WO2014188889A1 - Bump stop - Google Patents

Bump stop Download PDF

Info

Publication number
WO2014188889A1
WO2014188889A1 PCT/JP2014/062497 JP2014062497W WO2014188889A1 WO 2014188889 A1 WO2014188889 A1 WO 2014188889A1 JP 2014062497 W JP2014062497 W JP 2014062497W WO 2014188889 A1 WO2014188889 A1 WO 2014188889A1
Authority
WO
WIPO (PCT)
Prior art keywords
valley
peak
bump stopper
diameter
end side
Prior art date
Application number
PCT/JP2014/062497
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 田中
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Publication of WO2014188889A1 publication Critical patent/WO2014188889A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/42Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing
    • F16F1/44Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing loaded mainly in compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/376Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having projections, studs, serrations or the like on at least one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/45Stops limiting travel
    • B60G2204/4502Stops limiting travel using resilient buffer

Definitions

  • the present invention relates to a bump stopper for absorbing an impact.
  • Bump stoppers are provided on automobile suspensions to absorb shocks when the car body sinks.
  • the bump stopper is attached to the shock absorber so as to absorb the impact by being compressed.
  • FIG. 5 is a schematic cross-sectional view showing a state when the bump stopper according to the conventional example is compressed.
  • FIG. 5A shows a state where the bump stopper is not compressed
  • FIGS. 5B, 5C, and 5D are schematic sectional views showing the state in which the amount of compression increases in this order. Show.
  • FIG. 5 shows a half cross-sectional view of a cross section obtained by cutting the bump stopper along a plane including the central axis thereof.
  • the bump stopper 500 has an outer peripheral surface configured in a bellows shape so that the deformation state when compressed is stabilized, and a plurality of peaks and valleys are formed on the outer periphery.
  • the first peak portion 511, the first valley portion 521, the second peak portion 512, the second valley portion 522, the third peak portion 513, and the third valley portion 523 are referred to in order from the tip side.
  • the bump stopper 500 is made of polyurethane foam, and can be obtained by mold molding such as injection molding. During molding, when the molding material is filled into the mold cavity, the molding material is filled from the rear end side toward the front end side. Therefore, in consideration of material fluidity at the time of filling, the plurality of crests and troughs are configured such that the diameter becomes smaller toward the tip side. That is, if the diameter of the first peak 511 is D11, the diameter of the second peak 512 is D12, and the diameter of the third peak 513 is D13, then D11 ⁇ D12 ⁇ D13 is satisfied.
  • the diameter of the first valley portion 521 is D21
  • the diameter of the second valley portion 522 is D22
  • the diameter of the third valley portion 523 is D23
  • D21 ⁇ D22 ⁇ D23 is satisfied. Therefore, in the valley, the thickness of the site of the first valley 521 is the thinnest, and the thickness of the site of the third valley 523 is the thickest.
  • the rigidity of the site of the first valley 521 is the lowest, and the rigidity of the site of the third valley 523 is the highest.
  • the bump stopper 500 when the bump stopper 500 is compressed, first, the first valley portion 521 is deformed so as to be compressed (see FIG. 5B), and then the second valley portion 522 is compressed. Deformation (see (c) of the figure). And finally, it deform
  • FIG. 6 is a graph schematically showing the relationship between the compression amount and the load in the bump stopper 500.
  • the spring constant in the compression direction of the entire bump stopper 500 is constant or gradually increases, so that the load is substantially linear as the compression amount increases. (L11 in the graph).
  • part of the 2nd trough part 522 begins to compress, the said spring constant becomes low. Therefore, the ratio of the load increase with respect to the increase in the compression amount decreases (L12 in the graph).
  • the spring constant increases again, and the rate of increase in the load with respect to the increase in the compression amount increases (L13 in the graph). And when the site
  • the bump stopper 500 according to the conventional example is deformed so that the plurality of valley portions are sequentially compressed. For this reason, a phenomenon occurs in which the spring constant is switched stepwise, and the load does not increase smoothly as the compression amount increases, as shown in the graph of FIG. From the viewpoint of absorbing shock, this means that the compression load on the bump stopper 500 does not change smoothly during the process of compressing the bump stopper 500. Therefore, this is a cause of adversely affecting the steering performance of the vehicle.
  • FIG. 7 is a graph showing test results of changes in the spring constant with respect to the compression amount in the bump stopper 500 according to the conventional example. As can be seen from this graph, a phenomenon occurs in which the spring constant is switched in stages.
  • the region L21 in FIG. 7 corresponds to L11 in the graph of FIG. 6, the region L22 in FIG. 7 corresponds to L12 in the graph of FIG. 6, and the region L23 in FIG. 6 corresponds to L13 in the graph of FIG. 6, and a region L24 in FIG. 7 corresponds to L14 in the graph of FIG.
  • An object of the present invention is to provide a bump stopper capable of smoothing an increase in load with respect to an increase in compression amount.
  • the present invention employs the following means in order to solve the above problems.
  • the bump stopper of the present invention is The outer peripheral surface is configured in a bellows shape, and the plurality of peaks and valleys in the bellows shape are each configured as a bump stopper configured such that the diameter becomes smaller toward the tip side.
  • Y ⁇ X is set so as to decrease from the front end toward the rear end. It is characterized by being.
  • each of the plurality of peaks and valleys in the bellows shape is configured to have a smaller diameter toward the tip side.
  • Y ⁇ X increases from the front end side toward the rear end side. It is set to be smaller. Therefore, the nonuniformity of rigidity in each valley is reduced.
  • the compression timing in each valley part can be brought close (preferably simultaneously), and the change of the spring constant with respect to the compression amount of the bump stopper can be suppressed. Therefore, an increase in load with respect to an increase in the compression amount of the bump stopper can be smoothed.
  • the first peak portion in order from the front end side to the rear end side, the first peak portion, the first valley portion adjacent to the first peak portion, and the second peak portion adjacent to the first valley portion.
  • the diameter of the first crest is X1
  • the diameter of the second crest is X2
  • the diameter of the third crest is X3
  • the diameter of the first trough is Y1
  • the diameter of the second trough is Y2
  • the diameter of the third trough When the diameter is Y3, 0.90 ⁇ Y1 ⁇ X1 ⁇ 0.95 0.75 ⁇ Y2 ⁇ X2 ⁇ 0.80 0.70 ⁇ Y3 ⁇ X3 ⁇ 0.75 It is good to satisfy all of the above.
  • FIG. 1 is a partially broken sectional view of a bump stopper according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a state when the bump stopper according to the embodiment of the present invention is compressed.
  • FIG. 3 is a graph schematically showing the relationship between the compression amount and the load in the bump stopper according to the embodiment of the present invention.
