WO2014189302A1 - Omnidirectional walking assistant robot - Google Patents

Omnidirectional walking assistant robot Download PDF

Info

Publication number
WO2014189302A1
WO2014189302A1 PCT/KR2014/004569 KR2014004569W WO2014189302A1 WO 2014189302 A1 WO2014189302 A1 WO 2014189302A1 KR 2014004569 W KR2014004569 W KR 2014004569W WO 2014189302 A1 WO2014189302 A1 WO 2014189302A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
omnidirectional walking
user
sensor
robot
Prior art date
Application number
PCT/KR2014/004569
Other languages
French (fr)
Korean (ko)
Inventor
이학용
윤종현
박성민
Original Assignee
(주)엠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠텍 filed Critical (주)엠텍
Publication of WO2014189302A1 publication Critical patent/WO2014189302A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • A61G5/041Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type
    • A61G5/046Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type at least three driven wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • A61G5/048Power-assistance activated by pushing on hand rim or on handlebar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1043Cushions specially adapted for wheelchairs
    • A61G5/1045Cushions specially adapted for wheelchairs for the seat portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1056Arrangements for adjusting the seat
    • A61G5/1059Arrangements for adjusting the seat adjusting the height of the seat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1628Pelvis
    • A61H2201/1633Seat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors

Definitions

  • the present invention relates to an omnidirectional walking assistance robot.
  • walking aids are a means used to assist rehabilitation or assist behavior of a patient or elderly person who has difficulty walking.
  • the elderly have helpers to help them freely to their desired place, but there is a limit to the help system for human beings to care for the increasing number of elderly people.
  • a walking aid robot that can help the elderly walk indoors and outdoors and process various information that may occur while the elderly move.
  • the conventional walking aid robot occupies a lot of space and does not pass through a space such as furniture or a door, and has a problem that is not suitable for indoor use because of difficulty in detailed driving.
  • the conventional walking aids are weak in terms of structural stability because the user is likely to fall or overturn the equipment when the user loses the center or malfunction of the equipment.
  • the technical problem to be achieved by the present invention is to provide a walking aid robot that can easily move to the direction and location that the user with weak muscle strength wants to assist the user walking after boarding.
  • an omnidirectional walking assistance robot includes a body part having three protruding parts arranged in a planar shape having a Y shape, formed on an upper surface of the body part, and a saddle on which the user boards, three of the body parts. And three leg portions positioned below the two protruding portions, a wheel portion positioned at the end of each of the three leg portions, and having a wheel for movement, and a direction input portion for controlling the direction of the wheel portion.
  • the wheel unit includes a motor for driving the wheel, an encoder for checking a moving speed and a driving state of the motor by checking the number of rotations of the motor, a brake for stopping the movement of the wheel, and for controlling the brake. It includes a clutch.
  • the wheel is configured to abut a pair of four omni wheels.
  • the body portion includes at least one lighting unit positioned on the side of the three protruding portions to output light to the outside.
  • the omnidirectional walking assistance robot further includes a sensor unit, wherein the sensor unit is located at a front portion of each of the three protruding portions, and an upper sensor for detecting an obstacle approaching in a moving direction, and the wheel is disposed on an outer surface of the wheel unit. Located facing the direction of movement and includes a lower sensor for detecting the oncoming obstacle when the wheel moves.
  • the direction input unit is installed in the lower part of the saddle, and forms a pressure-sensitive sensor that receives a direction in which the user tilts more when the user boards the driving direction.
  • the saddle includes a pair of handles formed at the rear left and right sides of the saddle and held by the hand to support the body when the user boards.
  • the direction input unit may be formed as a button for inputting a driving direction by a user's hand pressing the upper surface of at least one of the handles.
  • FIG. 1 is a perspective view of the omnidirectional walking assistance robot according to an embodiment of the present invention.
  • Figure 2 is a top view showing the omnidirectional walking assistance robot according to an embodiment of the present invention.
  • FIG. 3 is a view showing the input state of the direction input unit consisting of a pressure-sensitive direction key in the omnidirectional walking aid robot according to an embodiment of the present invention
  • (a) is a diagram showing the decompression distribution when the standby state does not move
  • (b) is a figure which shows the pressure reduction distribution at the time of left rotation.
  • Figure 4 is a block diagram showing the structure of a system for controlling the omnidirectional walking assistance robot according to an embodiment of the present invention.
  • FIGS. 1 to 4 an omnidirectional walking assistance robot according to an embodiment of the present invention will be described in detail.
  • the structure of the omnidirectional walking assistance robot is a body portion 100 having three protrusions 111 and 112 arranged in a Y-shaped plane shape. ),
  • the saddle 200 positioned on the upper surface of the three protruding portions 111 and 112 of the body portion 100, and the leg portion 300 positioned on the lower ends of the three protruding portions 111 and 112 of the body portion 100.
  • one wheel portion 400 for moving the omnidirectional walking aid robot Located at the bottom of the leg portion 300, one wheel portion 400 for moving the omnidirectional walking aid robot, and is located on the rear side of the saddle 200, the handle that can be held by the user hand when boarding (500) ) Is included.
  • Body portion 100 of the omnidirectional walking aid robot as described above is formed with a leg portion 300 under each protruding portion (111, 112) arranged in a Y-shape, the wheel portion at the bottom of the leg portion 300 400 is formed to have a total of three leg portion 300 and three wheel portion 400.
  • Body portion 100 has a Y shape when viewed from the top, the front of the omnidirectional walking aid robot of the three protruding parts (111, 112) protruding outward in three different directions in the same plane.
  • One protruding portion hereinafter referred to as 'front protruding portion') 111 protruding toward
  • 'rear projecting portion' 112 becomes the rear portion.
  • each of the protruding portions 111 and 112 of the body portion 100 includes two front sides and two side surfaces respectively positioned on both sides of the front portion and the front portion where the saddle 200 is not positioned.
  • the saddle 200 is located above one anterior protrusion 111 and two posterior protrusions 112, whereby a portion of the saddle 200 spans between the two posterior protrusions 112. have.
  • the user rides on the saddle 200 located on the body part 100, the user places the lower part of the 'Y' character between the legs (that is, one front protruding portion 111) between the legs. You will board.
  • the body part 100 configured as described above is Y-shaped, it may pass while rotating a space narrower than the diameter of the actual robot in an obstacle such as a door.
  • the front of the protruding portion 111 in front of the user will be boarding the occupant can work on the front.
  • each of the protruding portion (111, 112) of the body portion 100 is mounted with a lighting unit 110 for outputting light to the outside to help identify the front and rear.
  • the lighting unit 110 includes an illumination sensor (not shown) to sense the illumination to adjust the brightness of the daytime bright outside and the nighttime dark outside.
  • a photoconductive device is used as an illumination sensor.
  • Saddle 200 is located on the upper surface of the body portion 100 when the user boarded, serves as a user's seat, and includes a cushion for the user's boarding, the user in the saddle 200 To help sit stably, the top surface of the saddle 200 has a shape that is lower in height toward the middle from the edge, that is, has a curved surface in the middle.
  • the leg part 300 is attached to one end of each protruding portion 111 and 112 of the body part 100, so that a total of three leg parts 300 extend so as to descend toward the ground so that the body part 100 is provided. Support stably)
  • each leg 300 is each wheel portion 400 and the body portion 100 ).
  • the leg 300 includes a shock absorber (not shown) when the user drives after boarding, in order to minimize the impact of the unevenness of the ground to the user.
  • the wheel unit 400 is formed at the end of each leg 300 and includes a wheel 410 for moving over the ground.
  • the wheels 410 provided in each of the wheel parts 400 rotate in accordance with a direction in which four omni wheels are positioned in pairs.
