WO2014188906A1 - 触診用近赤外酸素濃度センサ - Google Patents

触診用近赤外酸素濃度センサ Download PDF

Info

Publication number
WO2014188906A1
WO2014188906A1 PCT/JP2014/062677 JP2014062677W WO2014188906A1 WO 2014188906 A1 WO2014188906 A1 WO 2014188906A1 JP 2014062677 W JP2014062677 W JP 2014062677W WO 2014188906 A1 WO2014188906 A1 WO 2014188906A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
oxygen concentration
palpation
light emitting
light receiving
Prior art date
Application number
PCT/JP2014/062677
Other languages
English (en)
French (fr)
Inventor
尚裕 金山
雅嗣 庭山
Original Assignee
国立大学法人浜松医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人浜松医科大学 filed Critical 国立大学法人浜松医科大学
Priority to JP2015518190A priority Critical patent/JP6344725B2/ja
Priority to US14/892,683 priority patent/US20160089067A1/en
Publication of WO2014188906A1 publication Critical patent/WO2014188906A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1464Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters specially adapted for foetal tissue

Definitions

  • the present invention relates to a near-infrared oxygen concentration sensor that measures at least one of oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, and oxygen saturation in a human body using near-infrared light.
  • the present invention relates to a near-infrared oxygen concentration sensor for palpation having a structure suitable for use during palpation.
  • ⁇ Stress such as labor and labor may cause the fetus to fall into hypoxemia, resulting in fetal dysfunction, and in severe cases, neonatal hypoxia encephalopathy may lead to cerebral palsy. Therefore, monitoring fetal oxygen dynamics is the best way to know fetal status.
  • Near-infrared spectroscopy is a conventional technique for measuring oxygen saturation in a non-invasive manner, and methods have been attempted in the past to visually observe the oxygen dynamics of the fetus using this near-infrared ray. Specifically, a method is known in which a 4 cm long light transmitter and a light receiver are passed along the cervical canal and attached to the forehead from the head of the fetus after water breakage (Patent Document 1).
  • Patent Documents 2 and 3 In the case of a near-infrared oxygen concentration sensor, reliable contact between the sensor and the surface of the subject is extremely important, and many techniques for measuring from outside the body are known (Patent Documents 2 and 3). It is difficult to use for measurement of a body cavity site. Further, an ultrasonic diagnostic apparatus for palpation is known as a diagnostic apparatus used at the time of palpation (Patent Document 4), but it is difficult to use the sensor itself without losing the operability of palpation. In addition, the oxygen concentration cannot be measured with ultrasonic waves. Patent Document 5 describes a technique for attaching an optical sensor to a finger in order to obtain a volume pulse wave.
  • Patent Document 5 does not measure the oxygen concentration at the palpation site, it does not describe the blocking of the oxygen concentration information on the multi-wavelength light source or the user's finger side. Moreover, since patent document 5 is a blood pressure meter, a pressure sensor is essential.
  • the pulse oximeter for fetuses disclosed in Patent Document 1 inserts a sensor into the womb from the outside, so that it is difficult to reliably contact the fetal skin and there is a risk of infection and the like.
  • the near-infrared oxygen concentration sensors disclosed in Patent Documents 2 and 3 are measured from outside the body, and cannot be used as they are for measuring the oxygen concentration at a site in the body cavity.
  • the ultrasonic probe for palpation disclosed in Patent Document 4 is a diagnosis using ultrasonic waves, and cannot measure the oxygen concentration at a site in a body cavity.
  • Patent Document 4 since Patent Document 4 has a structure in which an ultrasonic probe that is relatively large compared to the size of the fingertip is attached to the fingertip, the operability of palpation may be impaired.
  • the present invention has been made in order to solve the above-described problems, and while ensuring the contact of the sensor with the measurement target site while minimizing the influence on the operability of palpation, It is an object of the present invention to provide an oxygen concentration sensor for palpation that reliably measures oxyhemoglobin concentration, deoxygenated hemoglobin concentration, oxygen saturation, and the like.
  • a near-infrared oxygen concentration sensor for palpation which is attached to the finger pad on the tip side from the first joint of the user's finger and for measuring the oxygen concentration of the site to be palpated during palpation,
  • a base material attached to the finger pad;
  • a light emitting means that is provided on the substrate and irradiates the subject with light of at least two wavelengths including near infrared light;
  • a light receiving means provided on the base material for receiving measurement light from the light emitting element via the subject; and Light shielding means provided at least between the light emitting means or the light receiving means and the finger pad;
  • a near infrared oxygen concentration sensor for palpation which is attached to the finger pad on the tip side from the first joint of the user's finger and for measuring the oxygen concentration of the site to be palpated during palpation,
  • a base material attached to the finger pad;
  • a light emitting means that is provided on the substrate and irradiates the subject with light of at least two wavelengths including near infrared light;
  • the index finger or the middle finger can be suitably used as the finger, but is not limited thereto.
  • the finger pad is a portion where there is a fingerprint on the surface on the tip side from the first joint of the finger and on the side opposite to the nail.
  • the substrate may be a flat substrate, but is not limited thereto.
  • As the light emitting means an LED can be suitably used. However, the light emitting means is not limited to this, and the light emitting means may be guided from the outside by an optical fiber or the like.
  • the wavelength of light emitted from the light emitting means can be preferably 735 nm and 870 nm, but is not limited to this as long as the oxygen concentration in the body tissue can be measured.
  • a photodiode or a phototransistor can be suitably used as the light receiving means, but the light receiving means is not limited to this, and the light receiving element may be disposed at a distance from the optical fiber.
  • the light shielding means prevents the measurement light passing through the user's finger from being guided to the light receiving means.
  • the light shielding means may be made of any material as long as it does not receive the measurement light from the user's finger. For example, a black rubber material is used.
  • the light shielding means may be provided separately from the base material, or the base material itself may have a light shielding performance. There may be one or more light emitting means. Further, the light receiving means may be one or plural.
  • the minimum distance between the light emitting means and the light receiving means is 3 mm or more, and the maximum distance is 15 mm or less.
  • the minimum distance is the distance between the combination of the light emitting means and the light receiving means having the shortest distance when there are a plurality of light emitting means or light receiving means, and the light emitting means or the light receiving means has a predetermined area.
  • the maximum distance is the distance between the combination of the light emitting means and the light receiving means having the longest distance when there are a plurality of light emitting means or light receiving means, and the light emitting means or the light receiving means has a predetermined area.
  • the surface in contact with the subject of the near-infrared oxygen concentration sensor for palpation may be flat or may have a concavo-convex structure from which light emitting means, light receiving means, etc. protrude.
  • body light fetal hair, etc.
  • the sensor surface may be flat, and an optimal one may be selected according to the application.
  • the present invention has a specific configuration for attaching to the finger pad on the distal end side from the first joint of the user's finger, and the sensor portion is brought into contact with the measurement target site in the body cavity without impairing the operability of palpation.
  • the oxygen concentration in the tissue at the site can be measured.
