WO2014188860A1 - Secondary cell pack having protective circuit - Google Patents

Secondary cell pack having protective circuit Download PDF

Info

Publication number
WO2014188860A1
WO2014188860A1 PCT/JP2014/062003 JP2014062003W WO2014188860A1 WO 2014188860 A1 WO2014188860 A1 WO 2014188860A1 JP 2014062003 W JP2014062003 W JP 2014062003W WO 2014188860 A1 WO2014188860 A1 WO 2014188860A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
secondary battery
battery pack
protection circuit
terminals
Prior art date
Application number
PCT/JP2014/062003
Other languages
French (fr)
Japanese (ja)
Inventor
三浦和俊
山田良太
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2014188860A1 publication Critical patent/WO2014188860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery pack having a protection circuit, and more particularly, to a secondary battery pack with reduced impedance so as to facilitate rapid charging with a large current.
  • the secondary battery pack is provided in a state in which it can be charged and discharged with an external device via an external output terminal connected to the positive and negative electrodes of the built-in secondary battery.
  • a protection circuit that performs control to stop charging and discharging when an abnormal state occurs is provided.
  • the protection circuit includes a charge / discharge control switch interposed between the external output terminal and the secondary battery, and is configured to control on / off thereof. That is, the protection circuit performs control to turn off the charge / discharge control switch and shut off the charge / discharge path when overcharge, overdischarge, or the like is detected.
  • FIG. 6 shows a conventional example of a secondary battery pack having such a protection circuit.
  • This battery pack includes a secondary battery 1 and a protection circuit 2.
  • the protection circuit 2 is inserted between the positive electrode terminal 3 and the negative electrode terminal 4 of the secondary battery 1 and the positive output terminal 5 and the negative output terminal 6 that are external output terminals.
  • a temperature protection element 7 and a charge / discharge control switch 8 which is a part of the protection circuit 2 are inserted in the charge / discharge path on the negative electrode side connecting the negative electrode terminal 4 and the negative electrode output terminal 6.
  • the temperature protection element 7 is used to limit or cut off the current flowing through the charging / discharging path according to a change in the resistance value according to the temperature rise due to heat generation of the secondary battery 1.
  • the charge / discharge control switch 8 is configured by connecting a discharge control FET 9a made of a MOSFET and a charge control FET 10a in series.
  • the discharge control FET 9a is connected so that the parasitic diode 9b existing between the drain and the source is in a forward direction with respect to the charging current flowing from the positive electrode output terminal 5 toward the secondary battery 1.
  • the charge control FET 10a is connected such that the parasitic diode 10b is in the forward direction with respect to the discharge current.
  • the protection circuit 2 includes a protection IC 11 that constitutes a voltage monitoring unit, and a power supply voltage is supplied to the power supply terminal VDD from the secondary battery 1 via the resistor R1.
  • the reference potential terminal VSS is connected to the secondary battery 1 side of the charge / discharge control switch 8. Further, the overcurrent detection terminal V ⁇ is connected to the negative output terminal 6 side of the charge / discharge control switch 8 through the resistor R2.
  • Control signals DO and CO from the protection IC 11 are supplied to the gates of the discharge control FET 9a and the charge control FET 10a, respectively.
  • the control signals DO and CO are set to the high level, and the discharge control FET 9a and the charge control FET 10a are controlled to be in the ON state.
  • the protection IC 11 detects the voltage between the reference potential terminal VSS and the overcurrent detection terminal V ⁇ , and detects the current flowing through the charge / discharge path equivalently from the detected voltage. That is, the current is equivalently detected based on the voltage drop caused by the ON resistance of the discharge control FET 9a and the charge control FET 10a. When a current exceeding the specified value (that is, overcurrent) flows, the discharge control FET 9a or the charge control FET 10a is turned off to cut off the current.
  • the protection circuit 2 detects the overcurrent based on the voltage drop caused by the on-resistance of the charge / discharge control switch 8, the detection level of the overcurrent is increased by reducing the on-resistance, and the cost and mounting area are reduced.
  • the limit is two sets of switch circuits connected in parallel.
  • a PTC element has been conventionally used.
  • the resistance value of the PTC element is approximately 0.005 ⁇ , it is configured by combining a bimetal and a PTC element instead of the PTC element. By using a breaker (about 2.5 m ⁇ ), the resistance is reduced.
  • the breaker is configured by superposing a PTC element and a bimetal between a pair of lead terminals opposed in the vertical direction. Due to the deformation of the bimetal according to the temperature, the conduction between the lead terminals is switched between a very low resistance conduction state in which the lead terminals are in direct contact and a high resistance substantial interruption state via the PTC element.
  • the resistance value does not depend on temperature, and a low resistance can be realized as compared with a PTC element whose resistance value varies depending on the temperature.
  • a breaker that does not increase resistance due to heat generation is an element that is advantageous for reducing resistance.
  • Patent Document 1 discloses an improved technique for reducing the resistance of the wiring material connecting the secondary battery 1, the protection circuit 2, and the temperature protection element 7. That is, a clad material having a two-layer structure in which a weld layer and a base layer are clad is used as the wiring material.
  • the weld layer is a layer for ensuring the ease of resistance welding, and is made of Ni, Ni alloy, or Fe alloy.
  • the base layer is a low resistance layer and is made of Cu or a heat-resistant Cu alloy.
  • the weld layer is fixedly connected to the electrode by resistance welding. As a result, the electrical resistance can be reduced to about half compared to a conventional lead material using pure nickel.
  • FIG. 1 conceptually shows the structure of a portion where the protection circuit 2 is attached to the secondary battery 1.
  • FIG. 7 the same elements as those shown in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • the elements constituting the unit cell are built in the outer can 12, and the upper portion of the outer can 12 is sealed by the upper insulating plate 13.
  • a positive electrode lead tab 14 and a negative electrode lead tab 15 extending from the unit cell penetrate the upper insulating plate 13. Since the upper end of the positive electrode lead tab 14 is welded to the outer can 12, the positive electrode lead tab 14 is electrically connected to the positive electrode cell terminal 3 provided on the upper surface of the peripheral edge of the outer can 12.
  • the upper end of the negative electrode lead tab 15 is electrically connected to the negative electrode cell terminal 4 on the upper surface of the insulator 17 through the internal lead 16.
  • a cap frame 18 is attached to the top of the outer can 12 to cover the protection circuit board 19 on which the protection circuit 2 (see FIG. 5) is mounted.
  • a positive electrode substrate terminal 20 and a negative electrode substrate terminal 21 are provided on the lower surface of the protection circuit substrate 19.
  • the positive substrate terminal 20 is connected to the positive cell terminal 3 by the first tab 22, and the negative substrate terminal 21 is connected to the temperature protection element 7 by the second and third tabs 23 and 24.
  • the temperature protection element 7 and the negative electrode cell terminal 4 are connected by a fourth tab 25.
  • the first tab 22 is bent at an angle of 180 degrees, and the upper bent piece is welded to the positive electrode substrate terminal 20 and the lower bent piece is welded to the positive electrode cell terminal 3.
  • the second tab 23 is also bent at an angle of 180 degrees, and the upper bent piece is welded to the negative electrode substrate terminal 21 and the lower bent piece is welded to the third tab 24.
  • W indicates a welding point.
  • an insulating tape is attached to the lower portion of the third tab 24 to prevent conduction with the outer can 12.
  • An external output terminal 26 (including the positive and negative output terminals 5 and 6 in FIG. 5) attached to the protective circuit board 19 is exposed on the upper end surface of the cap frame 18.
  • the contact 27 on the device side and the external output terminal 26 are brought into contact with each other. If a large current flows during charging / discharging, heat generation at the contact portion between the external output terminal 26 and the contact 27 tends to be excessive. Even if the impedance of the secondary battery pack is reduced, it is difficult to use the battery in such a way that a large current flows without suppressing the influence of heat generation.
  • FIG. (A) is a front view
  • (b) is a rear view.
  • the elements corresponding to the protection circuit board 19 shown in FIG. 7 are composed of a protection circuit board 19a and a connector 19b. That is, the connector 19b including the portion of the external output terminal (reference numeral 26 in FIG. 7) is separated from the protective circuit board 19a by using the flexible board 28. Thereby, it becomes possible to affix the metal heat radiating plate 29 on the back surface of the connector 19b, and the heat dissipation can be improved.
  • the temperature rise due to heat generation at the external output terminal is suppressed by the heat radiating plate 29, the impedance is increased by the wiring of the flexible substrate 28. In addition, the number of parts increases, leading to an increase in cost.
  • the temperature protection element 7 also generates a problem of heat generation when a large current is passed. That is, in the configuration of FIG. 7, the positive and negative cell terminals 3, 4, the first and second substrate terminals 20, 22 and the first to fourth tabs 22 to 25 are conventionally provided with conductivity and corrosion resistance. Ni is used in consideration of the above. However, although a large amount of self-heating occurs when a large current flows through the temperature protection element 7, since the thermal conductivity of the Ni wiring is not sufficiently large, the Ni wiring does not sufficiently dissipate heat and is sufficient. There was a risk of fusing in a state where no current could flow.
  • the present invention improves the efficiency of radiating the heat generated at the external output terminal without increasing the number of parts, suppresses the temperature rise due to energization, and performs rapid charging with a large current.
  • An object is to provide an easy secondary battery pack.
  • the present invention also provides a secondary battery pack configured so that heat generated from the temperature protection element is effectively radiated through the protection circuit board and the wiring material between the secondary battery and the temperature protection element. For the purpose.
  • the secondary battery pack of the present invention includes a secondary battery having positive and negative cell terminals, a pair of external output terminals for charging and discharging between the secondary battery and the outside, the cell terminals, and the A protection circuit inserted in a charge / discharge path between external output terminals, a temperature protection element inserted between the cell terminal and the protection circuit, the protection circuit is mounted, and the external output terminal is arranged And a protection circuit board provided with first and second board terminals on the back side thereof.
  • the protection circuit includes a charge / discharge control switch inserted in series in the charge / discharge path, and a current detection unit that detects a current flowing through the charge / discharge path, and the charge / discharge is based on a detection output of the current detection unit.
  • the first substrate terminal is connected to one of the cell terminals, and the second substrate terminal is connected to the other of the cell terminals via the temperature protection element. ing.
  • At least one of the first and second substrate terminals has a Cu thickness of 0.6 mm to 1.0 mm and a Cu or Cu alloy. It is comprised by the system metal member, and is arrange
  • the first substrate terminal formed of the Cu-based metal member is arranged corresponding to the planar area of the external output terminal, so that heat generation at the external output terminal is first. Heat is effectively radiated from the board terminals.
  • the efficiency of dissipating heat generated at the external output terminal can be improved to suppress the temperature rise caused by energization, and quick charging with a large current can be facilitated.
  • the thickness of the first board terminal in the range of 0.6 mm to 1.0 mm, the resistance of the solder layer that joins the first board terminal to the protective circuit board during resistance welding to the wiring material Can be avoided.
  • FIG. 1 is a cross-sectional view of a main part conceptually showing a mounting portion of a protection circuit board for a secondary battery in a secondary battery pack according to an embodiment of the present invention.
  • FIG. 2A is a plan view showing a part of the protection circuit board in the manufacturing process of the secondary battery pack
  • FIG. 2B is a plan view showing a portion of the secondary battery in the manufacturing process of the secondary battery pack
  • FIG. 2C is a plan view showing a connection portion between the protection circuit board and the secondary battery in the manufacturing process of the secondary battery pack
  • FIG. 3 is a diagram showing a change in temperature rise characteristics based on a heat dissipation effect by the positive electrode substrate terminal of the secondary battery pack.
  • FIG. 4 is a sectional view showing a welding process which is a part of the manufacturing process of the secondary battery pack
  • FIG. 5 is a diagram showing a change in temperature rise characteristics based on a heat dissipation effect by the wiring material for the temperature protection element of the secondary battery pack
  • FIG. 6 is a block diagram showing a circuit configuration example of a conventional secondary battery pack.
  • FIG. 7 is a cross-sectional view of a principal part conceptually showing a mounting portion of a protective circuit board constituting the secondary battery pack.
  • FIG. 8 conceptually shows the structure of another conventional secondary battery pack, where (a) is a front view and (b) is a rear view.
  • the secondary battery pack of the present invention can take the following aspects based on the above configuration.
  • the Cu-based metal member is Sn plated. Thereby, the oxidation of the Cu-based metal that is easily oxidized can be prevented.
  • the Cu-based metal member preferably has an electrical resistivity of less than 69.3 n ⁇ m. More preferably, the Cu-based metal member has an electrical resistivity in the range of 1.68 to 63.9 n ⁇ m. Thereby, a sufficient heat dissipation effect is obtained, and application of series welding is facilitated.