  • the wheel unit 400 is a motor (not shown) for driving the wheel 410, the operation of the motor, such as whether the rotational speed of the motor, the degree of rotation and the driving state of the motor is normal by using the number of rotation of the motor, etc.
  • An encoder (not shown) for checking a state, a brake (not shown) for stopping the movement of the wheel 410, and a clutch 420 for controlling the brake are included.
  • the handle 500 is provided at the rear left and right sides of the saddle 200 to increase a sense of stability of the occupant.
  • the handle 500 is located on the waist side of the user when the user boards, and when the handle 500 is held, the handle 500 can obtain the same effect as leaning back, and the user's fatigue is felt by the user's back and shoulders. It has the effect of making you feel less.
  • the handle 500 includes a direction input unit 700 for manipulating the movement and stop of the omnidirectional walking assistance robot.
  • the direction input unit 700 is positioned on the upper surface of the left handle 500 or the right handle 500 for the convenience of the user.
  • the direction input unit 700 is formed of a stick-shaped button, but a button form or a touch panel such as a direction key of the keyboard is used. It is possible to form in the form of an input button.
  • stop button can be provided as a button separately from the stick-type button for inputting the direction, in this case, it is possible to stop the driving of the omnidirectional walking aid robot in the emergency situation without difficulty of operation.
  • the direction input unit 700 for manipulating the driving of the omnidirectional walking assistance robot may be input through the inclination of the occupant's body rather than the manual input method.
  • the omnidirectional walking aid robot is not only to automatically move and drive the user after boarding, but also the user can move the robot by rolling the foot directly, so that it can also be used as a strength exercise device.
  • a plurality of pressure-sensitive sensor (S11) is provided in a matrix form on the lower portion of the saddle 200 or inside the saddle 200.
  • Decompression sensor (S11) is a sensor for outputting a signal of the corresponding size according to the amount of pressure applied, the occupant of the body of the decompression sensor (S11) of the lower saddle 200 when the body tilts in the direction to move
  • the pressure sensor S11 located in the tilting direction is pressed more than the pressure sensor S11 located in the other direction, and the magnitude of the signal output from each pressure sensor S11 varies according to the tilting direction of the occupant's body.
  • the control unit (see FIG. 4) 101 determines the pressure distribution applied to the plurality of pressure reduction sensors S11 by determining the state of the signals output from the plurality of pressure reduction sensors S11, and thus the body of the occupant.
  • the direction of inclination is determined, the direction in which the occupant's body is inclined is determined, the driving direction of the omnidirectional walking robot is controlled in the determined direction, and the omnidirectional walking robot is driven in that direction.
  • FIGS. 3A and 3B An example of driving by such a pressure sensor S11 can be confirmed in FIGS. 3A and 3B.
  • the circles indicate the pressure-sensitive sensor S11, respectively, and the darker the circle, the greater the pressure applied to the pressure-sensitive sensor S11.
  • the pressure-sensitive sensor S11 is not pressed. ), That is, the pressure sensor S11 to which no pressure is applied is displayed.
  • 3A is an input distribution diagram of the decompression sensor S11 when the occupant is on the saddle 200 and is in a standby state without moving.
  • control unit 101 determines not to move and waits to control the omnidirectional walking assistance robot to the standby state without moving.
  • 3B is an input distribution diagram of the decompression sensor S11 when the occupant is inclined to the left by riding on the saddle 200.
  • control unit 101 commands a left turn in the same way as the left button input of the direction input unit 700 formed of a stick-type button, so that the omnidirectional walking assistance robot drives the left turn.
  • the user can select the direction input unit 700 using the pressure-sensitive sensor S11 or the direction input unit 700 using the stick-type button according to the user's convenience to operate the omnidirectional walking assistance robot.
  • the omnidirectional walking assistance robot further includes an upper sensor 610 and a lower sensor 620 for detecting and avoiding an obstacle that the user did not find in the moving direction when driving.
  • the upper sensor 610 is positioned at the end of each protruding portion 111 and 112 of the body 100 (that is, the end of the front portion which is the most protruding portion from the front portion).
  • the upper sensors 610 are positioned at the ends of each of the protruding portions 111 and 112, and are provided in three spaced apart at regular intervals on the same horizontal line.
  • a total of nine upper sensors 610 are present in the body part 100, and an upper sensor located at the center of the three upper sensors 610 located at one protruding portion 111 and 112 faces the front surface.
  • the upper sensors on both sides are positioned to face the front left side and front right side, respectively, to detect a situation in each corresponding direction.
  • the controller 101 uses the signal output from the upper sensor 610 configured as described above, the controller 101 detects an approaching object or obstacle from all directions of the omnidirectional walking assistance robot, and then uses a speaker (not shown) to alert the occupant. Inform the dangerous situation through, or driving the wheel 410 of the wheel unit 400 in the corresponding direction to automatically avoid the dangerous situation to drive.
  • the lower sensor 620 is located on the outer surface of the wheel part 400 and faces the outside of the wheel part 400, and each of the wheel parts 400 has three predetermined intervals on the same horizontal line. have.
  • the lower sensor located at the center of the lower sensor 620 is positioned to face the front side and the lower sensor on both sides to face the front left side and front right side, respectively, so as to detect a situation in each corresponding direction. Is formed.
  • the signal output from the lower sensor 620 configured as described above is also input to the controller 101, and the controller 101 detects an obstacle located on the ground in advance when the omnidirectional walking assistance robot is driven, and alerts the occupant through a speaker. Notify, or drive the wheel 410 of the wheel unit 400 in the corresponding direction to automatically avoid driving.
  • Operation of the omnidirectional walking assistance robot having the structure as shown in FIGS. 1 to 3 is controlled by the control system shown in FIG. 4.
  • the control system of the omnidirectional walking aid robot shown in Figure 4 is located in the power switch (SW1), the body portion 100 for inputting power, the control unit 101, the control unit 101 for controlling other components by receiving power
  • the clutch 420 is connected to output a signal to release the stop state of the brake unit 403 clutch 420 Clutch unit 421 to control the direction
  • the user inputs the drive via the stick-type button or the pressure-sensitive sensor (S11) laid under the saddle 200
  • the direction input unit 700 for transmitting a driving command to the control unit 101
  • Encoder unit having a motor unit 401, an encoder inputted from the direction input unit 700 and driven by a drive command received through the control unit 101 and an encoder, and measuring the operating state of the motor and transmitting the encoder unit to the control unit 101 ( 402, upper sensor 610, and lower sensor And a sensor unit 601 for inputting external information sensed through the upper sensor 610 and the lower sensor 620
  • the clutch unit 421 which has received the electric signal, operates the clutch 420 to release the brake 403 that is locked by the clutch 420, thereby releasing the stop state.
  • control unit 101 receives the driving command input from the direction input unit 700 and outputs a signal for driving the motor unit 401 to move in the direction input to the direction input unit 700.
  • the motor unit 401 receives a driving signal from the control unit 101, drives the motor included in the wheel unit 400 to rotate the wheel 410 to move the omnidirectional walking assistance robot in a desired direction.
  • the encoder unit 402 mounted on the motor unit 401 detects an operation state such as an amount of rotation of the motor and transmits it to the control unit 101.
  • the controller 101 controls the driving state of the motor unit 401 by grasping the current moving speed or the moving amount of the omnidirectional walking robot through the operating state of the motor sensed by the encoder unit 402.
  • the light switch SW2 is a switch for sensing the illuminance to turn on and off the lighting unit 110 including an illumination sensor to adjust the brightness of the bright daytime and the dark nighttime.

Abstract

An omnidirectional walking assistant robot of the present invention comprises: a body part having three Y-shaped protruding portions arranged in a planar shape; a saddle formed on the upper surface of the body part for a user to ride thereon; three leg parts located on the bottoms of the three protruding portions of the body part; a wheel part, located at each edge of the three leg parts, having wheels for movement; and a direction input part for controlling the direction of the wheel part.