  • the maximum distance between the light emitting means and the light receiving means is preferably 15 mm or less.
  • the distance between the light emitting means and the light receiving means is required to be a certain distance or more in order to acquire information in the tissue.
  • the sensor portion Is about 40 mm, but in the present invention, the maximum distance of 15 mm or less is realized by adding a device to the algorithm for calculating the oxygen concentration.
  • the present invention is for palpation, it is generally used by wearing transparent or translucent diagnostic gloves that transmit near infrared rays.
  • the present invention by setting the minimum distance between the light emitting means and the light receiving means to 3 mm or more and using a glove that transmits near infrared rays, light from the light emitting means is directly guided to the light receiving means through the glove. It prevents that.
  • the present invention can be suitably used for measuring the fetal oxygen concentration by contacting the fetal scalp in the uterus. Doctors frequently perform internal examinations to check the progress of labor, and always make a medical examination by touching the scalp of the fetus. At this time, by attaching the near-infrared oxygen concentration sensor for palpation of the present invention to the fingertip, the sensor can be reliably brought into contact with the scalp of the fetus, and the oxygen concentration of the fetus can be measured. Since the sensor of the present invention is extremely small, it is possible to perform a diagnosis and an oxygen concentration measurement by the same technique as a normal internal examination.
  • the present invention can be used anywhere as long as the doctor can touch it with a finger in addition to the fetus in the uterus.
  • it can be used in a body cavity (in the oral cavity, rectum, etc.) or a site during surgery (for example, heart). If used during surgery for myocardial infarction, it is possible to determine where in the heart the oxygen concentration is reduced.
  • all organs in the abdominal cavity and thoracic cavity that can be touched by the doctor during the operation are targeted. For example, the liver, stomach, spleen, pancreas, intestine, and the like can be measured.
  • part can be identified and the oxygen concentration of the site
  • Computation means for calculating at least one of oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration and oxygen saturation of the subject based on the measurement light from the light receiving means.
  • the total of the light emitting means and the light receiving means is 3 or more
  • the calculation means calculates at least one of oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, and oxygen saturation of the subject based on a plurality of measurement lights of the distance between the light emitting means and the light receiving means. Since there are one or more light emitting means and one light receiving means, the combination of three or more light emitting means and light receiving means is a combination of one light emitting means, a plurality of light receiving means, a plurality of light emitting means, and a light receiving means. There may be one or a plurality of light emitting means and light receiving means.
  • the combination of the light emitting means and the light receiving means is preferably one light emitting means and a plurality of light receiving means, more preferably one light emitting means and two light receiving means. If there are a plurality of light emitting means, it is easy to be affected by variations in the elements of the light emitting means itself.
  • the present invention can also be used as a pulse oximeter, but more preferably, the spatial inclination based on the measurement light of the distances between the light emitting means and the light receiving means as described in Patent Documents 2 and 3.
  • An operation for obtaining S to determine the absorbance in the tissue can be used.
  • the pulse oximeter can measure only the oxygen concentration in a portion with a large pulsation (for example, an artery), but if the calculation uses the spatial slope S, the oxygen concentration can be measured even in a portion with a small pulsation, such as a body surface tissue. It is possible to more reliably measure the oxygen concentration. In particular, it is effective in measuring the fetal oxygen concentration, which may cause hypoxemia.
  • the spatial gradient S not only the oxygen saturation but also the absolute values of the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration can be measured, so that more diagnostic information can be obtained.
  • this invention has the following preferable embodiments.
  • the minimum distance between the light emitting means and the light receiving means is 3 mm or more, and the maximum distance is 15 mm or less.
  • a fixing means for fixing the base material to the finger pad may be anything as long as it can relatively fix the base material and the finger pad.
  • Preferable examples include fixing with an adhesive tape, fixing with a band, fixing a base material to a finger sack fitted on a finger, and the like.
  • the fixing means may also serve as the light shielding means.
  • this invention has the following preferable embodiments. At least the part including the base material, the light emitting means and the light receiving means is disposable. Since the sensor of the present invention can be used by being inserted into the body cavity of the subject, the risk of infection can be prevented by disposing at least the part to be inserted into the body cavity.
  • the near infrared density sensor for palpation is used by wearing gloves that transmit near infrared light
  • the computing means has means for canceling the influence of the glove on the measuring light.
  • the gloves that transmit near-infrared light are, for example, transparent or white, and plastic or vinyl can be used.
  • the gloves are interposed between the sensor unit and the measurement target part. Since the pulse oximeter calculates the fluctuation due to pulsation, the effects of gloves can be canceled.
  • the spatial inclination S if the light emitting means and the light receiving means are sufficiently separated (3 mm or more), the amount of light absorbed by the glove does not depend on the distance. The effect of gloves can be removed from the measurement light.
  • this invention has the following preferable embodiments.
  • a flat cable is used as the signal cable connected to the light emitting means and the light receiving means.
  • the oxygen concentration (oxygenated hemoglobin concentration) of the part is ensured in the palpation oxygen concentration sensor while ensuring the contact of the sensor with the part to be measured while minimizing the influence on the operability of palpation , Deoxygenated hemoglobin concentration, oxygen saturation, etc.) can be measured.
  • the side view of the embodiment of the present invention. 1 is an external view of an embodiment of the present invention.
  • 1 is a system diagram of an embodiment of the present invention. Explanatory drawing of the measurement light propagation path in embodiment of this invention.
  • FIG. 1 is a front view of a near-infrared oxygen concentration sensor for palpation according to the present embodiment
  • FIG. 2 is a side view of the sensor main body 1
  • FIG. 3 is a diagram when the near-infrared oxygen concentration sensor for palpation according to the present embodiment is attached to a finger.
  • the sensor main body 1 has a shape and a size that fits on the finger pad 13 of the finger of the user (doctor or the like) (on the tip side of the first joint), and is fixed to the finger pad 13 of the user.
  • the A flexible flat cable 7 is led out from the sensor body 1 and connected to a connector (not shown) on the palm side from the base of the finger. The flat cable can be passed through the back of the finger.
  • the sensor body 1 Since the sensor body 1 has a shape and size that fits in the finger pad 13 of the user, the user can measure the oxygen concentration of the touched part without impairing the sense and operability of palpation.
  • wear gloves used for medical examinations The glove is not particularly limited as long as it can transmit near-infrared rays, and transparent, translucent, and white are used.
  • the sensor body 1 includes a substrate 2, a light shield 3 provided on the back side of the substrate 2, a light emitting element 4 disposed on the substrate 2, and light emission disposed on the substrate 2.
