6,677,426; 6,582,819; 6,311,773; and 4,585,064 as well as U.S. Patent Application Publication No. 2008/0006405 and U .S. Patent No. 8,261,833.
- Nonlimiting examples of suitable polymerizable organic monomer compositions may be found in U .S. Patent No. 7,819, 192.
- Nonlimiting examples of suitable consolidating agent emulsions may be found in U.S. Patent Application Publication No. 2007/0289781.
- Nonlimiting examples of suitable zeta-potential modifying aggregating compositions may be found in U .S. Patent Nos.
- Nonlimiting examples of suitable silicon-based resins may be found in Application Publication Nos. 2011/0098394, 2010/0179281, and U .S. Patent Nos. 8,168,739 and 8,261,833.
- suitable binders may be found in U .S. Patent Nos. 8,003,579; 7,825,074; and 6,287,639, as well as U .S. Patent Application Publication No. 2011/0039737. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine the type and amount of consolidating agent to include in the methods of the present invention to achieve the desired results.
- the wellbore fluids described herein may comprise a base fluid and the mineral particles described herein.
- the mineral particles described herein may be useful as weighting agents so as to adjust the density of a wellbore fluid described herein.
- the mineral particles may serve other functions as described further herein.
- weighting agents have consisted essentially of a single mineral, most commonly barite (sometimes with up to 21% sand contamination), with a monomodal diameter distribution.
- the mineral particles described herein may, in some embodiments, be included in the wellbore additives and/or the wellbore fluids as a barite substitute weighting agent or a barite augmenting weighting agent.
- the wellbore additives and/or the wellbore fluids may comprise the mineral particles described herein so as to achieve a desired density of the wellbore fluid.
- the wellbore fluids described herein may have a density between a lower limit of about 7 pounds per gallon ("ppg"), 9 ppg, 12 ppg, 15 ppg, or 22 ppg to an upper limit of about 50 ppg, 40 ppg, 30 ppg, 22 ppg, 20 ppg, or 17 ppg, and wherein the density of the wellbore fluid may range from any lower limit to any upper limit and encompasses any subset therebetween.
- ppg pounds per gallon
- the ability to achieve a desired density of the wellbore fluid while maintaining a fluid that can be pumped may depend on, inter alia, the composition and specific gravity of the mineral particles, the shape of the mineral particles, the concentration of the mineral particles, and the like, and any combination thereof.
- wellbore fluids having a density of about 25 ppg or higher may be achieved with mineral particles having a specific gravity of about 7 or greater and having a shape of spherical, substantially spherical, ovular, substantially ovular, or a hybrid thereof so as to allow for the fluid to be pumpable.
- wellbore fluids having a density of about 30 ppg or less may be achieved with precipitated particles having a specific gravity of about 7 or greater and having a larger variety of shapes, including discus.
- the plurality of mineral particles described herein may be useful in modifying the density of a wellbore fluid
- achieving a desired density may utilize the mineral particles described herein that comprise at least one of rhodochrosite, tenorite, awaruite, albandite, bismuth oxychloride, fluorite, manganese carbonate, manganese (II) oxide, manganese (II, III) oxide, manganese (III) oxide, manganese (IV) oxide, manganese (VII) oxide, spalerite, strontianite, tenorite, zinc carbonate, zinc oxide, and any combination thereof.
- a mixture of two or more types of mineral particles described herein having a multiparticle specific gravity useful for achieving a desired density As used herein, the term “multiparticle specific gravity” refers to the calculated specific gravity from Formula I.
- the wellbore additives and/or the wellbore fluids may comprise a mixture of mineral particles described herein having a multiparticle specific gravity ranging from a lower limit of about 3, 4, 4.5, 5, or 5.5 to an upper limit of about 20, 15, 10, 9, 8, or 7, and wherein the multiparticle specific gravity may range from any lower limit to any upper limit and encompasses any subset therebetween .
- specific gravity refers to the multiparticle specific gravity.
- the size and shape of each of the precipitated particles may be tailored so as to minimize separation of the precipitated particles, which may lead to a wellbore fluid with a striated density profile.
- a first precipitated particle with a discus or platelet shape may impede the settling of a second precipitated particle that has a high settling or migration rate (e.g. , a higher specific gravity, spherical particle) .
- the properties of the mineral particles described herein may be tailored to mitigate the abrasion of wellbore tools (e.g. , pumps, drill bits, drill string, and a casing) as compared to comparable API grade barite (i. e. , a comparable wellbore fluid having the same density and/or sag as the wellbore fluid comprising the mineral particles), which may prolong the life of the wellbore tools.
- wellbore tools encompasses tools suitable for use in conjunction with wellbore operations, including tools that are used outside of the wellbore, e.g. , pumps, shakers, and the like.
- Abrasion can be measured by the ASTM G75-07 and is reported as a Miller Number or a SAR Number.
- Suitable mineral particles can be those with properties tailored to mitigate abrasion, which may include, but are not limited to, hardness (e.g. , a Mohs hardness of less than about 5), size (e.g. , median diameter less than about 400 nm or mode of a multimodal distribution having an peak diameter less than about 400 nm), shape (e.g. , particle shapes with higher sphericity like spherical, substantially spherical, ovular, substantially ovular, and the like), coatings (e.g. , thicker and/or elastic coatings that minimize physical interactions between the mineral portion of the particle and the wellbore tool), and the like, and any combination thereof.
- wellbore additives and/or the wellbore fluids may comprise substantially spherical awaruite particles with a median diameter less than about 400 nm and manganese carbonate particles, which have a Mohs hardness less than about 5.
- wellbore additives and/or the wellbore fluids may comprise at least one of the foregoing suitable mineral particles that mitigate abrasion of wellbore tools in combination with at least one mineral particle described herein that may not mitigate abrasion of wellbore tools.
- wellbore additives and/or the wellbore fluids that are less abrasive than the comparable wellbore fluid may comprise manganese carbonate particles with a median diameter less than about 400 nm and awaruite particles with a median diameter greater than about 500 nm .
- Examples of mineral particles with a Mohs hardness of less than about 5 may include BaS0 4 , CaC0 3 , (Ca,Mg)C0 3 , FeC0 3 , FeTi0 3 , (Fe,Mg)Si0 4 , SrS0 4 , MnO(OH), barite, calcium carbonate, dolomite, siderite, manganese dioxide, Agl, AgCI, Ag Br, AgS, Ag 2 S, Ag 3 SbS 3 , AgSbS 2 , AgSbS 2 , Ag 5 SbS 4 , (Ag Fe 2 S 3 ), Ag 3 AsS 3 , Ag 3 AsS 3 , Cu(Ag,Cu) 6 Ag 9 As 2 Sii, [(Ag,Cu)6(Sb,As) 2 S 7 ] [Ag 9 CuS 4 ], Ag 3 AuTe 2 , (Ag,Au)Te 2 , Ag 2 Te, AI 2 Si0 5 , AsSb,
- Particles (e.g. , weighting agents, proppants, and cement particles) in wellbore fluids can settle from the wellbore fluid therein, which is a condition known as "sag .”
- the term “sag” refers to an inhomogeneity in density of a fluid in a wellbore, e.g., along the length of a wellbore and/or the diameter of a deviated wellbores. In some instances, sag can cause to portions of the wellbore fluid to be at an insufficient density to stabilize the wellbore and other portions of the wellbore fluid to have increased density.
- Unstabilized portions of the wellbore can lead to wellbore collapse and/or pressure buildups that cause blowouts. Increased density can cause wellbore damage (e.g., undesired fracturing of the wellbore), which may show up as pressure increases or decreases when changing from static to flow conditions of the fluid which can cause higher than desired pressures downhole.
- wellbore damage e.g., undesired fracturing of the wellbore
- the mineral particles described herein may be sized, shaped, or otherwise treated (e.g., coated) so as to mitigate sag in wellbore fluids.
- the size may, inter alia, provide for the formation of a stable suspension that exhibit low viscosity under shear.
- the specific gravity of the mineral particles may further allow for such mineral particles to provide for a desired density of the wellbore fluid while mitigating sag of these mineral particles or other particles therein.
- Sag control can be measured by analyzing density changes in an undisturbed sample of wellbore fluid over time at a typical wellbore temperature ⁇ e.g. , about 300°F) and an elevated pressure ⁇ e.g. , about 5,000 psi to about 10,000 psi).
- the mineral particles described herein that provide effective sag control may, in some embodiments, yield wellbore fluids having a change in density of less than about 1 ppg ⁇ e.g. , about 0.5 ppg change or less including no change in density) when comparing a fluid's original density to the fluid's density at the bottom of a sample having been undisturbed for a given amount of time.
- the mineral particles described herein may provide sag control ⁇ i.e. , a density change of less than about 1 ppg) over a time ranging from a lower limit of about 10 hours, 24 hours, 36 hours, or 48 hours to an upper limit of about 120 hours, 96 hours, 72 hours, or 48 hours, and wherein the sag control timeframe of the wellbore fluid may range from any lower limit to any upper limit and encompasses any subset therebetween .
- the properties of the mineral particles described herein may be tailored to achieve sag control.
- Properties of the mineral particles that can be tailored to achieve sag control may include, but are not limited to, size ⁇ e.g. , median diameter of about 2 microns or less or at least one mode of a multimodal distribution having such a peak diameter of about 2 microns or less), shape ⁇ e.g., particle shapes with lower sphericity like discus, platelet, flake, ligamental, acicular, spiked with a substantially spherical or ovular shape, spiked with a discus or platelet shape, fibrous, toroidal, and the like), coatings, linking (described further herein), and the like, and any combination thereof.
- sag control may utilize the mineral particles described herein that comprise at least one of rhodochrosite, tenorite, awaruite, albandite, bismuth oxychloride, fluorite, manganese carbonate, manganese (II) oxide, manganese (II, III) oxide, manganese (III) oxide, manganese (IV) oxide, manganese (VII) oxide, spalerite, strontianite, tenorite, zinc carbonate, zinc oxide, and any combination thereof.