Description

전방향 보행보조 로봇Omnidirectional walking robot
본 발명은 전방향 보행보조 로봇에 관한 것이다.The present invention relates to an omnidirectional walking assistance robot.
일반적으로 보행 보조기기는 보행이 불편한 환자나 노약자의 재활을 돕거나 거동을 보조하기 위하여 사용되는 수단이다.In general, walking aids are a means used to assist rehabilitation or assist behavior of a patient or elderly person who has difficulty walking.
또한, 일반인들도 작업의 편의성을 위하여 보행보조 로봇을 이용하는 경우도 증가하고 있다.In addition, the general public also increases the use of walking aid robot for the convenience of work.
보행 보조기기는 삶의 질과 복지에 대한 관심이 높아지고 현대사회가 노령화 사회로 진입해 감에 따라 세계적으로 실버 산업이라 불리는 노인복지 산업에 대한 연구 개발이 활발해지는 추세에 있다. 특히, 85세 이상 초고령 인구의 증가로 인해 요양 보호가 필요한 노인이 증가함에 따라 의료서비스 및 사회서비스 등의 실버 산업이 각광받고 있다.As walker aids are increasingly concerned about the quality of life and welfare, and as the modern society enters an aging society, research and development on the elderly welfare industry called the silver industry is active worldwide. In particular, as the number of elderly people needing care is increased due to the increase in the elderly population over 85 years old, silver industries such as medical services and social services are in the spotlight.
특히, 근력 및 기억력이 저하된 재택 고령자의 경우, 재택 생활지원을 위한 보행 보조기기의 사용이 절실히 요구되고 있으며 보행 보조뿐만 아니라 실내 생활 작업에 대해 지원까지 가능한 보조기기가 필요하다.In particular, home-based elderly people with reduced muscle strength and memory are urgently required to use a walking aid for home life support, and an auxiliary device capable of supporting not only walking assistance but also indoor living work is required.
보통의 노약자의 경우 자신들이 희망하는 장소로 자유롭게 다니기 위해 요양을 돕는 도우미를 두기도 하지만, 늘어나는 노약자를 보살피기에 인간이 직접 돕는 도우미 시스템은 한계가 있으며, 하체 근력이 저하된 노약자의 생활 지원을 위해 노약자의 실내 및 실외 보행을 돕고 노약자가 움직이면서 발생할 수 있는 다양한 정보를 처리할 수 있는 보행 보조 로봇의 개발이 필요하다.In general, the elderly have helpers to help them freely to their desired place, but there is a limit to the help system for human beings to care for the increasing number of elderly people. There is a need for the development of a walking aid robot that can help the elderly walk indoors and outdoors and process various information that may occur while the elderly move.
종래의 보행 보조 로봇은 공간을 많이 차지하여 가구나 문과 같은 공간을 통과하지 못하는 문제점이 있으며, 세밀한 구동에 어려움이 있어서 실내에서 이용하기에는 부적합한 문제점을 가지고 있었다.The conventional walking aid robot occupies a lot of space and does not pass through a space such as furniture or a door, and has a problem that is not suitable for indoor use because of difficulty in detailed driving.
또한, 종래의 보행 보조기기는 사용자가 중심을 잃거나 장비의 오작동이 발생할 경우 사용자가 넘어지거나 장비가 전복될 수 있는 가능성이 높아 구조적 안정성 면에서 취약함이 있었다.In addition, the conventional walking aids are weak in terms of structural stability because the user is likely to fall or overturn the equipment when the user loses the center or malfunction of the equipment.
발명이 이루고자 하는 기술적 과제는 사용자가 탑승한 뒤 사용자의 보행을 보조하여 근력이 약한 사용자가 가고자 하는 방향과 위치로 손쉽게 이동할 수 있는 보행보조 로봇을 제공하기 위한 것이다. The technical problem to be achieved by the present invention is to provide a walking aid robot that can easily move to the direction and location that the user with weak muscle strength wants to assist the user walking after boarding.
본 발명의 한 특징에 따른 전방향 보행보조 로봇은 Y자 형태의 평면 형상으로 배열된 세 개의 돌출 부분을 구비한 몸체부, 상기 몸체부 윗면에 형성되며, 사용자가 탑승하는 안장, 상기 몸체부의 세 개의 돌출 부분 하부에 위치하는 세 개의 다리부, 상기 세 개의 다리부 각각의 단부에 위치하며 이동을 위한 바퀴를 갖는 바퀴부, 그리고 상기 바퀴부의 방향을 제어하는 방향 입력부를 포함한다.According to an aspect of the present invention, an omnidirectional walking assistance robot includes a body part having three protruding parts arranged in a planar shape having a Y shape, formed on an upper surface of the body part, and a saddle on which the user boards, three of the body parts. And three leg portions positioned below the two protruding portions, a wheel portion positioned at the end of each of the three leg portions, and having a wheel for movement, and a direction input portion for controlling the direction of the wheel portion.
상기 바퀴부는 상기 바퀴를 구동하기 위한 모터, 상기 모터의 회전 수를 확인하여 이동 속도 및 상기 모터의 구동 상태를 확인하기 위한 엔코더, 상기 바퀴의 이동을 정지시키기 위한 브레이크, 그리고 상기 브레이크를 제어하기 위한 클러치를 포함한다.The wheel unit includes a motor for driving the wheel, an encoder for checking a moving speed and a driving state of the motor by checking the number of rotations of the motor, a brake for stopping the movement of the wheel, and for controlling the brake. It includes a clutch.
상기 바퀴는 4개의 옴니휠(omni wheel) 한 쌍이 맞닿게 구성된다.The wheel is configured to abut a pair of four omni wheels.
상기 몸체부는 상기 세 개의 돌출 부분의 측면에 위치하고 외부로 빛을 출력하는 적어도 하나의 조명부를 포함한다.The body portion includes at least one lighting unit positioned on the side of the three protruding portions to output light to the outside.
상기 전방향 보행보조 로봇은 센서부를 더 구비하며, 상기 센서부는 상기 세 개의 돌출 부분 각각의 전면부에 위치하며 이동 방향에서 다가오는 장애물을 감지하는 상부 센서, 그리고 상기 바퀴부 중 외부면에 상기 바퀴가 이동하는 방향을 바라보게 위치하며 바퀴가 이동 할 때 다가오는 장애물을 감지하는 하부 센서를 포함한다.The omnidirectional walking assistance robot further includes a sensor unit, wherein the sensor unit is located at a front portion of each of the three protruding portions, and an upper sensor for detecting an obstacle approaching in a moving direction, and the wheel is disposed on an outer surface of the wheel unit. Located facing the direction of movement and includes a lower sensor for detecting the oncoming obstacle when the wheel moves.
상기 방향 입력부는 상기 안장 하부에 설치되며, 사용자가 탑승하였을 때 사용자가 몸을 기울여 더 많이 누르는 방향을 구동 방향으로 입력 받는 감압센서로 형성한다.The direction input unit is installed in the lower part of the saddle, and forms a pressure-sensitive sensor that receives a direction in which the user tilts more when the user boards the driving direction.
상기 안장은 상기 안장의 왼쪽 및 오른쪽 측면 후부에 형성되어 사용자가 탑승하였을 때 손으로 잡아서 몸을 지지하는 한 쌍의 손잡이를 포함한다.The saddle includes a pair of handles formed at the rear left and right sides of the saddle and held by the hand to support the body when the user boards.
상기 방향 입력부는 상기 손잡이 중 적어도 한 곳의 상면에 사용자가 손으로 눌러서 구동 방향을 입력하는 버튼으로 형성한다.The direction input unit may be formed as a button for inputting a driving direction by a user's hand pressing the upper surface of at least one of the handles.
이러한 특징에 따르면, 사용자가 탑승한 뒤 사용자의 보행을 보조하여 근력이 약한 사용자가 가고자 하는 방향과 위치로 손쉽게 이동할 수 있는 보행보조 로봇을 제공하는 효과가 있다.According to this feature, there is an effect of providing a walking aid robot that can easily move to the direction and location that the user with weak muscle strength wants to assist by walking the user after boarding.
도 1은 본 발명의 한 실시예에 따른 전방향 보행보조 로봇을 나타낸 사시도이다.1 is a perspective view of the omnidirectional walking assistance robot according to an embodiment of the present invention.
도 2는 본 발명의 한 실시예에 따른 전방향 보행보조 로봇을 나타낸 상면도이다.Figure 2 is a top view showing the omnidirectional walking assistance robot according to an embodiment of the present invention.
도 3은 본 발명의 한 실시예에 따른 전방향 보행보조 로봇에서 감압식 방향키로 이루어진 방향 입력부의 입력 상태를 나타낸 도면으로, (a)는 이동하지 않는 대기상태일 때의 감압 분포를 나타낸 도면이고, (b)는 좌회전 시에 감압 분포를 나타낸 도면이다.3 is a view showing the input state of the direction input unit consisting of a pressure-sensitive direction key in the omnidirectional walking aid robot according to an embodiment of the present invention, (a) is a diagram showing the decompression distribution when the standby state does not move, (b) is a figure which shows the pressure reduction distribution at the time of left rotation.
도 4는 본 발명의 한 실시예에 따른 전방향 보행보조 로봇을 제어하는 시스템의 구조를 나타낸 블록도이다.Figure 4 is a block diagram showing the structure of a system for controlling the omnidirectional walking assistance robot according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 전방향 보행보조 로봇에 대하여 설명한다.Next, an omnidirectional walking assistance robot according to an embodiment of the present invention will be described with reference to the accompanying drawings.