  • a first light receiving element 5a disposed at a predetermined distance from the element 4, a second light receiving element 5b disposed on the substrate 2 and disposed away from the first light receiving element 5a with respect to the light emitting element 4, and light emission It consists of the 1st light shielding wall 6a and the 2nd light shielding wall 6b arrange
  • a flat cable 7 is connected to the substrate 2 of the sensor body 1 and is connected to a sensor control device 8 which will be described later.
  • the substrate 2 is made of epoxy or polyimide as a material.
  • a flexible substrate is preferable in order to improve the contact property to the surface of the subject, but a rigid substrate may be used if the sensor body 1 is sufficiently small.
  • the size may be any size as long as it fits in the user's finger pad, but in this embodiment, the length is about 10 mm and the width is about 5 mm.
  • the light shield 3 is for preventing oxygen concentration information of the user's finger from reaching the sensor body 1. Since the sensor body 1 is thin and attached to the user's finger, there is a possibility that the light from the light emitting element 4 may be irradiated to the user's finger. When the irradiated light is received by the light receiving element 5, the oxygen concentration information of the user is also mixed.
  • a light shield 3 is provided between the sensor body 1 and the user's finger pad to shield light information from the user's finger. Since the measurement light from the user's finger does not have to reach the light receiving element 5, various measures such as shielding only the back side of the light emitting element 4, shielding only the back side of the light receiving element 5, and shielding the entire back surface of the substrate 2. Can be considered. Further, by using a light shielding material for the substrate 2, the substrate 2 itself may also serve as a light shielding body. In the present embodiment, a black rubber material is used as the material of the light shielding body 3, but the material is not limited to this as long as the material has a light shielding performance.
  • the light emitting element 4 is an LED that emits light having wavelengths of 735 nm and 870 nm. Any light source capable of irradiating at least two wavelengths of light into the subject may be used.
  • the light receiving element 5 uses a photodiode, and the distance between the light emitting element 4 and the first light receiving element 5a (first distance d 1 ) is about 6 mm, and the light receiving element 4 and the second light receiving element 5b The distance (second distance d 2 ) is about 8 mm.
  • the light receiving element 5 may be anything as long as it can receive light from inside the subject.
  • the light shielding wall 6 is provided between the light emitting element 4 and the light receiving element 5 to prevent direct light from the light emitting element 4 from being detected by the light receiving element 5.
  • the light emitting element 4 The first light shielding wall 6a is disposed on the side close to the first light receiving wall, and the second light shielding wall 6b is disposed on the side closer to the first light receiving element 5a.
  • the flat cable 7 is used for connecting an electronic circuit, for example, polyimide. It may be connected to the substrate 2 with a connector or the like, or may be integrated with the substrate 2.
  • the end portion of the flat cable 7 opposite to the sensor body 1 is connected to a connector (not shown) in the palm portion beyond the base of the finger.
  • the position of the connector may be anywhere as long as it does not interfere with palpation, and may be provided on the arm at the tip of the palm.
  • the connector is connected to the sensor control device 8 which will be described later.
  • the flat cable 7 has a width of about 3 mm.
  • the near-infrared oxygen concentration measurement system includes a sensor control device 8 connected to the sensor body 1 and controlling the sensor body 1, and a signal connected to the sensor control device 8 and analyzed from the sensor control device 8 to analyze the oxygen concentration. And the like, a display device 10 that displays the oxygen concentration calculated by the arithmetic device 9, and an input device 11 that inputs parameters and the like to the arithmetic device 9.
  • the sensor control device 8 includes a driver for driving the light emitting element 4 and an amplifier for amplifying a signal from the light receiving element 5.
  • the light emission timing of the light emitting element 4 and the light reception timing of the light receiving element 5 may be controlled by the sensor control device 8 or the arithmetic device 9. Digitization of the analog signal from the light receiving element 5 may be performed by either the sensor control device 8 or the arithmetic device 9.
  • a PC personal computer or the like is used as the arithmetic device 9, but it may be integrated with the sensor control device 8 to be a dedicated machine.
  • the arithmetic unit 9 may use a pulse oximeter method for obtaining an oxygen saturation or the like from a change in absorbance due to pulsation, or an oxygenated hemoglobin concentration, a deoxygenated hemoglobin concentration, an oxygen saturation using a spatial gradient described later.
  • a spatial tilt method for obtaining degrees or the like may be used.
  • the display device 10 may be anything as long as it can display the calculation result, and an LCD or the like is used.
  • the input device 11 may be any device that can input, and a keyboard, a mouse, a touch panel, or the like is used.
  • a spatial gradient method which is an oxygen concentration calculation method suitably used in this embodiment, will be described with reference to FIG.
  • the calculation of this algorithm is executed by the calculation device 9.
  • the light irradiated from the light emitting element 4 passes through the optical path a 0 in the glove 12 and is irradiated to the tissue of the subject.
  • the light irradiated to the tissue of the subject is absorbed and scattered in the tissue, passes through the optical path b 1 and the optical path b 2, passes through the optical path a 1 and the optical path a 2 in the glove 12, and then the first light receiving element.
  • the light is received by 5a and the second light receiving element 5b.
  • the optical path b 1 and the optical path b 2 are illustrated in a linear shape, but in reality, the light path is complicated because it propagates while being scattered in the tissue.
  • the light-shielding body 3 is provided on the user's finger side to prevent the irradiation light from the light-emitting element 4 from being propagated through the user's finger tissue and guided to the light-receiving element 5.
  • the spatial gradient method was found by diffusion theory and various simulations that one of the inventors of the present application can express the light absorption coefficient in human tissue as a function of the spatial gradient S.
  • the absorption coefficient of light in the tissue is obtained using a lookup table or the like. Therefore, if the absorption coefficient for each wavelength is obtained, the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration can be calculated, It is also possible to calculate the oxygen saturation, which is the ratio between the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration.
  • the distance between the light emitting element 4 and the light receiving element 5 is shorter than that in the prior art (for example, 15 mm or less), an improved algorithm using the transport theory may be used.
  • the near-infrared oxygen concentration sensor for palpation of this embodiment is used by wearing gloves 12 in an actual usage pattern.
  • the glove 12 is interposed between the light emitting element 4 and the light receiving element 5 as shown in FIG. 5 and affects the light reception signal.
  • the distance between the light emitting element 4 and the light receiving element 5 is sufficiently long (for example, 3 mm or more)
  • the optical path a 0 , the optical path a 1, and the optical path a 2 are all perpendicular to the light emitting surface and the light receiving surface.
  • These optical path lengths can be regarded as the same length. If these pieces of information are used, it is possible to cancel the influence of the gloves 12.
  • 1 sensor body, 2: substrate, 3: light shield, 4: light emitting element, 5a: first light receiving element, 5b: second light receiving element, 6a: first light shielding wall, 6b: second light shielding wall, 7: flat Cable: 8: Sensor control device, 9: Computing device, 10: Display device, 11: Input device, 12: Gloves, 13: Finger pad