- the size and shape of each of the mineral particles may be tailored so as to minimize separation of the mineral particles, which may lead to a wellbore fluid with a striated density profile.
- a first mineral particle with a discus or platelet shape may impede the settling of a second mineral particle that has a high settling or migration rate (e.g. , a higher specific gravity, spherical particle).
- At least some of the mineral particles described herein may, in some embodiments, be capable of being linked by linking agents. Linking of mineral particles may allow for increasing the viscosity of the wellbore fluid or forming a solid mass described further herein.
- the composition of the mineral particles described herein may determine if the mineral particles are suitable for being linked and to what degree they can be linked.
- linking agents suitable for use in conjunction with the wellbore additives and/or the wellbore fluids may, in some embodiments, include, but are not limited to, eugenol, guaiacol, methyl guaiacol, salicyladehyde, salicyladimine, salicylic acid, sodium salicylate, acetyl salicylic acid, methyl salicylic acid, methyl acetylsalicylic acid, anthranilic acid, acetyl anthranilic acid, vanillin, derivatized 1,2-dihydroxybenzene (catechol), derivatized or unsubstituted phthalic acid, ortho-phenylenediamine, ortho- aminophenol, ortho-hydroxyphenylacetic acid, alkylsilanes, esters, ethers, and the like, and any combination thereof.
- polymers of the foregoing examples, or suitable derivatives thereof may be used as linking agents.
- vinyl derivatives of the foregoing examples may be used in synthesizing a polymer or copolymer suitable for use as a linking agents.
- carboxylated derivates of the foregoing examples may be used in derivatizing a polyamine to yield suitable linking agents.
- Additional examples may include, but are not limited to, compounds (including polymers and lower molecular weight molecules) having at least two silane moieties, ester moieties, ether moieties, sulfide moieties, amine moieties, and the like, and any combination thereof.
- Viscosity increases from linking with linking agents may, in some embodiments, yield wellbore fluids that remain pumpable, wellbore fluids that are non-pumpable, or hardened masses.
- One skilled in the art with the benefit of this disclosure should understand that the extent of the viscosity increase may depend on, inter alia, the composition of the mineral particles described herein, the composition of the linking agents, the relative concentration of the mineral particles and the linking agents, intended use, additional components in the wellbore fluid, and any combination thereof.
- the increase in viscosity may yield a hardened mass.
- a hardened mass is used to indicate a composition that has transitioned from a liquid-state to a substantially solid- state, but does not imply a size or function of the hardened mass.
- a hardened mass may be a plug that spans cross-sectional area of the wellbore or a composition that has filled a crack in an existing hardened mass (e.g. , a cement sheath) and solidified .
- a hardened mass may be rigid or relatively pliable.
- such a hardened mass may be permeable (e.g. , 1 Da to about 100 mDa) or substantially non-permeable (e.g. , about 100 mDa or less).
- the wellbore additives and/or the wellbore fluids may comprise linking agents at an amount ranging from a lower limit of about 0.1%, 0.5%, or 1% by weight of the mineral particles to an upper limit of about 10%, 5%, or 1% by weight of the mineral particles.
- linking methods and compositions may utilize the mineral particles described herein that comprise at least one of Al 2 0 3 , AI 2 Si0 5 , BaC0 3 , BaO, BeO, (BiO) 2 C0 3 , Bi0 3 , Bi 2 0 3 , CaO, CaC0 3 , (Ca,Mg)C0 3 , CdS, CdTe, Ce 2 0 3 , (Fe,Mg)Cr 2 0 4 , Cr 2 0 3 , CuO, Cu 2 0, Cu 2 (As0 4 )(OH), CuSi0 3 ⁇ H 2 0, Fe 3 AI 2 (Si0 4 ) 3 , Fe 2+ Al 2 0 4 , Fe 2 Si0 4 , FeC0 3 , Fe 2 0 3 , a- Fe 2 0 3 , a-FeO(OH), Fe 3 0 4 , FeTi
- Mineral particles not suitable for linking may include, but are not limited to, CaF 2 , CuS, CuFeS 2 , FeS, FeS 2 , HgS, Hg 2 CI 2 , NiAs, NiAsS, PbS, and (Zn,Fe)S.
- the mineral particles described herein may advantageously have a higher unconfined compressive strength (e.g. , about 1200 psi or greater) that allow for load-bearing applications (e.g., proppant applications).
- the mineral particles described herein may advantageously have a moderate to high unconfined compressive strength (e.g. , about 500 psi or greater) that allow for implementation in applications like cements, wellbore strengthening additives, and gravel packs.
- the unconfined compressive strength of a mineral particle may depend on, inter alia, the composition of the mineral particle, the shape of the mineral particle, additional processing steps in producing the mineral particle (e.g., calcining after precipitation), and the like, and any combination thereof.
- such mineral particles may comprise at least one of CaC0 3 , (Ca, Mg)C0 3 , FeC0 3 , Fe 2 0 3 , a-Fe 2 0 3 , a-FeO(OH), Fe 3 0 4 , FeTi0 3 , (Fe,Mg)Si0 4 , MnO, Mn0 2 , Mn 2 0 3 , Mn 3 0 4 , Mn 2 0 7 , MnO(OH), (Mn 2+ , Mn 3+ ) 2 0 4 , calcium carbonate, hematite, siderite, magnetite, manganese dioxide, manganese (IV) oxide, manganese oxide, manganese tetraoxide, manganese (II) oxide, manganese (III) oxide, Al 2 0 3 , AI 2 Si0 5 , Ca F 2
- At least some of the mineral particles described herein may, in some embodiments, be at least partially degradable.
- the term “degradable” refers to a material being capable of reduced in size by heterogeneous degradation (or bulk erosion) and homogeneous degradation (or surface erosion), and any stage of degradation in between these two. This degradation can be a result of, inter alia, a chemical or thermal reaction, for example, dissolution by an acidic fluid.
- the composition of the mineral particles described herein may determine if the mineral particles are degradable and to what extent they are degradable.
- degradable mineral particles may comprise at least one of BaC0 3 , (BiO) 2 C0 3 , CaW0 4 , CaC0 3 , CuO, FeC0 3 , (Ce,La)C0 3 F, (Y,Ce)C0 3 F, PbC0 3 , (PbCI) 2 C0 3 , SrC0 3 , ZnC0 3 , aragonite, bastnaesite, barium carbonate, bismuth oxycarbonate, calcium carbonate, cerussite, copper oxide, manganese carbonate, phosgenite, rhodochrosite, scheelite, siderite, smithsonite, strontianite, witherite, zinc carbonate, and suitable combinations thereof.
- Examples of mineral particles described herein that may not be degradable may, in some embodiments, include, but are not limited to, mineral particles that comprise aluminum oxide, antimony sulfide, antimony tin oxide, antimony trioxide, bismuth (III) oxide, cadmium sulfide, cadmium telluride, copper, copper sulfide, ferrous sulfide, magnesium oxide, magnetite, manganese dioxide, pyrite, strontium oxide, zirconium silicate, zinc oxide, and any combination thereof.
- Degradation of the minerals described herein may advantageously be used in a plurality of wellbore operations, e.g., cleanup operations (e.g. , in removing a filter cake or plug from a lost circulation operation) and cementing operations (e.g. , in enhancing the permeability of a cement plug to allow for fluid to flow therethrough while still providing structural strength). Additionally, degradation may be advantageous in reducing the viscosity of a fluid by degrading mineral particles that contribute to the viscosity (e.g. , by shape and/or by linking).
- Examples of degradation agents that may be useful in at least partially degrading mineral particles described herein may, in some embodiments, include, but are not limited to, acid sources (e.g. , inorganic acids, organic acid, and polymers that degrade into acids like polylactic acid), alkaline sources (e.g. , bases), and oxidizers (e.g. , peroxide compounds, permanganate compounds, and hexavalent chromium compounds).
- acid sources e.g. , inorganic acids, organic acid, and polymers that degrade into acids like polylactic acid
- alkaline sources e.g. , bases
- oxidizers e.g. , peroxide compounds, permanganate compounds, and hexavalent chromium compounds.
- the mineral particles described herein may be chosen so as to degrade over a desired amount of time, which may be dependent on, inter alia, particle size, particle shape, wellbore temperature, and mineral particle composition.
- calcium carbonate rather than lead carbonate may be utilized, in some embodiments, when for faster degradation.
- manganese carbonate may, in some embodiments, be chosen for slower degradation in colder wellbore environments and faster degradation in hotter wellbore environments.
- the mineral particles described herein may be recovered from the wellbore fluids and/or wellbore additives and recycled for another use.
- the term “recovery” relative to mineral particles described herein encompasses collection of the mineral particles from the wellbore fluids and the physical or chemical portions thereof (e.g. , collecting mineral particles that have been partially degraded or collecting the chemicals resultant from degradation like salt or ions).
- the term “recycle” refers encompasses both using the mineral particles again without significant physical or chemical modification (e.g. , adding to another wellbore fluid after cleaning or applying a coating) and significantly changing the physical or chemical nature of the mineral particles (e.g. , melting, grinding to change the diameter distribution, dissolving and precipitating new mineral particles, and the like).
- some embodiments may involve recovering the mineral particles described herein so as to yield a recovered mineral product (e.g. , the mineral particles, the mineral particles partially degraded, and/or the degradation products of the mineral particles), optionally grading the recovered mineral product, and recycling the recovered mineral product.
- Recovery of mineral particles described herein may, in some embodiments, involve at least one of: filtering, magnetically extracting, centrifuging, sludging, chelating, linking, dissolving, chemically degrading, supercritical fluid extraction, and the like, and any combination thereof.