먼저, 도 1 내지 도 4를 참고로 하여, 본 발명의 한 실시예에 따른 전방향 보행보조 로봇에 대하여 상세하게 설명한다.First, referring to FIGS. 1 to 4, an omnidirectional walking assistance robot according to an embodiment of the present invention will be described in detail.
도 1 및 도 2를 참고로 하면, 본 발명의 한 실시예에 따른 전방향 보행보조 로봇의 구조는 Y자 형태의 평면 형상으로 배열된 세 개의 돌출 부분(111, 112)을 갖는 몸체부(100), 몸체부(100)의 세 돌출 부분(111, 112) 상면에 위치하는 안장(200), 몸체부(100)의 세 돌출 부분(111, 112) 각각의 하단부에 위치하는 다리부(300), 다리부(300) 하단에 위치하며 전방향 보행보조 로봇을 이동시키는 한 바퀴부(400), 그리고 안장(200)의 측면 뒷부분에 위치하여 사용자가 탑승 시 손으로 잡고 지지할 수 있는 손잡이(500)를 포함하고 있다.1 and 2, the structure of the omnidirectional walking assistance robot according to an embodiment of the present invention is a body portion 100 having three protrusions 111 and 112 arranged in a Y-shaped plane shape. ), The saddle 200 positioned on the upper surface of the three protruding portions 111 and 112 of the body portion 100, and the leg portion 300 positioned on the lower ends of the three protruding portions 111 and 112 of the body portion 100. Located at the bottom of the leg portion 300, one wheel portion 400 for moving the omnidirectional walking aid robot, and is located on the rear side of the saddle 200, the handle that can be held by the user hand when boarding (500) ) Is included.
위와 같은 전방향 보행보조 로봇의 몸체부(100)는 Y자 형태로 배열된 각 돌출 부분(111, 112)하부에 다리부(300)가 형성되고, 이러한 다리부(300)의 하단에 바퀴부(400)가 형성되어, 총 3개의 다리부(300)와 3개의 바퀴부(400)를 갖게 된다. Body portion 100 of the omnidirectional walking aid robot as described above is formed with a leg portion 300 under each protruding portion (111, 112) arranged in a Y-shape, the wheel portion at the bottom of the leg portion 300 400 is formed to have a total of three leg portion 300 and three wheel portion 400.
몸체부(100)는 상면에서 바라봤을 때 Y자 형태로 되어있으며, 동일 평면에서 서로 다른 세 방향을 따라 외부로 돌출된 3개의 돌출 부분(111, 112) 중 전방향 보행보조 로봇의 전방(前方) 쪽으로 돌출된 하나의 돌출 부분(이하, ‘전방 돌출 부분’라 함)(111)이 몸체부(100)의 앞부분이 되고 전방향 보행보조 로봇의 후방(後方)쪽으로 돌출된 나머지 두 개의 돌출 부분(이하, ‘후방 돌출 부분’라 함)(112)이 뒷부분이 된다. Body portion 100 has a Y shape when viewed from the top, the front of the omnidirectional walking aid robot of the three protruding parts (111, 112) protruding outward in three different directions in the same plane. One protruding portion (hereinafter referred to as 'front protruding portion') 111 protruding toward) becomes the front portion of the body portion 100 and the other two protruding portions protruding toward the rear of the omnidirectional walking assistance robot. (Hereinafter, referred to as 'rear projecting portion') 112 becomes the rear portion.
이때, 몸체부(100)의 각 돌출 부분(111, 112)은 안장(200)이 위치하지 않고 노출된 전면(前面)부와 전면부의 양측에 각각 위치한 두 개의 측면을 구비한다.At this time, each of the protruding portions 111 and 112 of the body portion 100 includes two front sides and two side surfaces respectively positioned on both sides of the front portion and the front portion where the saddle 200 is not positioned.
본 예에서, 안장(200)은 하나의 전방 돌출 부분(111)과 두 개의 후방 돌출 부분(112) 위에 위치하고, 이로 인해, 안장(200)의 일부는 두 개의 후방 돌출 부분(112) 사이에 걸쳐 있다.In this example, the saddle 200 is located above one anterior protrusion 111 and two posterior protrusions 112, whereby a portion of the saddle 200 spans between the two posterior protrusions 112. have.
이러한, 몸체부(100) 위에 위치한 안장(200)에 사용자가 탑승할 때, 사용자는 다리 사이에 ‘Y’자 중 아래 일자 부분(즉, 하나의 전방 돌출 부분(111))을 다리 사이에 두고 탑승하게 된다.When the user rides on the saddle 200 located on the body part 100, the user places the lower part of the 'Y' character between the legs (that is, one front protruding portion 111) between the legs. You will board.
이렇게 구성된 몸체부(100)는 Y자 형태이기 때문에 문과 같은 장애물에서 실제 로봇의 직경 보다 좁은 공간을 회전하면서 통과할 수 있다.Since the body part 100 configured as described above is Y-shaped, it may pass while rotating a space narrower than the diameter of the actual robot in an obstacle such as a door.
또한, 몸체부(100)의 Y자 형태에서 전방 돌출 부분(111)을 전면으로 하여 사용자가 탑승하게 되므로 탑승자는 전면에서 발생하는 작업을 할 수 있다.In addition, in the Y-shape of the body portion 100, the front of the protruding portion 111 in front of the user will be boarding the occupant can work on the front.
그리고, 몸체부(100)의 각 돌출 부분(111, 112)의 양 측면에는 각각 외부로 빛을 출력하여 전방 및 후방의 식별을 도와주는 조명부(110)가 장착되어 있다.And, both sides of each of the protruding portion (111, 112) of the body portion 100 is mounted with a lighting unit 110 for outputting light to the outside to help identify the front and rear.
이러한 조명부(110)는 조도를 감지하여 외부가 밝은 낮 시간과 외부가 어두운 밤 시간의 휘도를 조절하도록 조도 감지 센서(미도시)를 포함한다.The lighting unit 110 includes an illumination sensor (not shown) to sense the illumination to adjust the brightness of the daytime bright outside and the nighttime dark outside.
여기에서는 조도 감지 센서로 광전도 소자를 이용한다.Here, a photoconductive device is used as an illumination sensor.
안장(200)은 몸체부(100)의 상면에 위치하여 사용자가 탑승하였을 때, 사용자의 좌석이 되는 역할을 하며, 사용자의 탑승에 편의를 주기 위해 쿠션을 포함하고 있고, 안장(200)에 사용자가 안정적으로 앉아 있는 것을 돕기 위하여 안장(200)의 상부면은 가장자리에서 가운데 쪽으로 갈수록 높이가 낮아지는 형태, 즉 가운데가 패인 곡선면을 가지고 있다.Saddle 200 is located on the upper surface of the body portion 100 when the user boarded, serves as a user's seat, and includes a cushion for the user's boarding, the user in the saddle 200 To help sit stably, the top surface of the saddle 200 has a shape that is lower in height toward the middle from the edge, that is, has a curved surface in the middle.
다리부(300)는 몸체부(100)의 각 돌출 부분(111, 112)의 단부에 하나씩 부착되어 있어, 총 3개의 다리부(300)가 지면을 향해 내려가도록 연장되게 구성되어 몸체부(100)를 안정적으로 받쳐주다.The leg part 300 is attached to one end of each protruding portion 111 and 112 of the body part 100, so that a total of three leg parts 300 extend so as to descend toward the ground so that the body part 100 is provided. Support stably)
이때, 몸체부(100)와 연결된 각 다리부(200)의 일측 반대 편에 위치한 타측은 바퀴부(400)와 연결되어 있어, 각 다리(300)는 각 바퀴부(400)와 몸체부(100)를 연결한다.At this time, the other side located on one side of the leg portion 200 connected to the body portion 100 is connected to the wheel portion 400, each leg 300 is each wheel portion 400 and the body portion 100 ).
이러한 다리부(300)는 사용자가 탑승 후 구동하였을 때, 지면의 요철에 대한 충격이 사용자에게 전달되는 것을 최소화 하기 위하여 완충기(미도시)를 포함한다.The leg 300 includes a shock absorber (not shown) when the user drives after boarding, in order to minimize the impact of the unevenness of the ground to the user.
바퀴부(400)는 각각의 다리부(300)의 끝단에 형성되며 지면 위로 이동하기 위한 바퀴(410)를 포함한다.The wheel unit 400 is formed at the end of each leg 300 and includes a wheel 410 for moving over the ground.
여기에서 각 바퀴부(400)에 구비된 바퀴(410)는 4개의 옴니휠(omni wheel)이 쌍을 이루어 위치하여 이동하고자 하는 방향에 따라 회전 구동한다.Here, the wheels 410 provided in each of the wheel parts 400 rotate in accordance with a direction in which four omni wheels are positioned in pairs.
또한, 바퀴부(400)는 바퀴(410)를 구동하기 위한 모터(미도시), 모터의 회전 수 등을 이용하여 모터의 회전 속도, 회전 정도 및 모터의 구동 상태가 정상인지 등과 같은 모터의 동작 상태를 확인하기 위한 엔코더(미도시), 바퀴(410)의 이동을 정지시키기 위한 브레이크(미도시) 및 브레이크를 제어하기 위한 클러치(420)를 포함한다.In addition, the wheel unit 400 is a motor (not shown) for driving the wheel 410, the operation of the motor, such as whether the rotational speed of the motor, the degree of rotation and the driving state of the motor is normal by using the number of rotation of the motor, etc. An encoder (not shown) for checking a state, a brake (not shown) for stopping the movement of the wheel 410, and a clutch 420 for controlling the brake are included.
사용자가 전방향 보행보조 로봇에 탑승하였을 때, 탑승자의 안정감을 상승시키기 위해 안장(200)의 왼쪽 및 오른쪽 측면 후부에 손잡이(500)를 구비한다.When the user rides in the omnidirectional walking assistance robot, the handle 500 is provided at the rear left and right sides of the saddle 200 to increase a sense of stability of the occupant.