Abstract

触診の操作性への影響を最小限にしつつ、測定対象部位へのセンサの接触を確実にして、当該部位の酸素濃度(酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、酸素飽和度など)を確実に測定する触診用酸素濃度センサを提供する。 使用者の手指の第一関節より先端側の指腹に取り付けられる触診用近赤外酸素濃度センサ1であって、指腹に取り付けられる基材2と、基材に設けられ、近赤外光を含む少なくとも2波長の光を被検体に照射する発光手段4と、基材に設けられ、発光素子から被検体を経由した測定光を受光する受光手段5a,5bと、少なくとも発光手段又は受光手段と指腹との間に設けられ、使用者の指を経由した測定光が受光手段が導かれないようにする遮光手段3と、を有し、発光手段と前記受光手段との間の最小距離が3mm以上であり、最大距離が15mm以下である。

Description

触診用近赤外酸素濃度センサ
 近赤外光を用いて、人体内の酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度及び酸素飽和度の少なくともいずれか1つを測定する近赤外酸素濃度センサに関する。特に、触診時に用いるのに適した構造を有する触診用近赤外酸素濃度センサに関する。
 分娩時や陣痛等のストレスにより、胎児が低酸素血症に陥り胎児機能不全となることがあり、重篤な場合は新生児低酸素脳症になって脳性麻痺に至ることもある。したがって、胎児の酸素動態をモニタリングすることは胎児の状態を知る最善の方法である。非侵襲的に酸素飽和度を測定する従来技術として近赤外線分光法があり、この近赤外線を用いて胎児の酸素動態を経腟的に見る方法は過去に試みられてきた。具体的には、破水後、4cm長の送光部と受光部のセンサを子宮頸管に沿って通過させ胎児の頭部から前額部に装着する方法が知られている(特許文献1)。
 しかしながら、子宮内にセンサを挿入すると感染などの危険性の問題、また胎児の前額部にうまく接着しないことも多いこと、また分娩の進行に伴って胎児が下降しセンサがずれてしまい測定できなくなってしまうことなど問題点も多く、臨床応用に至っていない。胎児皮膚へ簡便、確実に装着できる方法、さらに胎児の下降に関係なく測定できる方法が求められている。また、子宮内の胎児の酸素濃度の測定のほか、体腔内(口腔内や直腸など)の部位や、手術中の部位(心臓など)の酸素濃度を簡便かつ確実に測定する方法が求められている。
 近赤外酸素濃度センサの場合、センサと被検体表面との確実な接触が極めて重要であり、体外から測定する技術は多く知られているが(特許文献2、3)、これらの技術をそのまま体腔内部位の測定に用いることは困難である。また、触診時に用いられる診断装置として触診用超音波診断装置が知られているが(特許文献4)、センサ自体が大きく触診の操作性を損なわずに用いることは難しい。また、超音波では酸素濃度を測定することはできない。
 特許文献5には、容積脈波を求めるために、手指に光センサを取り付ける技術が記載されている。しかしながら、特許文献5は、触診部位の酸素濃度を測定するものではないため、複数波長光源や使用者の手指側の酸素濃度情報の遮断などについて記載されていない。また、特許文献5は血圧計であるため、圧力センサが必須である。
特開平04-226639 国際公開2007/139192 国際公開2012/115210 特開平02-307437 特開2006-239114
 特許文献1に示された胎児用のパルスオキシメータは、外部から子宮内にセンサを挿入するものであるため、胎児皮膚に確実に接触させることが難しく、また感染などの危険性がある。特許文献2及び3に示された近赤外酸素濃度センサは体外から測定するものであり、そのままでは体腔内の部位の酸素濃度の測定には使うことができない。特許文献4に示された触診用超音波探触子は、超音波を用いた診断であり、体腔内の部位の酸素濃度を測定することはできない。また、特許文献4では指先の大きさに比べて比較的大きな超音波探触子を指先に取り付ける構造であるため、触診の操作性を損なってしまう恐れがある。
 本発明は上記問題点を解決するためになされたものであり、触診の操作性への影響を最小限にしつつ、測定対象部位へのセンサの接触を確実にして、当該部位の酸素濃度(酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、酸素飽和度など)を確実に測定する触診用酸素濃度センサを提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
 使用者の手指の第一関節より先端側の指腹に取り付けられ、触診時に触診対象部位の酸素濃度を測定するための触診用近赤外酸素濃度センサであって、
 前記指腹に取り付けられる基材と、
 前記基材に設けられ、近赤外光を含む少なくとも2波長の光を被検体に照射する発光手段と、
 前記基材に設けられ、前記発光素子から前記被検体を経由した測定光を受光する受光手段と、
 少なくとも前記発光手段又は前記受光手段と前記指腹との間に設けられる遮光手段と、
を有する
触診用近赤外酸素濃度センサ。
 前記手指は人差し指又は中指が好適に用いられ得るが、これに限定されるものではない。
 前記指腹は手指の第一関節より先端側で爪とは反対側の面で指紋がある部分である。
 前記基材は平板状の基板が好適に用いられ得るが、これに限定されるものではない。
 前記発光手段はLEDが好適に用いられ得るが、これに限定されず、光ファイバなどで外部から導光しても構わない。
 前記発光手段から照射される光の波長は735nm及び870nmが好適に用いられ得るが、体内組織中の酸素濃度が測定できるものであればこれに限定されるものではない。
 前記受光手段はフォトダイオード又はフォトトランジスタが好適に用いられ得るが、これに限定されず、光ファイバなどを介在させて受光素子を離れたところに配置しても構わない。
 前記遮光手段は、使用者の指を経由した測定光が受光手段に導かれないようにするものである。
 前記遮光手段については、使用者の指からの測定光を受光しないようにできれば材質は何でもよく、例えば黒色のゴム材などが用いられる。また、前記遮光手段は前記基材と別に設けても良いし、前記基材そのものが遮光性能を有していても良い。
 前記発光手段は1つでも良いし、複数でもよい。また、前記受光手段も1つでも良いし、複数でもよい。
 前記発光手段と前記受光手段との間の最小距離が3mm以上であり、最大距離が15mm以下であることが好ましい。
 前記最小距離は、発光手段又は受光手段が複数ある場合は、最も距離の小さい発光手段と受光手段との組み合わせ間の距離であり、発光手段又は受光手段が所定の面積を有している場合は、発光手段と受光手段の端部間の最小距離である。
 前記最大距離は、発光手段又は受光手段が複数ある場合は、最も距離の大きい発光手段と受光手段との組み合わせ間の距離であり、発光手段又は受光手段が所定の面積を有している場合は、発光手段と受光手段の端部間の最大距離である。
 前記触診用近赤外酸素濃度センサの被検体と接触する面は、平坦でも良いし、発光手段や受光手段などが突出した凹凸構造を有していても良い。センサ表面が凹凸構造を有していると、触診の際に体毛(胎児の頭髪など)をかき分けて発光手段及び受光手段を被検体表面に接触させることができ、操作性が増す。一方で、測定対象部位によってはセンサ表面は平坦の方が良い場合もあり、用途に応じて最適な方を選択すれば良い。