- the recovered mineral product may be used in another wellbore fluid and/or wellbore additive.
- recovery of the mineral particles described herein may involve degrading the mineral particles while they resided the wellbore and collecting the resultant fluid (i.e. , the recovered mineral product), which may, in some embodiments, be processed so as to concentrate of the chemicals resultant from the degradation.
- the resultant fluid i.e. , the recovered mineral product
- an acid may be used to degrade rhodochrosite that resides in the wellbore so as to yield a fluid that comprises manganese ions.
- Such a fluid depending on the additional components of the fluid, may then be concentrated, neutralized, and then used for precipitation of manganese carbonate mineral particles for use in additional wellbore operations.
- the recovered mineral product (e.g. , the mineral particles, the mineral particles partially degraded, and/or the degradation products of the mineral particles) may, in some embodiments, be in the solid form (e.g., a plurality of particles or a hardened mass), liquid form (e.g., a sludge, a slurry, or a low viscosity fluid), or the like.
- solid form e.g., a plurality of particles or a hardened mass
- liquid form e.g., a sludge, a slurry, or a low viscosity fluid
- the recovery methods and resultant recovered mineral product for each mineral particle described herein may, in some embodiments, depend on, inter alia, the composition of the mineral particles, the composition of the wellbore fluid and/or wellbore additive (e.g. , the additional components therein), the viscosity of the wellbore fluid, and the like, and any combination thereof.
- Recycling of the recovered mineral product described herein may, in some embodiments, involve using the recovered mineral product as-is (e.g. , producing a wellbore fluid described herein with the recovered mineral product), processing the recovered mineral product so as to yield mineral particles described herein for use of wellbore applications (e.g., grinding or precipitating to form mineral particles described herein), or using the recovered mineral product and methods and processes that produce other materials (e.g. , smelting to form steel, processing to extract precious metals, and the like).
- Recycling of a recovered mineral product described herein may, in some embodiments, be on-site or off-site.
- some embodiments may involve magnetically extracting mineral particles (e.g. , awaruite) on-site so as to yield a recovered mineral product and recycling recovered mineral product comprising the mineral particles into another wellbore fluid .
- some embodiments may involve degrading mineral particles (e.g., rhodochrosite or tenorite) into a recovered mineral product comprises the corresponding dissolved salts and recycling the recovered mineral product to yield precipitated mineral particles described herein, which may, in some embodiments, be performed on-site or at a suitable processing facility.
- Recycling the mineral particles described herein may, in some embodiments, involve grading of the recovered mineral product.
- grading refers to assessing the quality of the recovered mineral product relative to the desired recycling method . Grading may, in some embodiments, be achieved by gravimetry, atomic spectroscopy, mass spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, and the like.
- the recycling of the mineral particles described herein may involve methods that concentrates of the mineral particles (or components thereof) in the recovered mineral product, cleans the mineral particles (or components thereof) (e.g. , washing or burning away organic matter), and the like, each of which may be used to enhance the grading value of the recovered mineral product.
- the recovered mineral product may be burned to remove organic material, which may increase the grading value and, consequently, the intrinsic value of the recovered mineral product.
- Some of the mineral particles described herein may have other characteristics that may impart properties and/or capabilities to a wellbore fluid and/or wellbore additive described herein. These characteristics may advantageously be utilized to further reduce or eliminate additional components in wellbore fluids and/or wellbore additives without reducing or eliminating the properties and/or capabilities thereof.
- the antimicrobial properties of tenorite, copper oxide, and the like may advantageously allow for the weighting agent to also serve as, inter alia, an antimicrobial additive.
- Antimicrobial agents may be useful in maintaining a clean wellbore and mitigating microbial growth during transportation of a wellbore additive.
- the wellbore additives and/or the wellbore fluids may comprise mineral particles described herein having a median diameter of about 2 microns or less, a Mohs hardness of about 5 or less, and a specific gravity of about 2.6 or greater, including combination of any subset of the foregoing ranges (e.g. , mineral particles having a median diameter between about 250 nm and about 1 micron, a Mohs hardness of about 2 to about 4, and a specific gravity of about 5 to about 20) so as to provide for a wellbore fluid with a desired density, sag control, and abrasion mitigation .
- mineral particles described herein having a median diameter of about 2 microns or less, a Mohs hardness of about 5 or less, and a specific gravity of about 2.6 or greater, including combination of any subset of the foregoing ranges (e.g. , mineral particles having a median diameter between about 250 nm and about 1 micron, a Mohs hardness of about 2 to about 4,
- wellbore additives and/or wellbore fluids may be produced on-site, on-the-fly, or off-site. For example, if a well site is near a mine or facility that produced mineral particles described herein, the wellbore additives and/or wellbore fluids may be produced on-site.
- the wellbore fluid tailorability that the mineral particles described herein may further provide for on-the-fly modification of wellbore fluids so as to respond to the conditions of the wellbore and/or events that occur in the wellbore.
- the mineral particles described herein may be present in the wellbore fluid in an amount sufficient for a particular application .
- the mineral particles described herein may be present in a wellbore fluid in an amount up to about 70% by volume of the wellbore fluid (v %) (e.g., about 5%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, etc.) .
- the mineral particles described herein may be present in the wellbore fluid in an amount of 10 v % to about 40 v % .
- the wellbore additives may comprise the mineral particles described herein and optionally further comprise other particles and/or additional components suitable for use in a specific wellbore operation (e.g. , proppants and cement particles as described further herein) .
- Wellbore additives may, in some embodiments, be dry powder or gravel, a liquid with a high concentration of the mineral particles described herein (e.g. , a slurry), and the like.
- Distinctions between types of mineral particles may, in some embodiments, be defined by at least one of mineral composition, production method, average diameter, diameter distribution, presence or absence of coating, coating composition, and the like, and any combination thereof.
- achieving homogeneous mixtures of dry wellbore additives may be aided by inclusion of a dry lubricant to facilitate homogeneous mixing and flowability.
- dry lubricant may, in some embodiments, include, but are not limited to, molybdenum disulfide, graphite, boron nitride, tungsten disulfide, polytetrafluoroethylene particles, bismuth sulfide, bismuth oxychloride, and the like, and any combination thereof.
- a dry lubricant may advantageously have a specific gravity greater than about 2.6 (e.g. , molybdenum disulfide, tungsten disulfide, bismuth sulfide, and bismuth oxychloride) so as contribute to the density of the resultant wellbore fluid .
- Examples of base fluids suitable for use in conjunction with the wellbore fluids may, in some embodiments, include, but are not limited to, oil- based fluids, aqueous-based fluids, aqueous-miscible fluids, water-in-oil emulsions, or oil-in-water emulsions.
- Suitable oil-based fluids may include alkanes, olefins, aromatic organic compounds, cyclic alkanes, paraffins, diesel fluids, mineral oils, desulfurized hydrogenated kerosenes, and any combination thereof.
- Suitable aqueous-based fluids may include fresh water, saltwater (e.g.
- Suitable aqueous-miscible fluids may include, but not be limited to, alcohols, e.g., methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, and t-butanol; glycerins; glycols, e.g. , polyglycols, propylene glycol, and ethylene glycol; polyglycol amines; polyols; any derivative thereof; any in combination with salts, e.g.
- Suitable water-in-oil emulsions also known as invert emulsions, may have an oil-to-water ratio from a lower limit of greater than about 30 : 70, 40 : 60, 50 : 50, 55 :45, 60 :40, 65 : 35, 70 : 30, 75 : 25, or 80 : 20 to an upper limit of less than about 100 :0, 95 : 5, 90 : 10, 85 : 15, 80 : 20, 75 : 25, 70 : 30, or 65 : 35 by volume in the base fluid, where the amount may range from any lower limit to any upper limit and encompass any subset therebetween.
- suitable invert emulsions include those disclosed in U .S.
- the wellbore fluids described herein may be foamed.
- the term "foam” refers to a two-phase composition having a continuous liquid phase and a discontinuous gas phase.
- the wellbore fluids may comprise a base fluid, the mineral particles described herein, a gas, and a foaming agent.
- gases may include, but are not limited to, nitrogen, carbon dioxide, air, methane, helium, argon, and any combination thereof.
- gases may include, but are not limited to, nitrogen, carbon dioxide, air, methane, helium, argon, and any combination thereof.
- carbon dioxide foams may have deeper well capability than nitrogen foams because carbon dioxide emulsions have greater density than nitrogen gas foams so that the surface pumping pressure required to reach a corresponding depth is lower with carbon dioxide than with nitrogen .
- the higher density may impart greater particle transport capability, up to about 12 lb of particles per gal of wellbore fluid .
- the quality of a wellbore fluid that is foamed may range from a lower limit of about 5%, 10%, 25%, 40%, 50%, 60%, or 70% gas volume to an upper limit of about 95%, 90%, 80%, 75%, 60%, or 50% gas volume, and wherein the quality may range from any lower limit to any upper limit and encompasses any subset therebetween .
- the wellbore fluid that is foamed may have a foam quality from about 85% to about 95%, or about 90% to about 95%.
- foaming agents may include, but are not limited to, cationic foaming agents, anionic foaming agents, amphoteric foaming agents, nonionic foaming agents, or any combination thereof.
- suitable foaming agents may, in some embodiments, include, but are not limited to, surfactants like betaines, sulfated or sulfonated alkoxylates, alkyl quarternary amines, alkoxylated linear alcohols, alkyl sulfonates, alkyl aryl sulfonates, Cio- C 2 o alkyldiphenyl ether sulfonates, polyethylene glycols, ethers of alkylated phenol, sodium dodecylsulfate, alpha olefin sulfonates such as sodium dodecane sulfonate, trimethyl hexadecyl ammonium bromide, and the like, any derivative thereof, or any combination thereof.