이러한 손잡이(500)는 사용자가 탑승하였을 때, 사용자의 허리 쪽에 위치하게 되어 손잡이(500)를 잡았을 때, 뒤로 기대는 것과 같은 효과를 얻을 수 있으며, 사용자의 허리와 어깨를 펴게 되어 사용자가 피로감을 덜 느끼게 하는 효과가 있다.The handle 500 is located on the waist side of the user when the user boards, and when the handle 500 is held, the handle 500 can obtain the same effect as leaning back, and the user's fatigue is felt by the user's back and shoulders. It has the effect of making you feel less.
또한, 이러한 손잡이(500)는 전방향 보행보조 로봇의 이동 및 정지를 조작하는 방향 입력부(700)를 포함한다.In addition, the handle 500 includes a direction input unit 700 for manipulating the movement and stop of the omnidirectional walking assistance robot.
방향 입력부(700)는 사용자의 편의를 위해 왼쪽 손잡이(500) 또는 오른쪽 손잡이(500)의 상면에 위치하며, 본 실시예에서는 스틱형의 버튼으로 형성하였으나, 키보드의 방향키와 같은 버튼 형태 또는 터치 패널의 입력버튼 형태로 형성하는 것이 가능하다.The direction input unit 700 is positioned on the upper surface of the left handle 500 or the right handle 500 for the convenience of the user. In the present embodiment, the direction input unit 700 is formed of a stick-shaped button, but a button form or a touch panel such as a direction key of the keyboard is used. It is possible to form in the form of an input button.
이러한 방향 입력부(700)는 전방을 향해 누르면 전진, 후방을 향해 누르면 후진, 좌측을 향해 누르면 좌회전, 우측을 향해 누르면 우회전, 그리고 전방을 향해 누르고 있던 상태에서 후방을 향해 급 방향을 바꾸면 정지 구동을 명령하게 되어 각각에 해당하는 방향으로 전방향 보행보조 로봇을 구동시킨다.When the direction input unit 700 presses forward, forward presses backward, presses backward, presses leftwards, rotates leftwards, presses rightwards, turns right, and stops forwards when the driver reverses the direction backwards. It is to drive the omnidirectional walking assistance robot in the direction corresponding to each.
또한, 정지 버튼은 방향을 입력하는 스틱형 버튼과는 별도로 버튼으로 구비하는 것이 가능하며, 이 경우, 위급 상황 시 조작의 어려움 없이 전방향 보행보조 로봇의 구동을 정지 시킬 수 있다.In addition, the stop button can be provided as a button separately from the stick-type button for inputting the direction, in this case, it is possible to stop the driving of the omnidirectional walking aid robot in the emergency situation without difficulty of operation.
이렇게 전방향 보행보조 로봇의 구동을 조작하는 방향 입력부(700)는 수입력 방식이 아닌 탑승자의 몸의 기울기를 통해서도 입력하는 것이 가능하다.In this way, the direction input unit 700 for manipulating the driving of the omnidirectional walking assistance robot may be input through the inclination of the occupant's body rather than the manual input method.
또한, 전방향 보행보조 로봇은 사용자가 탑승 후 자동으로 이동 구동 하는 것뿐 만 아니라 사용자가 직접 발을 구르면서 로봇을 이동하는 것이 가능하여 근력 운동기구로써의 사용 또한 가능하다.In addition, the omnidirectional walking aid robot is not only to automatically move and drive the user after boarding, but also the user can move the robot by rolling the foot directly, so that it can also be used as a strength exercise device.
그리고 안장(200)의 후단에 바구니와 같은 수납 도구를 설치하여 물건을 적재하고 운반하는 것이 가능하다.And by installing a storage tool such as a basket at the rear end of the saddle 200, it is possible to load and transport things.
도 3를 참고로 히여 탑승자의 몸의 기울기를 이용하여 전방향 보행보조 로봇을 구동 방향을 제어하는 경우를 설명한다. Referring to Figure 3 will be described a case in which the driving direction of the omnidirectional walking assistance robot using the inclination of the occupant's body.
이를 위해, 안장(200) 하부 또는 안장(200) 내부에 복수의 감압센서(S11)가 행렬 형태로 설치되어 있다. To this end, a plurality of pressure-sensitive sensor (S11) is provided in a matrix form on the lower portion of the saddle 200 or inside the saddle 200.
감압 센서(S11)는 인가되는 압력의 크기에 따라 해당 크기의 신호를 출력하는 센서로서, 탑승자가 이동하고자 하는 방향으로 몸을 기울이면 안장(200) 하부의 감압센서(S11) 중 탑승자가 몸을 기울이는 방향에 위치한 감압센서(S11)가 다른 방향에 위치한 감압센서(S11)보다 많이 눌리게 되어, 탑승자의 몸의 기울임 방향에 따라 각 감압 센서(S11)에서 출력되는 신호의 크기가 달라지게 된다.Decompression sensor (S11) is a sensor for outputting a signal of the corresponding size according to the amount of pressure applied, the occupant of the body of the decompression sensor (S11) of the lower saddle 200 when the body tilts in the direction to move The pressure sensor S11 located in the tilting direction is pressed more than the pressure sensor S11 located in the other direction, and the magnitude of the signal output from each pressure sensor S11 varies according to the tilting direction of the occupant's body.
따라서, 제어부(도 4 참고)(101)는 복수의 감압 센서(S11)에서 출력되는 신호의 상태를 판정하여 복수의 감압 센서(S11)에 인가되는 압력 분포를 판정하고 되고, 이로 인해 탑승자의 몸이 어느 방향으로 기울어져 있는지 판정하여, 탑승자의 몸이 기울어져 있는 해당 방향을 판정해 판정된 방향으로 전방향 보행보조 로봇의 구동 방향을 제어하여 해당 방향으로 전방향 보행보조 로봇을 구동시키게 된다.Therefore, the control unit (see FIG. 4) 101 determines the pressure distribution applied to the plurality of pressure reduction sensors S11 by determining the state of the signals output from the plurality of pressure reduction sensors S11, and thus the body of the occupant. The direction of inclination is determined, the direction in which the occupant's body is inclined is determined, the driving direction of the omnidirectional walking robot is controlled in the determined direction, and the omnidirectional walking robot is driven in that direction.
이러한 감압센서(S11)에 의한 구동 예시를 도 3의 (a) 및 (b)에서 확인이 가능하다.An example of driving by such a pressure sensor S11 can be confirmed in FIGS. 3A and 3B.
도 3에서, 원형은 각각 감압센서(S11)를 나타내고, 원 내부가 어두울수록 감압센서(S11)에 인가되는 압력의 크기가 증가함을 표시하며, 원 내부가 하얀 경우에는 눌리지 않은 감압센서(S11), 즉 압력이 가해지지 않은 감압센서(S11)를 표시한다.In FIG. 3, the circles indicate the pressure-sensitive sensor S11, respectively, and the darker the circle, the greater the pressure applied to the pressure-sensitive sensor S11. When the inside of the circle is white, the pressure-sensitive sensor S11 is not pressed. ), That is, the pressure sensor S11 to which no pressure is applied is displayed.
도 3의 (a)는 탑승자가 안장(200) 위에 탑승하여 이동을 하지 않고 대기 상태로 있을 때의 감압센서(S11)의 입력 분포도이다.3A is an input distribution diagram of the decompression sensor S11 when the occupant is on the saddle 200 and is in a standby state without moving.
도 3의 (a)에서 볼 수 있듯이, 탑승자가 움직이지 않고 안장(200)의 중앙에 가만히 위치할 때는 탑승자의 무게에 의해 감압센서(S11) 또한 중앙을 중심으로 압력이 고르게 분포된다.As can be seen in Figure 3 (a), when the occupant does not move and sits still in the center of the saddle 200, the pressure sensor S11 is also distributed evenly around the center by the weight of the occupant.
이러한 경우는 제어부(101)는 움직이지 않고 대기 상태로 판단하여 전방향 보행보조 로봇의 동작을 이동하지 않고 대기 상태로 제어한다.In this case, the control unit 101 determines not to move and waits to control the omnidirectional walking assistance robot to the standby state without moving.
도 3의 (b)는 탑승자가 안장(200) 위에 탑승하여 좌측으로 몸을 기울였을 때의 감압센서(S11)의 입력 분포도 이다.3B is an input distribution diagram of the decompression sensor S11 when the occupant is inclined to the left by riding on the saddle 200.
도 3의 (b)에서 볼 수 있듯이, 탑승자가 좌측으로 몸을 기울였을 때는 탑승자의 무게에 의해 복수의 감압센서(S11) 중에서 주로 좌측 부분에 위치한 감압센서(S11)를 중심으로 압력이 인가됨을 알 수 있다.As shown in (b) of FIG. 3, when the occupant leans to the left side, the pressure is applied mainly to the decompression sensor S11 located in the left part of the plurality of decompression sensors S11 by the weight of the occupant. Able to know.
이러한 경우는 제어부(101)는 스틱형 버튼으로 형성된 방향 입력부(700)의 좌측 버튼 입력이 동작한 경우와 동일하게 좌회전을 명령하게 되어, 전방향 보행보조 로봇이 좌회전 구동하게 된다.In this case, the control unit 101 commands a left turn in the same way as the left button input of the direction input unit 700 formed of a stick-type button, so that the omnidirectional walking assistance robot drives the left turn.
사용자는 감압센서(S11)를 이용한 방향 입력부(700)나 스틱형 버튼을 이용한 방향 입력부(700) 중에서 사용자의 편의에 따라 선택하여 전방향 보행보조 로봇을 조작할 수 있다.The user can select the direction input unit 700 using the pressure-sensitive sensor S11 or the direction input unit 700 using the stick-type button according to the user's convenience to operate the omnidirectional walking assistance robot.