  • a Cu-based metal layer made of Cu or Cu alloy and a Ni layer are used as a wiring material for connecting between the second substrate terminal and the temperature protection element, and between the temperature protection element and the cell terminal.
  • a Cu—Ni clad material can be used as a wiring material for connecting between the second substrate terminal and the temperature protection element, and between the temperature protection element and the cell terminal.
  • the Cu—Ni clad material is bonded by resistance welding with the Cu-based metal layer side in contact with the cell terminal and the substrate terminal.
  • FIG. 1 is a main part sectional view conceptually showing the structure of the mounting portion of the protection circuit board 19 for the secondary battery 1.
  • the structure of the mounting portion of the protection circuit board 19 is basically the same as that of the conventional example shown in FIG. Therefore, the same elements as those shown in FIG. 7 are denoted by the same reference numerals, and description thereof is omitted.
  • the circuit configuration of the secondary battery pack is the same as that of the conventional example shown in FIG.
  • the first feature of the secondary battery pack in the present embodiment is constituted by a Cu-based metal block made of Cu or Cu alloy instead of the positive electrode substrate terminal 20 using Ni in the conventional example shown in FIG. That is, the positive electrode substrate terminal 30 is used.
  • the positive electrode substrate terminal 30 preferably functions as a heat radiating member because of its material.
  • the positive electrode substrate terminal 30 is disposed at a position corresponding to the planar area of the external output terminal 26 and is joined to the protection circuit substrate 19 by solder (not shown).
  • the positive substrate terminal 30 is arranged corresponding to the planar area of the external output terminal 26, heat generated at the contact portion of the external output terminal 26 is efficiently transmitted to the Cu-based metal block of the positive substrate terminal 30.
  • the heat is efficiently radiated from the Cu-based metal block.
  • the size of the positive electrode substrate terminal 30 extends over a region including all of the external output terminals 26, but in order to ensure a heat dissipation effect, the positive electrode substrate terminal 30 has a planar region, What is necessary is just to arrange
  • the positive electrode substrate terminal 30 is usually provided corresponding to the positive electrode output terminal of the external output terminals 26, in order to sufficiently obtain the effects of the present embodiment, the positive electrode substrate terminal 30 covers a range including the negative electrode output terminal. It is preferable to be provided.
  • the present embodiment is not limited to a configuration that obtains a heat dissipation effect through the positive electrode substrate terminal 30. That is, as shown in FIG. 1, the configuration is not limited to the configuration in which the positive electrode substrate terminal 30 is arranged corresponding to the planar area of the external output terminal 26. Instead of this, even if the negative electrode substrate terminal 31 is arranged corresponding to the planar area of the external output terminal 26 and heat is radiated through the negative electrode substrate terminal 31, a corresponding effect can be obtained. .
  • the thickness of the Cu-based metal block is set in the range of 0.6 mm to 1.0 mm. This thickness range is a preferable setting range in order to prevent the solder for fixing the Cu-based metal block from melting due to heat generated by resistance welding when the first tab 32 is resistance-welded to the positive electrode substrate terminal 30. . Further, Sn plating for preventing oxidation is applied to the Cu-based metal block of the positive electrode substrate terminal 30.
  • a Cu—Ni clad material made of a Cu-based metal layer made of Cu or a Cu alloy and an Ni layer is used as the first tab 32 for connecting between the positive electrode substrate terminal 30 and the positive electrode cell terminal 3.
  • the second feature of the present embodiment is that the second and third tabs 33 and 34 that connect the negative electrode substrate terminal 31 and the temperature protection element 7, and the connection between the temperature protection element 7 and the negative electrode terminal 4 are connected.
  • the fourth tab 35 is formed of the same Cu—Ni clad material as that of the first tab 32.
  • the negative electrode substrate terminal 31 is formed of the same Cu-based metal block as the positive electrode substrate terminal 30.
  • the Cu-based metal layer has a low resistance, and therefore, compared to conventional Ni wiring materials, wiring resistance can be reduced and rapid charging can be facilitated. it can. Moreover, compared with the case where a tab is formed only with a Cu-based metal layer, it is possible to reliably avoid the occurrence of problems associated with the welding of the wiring material. This will be described in detail later.
  • the first tab 32 is bonded to the positive substrate terminal 30 and the positive cell terminal 3
  • the second tab 33 is bonded to the negative substrate terminal 31 and the third tab 34
  • the fourth tab 35 is bonded to the negative cell terminal 4.
  • Joining is performed by resistance welding. This is because resistance welding is easy to work and the welding apparatus is simple, which is advantageous in reducing manufacturing costs. Further, as can be seen from the welding point W shown in FIG. 1, series welding is adopted among resistance welding. Accordingly, the above-described cladding material is used as the material for the positive and negative electrode substrate terminals 30 and 32 and the first to fourth tabs 32 to 35, and the usage is set as described later, which is suitable for series welding. The effect becomes.
  • FIGS. 2A to 2C The process of attaching the protective circuit board 19 to the upper end portion of the secondary battery 1 by resistance welding is performed as shown in FIGS. 2A to 2C (a part of the process is shown), for example.
  • 2A is a plan view showing a state in which the protection circuit board 19 is turned upside down from the state shown in FIG.
  • FIG. 2B is a plan view of the secondary battery 1.
  • FIG. 2C is a plan view showing a state in which the secondary battery 1 and the protection circuit board 19 are connected to each other.
  • the third tab 34 and the fourth tab 35 are connected to the temperature protection element 7, and one end of the second tab 33 is welded to one end of the third tab 34.
  • the upper end surface (corresponding to the lower end surface in FIG. 1) of the protection circuit board 19 in the upside down state and the temperature protection element 7 are aligned and the other end of the second tab 33 is connected to the negative electrode substrate terminal 31. Place on top and weld.
  • one end of the first tab 32 is disposed on the positive electrode substrate terminal 30 and welded.
  • the positive cell terminal 3 and the negative cell terminal 4 are arranged on the upper end surface of the secondary battery 1.
  • the upper end surface of the secondary battery 1 and the upper end surface of the protection circuit board 19 are aligned as shown in FIG. 2C, the other end of the first tab 32 is disposed on the positive electrode terminal 3, and the fourth tab 35 Are placed on the negative electrode terminal 4 and welded to each other.
  • the first tab 32 and the second tab 33 are bent 180 degrees at the center (along the bending line indicated by the alternate long and short dash line).
  • the protection circuit board 19 is mounted on the outer can 12.
  • the cap frame 18 and the outer can 12 are integrated by injecting an integrally molded resin into the space between the cap frame 18 and the outer can 12, and the secondary battery 1 is completed.
  • the positive electrode substrate terminal 30 is formed of a Cu-based metal block in order to obtain good heat dissipation efficiency.
  • the thickness is set in the range of 0.6 mm to 1.0 mm. The reason for this configuration will be described below.
  • the positive electrode substrate terminal 30 using Cu-based metal has higher conductivity and thermal conductivity. That is, the thermal conductivity of Ni (300K) is 90.9 W / (m ⁇ K), whereas the thermal conductivity of brass (C2680, Cu—Pb—Fe—Zn alloy), for example, is 117 w / (m ⁇ K). Therefore, a sufficiently high heat dissipation effect can be obtained as compared with the case where Ni is used.
  • FIG. 3 shows the results of measuring the change in the surface temperature of the tub with respect to the energization time when a current of 3A was passed through the positive electrode substrate terminal at room temperature of 25 ° C.
  • the temperatures reached on the surface of the tab material are as follows.
  • the thickness of the Cu-based metal block is set to 0.6 mm to 1.0 mm in the present embodiment, compared to 0.4 mm or less in the case of the positive electrode substrate terminal 20 using the conventional Ni. .
  • the thickness of the Cu-based metal block is 1.0 mm or less, the height of the solder-mounted component can be kept within a range that can be stored in the battery pack.
  • any Cu and Cu alloy whose thermal conductivity and conductivity are in a range suitable for heat dissipation and resistance welding can be used. If it is a normal Cu-type metal, it exists in the range which can obtain a desirable discharge effect about thermal conductivity.
  • the first, second, and fourth tabs 32, 33, and 35 are welded to the positive and negative cell terminals 3 and 4 and the positive and negative electrode substrate terminals 30 and 31, respectively. Is used.
  • the state of resistance welding is shown in FIG. 4 taking the joining of the first tab 32 to the positive electrode substrate terminal 30 as an example.
  • the positive substrate terminal 30 is joined to the protective circuit board 19 by solder 36.
  • Resistance welding is performed by series welding using a pair of welding rods 37. This is because direct welding is inappropriate in this configuration. That is, in the case of direct welding, it is necessary to press the electrode rod 37 in the opposite direction against the lower surface of the positive electrode substrate terminal 30 and the upper surface of the first tab 32, and energize, but as shown in FIG. The electrode rod 37 cannot be pressed against the lower surface of the positive substrate terminal 30.
  • a welding point W is formed between the positive electrode substrate terminal 30 and the first tab 32 by the effective current Ie flowing through the positive electrode substrate terminal 30.
  • Appropriate heat generation is required at the location where the welding point W is to be formed. If the electrical conductivity of the positive electrode substrate terminal 30 is too high, the welding energy required for this will be excessive. As a result, heat generation at the contact point of the welding rod 37 with respect to the first tab 32 also increases, and the welding rod 37 is bitten (attached).
  • the positive electrode substrate terminal 30 can be welded even when pure copper having a conductivity of 100% is used. Therefore, by using a Cu-based metal having an electrical resistivity of less than 69.3 n ⁇ m, the resistance for rapid charging can be reduced as compared with an electrode using Ni.
  • a Cu-based metal having an electrical resistivity in the range of 1.68 to 63.9 n ⁇ m. 1.68 n ⁇ m is the electrical resistivity of pure copper, and 63.9 n ⁇ m is equivalent to the electrical resistivity of brass.
  • the electrical resistivity be about 63.9 n ⁇ m in order to avoid the problem of mass production due to the biting of the welding rod during series welding. By appropriately lowering the electrical conductivity, welding is possible even with low welding energy, and biting of the welding rod can be easily avoided.
  • Cu-based metal block materials include the following alloys.
  • pure Ni 99.9% or more
  • conductivity about 22%
  • thermal conductivity 90.9 w / m ⁇ k
  • Ni plating has a high melting point, and it is understood that Sn plating with a low melting point is optimal because the Ni layer at the welding point W cannot be scattered with the energy of resistance welding when using the series welding method. It was.
  • the first to fourth tabs 32 to 35 are made of Cu—Ni clad material so as to be adapted to a large current as a low resistance.
  • the tab of the Cu—Ni clad material is resistance welded with the Cu-based metal layer in contact with the positive and negative cell terminals 3 and 4 and the positive and negative electrode substrate terminals 30 and 31. The reason is to avoid the occurrence of burning of the Cu material in the welding process, as will be described below.
  • the Cu-based metal layer in contact with the positive electrode substrate terminal 30 and thus the electrode rod 37 in contact with the Ni layer, the reactive current In of the surface layer is suppressed, and the occurrence of burning or It becomes possible to reduce the joining of the electrode rod 37.
  • the second tab 33 and the third tab 34 that connect between the negative electrode substrate terminal 31 and the temperature protection element 7, and the fourth that connects between the temperature protection element 7 and the negative electrode terminal 4.
  • the tab 35 is formed of a Cu—Ni clad material.
  • the horizontal axis represents the current flowing through the breaker used as the temperature protection element 7, and the vertical axis represents the maximum temperature reached for each current value.
  • the experiment was performed for the case where a Cu—Ni clad material was used as the wiring material and for the case where conventional Ni was used.
  • the temperature at the breakers, the tabs, and the FETs 9a and 10a in the protection circuit 2 was measured. From FIG. 5, it can be seen that when the wiring material made of Cu—Ni clad material is used, the temperature rise in each part is reduced as compared with the case where the wiring material made of Ni is used.
  • the secondary battery pack of the present invention improves the efficiency of dissipating heat generated at the external output terminal without increasing the number of parts, suppresses the temperature rise due to energization, and is easy to charge quickly with a large current. Therefore, it is useful as a battery pack used for a device such as a mobile phone that is required to be rapidly rechargeable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A secondary cell pack in which a protective circuit is inserted between the cell terminals (3, 4) of the positive and negative electrodes of a secondary cell (1) and an external output terminal (26), and a temperature protection element (7) is inserted between the cell terminal (4) and the protective circuit. On a protective circuit substrate (19), the protective circuit is mounted and the external output terminal is disposed, a first and second substrate terminals (30, 31) being provided on the back-surface side of the substrate (19). The first substrate terminal is connected to one of the cell terminals, and the second substrate terminal is connected to the other cell terminal via the temperature protection element. The first substrate terminal and/or the second substrate terminal is composed of a Cu-based metal comprising Cu or a Cu alloy having a thickness within a range of 0.6-1.0 mm, and is disposed in a region corresponding to at least a part of a flat region on the external output terminal. Without being accompanied by an increase in the number of components, the efficiency with which generated heat is dissipated by the external output terminal is improved, an increase in temperature accompanying passage of an electric current is suppressed, and high-speed charging using a large current is simplified.