- Foaming agents may include, but are not
- the wellbore additives and/or the wellbore fluids described herein may optionally further comprise additional components, e.g., filler particles, salts, inert solids, fluid loss control agents, emulsifiers, dispersion aids, corrosion inhibitors, emulsion thinners, emulsion thickeners, viscosifying agents, gelling agents, crosslinking agents, surfactants, cement particulates, proppants, gravel particulates, lost circulation materials, pH control additives, breakers, defoaming agents, biocides, stabilizers, scale inhibitors, gas hydrate inhibitors, oxidizers, reducers, friction reducers, clay stabilizing agents, set accelerators, set retarders, and combinations thereof.
- additional components e.g., filler particles, salts, inert solids, fluid loss control agents, emulsifiers, dispersion aids, corrosion inhibitors, emulsion thinners, emulsion thickeners, viscosifying agents, gelling agents, cross
- the wellbore additives and/or the wellbore fluids described herein may be used in a plurality of wellbore operations.
- Examples wellbore operations may, in some embodiments, include, but are not limited to, drilling operations, managed-pressure drilling operations, dual-gradient drilling, tripping operations, logging operations, lost circulation operations, stimulation operations, sand control operations, completion operations, acidizing operations, scale inhibiting operations, water-blocking operations, clay stabilizer operations, fracturing operations, gravel packing operations, wellbore strengthening operations, and sag control operations.
- the wellbore additives and/or the wellbore fluids described herein may, in some embodiments, be used in full-scale operations or pills.
- a "pill" is a type of relatively small volume of specially prepared wellbore fluid placed or circulated in the wellbore.
- the mineral particles described herein may be useful in a variety of wellbore fluids and/or wellbore additives.
- the wellbore fluid tailorability that the mineral particles described herein may, in some embodiments, be particularly advantageous in some wellbore operations, e.g., fracturing operations, cementing operations, and the like.
- the wellbore fluid tailorability may provide for on-the-fly modification of wellbore fluids so as to respond to the conditions of the wellbore and/or events that occur in the wellbore.
- Such conditions may be determined prior to introduction of the wellbore fluid into the wellbore (e.g., using logging information and lithological theory) and/or actually encountered during use of the wellbore fluid (e.g. , while circulating the wellbore fluid).
- An on-the-fly modification to at least one of the wellbore fluid properties or capabilities e.g. , through alteration to the identity or concentration of the mineral particles in the wellbore fluid
- can be made to optimize a wellbore operation e.g., encountering an unknown lost circulation or thief zone).
- Examples of wellbore operations that can employ the mineral particles and wellbore fluids described herein may, in some embodiments, include, but are not limited to, drilling operations, lost circulation operations, stimulation operations, sand control operations, completion operations, acidizing operations, scale inhibiting operations, water-blocking operations, clay stabilizer operations, fracturing operations, frac-packing operations, gravel packing operations, wellbore strengthening operations, and sag control operations.
- Some embodiments of the present invention may further include producing hydrocarbons from at least a portion of a subterranean formation, wherein the subterranean formation has been treated with a wellbore fluid described herein .
- hydrocarbons may be produced from the portion of the subterranean formation having been treated with a wellbore fluid described herein (e.g. , a fracturing fluid) or from a second portion of the subterranean formation having not been treated with the wellbore fluid (e.g., as described herein relative to a fluid flow control operation) .
- linkable mineral particle As used herein terms like “linkable mineral particle,” “degradable mineral particle,” and the like are used in examples to indicated at least one property of the mineral particle and do not necessarily preclude mineral particles with other properties, e.g. , a “linkable mineral particle” may also be degradable and recyclable or a “sag control mineral particle” may also be linkable and degradable.
- cementing operations refers to operations where a composition is placed in a wellbore and/or a subterranean formation and sets therein to form a hardened mass, which encompasses hydraulic cements, construction cements, linked mineral particles described herein, and some polymeric compositions that set (e.g. , polymers like epoxies and latexes).
- cementing operations may, in some embodiments, include, but are not limited to, primary cementing operations (e.g., forming cement sheaths in a wellbore annulus or forming wellbore plugs for zonal isolation or fluid diversion) and remedial cementing operations (e.g. , squeeze operations, repairing and/or sealing microannuli and/or cracks in a hardened mass, or forming plugs) .
- primary cementing operations e.g., forming cement sheaths in a wellbore annulus or forming wellbore plugs for zonal isolation or fluid diversion
- remedial cementing operations e.g. , squeeze operations, repairing and/or sealing microannuli and/or cracks in a hardened mass, or forming plugs
- cementing fluids sometimes referred to as settable compositions
- spacer fluids spacer fluids
- displacement fluids e.g., a plurality of fluids are often utilized including, but not limited to, cementing fluids (sometimes
- a cementing operation may utilize, in order, (1) a first spacer fluid, (2) a cementing fluid, optionally (3) a second spacer fluid, and (4) a displacement fluid, each of which may independently be a wellbore fluid comprising mineral particles described herein.
- cementing operations may utilize a plurality of fluids in order such that each subsequent fluid has a higher density than the previous fluid .
- Achieving the desired density for a wellbore fluid in a cementing operation may, in some embodiments, involve the use of mineral particles described herein. Further, as described herein, the mineral particles utilized in such wellbore fluids may be chosen to achieve other properties and/or capabilities in the wellbore fluids.
- each wellbore fluid may be independently designed with mineral particles described herein and do not necessarily require the use of the same mineral particle in each of the wellbore fluids or the use of a mineral particle described herein in all of the wellbore fluids.
- the first spacer fluid may include fluorite
- the cementing fluid may include manganese oxide
- the second spacer may include tenorite.
- cementing fluids, spacer fluids, and/or displacement fluids may comprise mineral particles described herein so as to achieve a desired density, a desired level of sag control, and/or a desired viscosity.
- linkable mineral particles may be included in the cementing fluids and utilized so as to yield hardened masses that comprise linked mineral particles.
- degradable mineral particles may be included in the cementing fluids and utilized so as to yield hardened masses that that can be at least partially degraded .
- mineral particles comprising rhodochrosite may be useful in cementing fluids to achieve a desired density and a desired level of sag control, to link in forming the hardened mass, and to degrade for increasing the permeability of the hardened mass.
- cementing operations may involve forming hardened masses that comprise at least one of: linked mineral particles described herein, cement particles, and any combination thereof.
- hardened mass refers to a composition that has transitioned from a liquid-state to a substantially solid-state and does not imply a size or function of the hardened mass.
- a hardened mass may be a plug that spans cross-sectional area of the wellbore or a composition that has filled a crack in an existing hardened mass (e.g. , a cement sheath) and solidified .
- wellbore fluids suitable for use in conjunction with cementing operations may comprise a base fluid and linkable mineral particles and optionally further comprise cement particles.
- the linking agents may be introduced into the wellbore in a preceding wellbore fluid, the same wellbore fluid, and/or a subsequent wellbore fluid as the settable composition .
- a first wellbore fluid that comprises linkable mineral particles described herein may be introduced into a wellbore and subsequently a second wellbore fluid that comprises the appropriate linking agents may be introduced into the wellbore so as to contact at least some of the linkable mineral particles in the first wellbore fluid .
- the linking agent should then link the mineral particles therein, thus forming a hardened mass comprising linked mineral particles.
- some embodiments may involve introducing a wellbore fluid that comprises a base fluid, suitable linkable mineral particles described herein, and suitable linking agents into a wellbore penetrating a subterranean formation and allowing the linking agents to link the linkable mineral particles so as to yield a hardened mass that comprises linked mineral particles.
- the amount of linkable mineral particles described herein included in wellbore fluids may depend on, inter alia, the composition and amount of the optional cement particles, the composition and amount of the optional additional components (e.g. , fillers described further herein), the composition of the mineral particles, the average diameter of the mineral particles, the diameter distribution of the mineral particles, the dimensions and volume of the set cement, and the like, and any combination thereof.
- the degradable mineral particles described herein may be included in wellbore fluids (e.g. , settable compositions) suitable for use in conjunction with cementing operations described herein so as to allow for changing the permeability of the hardened mass produced therefrom .
- degradation and/or dissolution of the mineral particles in a hardened mass may be achieved by exposing the hardened mass to an acidic treatment fluid, a treatment fluid comprising an acid source, a basic treatment fluid, an oxidizing treatment fluid, and the like.
- Change of the permeability of a hardened mass may be useful, in some embodiments, for converting a substantially impermeable hardened mass (e.g. , having a permeability less than about 10 "2 milliDarcy) that substantially blocks fluid flow to a permeable hardened mass that allow fluid to flow therethrough, for example, when alleviating zonal isolation from plugs and/or wellbore/subterranean formation separation from sheaths.
- the ability to convert a hardened mass from substantially impermeable to permeable may, in some embodiments, advantageously eliminate the need to drill out plugs or perforate sheaths in order to restore a desired level of permeability.
- wellbore fluids suitable for use in conjunction with cementing operations may comprise a base fluid, mineral particles described herein capable of linking, and mineral particles capable of degradation .
- wellbore fluids e.g. , settable compositions suitable for use in conjunction with cementing operations may comprise a base fluid, cement particles, and degradable mineral particles and optionally further comprise linkable mineral particles.
- the degradable mineral particles may also be linkable.
- the hardened mass after degradation and/or dissolution of the degradable mineral particles therein may have a permeability ranging from a lower limit of about 10 "1 milliDarcy ("m Da"), 1 m Da, or 10 m Da to an upper limit of about 1000 m Da, 100 m Da, or 10 m Da, and wherein the permeability may range from any lower limit to any upper limit and encompasses any subset therebetween .