이러한 전방향 보행보조 로봇은 구동 시 이동 방향에서 사용자가 미처 발견하지 못한 장애물을 감지하여 회피하기 위한 상부 센서(610) 및 하부센서(620)을 더 포함한다.The omnidirectional walking assistance robot further includes an upper sensor 610 and a lower sensor 620 for detecting and avoiding an obstacle that the user did not find in the moving direction when driving.
상부 센서(610)는 몸체부(100)의 각 돌출 부분(111, 112) 단부(즉, 전면부에서 가장 많이 돌출되어 있는 부분인 전면부의 단부)에 위치한다.The upper sensor 610 is positioned at the end of each protruding portion 111 and 112 of the body 100 (that is, the end of the front portion which is the most protruding portion from the front portion).
이러한 상부 센서(610)는 각 돌출 부분(111, 112)의 단부에 위치하며, 같은 수평선상에 일정 간격으로 이격되게 3개씩 구비되어 있다. The upper sensors 610 are positioned at the ends of each of the protruding portions 111 and 112, and are provided in three spaced apart at regular intervals on the same horizontal line.
따라서, 몸체부(100)에 총 9개의 상부 센서(610)가 존재하며, 하나의 돌출 부분(111, 112)에 위치한 총 3개의 상부 센서(610) 중에서 중앙에 위치하는 상부 센서가 전면을, 양 측에 있는 상부 센서가 각각 전좌측면, 전우측면을 바라보게 위치하여 각 해당 방향의 상황을 감지하게 형성된다.Therefore, a total of nine upper sensors 610 are present in the body part 100, and an upper sensor located at the center of the three upper sensors 610 located at one protruding portion 111 and 112 faces the front surface. The upper sensors on both sides are positioned to face the front left side and front right side, respectively, to detect a situation in each corresponding direction.
이렇게 구성되는 상부 센서(610)에서 출력되는 신호를 이용하여 제어부(101)는 전방향 보행보조 로봇의 모든 방향에서 다가오는 물체나 장애물을 감지한 후, 스피커(도시하지 않음)를 이용하여 탑승자에게 경고음을 통해 위험 상황을 알리거나, 바퀴부(400)의 바퀴(410)를 해당 방향으로 구동하여 자동으로 위험 상황을 회피 구동하게 한다.Using the signal output from the upper sensor 610 configured as described above, the controller 101 detects an approaching object or obstacle from all directions of the omnidirectional walking assistance robot, and then uses a speaker (not shown) to alert the occupant. Inform the dangerous situation through, or driving the wheel 410 of the wheel unit 400 in the corresponding direction to automatically avoid the dangerous situation to drive.
하부 센서(620)는 바퀴부(400)의 외부면에 위치하여 바퀴부(400) 외부를 바라보는 면에 위치하며, 각 바퀴부(400) 마다 동일 수평선상에 일정 간격을 띄고 3개씩 구비되어 있다.The lower sensor 620 is located on the outer surface of the wheel part 400 and faces the outside of the wheel part 400, and each of the wheel parts 400 has three predetermined intervals on the same horizontal line. have.
상부 센서(610)와 동일하게 하부 센서(620)의 중앙에 위치하는 하부 센서가 전면을, 양 측에 있는 하부 센서가 각각 전좌측면, 전우측면을 바라보게 위치하여 각 해당 방향의 상황을 감지하게 형성된다.Like the upper sensor 610, the lower sensor located at the center of the lower sensor 620 is positioned to face the front side and the lower sensor on both sides to face the front left side and front right side, respectively, so as to detect a situation in each corresponding direction. Is formed.
이렇게 구성되는 하부 센서(620)에서 출력되는 신호 역시 제어부(101)로 입력되어, 제어부(101)는 전방향 보행보조 로봇의 구동 시 지면에 위치하는 장애물을 미리 감지하여 스피커 등을 통해 탑승자에게 경고음을 알리거나, 바퀴부(400)의 바퀴(410)를 해당 방향으로 구동하여 자동으로 회피 구동하게 한다.The signal output from the lower sensor 620 configured as described above is also input to the controller 101, and the controller 101 detects an obstacle located on the ground in advance when the omnidirectional walking assistance robot is driven, and alerts the occupant through a speaker. Notify, or drive the wheel 410 of the wheel unit 400 in the corresponding direction to automatically avoid driving.
첨부된 도 1 내지 3와 같은 구조를 갖는 전방향 보행보조 로봇은 도 4에 도시한 제어 시스템에 의해 동작이 제어된다.Operation of the omnidirectional walking assistance robot having the structure as shown in FIGS. 1 to 3 is controlled by the control system shown in FIG. 4.
도 4에 도시한 전방향 보행보조 로봇의 제어 시스템은 전원을 입력하는 전원 스위치(SW1), 몸체부(100)에 위치하며, 전원을 전달 받아 다른 구성들을 제어하는 제어부(101), 제어부(101)를 통해 전기 신호가 입력되면 제어부(101)와 연결되어 브레이크를 제어하는 브레이크부(403), 클러치(420)와 연결되어 브레이크부(403)의 멈춤 상태를 풀어주는 신호를 출력하여 클러치(420)를 제어하는 클러치부(421), 사용자가 스틱형 버튼 또는 안장(200) 하부에 깔린 감압센서(S11)를 통해 구동을 입력하여 제어부(101)로 구동 명령을 전달하는 방향 입력부(700), 방향 입력부(700)에서 입력되어 제어부(101)를 통해 전달받은 구동 명령에 의하여 구동되는 모터부(401), 엔코더를 구비하고 있고 모터의 동작 상태를 측정하여 제어부(101)로 전달하는 엔코더부(402), 상부 센서(610) 및 하부 센서(620)를 구비하고 있고 각 상부 센서(610)와 하부 센서(620)을 통해 감지한 외부 정보를 제어부(101)로 입력하는 센서부(601), 그리고 조명을 켜고 끄는 조명 스위치(SW2)를 포함한다.The control system of the omnidirectional walking aid robot shown in Figure 4 is located in the power switch (SW1), the body portion 100 for inputting power, the control unit 101, the control unit 101 for controlling other components by receiving power When the electrical signal is input through the control unit 101 is connected to the brake unit 403 to control the brake, the clutch 420 is connected to output a signal to release the stop state of the brake unit 403 clutch 420 Clutch unit 421 to control the direction, the user inputs the drive via the stick-type button or the pressure-sensitive sensor (S11) laid under the saddle 200, the direction input unit 700 for transmitting a driving command to the control unit 101, Encoder unit having a motor unit 401, an encoder inputted from the direction input unit 700 and driven by a drive command received through the control unit 101 and an encoder, and measuring the operating state of the motor and transmitting the encoder unit to the control unit 101 ( 402, upper sensor 610, and lower sensor And a sensor unit 601 for inputting external information sensed through the upper sensor 610 and the lower sensor 620 to the control unit 101, and an illumination switch SW2 for turning on and off the lights. Include.
사용자가 전원 스위치(SW1)을 통해 전방향 보행보조 로봇에 전원을 입력하면, 제어부(101)에 전원이 공급되고 클러치부(421)에 전기신호를 전달하게 된다.When the user inputs power to the omnidirectional walking assistance robot through the power switch SW1, power is supplied to the controller 101 and an electric signal is transmitted to the clutch unit 421.
이렇게 전기 신호를 전달 받은 클러치부(421)는 클러치(420)를 작동시켜서 클러치(420)로 인해 잠겨있던 브레이크부(403)를 풀게 되어 정지 상태를 풀어주게 된다.The clutch unit 421, which has received the electric signal, operates the clutch 420 to release the brake 403 that is locked by the clutch 420, thereby releasing the stop state.
그 후, 제어부(101)는 방향 입력부(700)에서 입력된 구동 명령을 전달 받아 방향 입력부(700)에 입력된 방향으로 움직이도록 모터부(401)를 구동하는 신호를 출력한다.Thereafter, the control unit 101 receives the driving command input from the direction input unit 700 and outputs a signal for driving the motor unit 401 to move in the direction input to the direction input unit 700.
모터부(401)는 제어부(101)로부터 구동 신호를 전달 받아, 바퀴부(400)에 포함된 모터를 구동시켜서 바퀴(410)를 회전시켜서 전방향 보행보조 로봇을 원하는 방향으로 이동시킨다.The motor unit 401 receives a driving signal from the control unit 101, drives the motor included in the wheel unit 400 to rotate the wheel 410 to move the omnidirectional walking assistance robot in a desired direction.
전방향 보행보조 로봇이 구동할 때, 모터부(401)에 장착된 엔코더부(402)는 모터의 회전량 등과 같은 동작 상태를 감지하여 제어부(101)로 전달한다.When the omnidirectional walking assistance robot is driven, the encoder unit 402 mounted on the motor unit 401 detects an operation state such as an amount of rotation of the motor and transmits it to the control unit 101.
제어부(101)는 엔코더부(402)가 감지한 모터의 동작 상태를 통해 전방향 보행보조 로봇의 현재 이동 속도나 이동량 등을 파악하여, 모터부(401)의 구동 상태를 제어한다.The controller 101 controls the driving state of the motor unit 401 by grasping the current moving speed or the moving amount of the omnidirectional walking robot through the operating state of the motor sensed by the encoder unit 402.
조명 스위치(SW2)는 조도를 감지하여 외부가 밝은 낮 시간과 외부가 어두운 밤 시간의 휘도를 조절하도록 조도 감지 센서로 이루어지는 조명부(110)의 전원을 켜고 끄는 스위치이다.The light switch SW2 is a switch for sensing the illuminance to turn on and off the lighting unit 110 including an illumination sensor to adjust the brightness of the bright daytime and the dark nighttime.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (8)