Description

保護回路を有する二次電池パックSecondary battery pack having a protection circuit
 本発明は、保護回路を有する二次電池パックに関し、特に、大電流による急速充電を容易とするようにインピーダンスが低減された二次電池パックに関する。 The present invention relates to a secondary battery pack having a protection circuit, and more particularly, to a secondary battery pack with reduced impedance so as to facilitate rapid charging with a large current.
 二次電池パックは、内蔵された二次電池の正負極に接続された外部出力端子を介して、外部機器との間で充放電が可能な状態で提供される。また、過充電、過放電、過大電流、異常な温度上昇等の異常状態から二次電池を保護するために、異常状態が発生したときには充放電を停止する制御を行う保護回路を有する。保護回路は、外部出力端子と二次電池との間に介在させた充放電制御スイッチを有し、そのオン・オフを制御するように構成される。すなわち、保護回路は、過充電、過放電等が検出されたときに、充放電制御スイッチをオフにして充放電路を遮断する制御を行う。 The secondary battery pack is provided in a state in which it can be charged and discharged with an external device via an external output terminal connected to the positive and negative electrodes of the built-in secondary battery. In addition, in order to protect the secondary battery from abnormal states such as overcharge, overdischarge, excessive current, and abnormal temperature rise, a protection circuit that performs control to stop charging and discharging when an abnormal state occurs is provided. The protection circuit includes a charge / discharge control switch interposed between the external output terminal and the secondary battery, and is configured to control on / off thereof. That is, the protection circuit performs control to turn off the charge / discharge control switch and shut off the charge / discharge path when overcharge, overdischarge, or the like is detected.
 図6は、そのような保護回路を有する二次電池パックの従来例を示す。この電池パックは、二次電池1と、保護回路2から構成される。二次電池1の正極セル端子3及び負極セル端子4と、外部出力端子である正極出力端子5及び負極出力端子6の間に保護回路2が挿入されている。負極セル端子4と負極出力端子6とを結ぶ負極側の充放電路中には、温度保護素子7と、保護回路2の一部である充放電制御スイッチ8が挿入されている。温度保護素子7は、二次電池1の発熱による昇温に応じた抵抗値の変化により、充放電路を流れる電流を制限し、あるいは遮断するために用いられる。 FIG. 6 shows a conventional example of a secondary battery pack having such a protection circuit. This battery pack includes a secondary battery 1 and a protection circuit 2. The protection circuit 2 is inserted between the positive electrode terminal 3 and the negative electrode terminal 4 of the secondary battery 1 and the positive output terminal 5 and the negative output terminal 6 that are external output terminals. A temperature protection element 7 and a charge / discharge control switch 8 which is a part of the protection circuit 2 are inserted in the charge / discharge path on the negative electrode side connecting the negative electrode terminal 4 and the negative electrode output terminal 6. The temperature protection element 7 is used to limit or cut off the current flowing through the charging / discharging path according to a change in the resistance value according to the temperature rise due to heat generation of the secondary battery 1.
 充放電制御スイッチ8は、MOSFETからなる放電制御FET9a、及び充電制御FET10aを直列に接続して構成されている。放電制御FET9aは、ドレイン・ソース間に存在する寄生ダイオード9bが、正極出力端子5から二次電池1の方向に流れる充電電流に対して順方向となるように接続されている。充電制御FET10aは、寄生ダイオード10bが、放電電流に対して順方向となるように接続されている。 The charge / discharge control switch 8 is configured by connecting a discharge control FET 9a made of a MOSFET and a charge control FET 10a in series. The discharge control FET 9a is connected so that the parasitic diode 9b existing between the drain and the source is in a forward direction with respect to the charging current flowing from the positive electrode output terminal 5 toward the secondary battery 1. The charge control FET 10a is connected such that the parasitic diode 10b is in the forward direction with respect to the discharge current.
 保護回路2は、電圧監視部を構成する保護IC11を備え、その電源端子VDDに、二次電池1から、抵抗R1を介して電源電圧が供給される。基準電位端子VSSは、充放電制御スイッチ8の二次電池1の側に接続されている。また、過電流検出端子V-は、抵抗R2を介して、充放電制御スイッチ8の負極出力端子6の側に接続されている。 The protection circuit 2 includes a protection IC 11 that constitutes a voltage monitoring unit, and a power supply voltage is supplied to the power supply terminal VDD from the secondary battery 1 via the resistor R1. The reference potential terminal VSS is connected to the secondary battery 1 side of the charge / discharge control switch 8. Further, the overcurrent detection terminal V− is connected to the negative output terminal 6 side of the charge / discharge control switch 8 through the resistor R2.
 放電制御FET9aおよび充電制御FET10aのそれぞれのゲートには、保護IC11からの制御信号DOおよびCOがそれぞれ供給される。通常の充電および放電動作では、制御信号DOおよびCOがハイレベルとされ、放電制御FET9aおよび充電制御FET10aがON状態に制御される。 Control signals DO and CO from the protection IC 11 are supplied to the gates of the discharge control FET 9a and the charge control FET 10a, respectively. In normal charging and discharging operations, the control signals DO and CO are set to the high level, and the discharge control FET 9a and the charge control FET 10a are controlled to be in the ON state.
 保護IC11は、基準電位端子VSSと過電流検出端子V-の間の電圧を検出し、検出された電圧から、等価的に充放電路に流れる電流を検出する。すなわち、放電制御FET9aおよび充電制御FET10aのオン抵抗によって生じる電圧降下に基づいて等価的に電流を検出する。規定値以上の電流(すなわち、過電流)が流れた場合に、放電制御FET9aまたは充電制御FET10aをオフさせて電流を遮断する。 The protection IC 11 detects the voltage between the reference potential terminal VSS and the overcurrent detection terminal V−, and detects the current flowing through the charge / discharge path equivalently from the detected voltage. That is, the current is equivalently detected based on the voltage drop caused by the ON resistance of the discharge control FET 9a and the charge control FET 10a. When a current exceeding the specified value (that is, overcurrent) flows, the discharge control FET 9a or the charge control FET 10a is turned off to cut off the current.
 以上のような構成の二次電池パックに対して、二次電池の急速充電を容易とする改良が望まれている。特に、携帯電話などの高機能化に伴って、リチウム二次電池にはより高容量が求められているため、従来と同程度の電流値による充電では、充電に要する時間が実用的な範囲を超えて長くなる。これを克服するためには、より大きな電流値での充電を可能として、充電に要する時間を短縮化しなければならない。大電流での充電を可能とするためには、二次電池パックのインピーダンスを低減することが必要である。二次電池パックのインピーダンス低減のために低抵抗化を図る対象としては、保護回路2、温度保護素子7、及び配線材が考えられる。 An improvement that facilitates quick charging of the secondary battery is desired for the secondary battery pack having the above-described configuration. In particular, as the functionality of mobile phones and the like increases, lithium secondary batteries are required to have a higher capacity. Be longer than that. In order to overcome this, it is necessary to reduce the time required for charging by enabling charging with a larger current value. In order to enable charging with a large current, it is necessary to reduce the impedance of the secondary battery pack. As a target for reducing the resistance in order to reduce the impedance of the secondary battery pack, the protection circuit 2, the temperature protection element 7, and the wiring material can be considered.
 例えば保護回路2の抵抗を低減するためには、充放電制御スイッチ8のオン抵抗を低減する必要がある。そのために、FET9a、10aからなるスイッチ回路を2組、並列に接続して用いる構成が考えられた。但し、保護回路2では充放電制御スイッチ8のオン抵抗によって生じる電圧降下に基づいて過電流を検出するので、オン抵抗の低減により過大電流の検出レベルが高くなること、また、コスト、実装面積の増大を考慮すると、並列接続するスイッチ回路は2組が限度である。また、温度保護素子7としては、従来、PTC素子が用いられていたが、PTC素子の抵抗値は約0.005Ωであるため、PTC素子に代えて、バイメタルとPTC素子を組み合わせて構成されたブレーカー(約2.5mΩ)を用いることで、低抵抗化が図られている。 For example, in order to reduce the resistance of the protection circuit 2, it is necessary to reduce the on-resistance of the charge / discharge control switch 8. For this purpose, a configuration in which two sets of switch circuits including FETs 9a and 10a are connected in parallel has been considered. However, since the protection circuit 2 detects the overcurrent based on the voltage drop caused by the on-resistance of the charge / discharge control switch 8, the detection level of the overcurrent is increased by reducing the on-resistance, and the cost and mounting area are reduced. Considering the increase, the limit is two sets of switch circuits connected in parallel. As the temperature protection element 7, a PTC element has been conventionally used. However, since the resistance value of the PTC element is approximately 0.005Ω, it is configured by combining a bimetal and a PTC element instead of the PTC element. By using a breaker (about 2.5 mΩ), the resistance is reduced.
 ブレーカーは、上下方向で対向する一対のリード端子間に、PTC素子及びバイメタルを重畳し介在させて構成される。温度に応じたバイメタルの変形により、リード端子間の導通は、リード端子どうしが直接接触した極めて低抵抗の導通状態と、PTC素子を介した高抵抗の実質的な遮断状態の間で切り替わる。ブレーカーを用いることにより、抵抗値の温度依存性がなく、温度によって抵抗値が変動するPTC素子と比べて低抵抗を実現できる。大電流で充電する急速充電においては、セルの発熱が大きくなるため、発熱による抵抗増大がないブレーカーは、低抵抗化に有利な素子である。 The breaker is configured by superposing a PTC element and a bimetal between a pair of lead terminals opposed in the vertical direction. Due to the deformation of the bimetal according to the temperature, the conduction between the lead terminals is switched between a very low resistance conduction state in which the lead terminals are in direct contact and a high resistance substantial interruption state via the PTC element. By using a breaker, the resistance value does not depend on temperature, and a low resistance can be realized as compared with a PTC element whose resistance value varies depending on the temperature. In rapid charging in which charging is performed with a large current, the heat generation of the cell increases, and therefore a breaker that does not increase resistance due to heat generation is an element that is advantageous for reducing resistance.
 更に、二次電池1、保護回路2、及び温度保護素子7間を接続する配線材の低抵抗化を図る改良技術が、例えば特許文献1に開示されている。すなわち、配線材として、溶接層と基層とがクラッドされた2層構造のクラッド材を用いる。溶接層は、抵抗溶接の容易さを確保するための層であり、Ni、Ni合金またはFe合金からなる。基層は低抵抗層であり、Cu又は耐熱Cu合金からなる。電池の電極と電池パックの外部端子間にこの配線材を用い、抵抗溶接により溶接層が電極へ固着接続される。これにより、純ニッケルを使用した従来のリード材料に比べて、電気抵抗を約半分に低減することができる、とされている。 Furthermore, for example, Patent Document 1 discloses an improved technique for reducing the resistance of the wiring material connecting the secondary battery 1, the protection circuit 2, and the temperature protection element 7. That is, a clad material having a two-layer structure in which a weld layer and a base layer are clad is used as the wiring material. The weld layer is a layer for ensuring the ease of resistance welding, and is made of Ni, Ni alloy, or Fe alloy. The base layer is a low resistance layer and is made of Cu or a heat-resistant Cu alloy. Using this wiring material between the electrode of the battery and the external terminal of the battery pack, the weld layer is fixedly connected to the electrode by resistance welding. As a result, the electrical resistance can be reduced to about half compared to a conventional lead material using pure nickel.
特開平11-297300号公報JP 11-297300 A
 上述の従来例のように、2組のFETを並列接続し、温度保護素子としてブレーカーを用いることにより、二次電池パックのインピーダンス低減に相応の効果が得られる。あるいは特許文献1のように、溶接層とCu又は耐熱Cu合金からなる基層のクラッド構造により配線材を低抵抗化させた場合も、相応の効果が得られる。しかし、そのようにしてインピーダンスを低減させた二次電池パックでも、大電流を流した場合に、次のような問題を解決する必要があることが判った。 As in the conventional example described above, by connecting two sets of FETs in parallel and using a breaker as a temperature protection element, a corresponding effect can be obtained in reducing the impedance of the secondary battery pack. Alternatively, as in Patent Document 1, when the resistance of the wiring material is lowered by the clad structure of the weld layer and the base layer made of Cu or a heat-resistant Cu alloy, a corresponding effect can be obtained. However, it has been found that even the secondary battery pack having the impedance reduced as described above needs to solve the following problems when a large current is passed.
 すなわち、二次電池パックとセット機器の間での充放電は、セット機器の接点と二次電池パックの外部出力端子の当接を介して行われる。充放電に伴う外部出力端子は、その接触抵抗が1点あたり概ね20mΩと大きい。そのため、特に急速充電のような大電流が流れる用途の機器においては、接点部分での発熱を効果的に放熱することが、重要な課題となる。これについて、図7に示す二次電池パックの要部断面図を参照して説明する。同図は、二次電池1に対する保護回路2の装着部分の構造を概念的に示すものである。なお、図7において、図6に示した要素と同じ要素には同一の参照符号を付して、説明を省略する。 That is, charging / discharging between the secondary battery pack and the set device is performed through contact between the set device contact and the external output terminal of the secondary battery pack. The external output terminal associated with charging / discharging has a large contact resistance of about 20 mΩ per point. For this reason, it is an important issue to effectively dissipate the heat generated at the contact portion, particularly in a device that uses a large current such as rapid charging. This will be described with reference to a cross-sectional view of the main part of the secondary battery pack shown in FIG. FIG. 1 conceptually shows the structure of a portion where the protection circuit 2 is attached to the secondary battery 1. In FIG. 7, the same elements as those shown in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
 二次電池1では、外装缶12の内部に素電池を構成する要素が内蔵され、外装缶12の上部は上部絶縁板13により封止されている。素電池から延在する正極リードタブ14及び負極リードタブ15が、上部絶縁板13を貫通している。正極リードタブ14は、その上端が外装缶12に溶接されているので、外装缶12の周縁部上面に設けられた正極セル端子3と導通している。負極リードタブ15の上端は、内部リード16を介して絶縁体17の上面の負極セル端子4と導通している。外装缶12の上部にはキャップフレーム18が装着されて、保護回路2(図5参照)を実装した保護回路基板19を覆っている。 In the secondary battery 1, the elements constituting the unit cell are built in the outer can 12, and the upper portion of the outer can 12 is sealed by the upper insulating plate 13. A positive electrode lead tab 14 and a negative electrode lead tab 15 extending from the unit cell penetrate the upper insulating plate 13. Since the upper end of the positive electrode lead tab 14 is welded to the outer can 12, the positive electrode lead tab 14 is electrically connected to the positive electrode cell terminal 3 provided on the upper surface of the peripheral edge of the outer can 12. The upper end of the negative electrode lead tab 15 is electrically connected to the negative electrode cell terminal 4 on the upper surface of the insulator 17 through the internal lead 16. A cap frame 18 is attached to the top of the outer can 12 to cover the protection circuit board 19 on which the protection circuit 2 (see FIG. 5) is mounted.