  • FIG. 4 is a graph showing test results of changes in the spring constant with respect to the compression amount in the bump stopper according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a state when the bump stopper according to the conventional example is compressed.
  • FIG. 6 is a graph schematically showing the relationship between the compression amount and the load in the bump stopper according to the conventional example.
  • FIG. 7 is a graph showing test results of changes in the spring constant with respect to the compression amount in the bump stopper according to the conventional example.
  • a bump stopper according to an embodiment of the present invention will be described with reference to FIGS.
  • a case where a bump stopper is attached to a shock absorber provided on a suspension of an automobile will be described as an example.
  • FIG. 2 is a schematic cross-sectional view showing the vicinity of a bump stopper in an automobile suspension.
  • 2A shows a state in which the bump stopper is not compressed
  • FIGS. 2B and 2C show a state in which the compression amount is increased in this order in schematic sectional views.
  • FIG. 2 shows a partial cross-sectional view of a cross section obtained by cutting the bump stopper along a plane including the central axis.
  • the suspension is provided with a shock absorber 200 for suppressing vibration of the vehicle body.
  • the shock absorber 200 is a hydraulic damper type shock absorber including a piston rod 210 and a cylinder 220. When the vehicle body sinks, the piston rod 210 moves toward the inside of the cylinder 220. That is, the shock absorber 200 contracts, and the shock can be absorbed by the hydraulic resistance.
  • a support member 230 is fixed to the piston rod 210, and the bump stopper 100 is attached between the support member 230 and the end surface 221 of the cylinder 220.
  • the bump stopper 100 is an annular member made of polyurethane foam, and is attached to the shock absorber 200 so that the piston rod 210 is inserted into the inner peripheral side thereof.
  • the bump stopper 100 is disposed such that the end surface 140 on the rear end side contacts the support member 230.
  • the bump stopper 100 may or may not be fixed to the support member 230.
  • the bump stopper 100 moves toward the cylinder 220 as the piston rod 210 moves into the cylinder 220.
  • the tip 130 of the bump stopper collides with the end surface 221 of the cylinder 220. Thereby, since the bump stopper 100 is compressed, an impact can be absorbed.
  • the bump stopper 100 according to the present embodiment has an outer peripheral surface configured in a bellows shape so that a deformation state when compressed is stabilized, and a plurality of (annular) peaks and (annular) are formed on the outer periphery. A valley is formed.
  • both the inner peripheral surface and the outer peripheral surface have a bellows shape.
  • the first peak 111, the first valley 121, the second peak 112, the second valley 122, and the third peak 113 are sequentially arranged from the front end side with respect to the plurality of peaks and valleys on the outer peripheral side.
  • the third valley portion 123 1st peak 111 and 1st valley 121, 1st valley 121 and 2nd peak 112, 2nd peak 112 and 2nd valley 122, 2nd valley 122 and 3rd peak 113, 3rd
  • the mountain portion 113 and the third valley portion 123 are adjacent to each other.
  • the tip side is the side that collides with the end surface 221 of the cylinder 220 as described above.
  • the plurality of crests and troughs in the bellows shape are configured such that the diameter becomes smaller toward the tip side.
  • the bump stopper 100 is made of foamed polyurethane, and the viscosity of the molding material supplied into the mold is relatively high. That is, the bump stopper 100 is molded (for example, molding by injection molding) after filling the cavity in the mold with the molding material. In the material filling process at the time of molding, the molding material is filled from the rear end side (of the bump stopper 100) toward the front end side.
  • the molding die is installed so that the front end side of the bump stopper 100 obtained by molding is downward, and the molding material falling by gravity is filled into the cavity from the rear end side toward the front end side. It will be. Therefore, in consideration of the fluidity of the molding material at the time of filling, the diameter of the valley portion on the rear end side (that is, the upper side in the mold) is increased so that the flow of the molding material is not hindered in the cavity. Yes.
  • Y ⁇ X is from the tip side. It is set so as to become smaller toward the rear end side.
  • the diameter of the first peak 111 is X1
  • the diameter of the second peak 112 is X2
  • the diameter of the third peak 113 is X3
  • the diameter of the first valley 121 is Y1
  • the second valley is Y2
  • the diameter of the portion 122 is Y2
  • the diameter of the third valley portion 123 is Y3.
  • the bump stopper 100 is configured such that the diameters of the plurality of crests and troughs in the bellows shape on the outer peripheral surface become smaller toward the tip side. Therefore, the rigidity is inherently lower toward the front end side, and when the bump stopper 100 is compressed, the trough portion is deformed in order from the front end side toward the rear end side.
  • Y ⁇ X is from the front end side. It is set so as to become smaller toward the rear end side. Therefore, the nonuniformity of rigidity in each valley is reduced. Thereby, the timing of compression in each trough part can be approximated.
  • the compression timings in the valleys can be made substantially simultaneously.
  • FIG. 2B shows a state in which the first valley portion 121, the second valley portion 122 portion, and the third valley portion 123 portion have started to be compressed almost simultaneously, and FIG. The state when the amount of compression of each part becomes large is shown.
  • the compression timing of each valley part can be approached (or can be made substantially simultaneously).
  • the bump stopper 100 according to the present embodiment has a characteristic that the load (the load necessary for the compression) increases smoothly as the compression amount increases. From the viewpoint of absorbing the impact, this means that the compressive load on the bump stopper 100 changes smoothly in the process in which the bump stopper 100 is compressed. Therefore, it is possible to suppress adverse effects on the steering performance of the vehicle.
  • FIG. 4 is a graph showing a test result of changes in the spring constant with respect to the compression amount in the bump stopper 100 configured to satisfy all of the above (Expression 1), (Expression 2), and (Expression 3). As can be seen from this graph, it is possible to prevent the spring constant in the compression direction of the entire bump stopper 100 from being switched stepwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)
  • Vibration Dampers (AREA)
  • Springs (AREA)

Abstract

Provided is a bump stop capable of smoothing the increase in load as the amount of compression increases. A bump stop (100), the outer circumferential surface of which is configured in a bellows shape and the multiple peak sections (first peak section (111), second peak section (112), third peak section (113)) and valley sections (first valley section (121), second valley section (122), third valley section (123)) in the bellows shape are configured so that the respective diameters decrease towards the tip, the bump stop being characterized in that when the diameter of a peak section is X and the diameter of the adjacent valley section on the base end side of said peak section is Y, Y÷X is set so as to decrease from the tip end toward the base end.