  1. Y자 형태의 평면 형상으로 배열된 세 개의 돌출 부분을 구비한 몸체부,A body part having three protrusions arranged in a Y-shaped plane shape,
    상기 몸체부 윗면에 형성되며, 사용자가 탑승하는 안장,Is formed on the upper surface of the body portion, the saddle that the user boards,
    상기 몸체부의 세 개의 돌출 부분 하부에 위치하는 세 개의 다리부,Three leg portions located below the three protruding portions of the body portion,
    상기 세 개의 다리부 각각의 단부에 위치하며 이동을 위한 바퀴를 갖는 바퀴부, 그리고A wheel part positioned at an end of each of the three legs and having a wheel for movement; and
    상기 바퀴부의 방향을 제어하는 방향 입력부Direction input unit for controlling the direction of the wheel portion
    를 포함하는 전방향 보행보조 로봇.Omnidirectional walking aids including a.
  2. 제1항에서,In claim 1,
    상기 바퀴부는The wheel part
    상기 바퀴를 구동하기 위한 모터,A motor for driving the wheels,
    상기 모터의 회전 수를 확인하여 이동 속도 및 상기 모터의 구동 상태를 확인하기 위한 엔코더,An encoder for checking a moving speed and a driving state of the motor by checking the rotation speed of the motor,
    상기 바퀴의 이동을 정지시키기 위한 브레이크, 그리고A brake for stopping movement of the wheel, and
    상기 브레이크를 제어하기 위한 클러치Clutch for controlling the brake
    를 포함하는 전방향 보행보조 로봇.Omnidirectional walking aids including a.
  3. 제1항에서,In claim 1,
    상기 바퀴는 4개의 옴니휠(omni wheel) 한 쌍이 맞닿게 구성되는 전방향 보행보조 로봇.The wheel is an omnidirectional walking assistance robot is configured to abut a pair of four omni wheel (omni wheel).
  4. 제1항에서,In claim 1,
    상기 몸체부는 상기 세 개의 돌출 부분의 측면에 위치하고 외부로 빛을 출력하는 적어도 하나의 조명부를 포함하는 전방향 보행보조 로봇.The body part omnidirectional walking robot including at least one lighting unit located on the side of the three protruding portion to output light to the outside.
  5. 제1항에서,In claim 1,
    상기 전방향 보행보조 로봇은 센서부를 더 구비하며,The omnidirectional walking assistance robot further includes a sensor unit,
    상기 센서부는The sensor unit
    상기 세 개의 돌출 부분 각각의 전면부에 위치하며 이동 방향에서 다가오는 장애물을 감지하는 상부 센서, 그리고An upper sensor positioned at a front portion of each of the three protruding portions and detecting an obstacle approaching in a moving direction;
    상기 바퀴부 중 외부면에 상기 바퀴가 이동하는 방향을 바라보게 위치하며 바퀴가 이동 할 때 다가오는 장애물을 감지하는 하부 센서The lower sensor is located on the outer surface of the wheel part to face the direction in which the wheel moves and detects an obstacle coming when the wheel moves.
    를 포함하는 전방향 보행보조 로봇.Omnidirectional walking aids including a.
  6. 제1항에서,In claim 1,
    상기 방향 입력부는 상기 안장 하부에 설치되며, 사용자가 탑승하였을 때 사용자가 몸을 기울여 더 많이 누르는 방향을 구동 방향으로 입력 받는 감압센서로 형성하는 전방향 보행보조 로봇.The direction input unit is installed in the lower portion of the saddle, when the user boards the omnidirectional walking aid robot to form a pressure-sensitive sensor that is input in the driving direction when the user tilts more.
  7. 제1항에서,In claim 1,
    상기 안장은 상기 안장의 왼쪽 및 오른쪽 측면 후부에 형성되어 사용자가 탑승하였을 때 손으로 잡아서 몸을 지지하는 한 쌍의 손잡이를 포함하는 전방향 보행보조 로봇.The saddle is formed on the left and right side rear of the saddle omnidirectional walking aid robot including a pair of handles to support the body by holding the hand when the user boarded.
  8. 제7항에서,In claim 7,
    상기 방향 입력부는 상기 손잡이 중 적어도 한 곳의 상면에 사용자가 손으로 눌러서 구동 방향을 입력하는 버튼으로 형성하는 전방향 보행보조 로봇.The direction input unit omnidirectional walking aid robot is formed by a button for inputting the driving direction by the user by pressing the hand on the upper surface of at least one of the handles.
PCT/KR2014/004569 2013-05-23 2014-05-22 Omnidirectional walking assistant robot WO2014189302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0058275 2013-05-23
KR1020130058275A KR20140137588A (en) 2013-05-23 2013-05-23 Omni-directional walking support robot