 保護回路基板19の下面には、正極基板端子20及び負極基板端子21が設けられている。正極基板端子20は、第1タブ22により正極セル端子3と接続され、負極基板端子21は、第2、第3タブ23、24により温度保護素子7と接続されている。温度保護素子7と負極セル端子4の間は、第4タブ25により接続されている。第1タブ22は180度の角度で屈曲され、上側の屈曲片が正極基板端子20に、下側の屈曲片が正極セル端子3に溶接されている。同様に、第2タブ23も180度の角度で屈曲され、上側の屈曲片が負極基板端子21に、下側の屈曲片が第3タブ24に溶接されている。Wは溶接ポイントを示す。なお、図示は省略したが、第3タブ24の下部には絶縁テープが付設されており、外装缶12との導通が防止されている。キャップフレーム18の上端面には、保護回路基板19に取り付けられた外部出力端子26(図5の正、負極出力端子5、6を含む)が露出している。 A positive electrode substrate terminal 20 and a negative electrode substrate terminal 21 are provided on the lower surface of the protection circuit substrate 19. The positive substrate terminal 20 is connected to the positive cell terminal 3 by the first tab 22, and the negative substrate terminal 21 is connected to the temperature protection element 7 by the second and third tabs 23 and 24. The temperature protection element 7 and the negative electrode cell terminal 4 are connected by a fourth tab 25. The first tab 22 is bent at an angle of 180 degrees, and the upper bent piece is welded to the positive electrode substrate terminal 20 and the lower bent piece is welded to the positive electrode cell terminal 3. Similarly, the second tab 23 is also bent at an angle of 180 degrees, and the upper bent piece is welded to the negative electrode substrate terminal 21 and the lower bent piece is welded to the third tab 24. W indicates a welding point. Although illustration is omitted, an insulating tape is attached to the lower portion of the third tab 24 to prevent conduction with the outer can 12. An external output terminal 26 (including the positive and negative output terminals 5 and 6 in FIG. 5) attached to the protective circuit board 19 is exposed on the upper end surface of the cap frame 18.
 この二次電池パックをセット機器に装着するときには、機器側の接点27と外部出力端子26を接触させる。充放電の際に大電流が流れると、外部出力端子26と接点27の接触部分での発熱が過大になり易い。二次電池パックのインピーダンスを低減しても、この発熱による影響を抑制することなしには、大電流を流す使用に供することが困難である。 When the secondary battery pack is mounted on the set device, the contact 27 on the device side and the external output terminal 26 are brought into contact with each other. If a large current flows during charging / discharging, heat generation at the contact portion between the external output terminal 26 and the contact 27 tends to be excessive. Even if the impedance of the secondary battery pack is reduced, it is difficult to use the battery in such a way that a large current flows without suppressing the influence of heat generation.
 この問題を解決するための従来の対策の一例を、図8に示す。(a)は正面図、(b)は背面図である。図8に示す二次電池パックでは、図7に示した保護回路基板19に相当する要素が、保護回路基板19aとコネクタ19bから構成される。すなわち、保護回路基板19aから外部出力端子(図7の参照番号26)の部分を含むコネクタ19bが、フレキシブル基板28を用いて分離されている。これにより、コネクタ19bの裏面に、金属製の放熱プレート29を貼付することが可能となり、放熱性を向上させることができる。但し、放熱プレート29により外部出力端子での発熱による温度上昇は抑制されるが、フレキシブル基板28の配線によりインピーダンスが増大する。また、部品点数が増加してコストの上昇を招く。 An example of conventional measures for solving this problem is shown in FIG. (A) is a front view, (b) is a rear view. In the secondary battery pack shown in FIG. 8, the elements corresponding to the protection circuit board 19 shown in FIG. 7 are composed of a protection circuit board 19a and a connector 19b. That is, the connector 19b including the portion of the external output terminal (reference numeral 26 in FIG. 7) is separated from the protective circuit board 19a by using the flexible board 28. Thereby, it becomes possible to affix the metal heat radiating plate 29 on the back surface of the connector 19b, and the heat dissipation can be improved. However, although the temperature rise due to heat generation at the external output terminal is suppressed by the heat radiating plate 29, the impedance is increased by the wiring of the flexible substrate 28. In addition, the number of parts increases, leading to an increase in cost.
 一方、温度保護素子7でも、大電流を流したときに発熱の問題が発生する。すなわち、図7の構成において、正、負極セル端子3、4、第1、第2基板端子20、22、及び第1~第4タブ22~25には、従来、導電性及び耐腐食性等を考慮してNiが用いられている。しかし、温度保護素子7に大電流が流れたときに、自己発熱が多大な量となるが、Ni配線の熱伝導率は十分に大きくないため、Ni配線からは十分に放熱されず、十分な電流を流せない状態で溶断してしまう恐れがあった。 On the other hand, the temperature protection element 7 also generates a problem of heat generation when a large current is passed. That is, in the configuration of FIG. 7, the positive and negative cell terminals 3, 4, the first and second substrate terminals 20, 22 and the first to fourth tabs 22 to 25 are conventionally provided with conductivity and corrosion resistance. Ni is used in consideration of the above. However, although a large amount of self-heating occurs when a large current flows through the temperature protection element 7, since the thermal conductivity of the Ni wiring is not sufficiently large, the Ni wiring does not sufficiently dissipate heat and is sufficient. There was a risk of fusing in a state where no current could flow.
 以上のことを考慮して、本発明は、部品点数の増加を伴うことなく、外部出力端子での発熱を放熱させる効率を向上させて通電に伴う温度上昇を抑制し、大電流による急速充電を容易とした二次電池パックを提供することを目的とする。 In consideration of the above, the present invention improves the efficiency of radiating the heat generated at the external output terminal without increasing the number of parts, suppresses the temperature rise due to energization, and performs rapid charging with a large current. An object is to provide an easy secondary battery pack.
 また、本発明は、保護回路基板及び二次電池と温度保護素子との間の配線材を通じて、温度保護素子からの発熱が効果的に放熱されるように構成された二次電池パックを提供することを目的とする。 The present invention also provides a secondary battery pack configured so that heat generated from the temperature protection element is effectively radiated through the protection circuit board and the wiring material between the secondary battery and the temperature protection element. For the purpose.
 本発明の二次電池パックは、正極及び負極のセル端子を有する二次電池と、前記二次電池と外部との間で充放電を行うための一対の外部出力端子と、前記セル端子と前記外部出力端子の間の充放電路中に挿入された保護回路と、前記セル端子と前記保護回路の間に挿入された温度保護素子と、前記保護回路が実装され、前記外部出力端子が配置されてその背面側に第1及び第2基板端子が設けられた保護回路基板とを備える。前記保護回路は、前記充放電路に直列に挿入された充放電制御スイッチと、前記充放電路を流れる電流を検出する電流検出部を有し、前記電流検出部の検出出力に基づき前記充放電制御スイッチのオン・オフを制御するように構成され、前記第1基板端子は前記セル端子の一方と接続され、前記第2基板端子は前記温度保護素子を介して前記セル端子の他方と接続されている。 The secondary battery pack of the present invention includes a secondary battery having positive and negative cell terminals, a pair of external output terminals for charging and discharging between the secondary battery and the outside, the cell terminals, and the A protection circuit inserted in a charge / discharge path between external output terminals, a temperature protection element inserted between the cell terminal and the protection circuit, the protection circuit is mounted, and the external output terminal is arranged And a protection circuit board provided with first and second board terminals on the back side thereof. The protection circuit includes a charge / discharge control switch inserted in series in the charge / discharge path, and a current detection unit that detects a current flowing through the charge / discharge path, and the charge / discharge is based on a detection output of the current detection unit. The first substrate terminal is connected to one of the cell terminals, and the second substrate terminal is connected to the other of the cell terminals via the temperature protection element. ing.
 上記課題を解決するために、本発明の二次電池パックは、前記第1及び第2基板端子の少なくとも一方は、厚さが0.6mm~1.0mmの範囲のCuまたはCu合金からなるCu系金属部材により構成され、前記外部出力端子の平面領域の少なくとも一部に対応する領域に配置されていることを特徴とする。 In order to solve the above problems, in the secondary battery pack of the present invention, at least one of the first and second substrate terminals has a Cu thickness of 0.6 mm to 1.0 mm and a Cu or Cu alloy. It is comprised by the system metal member, and is arrange | positioned in the area | region corresponding to at least one part of the planar area | region of the said external output terminal.
 上記構成の二次電池パックによれば、Cu系金属部材により形成された第1基板端子が外部出力端子の平面領域に対応させて配置されていることにより、外部出力端子での発熱が第1基板端子から効果的に放熱される。これにより、部品点数の増加を伴うことなく、外部出力端子での発熱を放熱させる効率を向上させて通電に伴う温度上昇を抑制して、大電流による急速充電を容易にすることができる。また、第1基板端子の厚さを0.6mm~1.0mmの範囲に設定することにより、配線材との抵抗溶接に際して、第1基板端子を保護回路基板へ接合しているはんだ層の溶解を回避可能である。 According to the secondary battery pack having the above configuration, the first substrate terminal formed of the Cu-based metal member is arranged corresponding to the planar area of the external output terminal, so that heat generation at the external output terminal is first. Heat is effectively radiated from the board terminals. Thus, without increasing the number of parts, the efficiency of dissipating heat generated at the external output terminal can be improved to suppress the temperature rise caused by energization, and quick charging with a large current can be facilitated. In addition, by setting the thickness of the first board terminal in the range of 0.6 mm to 1.0 mm, the resistance of the solder layer that joins the first board terminal to the protective circuit board during resistance welding to the wiring material Can be avoided.
図1は、本発明の実施の形態の二次電池パックにおける二次電池に対する保護回路基板の装着部を概念的に示す要部断面図FIG. 1 is a cross-sectional view of a main part conceptually showing a mounting portion of a protection circuit board for a secondary battery in a secondary battery pack according to an embodiment of the present invention. 図2Aは、同二次電池パックの製造工程における保護回路基板の部分を示す平面図FIG. 2A is a plan view showing a part of the protection circuit board in the manufacturing process of the secondary battery pack 図2Bは、同二次電池パックの製造工程における二次電池の部分を示す平面図FIG. 2B is a plan view showing a portion of the secondary battery in the manufacturing process of the secondary battery pack 図2Cは、同二次電池パックの製造工程における保護回路基板と二次電池の接続部を示す平面図FIG. 2C is a plan view showing a connection portion between the protection circuit board and the secondary battery in the manufacturing process of the secondary battery pack 図3は、同二次電池パックの正極基板端子による放熱効果に基づく昇温特性の変化を示す図FIG. 3 is a diagram showing a change in temperature rise characteristics based on a heat dissipation effect by the positive electrode substrate terminal of the secondary battery pack. 図4は、同二次電池パックの製造工程の一部である溶接の工程を示す断面図FIG. 4 is a sectional view showing a welding process which is a part of the manufacturing process of the secondary battery pack 図5は、同二次電池パックの温度保護素子に対する配線材による放熱効果に基づく昇温特性の変化を示す図FIG. 5 is a diagram showing a change in temperature rise characteristics based on a heat dissipation effect by the wiring material for the temperature protection element of the secondary battery pack 図6は、従来例の二次電池パックの回路構成例を示すブロック図FIG. 6 is a block diagram showing a circuit configuration example of a conventional secondary battery pack. 図7は、同二次電池パックを構成する保護回路基板の装着部を概念的に示す要部断面図FIG. 7 is a cross-sectional view of a principal part conceptually showing a mounting portion of a protective circuit board constituting the secondary battery pack. 図8は、他の従来例の二次電池パックの構成を概念的に示し、(a)は正面図、(b)は背面図FIG. 8 conceptually shows the structure of another conventional secondary battery pack, where (a) is a front view and (b) is a rear view.
 本発明の二次電池パックは、上記構成を基本として、以下のような態様をとることができる。 The secondary battery pack of the present invention can take the following aspects based on the above configuration.
 すなわち、前記Cu系金属部材は、Snメッキが施されていることが好ましい。それにより、酸化され易いCu系金属の酸化を防止することができる。 That is, it is preferable that the Cu-based metal member is Sn plated. Thereby, the oxidation of the Cu-based metal that is easily oxidized can be prevented.
 また、前記Cu系金属部材は、69.3nΩm未満の電気抵抗率を有することが好ましい。更に好ましくは、前記Cu系金属部材は、1.68~63.9nΩmの範囲の電気抵抗率を有する。それにより、十分な放熱効果を得るとともに、シリーズ溶接の適用が容易となる。 The Cu-based metal member preferably has an electrical resistivity of less than 69.3 nΩm. More preferably, the Cu-based metal member has an electrical resistivity in the range of 1.68 to 63.9 nΩm. Thereby, a sufficient heat dissipation effect is obtained, and application of series welding is facilitated.
 また、前記第2基板端子と前記温度保護素子の間、及び前記温度保護素子と前記セル端子の間を接続する配線材として、CuまたはCu合金からなるCu系金属の層とNi層とからなるCu-Niクラッド材を用いることができる。それにより、温度保護素子の通電による発熱を効果的に放熱することができる。 Further, as a wiring material for connecting between the second substrate terminal and the temperature protection element, and between the temperature protection element and the cell terminal, a Cu-based metal layer made of Cu or Cu alloy and a Ni layer are used. A Cu—Ni clad material can be used. Thereby, heat generated by energization of the temperature protection element can be effectively radiated.
 また、前記Cu-Niクラッド材は、前記セル端子及び前記基板端子に対して前記Cu系金属層側を当接させて抵抗溶接により接合されていることが好ましい。この構成により、良好な放熱性とシリーズ溶接への適合性を兼ねることができる。 In addition, it is preferable that the Cu—Ni clad material is bonded by resistance welding with the Cu-based metal layer side in contact with the cell terminal and the substrate terminal. With this configuration, both good heat dissipation and suitability for series welding can be achieved.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <実施の形態>
 本発明の一実施の形態における二次電池パックについて、図1を参照して説明する。図1は、二次電池1に対する保護回路基板19の装着部分の構造を概念的に示す要部断面図である。この保護回路基板19の装着部分の構造は、基本的には図7に示した従来例と同様である。従って、図7に示した要素と同じ要素には同一の参照符号を付して、説明を省略する。また、二次電池パックの回路構成は、図6に示した従来例と同様である。
<Embodiment>