- m Da milliDarcy
- the amount of degradable mineral particles described herein included in wellbore fluids (e.g. , settable compositions) suitable for use in conjunction with cementing operations so as to achieve hardened masses capable of changing permeability may depend on, inter alia, the composition and amount of the cement particles, the composition and amount of the optional additional components (e.g. , fillers described further herein), the composition of the degradable mineral particles, the average diameter of the degradable mineral particles, the diameter distribution of the degradable mineral particles, the dimensions of the set cement, and the like, and any combination thereof.
- the cementing operations described herein may involve the recovery and recycling the mineral particles described herein .
- the resultant fluid may be recovered and recycled according to any suitable recovery and recycling method described herein suitable for use in conjunction with the mineral particles utilized .
- a spacer fluid or displacement fluid utilizing mineral particles described herein may be recovered and recycled according to any suitable recovery and recycling method described herein suitable for use in conjunction with the mineral particles utilized .
- Base fluids suitable for use in conjunction with wellbore fluids suitable for use in conjunction with cementing operations may, in some embodiments, include any of the base fluids described herein in relation to wellbore fluids in general .
- the base fluid may preferably comprise water.
- wellbore fluids suitable for use in conjunction with cementing operations may be foamed as described herein in relation to wellbore fluids in general .
- the base fluid may be present in the wellbore fluids suitable for use in conjunction with cementing operations in an amount sufficient to form a pumpable slurry.
- the wellbore fluids suitable for use in conjunction with cementing operations may include base fluids in an amount ranging from a lower limit of about 30% by weight of cement ("bwoc"), 50% bwoc, or 100% bwoc to an upper limit of about 200% bwoc, 150% bwoc, or 100% bwoc, and wherein the amount may range from any lower limit to any upper limit and encompasses any subset therebetween .
- the term "by weight of cement” refers to by weight of the cement and/or linkable mineral particles.
- cement particles suitable for use in conjunction with the wellbore fluids and/or wellbore additives described herein may, in some embodiments, include, but are not limited to, hydraulic cements, Portland cement, gypsum cements, calcium phosphate cements, high alumina content cements, silica cements, high alkalinity cements, shale cements, acid/base cements, magnesia cements (e.g. , Sorel cements), fly ash cements, zeolite cement systems, cement kiln dust, slag cements, micro-fine cements, epoxies, bentonites, latexes, and the like, any derivative thereof, and any combination thereof.
- hydraulic cements Portland cement, gypsum cements, calcium phosphate cements, high alumina content cements, silica cements, high alkalinity cements, shale cements, acid/base cements, magnesia cements (e.g. , Sorel cements),
- the wellbore fluids and/or wellbore additives described herein suitable for use in conjunction with cementing operations may optionally further comprise additional components described herein in relation to wellbore fluids in general .
- additional components may, in some embodiments, include, but are not limited to, filler particles, salts, weighting agents, inert solids, fluid loss control agents, emulsifiers, dispersion aids, corrosion inhibitors, emulsion thinners, emulsion thickeners, viscosifying agents, gelling agents, crosslinking agents, surfactants, cement particulates, proppants, gravel particulates, lost circulation materials, pH control additives, breakers, defoaming agents, biocides, stabilizers, scale inhibitors, gas hydrate inhibitors, oxidizers, reducers, friction reducers, clay stabilizing agents, set accelerators, set retarders, and combinations thereof.
- the hardened masses, the wellbore fluids (e.g. , settable compositions), and/or wellbore additives described herein suitable for use in conjunction with cementing operations may optionally further comprise filler particles.
- Filler particles may, in some embodiments, be useful in tailoring the mechanical properties of the final set cement, e.g. , some polymers and rubbers may allow for hardened masses that are more pliable than hardened masses without such polymers and rubbers.
- filler particles suitable for use in conjunction with the wellbore fluids and/or wellbore additives described herein may, in some embodiments, include, but are not limited to, fly ash, fume silica, hydrated lime, pozzolanic materials, sand, barite, calcium carbonate, ground marble, iron oxide, manganese oxide, glass bead, crushed glass, crushed drill cutting, ground vehicle tire, crushed rock, ground asphalt, crushed concrete, crushed cement, ilmenite, hematite, silica flour, fume silica, fly ash, elastomers, polymers, diatomaceous earth, a highly swellable clay mineral, nitrogen, air, fibers, natural rubber, acrylate butadiene rubber, polyacrylate rubber, isoprene rubber, chloroprene rubber, butyl rubber, brominated butyl rubber, chlorinated butyl rubber, chlorinated polyethylene, neoprene rubber, styrene butadiene copolymer rubber
- the wellbore fluids and/or wellbore additives described herein suitable for use in conjunction with cementing operations may include filler particles in an amount ranging from a lower limit of about 5% bwoc, 10% bwoc, 25% bwoc, or 50% bwoc to an upper limit of about 150% bwoc, 100% bwoc, or 50% bwoc, and wherein the amount may range from any lower limit to any upper limit and encompasses any subset therebetween .
- the wellbore additives and/or the wellbore fluids described herein may be used in fracturing operations. Fracturing operations, in some embodiments, may involve introducing a first wellbore fluid (e.g. , pad fluid) into a subterranean formation at a pressures sufficient to create or extend at least one fracture in the subterranean formation and introducing a second wellbore fluid (e.g., a proppant slurry) into the subterranean formation so as to create a proppant pack in the at least one fracture.
- a "proppant pack" refers to a collection of proppant particles in a fracture.
- proppant mineral particles described herein may, in some embodiments, allow for tailoring a proppant slurry to have a desired density with proppant mineral particles also being useful as proppant particles, thereby reducing the need for additional weighting agent and/or traditional proppant particles (and associated costs) to achieve substantially the same result.
- the proppant mineral particles described herein may optionally be used in fracturing operations in combination with traditional proppant particles.
- Examples of traditional proppant particles that may be suitable for use in conjunction with the mineral particles described herein may, in some embodiments, include, but are not limited to, sand, glass materials, polymer materials, polytetrafluoroethylene materials, nut shell pieces, cured resinous particulates comprising nut shell pieces, seed shell pieces, cured resinous particulates comprising seed shell pieces, fruit pit pieces, cured resinous particulates comprising fruit pit pieces, wood, composite particulates (e.g.
- particulates that may comprise a binder and a filler material wherein suitable filler materials include silica, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, and any combination thereof), and the like, and any combination thereof.
- the proppant mineral particles described herein and/or traditional proppant particles used in conjunction with fracturing operations generally may have a median diameter ranging from a lower limit of about 350 microns, 500 microns, or 1 mm to an upper limit of about 15 mm, 10 mm, or 5 mm, and wherein the median diameter may range from any lower limit to any upper limit and encompasses any subset therebetween . It should be understood that fibrous materials, that may or may not be used to bear the pressure of a closed fracture, may be included in certain embodiments of the present invention .
- the proppant mineral particles optionally in combination with the traditional proppant particles may be included in the proppant slurries in an amount in the range of from about 0.5 pounds per gallon ("ppg") to about 30 ppg of total proppant content by volume of the fracturing fluid, and encompass any subset therebetween .
- ppg pounds per gallon
- the proppant mineral particles described herein may further be useful for imparting the properties and/or capabilities described herein in relation to wellbore fluids in general (e.g. , density, viscosity, sag control, degradation, and the like) to the wellbore fluids suitable for use in conjunction with fracturing operations.
- wellbore fluids in general (e.g. , density, viscosity, sag control, degradation, and the like) to the wellbore fluids suitable for use in conjunction with fracturing operations.
- Some embodiments may involve exploiting the degradability of some of the proppant mineral particles described herein to change the permeability of a proppant pack. For example, some embodiments may involve introducing a first wellbore fluid into at least a portion of a subterranean formation at a pressure sufficient to create or extend at least one fracture in the subterranean formation; introducing a second wellbore fluid that comprises a base fluid, a degradable mineral particles described herein suitable for use as a proppant, and proppant particles (e.g.
- the mineral particles described herein may be less suitable for use as proppant particles and may be utilized in conjunction with fracturing operations so as to achieve any combination of the properties and/or capabilities described herein in relation to wellbore fluids in general (e.g. , density, viscosity, sag control, degradation, and the like) .
- mineral particles comprising bismuth oxychloride may be useful in achieving a desired density and sag control for wellbore fluids suitable for use in conjunction with fracturing operations.
- a proppant slurry may, in some embodiments, comprise a base fluid, traditional proppant particles, and mineral particles that have a suitable diameter distribution to mitigate sag of the traditional proppant particles (e.g. , a median diameter of about 2 microns or less) at a concentration to achieve a desired density of the wellbore fluid .
- such mineral particles may, depending on the composition, also be degradable (e.g., manganese carbonate or tenorite), applicable as proppants (e.g. , manganese carbonate or awaruite), linkable (e.g. , manganese carbonate or tenorite), or any combination thereof, thereby allowing for other characteristics of the proppant slurry to be tailored for the conditions encountered in the wellbore and/or subterranean formation .
- the fracturing operations described herein may involve the recovery and recycling the mineral particles described herein .
- the resultant fluid may be recovered and recycled according to any suitable recovery and recycling method described herein suitable for use in conjunction with the mineral particles utilized .
- Base fluids suitable for use in conjunction with wellbore fluids described herein suitable for use in conjunction with fracturing operations may, in some embodiments, include any of the base fluids described above in relation to wellbore fluids in general.
- wellbore fluids described herein suitable for use in conjunction with fracturing operations may be foamed as described above in relation to wellbore fluids in general .
- the wellbore fluids and/or wellbore additives described herein suitable for use in conjunction with fracturing operations may optionally further comprise additional components described herein in relation to wellbore fluids in general .
- additional components may, in some embodiments, include, but are not limited to, filler particles, salts, weighting agents, inert solids, fluid loss control agents, emulsifiers, dispersion aids, corrosion inhibitors, emulsion thinners, emulsion thickeners, viscosifying agents, gelling agents, crosslinking agents, surfactants, cement particulates, proppants, gravel particulates, lost circulation materials, pH control additives, breakers, defoaming agents, biocides, stabilizers, scale inhibitors, gas hydrate inhibitors, oxidizers, reducers, friction reducers, clay stabilizing agents, set accelerators, set retarders, and combinations thereof.