Publications (1)

Publication Number Publication Date
WO2014189302A1 true WO2014189302A1 (en) 2014-11-27

Family

ID=51933798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004569 WO2014189302A1 (en) 2013-05-23 2014-05-22 Omnidirectional walking assistant robot

Country Status (2)

Country Link
KR (1) KR20140137588A (en)
WO (1) WO2014189302A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493725A (en) * 2016-10-25 2017-03-15 复旦大学 A kind of industrial robot positioner based on omnidirectional's driven pulley and encoder
CN111113366A (en) * 2020-01-10 2020-05-08 杭州程天科技发展有限公司 Omnidirectional movement general robot carrying mechanical arms

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022293B1 (en) 2018-01-16 2019-09-18 (주)이지원인터넷서비스 Multi legged boarding robot
KR102022294B1 (en) 2018-01-16 2019-09-18 (주)이지원인터넷서비스 Multi legged boarding robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247411A (en) * 2008-04-01 2009-10-29 Soai:Kk Mobile gait training machine and walking assist machine
KR20110065745A (en) * 2009-12-10 2011-06-16 한양대학교 산학협력단 Walk assistance device to use electric power
KR20120060363A (en) * 2010-12-02 2012-06-12 한국기술교육대학교 산학협력단 Walking supporter
KR20120126934A (en) * 2011-05-13 2012-11-21 주식회사 로보테크 intelligent walking assistance robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247411A (en) * 2008-04-01 2009-10-29 Soai:Kk Mobile gait training machine and walking assist machine
KR20110065745A (en) * 2009-12-10 2011-06-16 한양대학교 산학협력단 Walk assistance device to use electric power
KR20120060363A (en) * 2010-12-02 2012-06-12 한국기술교육대학교 산학협력단 Walking supporter
KR20120126934A (en) * 2011-05-13 2012-11-21 주식회사 로보테크 intelligent walking assistance robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493725A (en) * 2016-10-25 2017-03-15 复旦大学 A kind of industrial robot positioner based on omnidirectional's driven pulley and encoder
CN111113366A (en) * 2020-01-10 2020-05-08 杭州程天科技发展有限公司 Omnidirectional movement general robot carrying mechanical arms

Also Published As

Publication number Publication date
KR20140137588A (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2023022319A1 (en) Upper extremity exercise device
WO2014189302A1 (en) Omnidirectional walking assistant robot
CN101803988B (en) Multifunctional intelligent rehabilitation robot for assisting stand and walk
CN107708641B (en) Sitting type walking rehabilitation robot
WO2013012152A1 (en) Kiosk having an automatic height adjustment function
CN210872841U (en) Old and weak patient is with hand formula of intelligence walking aid car
WO2016182324A1 (en) Aid robot for transporting
WO2010047485A2 (en) Wheelchair type robot for walking aid
CN102499828B (en) Old and disabled-assistant bed chair integrated robot
WO2014058241A1 (en) Movable lifting device comprising auxiliary travel system capable of adjusting rotating force
KR101618231B1 (en) System for gait training
KR20120126934A (en) intelligent walking assistance robot
KR101424109B1 (en) apparatus for walking assistance
WO2020166924A1 (en) Sitting-type walking rehabilitation robot having improved entering features
WO2011021743A1 (en) Self-power generation type health game device installed in park, children’s playground and landscape facility
CN206985457U (en) Corridor is ridden instead of walk the article carrying platform of elevator
WO2021091151A2 (en) Patient transfer device
WO2021091196A1 (en) One-wheeled electric skateboard
WO2023121015A1 (en) Electromotive transfer device
KR101926113B1 (en) Zip Line Walking Support and Exercise System
WO2020111629A1 (en) Drifting electric scooter
KR20120056381A (en) An electric walkimg apparatus
CA2206822A1 (en) Improved walking frame
JP2017148167A (en) Movement support device
CN215938201U (en) Old person's anti-falling helps capable ware

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801813

Country of ref document: EP

Kind code of ref document: A1