Description

バンプストッパBump stopper
 本発明は、衝撃を吸収するためのバンプストッパに関する。 The present invention relates to a bump stopper for absorbing an impact.
 自動車のサスペンションには、車体が沈んだ際の衝撃を吸収するためにバンプストッパが設けられている。このバンプストッパは、圧縮されることにより衝撃を吸収するようにショックアブソーバに取付けられている。 Bump stoppers are provided on automobile suspensions to absorb shocks when the car body sinks. The bump stopper is attached to the shock absorber so as to absorb the impact by being compressed.
 図5~図7を参照して、従来例に係るバンプストッパについて説明する。図5は従来例に係るバンプストッパにおける圧縮時の様子を示す模式的断面図である。なお、図5(a)はバンプストッパが圧縮されていない状態を示し、同図(b)(c)(d)は、この順に圧縮量が増えていった状態をそれぞれ模式的断面図にて示している。なお、図5においては、バンプストッパを、その中心軸線を含む面で切断した断面のうちの半分の断面図が示されている。 A conventional bump stopper will be described with reference to FIGS. FIG. 5 is a schematic cross-sectional view showing a state when the bump stopper according to the conventional example is compressed. FIG. 5A shows a state where the bump stopper is not compressed, and FIGS. 5B, 5C, and 5D are schematic sectional views showing the state in which the amount of compression increases in this order. Show. FIG. 5 shows a half cross-sectional view of a cross section obtained by cutting the bump stopper along a plane including the central axis thereof.
 バンプストッパ500は、圧縮される際の変形状態が安定するように、外周面が蛇腹形状で構成されており、外周には複数の山部及び谷部が形成されている。以下、便宜上、先端側から順に、第1山部511,第1谷部521,第2山部512,第2谷部522,第3山部513,第3谷部523と称する。 The bump stopper 500 has an outer peripheral surface configured in a bellows shape so that the deformation state when compressed is stabilized, and a plurality of peaks and valleys are formed on the outer periphery. Hereinafter, for the sake of convenience, the first peak portion 511, the first valley portion 521, the second peak portion 512, the second valley portion 522, the third peak portion 513, and the third valley portion 523 are referred to in order from the tip side.
 バンプストッパ500は、発泡ポリウレタンからなるもので、射出成形などの金型成形により得られる。そして、成形時において、金型のキャビティに成形材料が充填される際には、後端側から先端側に向かって成形材料が充填される。そのため、充填時の材料流動性を考慮して、上記複数の山部及び谷部は先端側ほど径が小さくなるように構成されている。すなわち、第1山部511の径をD11,第2山部512の径をD12,第3山部513の径をD13とすると、D11<D12<D13を満たす。また、第1谷部521の径をD21,第2谷部522の径をD22,第3谷部523の径をD23とすると、D21<D22<D23を満たす。そのため、谷部においては、第1谷部521の部位の肉厚が最も薄く、第3谷部523の部位の肉厚が最も厚くなっている。これに伴って、各谷部で比較すると、第1谷部521の部位の剛性が最も低く、第3谷部523の部位の剛性が最も高くなっている。 The bump stopper 500 is made of polyurethane foam, and can be obtained by mold molding such as injection molding. During molding, when the molding material is filled into the mold cavity, the molding material is filled from the rear end side toward the front end side. Therefore, in consideration of material fluidity at the time of filling, the plurality of crests and troughs are configured such that the diameter becomes smaller toward the tip side. That is, if the diameter of the first peak 511 is D11, the diameter of the second peak 512 is D12, and the diameter of the third peak 513 is D13, then D11 <D12 <D13 is satisfied. Further, when the diameter of the first valley portion 521 is D21, the diameter of the second valley portion 522 is D22, and the diameter of the third valley portion 523 is D23, D21 <D22 <D23 is satisfied. Therefore, in the valley, the thickness of the site of the first valley 521 is the thinnest, and the thickness of the site of the third valley 523 is the thickest. Along with this, when compared at each valley, the rigidity of the site of the first valley 521 is the lowest, and the rigidity of the site of the third valley 523 is the highest.
 従って、バンプストッパ500が圧縮する場合には、まず、第1谷部521の部位が圧縮するように変形し(図5(b)参照)、次いで第2谷部522の部位が圧縮するように変形する(同図(c)参照)。そして、最後に第3谷部523の部位が圧縮するように変形する(同図(d)参照)。このように、従来例に係るバンプストッパ500は、複数の谷部の部位が順に圧縮するように変形していく。 Therefore, when the bump stopper 500 is compressed, first, the first valley portion 521 is deformed so as to be compressed (see FIG. 5B), and then the second valley portion 522 is compressed. Deformation (see (c) of the figure). And finally, it deform | transforms so that the site | part of the 3rd trough part 523 may compress (refer the figure (d)). As described above, the bump stopper 500 according to the conventional example is deformed so that the plurality of valley portions are sequentially compressed.
 ここで、図6を参照して、バンプストッパ500の圧縮量と荷重(圧縮に必要な荷重)との関係について説明する。なお、図6はバンプストッパ500における圧縮量と荷重との関係を概略的に示すグラフである。 Here, the relationship between the compression amount of the bump stopper 500 and the load (load necessary for compression) will be described with reference to FIG. FIG. 6 is a graph schematically showing the relationship between the compression amount and the load in the bump stopper 500.
 第1谷部521の部位が圧縮するように変形する過程においては、バンプストッパ500全体の圧縮方向のばね定数が一定、または徐々に増加するため、圧縮量の増加に伴い、荷重は略直線的に増加する(グラフ中のL11)。そして、第2谷部522の部位が圧縮し始める際には、上記ばね定数が低くなる。そのため、圧縮量の増加に対する荷重の増加の割合が低下する(グラフ中のL12)。その後、第3谷部523の部位の圧縮が行われるまでの間、再び、上記ばね定数が高くなり、圧縮量の増加に対する荷重の増加の割合が上昇する(グラフ中のL13)。そして、第3谷部523の部位が圧縮し始める際に上記バネ定数が低くなり、圧縮量の増加に対する荷重の増加の割合が低下する(グラフ中のL14)。 In the process of deforming so that the portion of the first valley portion 521 is compressed, the spring constant in the compression direction of the entire bump stopper 500 is constant or gradually increases, so that the load is substantially linear as the compression amount increases. (L11 in the graph). And when the site | part of the 2nd trough part 522 begins to compress, the said spring constant becomes low. Therefore, the ratio of the load increase with respect to the increase in the compression amount decreases (L12 in the graph). Thereafter, until the portion of the third valley portion 523 is compressed, the spring constant increases again, and the rate of increase in the load with respect to the increase in the compression amount increases (L13 in the graph). And when the site | part of the 3rd trough part 523 begins to compress, the said spring constant will become low and the ratio of the increase in load with respect to the increase in compression amount will fall (L14 in a graph).
 このように、従来例に係るバンプストッパ500においては、複数の谷部の部位が順に圧縮するように変形する。そのため、上記ばね定数が段階的に切り替わるような現象が生じており、図6のグラフに示すように、圧縮量の増加に対して荷重は滑らかには増加しない。これは、衝撃吸収時の観点から言えば、バンプストッパ500が圧縮されていく過程で、バンプストッパ500への圧縮荷重が滑らかに変化しないことになる。そのため、車両の操舵性に悪影響を及ぼす原因になっている。 As described above, the bump stopper 500 according to the conventional example is deformed so that the plurality of valley portions are sequentially compressed. For this reason, a phenomenon occurs in which the spring constant is switched stepwise, and the load does not increase smoothly as the compression amount increases, as shown in the graph of FIG. From the viewpoint of absorbing shock, this means that the compression load on the bump stopper 500 does not change smoothly during the process of compressing the bump stopper 500. Therefore, this is a cause of adversely affecting the steering performance of the vehicle.