- the mineral particles described herein may be useful in fluid flow control between a wellbore and the surrounding subterranean formation. Controlling the flow of fluids between the wellbore and the subterranean formation can be especially important for, inter alia, maintaining the proper wellbore pressure (e.g. , to mitigate blowouts), minimize loss of wellbore fluids (often expensive wellbore fluids) into the subterranean formation, ensure proper placement of a wellbore fluids (e.g., fluids comprising proppants), and the like.
- a wellbore fluids e.g., fluids comprising proppants
- fluid flow control may be achieved by at least one of the following mechanisms: bridging a fracture, reducing or blocking formation permeability, providing fluid loss control, sealing a rock surface, sealing a thief zone, enabling fluid diversion, plugging a void, controlling water production, and any combination thereof within the subterranean formation.
- pores, voids, high-permeability porosity, and the like may be found in a subterranean formation, e.g., in conjunction with a gravel pack within the wellbore, a borehole surface within the wellbore, a proppant pack within a subterranean formation, rock faces within a subterranean formation (including in fractures, microfractures, and the like), high permeability channels, and the like, and any combination thereof.
- occurrences e.g. , fluid loss or fluid diversion
- Fluid loss may be problematic in any number of subterranean operations, including drilling operations, fracturing operations, acidizing operations, gravel-packing operations, wellbore clean-out operations, produced water reduction or elimination, and the like.
- fracturing operations for example, fluid loss into the formation may result in a reduction in fluid efficiency, such that the fracturing fluid cannot propagate fracture formation as desired .
- the wellbore fluids described herein may, in some embodiments, lower the volume of a filtrate that passes through a filter medium . That is, the wellbore fluids described herein (e.g.
- the mineral particles, the mineral particles in combination with additional fluid components, and/or linked mineral particles may block the pore throats and spaces that would otherwise allow a fluid to leak out of a desired zone and into an undesired zone.
- the wellbore fluids described herein e.g. , the mineral particles, the mineral particles in combination with additional fluid components, and/or linked mineral particles
- Fluid diversion is a similar approach to fluid loss control but strives for a somewhat different approach where a portion of the subterranean formation is sealed off or rendered less permeable.
- a volume of a wellbore fluid may be pumped into the high permeability portion of the formation to partially or completely seal off that portion from subsequent fluid penetration .
- a wellbore fluid When being placed, a wellbore fluid will flow most readily into the portion of the formation having the largest pores, fissures, or vugs and, in some embodiments, deposit the mineral particles therein, until that portion is bridged and sealed, thus diverting the remaining and/or subsequent fluid to the next most permeable portion of the formation .
- Some embodiments may involve introducing a first wellbore fluid comprising the mineral particles described herein into a subterranean formation; allowing the first wellbore fluid to penetrate into a portion of the subterranean formation in a sufficient amount so as to provide fluid flow control (e.g., sealing, bridging, plugging, diversion, and the like) within a first portion of the subterranean formation; and introducing a second wellbore fluid (e.g. , a pad fluid, a proppant slurry, a cementing fluid, or the like) into the subterranean formation such that the first wellbore fluid at least substantially blocks the second wellbore fluid from entering the first portion of the subterranean formation (e.g. , an area of fluid flow control that comprises the mineral particles).
- fluid flow control e.g., sealing, bridging, plugging, diversion, and the like
- Providing fluid flow control may, in some embodiments, be achieved with high density fluids (e.g. , the first wellbore fluid having a higher density than the second wellbore fluid), viscosifying fluids optionally through the mineral particle linking (e.g., the first wellbore fluid having a higher viscosity than the second wellbore fluid), forming hardened masses (e.g. , with the first wellbore fluid), and any combination thereof.
- high density fluids e.g. , the first wellbore fluid having a higher density than the second wellbore fluid
- viscosifying fluids optionally through the mineral particle linking e.g., the first wellbore fluid having a higher viscosity than the second wellbore fluid
- forming hardened masses e.g. , with the first wellbore fluid
- the mineral particles described herein may be utilized in the first and/or the second wellbore fluids so as to achieve conditions that allow for fluid flow control operations.
- the first wellbore fluid may comprise first mineral particles (e.g. , comprising awaruite and/or tenorite) in a sufficient amount to yield the desired density that is higher than the second wellbore fluid .
- the second wellbore fluid may be useful in other operations like fracturing operations or cementing operations.
- the mineral particles described herein may be utilized for achieving a desired viscosity so as to allow for fluid flow control operations.
- the mineral particles described herein suitable for use in conjunction with fluid flow control operations may be linked before, after, and/or during placement in the portion of the subterranean formation where fluid flow control is desired .
- some embodiments may involve a wellbore fluid comprising the mineral particles described herein may be introduced into a subterranean formation so as to penetrate a portion of the subterranean formation; and contacting the wellbore fluid with a linking agent so as to increase the viscosity of the wellbore fluid .
- contacting the wellbore fluid with a linking agent may yield a hardened mass as described further herein .
- some embodiments may involve treating an area of fluid flow control within a subterranean formation with a wellbore fluid comprising a degradation agent so as to degrade and/or dissolve at least a portion of the mineral particles described herein in the area of fluid flow control .
- some embodiments may involve introducing a first wellbore fluid comprising the mineral particles described herein capable of linking and linking agents into a wellbore so as to incorporate the first wellbore fluid into a gravel pack within the wellbore; introducing a second wellbore fluid into the wellbore such that the first wellbore fluid at least substantially blocks the second wellbore fluid from passing through the gravel pack; and contacting the first wellbore fluid with a third wellbore fluid comprising a degradation agent so as to at least partially degrade the mineral particles, thereby increasing the permeability of the gravel pack.
- the fluid flow control operations described herein may involve the recovery and recycling the mineral particles described herein .
- the resultant fluid may be recovered and recycled according to any suitable recovery and recycling method described herein suitable for use in conjunction with the mineral particles utilized .
- Base fluids suitable for use in conjunction with wellbore fluids suitable for use in conjunction with fluid flow control operations may, in some embodiments, include any of the base fluids described herein in relation to wellbore fluids in general .
- wellbore fluids suitable for use in conjunction with fluid flow control operations may be foamed as described herein in relation to wellbore fluids in general .
- the wellbore fluids and/or wellbore additives described herein suitable for use in conjunction with fluid flow control operations may optionally further comprise additional components described herein in relation to wellbore fluids in general .
- additional components may, in some embodiments, include, but are not limited to, filler particles, salts, weighting agents, inert solids, fluid loss control agents, emulsifiers, dispersion aids, corrosion inhibitors, emulsion thinners, emulsion thickeners, viscosifying agents, gelling agents, crosslinking agents, surfactants, cement particulates, proppants, gravel particulates, lost circulation materials, pH control additives, breakers, defoaming agents, biocides, stabilizers, scale inhibitors, gas hydrate inhibitors, oxidizers, reducers, friction reducers, clay stabilizing agents, set accelerators, set retarders, and combinations thereof. Ill.d. Drilling
- the mineral particles described herein may be useful in drilling operations. Some embodiments may involve drilling a wellbore penetrating a subterranean formation with a wellbore fluid that comprises mineral particles described herein . In some embodiments, the mineral particles described herein may be useful in at least one of: suspending wellbore cuttings (e.g. , by contributing to the fluid viscosity and/or sag control), maintaining wellbore pressure (e.g. , by contributing to sag control), incorporating into filter cakes that provide fluid loss control, and the like. Further, mineral particles described herein may be chosen to mitigate abrasion of wellbore tools utilized during drilling .
- Some embodiments may involve forming a filter cake that comprises mineral particles described herein (optionally linked) in a wellbore so as to provide fluid loss control . Some embodiments may involve cleaning up the filter cake by contacting the filter cake with a degradation agent so as to dissolve degradable mineral particles incorporated therein .
- the fluid flow control operations described herein may involve the recovery and recycling the mineral particles described herein .
- the resultant fluid may be recovered and recycled according to any suitable recovery and recycling method described herein suitable for use in conjunction with the mineral particles utilized .
- Base fluids suitable for use in conjunction with wellbore fluids suitable for use in conjunction with drilling operations may, in some embodiments, include any of the base fluids described herein in relation to wellbore fluids in general .
- wellbore fluids suitable for use in conjunction with drilling operations may be foamed as described herein in relation to wellbore fluids in general .
- the wellbore fluids and/or wellbore additives described herein suitable for use in conjunction with drilling operations may optionally further comprise additional components described herein in relation to wellbore fluids in general .
- additional components may, in some embodiments, include, but are not limited to, filler particles, salts, weighting agents, inert solids, fluid loss control agents, emulsifiers, dispersion aids, corrosion inhibitors, emulsion thinners, emulsion thickeners, viscosifying agents, gelling agents, crosslinking agents, surfactants, cement particulates, proppants, gravel particulates, lost circulation materials, pH control additives, breakers, defoaming agents, biocides, stabilizers, scale inhibitors, gas hydrate inhibitors, oxidizers, reducers, friction reducers, clay stabilizing agents, set accelerators, set retarders, and combinations thereof. Ill.e. On-The-Fly
- the mineral particles described herein may allow for on-the-fly modifications of wellbore fluid properties and capabilities.
- the conditions encountered in the wellbore and/or subterranean formation may necessitate changing the properties and/or characteristics of the wellbore fluid on-the-fly (e.g. , density, viscosity, level of sag, and the like) .
- On-the-fly modifications may, in some embodiments, include, but are not limited to, changing the concentration of the mineral particles in the wellbore fluid, changing the type of mineral particles in the wellbore fluid (e.g.