 本発明は、使用者の手指の第一関節より先端側の指腹に取り付けるための特有の構成を有しており、触診の操作性を損なわずにセンサ部分を体腔内の測定対象部位に接触させて当該部位の組織内の酸素濃度を測定することができる。具体的には、センサ部分(発光手段及び受光手段)の裏側(使用者の指側)に遮光手段を設けることにより、使用者の組織内から情報を遮断して、被検体からの情報のみを取得できるようにしている。また、指腹に取り付けるために、発光手段と受光手段との最大距離を15mm以下にすることが好ましい。発光手段と受光手段との間の距離は組織内の情報を取得するために一定距離以上で必要であり、特許文献1に対応する市販の胎児用パルスオキシメータ(NEELCOR社、Oxifirst)ではセンサ部分の長さは約40mmであるが、本発明では酸素濃度を演算するアルゴリズムに工夫を加えることにより最大距離15mm以下を実現している。さらに、本発明は触診用であるため一般的に近赤外線が透過する透明あるいは半透明の診察用手袋を着用して使用される。本発明では、発光手段と受光手段との間の最小距離を3mm以上にすることと、近赤外線が透過する手袋の使用により、発光手段からの光が手袋内を通って受光手段に直接導かれることを防いでいる。
 本発明は、子宮内の胎児の頭皮に接触させて胎児の酸素濃度を測定するのに好適に用いられ得る。医師は分娩進行状態を診るために頻繁に内診を行い、内診の際には必ず胎児の頭皮に触れて診察をする。この際に、本発明の触診用近赤外酸素濃度センサを指先に取り付けることで、胎児の頭皮にセンサを確実に接触させることでき、胎児の酸素濃度を測定することができる。本発明のセンサは極めて小型であるので、通常の内診による診察と同じ手技で診察及び酸素濃度測定を行うことが可能である。
 なお本発明は、子宮内の胎児の他、医師が指で触れることが可能な部位であればどこにでも用いることができる。例えば、体腔内(口腔内、直腸など)の部位や、手術中の部位(例えば、心臓など)に用いることができる。心筋梗塞の手術中に用いれば、心臓のどこの部分の酸素濃度が低下しているかを把握することが可能である。そのほか、医師が手術中に触れることができる腹腔内や胸腔内のすべての臓器が対象になり、例えば、肝臓、胃、脾臓、膵臓、腸などが測定対象になり得る。また、口腔内や腋窩などで用いれば、脳に近い部分の酸素濃度を直接測定することができ、特に従来の指に装着するパルスオキシメータでは測定困難であった重篤患者の状態を素早く診断することができる。さらに、医師が触れながら部位を特定してその部位の酸素濃度を測定できることから、体表のどの部位の皮膚上からでも用いることができる。例えば、新生児の皮膚の部位別酸素動態の把握などにも用いることが可能である。
 また、本発明は以下の好ましい実施態様を有する。
 前記受光手段からの測定光に基づいて、前記被検体の酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度及び酸素飽和度の少なくともいずれか1つを算出する演算手段を有する。
 また、本発明は以下の好ましい実施態様を有する。
 前記発光手段及び前記受光手段の合計が3個以上であり、
 前記演算手段は、複数の発光手段-受光手段間距離の測定光に基づいて、前記被検体の酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度及び酸素飽和度の少なくともいずれか1つを算出する。
 発光手段と受光手段はそれぞれ1個以上あるので、発光手段と受光手段の合計が3個以上となる組み合わせは、発光手段が1個で受光手段が複数個、発光手段が複数個で受光手段が1個、又は、発光手段も受光手段も複数個があり得る。発光手段と受光手段の組み合わせは、好ましくは発光手段が1個で受光手段が複数個、さらに好ましくは発光手段が1個で受光手段が2個である。発光手段が複数個だと発光手段自体の素子のばらつきの影響を受けやすくなるので発光手段は1個で受光手段を複数個とするのが好ましい。
 本発明はパルスオキシメータとしても使用可能であるが、より好適には、特許文献2及び3に記載されているような、複数の発光手段-受光手段間距離の測定光に基づいて空間的傾きSを求めて組織内の吸光度を求める演算が用いられ得る。パルスオキシメータでは脈動の大きな部分(例えば動脈など)の酸素濃度しか測れないが、空間的傾きSを用いる演算であれば、脈動の小さい部分でも酸素濃度を測定することができ、体表組織などの酸素濃度をより確実に測定することができる。特に、低酸素血症の恐れがある胎児の酸素濃度の測定には有効である。さらに、空間的傾きSを用いる演算では、酸素飽和度だけではなく、酸素化ヘモグロビン濃度と脱酸素化ヘモグロビン濃度の絶対値が測定できるため、より多くの診断情報を得ることができる。
 また、本発明は以下の好ましい実施態様を有する。
 前記発光手段と前記受光手段との間の最小距離が3mm以上であり、最大距離が15mm以下である。
 また、本発明は以下の好ましい実施態様を有する。
 前記基材を前記指腹に固定する固定手段を有する。
 前記固定手段は、前記基材と前記指腹とを相対的に固定できるものであれば何でも良い。好適例としては、粘着テープにより固定する、バンドにより固定する、指に嵌める指サックに基材を固定する、などがある。また、前記固定手段が前記遮光手段を兼ねていても良い。
 また、本発明は以下の好ましい実施態様を有する。
 少なくとも、前記基材、前記発光手段及び前記受光手段を含む部分はディスポーザブルである。
 本発明のセンサは被検体の体腔内に挿入して用いられ得るため、少なくとも体腔内に挿入する部分についてはディスポーザブルにすることにより感染症の危険を防ぐことができる。
 また、本発明は以下の好ましい実施態様を有する。
 前記触診用近赤外濃度センサは近赤外光を透過する手袋を着用して使用されるものであり、
 前記演算手段は、前記手袋による測定光への影響をキャンセルする手段を有する。
 近赤外光を透過する手袋は、例えば、透明又は白色で、プラスチック製やビニール製が用いられ得る。
 手袋を着用するとセンサ部と測定対象部位との間に手袋が介在することになる。パルスオキシメータでは脈動による変動分を算出しているので手袋による影響をキャンセルできる。空間的傾きSを用いる演算では、発光手段と受光手段とが十分に離れていれば(3mm以上)、手袋による光の吸収量は距離に依存しなくなるので、複数の発光手段-受光手段間距離の測定光から手袋による影響を取り除くことができる。
 また、本発明は以下の好ましい実施態様を有する。
 前記発光手段及び前記受光手段に接続される信号ケーブルにはフラットケーブルが用いられる。
 本発明は上記構成により、触診用酸素濃度センサにおいて、触診の操作性への影響を最小限にしつつ、測定対象部位へのセンサの接触を確実にして、当該部位の酸素濃度(酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、酸素飽和度など)を測定することができる。
本発明の実施形態の正面図。 本発明の実施形態の側面図。 本発明の実施形態の外観図。 本発明の実施形態のシステム図。 本発明の実施形態における測定光伝搬経路の説明図。
 以下、図面とともに本発明に係る触診用近赤外酸素濃度センサの好適な実施形態について説明する。
 図1は本実施形態の触診用近赤外酸素濃度センサの正面図、図2はセンサ本体1の側面図、図3は本実施形態の触診用近赤外酸素濃度センサを指に装着した際の外観図である。
 図3に示すように、センサ本体1は使用者(医師等)の手指の指腹13(第一関節よりも先端側)に収まる形状及び大きさであり、使用者の指腹13に固定される。センサ本体1からはフレキシブルなフラットケーブル7が導出されており、指の付け根より手のひら側のコネクタ(図示せず)に接続されている。フラットケーブルは指背を通すことも可能である。センサ本体1が使用者の指腹13に収まる形状及び大きさであるので、使用者は触診による感覚や操作性を損なうことなく、触っている部位の酸素濃度を測定することができる。実際に使用する際には、診察などに用いられる手袋を着用して使用する。手袋は近赤外線を透過できるものであれば良く、透明、半透明、白色のものが用いられる。
