CN105985108A - Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe - Google Patents

Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe Download PDF

Info

Publication number
CN105985108A
CN105985108A CN201511012919.3A CN201511012919A CN105985108A CN 105985108 A CN105985108 A CN 105985108A CN 201511012919 A CN201511012919 A CN 201511012919A CN 105985108 A CN105985108 A CN 105985108A
Authority
CN
China
Prior art keywords
parts
nano
powder
mixed
lining material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201511012919.3A
Other languages
Chinese (zh)
Inventor
高恒东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Chuangyuan New Materials Co Ltd
Original Assignee
Wuhu Chuangyuan New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Chuangyuan New Materials Co Ltd filed Critical Wuhu Chuangyuan New Materials Co Ltd
Priority to CN201511012919.3A priority Critical patent/CN105985108A/en
Publication of CN105985108A publication Critical patent/CN105985108A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention discloses a ceramic lining material added with nano ingredients and used forr a hydraulic oil pipe. The ceramic lining material is prepared from, by weight, 54-56 parts of pure aluminum powder, 159-162 parts of iron oxide red, 18-19 parts of cobalt nitrate, 18-19 parts of nickel chloride, 37-38 parts of tetraethyl orthosilicate, 74-76 parts of anhydrous alcohol, 10-11.5 parts of nano Y-ZrO2 powder, 8.5-9.5 parts of sodium tetraborate, 6-8 parts of nano cerium oxide, 9-11 parts of titanium carbide, 5-7 parts of nano titanium dioxide, 3-4 parts of alpha-alumina, a proper amount of deionized water and 1.5-2 parts of polyvinyl alcohol. The ceramic lining material is scientific and reasonable in ingredient proportion, nanoscale ingredients like nano cerium oxide and nano titanium dioxide are added, grains can be refined through mixing modification, and uniformity of powder is improved, so that binding strength of a coating with a pipe is improved further. A ceramic layer made by the ceramic lining material is compact, smooth in surface and free of crack, and compression shear strength and crushing strength of a hydraulic steel pipe made by using the ceramic lining material are improved remarkably.