- a wellbore fluid utilizing two mineral particles with different specific gravities may increase the relative concentration of the higher specific gravity particle to achieve a higher density fluid .
- Adjusting the density of the wellbore fluid may, in some embodiments, be useful when drilling a wellbore so as to maintain the bottom hole pressure at a level that mitigates damage to the subterranean formation (e.g. , minimizes fracturing and leak-off) while maintaining a high enough pressure to minimize subterranean fluids from entering the wellbore.
- the density of the wellbore fluid can be reduced on-the-fly with the addition of a degradation agent to degrade a mineral particle (e.g. , tenorite, awaruite, rhodochrosite, or the like) . Similar to above such a change may be used to mitigate wellbore damage while drilling .
- a degradation agent e.g. , tenorite, awaruite, rhodochrosite, or the like. Similar to above such a change may be used to mitigate wellbore damage while drilling .
- the viscosity of a wellbore fluid utilizing a linkable mineral particle may be changed on-the-fly with the addition of linking agents for an increase or the addition of a degradation agent for a decrease.
- the viscosity of the wellbore fluid may, at least in part, assist in suspending cuttings and bringing them to the surface.
- the on-the-fly modification of the viscosity may assist in enhancing the efficacy while minimizing the energy use and cost associated with drilling .
- Embodiments disclosed herein include (exemplary embodiment A) a method that comprises introducing a wellbore fluid having a density of about 7 ppg to about 50 ppg into a wellbore penetrating a subterranean formation, the wellbore fluid comprising a base fluid and a plurality of mineral particles, and the wellbore fluid having a first viscosity; contacting at least some of the mineral particles with a linking agent so as to link the at least some of the mineral particles, thereby increasing the first viscosity to a second viscosity.
- such embodiments may optionally further include at least one element of: Element 1 : wherein the mineral particles have a specific gravity of about 5.5 to about 20; Element 2 : wherein the wellbore fluid further comprises a plurality of second mineral particles; and wherein the mineral particles and the second mineral particles have a multiparticle specific gravity of about 3 to about 20; Element 3 : wherein the mineral particles have been formed by a precipitation method; Element 4 : wherein the mineral particle is at least partially degradable; Element 5 : the method further comprising contacting the wellbore fluid at the second viscosity with a second wellbore fluid comprising a degradation agent; Element 6 : wherein the mineral particles comprise at least one selected from the group consisting of Al 2 0 3 , AI 2 Si0 5 , BaC0 3 , BaO, BeO, (BiO) 2 C0 3 , Bi0 3 , Bi 2 0 3 , CaO, CaC0 3 , (Ca, Mg)C0 3 ,
- the foregoing elements may be in any combination. Exemplary combinations may include, but are not limited to : Element 1 in combination with at least one of Elements 2-5; Element 7 with at least one of Elements 1-5; Element 6 in combination with any of the foregoing; and so on.
- Embodiments disclosed herein include (exemplary embodiment B) a method that comprises introducing a wellbore fluid having a density of about 7 ppg to about 50 ppg into a wellbore penetrating a subterranean formation, the wellbore fluid comprising a base fluid and a plurality of mineral particles, and the wellbore fluid having a first viscosity; and linking the mineral particles with a linking agent so as to yield a second viscosity that is greater than the first viscosity in the wellbore fluid, the wellbore fluid at the second viscosity thereby achieving at least one selected from the group consisting of bridging a fracture, reducing or blocking formation permeability, providing fluid loss control, sealing a rock surface, enabling fluid diversion, plugging a void, controlling water production, and any combination thereof within a first portion of the subterranean formation.
- such embodiments may optionally further include at least one element of: Element 1 : the method further comprising introducing a second wellbore fluid into a second portion of the subterranean formation such that the second wellbore fluid is diverted from the first portion of the subterranean formation; Element 2 : wherein the mineral particle is at least partially degradable; Element 3 : wherein the mineral particle is at least partially degradable, and wherein the method further comprises contacting the wellbore fluid at the second viscosity with a third wellbore fluid comprising a degradation agent; Element 4: wherein the mineral particles have a specific gravity of about 5.5 to about 20; Element 5 : wherein the wellbore fluid further comprises a plurality of second mineral particles; and wherein the mineral particles and the second mineral particles have a multiparticle specific gravity of about 3 to about 20; Element 6: wherein the mineral particle comprises at least one selected from the group consisting of Al 2 0 3 , AI 2 Si0 5 , BaC0 3 ,
- the foregoing elements may be in any combination. Exemplary combinations may include, but are not limited to : Element 1 in combination with at least one of Elements 2-5; a combination of at least two of Element 2, 4, and 5; Element 6 in combination with any of the foregoing; Element 7 in combination with any of the foregoing; and so on.
- Embodiments disclosed herein include (exemplary embodiment C) a method that comprises introducing a wellbore fluid having a density of about 7 ppg to about 50 ppg into a wellbore penetrating a subterranean formation, the wellbore fluid comprising a base fluid and a plurality of mineral particles; and contacting at least some of the mineral particles with a linking agent so as to link the at least some of the mineral particles into a hardened mass, thereby forming a plug in the wellbore.
- such embodiments may optionally further include at least one element of: Element 1 : wherein the mineral particles have an unconfined compressive strength of about 500 psi or greater; Element 2 : wherein the mineral particles are at least partially degradable; Element 3 : wherein the mineral particles are at least partially degradable, and wherein the method further comprises contacting the hardened mass with a second wellbore fluid comprising a degradation agent; Element 4 : wherein the mineral particles have a specific gravity of about 5.5 to about 20; Element 5 : wherein the wellbore fluid further comprises a plurality of second mineral particles; and wherein the mineral particles and the second mineral particles have a multiparticle specific gravity of about 3 to about 20; Element 6; wherein the mineral particle comprises at least one selected from the group consisting of Al 2 0 3 , AI 2 Si0 5 , BaC0 3 , BaO, BeO, (BiO) 2 C0 3 , Bi0 3 , Bi 2 0 3 , CaO, CaC0 3
- the foregoing elements may be in any combination. Exemplary combinations may include, but are not limited to : Element 1 in combination with at least one of Elements 2-5; a combination of at least two of Element 2, 4, and 5; a combination of at least two of Element 1, 2, and 4; Element 6 in combination with any of the foregoing; Element 7 in combination with any of the foregoing; and so on .
- the exemplary mineral particles and related fluids disclosed herein may directly or indirectly affect one or more components or pieces of equipment associated with the preparation, delivery, recapture, recycling, reuse, and/or disposal of the disclosed mineral particles and related fluids.
- the disclosed mineral particles and related fluids may directly or indirectly affect one or more components or pieces of equipment associated with an exemplary wellbore drilling assembly 300, according to one or more embodiments.
- Figure 3 generally depicts a land-based drilling assembly, those skilled in the art will readily recognize that the principles described herein are equally applicable to subsea drilling operations that employ floating or sea-based platforms and rigs, without departing from the scope of the disclosure.
- the drilling assembly 300 may include a drilling platform 302 that supports a derrick 304 having a traveling block 306 for raising and lowering a drill string 308.
- the drill string 308 may include, but is not limited to, drill pipe and coiled tubing, as generally known to those skilled in the art.
- a kelly 310 supports the drill string 308 as it is lowered through a rotary table 312.
- a drill bit 314 is attached to the distal end of the drill string 308 and is driven either by a downhole motor and/or via rotation of the drill string 308 from the well surface. As the bit 314 rotates, it creates a wellbore 316 that penetrates various subterranean formations 318.
- a pump 320 (e.g. , a mud pump) circulates drilling fluid 322
- a drilling fluid comprising the mineral particles described herein
- a feed pipe 324 conveys the drilling fluid 322 downhole through the interior of the drill string 308 and through one or more orifices in the drill bit 314.
- the drilling fluid 322 is then circulated back to the surface via an annulus 326 defined between the drill string 308 and the walls of the wellbore 316.
- the recirculated or spent drilling fluid 322 exits the annulus 326 and may be conveyed to one or more fluid processing unit(s) 328 via an interconnecting flow line 330.
- a "cleaned" drilling fluid 322 is deposited into a nearby retention pit 332 (i. e. , a mud pit) . While illustrated as being arranged at the outlet of the wellbore 316 via the annulus 326, those skilled in the art will readily appreciate that the fluid processing unit(s) 328 may be arranged at any other location in the drilling assembly 300 to facilitate its proper function, without departing from the scope of the disclosure.
- One or more of the disclosed mineral particles may be added to the drilling fluid 322 via a mixing hopper 334 communicably coupled to or otherwise in fluid communication with the retention pit 332.
- the mixing hopper 334 may include, but is not limited to, mixers and related mixing equipment known to those skilled in the art.
- the disclosed mineral particles may be added to the drilling fluid 322 at any other location in the drilling assembly 300.
- the retention put 332 may be representative of one or more fluid storage facilities and/or units where the disclosed mineral particles may be stored, reconditioned, and/or regulated until added to the drilling fluid 322.
- the disclosed mineral particles and related fluids may directly or indirectly affect the components and equipment of the drilling assembly 300.
- the disclosed mineral particles and related fluids may directly or indirectly affect the fluid processing unit(s) 328 which may include, but is not limited to, one or more of a shaker (e.g. , shale shaker), a centrifuge, a hydrocyclone, a separator (including magnetic and electrical separators), a desilter, a desander, a separator, a filter (e.g. , diatomaceous earth filters), a heat exchanger, any fluid reclamation equipment.
- the fluid processing unit(s) 328 may further include one or more sensors, gauges, pumps, compressors, and the like used to store, monitor, regulate, and/or recondition the exemplary mineral particles and related fluids.