 図1及び図2に示すように、センサ本体1は、基板2と、基板2の裏面側に設けられた遮光体3と、基板2に配置された発光素子4と、基板2に配置され発光素子4とは所定の距離離れて配置された第1受光素子5aと、基板2に配置され発光素子4に対して第1受光素子5aよりも離れて配置された第2受光素子5bと、発光素子4と第1受光素子5aとの間に配置された第1遮光壁6a及び第2遮光壁6b、とからなる。センサ本体1の基板2にはフラットケーブル7が接続されており後ほど説明するセンサ制御装置8に接続されている。
 基板2は材質としてエポキシやポリイミドなどが用いられる。被検体表面への接触性を良くするためフレキシブルな基板が好ましいが、センサ本体1が十分に小さければ硬性の基板でも構わない。大きさは使用者の指腹に収まる大きさであればいいが、本実施形態では長さ約10mm、幅約5mmである。
 遮光体3は、使用者の指の酸素濃度情報がセンサ本体1に届かないようにするためものである。センサ本体1は薄く、また使用者の指に取り付けられるため、使用者の指に発光素子4からの光が照射されてしまう可能性がある。照射された光が受光素子5で受光されると使用者の酸素濃度情報も混ざってしまう。そのために、センサ本体1と使用者の指腹との間に遮光体3を設けて、使用者の指からの光情報を遮蔽する。使用者の指からの測定光が受光素子5に届かなければ良いため、発光素子4の裏側だけを遮蔽する、受光素子5の裏側だけを遮蔽する、基板2の裏面全面を遮蔽するなどの種々の配置が考えられる。また、基板2に遮光材料を用いることで基板2自体が遮光体を兼ねても良い。本実施形態では、遮光体3の材質として黒色のゴム材を用いているが、遮光性能をもつ材質であればこれに限られない。
 発光素子4は、本実施形態では735nmと870nmの波長の光を照射するLEDを用いている。少なくとも2波長の光を被検体内部に照射できる光源であれば何でも良い。
 受光素子5は、本実施形態ではフォトダイオードを用いており、発光素子4と第1受光素子5aとの間(第1距離d)は約6mm、発光素子4と第2受光素子5bとの間(第2距離d)は約8mmである。受光素子5は、被検体内部からの光を受光できるものであれば何でも良い。
 遮光壁6は、発光素子4と受光素子5との間に設けられ、発光素子4からの直接光が受光素子5で検出されるのを防ぐためのもので、本実施形態では、発光素子4に近い側に第1遮光壁6aが配置されており、第1受光素子5aに近い側に第2遮光壁6bが配置されている。
 フラットケーブル7は、電子回路の接続などに用いられるもので、例えばポリイミドなどが用いられる。基板2にコネクタ等で接続しても良いし、基板2と一体でも良い。フラットケーブル7のセンサ本体1とは反対側の端部は、指の付け根より先の掌部にあるコネクタ(図示せず)に接続される。コネクタの位置は触診の邪魔にならなければどこでも良く、掌の先の腕の部分に設けても良い。コネクタから先は、後ほど説明するセンサ制御装置8に接続される。本実施形態では、フラットケーブル7の幅は約3mmである。
 図4を用いて本実施形態のシステム構成について説明する。本実施形態の近赤外酸素濃度測定システムは、センサ本体1に接続されセンサ本体1を制御するセンサ制御装置8と、センサ制御装置8に接続されセンサ制御装置8からの信号を解析し酸素濃度等の算出を行う演算装置9と、演算装置9により算出された酸素濃度等を表示する表示デバイス10と、演算装置9にパラメータなどを入力する入力デバイス11からなる。
 センサ制御装置8は、発光素子4を駆動するドライバ、受光素子5からの信号を増幅する増幅器などを有している。発光素子4の発光タイミングや受光素子5の受光タイミングはセンサ制御装置8で制御しても良いし、演算装置9で制御しても良い。受光素子5からのアナログ信号のデジタル化も、センサ制御装置8、演算装置9のいずれで行っても構わない。
 演算装置9にはPC(パーソナルコンピュータ)などが用いられるが、センサ制御装置8と一体化して専用機にしても良い。演算装置9では、脈動による吸光度の変動分から酸素飽和度等を求めるパルスオキシメータ法を用いても良いし、後述する空間的傾きを利用して酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、酸素飽和度等を求める空間的傾き法を用いても良い。表示デバイス10は演算結果を表示できるものであれば何でも良く、LCDなどが用いられる。入力デバイス11も入力できるデバイスであれば何でも良く、キーボード、マウス、タッチパネルなどが用いられる。
 図5を用いて本実施形態で好適に用いられる酸素濃度算出方法である空間的傾き法について説明する。本アルゴリズムの演算は、演算装置9で実行される。
 発光素子4から照射された光は、手袋12内の光路aを通過し、被検体の組織に照射される。被検体の組織に照射された光は、組織内で吸収・散乱されて光路b及び光路bを経由し、手袋12内の光路a及び光路aを通過して、第1受光素子5a及び第2受光素子5bで受光される。図面では便宜上、光路b及び光路bを線状に記載しているが、実際には組織内を散乱しながら伝搬していくので光路は複雑である。遮光体3は使用者の指側に設けられ、発光素子4からの照射光が使用者の指組織を伝搬して受光素子5に導かれることを防いでいる。
 空間的傾き法は、本願発明者の一人が、人間の組織内の光の吸収係数を空間的傾きSの関数で表せることを、拡散理論や各種シミュレーション等により見出したものであり、詳細は特許文献2及び3に記載されている。
 第1受光素子5aでの受光強度をI、第2受光素子5bでの受光強度をI、発光素子4と第1受光素子5aとの間の距離をd、発光素子4と第2受光素子5bとの間をdとすると、空間的傾きSは、
  S=ln(I/I)/(d-d)  …(1)
で定義される。
 d及びdは既知であるので、測定によりIとIの比を求めれば、空間的傾きSが求まる。空間的傾きSが求まれば、ルックアップテーブルなどを用いて組織内の光の吸収係数が求まるため、波長別の吸収係数を求めれば、酸素化ヘモグロビン濃度と脱酸素化ヘモグロビン濃度が算出でき、酸素化ヘモグロビン濃度と脱酸素化ヘモグロビン濃度の比である酸素飽和度も算出できる。なお、本実施形態では従来に比べて発光素子4と受光素子5との間の距離が短いため(例えば、15mm以下)、輸送理論を利用した改良アルゴリズムを利用しても良い。
 本実施形態の触診用近赤外酸素濃度センサは、実際の使用形態では手袋12を着用して用いられる。手袋12は図5のように発光素子4及び受光素子5との間に介在し、受光信号に影響を与える。しかしながら、発光素子4と受光素子5との間の距離を十分にとれば(例えば、3mm以上)、光路a、光路a及び光路aは、いずれも発光面及び受光面に垂直であり、これらの光路長は同じ長さとみなせる。これらの情報を用いれば手袋12の影響をキャンセルすることが可能である。
 以上、本発明の実施形態の一例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において各種の変更が可能であることは言うまでもない。
 1:センサ本体、2:基板、3:遮光体、4:発光素子、5a:第1受光素子、5b:第2受光素子、6a:第1遮光壁、6b:第2遮光壁、7:フラットケーブル、8:センサ制御装置、9:演算装置、10:表示デバイス、11:入力デバイス、12:手袋、13:指腹