 図7は従来例に係るバンプストッパ500における圧縮量に対するばね定数の変化の試験結果を示すグラフである。このグラフからも分かるように、ばね定数は段階的に切り替わる現象が生じている。なお、図7中のL21の領域が上記図6のグラフ中のL11に相当し、図7中のL22の領域が上記図6のグラフ中のL12に相当し、図7中のL23の領域が上記図6のグラフ中のL13に相当し、図7中のL24の領域が上記図6のグラフ中のL14に相当する。 FIG. 7 is a graph showing test results of changes in the spring constant with respect to the compression amount in the bump stopper 500 according to the conventional example. As can be seen from this graph, a phenomenon occurs in which the spring constant is switched in stages. The region L21 in FIG. 7 corresponds to L11 in the graph of FIG. 6, the region L22 in FIG. 7 corresponds to L12 in the graph of FIG. 6, and the region L23 in FIG. 6 corresponds to L13 in the graph of FIG. 6, and a region L24 in FIG. 7 corresponds to L14 in the graph of FIG.
 なお、谷部の径を全て小さくすれば、複数の谷部の部位が順に圧縮するように変形してしまうことを抑制できる。しかし、この場合には、谷部の部位の肉厚が薄くなり、成形金型における成形材料が通る部分が狭くなってしまう。そのため、成形材料が十分に充填されずに成形不良を招く原因となるため、そのような対策を取ることができない。 In addition, if all the diameters of a trough part are made small, it can suppress that it deform | transforms so that the site | part of a some trough part may compress in order. However, in this case, the thickness of the valley portion becomes thin, and the portion through which the molding material passes in the molding die becomes narrow. For this reason, the molding material is not sufficiently filled and causes molding defects, and thus such measures cannot be taken.
特開2006-38022号公報JP 2006-38022 A 特開2003-184938号公報JP 2003-184938 A
 本発明の目的は、圧縮量の増加に対する荷重の増加を滑らかにすることのできるバンプストッパを提供することにある。 An object of the present invention is to provide a bump stopper capable of smoothing an increase in load with respect to an increase in compression amount.
 本発明は、上記課題を解決するために以下の手段を採用した。 The present invention employs the following means in order to solve the above problems.
 すなわち、本発明のバンプストッパは、
 外周面が蛇腹形状で構成されており、蛇腹形状における複数の山部及び谷部は、それぞれ先端側ほど径が小さくなるように構成されるバンプストッパにおいて、
 山部の径をXとし、該山部の後端側に隣接する谷部の径をYとした場合に、Y÷Xが、先端側から後端側に向かうにつれて小さくなるように設定されていることを特徴とする。
That is, the bump stopper of the present invention is
The outer peripheral surface is configured in a bellows shape, and the plurality of peaks and valleys in the bellows shape are each configured as a bump stopper configured such that the diameter becomes smaller toward the tip side.
When the diameter of the peak is X and the diameter of the valley adjacent to the rear end of the peak is Y, Y ÷ X is set so as to decrease from the front end toward the rear end. It is characterized by being.
 本発明によれば、蛇腹形状における複数の山部及び谷部は、それぞれ先端側ほど径が小さくなるように構成されるため、本来的には、先端側の方ほど剛性が低く、バンプストッパが圧縮する際には、先端側から後端側に向かって順に谷部が圧縮するように変形する。しかしながら、本発明においては、山部の径をXとし、該山部の後端側に隣接する谷部の径をYとした場合に、Y÷Xが、先端側から後端側に向かうにつれて小さくなるように設定されている。そのため、各谷部における剛性の不均一が軽減される。これにより、各谷部における圧縮のタイミングを近付ける(好ましくは同時にする)ことができ、バンプストッパの圧縮量に対するばね定数の変化を抑制することができる。従って、バンプストッパの圧縮量の増加に対する荷重の増加を滑らかにすることができる。 According to the present invention, each of the plurality of peaks and valleys in the bellows shape is configured to have a smaller diameter toward the tip side. When compressing, it deform | transforms so that a trough may compress in order toward the rear end side from the front end side. However, in the present invention, when the diameter of the peak portion is X and the diameter of the valley portion adjacent to the rear end side of the peak portion is Y, Y ÷ X increases from the front end side toward the rear end side. It is set to be smaller. Therefore, the nonuniformity of rigidity in each valley is reduced. Thereby, the compression timing in each valley part can be brought close (preferably simultaneously), and the change of the spring constant with respect to the compression amount of the bump stopper can be suppressed. Therefore, an increase in load with respect to an increase in the compression amount of the bump stopper can be smoothed.
 ここで、前記外周面における蛇腹形状において、先端側から後端側に向かって順に、第1山部,第1山部に隣接する第1谷部,第1谷部に隣接する第2山部,第2山部に隣接する第2谷部,第2谷部に隣接する第3山部及び第3山部に隣接する第3谷部を有しており、
 第1山部の径をX1,第2山部の径をX2,第3山部の径をX3,第1谷部の径をY1,第2谷部の径をY2,第3谷部の径をY3とした場合に、
 0.90<Y1÷X1<0.95
 0.75<Y2÷X2<0.80
 0.70<Y3÷X3<0.75
の全てを満たすとよい。
Here, in the bellows shape on the outer peripheral surface, in order from the front end side to the rear end side, the first peak portion, the first valley portion adjacent to the first peak portion, and the second peak portion adjacent to the first valley portion. , Having a second valley adjacent to the second peak, a third peak adjacent to the second peak, and a third valley adjacent to the third peak,
The diameter of the first crest is X1, the diameter of the second crest is X2, the diameter of the third crest is X3, the diameter of the first trough is Y1, the diameter of the second trough is Y2, the diameter of the third trough When the diameter is Y3,
0.90 <Y1 ÷ X1 <0.95
0.75 <Y2 ÷ X2 <0.80
0.70 <Y3 ÷ X3 <0.75
It is good to satisfy all of the above.
 以上説明したように、本発明によれば、バンプストッパの圧縮量の増加に対する荷重の増加を滑らかにすることが可能となる。 As described above, according to the present invention, it is possible to smoothly increase the load with respect to the increase in the compression amount of the bump stopper.
図1は本発明の実施例に係るバンプストッパの一部破断断面図である。FIG. 1 is a partially broken sectional view of a bump stopper according to an embodiment of the present invention. 図2は本発明の実施例に係るバンプストッパにおける圧縮時の様子を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a state when the bump stopper according to the embodiment of the present invention is compressed. 図3は本発明の実施例に係るバンプストッパにおける圧縮量と荷重との関係を概略的に示すグラフである。FIG. 3 is a graph schematically showing the relationship between the compression amount and the load in the bump stopper according to the embodiment of the present invention. 図4は本発明の実施例に係るバンプストッパにおける圧縮量に対するばね定数の変化の試験結果を示すグラフである。FIG. 4 is a graph showing test results of changes in the spring constant with respect to the compression amount in the bump stopper according to the embodiment of the present invention. 図5は従来例に係るバンプストッパにおける圧縮時の様子を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a state when the bump stopper according to the conventional example is compressed. 図6は従来例に係るバンプストッパにおける圧縮量と荷重との関係を概略的に示すグラフである。FIG. 6 is a graph schematically showing the relationship between the compression amount and the load in the bump stopper according to the conventional example. 図7は従来例に係るバンプストッパにおける圧縮量に対するばね定数の変化の試験結果を示すグラフである。FIG. 7 is a graph showing test results of changes in the spring constant with respect to the compression amount in the bump stopper according to the conventional example.