A secondary battery pack according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a main part sectional view conceptually showing the structure of the mounting portion of the protection circuit board 19 for the secondary battery 1. The structure of the mounting portion of the protection circuit board 19 is basically the same as that of the conventional example shown in FIG. Therefore, the same elements as those shown in FIG. 7 are denoted by the same reference numerals, and description thereof is omitted. The circuit configuration of the secondary battery pack is the same as that of the conventional example shown in FIG.
 本実施の形態における二次電池パックの第1の特徴は、図7に示した従来例におけるNiを用いた正極基板端子20に代えて、CuまたはCu合金からなるCu系金属ブロックにより構成された正極基板端子30を用いたことである。正極基板端子30は、その材質の故に、放熱部材として好適に機能する。正極基板端子30は、外部出力端子26の平面領域に対応する位置に配置され、半田(図示せず)により保護回路基板19に接合されている。 The first feature of the secondary battery pack in the present embodiment is constituted by a Cu-based metal block made of Cu or Cu alloy instead of the positive electrode substrate terminal 20 using Ni in the conventional example shown in FIG. That is, the positive electrode substrate terminal 30 is used. The positive electrode substrate terminal 30 preferably functions as a heat radiating member because of its material. The positive electrode substrate terminal 30 is disposed at a position corresponding to the planar area of the external output terminal 26 and is joined to the protection circuit substrate 19 by solder (not shown).
 正極基板端子30が、外部出力端子26の平面領域に対応させて配置されていることにより、外部出力端子26の接点部での発熱が、正極基板端子30のCu系金属ブロックに効率的に伝達され、Cu系金属ブロックから効率的に放熱される。これにより、部品点数の増加を伴うことなく、放熱効率を向上させて、通電に伴う外部出力端子26での昇温を実用上十分に抑制することが可能である。 Since the positive substrate terminal 30 is arranged corresponding to the planar area of the external output terminal 26, heat generated at the contact portion of the external output terminal 26 is efficiently transmitted to the Cu-based metal block of the positive substrate terminal 30. The heat is efficiently radiated from the Cu-based metal block. Thereby, without increasing the number of parts, it is possible to improve the heat dissipation efficiency and sufficiently suppress the temperature rise at the external output terminal 26 due to energization.
 図1の構成では、正極基板端子30の大きさは、外部出力端子26の全てを含む領域に亘っているが、放熱効果を確保するためには、正極基板端子30は、その平面領域が、外部出力端子26の平面領域の少なくとも一部に対応するように配置されればよい。但し、正極基板端子30は、通常、外部出力端子26のうちの正極出力端子に対応させて設けられるが、本実施の形態の効果を十分に得るためには、負極出力端子も含む範囲に亘って設けられることが好ましい。 In the configuration of FIG. 1, the size of the positive electrode substrate terminal 30 extends over a region including all of the external output terminals 26, but in order to ensure a heat dissipation effect, the positive electrode substrate terminal 30 has a planar region, What is necessary is just to arrange | position so that it may correspond to at least one part of the planar area | region of the external output terminal 26. FIG. However, although the positive electrode substrate terminal 30 is usually provided corresponding to the positive electrode output terminal of the external output terminals 26, in order to sufficiently obtain the effects of the present embodiment, the positive electrode substrate terminal 30 covers a range including the negative electrode output terminal. It is preferable to be provided.
 なお、本実施の形態は、正極基板端子30を通して放熱効果を得る構成に限られるわけではない。すなわち、図1のように、正極基板端子30が外部出力端子26の平面領域に対応させて配置された構成に限られるわけではない。これに代えて、外部出力端子26の平面領域に対応させて負極基板端子31を配置して、負極基板端子31を介して放熱する構成であっても、相応の効果を得ることが可能である。 Note that the present embodiment is not limited to a configuration that obtains a heat dissipation effect through the positive electrode substrate terminal 30. That is, as shown in FIG. 1, the configuration is not limited to the configuration in which the positive electrode substrate terminal 30 is arranged corresponding to the planar area of the external output terminal 26. Instead of this, even if the negative electrode substrate terminal 31 is arranged corresponding to the planar area of the external output terminal 26 and heat is radiated through the negative electrode substrate terminal 31, a corresponding effect can be obtained. .
 Cu系金属ブロックの厚さは、0.6mm~1.0mmの範囲に設定される。この厚さの範囲は、Cu系金属ブロック固定用のはんだが、正極基板端子30に第1タブ32を抵抗溶接する際の抵抗溶接の発熱により溶解することを回避するために好ましい設定範囲である。また、正極基板端子30のCu系金属ブロックには、酸化防止のためのSnメッキが施されている。正極基板端子30と正極セル端子3の間を接続する第1タブ32としては、CuまたはCu合金からなるCu系金属の層とNi層とからなるCu-Niクラッド材が用いられる。 The thickness of the Cu-based metal block is set in the range of 0.6 mm to 1.0 mm. This thickness range is a preferable setting range in order to prevent the solder for fixing the Cu-based metal block from melting due to heat generated by resistance welding when the first tab 32 is resistance-welded to the positive electrode substrate terminal 30. . Further, Sn plating for preventing oxidation is applied to the Cu-based metal block of the positive electrode substrate terminal 30. As the first tab 32 for connecting between the positive electrode substrate terminal 30 and the positive electrode cell terminal 3, a Cu—Ni clad material made of a Cu-based metal layer made of Cu or a Cu alloy and an Ni layer is used.
 本実施の形態の第2の特徴は、負極基板端子31と温度保護素子7の間を接続する第2、第3タブ33、34、更に、温度保護素子7と負極セル端子4の間を接続する第4タブ35が、第1タブ32と同様のCu-Niクラッド材により形成されていることである。なお、負極基板端子31は、正極基板端子30と同様のCu系金属ブロックにより形成されている。 The second feature of the present embodiment is that the second and third tabs 33 and 34 that connect the negative electrode substrate terminal 31 and the temperature protection element 7, and the connection between the temperature protection element 7 and the negative electrode terminal 4 are connected. The fourth tab 35 is formed of the same Cu—Ni clad material as that of the first tab 32. The negative electrode substrate terminal 31 is formed of the same Cu-based metal block as the positive electrode substrate terminal 30.
 配線材であるタブとしてCu-Niクラッド材を用いれば、Cu系金属層が低抵抗であることにより、従来のNi配線材と比べて、配線抵抗を低減させて急速充電を容易にすることができる。また、Cu系金属層のみでタブを形成した場合と比べて、配線材の溶接に伴う問題の発生を確実に回避することができる。これについては、後に詳述する。 If a Cu-Ni clad material is used as a tab that is a wiring material, the Cu-based metal layer has a low resistance, and therefore, compared to conventional Ni wiring materials, wiring resistance can be reduced and rapid charging can be facilitated. it can. Moreover, compared with the case where a tab is formed only with a Cu-based metal layer, it is possible to reliably avoid the occurrence of problems associated with the welding of the wiring material. This will be described in detail later.
 上記構成において、正極基板端子30及び正極セル端子3に対する第1タブ32の接合、負極基板端子31及び第3タブ34に対する第2タブ33の接合、更に、負極セル端子4に対する第4タブ35の接合は、抵抗溶接によって行う。抵抗溶接は、作業が簡単で、溶接装置も簡素であるため、製造コストの低減に有利だからである。また、図1に示した溶接ポイントWから判るように、抵抗溶接のうちシリーズ溶接を採用する。これに伴い、正、負極基板端子30、32、及び第1~第4タブ32~35の材質として上述のクラッド材を用い、その用い方を後述のように設定することにより、シリーズ溶接に好適となる効果を得る。 In the above configuration, the first tab 32 is bonded to the positive substrate terminal 30 and the positive cell terminal 3, the second tab 33 is bonded to the negative substrate terminal 31 and the third tab 34, and the fourth tab 35 is bonded to the negative cell terminal 4. Joining is performed by resistance welding. This is because resistance welding is easy to work and the welding apparatus is simple, which is advantageous in reducing manufacturing costs. Further, as can be seen from the welding point W shown in FIG. 1, series welding is adopted among resistance welding. Accordingly, the above-described cladding material is used as the material for the positive and negative electrode substrate terminals 30 and 32 and the first to fourth tabs 32 to 35, and the usage is set as described later, which is suitable for series welding. The effect becomes.
 抵抗溶接により二次電池1の上端部へ保護回路基板19を装着する工程は、例えば、図2A~図2C(工程の一部を示す)に示すように行う。図2Aは、保護回路基板19を、図1の状態から上下反転させた状態を示す平面図である。図2Bは、二次電池1の平面図である。図2Cは、二次電池1と保護回路基板19が相互に接続された状態を示す平面図である。 The process of attaching the protective circuit board 19 to the upper end portion of the secondary battery 1 by resistance welding is performed as shown in FIGS. 2A to 2C (a part of the process is shown), for example. 2A is a plan view showing a state in which the protection circuit board 19 is turned upside down from the state shown in FIG. FIG. 2B is a plan view of the secondary battery 1. FIG. 2C is a plan view showing a state in which the secondary battery 1 and the protection circuit board 19 are connected to each other.
 先ず、図2Aに示すように、温度保護素子7に第3タブ34及び第4タブ35を接続し、更に、第2タブ33の一端部を第3タブ34の一端部に溶接する。次に、上下反転した状態の保護回路基板19の上端面(図1における下端面に相当)と、温度保護素子7を整列させて配置し、第2タブ33の他端部を負極基板端子31上に配置して溶接する。また、第1タブ32の一端部を正極基板端子30上に配置して溶接する。図2Bに示すように、二次電池1の上端面には、正極セル端子3及び負極セル端子4が配置されている。 First, as shown in FIG. 2A, the third tab 34 and the fourth tab 35 are connected to the temperature protection element 7, and one end of the second tab 33 is welded to one end of the third tab 34. Next, the upper end surface (corresponding to the lower end surface in FIG. 1) of the protection circuit board 19 in the upside down state and the temperature protection element 7 are aligned and the other end of the second tab 33 is connected to the negative electrode substrate terminal 31. Place on top and weld. Also, one end of the first tab 32 is disposed on the positive electrode substrate terminal 30 and welded. As shown in FIG. 2B, the positive cell terminal 3 and the negative cell terminal 4 are arranged on the upper end surface of the secondary battery 1.
 この二次電池1の上端面と保護回路基板19の上端面を、図2Cに示すように整列させて、第1タブ32の他端部を正極セル端子3上に配置し、第4タブ35を負極セル端子4上に配置して、各々溶接する。次に、第1タブ32及び第2タブ33を、中央部で180度屈曲させる(一点鎖線で示す屈曲線に沿って)。これにより、図1に示したように、保護回路基板19が外装缶12の上部に装着された状態とする。その後、図示しないが、キャップフレーム18と外装缶12との間の空間に一体成形樹脂を注入することによりキャップフレーム18と外装缶12を一体化し、二次電池1が完成する。 The upper end surface of the secondary battery 1 and the upper end surface of the protection circuit board 19 are aligned as shown in FIG. 2C, the other end of the first tab 32 is disposed on the positive electrode terminal 3, and the fourth tab 35 Are placed on the negative electrode terminal 4 and welded to each other. Next, the first tab 32 and the second tab 33 are bent 180 degrees at the center (along the bending line indicated by the alternate long and short dash line). Thereby, as shown in FIG. 1, the protection circuit board 19 is mounted on the outer can 12. Thereafter, although not illustrated, the cap frame 18 and the outer can 12 are integrated by injecting an integrally molded resin into the space between the cap frame 18 and the outer can 12, and the secondary battery 1 is completed.
 上述のとおり、本実施の形態によれば、良好な放熱効率を得るために、正極基板端子30をCu系金属ブロックにより構成する。また、その厚さを0.6mm~1.0mmの範囲に設定する。このように構成する理由について、以下に説明する。 As described above, according to the present embodiment, the positive electrode substrate terminal 30 is formed of a Cu-based metal block in order to obtain good heat dissipation efficiency. The thickness is set in the range of 0.6 mm to 1.0 mm. The reason for this configuration will be described below.
 従来のNiを用いた正極基板端子20と比べて、Cu系金属を用いた正極基板端子30は、導電率、熱伝導率が高くなる。すなわち、Niの熱伝導率(300K)は90.9W/(m・K)であるのに対して、例えば黄銅(C2680、Cu-Pb-Fe-Zn合金)の熱伝導率は117w/(m・K)である。従って、Niを用いた場合と比べて十分に高い放熱効果を得ることができる。 Compared with the positive electrode substrate terminal 20 using conventional Ni, the positive electrode substrate terminal 30 using Cu-based metal has higher conductivity and thermal conductivity. That is, the thermal conductivity of Ni (300K) is 90.9 W / (m · K), whereas the thermal conductivity of brass (C2680, Cu—Pb—Fe—Zn alloy), for example, is 117 w / (m・ K). Therefore, a sufficiently high heat dissipation effect can be obtained as compared with the case where Ni is used.
 この放熱効果について実証するために、大電流を流したときの第1タブ32の表面温度の変化を測定した。測定は、本実施の形態の実施例、及び従来例について行い、実施例及び従来例の正極基板端子及び第1タブを、次のとおりに設定した。
[従来例]
 正極基板端子20:Niブロック(厚さ0.4mm)
 第1タブ22:Ni材(厚さ0.1mm)
[実施例]
 正極基板端子30:Cu系金属ブロック(純Cuを使用:厚さ0.4mm)
 第1タブ32:Cu-Niクラッド材(厚さ0.1mm)
 常温25℃下で正極基板端子を通して3Aの電流を流し、通電時間に対するタブの表面温度の変化を測定した結果を図3に示す。図3に示されるとおり、タブ材表面の到達温度は、各々下記のとおりである。
In order to verify this heat dissipation effect, the change in the surface temperature of the first tab 32 when a large current was passed was measured. The measurement was performed for the example of the present embodiment and the conventional example, and the positive electrode substrate terminal and the first tab of the example and the conventional example were set as follows.
[Conventional example]
Positive electrode substrate terminal 20: Ni block (thickness 0.4 mm)
First tab 22: Ni material (thickness 0.1 mm)
[Example]
Positive electrode substrate terminal 30: Cu-based metal block (uses pure Cu: thickness 0.4mm)
First tab 32: Cu—Ni clad material (thickness 0.1 mm)
FIG. 3 shows the results of measuring the change in the surface temperature of the tub with respect to the energization time when a current of 3A was passed through the positive electrode substrate terminal at room temperature of 25 ° C. As shown in FIG. 3, the temperatures reached on the surface of the tab material are as follows.
 従来例:45.5℃(Δ20.5℃)
 実施例:37.5℃(Δ12.5℃)
 このように、実施例の構成によれば、約8℃の温度抑制が可能であり、したがって、Cu系金属ブロックを用いることにより、接点部付近の温度上昇を抑制する効果が大きいことが判る。
Conventional example: 45.5 ° C (Δ20.5 ° C)
Example: 37.5 ° C. (Δ12.5 ° C.)
As described above, according to the configuration of the example, it is possible to suppress the temperature of about 8 ° C. Therefore, it can be understood that the use of the Cu-based metal block has a large effect of suppressing the temperature rise near the contact portion.