 

Claims (8)

  1.  使用者の手指の第一関節より先端側の指腹に取り付けられ、触診時に触診対象部位の酸素濃度を測定するための触診用近赤外酸素濃度センサであって、
     前記指腹に取り付けられる基材と、
     前記基材に設けられ、近赤外光を含む少なくとも2波長の光を被検体に照射する発光手段と、
     前記基材に設けられ、前記発光素子から前記被検体を経由した測定光を受光する受光手段と、
     少なくとも前記発光手段又は前記受光手段と前記指腹との間に設けられる遮光手段と、を有する
    触診用近赤外酸素濃度センサ。
  2.  前記受光手段からの測定光に基づいて、前記被検体の酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度及び酸素飽和度の少なくともいずれか1つを算出する演算手段を有する
    請求項1記載の触診用近赤外酸素濃度センサ。
  3.  前記発光手段及び前記受光手段の合計が3個以上であり、
     前記演算手段は、複数の発光手段-受光手段間距離の測定光に基づいて、前記被検体の酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度及び酸素飽和度の少なくともいずれか1つを算出する
    請求項1又は2記載の触診用近赤外酸素濃度センサ。
  4.  前記発光手段と前記受光手段との間の最小距離が3mm以上であり、最大距離が15mm以下である
    請求項1乃至3いずれか記載の触診用近赤外酸素濃度センサ。
  5.  前記基材を前記指腹に固定する固定手段を有する
    請求項1乃至4いずれか記載の触診用近赤外酸素濃度センサ。
  6.  少なくとも、前記基材、前記発光手段及び前記受光手段を含む部分はディスポーザブルである
    請求項1乃至5いずれか記載の触診用近赤外酸素濃度センサ。
  7.  前記触診用近赤外濃度センサは近赤外光を透過する手袋を着用して使用されるものであり、
     前記演算手段は、前記手袋による測定光への影響をキャンセルする手段を有する
    請求項1乃至6いずれか記載の触診用近赤外酸素濃度センサ。
  8.  前記発光手段及び前記受光手段に接続される信号ケーブルにはフラットケーブルが用いられる
    請求項1乃至7いずれか記載の触診用近赤外酸素濃度センサ。