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 DETAILED DESCRIPTION Hereinafter, embodiments for carrying out the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. .
 (実施例)
 図1~図4を参照して、本発明の実施例に係るバンプストッパについて説明する。本実施例においては、自動車のサスペンションに設けられたショックアブソーバにバンプストッパが取り付けられる場合を例にして説明する。
(Example)
A bump stopper according to an embodiment of the present invention will be described with reference to FIGS. In this embodiment, a case where a bump stopper is attached to a shock absorber provided on a suspension of an automobile will be described as an example.
 <バンプストッパの適用例>
 特に、図2を参照して、本発明の実施例に係るバンプストッパの適用例を説明する。図2は、自動車のサスペンションのうち、バンプストッパが取り付けられている付近を模式的断面図にて示している。なお、同図(a)はバンプストッパが圧縮されていない状態を示し、同図(b)(c)は、この順に圧縮量が増えていった状態をそれぞれ模式的断面図にて示している。なお、図2においては、バンプストッパを、その中心軸線を含む面で切断した断面の一部の断面図が示されている。
<Application example of bump stopper>
In particular, with reference to FIG. 2, an application example of the bump stopper according to the embodiment of the present invention will be described. FIG. 2 is a schematic cross-sectional view showing the vicinity of a bump stopper in an automobile suspension. 2A shows a state in which the bump stopper is not compressed, and FIGS. 2B and 2C show a state in which the compression amount is increased in this order in schematic sectional views. . FIG. 2 shows a partial cross-sectional view of a cross section obtained by cutting the bump stopper along a plane including the central axis.
 サスペンションには、車体の振動を抑制するためにショックアブソーバ200が設けられている。このショックアブソーバ200は、ピストンロッド210と、シリンダ220とを備える油圧ダンパー式の緩衝器である。車体が沈んだ際には、ピストンロッド210がシリンダ220の内部側に向かって移動する。つまりショックアブソーバ200が縮み、油圧抵抗によって衝撃を吸収することができる。 The suspension is provided with a shock absorber 200 for suppressing vibration of the vehicle body. The shock absorber 200 is a hydraulic damper type shock absorber including a piston rod 210 and a cylinder 220. When the vehicle body sinks, the piston rod 210 moves toward the inside of the cylinder 220. That is, the shock absorber 200 contracts, and the shock can be absorbed by the hydraulic resistance.
 そして、ピストンロッド210には支持部材230が固定されており、この支持部材230とシリンダ220の端面221との間に、バンプストッパ100が取り付けられている。バンプストッパ100は、発泡ポリウレタン製の環状の部材であり、その内周側にピストンロッド210が挿入されるように、ショックアブソーバ200に取付けられる。このバンプストッパ100は、後端側の端面140が支持部材230に当接するように配置される。なお、バンプストッパ100は、支持部材230に対して、固定してもしなくてもよい。 Further, a support member 230 is fixed to the piston rod 210, and the bump stopper 100 is attached between the support member 230 and the end surface 221 of the cylinder 220. The bump stopper 100 is an annular member made of polyurethane foam, and is attached to the shock absorber 200 so that the piston rod 210 is inserted into the inner peripheral side thereof. The bump stopper 100 is disposed such that the end surface 140 on the rear end side contacts the support member 230. The bump stopper 100 may or may not be fixed to the support member 230.
 以上の構成により、車体が沈みショックアブソーバ200が縮んでいくと、ピストンロッド210がシリンダ220の内部に移動するに従って、バンプストッパ100もシリンダ220側に移動する。そして、ショックアブソーバ200が縮むと、バンプストッパの先端130がシリンダ220の端面221に衝突する。これにより、バンプストッパ100が圧縮されるため、衝撃を吸収することができる。 With the above configuration, when the vehicle body sinks and the shock absorber 200 contracts, the bump stopper 100 moves toward the cylinder 220 as the piston rod 210 moves into the cylinder 220. When the shock absorber 200 is contracted, the tip 130 of the bump stopper collides with the end surface 221 of the cylinder 220. Thereby, since the bump stopper 100 is compressed, an impact can be absorbed.
 <バンプストッパ>
 特に、図1を参照して、本実施例に係るバンプストッパ100について、より詳細に説明する。本実施例に係るバンプストッパ100は、圧縮される際の変形状態が安定するように、外周面が蛇腹形状で構成されており、外周には複数の(環状の)山部及び(環状の)谷部が形成されている。なお、本実施例に係るバンプストッパ100においては、内周面及び外周面共に蛇腹形状となっている。以下、便宜上、外周側の複数の山部及び谷部について、先端側から順に、第1山部111,第1谷部121,第2山部112,第2谷部122,第3山部113,第3谷部123と称する。第1山部111と第1谷部121,第1谷部121と第2山部112,第2山部112と第2谷部122,第2谷部122と第3山部113,第3山部113と第3谷部123は、それぞれ隣接している。なお、先端側とは、上記の通り、シリンダ220の端面221に衝突する側である。
<Bump stopper>
In particular, with reference to FIG. 1, the bump stopper 100 according to the present embodiment will be described in more detail. The bump stopper 100 according to the present embodiment has an outer peripheral surface configured in a bellows shape so that a deformation state when compressed is stabilized, and a plurality of (annular) peaks and (annular) are formed on the outer periphery. A valley is formed. In the bump stopper 100 according to the present embodiment, both the inner peripheral surface and the outer peripheral surface have a bellows shape. Hereinafter, for the sake of convenience, the first peak 111, the first valley 121, the second peak 112, the second valley 122, and the third peak 113 are sequentially arranged from the front end side with respect to the plurality of peaks and valleys on the outer peripheral side. , Referred to as the third valley portion 123. 1st peak 111 and 1st valley 121, 1st valley 121 and 2nd peak 112, 2nd peak 112 and 2nd valley 122, 2nd valley 122 and 3rd peak 113, 3rd The mountain portion 113 and the third valley portion 123 are adjacent to each other. The tip side is the side that collides with the end surface 221 of the cylinder 220 as described above.
 本実施例に係るバンプストッパ100においては、蛇腹形状における複数の山部及び谷部は、それぞれ先端側ほど径が小さくなるように構成されている。これは、バンプストッパ100は発泡ポリウレタンで構成されており、金型内に供給する成形材料の粘度が比較的高いことに起因している。すなわち、バンプストッパ100は、金型内のキャビティに成形材料を充填させた後に成形(例えば、射出成形による成形)される。この成形時の材料の充填工程においては、成形材料は(バンプストッパ100の)後端側から先端側に向かって充填される。すなわち、成形金型は、成形により得られるバンプストッパ100における先端側が下方となるように設置されており、重力によって落下する成形材料は、後端側から先端側に向かってキャビティ内に充填されることになる。従って、充填時の成形材料の流動性を考慮して、キヤビティ内において成形材料の流れが妨げられないように、後端側(つまり金型内において上方側)の谷部の径を大きくしている。 In the bump stopper 100 according to the present embodiment, the plurality of crests and troughs in the bellows shape are configured such that the diameter becomes smaller toward the tip side. This is because the bump stopper 100 is made of foamed polyurethane, and the viscosity of the molding material supplied into the mold is relatively high. That is, the bump stopper 100 is molded (for example, molding by injection molding) after filling the cavity in the mold with the molding material. In the material filling process at the time of molding, the molding material is filled from the rear end side (of the bump stopper 100) toward the front end side. That is, the molding die is installed so that the front end side of the bump stopper 100 obtained by molding is downward, and the molding material falling by gravity is filled into the cavity from the rear end side toward the front end side. It will be. Therefore, in consideration of the fluidity of the molding material at the time of filling, the diameter of the valley portion on the rear end side (that is, the upper side in the mold) is increased so that the flow of the molding material is not hindered in the cavity. Yes.