- the disclosed mineral particles and related fluids may directly or indirectly affect the pump 320, which representatively includes any conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically convey the mineral particles and related fluids downhole, with pumps, compressors, or motors (e.g. , topside or downhole) used to drive the mineral particles and related fluids into motion, any valves or related joints used to regulate the pressure or flow rate of the mineral particles and related fluids, and any sensors (i.e. , pressure, temperature, flow rate, etc.), gauges, and/or combinations thereof, and the like.
- the disclosed mineral particles and related fluids may also directly or indirectly affect the mixing hopper 334 and the retention pit 332 and their assorted va nations.
- the disclosed mineral particles and related fluids may also directly or indirectly affect the various downhole equipment and tools that may come into contact with the mineral particles and related fluids such as, but not limited to, the drill string 308, any floats, drill collars, mud motors, downhole motors and/or pumps associated with the drill string 308, and any MWD/LWD tools and related telemetry equipment, sensors or distributed sensors associated with the drill string 308.
- the disclosed mineral particles and related fluids may also directly or indirectly affect any downhole heat exchangers, valves and corresponding actuation devices, tool seals, packers and other wellbore isolation devices or components, and the like associated with the wellbore 316.
- the disclosed mineral particles and related fluids may also directly or indirectly affect the drill bit 314, which may include, but is not limited to, roller cone bits, PDC bits, natural diamond bits, any hole openers, reamers, coring bits, etc.
- the disclosed mineral particles and related fluids may also directly or indirectly affect any transport or delivery equipment used to convey the mineral particles and related fluids to the drilling assembly 300 such as, for example, any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically move the mineral particles and related fluids from one location to another, any pumps, compressors, or motors used to drive the mineral particles and related fluids into motion, any valves or related joints used to regulate the pressure or flow rate of the mineral particles and related fluids, and any sensors (i. e. , pressure and temperature), gauges, and/or combinations thereof, and the like.
- any transport or delivery equipment used to convey the mineral particles and related fluids to the drilling assembly 300 such as, for example, any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically move the mineral particles and related fluids from one location to another, any pumps, compressors, or motors used to drive the mineral particles and related fluids into motion, any valves or related joints used to regulate the pressure or flow rate of
- drilling assembly 300 While not specifically illustrated herein, one of ordinary skill in the art should recognize the modifications to drilling assembly 300 to allow for performing other operations described herein including, but not limited to, cementing operations, fracturing operations, and fluid flow control operations.
- a wellbore drilling assembly may comprise a pump in fluid communication with a wellbore via a feed pipe; and a wellbore fluid described herein disposed in at least one selected from the group consisting of the pump, the feed pipe, the wellbore, and any combination thereof.
- a wellbore drilling assembly may comprise a pump in fluid communication with a wellbore via a feed pipe; a drill string with drill bit attached to the distal end of the drill string; and a wellbore fluid described herein in contact with the drill bit.
- a wellbore drilling assembly may comprise a pump capable of introducing a fluid into a wellbore via a feed pipe; a fluid processing unit capable of receiving the fluid from a wellbore via an interconnecting flow line; and a wellbore fluid described herein disposed in at least one selected from the group consisting of the pump, the feed pipe, the wellbore, the interconnecting flow line, the fluid processing unit, and any combination thereof.
- a wellbore drilling assembly may comprise a pump capable of introducing a fluid into a wellbore via a feed pipe; a mixing hopper upstream of the pump; and a wellbore fluid described herein disposed in at least one selected from the group consisting of the pump, the feed pipe, the wellbore, and any combination thereof.
- the mixing hopper may be useful, in some embodiments, for implementing on-the-fly changes to the wellbore fluids described herein .
- suitable wellbore fluids described herein may include, but are not limited to,
- a wellbore fluid comprising a base fluid, a plurality of first mineral particles, and a plurality of second mineral particles such that the first mineral particles and the second mineral particles have a multiparticle specific gravity of about 3 to about 20;
- any of the wellbore fluids described in exemplary embodiments A-C optionally including at least one the corresponding elements relating to the wellbore fluid.
- compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit to an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Cosmetics (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1516545.9A GB2529077A (en) | 2013-05-21 | 2014-03-03 | Wellbore fluids comprising mineral particles and methods relating thereto |
CA2907634A CA2907634A1 (en) | 2013-05-21 | 2014-03-03 | Wellbore fluids comprising mineral particles and methods relating thereto |
AU2014269066A AU2014269066B2 (en) | 2013-05-21 | 2014-03-03 | Wellbore fluids comprising mineral particles and methods relating thereto |
NO20151210A NO20151210A1 (en) | 2013-05-21 | 2015-09-17 | Wellbore fluids comprising mineral particles and methods related thereto |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/898,768 | 2013-05-21 | ||
US13/898,768 US20140209391A1 (en) | 2013-01-29 | 2013-05-21 | Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014189585A1 true WO2014189585A1 (en) | 2014-11-27 |
Family
ID=51933935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/019845 WO2014189585A1 (en) | 2013-05-21 | 2014-03-03 | Wellbore fluids comprising mineral particles and methods relating thereto |
Country Status (5)
Country | Link |
---|---|
AU (1) | AU2014269066B2 (en) |
CA (1) | CA2907634A1 (en) |
GB (1) | GB2529077A (en) |
NO (1) | NO20151210A1 (en) |
WO (1) | WO2014189585A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105985126A (en) * | 2015-12-31 | 2016-10-05 | 芜湖市创源新材料有限公司 | Ceramic lining material capable of improving antioxidation performance |
CN105985108A (en) * | 2015-12-31 | 2016-10-05 | 芜湖市创源新材料有限公司 | Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994028086A1 (en) * | 1993-05-21 | 1994-12-08 | Union Oil Company Of California | White mineral oil-based drilling fluid |
WO2005106197A1 (en) * | 2004-05-05 | 2005-11-10 | Halliburton Energy Services, Inc. | Gelled invert emulsion compositions and methods of use and manufacture |
WO2010126925A2 (en) * | 2009-04-29 | 2010-11-04 | M-I L.L.C. | Wellbore fluids employing sacrificial viscosifiers |
US20120048548A1 (en) * | 2007-05-30 | 2012-03-01 | Baker Hughes Incorporated | Use of Nano-Sized Phyllosilicate Minerals in Viscoelastic Surfactant Fluids |
US20120211227A1 (en) * | 2007-05-10 | 2012-08-23 | Halliburton Energy Services, Inc. | Well Treatment Compositions and Methods Utilizing Nano-Particles |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3164215A (en) * | 1961-04-26 | 1965-01-05 | Howard L Johnson | Retractable drill bit and associated structures |
CO6030030A1 (en) * | 2007-05-23 | 2009-04-30 | Mi Llc | USE OF REVERSE EPOXIC EMULSIONS FOR WELL HOLE STABILIZATION |
US7762329B1 (en) * | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
RU2724060C2 (en) * | 2009-07-09 | 2020-06-19 | ТЕХАС ЮНАЙТЕД КЕМИКАЛ КОМПАНИ, ЭлЭлСи | Ultra-high-viscosity tampons and methods of their use in drilling system of oil wells |
-
2014
- 2014-03-03 WO PCT/US2014/019845 patent/WO2014189585A1/en active Application Filing
- 2014-03-03 CA CA2907634A patent/CA2907634A1/en not_active Abandoned
- 2014-03-03 AU AU2014269066A patent/AU2014269066B2/en not_active Ceased
- 2014-03-03 GB GB1516545.9A patent/GB2529077A/en not_active Withdrawn
-
2015
- 2015-09-17 NO NO20151210A patent/NO20151210A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994028086A1 (en) * | 1993-05-21 | 1994-12-08 | Union Oil Company Of California | White mineral oil-based drilling fluid |
WO2005106197A1 (en) * | 2004-05-05 | 2005-11-10 | Halliburton Energy Services, Inc. | Gelled invert emulsion compositions and methods of use and manufacture |
US20120211227A1 (en) * | 2007-05-10 | 2012-08-23 | Halliburton Energy Services, Inc. | Well Treatment Compositions and Methods Utilizing Nano-Particles |
US20120048548A1 (en) * | 2007-05-30 | 2012-03-01 | Baker Hughes Incorporated | Use of Nano-Sized Phyllosilicate Minerals in Viscoelastic Surfactant Fluids |
WO2010126925A2 (en) * | 2009-04-29 | 2010-11-04 | M-I L.L.C. | Wellbore fluids employing sacrificial viscosifiers |
Also Published As
Publication number | Publication date |
---|---|
GB2529077A (en) | 2016-02-10 |
AU2014269066B2 (en) | 2016-09-22 |
GB201516545D0 (en) | 2015-11-04 |
NO20151210A1 (en) | 2015-09-17 |
CA2907634A1 (en) | 2014-11-27 |
AU2014269066A1 (en) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9322231B2 (en) | Wellbore fluids comprising mineral particles and methods relating thereto | |
US9920604B2 (en) | Wellbore fluids comprising mineral particles and methods relating thereto | |
AU2014212523B2 (en) | Wellbore fluids comprising mineral particles and methods relating thereto | |
AU2014212843B2 (en) | Wellbore fluids comprising mineral particles and methods relating thereto | |
US20140209392A1 (en) | Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto | |
US20140209390A1 (en) | Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto | |
US20140209391A1 (en) | Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto | |
EP2951262B1 (en) | Method using a wellbore fluid comprising mineral particles | |
CA2907777C (en) | Wellbore fluids comprising mineral particles and methods relating thereto | |
AU2014269066B2 (en) | Wellbore fluids comprising mineral particles and methods relating thereto | |
AU2014269067B2 (en) | Wellbore fluids comprising mineral particles and methods relating thereto |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14801552 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 1516545 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20140303 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1516545.9 Country of ref document: GB |
|
ENP | Entry into the national phase |
Ref document number: 2907634 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014269066 Country of ref document: AU Date of ref document: 20140303 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14801552 Country of ref document: EP Kind code of ref document: A1 |