Description

A kind of hydraulic oil pipe adds the ceramic lining material of nano components
Technical field
The present invention relates to ceramic technology field, particularly relate to a kind of hydraulic oil pipe and add the ceramic lining material of nano components.
Background technology
The pipeline kind used in hydraulic system is a lot, according to operating pressure and the difference of installation site of hydraulic system, selection have steel pipe, copper tube, rubber tube, nylon tube and plastic tube etc..These pipelines once damage leakage of oil, the most then pollute environment, affect the normal performance of systemic-function, heavy then jeopardize safety, and the present invention selects hydraulic steel pipe as object of study.When hydraulic work system, fluid pressure line to bear higher pressure, add alternate stress that pressure transient produces, vibration equipment and produce vibration stress, the common effect of erection stress etc., make hard tube at fault in material, hot spot or injury region produce stress concentration phenomenon, pipeline generation fatigue rupture fracture and leakage of oil;Due also to hydraulic system is easily contaminated, the hydraulic oil containing solid pollutant is similar to the grinding agent that abrasive metal machined surface is used, and adds the friction of fluid and pipeline inner wall.And the hardness of the usual hardness ratio pipe inner wall material of solid pollution composition granule is much higher, thus accelerate the abrasion of pipe inner wall, even scratch inwall, particularly high when the flow velocity of liquid and unstable time, the material of pipe inner wall will be made to be impacted and peel off.These reasons easily cause potential safety hazard.
Centrifugal SHS technology has concentrated the Common advantages of centrifugal casting and SHS technology, and it has manufacturing process and manufacture equipment is simple and production efficiency is high, production cost is low and saves the advantages such as the energy.Utilizing centrifugal self-propagating synthesis technology to prepare ceramic lining material inside tradition stainless steel tube can make hydraulic oil oil pipe have more preferable corrosion resistance, abrasion resistance properties and good mechanical property and shock resistance.Thus, the preparation that this kind of technology is applied to hydraulic oil oil tube inner lining material will have wide market prospect and huge economic and social benefits.With micron aluminium powder and micron iron sesquioxide as primary raw material in " preparation of hydraulic oil oil pipe ceramic lining material and performance study " literary composition, with micron silica and micron Y-ZrO2 as additive, using centrifugal SHS technology to be prepared for hydraulic oil oil pipe ceramic lining material, prepared hydraulic oil oil pipe ceramic lining material has the performances such as good toughness, fracture strength, impact resistance.But owing to self-propagating reaction is the fiercest, in course of reaction, thermal losses is big, the finite thickness that steel pipe inner wall is melted, cause the bond strength of metallurgical binding part limited and there is certain hole, so the tools such as the thermostability of ceramic layer, corrosion resistance, wearability are had a certain impact, under the operating mode of some HI high impacts, there will be the phenomenon that ceramic coating comes off, thus affect service life and the safety coefficient of oil pipe, need to improve on the basis of original text.
Summary of the invention
The object of the invention is contemplated to make up the defect of prior art, it is provided that a kind of hydraulic oil pipe adds the ceramic lining material of nano components.
The present invention is achieved by the following technical solutions:
A kind of hydraulic oil pipe adds the ceramic lining material of nano components, is prepared by the raw materials in: pure aluminium powder 54-56, iron oxide red 159-162, cobalt nitrate 18-19, Nickel dichloride. 18-19, tetraethyl orthosilicate 37-38, dehydrated alcohol 74-76, nanometer Y-ZrO2 powder 10-11.5, sodium tetraborate 8.5-9.5, nano-cerium oxide 6-8, titanium carbide 9-11, nano titanium oxide 5-7, Alpha-alumina 3-4, deionized water are appropriate, polyvinyl alcohol 1.5-2.
Add the ceramic lining material of nano components according to a kind of hydraulic oil pipe described in claims 1, be made up of step in detail below:
(1) cobalt nitrate is mixed with Nickel dichloride., add in dehydrated alcohol, stirring also fully dissolves formation mixed solution, it is subsequently placed in 60 DEG C of waters bath with thermostatic control, tetraethyl orthosilicate is added drop-wise in mixed solution lentamente, heating in water bath is to 80-90 DEG C, stir 40-50 minute and increase to reactant viscosity, form vitreosol, it is statically placed in gel under room temperature condition, again xerogel is placed in drying baker and is dried 10-12 hour with the temperature of 80-90 DEG C, then under conditions of 750-850 DEG C, xerogel is carried out presintering, it is incubated 1.5-2 hour, take out after being cooled to room temperature and grind, obtain composite granule, i.e. magnetic silica powder body;
(2) being dissolved in by polyvinyl alcohol in the deionized water of 10-12 times amount, stir formation solution for later use;Nano-cerium oxide, titanium carbide, nano titanium oxide are put in ball mill, add above-mentioned solution, with speed ball milling 3-4 hour of 300-400 rev/min, after discharging, the powder of ball milling is layered in dish and dries, it is then placed in electric furnace being heated to 180-200 DEG C, it is incubated 30-40 minute, dries, obtain mixed-powder;
(3) mixed-powder that step (2) obtains is mixed with nanometer Y-ZrO2 powder, add the deionized water of total amount 3-4 times amount, it is stirring evenly and then adding into remaining residual components in addition to pure aluminium powder, iron oxide red, continue stirring 30-40 minute, form slurry, finally slurry is spray-dried, forms mixed nanometer mixed powder;
(4) the mixed nanometer mixed powder that the magnetic silica powder body that aluminium powder, iron oxide red obtained with step (1), step (3) obtain is mixed homogeneously, put in ball mill, mixing and ball milling 2-3 hour, it is loaded into after taking-up in tubing, and be fixed on centrifuge, supply igniting, igniting is passed through oxygen simultaneously, oxygen supply continues 4-5 minute, uses centrifugal SHS technology to be formed ceramic-lined at pipe material inner wall.
The invention have the advantage that the present invention utilizes the composition such as cobalt nitrate, Nickel dichloride. to react with tetraethyl orthosilicate, generate cladding cobalt, the earth silicon material of nickel, as additive add to based on aluminium powder, iron oxide red reaction in, silicon dioxide is made to have magnetic, easily it is combined with tubing, is improved the bond strength with tube wall by reaction further;Adding sodium tetraborate, improve inner surface fineness, porosity significantly reduces simultaneously;Adding appropriate nanometer Y-ZrO2 powder, in course of reaction, meeting disperse is in product aluminium sesquioxide, is possible not only to improve Fracture Toughness and the shock resistance of ceramic lining material, ceramic-lined anti-wear performance can be greatly improved simultaneously.
Present component proportioning is scientific and reasonable, adds the nanometer component such as nano-cerium oxide, nano titanium oxide, by mixed and modified, it is possible to crystal grain thinning, improve the uniformity of powder body, thus improves the bond strength of coating and tubing further;The ceramic layer that the present invention makes is fine and close, and smooth surface, flawless, compression shear strength and the crushing strength of the hydraulic steel pipe made are significantly improved.
Detailed description of the invention
A kind of hydraulic oil pipe adds the ceramic lining material of nano components, is made up of the raw material of following weight portion (kilogram): pure aluminium powder 54, iron oxide red 159, cobalt nitrate 18, Nickel dichloride. 18, tetraethyl orthosilicate 37, dehydrated alcohol 74, nanometer YZrO2 powder 10, sodium tetraborate 8.5, nano-cerium oxide 6, titanium carbide 9, nano titanium oxide 5, alpha-aluminium oxide 3, deionized water are appropriate, polyvinyl alcohol 1.5.
Add the ceramic lining material of nano components according to a kind of hydraulic oil pipe described in claims 1, be made up of step in detail below:
(1) cobalt nitrate is mixed with Nickel dichloride., add in dehydrated alcohol, stirring also fully dissolves formation mixed solution, it is subsequently placed in 60 DEG C of waters bath with thermostatic control, tetraethyl orthosilicate is added drop-wise in mixed solution lentamente, heating in water bath is to 80 DEG C, stir 40 minutes and increase to reactant viscosity, form vitreosol, it is statically placed in gel under room temperature condition, again xerogel is placed in drying baker and is dried 10 hours with the temperature of 80 DEG C, then under conditions of 750 DEG C, xerogel is carried out presintering, it is incubated 1.5 hours, take out after being cooled to room temperature and grind, obtain composite granule, i.e. magnetic silica powder body;
(2) being dissolved in by polyvinyl alcohol in the deionized water of 10 times amount, stir formation solution for later use;Nano-cerium oxide, titanium carbide, nano titanium oxide are put in ball mill, adds above-mentioned solution, with the speed ball milling 3 hours of 300 revs/min, after discharging, the powder of ball milling is layered in dish and dries, be then placed in electric furnace being heated to 180 DEG C, be incubated 30 minutes, dry, obtain mixed-powder;
(3) mixed-powder that step (2) obtains is mixed with nanometer YZrO2 powder, add the deionized water of total amount 3 times amount, it is stirring evenly and then adding into remaining residual components in addition to pure aluminium powder, iron oxide red, continue stirring 30 minutes, form slurry, finally slurry is spray-dried, forms mixed nanometer mixed powder;
(4) the mixed nanometer mixed powder that the magnetic silica powder body that aluminium powder, iron oxide red obtained with step (1), step (3) obtain is mixed homogeneously, put in ball mill, mixing and ball milling 2 hours, it is loaded into after taking-up in tubing, and be fixed on centrifuge, supply igniting, igniting is passed through oxygen simultaneously, oxygen supply continues 4 minutes, uses centrifugal SHS technology to be formed ceramic-lined at pipe material inner wall.
Material of the present invention is through test, and hardness number is 1305HV, and porosity is 3.9%, and Fracture Toughness is 5.41 MPa m1/2