 そして、本実施例に係るバンプストッパ100においては、山部の径をXとし、この山部の後端側に隣接する谷部の径をYとした場合に、Y÷Xが、先端側から後端側に向かうにつれて小さくなるように設定されている。 In the bump stopper 100 according to the present embodiment, when the diameter of the peak is X and the diameter of the valley adjacent to the rear end of the peak is Y, Y ÷ X is from the tip side. It is set so as to become smaller toward the rear end side.
 以下、より具体的な例を説明する。図1に示すように、第1山部111の径をX1,第2山部112の径をX2,第3山部113の径をX3,第1谷部121の径をY1,第2谷部122の径をY2,第3谷部123の径をY3とする。 Hereinafter, a more specific example will be described. As shown in FIG. 1, the diameter of the first peak 111 is X1, the diameter of the second peak 112 is X2, the diameter of the third peak 113 is X3, the diameter of the first valley 121 is Y1, and the second valley. The diameter of the portion 122 is Y2, and the diameter of the third valley portion 123 is Y3.
 このとき、
 0.90<Y1÷X1<0.95(式1)
 0.75<Y2÷X2<0.80(式2)
 0.70<Y3÷X3<0.75(式3)
の全てを満たすように構成されている。
At this time,
0.90 <Y1 ÷ X1 <0.95 (Formula 1)
0.75 <Y2 ÷ X2 <0.80 (Formula 2)
0.70 <Y3 ÷ X3 <0.75 (Formula 3)
It is comprised so that all of these may be satisfy | filled.
 <本実施例に係るバンプストッパの優れた点>
 特に、図3及び図4を参照して、本実施例に係るバンプストッパ100の優れた点について説明する。
<Excellent points of the bump stopper according to this embodiment>
In particular, with reference to FIGS. 3 and 4, the excellent point of the bump stopper 100 according to the present embodiment will be described.
 本実施例に係るバンプストッパ100は、外周面の蛇腹形状における複数の山部及び谷部は、それぞれ先端側ほど径が小さくなるように構成される。そのため、本来的には、先端側の方ほど剛性が低く、バンプストッパ100が圧縮する際には、先端側から後端側に向かって順に谷部が圧縮するように変形する。 The bump stopper 100 according to the present embodiment is configured such that the diameters of the plurality of crests and troughs in the bellows shape on the outer peripheral surface become smaller toward the tip side. Therefore, the rigidity is inherently lower toward the front end side, and when the bump stopper 100 is compressed, the trough portion is deformed in order from the front end side toward the rear end side.
 しかしながら、本実施例に係るバンプストッパ100においては、山部の径をXとし、この山部の後端側に隣接する谷部の径をYとした場合に、Y÷Xが、先端側から後端側に向かうにつれて小さくなるように設定されている。そのため、各谷部における剛性の不均一が軽減される。これにより、各谷部における圧縮のタイミングを近付けることができる。Y÷Xの設定によって、各谷部における圧縮のタイミングを略同時にすることもできる。 However, in the bump stopper 100 according to the present embodiment, when the diameter of the crest is X and the diameter of the valley adjacent to the rear end side of this crest is Y, Y ÷ X is from the front end side. It is set so as to become smaller toward the rear end side. Therefore, the nonuniformity of rigidity in each valley is reduced. Thereby, the timing of compression in each trough part can be approximated. By setting Y ÷ X, the compression timings in the valleys can be made substantially simultaneously.
 なお、図2(b)は第1谷部121の部位と第2谷部122の部位と第3谷部123の部位が略同時に圧縮し始めた状態を示しており、同図(c)は各部位の圧縮量が大きくなった際の状態を示している。 FIG. 2B shows a state in which the first valley portion 121, the second valley portion 122 portion, and the third valley portion 123 portion have started to be compressed almost simultaneously, and FIG. The state when the amount of compression of each part becomes large is shown.
 このように、各谷部の部位の圧縮タイミングを近付けることができる(または略同時にすることができる)。これにより、バンプストッパ100が圧縮される過程で、バンプストッパ100全体の圧縮方向のバネ定数が段階的に切り替わってしまうことを抑制(またはなくす)ことができる。従って、図3のグラフに示すように、本実施例に係るバンプストッパ100においては、圧縮量の増加に対して荷重(圧縮に必要な荷重)は滑らかに増加する特性を有する。これは、衝撃吸収時の観点から言えば、バンプストッパ100が圧縮されていく過程で、バンプストッパ100への圧縮荷重が滑らかに変化することになる。従って、車両の操舵性に悪影響を及ぼしてしまうことを抑制できる。 Thus, the compression timing of each valley part can be approached (or can be made substantially simultaneously). Thereby, it is possible to suppress (or eliminate) the spring constant in the compression direction of the entire bump stopper 100 from being switched in a stepwise manner in the process in which the bump stopper 100 is compressed. Therefore, as shown in the graph of FIG. 3, the bump stopper 100 according to the present embodiment has a characteristic that the load (the load necessary for the compression) increases smoothly as the compression amount increases. From the viewpoint of absorbing the impact, this means that the compressive load on the bump stopper 100 changes smoothly in the process in which the bump stopper 100 is compressed. Therefore, it is possible to suppress adverse effects on the steering performance of the vehicle.
 より好適な例としては、上述の通り、上記(式1)(式2)(式3)の全てを満たすように構成するとよい。これにより、成形性を保ちつつ(つまり、成形金型に成形材料を充填する際に支障を来さないようにしつつ)、バンプストッパ100全体の圧縮方向のバネ定数が段階的に切り替わってしまうことを抑制することができる。図4は上記(式1)(式2)(式3)の全てを満たすように構成されるバンプストッパ100における圧縮量に対するばね定数の変化の試験結果を示すグラフである。このグラフから分かるように、バンプストッパ100全体の圧縮方向のバネ定数が段階的に切り替わってしまうことを抑制することが可能となる。 As a more preferable example, as described above, it may be configured to satisfy all of the above (Formula 1), (Formula 2), and (Formula 3). As a result, the spring constant in the compression direction of the entire bump stopper 100 is switched step by step while maintaining the moldability (that is, without causing trouble when filling the molding die with the molding material). Can be suppressed. FIG. 4 is a graph showing a test result of changes in the spring constant with respect to the compression amount in the bump stopper 100 configured to satisfy all of the above (Expression 1), (Expression 2), and (Expression 3). As can be seen from this graph, it is possible to prevent the spring constant in the compression direction of the entire bump stopper 100 from being switched stepwise.
 (その他)
 上記実施例においては、バンプストッパ100の外周に3つの谷部が設けられる場合の構成を示したが、本発明は2つの谷部が設けられているバンプストッパや4つ以上の谷部が設けられているバンプストッパにも適用可能である。この場合でも、上記の通り、成形上の観点から、先端側の谷部ほど径(谷底部分の外径)が小さくなるように構成される。
(Other)
In the above embodiment, a configuration in which three valleys are provided on the outer periphery of the bump stopper 100 is shown. However, in the present invention, a bump stopper provided with two valleys and four or more valleys are provided. The present invention can also be applied to the existing bump stopper. Even in this case, as described above, from the viewpoint of molding, the diameter (the outer diameter of the bottom of the valley) is configured to be smaller toward the tip of the valley.
 100 バンプストッパ
 111 第1山部
 112 第2山部
 113 第3山部
 121 第1谷部
 122 第2谷部
 123 第3谷部
 130 先端
 140 端面
 200 ショックアブソーバ
 210 ピストンロッド
 220 シリンダ
 221 端面
 230 支持部材
DESCRIPTION OF SYMBOLS 100 Bump stopper 111 1st peak part 112 2nd peak part 113 3rd peak part 121 1st trough part 122 2nd trough part 123 3rd trough part 130 Tip 140 End surface 200 Shock absorber 210 Piston rod 220 Cylinder 221 End surface 230 Support member