 但し、高い導電率のため、第1タブ32を接合する際の抵抗溶接に大きなエネルギーが必要であり、発熱が大きくなる。そのため、正極基板端子30を保護回路基板19に固定している半田が溶ける問題が発生する。この問題を解決するためには、Cu系金属ブロックの厚さを、十分に厚くすることが有効であることが判った。 However, because of the high conductivity, a large amount of energy is required for resistance welding when the first tab 32 is joined, and heat generation is increased. Therefore, there arises a problem that the solder fixing the positive electrode substrate terminal 30 to the protection circuit substrate 19 is melted. In order to solve this problem, it has been found effective to sufficiently increase the thickness of the Cu-based metal block.
 実用的には、従来のNiを用いた正極基板端子20の場合の0.4mm以下に対して、本実施の形態では、Cu系金属ブロックの厚さを0.6mm~1.0mmに設定する。これにより、抵抗溶接を適切に行い、しかもCu系金属ブロックを固定している半田の発熱による溶解を回避することが可能であることを確認した。また、Cu系金属ブロックの厚さが1.0mm以下であれば、半田実装部品の高さを電池パック内部に格納可能な範囲内に収めることが可能である。 In practice, the thickness of the Cu-based metal block is set to 0.6 mm to 1.0 mm in the present embodiment, compared to 0.4 mm or less in the case of the positive electrode substrate terminal 20 using the conventional Ni. . Thus, it was confirmed that it is possible to appropriately perform resistance welding and to avoid melting due to heat generation of the solder fixing the Cu-based metal block. Further, if the thickness of the Cu-based metal block is 1.0 mm or less, the height of the solder-mounted component can be kept within a range that can be stored in the battery pack.
 正極基板端子30を構成するCu系金属ブロックとしては、熱伝導率及び導電率が、放熱及び抵抗溶接に適切な範囲にあるどのようなCu及びCu合金であっても用いることができる。通常のCu系金属であれば、熱伝導率については、望ましい放電効果を得ることが可能な範囲にある。 As the Cu-based metal block constituting the positive electrode substrate terminal 30, any Cu and Cu alloy whose thermal conductivity and conductivity are in a range suitable for heat dissipation and resistance welding can be used. If it is a normal Cu-type metal, it exists in the range which can obtain a desirable discharge effect about thermal conductivity.
 一方、導電率については、以下に説明するとおり、抵抗溶接の観点から適切な範囲の材質を選択することが望ましい。一般的な抵抗溶接としては、2種類の方法、すなわち、シリーズ溶接とダイレクト溶接がある。上記構成の二次電池パックの場合、正、負極セル端子3、4、及び正、負極基板端子30、31に対する第1、第2、第4タブ32、33、35の溶接には、シリーズ溶接を用いる。 On the other hand, as described below, it is desirable to select a material in an appropriate range from the viewpoint of resistance welding as described below. As general resistance welding, there are two kinds of methods, that is, series welding and direct welding. In the case of the secondary battery pack having the above configuration, the first, second, and fourth tabs 32, 33, and 35 are welded to the positive and negative cell terminals 3 and 4 and the positive and negative electrode substrate terminals 30 and 31, respectively. Is used.
 正極基板端子30に対する第1タブ32の接合を例として、抵抗溶接の様子を図4に示す。正極基板端子30は、はんだ36により保護回路基板19に接合されている。抵抗溶接は、一対の溶接棒37を用いたシリーズ溶接により行う。この構成の場合、ダイレクト溶接は不適切だからである。すなわち、ダイレクト溶接の場合は、正極基板端子30の下面と第1タブ32の上面に対して、対向する方向に電極棒37を押し当てて通電する必要があるが、図4に示されるとおり、正極基板端子30の下面に電極棒37を押し当てることはできない。 The state of resistance welding is shown in FIG. 4 taking the joining of the first tab 32 to the positive electrode substrate terminal 30 as an example. The positive substrate terminal 30 is joined to the protective circuit board 19 by solder 36. Resistance welding is performed by series welding using a pair of welding rods 37. This is because direct welding is inappropriate in this configuration. That is, in the case of direct welding, it is necessary to press the electrode rod 37 in the opposite direction against the lower surface of the positive electrode substrate terminal 30 and the upper surface of the first tab 32, and energize, but as shown in FIG. The electrode rod 37 cannot be pressed against the lower surface of the positive substrate terminal 30.
 シリーズ溶接に際しては、図4に矢印で示すように、正極基板端子30を流れる有効電流Ieにより、正極基板端子30と第1タブ32の間に溶接ポイントWが形成される。溶接ポイントWが形成されるべき箇所では、適度な発熱が必要である。正極基板端子30の導電率が高すぎると、そのために必要な溶接エネルギーが過大になる。その結果、第1タブ32に対する溶接棒37の当接点での発熱も大きくなり、溶接棒37の食付き(貼り付き)が発生する。 During series welding, as indicated by an arrow in FIG. 4, a welding point W is formed between the positive electrode substrate terminal 30 and the first tab 32 by the effective current Ie flowing through the positive electrode substrate terminal 30. Appropriate heat generation is required at the location where the welding point W is to be formed. If the electrical conductivity of the positive electrode substrate terminal 30 is too high, the welding energy required for this will be excessive. As a result, heat generation at the contact point of the welding rod 37 with respect to the first tab 32 also increases, and the welding rod 37 is bitten (attached).
 正極基板端子30としては、導電率100%の純銅を用いた場合でも溶接は可能である。従って、69.3nΩm未満の電気抵抗率を有するCu系金属を用いることにより、Niを用いた電極と比べて急速充電のための低抵抗化を図ることができる。また、シリーズ溶接の適用および放熱効果を考慮すると、電気抵抗率が1.68~63.9nΩmの範囲内のCu系金属を用いることが好ましい。1.68nΩmは純銅の電気抵抗率であり、63.9nΩmは黄銅の電気抵抗率に相当する。さらに、シリーズ溶接に際して、溶接棒の食付きが障害となって量産に不都合となることを回避するためには、電気抵抗率は、63.9nΩm程度であることが望ましい。導電率を適当に下げることにより、溶接エネルギーが少なくても溶接可能であり、溶接棒の食付きも容易に回避可能となる。 The positive electrode substrate terminal 30 can be welded even when pure copper having a conductivity of 100% is used. Therefore, by using a Cu-based metal having an electrical resistivity of less than 69.3 nΩm, the resistance for rapid charging can be reduced as compared with an electrode using Ni. In consideration of application of series welding and heat dissipation effect, it is preferable to use a Cu-based metal having an electrical resistivity in the range of 1.68 to 63.9 nΩm. 1.68 nΩm is the electrical resistivity of pure copper, and 63.9 nΩm is equivalent to the electrical resistivity of brass. Furthermore, it is desirable that the electrical resistivity be about 63.9 nΩm in order to avoid the problem of mass production due to the biting of the welding rod during series welding. By appropriately lowering the electrical conductivity, welding is possible even with low welding energy, and biting of the welding rod can be easily avoided.
 好適なCu系金属ブロックの材質の例として、下記のような合金を挙げることができる。
(1)黄銅(C2680、Cu-Pb-Fe-Zn合金)
   導電率:約27%、熱伝導率:117w/m・k
(2)青銅系の合金(MF202、Cu-Sn-Ni-P合金)
   導電率:約32%、熱伝導率:155w/m・k
 従来例のNiブロックが、純Ni:99.9%以上、導電率:約22%、熱伝導率:90.9w/m・kであることと比べると、上記材料は、溶接性を確保しつつ、熱伝導もよく、コスト低減可能であることが判る。
Examples of suitable Cu-based metal block materials include the following alloys.
(1) Brass (C2680, Cu—Pb—Fe—Zn alloy)
Electrical conductivity: about 27%, thermal conductivity: 117 w / m · k
(2) Bronze alloy (MF202, Cu-Sn-Ni-P alloy)
Conductivity: about 32%, thermal conductivity: 155 w / m · k
Compared with the Ni block of the conventional example, pure Ni: 99.9% or more, conductivity: about 22%, thermal conductivity: 90.9 w / m · k, the above material ensures weldability. However, it can be seen that the heat conduction is good and the cost can be reduced.
 また、Cu系金属ブロックは酸化され易いので、酸化防止のためのメッキを施すことが望ましく、メッキ材としてSnメッキとNiメッキを検討した。その結果、Niメッキは融点が高く、シリーズ溶接手法を用いる場合の抵抗溶接程度のエネルギーでは、溶接ポイントWにおけるNi層を飛散させることができないので、融点の低いSnメッキが最適であることが判った。 Also, since the Cu-based metal block is easily oxidized, it is desirable to perform plating for preventing oxidation, and Sn plating and Ni plating were examined as plating materials. As a result, Ni plating has a high melting point, and it is understood that Sn plating with a low melting point is optimal because the Ni layer at the welding point W cannot be scattered with the energy of resistance welding when using the series welding method. It was.
 上述のとおり、第1~第4タブ32~35にはCu-Niクラッド材を用いることにより、低抵抗として大電流に適合させる。Cu-Niクラッド材としては、例えば、Cu層(あるいはCu合金層)とNi層の厚さの比率Cu:Ni=3:1程度で、クラッド材全体の厚さt=0.1mm程度のものを用いることにより、良好な特性を得ることができる。 As described above, the first to fourth tabs 32 to 35 are made of Cu—Ni clad material so as to be adapted to a large current as a low resistance. As the Cu—Ni cladding material, for example, the ratio of the thickness of the Cu layer (or Cu alloy layer) to the Ni layer is about Cu: Ni = 3: 1, and the total thickness of the cladding material is about t = 0.1 mm. By using this, good characteristics can be obtained.
 Cu-Niクラッド材のタブは、正、負極セル端子3、4、及び正、負極基板端子30、31に対して、Cu系金属の層を当接させて抵抗溶接されている。その理由は、以下に説明するように、溶接工程でのCu材の焼けの発生等を回避するためである。 The tab of the Cu—Ni clad material is resistance welded with the Cu-based metal layer in contact with the positive and negative cell terminals 3 and 4 and the positive and negative electrode substrate terminals 30 and 31. The reason is to avoid the occurrence of burning of the Cu material in the welding process, as will be described below.
 すなわち、シリーズ溶接においては、図4に矢印で示した正極基板端子30を流れる有効電流Ieだけでなく、溶接に寄与しない無効電流Inが第1タブ32のCu-Niクラッド材を流れる。正極基板端子30にNi層を当接させた場合は、電極棒37がCu層に当接し、無効電流Inは大きなものとなる。そのため、電極棒37とCu層の間での発熱によりCu層に焼けが発生したり、不要溶接部が形成されて、Cu層が電極棒37に付着して剥離する事態が発生する。これに対して、Cu系金属の層を正極基板端子30に当接させ、従って電極棒37がNi層に当接する配置とすることにより、表層の無効電流Inが抑制されて、焼けの発生や電極棒37の接合を低減させることが可能となる。 That is, in series welding, not only the effective current Ie flowing through the positive electrode substrate terminal 30 indicated by the arrow in FIG. 4 but also the reactive current In that does not contribute to welding flows through the Cu—Ni cladding material of the first tab 32. When the Ni layer is brought into contact with the positive electrode substrate terminal 30, the electrode rod 37 is brought into contact with the Cu layer, and the reactive current In becomes large. Therefore, the Cu layer is burnt due to heat generated between the electrode rod 37 and the Cu layer, or unnecessary welds are formed, and the Cu layer adheres to the electrode rod 37 and peels off. On the other hand, by arranging the Cu-based metal layer in contact with the positive electrode substrate terminal 30 and thus the electrode rod 37 in contact with the Ni layer, the reactive current In of the surface layer is suppressed, and the occurrence of burning or It becomes possible to reduce the joining of the electrode rod 37.
 次に、本実施の形態の第2の特徴による放熱効果について説明する。第2の特徴によれば、負極基板端子31と温度保護素子7の間を接続する第2タブ33及び第3タブ34、更に、温度保護素子7と負極セル端子4の間を接続する第4タブ35が、Cu-Niクラッド材により形成される。これにより、温度保護素子7の発熱をCu層を介して効果的に放熱することができる。 Next, the heat radiation effect according to the second feature of the present embodiment will be described. According to the second feature, the second tab 33 and the third tab 34 that connect between the negative electrode substrate terminal 31 and the temperature protection element 7, and the fourth that connects between the temperature protection element 7 and the negative electrode terminal 4. The tab 35 is formed of a Cu—Ni clad material. Thereby, the heat generated by the temperature protection element 7 can be effectively radiated through the Cu layer.
 この効果を実証するための実験の結果について、図5を参照して説明する。図5において、横軸は温度保護素子7として用いられたブレーカーを流れる電流、縦軸は、各電流値の場合の最高到達温度である。実験は、配線材としてCu-Niクラッド材を用いた場合と、従来のNiを用いた場合とについて行った。各場合について、ブレーカー、タブ、及び保護回路2中のFET9a、10a(図6参照)における温度を測定した。図5から、Cu-Niクラッド材の配線材を用いた場合は、Niの配線材を用いた場合と比べて各部における昇温が低減されていることが判る。 The result of an experiment for demonstrating this effect will be described with reference to FIG. In FIG. 5, the horizontal axis represents the current flowing through the breaker used as the temperature protection element 7, and the vertical axis represents the maximum temperature reached for each current value. The experiment was performed for the case where a Cu—Ni clad material was used as the wiring material and for the case where conventional Ni was used. In each case, the temperature at the breakers, the tabs, and the FETs 9a and 10a in the protection circuit 2 (see FIG. 6) was measured. From FIG. 5, it can be seen that when the wiring material made of Cu—Ni clad material is used, the temperature rise in each part is reduced as compared with the case where the wiring material made of Ni is used.
 本発明の二次電池パックは、部品点数の増加を伴うことなく、外部出力端子での発熱を放熱させる効率を向上させて通電に伴う温度上昇を抑制し、大電流による急速充電が容易であるため、携帯電話のような急速充電可能であることを要求される機器に用いる電池パックとして有用である。 The secondary battery pack of the present invention improves the efficiency of dissipating heat generated at the external output terminal without increasing the number of parts, suppresses the temperature rise due to energization, and is easy to charge quickly with a large current. Therefore, it is useful as a battery pack used for a device such as a mobile phone that is required to be rapidly rechargeable.
1 二次電池
2 保護回路
3 正極セル端子
4 負極セル端子
5 正極出力端子
6 負極出力端子
7 温度保護素子
8 充放電制御スイッチ
9a 放電制御FET
9b 寄生ダイオード
10a 充電制御FET
10b 寄生ダイオード
11 保護IC
12 外装缶
13 上部絶縁板
14 正極リードタブ
15 負極リードタブ
16 内部リード
17 絶縁体
18 キャップフレーム
19 保護回路基板
20、30 正極基板端子
21、31 負極基板端子
22~25 第1~第4タブ
26 外部出力端子
27 機器側の接点
28 フレキシブル基板
29 放熱プレート
32~35 第1~第4タブ
36 はんだ
37 溶接棒
W 溶接ポイント
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Protection circuit 3 Positive electrode terminal 4 Negative cell terminal 5 Positive output terminal 6 Negative output terminal 7 Temperature protection element 8 Charge / discharge control switch 9a Discharge control FET
9b Parasitic diode 10a Charge control FET
10b Parasitic diode 11 Protection IC
12 Outer can 13 Upper insulating plate 14 Positive electrode lead tab 15 Negative electrode lead tab 16 Internal lead 17 Insulator 18 Cap frame 19 Protection circuit board 20, 30 Positive circuit board terminals 21, 31 Negative circuit board terminals 22-25 First to fourth tabs 26 External output Terminal 27 Contact 28 on device side Flexible substrate 29 Heat radiation plate 32 to 35 First to fourth tab 36 Solder 37 Welding rod W Welding point

Claims (6)

  1.  正極及び負極のセル端子を有する二次電池と、
     前記二次電池と外部との間で充放電を行うための一対の外部出力端子と、
     前記セル端子と前記外部出力端子の間の充放電路中に挿入された保護回路と、
     前記セル端子と前記保護回路の間に挿入された温度保護素子と、
     前記保護回路が実装され、前記外部出力端子が配置されてその背面側に第1及び第2基板端子が設けられた保護回路基板とを備え、
     前記保護回路は、前記充放電路に直列に挿入された充放電制御スイッチと、前記充放電路を流れる電流を検出する電流検出部を有し、前記電流検出部の検出出力に基づき前記充放電制御スイッチのオン・オフを制御するように構成され、
     前記第1基板端子は前記セル端子の一方と接続され、前記第2基板端子は前記温度保護素子を介して前記セル端子の他方と接続されている二次電池パックにおいて、
     前記第1及び第2基板端子の少なくとも一方は、厚さが0.6mm~1.0mmの範囲のCuまたはCu合金からなるCu系金属部材により構成され、前記外部出力端子の平面領域の少なくとも一部に対応する領域に配置されていることを特徴とする二次電池パック。
    A secondary battery having positive and negative cell terminals;
    A pair of external output terminals for charging and discharging between the secondary battery and the outside;
    A protection circuit inserted in a charge / discharge path between the cell terminal and the external output terminal;
    A temperature protection element inserted between the cell terminal and the protection circuit;
    A protection circuit board on which the protection circuit is mounted, the external output terminal is disposed, and first and second board terminals are provided on the back side of the protection circuit board;
    The protection circuit includes a charge / discharge control switch inserted in series in the charge / discharge path, and a current detection unit that detects a current flowing through the charge / discharge path, and the charge / discharge is based on a detection output of the current detection unit. Configured to control the on / off of the control switch,
    In the secondary battery pack, wherein the first substrate terminal is connected to one of the cell terminals, and the second substrate terminal is connected to the other of the cell terminals via the temperature protection element,
    At least one of the first and second substrate terminals is made of a Cu-based metal member made of Cu or a Cu alloy having a thickness in the range of 0.6 mm to 1.0 mm, and at least one of the planar regions of the external output terminals. A secondary battery pack, which is disposed in a region corresponding to the portion.
  2.  前記Cu系金属部材は、Snメッキが施されている請求項1に記載の二次電池パック。 The secondary battery pack according to claim 1, wherein the Cu-based metal member is Sn plated.
  3.  前記Cu系金属部材は、69.3nΩm未満の電気抵抗率を有する請求項1または2に記載の二次電池パック。 The secondary battery pack according to claim 1 or 2, wherein the Cu-based metal member has an electrical resistivity of less than 69.3 nΩm.
  4.  前記Cu系金属部材は、1.68~63.9nΩmの範囲の電気抵抗率を有する請求項3に記載の二次電池パック。 The secondary battery pack according to claim 3, wherein the Cu-based metal member has an electrical resistivity in the range of 1.68 to 63.9 nΩm.
  5.  前記第2基板端子と前記温度保護素子の間、及び前記温度保護素子と前記セル端子の間を接続する配線材として、CuまたはCu合金からなるCu系金属の層とNi層とからなるCu-Niクラッド材が用いられている請求項1~4のいずれか1項に記載の二次電池パック。 As a wiring material for connecting between the second substrate terminal and the temperature protection element, and between the temperature protection element and the cell terminal, Cu-- consisting of a Cu-based metal layer made of Cu or Cu alloy and a Ni layer. The secondary battery pack according to any one of claims 1 to 4, wherein a Ni clad material is used.
  6.  前記Cu-Niクラッド材は、前記セル端子及び前記基板端子に対して前記Cu系金属層側を当接させて抵抗溶接により接合されている請求項5に記載の二次電池パック。 6. The secondary battery pack according to claim 5, wherein the Cu—Ni clad material is joined by resistance welding with the Cu-based metal layer side in contact with the cell terminal and the substrate terminal.
PCT/JP2014/062003 2013-05-22 2014-04-30 Secondary cell pack having protective circuit WO2014188860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013108086A JP6097637B2 (en) 2013-05-22 2013-05-22 Secondary battery pack having a protection circuit
JP2013-108086 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014188860A1 true WO2014188860A1 (en) 2014-11-27

Family

ID=51933424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062003 WO2014188860A1 (en) 2013-05-22 2014-04-30 Secondary cell pack having protective circuit

Country Status (2)

Country Link
JP (1) JP6097637B2 (en)
WO (1) WO2014188860A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698292B (en) * 2017-10-20 2021-08-17 北京小米移动软件有限公司 Power supply and electronic device
CN209766544U (en) * 2019-03-05 2019-12-10 宁德新能源科技有限公司 Protector, electric core and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208788A (en) * 2001-01-12 2002-07-26 Rohm Co Ltd Circuit board and its manufacturing method
JP2004171893A (en) * 2002-11-19 2004-06-17 Sony Corp Method for connecting battery and board, and battery unit
JP2004304019A (en) * 2003-03-31 2004-10-28 Mitsumi Electric Co Ltd Connection pattern structure of circuit board, and circuit board
JP2005158883A (en) * 2003-11-21 2005-06-16 Rohm Co Ltd Circuit board
JP2009301960A (en) * 2008-06-16 2009-12-24 Hitachi Maxell Ltd Battery pack
JP2010118276A (en) * 2008-11-13 2010-05-27 Ricoh Co Ltd Module, welding method of module, and electronic device equipped with this module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4114592B2 (en) * 2003-10-28 2008-07-09 ソニー株式会社 Battery pack
JP2012084569A (en) * 2010-10-06 2012-04-26 Sanyo Electric Co Ltd Battery pack
JP6027456B2 (en) * 2013-02-08 2016-11-16 日立マクセル株式会社 Secondary battery pack having a protection circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208788A (en) * 2001-01-12 2002-07-26 Rohm Co Ltd Circuit board and its manufacturing method
JP2004171893A (en) * 2002-11-19 2004-06-17 Sony Corp Method for connecting battery and board, and battery unit
JP2004304019A (en) * 2003-03-31 2004-10-28 Mitsumi Electric Co Ltd Connection pattern structure of circuit board, and circuit board
JP2005158883A (en) * 2003-11-21 2005-06-16 Rohm Co Ltd Circuit board
JP2009301960A (en) * 2008-06-16 2009-12-24 Hitachi Maxell Ltd Battery pack
JP2010118276A (en) * 2008-11-13 2010-05-27 Ricoh Co Ltd Module, welding method of module, and electronic device equipped with this module

Also Published As

Publication number Publication date
JP6097637B2 (en) 2017-03-15
JP2014229474A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
KR102251913B1 (en) Protective element and battery pack
KR101632417B1 (en) Connecting element and Secondary battery comprising the same
KR101401477B1 (en) Connecting element for secondary battery, Battery module and Battery pack comprising the same
KR101614434B1 (en) Battery cell with improved safety
US9401257B2 (en) Circuit protection device
JP7281274B2 (en) Protective elements and battery packs
KR101946105B1 (en) Protective element and battery pack
US10109439B2 (en) Protective element
KR101946106B1 (en) Protective element and battery pack
JP6027456B2 (en) Secondary battery pack having a protection circuit
TWI552418B (en) Electrode lead and secondary battery having the same
CN101373680B (en) Substrate type temperature fuse with resistor and secondary battery protection circuit
JP6097637B2 (en) Secondary battery pack having a protection circuit
JP2012084569A (en) Battery pack
JP2012129124A (en) Circuit protective element and battery pack device using the same
TW200933683A (en) Temperature fuse with resistor and battery protection circuit board
TW201508802A (en) Circuit protection device
KR20150058807A (en) Battery pack
KR20140110190A (en) Safety kit for secondary battery and Secondary battery comprising the same
KR20140125704A (en) Connecting component with insulating layer for a secondary battery, and Secondary battery module and pack comprising the same
CN202434623U (en) Battery protection element
JP2019075287A (en) Protection element
JP2015022827A (en) Temperature fuse
JP2015056292A (en) Overcurrent or heating limiting element, and battery using element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801863

Country of ref document: EP

Kind code of ref document: A1