Claims (2)

1. the hydraulic oil pipe ceramic lining material adding nano components, it is characterized in that, be prepared by the raw materials in: pure aluminium powder 54-56, iron oxide red 159-162, cobalt nitrate 18-19, Nickel dichloride. 18-19, tetraethyl orthosilicate 37-38, dehydrated alcohol 74-76, nanometer Y-ZrO2 powder 10-11.5, sodium tetraborate 8.5-9.5, nano-cerium oxide 6-8, titanium carbide 9-11, nano titanium oxide 5-7, Alpha-alumina 3-4, deionized water are appropriate, polyvinyl alcohol 1.5-2.
2. add the ceramic lining material of nano components according to a kind of hydraulic oil pipe described in claims 1, it is characterised in that be made up of step in detail below:
(1) cobalt nitrate is mixed with Nickel dichloride., add in dehydrated alcohol, stirring also fully dissolves formation mixed solution, it is subsequently placed in 60 DEG C of waters bath with thermostatic control, tetraethyl orthosilicate is added drop-wise in mixed solution lentamente, heating in water bath is to 80-90 DEG C, stir 40-50 minute and increase to reactant viscosity, form vitreosol, it is statically placed in gel under room temperature condition, again xerogel is placed in drying baker and is dried 10-12 hour with the temperature of 80-90 DEG C, then under conditions of 750-850 DEG C, xerogel is carried out presintering, it is incubated 1.5-2 hour, take out after being cooled to room temperature and grind, obtain composite granule, i.e. magnetic silica powder body;
(2) being dissolved in by polyvinyl alcohol in the deionized water of 10-12 times amount, stir formation solution for later use;Nano-cerium oxide, titanium carbide, nano titanium oxide are put in ball mill, add above-mentioned solution, with speed ball milling 3-4 hour of 300-400 rev/min, after discharging, the powder of ball milling is layered in dish and dries, it is then placed in electric furnace being heated to 180-200 DEG C, it is incubated 30-40 minute, dries, obtain mixed-powder;
(3) mixed-powder that step (2) obtains is mixed with nanometer Y-ZrO2 powder, add the deionized water of total amount 3-4 times amount, it is stirring evenly and then adding into remaining residual components in addition to pure aluminium powder, iron oxide red, continue stirring 30-40 minute, form slurry, finally slurry is spray-dried, forms mixed nanometer mixed powder;
(4) the mixed nanometer mixed powder that the magnetic silica powder body that aluminium powder, iron oxide red obtained with step (1), step (3) obtain is mixed homogeneously, put in ball mill, mixing and ball milling 2-3 hour, it is loaded into after taking-up in tubing, and be fixed on centrifuge, supply igniting, igniting is passed through oxygen simultaneously, oxygen supply continues 4-5 minute, uses centrifugal SHS technology to be formed ceramic-lined at pipe material inner wall.
CN201511012919.3A 2015-12-31 2015-12-31 Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe Withdrawn CN105985108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511012919.3A CN105985108A (en) 2015-12-31 2015-12-31 Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511012919.3A CN105985108A (en) 2015-12-31 2015-12-31 Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe

Publications (1)

Publication Number Publication Date
CN105985108A true CN105985108A (en) 2016-10-05

Family

ID=57040716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511012919.3A Withdrawn CN105985108A (en) 2015-12-31 2015-12-31 Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe

Country Status (1)

Country Link
CN (1) CN105985108A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815950A (en) * 2012-09-06 2012-12-12 南通大学 Nano-additive-added reaction material for preparing ceramic lining composite steel tube
CA2907634A1 (en) * 2013-05-21 2014-11-27 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815950A (en) * 2012-09-06 2012-12-12 南通大学 Nano-additive-added reaction material for preparing ceramic lining composite steel tube
CA2907634A1 (en) * 2013-05-21 2014-11-27 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
俞建荣等: "重力分离自蔓延法制备a-Al_2O_3基复合陶瓷内衬管", 《材料科学与工程学报》 *
黄锋等: "离心-SHS陶瓷内衬复合钢管性能的研究", 《湖州职业技术学院学报》 *

Similar Documents

Publication Publication Date Title
CN104403381A (en) Corrosion resistant ceramic paint and preparation method thereof
CN103113852B (en) Building phase change energy storage insulating powder and preparation method thereof
CN106336780B (en) A kind of anti-corrosion adiabatic coating and preparation method thereof
CN104550913A (en) Corrosion-resistant iron-based powder metallurgy valve and preparation method thereof
CN105983689A (en) Graphene-enhanced ceramic lining material for hydraulic steel tube
CN105985105A (en) Ceramic lining material for improving heat shock properties of hydraulic steel pipes
CN106083075A (en) The restorative procedure of blast-furnace shaft upper inner liner wet spray material, its application and blast-furnace shaft upper inner liner
CN104371524A (en) Heat-insulation fireproof water-based paint and preparation method thereof
CN105132852B (en) A kind of flame-spraying prepares Al/Al2O3The method of multi-functional coatings
CN104550923A (en) Iron-base powder metallurgy material for high temperature environment valve and preparation method of iron-base powder metallurgy material
CN104550931A (en) Scattering particle reinforced iron-based powder metallurgical valve and preparation method thereof
CN105985106A (en) Self-propagating synthesis ceramic lining material for hydraulic steel pipes
CN104726816A (en) Preparation method for reactive flame thermal spraying aluminum oxide and titanium oxide multiphase coating
CN104084589A (en) Powder metallurgical automobile hub bearing unit
CN105562697A (en) Hydraulic steel pipe inner wall ceramic material good in comprehensive performance
CN104031439A (en) High temperature resistant nano black body coating and preparation process thereof
CN105985110A (en) Zirconium silicate added ceramic lining material for hydraulic steel pipe
CN105985108A (en) Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe
CN105985126A (en) Ceramic lining material capable of improving antioxidation performance
CN105985104A (en) Smooth and wear-resistant ceramic lining for hydraulic steel pipes
CN105987255A (en) Ceramic lining material added with cerium oxide and metallic nickel powder for hydraulic steel tube
CN105985109A (en) Modified ceramic lining material with chromic oxide
CN105985107A (en) Hydraulic steel pipe ceramic lining material excellent in wear resistance and corrosion resistance
CN105986267A (en) Energy-saving, environment-friendly and high-strength ceramic lining material for hydraulic steel tube
CN105987254A (en) Ceramic lining material resistant to impact and not liable to fall off for hydraulic steel tube

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20161005

WW01 Invention patent application withdrawn after publication