Claims (2)

  1.  外周面が蛇腹形状で構成されており、蛇腹形状における複数の山部及び谷部は、それぞれ先端側ほど径が小さくなるように構成されるバンプストッパにおいて、
     山部の径をXとし、該山部の後端側に隣接する谷部の径をYとした場合に、Y÷Xが、先端側から後端側に向かうにつれて小さくなるように設定されていることを特徴とするバンプストッパ。
    The outer peripheral surface is configured in a bellows shape, and the plurality of peaks and valleys in the bellows shape are each configured as a bump stopper configured such that the diameter becomes smaller toward the tip side.
    When the diameter of the peak is X and the diameter of the valley adjacent to the rear end of the peak is Y, Y ÷ X is set so as to decrease from the front end toward the rear end. A bump stopper characterized by having
  2.  前記外周面における蛇腹形状において、先端側から後端側に向かって順に、第1山部,第1山部に隣接する第1谷部,第1谷部に隣接する第2山部,第2山部に隣接する第2谷部,第2谷部に隣接する第3山部及び第3山部に隣接する第3谷部を有しており、
     第1山部の径をX1,第2山部の径をX2,第3山部の径をX3,第1谷部の径をY1,第2谷部の径をY2,第3谷部の径をY3とした場合に、
     0.90<Y1÷X1<0.95
     0.75<Y2÷X2<0.80
     0.70<Y3÷X3<0.75
    の全てを満たすことを特徴とする請求項1に記載のバンプストッパ。
    In the bellows shape on the outer peripheral surface, in order from the front end side to the rear end side, the first peak, the first valley adjacent to the first peak, the second peak adjacent to the first valley, and the second A second valley adjacent to the peak, a third peak adjacent to the second valley, and a third valley adjacent to the third peak;
    The diameter of the first crest is X1, the diameter of the second crest is X2, the diameter of the third crest is X3, the diameter of the first trough is Y1, the diameter of the second trough is Y2, the diameter of the third trough When the diameter is Y3,
    0.90 <Y1 ÷ X1 <0.95
    0.75 <Y2 ÷ X2 <0.80
    0.70 <Y3 ÷ X3 <0.75
    The bump stopper according to claim 1, wherein all of the above are satisfied.
PCT/JP2014/062497 2013-05-22 2014-05-09 Bump stop WO2014188889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013107895A JP2016136027A (en) 2013-05-22 2013-05-22 Bump stopper
JP2013-107895 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014188889A1 true WO2014188889A1 (en) 2014-11-27