     
PCT/JP2014/062677 2013-05-24 2014-05-13 触診用近赤外酸素濃度センサ WO2014188906A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015518190A JP6344725B2 (ja) 2013-05-24 2014-05-13 触診用近赤外酸素濃度センサ
US14/892,683 US20160089067A1 (en) 2013-05-24 2014-05-13 Near infrared oxygen concentration sensor for palpation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109604 2013-05-24
JP2013109604 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014188906A1 true WO2014188906A1 (ja) 2014-11-27

Family

ID=51933467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062677 WO2014188906A1 (ja) 2013-05-24 2014-05-13 触診用近赤外酸素濃度センサ

Country Status (3)

Country Link
US (1) US20160089067A1 (ja)
JP (1) JP6344725B2 (ja)
WO (1) WO2014188906A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174685A (ja) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 生体情報検出センサー及び生体情報検出装置
JP6060321B1 (ja) * 2016-04-11 2017-01-11 株式会社フジタ医科器械 酸素飽和度測定センサ及び酸素飽和度測定装置
JP2021505303A (ja) * 2017-12-12 2021-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 調光を用いた限局性口腔炎症の改良された測定のための方法及びシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10702211B2 (en) * 2016-07-15 2020-07-07 Apple Inc. Sensor window with integrated isolation feature
DE102021214338A1 (de) * 2021-12-14 2023-06-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Sensororanordnung für einen optischen vitalzeichensensor
WO2024018071A1 (en) 2022-07-22 2024-01-25 Institut National De La Sante Et De La Recherche Medicale Intrapartum measurement near-infrared spectroscopy device
WO2024018066A1 (en) 2022-07-22 2024-01-25 Institut National De La Sante Et De La Recherche Medicale Intrapartum measurement probe and device and delivery monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015151A1 (en) * 1990-04-04 1991-10-17 Nellcor Incorporated Improved perinatal pulse oximetry probe
WO1995026676A1 (en) * 1994-04-01 1995-10-12 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
JP2000312672A (ja) * 1990-08-22 2000-11-14 Nellcor Puritan Bennett Inc 胎児パルスオキシメトリ装置
US20040092843A1 (en) * 2001-02-22 2004-05-13 Doron Kreiser Device and method for measuring fetal blood pH

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537197A (en) * 1981-03-06 1985-08-27 Hulka Jaroslav F Disposable fetal oxygen monitor
US5109849A (en) * 1983-08-30 1992-05-05 Nellcor, Inc. Perinatal pulse oximetry sensor
US5520177A (en) * 1993-03-26 1996-05-28 Nihon Kohden Corporation Oximeter probe
JP3134144B2 (ja) * 1994-03-11 2001-02-13 日本光電工業株式会社 生理量検出装置
US5524617A (en) * 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
US5823952A (en) * 1996-08-14 1998-10-20 Nellcor Incorporated Pulse oximeter sensor with differential slip coefficient
US5800349A (en) * 1996-10-15 1998-09-01 Nonin Medical, Inc. Offset pulse oximeter sensor
US6195575B1 (en) * 1997-04-02 2001-02-27 Nellcor Puritan Bennett Incorporated Fetal sensor which self-inflates using capillary force
US6248064B1 (en) * 1998-05-26 2001-06-19 Ineedmd.Com,Inc. Tele-diagnostic device
FR2851449B1 (fr) * 2003-02-26 2005-12-02 Commissariat Energie Atomique Microcapteur de pression arterielle et appareil de mesure l'utilisant
US8369914B2 (en) * 2006-05-31 2013-02-05 National University Corporation Shizuoka University Optical measuring apparatus, optical measuring method, and storage medium that stores optical measuring program
US20100256461A1 (en) * 2007-05-01 2010-10-07 Urodynamix Technologies Ltd. Apparatus and methods for evaluating physiological conditions of tissue
WO2011113101A1 (en) * 2010-03-17 2011-09-22 Terence Vardy An improved palpation monitor
JP5966135B2 (ja) * 2011-02-23 2016-08-10 国立大学法人静岡大学 光学的測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015151A1 (en) * 1990-04-04 1991-10-17 Nellcor Incorporated Improved perinatal pulse oximetry probe
JP2000312672A (ja) * 1990-08-22 2000-11-14 Nellcor Puritan Bennett Inc 胎児パルスオキシメトリ装置
WO1995026676A1 (en) * 1994-04-01 1995-10-12 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
US20040092843A1 (en) * 2001-02-22 2004-05-13 Doron Kreiser Device and method for measuring fetal blood pH

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174685A (ja) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 生体情報検出センサー及び生体情報検出装置
JP6060321B1 (ja) * 2016-04-11 2017-01-11 株式会社フジタ医科器械 酸素飽和度測定センサ及び酸素飽和度測定装置
JP2021505303A (ja) * 2017-12-12 2021-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 調光を用いた限局性口腔炎症の改良された測定のための方法及びシステム

Also Published As

Publication number Publication date
JP6344725B2 (ja) 2018-06-20
JPWO2014188906A1 (ja) 2017-02-23
US20160089067A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP6344725B2 (ja) 触診用近赤外酸素濃度センサ
JP7340289B2 (ja) 胎児ヘモグロビン酸素飽和レベルを判定するためのシステムの制御方法
CA2753018C (en) Medical sensor with flexible components and technique for using the same
JP3950173B2 (ja) 非侵入式光学血液分析用動き適合センサ
US9364176B2 (en) Tissue oximetry apparatus and method
Abay et al. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions
US8145288B2 (en) Medical sensor for reducing signal artifacts and technique for using the same
US10226206B2 (en) Systems and methods for measuring neonatal cerebral oxygenation
US11375926B2 (en) Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry using a heartbeat signal for a pregnant mammal
US9770198B2 (en) Sensor and fastener
US20230320634A1 (en) System for monitoring fetal status during child birth
Kanayama et al. Examiner’s finger-mounted fetal tissue oximetry
CN113855011A (zh) 用于确定受试者的氧合的系统和方法
US11109782B2 (en) Systems and methods for measuring neonatal cerebral oxygenation
Chu et al. A finger-free wrist-worn pulse oximeter for the monitoring of chronic obstructive pulmonary disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518190

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14892683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800454

Country of ref document: EP

Kind code of ref document: A1