Family

ID=51933452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062497 WO2014188889A1 (en) 2013-05-22 2014-05-09 Bump stop

Country Status (2)

Country Link
JP (1) JP2016136027A (en)
WO (1) WO2014188889A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154856A1 (en) * 2016-03-10 2017-09-14 Nok株式会社 Shock-absorbing stopper
JP2021139439A (en) * 2020-03-05 2021-09-16 日立Astemo株式会社 Cylinder device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194428A (en) * 1990-11-27 1992-07-14 Nippon Mektron Ltd Bump stopper
JPH0874918A (en) * 1994-09-07 1996-03-19 Tokai Rubber Ind Ltd Bumper spring
JP2012500372A (en) * 2008-08-20 2012-01-05 ビーエーエスエフ ソシエタス・ヨーロピア Auxiliary spring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194428A (en) * 1990-11-27 1992-07-14 Nippon Mektron Ltd Bump stopper
JPH0874918A (en) * 1994-09-07 1996-03-19 Tokai Rubber Ind Ltd Bumper spring
JP2012500372A (en) * 2008-08-20 2012-01-05 ビーエーエスエフ ソシエタス・ヨーロピア Auxiliary spring

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154856A1 (en) * 2016-03-10 2017-09-14 Nok株式会社 Shock-absorbing stopper
CN108603553A (en) * 2016-03-10 2018-09-28 Nok株式会社 Backward-pressure
JPWO2017154856A1 (en) * 2016-03-10 2018-11-22 Nok株式会社 Buffer stopper
US20190031227A1 (en) * 2016-03-10 2019-01-31 Nok Corporation Shock-absorbing stopper
US10822016B2 (en) 2016-03-10 2020-11-03 Nok Corporation Shock-absorbing stopper
JP2021139439A (en) * 2020-03-05 2021-09-16 日立Astemo株式会社 Cylinder device

Also Published As

Publication number Publication date
JP2016136027A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
US9694638B2 (en) Spring rubber seat and strut-type suspension
US9657803B2 (en) Hydraulic damper with a hydraulic stop arrangement
US20160084336A1 (en) Bump stopper cap
US8757338B2 (en) Hydraulic shock absorber
US20130161888A1 (en) Jounce bumper
US10323712B2 (en) System for controlling variable load in a hydraulic device
JP2007057088A (en) Cylinder device
WO2014199418A1 (en) Vibration damping device
US20120241267A1 (en) Dust cover structure of hydraulic shock absorber
WO2014188889A1 (en) Bump stop
CN104061265A (en) Antivibration Device
JP5661593B2 (en) Vehicle suspension system
JP6540262B2 (en) Bump stopper
JP2013155841A (en) Suspension device and cover member
JP6340797B2 (en) Bump stopper
EP2910812A1 (en) Rebound rubber
US20160208917A1 (en) Cover member
JP6059996B2 (en) Vibration isolator
JP2013170670A (en) Bump stopper
CN203604532U (en) Buffer position stop block
JP6214345B2 (en) Cover member
WO2009063304A1 (en) Shock absorber component and shock absorber
JP7191863B2 (en) vibration absorber
CN214404478U (en) Working cylinder barrel structure for gradual stroke adjustment damping shock absorber
KR102575143B1 (en) Shock absorber dust cover to prevent buckling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP