WO2014188707A1 - Die for temperature sensor, production method, and temperature sensor - Google Patents

Die for temperature sensor, production method, and temperature sensor Download PDF

Info

Publication number
WO2014188707A1
WO2014188707A1 PCT/JP2014/002638 JP2014002638W WO2014188707A1 WO 2014188707 A1 WO2014188707 A1 WO 2014188707A1 JP 2014002638 W JP2014002638 W JP 2014002638W WO 2014188707 A1 WO2014188707 A1 WO 2014188707A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
cavity
temperature sensor
gate
temperature sensing
Prior art date
Application number
PCT/JP2014/002638
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 福島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480029244.0A priority Critical patent/CN105228807B/en
Publication of WO2014188707A1 publication Critical patent/WO2014188707A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • B29C2045/14139Positioning or centering articles in the mould positioning inserts having a part extending into a positioning cavity outside the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements

Definitions

  • the present disclosure relates to a mold used for manufacturing a temperature sensor in which a housing is resin-molded, a manufacturing method, and a temperature sensor.
  • Patent Document 1 discloses a temperature sensor that is attached to the outside of a vehicle body and used to detect an outside air temperature.
  • a temperature sensor used to detect the outside air temperature includes a temperature sensing unit for detecting the temperature, a lead wire for extracting a signal from the temperature sensing unit, and a signal from the lead wire to an external device.
  • the terminal for outputting and the housing which accommodates these are provided.
  • the housing is integrally molded so as to accommodate the temperature sensitive part, the lead wire, and the terminal by injection molding. In more detail, it shape
  • the temperature sensing portion and the lead wire, and the lead wire and the terminal are electrically and mechanically connected to manufacture a structure including the temperature sensing portion, the lead wire, and the terminal.
  • the temperature sensitive part uses what coat
  • the mold for molding the housing is provided with a structure support for fixing the structure at a position designed in advance in the housing when completed.
  • the structure support portion may be, for example, an insertion port into which a portion of the terminal to be exposed in the finished product is inserted. That is, by inserting the exposed portion of the terminal into this insertion port, the structural component is fixed in the hollow portion (cavity) of the mold.
  • the molten resin is injected into the cavity from the gate.
  • the molten resin injected into the cavity from the gate spreads along the outer periphery of the cavity (that is, the surface in contact with the mold) and gradually cools and solidifies from the portion in contact with the mold.
  • molds the edge part of a housing is provided with the vent hole for releasing the gas in a cavity, and gas is exhausted from a vent hole with injection
  • the temperature sensor in which the temperature sensing portion, the lead wire, and the terminal are housed in the housing is manufactured by filling the cavity with the molten resin and solidifying.
  • the size of the temperature sensing part of the structure is larger than that of the lead wire and the terminal part. Therefore, the space near the temperature sensitive part is narrower than other parts. Further, since the melted resin flows around the cavity from the outer periphery along the mold, the narrow portion becomes further narrowed with the inflow of the resin, and the gas is more difficult to escape.
  • the resin is filled in the narrow portion before the gas has completely escaped from the space from the gate to the narrow portion, the gas remains in the space from the gate to the narrow portion and voids are generated. Therefore, in the case where the narrow portion by the temperature sensing portion is provided in the cavity as described above, the possibility that a void is generated is higher than the case where the narrow portion is not provided.
  • the present disclosure has been made based on the above circumstances, and the object of the present disclosure is to manufacture a temperature sensor that can suppress the generation of voids between the gate and the temperature sensing portion.
  • An object is to provide a mold, a manufacturing method, and a temperature sensor.
  • the temperature sensor manufacturing mold for achieving the object is disclosed as a temperature for molding a housing for housing a structure in which a temperature sensing portion, a lead wire, and a terminal are linearly connected in this order.
  • a mold for manufacturing a sensor wherein a direction in which the temperature sensing portion, the lead wire, and the terminal are continuous is an axial direction, and a cylindrical cavity that houses the structure, and an end of the cavity,
  • a first gas vent passage communicating the cavity and the outside of the mold to vent the gas in the cavity to the first end of the structure on the side accommodating the temperature sensing part, and the first of the cavity
  • the structure is arranged at a predetermined position in the cavity by being inserted into a terminal that is not connected to the lead wire at the second end that is the end opposite to the one end.
  • a gate formed between the second end portion and the temperature sensing portion, for injecting resin into the cavity, and between the first end portion and the gate, In order to escape the gas in the cavity, a second vent passage that communicates the cavity and the outside of the mold is provided.
  • the gas in the cavity is not only from the first gas vent passage provided at the end portion (first end portion) on the side where the temperature sensing portion is accommodated, but also from the second gas vent passage.
  • the second gas vent passage is provided between the gate and the first end portion, it is suitable for discharging the gas existing in the space from the gate to the first end portion. Therefore, it becomes easier for gas to escape from the space from the gate to the first end than when the second gas vent passage is not provided.
  • the space from the gate to the first end portion also includes the space from the gate to the temperature sensing portion, gas easily escapes from the space from the gate to the first end portion, Gas can easily escape from the space from the gate to the temperature sensing part. That is, it becomes difficult for gas to remain in the space from the gate to the temperature sensing part, and generation of voids can be suppressed.
  • the disclosure of the manufacturing method is a method of manufacturing a temperature sensor in which the housing is injection-molded by injecting a molten resin into the cavity from the gate of the mold.
  • the disclosure of the temperature sensor accommodates a structure in which the temperature sensing part, the lead wire, and the terminal are connected in a straight line in this order, and the direction in which the temperature sensing part, the lead wire, and the terminal are joined is determined.
  • It is a temperature sensor provided with the cylindrical housing made into an axial direction, Comprising: It is a temperature sensor provided with a level
  • FIG. 5 is a cross-sectional view taken along one-dot chain line 5-5 in FIG. It is a figure for demonstrating the process in which melted resin flows in into trunk part space C21, It is sectional drawing of the 2nd metal mold
  • FIG. 8 is a cross-sectional view taken along one-dot chain line 8-8 in FIG.
  • FIG. 6 is an exploded view for explaining the structure of a base mold 51, a first head side mold 52, a second head side mold 53, and a third head side mold 54; It is an enlarged view of the part which forms head part 21H in the 2nd metallic mold 50A, It is sectional drawing corresponding to FIG. 8 in a modification.
  • FIG. 1 is a reference diagram illustrating an example of a state in which the temperature sensor 100 is attached to a vehicle.
  • the temperature sensor 100 is attached to, for example, a vehicle front bumper Fr or the like via a clamp member 30.
  • An arrow A in FIG. 1 indicates the horizontal direction, and the temperature sensor 100 receives wind in the direction indicated by the arrow A when the vehicle travels. 1 is merely an example.
  • the temperature sensor 100 is mounted upside down with respect to FIG. 1, or the longitudinal direction of the body portion 21 is perpendicular to the direction of the arrow. It may be attached in a posture.
  • FIG. 2 is a diagram schematically showing a cross-sectional structure of the temperature sensor 100.
  • a temperature sensor 100 shown in FIG. 2 includes a temperature sensing unit 10, a lead wire 13, a terminal 14, a body unit 21, a support unit 22, and a clamp fitting unit 23.
  • the body part 21 accommodates the temperature sensing part 10, the lead wire 13 drawn from the temperature sensing part 10, and the terminal 14.
  • drum 21, the support part 22, and the clamp fitting part 23 are each distinguished and called here, these are integrally molded by the manufacturing method mentioned later. Hereinafter, each unit will be described.
  • the temperature sensing unit 10 includes a normal thermistor element 11 having a predetermined temperature characteristic.
  • the thermistor element 11 is connected to a lead wire 13 for detecting a change in resistance value of the thermistor element 11, and the thermistor element 11 is also connected to the first terminal of the lead wire 13 connected to the thermistor element 11 by an epoxy resin 12. It is coated integrally.
  • the second terminal 13 b that is not connected to the thermistor element 11 is electrically connected to the third terminal 14 a of the terminal 14.
  • the temperature sensing part 10 including the thermistor element 11, the lead wire 13, and the terminal 14 are integrally accommodated in the body part 21 formed of resin.
  • the terminal 14, the lead wire 13, and the temperature sensing part 10 are arranged on the substantially straight line in this order.
  • the body part 21 has a cylindrical shape whose axial direction is the direction in which the terminal 14, the lead wire 13, and the temperature sensing part 10 are connected. That is, the axial direction here coincides with the aforementioned longitudinal direction.
  • the columnar shape includes not only a perfect circle in a cross section perpendicular to the axial direction but also an ellipse or a part having a straight portion on the outer periphery.
  • a portion of the body portion 21 near the temperature sensing portion 10 is referred to as a head portion 21H.
  • the body portion 21 corresponds to a housing.
  • a connector portion 21C having an open shape is provided at the end of the body portion 21 opposite to the head portion 21H so that the fourth terminal 14b that is not connected to the lead wire 13 at the terminal 14 is exposed. Yes.
  • the fourth terminal 14b of the terminal 14 exposed in the connector portion 21C is connected to a connection terminal of an external device (not shown), and outputs a signal for detecting the temperature of the outside air to the external device.
  • the tin plating for improving corrosion resistance is given to the part exposed in the connector part 21C in the terminal 14 (including the fourth terminal 14b).
  • the protruding shape provided on the outer side of the connector portion 21C is for preventing erroneous insertion of connection terminals for other sensors or other types of temperature sensors into the connector portion 21C. These protrusion shapes are provided so as to match the shape of the connection terminal (connector) of the external device inserted into the connector portion 21C.
  • the clamp fitting part 23 is a structural part for fitting a clamp member 30 manufactured separately from the body part 21, the support part 22, and the clamp fitting part 23 that are integrally formed.
  • the clamp fitting portion 23 has a structure such as a locking claw 23a for preventing the fitted clamp member 30 from being detached due to vibration or wind and rain during traveling.
  • a structure corresponding to the clamp member 30 may be integrally formed together with the body portion 21 and the support portion 22.
  • the shape corresponding to the clamp member 30 may be further molded to be integrated. In this case, the locking claw 23a is unnecessary.
  • the support part 22 is a structural part for supporting the body part 21 to the clamp fitting part 23. Note that a direction perpendicular to the axial direction and directed from the body portion 21 toward the clamp fitting portion 23 is a vertical direction for the following description, and in this vertical direction, the body portion 21 is the clamp fitting portion 23. It is assumed that it is in the upward direction.
  • the clamp member 30 includes a temperature sensor end portion and a vehicle end portion (both not shown), and the temperature sensor end portion is fitted into the clamp fitting portion 23, whereby the clamp member 30 and the temperature sensor are provided. 100 is united. Moreover, the clamp member 30 is fixed to the vehicle by fitting the end portion for the vehicle into a fitting hole provided in a front bumper or the like of the vehicle. That is, in the temperature sensor 100 in which the end portion for the temperature sensor is fitted into the clamp fitting portion 23 and integrated with the clamp member 30, the end portion for the vehicle of the clamp member 30 is further inserted into the fitting hole provided in the front bumper Fr or the like. By being fitted, it is fixed to the vehicle.
  • the temperature sensor 100 is installed in the location which touches outside air, such as the front bumper Fr of a vehicle, the resistance value of the thermistor element 11 will change with the temperature of outside air, and it can detect the temperature of outside air from the resistance value. .
  • the first terminal of the lead wire 13 for applying a voltage to the thermistor element 11 and the thermistor element 11 are electrically connected by welding or the like.
  • the thermistor element 11 is coated with the epoxy resin 12 so as to include a part of the lead wire 13 to form the temperature sensing part 10.
  • the second terminal 13b not connected to the thermistor element 11 of the lead wire 13 is electrically and mechanically connected to the third terminal 14a of the terminal 14 by welding or the like, so that one structure shown in FIG. 101 is generated.
  • the structure 101 is set in an injection mold, and the process proceeds to a process of injecting a molten resin (this is an injection molding process).
  • the body part 21, the support part 22, and the clamp fitting part 23 are integrally formed by cooling and solidifying the molten resin injected into the mold, and the temperature-sensitive part 10 and the like are formed on the body part 21.
  • the housed temperature sensor 100 can be obtained.
  • FIG. 4 shows a cross-sectional view of a state in which the structure 101 is set in the first mold 50B used in the injection molding process with the comparative configuration
  • FIG. 5 shows a dashed line 5-5 in FIG.
  • a schematic diagram of a cross section is shown.
  • the first mold 50B is a composite body in which various mold parts are combined, and mainly includes a base mold 51, a first head side mold 52, and a connector molding mold 55.
  • the mold parts constituting the first mold 50B may be further finely divided.
  • the base mold 51 may be divided into two or more in order to take out the finished product.
  • the structure for taking out the finished product may be designed as appropriate and is omitted here.
  • a rubber plate is arranged on the combination surface so that no gap is generated on the contact surface when the divided mold parts are combined.
  • a structure that keeps hermeticity is used. This is to prevent an unintended gap between the molds from flowing into the gap and causing a defective shape such as a burr in the finished product.
  • the position of the gate G for injecting the molten resin into the space formed inside the first mold 50B may be designed as appropriate.
  • the position of the gate G may be determined in consideration of the flow of the dissolved resin and the like.
  • on both sides of the space in which the connector portion 21 ⁇ / b> C is formed. Provide.
  • the side here is a direction perpendicular to the axial direction and the vertical direction.
  • the space formed inside the first mold 50B has a shape corresponding to the body part 21, the support part 22, and the clamp fitting part 23 described above. Therefore, among the spaces formed in the first mold 50B, the space corresponding to the body portion 21 corresponds to the body portion space C21, the space corresponding to the support portion 22 corresponds to the support portion space C22, and the clamp fitting portion 23. This space is referred to as a clamp fitting portion space C23.
  • an end corresponding to the head part 21H is defined as a head side end
  • an end corresponding to the connector part 21C is defined as a connector side end.
  • the body part space C21 having a columnar shape corresponding to the body part 21 corresponds to the cavity
  • the head side end part corresponds to the first end part
  • the connector side end part corresponds to the second end part.
  • the connector molding die 55 is a mold part for molding the connector portion 21C, which is disposed at the connector side end portion, and has a shape that matches the inner surface shape of the connector portion 21C. Further, a terminal insertion port 55a is provided at the distal end portion of the connector molding die 55. By inserting the terminal 14 portion of the structure 101 into the terminal insertion port 55a, the structure 101 is moved to the first mold. Fix to 50B. Note that the fixed position of the structure 101 at this time is the position of the structure 101 in the body portion 21 designed in advance. For example, the structure 101 is fixed along the axis of the cylindrical body space C21.
  • the connector molding die 55 is combined with the base die 51 so that a minute gap A5 is generated between the connector molding die 55 and the base die 51.
  • the gas existing in the space from the gate G to the end of the connector portion 21C passes through the minute gap A5 to form the first mold. 50B is extracted outside. Therefore, this minute gap A5 becomes a gas vent passage provided at the connector side end.
  • the gas vent passage corresponds to a connector-side gas vent passage.
  • the minute gap serving as the gas vent passage may be designed with a size (for example, 0.1 mm) that allows a gas such as air to pass but does not allow the dissolved resin to pass therethrough and considers the viscosity of the dissolved resin. .
  • die 52 is a metal mold
  • the first head side mold 52 is combined with the base mold 51 so that a minute gap A1 for venting gas is generated between the first head side mold 52 and the base mold 51.
  • the gap A1 corresponds to the first head side gas vent passage.
  • the gas existing in the space from the gate G to the head side end is extracted outside through the first head side gas vent passage A1. .
  • the structural body 101 is set in the first mold 50B and the base mold 51, the first head side mold 52, and the connector molding mold 55 are combined, so-called mold clamping is completed, and from the gate G, the first mold is completed.
  • the dissolved resin is poured into the mold 50B.
  • polybutylene terephthalate PBT
  • PPS polyphenylene sulfide
  • PA polyamide
  • the PBT resin used as the dissolving resin is mixed with glass fibers at a predetermined ratio (for example, 20%) in order to ensure strength.
  • FIG. 6 are schematic diagrams showing the process of injecting the molten resin from the gate G into the first mold 50B in chronological order.
  • the molten resin injected from the gate G collides with the connector molding die 55 and develops along the connector molding die 55 and the base die 51. Since the gate G is disposed in the vicinity of the space where the connector portion 21C is molded, the molten resin is filled into the space of the connector portion 21C at an earlier stage than the head portion 21H is shaped. Further, the melted resin that flows toward the head side end portion as viewed from the gate G flows along the outer periphery of the body portion space C21. 6B and 6C show a process in which the space from the gate G to the head side end is filled with the dissolved resin.
  • the lead wire 13 and the terminal 14 are linear members, whereas the temperature sensing unit 10 is in the form of water droplets. Therefore, when the area that the structure 101 occupies the body part space C21 in a cross section perpendicular to the axial direction is viewed, the area that the temperature sensing unit 10 occupies the body part space C21 is larger than the lead wire 13 and the terminal 14. Therefore, in the space from the gate G to the head side end portion of the dissolved resin, the narrow portion R10 formed in the vicinity of the temperature sensing portion 10 has a narrow space where the dissolved resin and gas can flow compared to the other portions. It has become.
  • the narrow portion R10 is further narrowed with the inflow of the dissolved resin.
  • the gas remaining in the space from the gate G to the narrow portion R10 becomes more difficult to escape from the gate G side of the narrow portion R10 to the end portion on the head portion 21H side.
  • FIG. 6B shows a state in which the narrow portion R10 is blocked with the melted resin for the above-described reason before the gas completely escapes from the body space portion from the gate G to the narrow portion R10.
  • (C) shows the case where the molten resin is further injected from the gate G.
  • the gas remaining in the space from the temperature sensing portion 10 to the end of the head portion is pushed by the dissolved resin passing through the narrow portion R10 and discharged through the first head-side gas vent passage A1, and the temperature is sensed.
  • the molten resin fills the space from the portion 10 to the end portion on the head portion 21H side.
  • the gas in the space from the gate G to the temperature sensing unit 10 is not completely removed, the residual gas causes a void 60. That is, in the comparative configuration, the speed at which the dissolved resin reaches the narrow portion R10 is higher than the speed at which the gas escapes from the space from the gate G to the narrow portion R10. Therefore, as shown in FIG. 60 may occur.
  • FIG. 7 shows a cross-sectional view of the second mold 50A in a state where the structure 101 is set
  • FIG. 8 shows a cross-sectional view taken along one-dot chain line 8-8 in FIG.
  • FIG. 7 and FIG. 8 correspond to FIG. 4 and FIG. 5 for explaining the comparative configuration, respectively.
  • Parts corresponding to each other in the comparative configuration and the present embodiment are denoted by the same reference numerals for the sake of simplicity. Except for the point that the mold to be used is changed from the first mold 50B to the second mold 50A, the procedure of the injection molding process (mold clamping, injection, cooling, etc.) is the same as the conventional one.
  • the second mold 50A in the present embodiment is a composite body in which various mold parts are combined in the same manner as the first mold 50B, and includes a base mold 51, a third head side mold 54, and a second head.
  • a side mold 53, a first head side mold 52, and a connector molding mold 55 are provided.
  • the first head side mold 52 in this embodiment corresponds to the first head side mold 52 in the conventional configuration.
  • the connector molding die 55 is the same as the first die 50B having a comparative configuration.
  • FIG. 10 is an enlarged view of the end portion on the head portion 21H side in a state where the third head side die 54, the second head side die 53, the first head side die 52, and the base die 51 are combined. Show.
  • a small gap provided between the base mold 51 and the third head side mold 54 passes through the third head side degassing passage A3, the third head side mold 54, and the like.
  • a minute gap provided between the second head side mold 53 is defined as a second head side gas vent passage A2.
  • a minute gap provided between the second head side mold 53 and the first head side mold 52 is defined as a first head side degassing passage A1.
  • the diameter D3b of the inner circumference of the annular plane 54F perpendicular to the axis of the body part space C21 in the third head side mold 54 is perpendicular to the axis of the body part space C21 in the base mold 51. It is smaller than the diameter D3a of the inner circumferential circle of the annular plane 51F. Therefore, between the small diameter cylindrical surface 54S connected to the inner circumferential circle of the annular flat surface 54F of the third head side mold 54 and the large diameter cylindrical surface 51S connected to the inner circumferential circle of the annular flat surface 51F of the base mold 51. Are stepped in a direction perpendicular to the axis.
  • the base mold 51 and the third head side mold 54 are combined so that a minute gap is generated between the annular plane 51F and the annular plane 54F. That is, the gap generated at the step portion between the small-diameter cylindrical surface 54S and the large-diameter cylindrical surface 51S becomes a gas extraction port in the third head-side gas vent passage A3.
  • the gas that has entered the third head side gas vent passage A3 from the stepped portion is connected to the surface connected to the outer peripheral circle of the annular flat surface 54F of the third head side mold 54 and the outer peripheral circle of the annular flat surface 51F of the base die 51. It goes out of the 2nd metal mold
  • the combined portion of the third head side mold 54 and the second head side mold 53 is similarly provided with a step portion, and includes a second gas vent passage A2 having the step portion as a gas outlet. I am letting.
  • the step portion is also provided in the head portion 21H of the temperature sensor 100 which is a finished product.
  • the first head side mold 52, the second head side mold 53, and the third head side mold 54 are separated from each other by a minute gap.
  • the base mold 51 By combining with the base mold 51 so as to occur, it is possible to increase the gas vent passage between the gate G and the end on the head portion 21H side as compared with the comparative configuration.
  • the only path through which gas escapes from the gate G to the head side end is the first head side gas vent passage A1 provided at the head side end.
  • the second mold 50A of the present embodiment in addition to the first head side gas vent passage A1 provided at the head side end portion, two gates are further provided between the gate G and the head side end portion.
  • a second gas vent passage A2 and a third gas vent passage A3 are provided.
  • the gas in the space from the gate G to the narrow portion R10 is more externally introduced in the process of injecting the molten resin from the gate G than in the comparative configuration using the first mold 50B. It can make it easy to slip through. And possibility that a void will generate
  • the flow of the dissolved resin flowing from the gate G into the body part space C21 changes, so that the structure 101 fixed to the body part space C21 by the flowing pressure of the dissolved resin becomes the axis of the body part space C21.
  • the thickness of the resin in the vicinity of the temperature sensitive portion 10 in the deviated direction becomes smaller than the design value, and as a result, the strength is insufficient. Such a failure may occur.
  • the speed at which the molten resin reaches the narrow portion R10 is lower than the speed at which the gas in the space from the gate G to the narrow portion R10 escapes, voids may be generated in the space from the gate G to the narrow portion R10. Can be reduced. Therefore, as another solution, a method of reducing the injection speed of the dissolved resin is also conceivable. However, when the injection speed is lowered, the time required for the melted resin to fill the body portion space C21 increases, and thus the production efficiency per hour is lowered.
  • a configuration in which a gas vent passage is additionally provided between the gate G and the head side end portion allows the gate G to be changed without changing the gate position or the injection speed.
  • the possibility that voids are generated in the space from to the temperature sensing unit 10 can be reduced.
  • the minute gap serving as the gas vent passage is small enough to prevent the dissolved resin from passing therethrough. The trace of remains in the finished product.
  • the cross-sectional area of the portion corresponding to the head portion 21H in the body portion space C21 is reduced in a stepped manner toward the head side end portion, and the gas vent structure first in the step portion.
  • a head-side gas vent passage A1 and a second head-side gas vent passage A2 are provided.
  • the second mold 50A used in the manufacturing method of the present embodiment includes the first head side gas vent passage A1, the second head side gas vent passage A2, and the third head between the gate G and the head side end. Although it was set as the structure provided with three degassing passages of the side degassing passage A3, it is not restricted to this. There may be two degassing passages or four or more.
  • the one closest to the gate G is the center of the temperature sensing unit 10 and the head portion 21H side.
  • the additional gas vent passage may be provided between the gate G and the head side end, and may be provided on the gate G side with respect to the temperature sensing unit 10 as shown in FIG.
  • the gate G It is desirable to be away from the vicinity.

Abstract

In a die which forms a cavity of cylindrical shape, in addition to a first venting passage (A1) situated at an end (a first end) at a side where a temperature sensing unit is housed, a second gas venting passage (A3) through which the cavity communicates with the outside of the mold is situated between the gate and the end (first end) at the side where the temperature sensing unit is housed.

Description

温度センサ製造用の金型、製造方法、及び温度センサMold for manufacturing temperature sensor, manufacturing method, and temperature sensor 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年5月23日に出願された日本出願番号2013-109052号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2013-109052 filed on May 23, 2013, the contents of which are incorporated herein by reference.
 本開示は、ハウジングが樹脂成形される温度センサの製造に用いられる金型、製造方法、および温度センサに関するものである。 The present disclosure relates to a mold used for manufacturing a temperature sensor in which a housing is resin-molded, a manufacturing method, and a temperature sensor.
 特許文献1には、車体外部に取り付けられ、外気温を検出するために用いられる温度センサがある。一般に、外気温を検出するために用いられている温度センサは、温度を検出するための感温部と、感温部から信号を引き出すためのリード線と、リード線からの信号を外部機器に出力するためのターミナルと、これらを収容するハウジングと、を備えている。ハウジングは、射出成形によって感温部、リード線、及びターミナルを収容するように一体に成形される。より詳しくは、次のように成形される。 Patent Document 1 discloses a temperature sensor that is attached to the outside of a vehicle body and used to detect an outside air temperature. In general, a temperature sensor used to detect the outside air temperature includes a temperature sensing unit for detecting the temperature, a lead wire for extracting a signal from the temperature sensing unit, and a signal from the lead wire to an external device. The terminal for outputting and the housing which accommodates these are provided. The housing is integrally molded so as to accommodate the temperature sensitive part, the lead wire, and the terminal by injection molding. In more detail, it shape | molds as follows.
 まず、感温部とリード線、リード線とターミナルを、それぞれ電気的かつ機械的に接続することで、感温部、リード線、およびターミナルからなる構造体を製造する。なお、感温部は、公知のサーミスタをエポキシ樹脂などでコーティングしたものを用いており、構造体においてはリード線やターミナルの部分よりも大きいサイズとなっている。 First, the temperature sensing portion and the lead wire, and the lead wire and the terminal are electrically and mechanically connected to manufacture a structure including the temperature sensing portion, the lead wire, and the terminal. In addition, the temperature sensitive part uses what coat | covered the well-known thermistor with the epoxy resin etc., and has a size larger than the part of a lead wire or a terminal in a structure.
 ハウジングを成形するための金型には、この構造体を、完成時のハウジング内において予め設計されている位置に固定するための構造体支持部が備えられている。構造体支持部は、たとえば、ターミナルの、完成品において露出するべき部分が差し込まれる差し込み口とすればよい。すなわち、ターミナルの露出部分を、この差し込み口に差し込むことで、構造体部品を金型の中空部分(キャビティ)内に固定する。 The mold for molding the housing is provided with a structure support for fixing the structure at a position designed in advance in the housing when completed. The structure support portion may be, for example, an insertion port into which a portion of the terminal to be exposed in the finished product is inserted. That is, by inserting the exposed portion of the terminal into this insertion port, the structural component is fixed in the hollow portion (cavity) of the mold.
 構造体を金型にセットした後に、ゲートよりキャビティ内に溶解樹脂を注入していく。ゲートよりキャビティに注入された溶解樹脂は、キャビティの外周(すなわち、金型に接する面)を伝って広がっていき、金型に接する部分から徐々に冷えて固化していく。なお、ハウジングの端部を成形する金型部分には、キャビティ内のガスを逃がすためのガス抜き孔が設けられており、溶解樹脂の注入に伴って、ガス抜き孔からガスが排気される。以上の製造方法において、キャビティに溶解樹脂が充填されて固化することによって、感温部、リード線、及びターミナルをハウジングに収容した温度センサが製造される。 After setting the structure in the mold, the molten resin is injected into the cavity from the gate. The molten resin injected into the cavity from the gate spreads along the outer periphery of the cavity (that is, the surface in contact with the mold) and gradually cools and solidifies from the portion in contact with the mold. In addition, the mold part which shape | molds the edge part of a housing is provided with the vent hole for releasing the gas in a cavity, and gas is exhausted from a vent hole with injection | pouring of melted resin. In the above manufacturing method, the temperature sensor in which the temperature sensing portion, the lead wire, and the terminal are housed in the housing is manufactured by filling the cavity with the molten resin and solidifying.
特開2008-101550号公報JP 2008-101550 A
 しかしながら、キャビティ内からガスが抜けきる前に、ガス抜き孔に樹脂が到達した場合には、ガス抜き孔が樹脂によって防がれてしまい、キャビティ内にガスが残されてしまう。この残留したガスによって、キャビティ内に溶解樹脂を充填しきれず、ボイドが発生してしまう。 However, if the resin reaches the vent hole before the gas has escaped from the cavity, the vent hole is prevented by the resin, leaving the gas in the cavity. Due to the residual gas, the melted resin cannot be filled in the cavity and voids are generated.
 また、構造体は前述したようにリード線やターミナルの部分に比べて感温部のサイズが大きい。そのため、感温部付近の空間は、他の部分に比べて狭小となっている。また、溶解樹脂は、金型に沿ってキャビティ外周から回りこんで流れていくことから、樹脂の流入に伴って、狭小部分は、さらに狭小となっていき、よりガスが抜けにくくなっていく。 In addition, as described above, the size of the temperature sensing part of the structure is larger than that of the lead wire and the terminal part. Therefore, the space near the temperature sensitive part is narrower than other parts. Further, since the melted resin flows around the cavity from the outer periphery along the mold, the narrow portion becomes further narrowed with the inflow of the resin, and the gas is more difficult to escape.
 ゲートから狭小部分までの空間からガスが抜けきる前に、その狭小部分に樹脂が充填した場合には、ゲートから狭小部分までの空間にガスが残留し、ボイドが発生する。従って、このようにキャビティ内に感温部による狭小部分を備えるケースでは、狭小部分を備えない場合よりもボイドが発生する可能性が高まってしまう。 If the resin is filled in the narrow portion before the gas has completely escaped from the space from the gate to the narrow portion, the gas remains in the space from the gate to the narrow portion and voids are generated. Therefore, in the case where the narrow portion by the temperature sensing portion is provided in the cavity as described above, the possibility that a void is generated is higher than the case where the narrow portion is not provided.
 本開示は、以上の事情に基づいて成されたものであり、その目的とするところは、ゲートから感温部までの間にボイドが発生することを抑制することができる温度センサの製造用の金型、製造方法、および温度センサを提供することを目的とする。 The present disclosure has been made based on the above circumstances, and the object of the present disclosure is to manufacture a temperature sensor that can suppress the generation of voids between the gate and the temperature sensing portion. An object is to provide a mold, a manufacturing method, and a temperature sensor.
 その目的を達成するための温度センサ製造用の金型の開示は、感温部、リード線、及びターミナルがこの順に直線状に連なって一体化した構造体を収容するハウジングを成形するための温度センサ製造用の金型であって、前記感温部、前記リード線、および前記ターミナルが連なる方向を軸方向とし、前記構造体を収容する円柱状のキャビティと、前記キャビティの端部のうち、前記構造体の感温部を収容する側の第1端部に、キャビティ内のガスを抜くために、前記キャビティと金型外部とを連通する第1ガス抜き通路と、前記キャビティの、前記第1端部とは反対側の端部である第2端部に配置され、前記ターミナルにおいて前記リード線と接続していない方の端末が差し込まれることで前記構造体を前記キャビティ内の所定の位置に保持する構造体支持部と、前記第2端部から前記感温部までの間に形成され、前記キャビティ内に樹脂を注入するゲートと、前記第1端部と前記ゲートとの間に、前記キャビティ内のガスを逃がすために、前記キャビティと金型外部とを連通する第2ガス抜き通路と、を備える。 The temperature sensor manufacturing mold for achieving the object is disclosed as a temperature for molding a housing for housing a structure in which a temperature sensing portion, a lead wire, and a terminal are linearly connected in this order. A mold for manufacturing a sensor, wherein a direction in which the temperature sensing portion, the lead wire, and the terminal are continuous is an axial direction, and a cylindrical cavity that houses the structure, and an end of the cavity, A first gas vent passage communicating the cavity and the outside of the mold to vent the gas in the cavity to the first end of the structure on the side accommodating the temperature sensing part, and the first of the cavity The structure is arranged at a predetermined position in the cavity by being inserted into a terminal that is not connected to the lead wire at the second end that is the end opposite to the one end. In A structure support portion to be held, a gate formed between the second end portion and the temperature sensing portion, for injecting resin into the cavity, and between the first end portion and the gate, In order to escape the gas in the cavity, a second vent passage that communicates the cavity and the outside of the mold is provided.
 以上の構成によれば、感温部が収容される側の端部(第1端部)に設けられている第1ガス抜き通路だけではなく、第2ガス抜き通路からもキャビティ内のガスは排気される。第2ガス抜き通路は、ゲートと第1端部の間に設けられているため、ゲートから第1端部までの空間に存在するガスを排出するために適している。したがって、第2ガス抜き通路を備えない場合よりも、ゲートから第1端部までの空間からガスが抜けやすくなる。 According to the above configuration, the gas in the cavity is not only from the first gas vent passage provided at the end portion (first end portion) on the side where the temperature sensing portion is accommodated, but also from the second gas vent passage. Exhausted. Since the second gas vent passage is provided between the gate and the first end portion, it is suitable for discharging the gas existing in the space from the gate to the first end portion. Therefore, it becomes easier for gas to escape from the space from the gate to the first end than when the second gas vent passage is not provided.
 ここで、ゲートから第1端部までの空間には、ゲートから感温部までの空間も含まれているため、ゲートから第1端部までの空間からガスが抜けやすくなることに伴って、ゲートから感温部までの空間からもガスが抜けやすくなる。すなわち、ゲートから感温部までの空間にガスが残留しにくくなり、ボイドの発生も抑制することができる。 Here, since the space from the gate to the first end portion also includes the space from the gate to the temperature sensing portion, gas easily escapes from the space from the gate to the first end portion, Gas can easily escape from the space from the gate to the temperature sensing part. That is, it becomes difficult for gas to remain in the space from the gate to the temperature sensing part, and generation of voids can be suppressed.
 また、製造方法の開示は、前記金型の前記ゲートより前記キャビティに溶解樹脂を注入することで、前記ハウジングを射出成形する温度センサの製造方法である。 Further, the disclosure of the manufacturing method is a method of manufacturing a temperature sensor in which the housing is injection-molded by injecting a molten resin into the cavity from the gate of the mold.
 さらに、温度センサの開示は、感温部、リード線、及びターミナルがこの順に直線状に連なって一体化した構造体を収容し、前記感温部、前記リード線、および前記ターミナルが連なる方向を軸方向とする円柱状のハウジングを備える温度センサであって、前記ハウジングの端部のうち、前記感温部を収容する側の第1端部に、段差部を備える温度センサである。 Furthermore, the disclosure of the temperature sensor accommodates a structure in which the temperature sensing part, the lead wire, and the terminal are connected in a straight line in this order, and the direction in which the temperature sensing part, the lead wire, and the terminal are joined is determined. It is a temperature sensor provided with the cylindrical housing made into an axial direction, Comprising: It is a temperature sensor provided with a level | step-difference part in the 1st end part of the side which accommodates the said temperature sensing part among the edge parts of the said housing.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
温度センサ100を車両に取り付けている状態の一例を表した模式図であり、 温度センサ100の模式的な断面図であり、 構造体101の模式図であり、 比較構成において用いられる第1金型50Bの断面図であり、 図4中の一点鎖線5-5における断面図であり、 胴体部空間C21に溶解樹脂が流入していく過程を説明するための図であり、 本実施形態で用いられる第2金型50Aの断面図であり、 図7中の一点鎖線8-8における断面図であり、 ベース金型51、第1ヘッド側金型52、第2ヘッド側金型53、第3ヘッド側金型54の構造を説明するための分解図であり、 第2金型50Aにおいてヘッド部21Hを形成する部分の拡大図であり、 変形例において図8に対応する断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is the schematic diagram showing an example of the state which has attached the temperature sensor 100 to the vehicle, It is typical sectional drawing of the temperature sensor 100, It is a schematic diagram of the structure 101, It is sectional drawing of the 1st metal mold | die 50B used in a comparison structure, FIG. 5 is a cross-sectional view taken along one-dot chain line 5-5 in FIG. It is a figure for demonstrating the process in which melted resin flows in into trunk part space C21, It is sectional drawing of the 2nd metal mold | die 50A used by this embodiment, FIG. 8 is a cross-sectional view taken along one-dot chain line 8-8 in FIG. FIG. 6 is an exploded view for explaining the structure of a base mold 51, a first head side mold 52, a second head side mold 53, and a third head side mold 54; It is an enlarged view of the part which forms head part 21H in the 2nd metallic mold 50A, It is sectional drawing corresponding to FIG. 8 in a modification.
 以下、本開示にかかる温度センサ100の構造およびその製造方法の実施形態を図1~10を用いて説明する。まず、温度センサ100の製造方法について述べる前に、温度センサ100の構成の概要について説明する。図1は、温度センサ100を車両に取り付けている状態の一例を表した参考図である。図1に示すように、温度センサ100は、クランプ部材30を介して、例えば車両のフロントバンパーFr等に取り付けられる。図1の矢印Aは水平方向を示しており、車両走行時には、温度センサ100は矢印Aに示す向きの風を受ける。なお、この図1に示す取付姿勢はあくまで一例であって、たとえば温度センサ100は、図1とは上下が逆向きに取り付けられたり、胴体部21の長手方向が矢印の方向とは垂直となる姿勢で取り付けられたりしても良い。 Hereinafter, a structure of the temperature sensor 100 according to the present disclosure and an embodiment of a manufacturing method thereof will be described with reference to FIGS. First, before describing the manufacturing method of the temperature sensor 100, an outline of the configuration of the temperature sensor 100 will be described. FIG. 1 is a reference diagram illustrating an example of a state in which the temperature sensor 100 is attached to a vehicle. As shown in FIG. 1, the temperature sensor 100 is attached to, for example, a vehicle front bumper Fr or the like via a clamp member 30. An arrow A in FIG. 1 indicates the horizontal direction, and the temperature sensor 100 receives wind in the direction indicated by the arrow A when the vehicle travels. 1 is merely an example. For example, the temperature sensor 100 is mounted upside down with respect to FIG. 1, or the longitudinal direction of the body portion 21 is perpendicular to the direction of the arrow. It may be attached in a posture.
 図2は、温度センサ100の断面構造を模式的に表した図である。図2に示す温度センサ100は、感温部10、リード線13、ターミナル14、胴体部21、支持部22、およびクランプ嵌合部23を備えている。胴体部21は、感温部10、感温部10から引き出されるリード線13、およびターミナル14を収容している。なお、ここでは、胴体部21、支持部22、およびクランプ嵌合部23を、それぞれ区別して呼んでいるが、これらは後述する製造方法によって一体成形されるものである。以降では、各部について説明する。 FIG. 2 is a diagram schematically showing a cross-sectional structure of the temperature sensor 100. A temperature sensor 100 shown in FIG. 2 includes a temperature sensing unit 10, a lead wire 13, a terminal 14, a body unit 21, a support unit 22, and a clamp fitting unit 23. The body part 21 accommodates the temperature sensing part 10, the lead wire 13 drawn from the temperature sensing part 10, and the terminal 14. In addition, although the trunk | drum 21, the support part 22, and the clamp fitting part 23 are each distinguished and called here, these are integrally molded by the manufacturing method mentioned later. Hereinafter, each unit will be described.
 感温部10は、所定の温度特性を有する通常のサーミスタ素子11を備えている。サーミスタ素子11は、サーミスタ素子11の抵抗値の変化を検出するためのリード線13と接続されており、サーミスタ素子11は、リード線13のサーミスタ素子11と接続する第1端子ともどもエポキシ樹脂12によって一体にコーティングされている。リード線13の端子のうち、サーミスタ素子11と接続されていない第2端子13bは、ターミナル14の第3端子14aと電気的に接続されている。そして、サーミスタ素子11を含む感温部10、リード線13、及びターミナル14が、樹脂成形された胴体部21に一体となって収容されている。なお、ターミナル14、リード線13、及び感温部10は、この順番に略直線上に連なって配置されている。 The temperature sensing unit 10 includes a normal thermistor element 11 having a predetermined temperature characteristic. The thermistor element 11 is connected to a lead wire 13 for detecting a change in resistance value of the thermistor element 11, and the thermistor element 11 is also connected to the first terminal of the lead wire 13 connected to the thermistor element 11 by an epoxy resin 12. It is coated integrally. Of the terminals of the lead wire 13, the second terminal 13 b that is not connected to the thermistor element 11 is electrically connected to the third terminal 14 a of the terminal 14. And the temperature sensing part 10 including the thermistor element 11, the lead wire 13, and the terminal 14 are integrally accommodated in the body part 21 formed of resin. In addition, the terminal 14, the lead wire 13, and the temperature sensing part 10 are arranged on the substantially straight line in this order.
 胴体部21は、ターミナル14、リード線13、及び感温部10が連なる方向を軸方向とする円柱状の形状となっている。すなわち、ここでの軸方向と前述の長手方向とは一致する。なお、ここでの円柱状とは、軸方向に垂直な断面が真円に限らず、楕円であったり、外周に一部直線部分を備えるものまで含む。また、胴体部21において感温部10付近の部分を、ヘッド部21Hと称する。この胴体部21がハウジングに相当する。 The body part 21 has a cylindrical shape whose axial direction is the direction in which the terminal 14, the lead wire 13, and the temperature sensing part 10 are connected. That is, the axial direction here coincides with the aforementioned longitudinal direction. Here, the columnar shape includes not only a perfect circle in a cross section perpendicular to the axial direction but also an ellipse or a part having a straight portion on the outer periphery. Further, a portion of the body portion 21 near the temperature sensing portion 10 is referred to as a head portion 21H. The body portion 21 corresponds to a housing.
 また、胴体部21においてヘッド部21Hとは反対の端部には、ターミナル14においてリード線13と接続されていない第4端子14bが露出するように、開口した形状のコネクタ部21Cが備えられている。コネクタ部21Cにおいて露出しているターミナル14の第4端子14bは、図示しない外部機器の接続端子と接続され、外気の温度を検出するための信号を外部機器に出力する。 In addition, a connector portion 21C having an open shape is provided at the end of the body portion 21 opposite to the head portion 21H so that the fourth terminal 14b that is not connected to the lead wire 13 at the terminal 14 is exposed. Yes. The fourth terminal 14b of the terminal 14 exposed in the connector portion 21C is connected to a connection terminal of an external device (not shown), and outputs a signal for detecting the temperature of the outside air to the external device.
 なお、ターミナル14においてコネクタ部21Cで露出している部分(第4端子14bを含む)には、耐食性を向上させるためのスズメッキが施されている。また、コネクタ部21Cの外側に設けられている突起形状は、他のセンサや他の型番の温度センサ用の接続端子を、誤ってコネクタ部21Cに挿入することを防ぐためのものである。コネクタ部21Cに挿入される外部機器の接続端子(コネクタ)の形状に合うように、これらの突起形状が設けられる。 In addition, the tin plating for improving corrosion resistance is given to the part exposed in the connector part 21C in the terminal 14 (including the fourth terminal 14b). Further, the protruding shape provided on the outer side of the connector portion 21C is for preventing erroneous insertion of connection terminals for other sensors or other types of temperature sensors into the connector portion 21C. These protrusion shapes are provided so as to match the shape of the connection terminal (connector) of the external device inserted into the connector portion 21C.
 クランプ嵌合部23は、一体成形される胴体部21、支持部22、およびクランプ嵌合部23とは別途製造されるクランプ部材30が嵌め込まれるための構造部分である。クランプ嵌合部23は、嵌め込んだクランプ部材30が走行時の振動や風雨によって外れることを防止するための、係止爪23aなどの構造を備えている。 The clamp fitting part 23 is a structural part for fitting a clamp member 30 manufactured separately from the body part 21, the support part 22, and the clamp fitting part 23 that are integrally formed. The clamp fitting portion 23 has a structure such as a locking claw 23a for preventing the fitted clamp member 30 from being detached due to vibration or wind and rain during traveling.
 もちろん、クランプ部材30に相当する構造を胴体部21、支持部22などと共に一体成形してもよい。また、胴体部21、支持部22、およびクランプ嵌合部23までを一次成形した後に、さらにクランプ部材30に相当する形状を二次成形することで一体化させた構成としてもよい。この場合、係止爪23aは不要となる。支持部22は、胴体部21をクランプ嵌合部23に支持するための構造部分である。なお、軸方向に垂直な方向であって、胴体部21からクランプ嵌合部23に向かう方向を、以降での説明のため上下方向とし、この上下方向において、胴体部21はクランプ嵌合部23よりも上方向にあるものとする。 Of course, a structure corresponding to the clamp member 30 may be integrally formed together with the body portion 21 and the support portion 22. In addition, after the body part 21, the support part 22, and the clamp fitting part 23 are primarily molded, the shape corresponding to the clamp member 30 may be further molded to be integrated. In this case, the locking claw 23a is unnecessary. The support part 22 is a structural part for supporting the body part 21 to the clamp fitting part 23. Note that a direction perpendicular to the axial direction and directed from the body portion 21 toward the clamp fitting portion 23 is a vertical direction for the following description, and in this vertical direction, the body portion 21 is the clamp fitting portion 23. It is assumed that it is in the upward direction.
 クランプ部材30は、温度センサ用端部と車両用端部とを備えており(何れも図示略)、温度センサ用端部がクランプ嵌合部23に嵌め込まれることで、クランプ部材30と温度センサ100とが一体となる。また、車両用端部が車両のフロントバンパー等に設けられた嵌め込み穴に嵌め込まれることで、クランプ部材30は、車両に固定される。すなわち、温度センサ用端部がクランプ嵌合部23に嵌めこまれてクランプ部材30と一体化した温度センサ100は、さらにクランプ部材30の車両用端部がフロントバンパーFr等に設けられた嵌め込み穴に嵌め込まれることで、車両に固定される。そして、温度センサ100は、車両のフロントバンパーFr等の外気に触れる箇所に設置されると、外気の温度によってサーミスタ素子11の抵抗値が変化し、その抵抗値から外気の温度を検出することができる。 The clamp member 30 includes a temperature sensor end portion and a vehicle end portion (both not shown), and the temperature sensor end portion is fitted into the clamp fitting portion 23, whereby the clamp member 30 and the temperature sensor are provided. 100 is united. Moreover, the clamp member 30 is fixed to the vehicle by fitting the end portion for the vehicle into a fitting hole provided in a front bumper or the like of the vehicle. That is, in the temperature sensor 100 in which the end portion for the temperature sensor is fitted into the clamp fitting portion 23 and integrated with the clamp member 30, the end portion for the vehicle of the clamp member 30 is further inserted into the fitting hole provided in the front bumper Fr or the like. By being fitted, it is fixed to the vehicle. And if the temperature sensor 100 is installed in the location which touches outside air, such as the front bumper Fr of a vehicle, the resistance value of the thermistor element 11 will change with the temperature of outside air, and it can detect the temperature of outside air from the resistance value. .
 以降では、本実施形態における温度センサ100の製造方法について図を参照しながら説明する。温度センサ100の製造に際しては、まず、サーミスタ素子11に電圧を印加するためのリード線13の第1端子とサーミスタ素子11とを溶接などによって電気的に接続する。そして、リード線13の一部を含むように、サーミスタ素子11をエポキシ樹脂12でコーティングし、感温部10を形成する。さらに、リード線13のサーミスタ素子11と接続していない第2端子13bを、ターミナル14の第3端子14aと溶接などによって電気的かつ機械的に接続することで、図3に示す1つの構造体101を生成する。 Hereinafter, a method for manufacturing the temperature sensor 100 according to the present embodiment will be described with reference to the drawings. In manufacturing the temperature sensor 100, first, the first terminal of the lead wire 13 for applying a voltage to the thermistor element 11 and the thermistor element 11 are electrically connected by welding or the like. Then, the thermistor element 11 is coated with the epoxy resin 12 so as to include a part of the lead wire 13 to form the temperature sensing part 10. Furthermore, the second terminal 13b not connected to the thermistor element 11 of the lead wire 13 is electrically and mechanically connected to the third terminal 14a of the terminal 14 by welding or the like, so that one structure shown in FIG. 101 is generated.
 そして、構造体101を射出成形用の金型にセットして、溶解樹脂を注入する工程(これを射出成形工程とする)に移る。金型に注入された溶解樹脂が冷却され固化することによって前述の胴体部21、支持部22、およびクランプ嵌合部23が、一体に形成され、かつ、胴体部21に感温部10などが収容された温度センサ100を得ることができる。 Then, the structure 101 is set in an injection mold, and the process proceeds to a process of injecting a molten resin (this is an injection molding process). The body part 21, the support part 22, and the clamp fitting part 23 are integrally formed by cooling and solidifying the molten resin injected into the mold, and the temperature-sensitive part 10 and the like are formed on the body part 21. The housed temperature sensor 100 can be obtained.
 ここで、本実施形態における射出成形工程に用いる第2金型50Aについて説明する前に、従来技術に相当する比較構成において射出成形工程に用いる第1金型50Bについて説明し、比較構成での課題について改めて述べる。 Here, before describing the second mold 50A used in the injection molding process according to the present embodiment, the first mold 50B used in the injection molding process in the comparative configuration corresponding to the prior art will be described, and the problem in the comparative configuration Let me reiterate.
 図4は、比較構成での射出成形工程で用いられる第1金型50Bに、構造体101をセットしている状態の断面図を示しており、図5は図4の一点鎖線5-5における断面の模式図を示している。第1金型50Bは種々の金型部品が組み合わさった複合体であって、ベース金型51、第1ヘッド側金型52、およびコネクタ成形金型55を主として備えている。もちろん、第1金型50Bを構成する金型部品は、さらに細かく分かれていてもよく、例えばベース金型51は、完成品を取り出すために2つ以上に分割されていてもよい。完成品を取り出すための構造については、適宜設計すればよく、ここでは省略する。 FIG. 4 shows a cross-sectional view of a state in which the structure 101 is set in the first mold 50B used in the injection molding process with the comparative configuration, and FIG. 5 shows a dashed line 5-5 in FIG. A schematic diagram of a cross section is shown. The first mold 50B is a composite body in which various mold parts are combined, and mainly includes a base mold 51, a first head side mold 52, and a connector molding mold 55. Of course, the mold parts constituting the first mold 50B may be further finely divided. For example, the base mold 51 may be divided into two or more in order to take out the finished product. The structure for taking out the finished product may be designed as appropriate and is omitted here.
 ただし、完成品を取り出すためにベース金型51を分割している場合、それらの分割された金型部品を組み合わせたときの接触面に間隙が生じないように、組み合わせ面にゴム板を配設するなど、密閉性を保つような構成とする。これは、金型と金型の間に意図しない間隙が存在すると、その間隙に溶解樹脂が流入し、完成品にバリなどの形状不良が生じてしまうことを防ぐためである。 However, when the base mold 51 is divided in order to take out the finished product, a rubber plate is arranged on the combination surface so that no gap is generated on the contact surface when the divided mold parts are combined. For example, a structure that keeps hermeticity is used. This is to prevent an unintended gap between the molds from flowing into the gap and causing a defective shape such as a burr in the finished product.
 第1金型50Bの内部に形成される空間に溶解樹脂を注入するためのゲートGの位置は適宜設計されればよい。ゲートGの位置は、溶解樹脂の流れなどを考慮して決定すればよく、本実施形態および比較構成においては、図4及び図5に示すようにコネクタ部21Cが形成される空間の両側方に設ける。ここでの側方とは、軸方向および上下方向のそれぞれと垂直に交わる方向である。 The position of the gate G for injecting the molten resin into the space formed inside the first mold 50B may be designed as appropriate. The position of the gate G may be determined in consideration of the flow of the dissolved resin and the like. In this embodiment and the comparative configuration, as shown in FIGS. 4 and 5, on both sides of the space in which the connector portion 21 </ b> C is formed. Provide. The side here is a direction perpendicular to the axial direction and the vertical direction.
 なお、第1金型50Bの内部に形成される空間は、前述の胴体部21、支持部22、クランプ嵌合部23に対応する形状となっている。そこで、第1金型50Bの内部に形成される空間のうち、胴体部21に相当する空間を胴体部空間C21、支持部22に相当する空間を支持部空間C22、クランプ嵌合部23に相当する空間をクランプ嵌合部空間C23と区別して称する。胴体部空間C21のうち、ヘッド部21Hに相当する側の端部をヘッド側端部、コネクタ部21Cに相当する側の端部をコネクタ側端部とする。ここで、胴体部21に合わせて円柱状となっている胴体部空間C21が、キャビティに相当し、ヘッド側端部が第1端部に、コネクタ側端部が第2端部にそれぞれ相当する。以降では、本実施形態で用いられる第2金型50Aと、比較構成で用いられる第1金型50Bとの差異は、胴体部空間C21を形成する部分に備えられているため、主としてこの胴体部空間C21を形成する金型部分について説明する。 In addition, the space formed inside the first mold 50B has a shape corresponding to the body part 21, the support part 22, and the clamp fitting part 23 described above. Therefore, among the spaces formed in the first mold 50B, the space corresponding to the body portion 21 corresponds to the body portion space C21, the space corresponding to the support portion 22 corresponds to the support portion space C22, and the clamp fitting portion 23. This space is referred to as a clamp fitting portion space C23. In the body part space C21, an end corresponding to the head part 21H is defined as a head side end, and an end corresponding to the connector part 21C is defined as a connector side end. Here, the body part space C21 having a columnar shape corresponding to the body part 21 corresponds to the cavity, the head side end part corresponds to the first end part, and the connector side end part corresponds to the second end part. . Hereinafter, since the difference between the second mold 50A used in the present embodiment and the first mold 50B used in the comparative configuration is provided in a part that forms the body part space C21, this body part is mainly used. The mold part that forms the space C21 will be described.
 コネクタ成形金型55は、コネクタ側端部に配置され、コネクタ部21Cを成形するための金型部品であり、コネクタ部21Cの内面形状に合致する形状を備える。また、コネクタ成形金型55の先端部には、ターミナル差し込み口55aが設けられており、このターミナル差し込み口55aに、構造体101のターミナル14部分を差し込むことで、構造体101を第1金型50Bに固定する。なお、このときの構造体101の固定位置は、予め設計されている胴体部21内の構造体101の位置となる。例えば、構造体101は、円柱状の胴体部空間C21の軸に沿うように固定される。 The connector molding die 55 is a mold part for molding the connector portion 21C, which is disposed at the connector side end portion, and has a shape that matches the inner surface shape of the connector portion 21C. Further, a terminal insertion port 55a is provided at the distal end portion of the connector molding die 55. By inserting the terminal 14 portion of the structure 101 into the terminal insertion port 55a, the structure 101 is moved to the first mold. Fix to 50B. Note that the fixed position of the structure 101 at this time is the position of the structure 101 in the body portion 21 designed in advance. For example, the structure 101 is fixed along the axis of the cylindrical body space C21.
 また、コネクタ成形金型55は、コネクタ成形金型55とベース金型51との間に微小な間隙A5が生じるようにベース金型51と組み合わせられる。ゲートGから溶解樹脂が注入され、コネクタ部21Cが形成されていく過程においては、ゲートGからコネクタ部21C端部までの空間に存在するガスが、この微小な間隙A5を通って第1金型50Bの外部に抜き出される。したがって、この微小な間隙A5が、コネクタ側端部に設けられたガス抜き通路となる。この場合、このガス抜き通路はコネクタ側ガス抜き通路に相当する。なお、ガス抜き通路となる微小な間隙は、空気などの気体は通るが、溶解樹脂は通らない程度の大きさ(たとえば0.1mm)とし、溶解樹脂の粘度などを考慮して設計すればよい。 Further, the connector molding die 55 is combined with the base die 51 so that a minute gap A5 is generated between the connector molding die 55 and the base die 51. In the process in which the molten resin is injected from the gate G and the connector portion 21C is formed, the gas existing in the space from the gate G to the end of the connector portion 21C passes through the minute gap A5 to form the first mold. 50B is extracted outside. Therefore, this minute gap A5 becomes a gas vent passage provided at the connector side end. In this case, the gas vent passage corresponds to a connector-side gas vent passage. The minute gap serving as the gas vent passage may be designed with a size (for example, 0.1 mm) that allows a gas such as air to pass but does not allow the dissolved resin to pass therethrough and considers the viscosity of the dissolved resin. .
 第1ヘッド側金型52は、ヘッド部21Hの端面を成形するための金型である。第1ヘッド側金型52は、第1ヘッド側金型52とベース金型51との間にガスを抜くための微小な間隙A1が生じるように、ベース金型51と組み合わせられる。この場合、間隙A1は第1ヘッド側ガス抜き通路に相当する。ゲートGからヘッド側端部まで溶解樹脂が流入される過程において、ゲートGからヘッド側端部までの空間に存在するガスは、この第1ヘッド側ガス抜き通路A1を通って外部に抜き出される。 1st head side metal mold | die 52 is a metal mold | die for shape | molding the end surface of the head part 21H. The first head side mold 52 is combined with the base mold 51 so that a minute gap A1 for venting gas is generated between the first head side mold 52 and the base mold 51. In this case, the gap A1 corresponds to the first head side gas vent passage. In the process in which the molten resin flows from the gate G to the head side end, the gas existing in the space from the gate G to the head side end is extracted outside through the first head side gas vent passage A1. .
 構造体101が第1金型50Bにセットされ、ベース金型51、第1ヘッド側金型52、およびコネクタ成形金型55が組み合わされると、いわゆる型締めが完了となり、ゲートGから、第1金型50B内に溶解樹脂が注入されていく。 When the structural body 101 is set in the first mold 50B and the base mold 51, the first head side mold 52, and the connector molding mold 55 are combined, so-called mold clamping is completed, and from the gate G, the first mold is completed. The dissolved resin is poured into the mold 50B.
 比較構成で用いられる第1金型50Bの胴体部空間C21を溶解樹脂が流れていく過程を、図6を用いて説明する。なお、溶解樹脂としてここでは、ポリブチレンテレフタレート(PBT)を用いる構成とするが、これに限らない。ポリフェニレンサルファイド(PPS)、ポリアミド(PA)など、公知の樹脂を用いてもよい。また、溶解樹脂として用いるPBT樹脂には、強度を確保するためにガラス繊維を所定の割合(たとえば20%など)で混ぜている。 The process in which the dissolved resin flows through the body part space C21 of the first mold 50B used in the comparative configuration will be described with reference to FIG. Here, polybutylene terephthalate (PBT) is used as the dissolved resin, but the invention is not limited to this. Known resins such as polyphenylene sulfide (PPS) and polyamide (PA) may be used. Further, the PBT resin used as the dissolving resin is mixed with glass fibers at a predetermined ratio (for example, 20%) in order to ensure strength.
 図6の(A)、(B)、(C)はそれぞれ、ゲートGより第1金型50B内に溶解樹脂が注入されていく過程を、時系列順に表した模式図である。図6(A)に示すように、ゲートGより注入された溶解樹脂は、コネクタ成形金型55とぶつかり、コネクタ成形金型55およびベース金型51に沿うように展開する。ゲートGは、コネクタ部21Cが成形される空間付近に配置されているため、ヘッド部21Hが整形されるよりも早い段階で、コネクタ部21Cの空間に溶解樹脂が充填される。また、ゲートGから見てヘッド側端部の方へと流れた溶解樹脂は、胴体部空間C21の外周に沿って流れていく。図6の(B)および(C)は、ゲートGからヘッド側端部までの空間に溶解樹脂が充填されていく過程を表している。 (A), (B), and (C) of FIG. 6 are schematic diagrams showing the process of injecting the molten resin from the gate G into the first mold 50B in chronological order. As shown in FIG. 6A, the molten resin injected from the gate G collides with the connector molding die 55 and develops along the connector molding die 55 and the base die 51. Since the gate G is disposed in the vicinity of the space where the connector portion 21C is molded, the molten resin is filled into the space of the connector portion 21C at an earlier stage than the head portion 21H is shaped. Further, the melted resin that flows toward the head side end portion as viewed from the gate G flows along the outer periphery of the body portion space C21. 6B and 6C show a process in which the space from the gate G to the head side end is filled with the dissolved resin.
 ところで、構造体101は、リード線13やターミナル14が線状の部材であるのに対し、感温部10は水滴状である。したがって、軸方向に垂直な断面において構造体101が胴体部空間C21を占める面積を見た時、感温部10が胴体部空間C21を占める面積は、リード線13やターミナル14に比べて大きい。そのため、溶解樹脂がゲートGからヘッド側端部までの空間において、感温部10付近に形成される狭小部分R10は溶解樹脂およびガスが流れることができる空間が、他の部分に比べて狭小となっている。 By the way, in the structure 101, the lead wire 13 and the terminal 14 are linear members, whereas the temperature sensing unit 10 is in the form of water droplets. Therefore, when the area that the structure 101 occupies the body part space C21 in a cross section perpendicular to the axial direction is viewed, the area that the temperature sensing unit 10 occupies the body part space C21 is larger than the lead wire 13 and the terminal 14. Therefore, in the space from the gate G to the head side end portion of the dissolved resin, the narrow portion R10 formed in the vicinity of the temperature sensing portion 10 has a narrow space where the dissolved resin and gas can flow compared to the other portions. It has become.
 溶解樹脂は、ベース金型51に沿って胴体部空間C21の外周から回りこんで流れていく。そのため、溶解樹脂の流入に伴って、狭小部分R10は、さらに狭小となる。狭小部分R10がより狭小となると、ゲートGから狭小部分R10までの空間に残留しているガスは狭小部分R10のゲートG側からヘッド部21H側端部へと、より抜けにくくなる。 The melted resin flows around from the outer periphery of the body space C21 along the base mold 51. Therefore, the narrow portion R10 is further narrowed with the inflow of the dissolved resin. When the narrow portion R10 becomes narrower, the gas remaining in the space from the gate G to the narrow portion R10 becomes more difficult to escape from the gate G side of the narrow portion R10 to the end portion on the head portion 21H side.
 再び図6に戻って(A)の状態からさらに溶解樹脂が注入された時点の胴体部空間C21内の状態を(B)に示す。図6(B)は、ゲートGから狭小部分R10までの胴体部空間部分からガスが抜けきる前に、前述の理由によって狭小部分R10が溶解樹脂で塞がってしまった状態を表している。 Returning to FIG. 6 again, the state in the body space C21 at the time when the molten resin is further injected from the state (A) is shown in (B). FIG. 6B shows a state in which the narrow portion R10 is blocked with the melted resin for the above-described reason before the gas completely escapes from the body space portion from the gate G to the narrow portion R10.
 その後、ゲートGよりさらに溶解樹脂を注入していった場合を(C)に示す。感温部10からヘッド部端部までの空間に残っているガスは、狭小部分R10を通過してくる溶解樹脂に押されて、第1ヘッド側ガス抜き通路A1を通って排出され、感温部10からヘッド部21H側端部までの空間を溶解樹脂が充填する。 Then, (C) shows the case where the molten resin is further injected from the gate G. The gas remaining in the space from the temperature sensing portion 10 to the end of the head portion is pushed by the dissolved resin passing through the narrow portion R10 and discharged through the first head-side gas vent passage A1, and the temperature is sensed. The molten resin fills the space from the portion 10 to the end portion on the head portion 21H side.
 しかしながら、ゲートGから感温部10までの空間のガスは抜けきれていないため、その残留ガスによってボイド60が生じてしまう。すなわち、比較構成においては、溶解樹脂が狭小部分R10に到達する速度が、ゲートGから狭小部分R10までの空間からガスが抜けていく速度よりも大きいため、図6(C)に示すようにボイド60が生じてしまうおそれがある。 However, since the gas in the space from the gate G to the temperature sensing unit 10 is not completely removed, the residual gas causes a void 60. That is, in the comparative configuration, the speed at which the dissolved resin reaches the narrow portion R10 is higher than the speed at which the gas escapes from the space from the gate G to the narrow portion R10. Therefore, as shown in FIG. 60 may occur.
 以上で述べた比較構成で用いる第1金型50Bに対し、本実施形態では、図7および図8に示す第2金型50Aを用いる。図7は、構造体101をセットしている状態の第2金型50Aの断面図を示し、図8は図7の一点鎖線8-8における断面図を示している。図7および図8はそれぞれ比較構成を説明するための図4、図5に対応している。比較構成と本実施形態とにおいて相互に対応する部分には、説明簡略化のため、同一の符号を付している。なお、用いる金型を第1金型50Bから第2金型50Aに変更する点を除くと、射出成形工程の手順(型締、射出、冷却など)は、従来のものと同様である。 In contrast to the first mold 50B used in the comparative configuration described above, the second mold 50A shown in FIGS. 7 and 8 is used in the present embodiment. FIG. 7 shows a cross-sectional view of the second mold 50A in a state where the structure 101 is set, and FIG. 8 shows a cross-sectional view taken along one-dot chain line 8-8 in FIG. FIG. 7 and FIG. 8 correspond to FIG. 4 and FIG. 5 for explaining the comparative configuration, respectively. Parts corresponding to each other in the comparative configuration and the present embodiment are denoted by the same reference numerals for the sake of simplicity. Except for the point that the mold to be used is changed from the first mold 50B to the second mold 50A, the procedure of the injection molding process (mold clamping, injection, cooling, etc.) is the same as the conventional one.
 本実施形態における第2金型50Aは、第1金型50Bと同様に種々の金型部品が組み合わさった複合体であって、ベース金型51、第3ヘッド側金型54、第2ヘッド側金型53、第1ヘッド側金型52、およびコネクタ成形金型55を備えている。本実施形態における第1ヘッド側金型52が従来構成における第1ヘッド側金型52に相当する。また、コネクタ成形金型55は、比較構成の第1金型50Bと同様のものである。 The second mold 50A in the present embodiment is a composite body in which various mold parts are combined in the same manner as the first mold 50B, and includes a base mold 51, a third head side mold 54, and a second head. A side mold 53, a first head side mold 52, and a connector molding mold 55 are provided. The first head side mold 52 in this embodiment corresponds to the first head side mold 52 in the conventional configuration. The connector molding die 55 is the same as the first die 50B having a comparative configuration.
 第3ヘッド側金型54、第2ヘッド側金型53、および第1ヘッド側金型52は、図9に示すように入れ子構造となって、それぞれの金型の間に微小な間隙が生じるようにベース金型51に組み合わされる。第3ヘッド側金型54、第2ヘッド側金型53、および第1ヘッド側金型52、およびベース金型51を組み合わせた状態の、ヘッド部21H側端部の拡大図を、図10に示す。 The third head side mold 54, the second head side mold 53, and the first head side mold 52 have a nested structure as shown in FIG. 9, and a minute gap is generated between the respective molds. Thus, the base mold 51 is combined. FIG. 10 is an enlarged view of the end portion on the head portion 21H side in a state where the third head side die 54, the second head side die 53, the first head side die 52, and the base die 51 are combined. Show.
 図9、図10に示すように、ベース金型51と第3ヘッド側金型54との間に設けられた微小な間隙を第3ヘッド側ガス抜き通路A3、第3ヘッド側金型54と第2ヘッド側金型53との間に設けられた微小な間隙を第2ヘッド側ガス抜き通路A2とする。また、第2ヘッド側金型53と第1ヘッド側金型52との間に設けられた微小な間隙を第1ヘッド側ガス抜き通路A1とする。 As shown in FIGS. 9 and 10, a small gap provided between the base mold 51 and the third head side mold 54 passes through the third head side degassing passage A3, the third head side mold 54, and the like. A minute gap provided between the second head side mold 53 is defined as a second head side gas vent passage A2. Further, a minute gap provided between the second head side mold 53 and the first head side mold 52 is defined as a first head side degassing passage A1.
 ここで、図9に戻って、ベース金型51と第3ヘッド側金型54の組み合わせ部分について詳細に説明する。図9に示すように、第3ヘッド側金型54において胴体部空間C21の軸に垂直な環状平面54Fの内周円の直径D3bは、ベース金型51において胴体部空間C21の軸に垂直な環状平面51Fの内周円の直径D3aよりも小さくしている。したがって、第3ヘッド側金型54の環状平面54Fの内周円に接続する小径筒面54Sと、ベース金型51の環状平面51Fの内周円に接続する大径筒面51Sとの間には、軸に垂直な方向において段差が形成される。 Here, returning to FIG. 9, the combined portion of the base mold 51 and the third head side mold 54 will be described in detail. As shown in FIG. 9, the diameter D3b of the inner circumference of the annular plane 54F perpendicular to the axis of the body part space C21 in the third head side mold 54 is perpendicular to the axis of the body part space C21 in the base mold 51. It is smaller than the diameter D3a of the inner circumferential circle of the annular plane 51F. Therefore, between the small diameter cylindrical surface 54S connected to the inner circumferential circle of the annular flat surface 54F of the third head side mold 54 and the large diameter cylindrical surface 51S connected to the inner circumferential circle of the annular flat surface 51F of the base mold 51. Are stepped in a direction perpendicular to the axis.
 そして、環状平面51Fと環状平面54Fとの間には微小な間隙が生じるように、ベース金型51と第3ヘッド側金型54が組み合わされる。すなわち、小径筒面54Sと、大径筒面51Sとの段差部に生じる間隙が、第3ヘッド側ガス抜き通路A3におけるガスの抜き出し口となる。段差部から第3ヘッド側ガス抜き通路A3に入ったガスは、第3ヘッド側金型54の環状平面54Fの外周円に接続する面と、ベース金型51の環状平面51Fの外周円に接続する面との間に設けられている間隙を通って第2金型50Aの外部に出る。 The base mold 51 and the third head side mold 54 are combined so that a minute gap is generated between the annular plane 51F and the annular plane 54F. That is, the gap generated at the step portion between the small-diameter cylindrical surface 54S and the large-diameter cylindrical surface 51S becomes a gas extraction port in the third head-side gas vent passage A3. The gas that has entered the third head side gas vent passage A3 from the stepped portion is connected to the surface connected to the outer peripheral circle of the annular flat surface 54F of the third head side mold 54 and the outer peripheral circle of the annular flat surface 51F of the base die 51. It goes out of the 2nd metal mold | die 50A through the clearance gap provided between the surface to perform.
 また、第3ヘッド側金型54と第2ヘッド側金型53の組み合わせ部分についても、同様に段差部を備える構造とし、その段差部をガスの抜け出し口とする第2ガス抜き通路A2を備えさせている。なお、第2金型50Aのヘッド側端部付近に、このような段差部を設けたことによって、完成品である温度センサ100のヘッド部21Hにも、段差部が備えられることとなる。 Further, the combined portion of the third head side mold 54 and the second head side mold 53 is similarly provided with a step portion, and includes a second gas vent passage A2 having the step portion as a gas outlet. I am letting. In addition, by providing such a step portion in the vicinity of the head side end portion of the second mold 50A, the step portion is also provided in the head portion 21H of the temperature sensor 100 which is a finished product.
 以上で述べたように、第2金型50Aでは、第1ヘッド側金型52、第2ヘッド側金型53、第3ヘッド側金型54を、それぞれの金型の間に微小な間隙が生じるようにベース金型51に組み合わせることで、ゲートGからヘッド部21H側端部までの間に、ガス抜き通路を比較構成よりも増やすことができる。 As described above, in the second mold 50A, the first head side mold 52, the second head side mold 53, and the third head side mold 54 are separated from each other by a minute gap. By combining with the base mold 51 so as to occur, it is possible to increase the gas vent passage between the gate G and the end on the head portion 21H side as compared with the comparative configuration.
 比較構成の第1金型50Bにおいては、ゲートGからヘッド側端部までのガスが抜ける経路は、ヘッド側端部に設けられた第1ヘッド側ガス抜き通路A1しか無かった。しかし、本実施形態の第2金型50Aを用いると、ヘッド側端部に設けられた第1ヘッド側ガス抜き通路A1に加えて、ゲートGからヘッド側端部の間に、さらに、2つの第2ガス抜き通路A2、第3ガス抜き通路A3が設けられている。 In the first mold 50B of the comparative configuration, the only path through which gas escapes from the gate G to the head side end is the first head side gas vent passage A1 provided at the head side end. However, when the second mold 50A of the present embodiment is used, in addition to the first head side gas vent passage A1 provided at the head side end portion, two gates are further provided between the gate G and the head side end portion. A second gas vent passage A2 and a third gas vent passage A3 are provided.
 したがって、第2金型50Aを用いることで、第1金型50Bを用いる比較構成の場合よりも、溶解樹脂をゲートGより注入する過程において、ゲートGから狭小部分R10までの空間のガスを外部へ抜けやすくすることができる。そして、ゲートGから狭小部分R10までの空間にボイドが発生する可能性を低減することができる。 Therefore, by using the second mold 50A, the gas in the space from the gate G to the narrow portion R10 is more externally introduced in the process of injecting the molten resin from the gate G than in the comparative configuration using the first mold 50B. It can make it easy to slip through. And possibility that a void will generate | occur | produce in the space from the gate G to the narrow part R10 can be reduced.
 ところで、ゲートGから狭小部分R10までの空間にボイドが発生する可能性を低減するためには、その他の解決手段として、たとえばゲートGの位置を変更する方法も考えられる。しかしながら、ゲートGの位置を変更すると、ゲートGから胴体部空間C21へと流入した溶解樹脂の流れも変化し、溶解樹脂の乱流が生じるおそれがある。溶解樹脂中のPBT樹脂とガラス繊維は流れるスピードが違う為、乱流が生じた場合には、ガラス繊維が一箇所に固まって浮きでてしまう、いわゆるガラス浮き状態が発生してしまう恐れが生じる。 Incidentally, in order to reduce the possibility that voids are generated in the space from the gate G to the narrow portion R10, for example, a method of changing the position of the gate G is conceivable as another solution. However, if the position of the gate G is changed, the flow of the molten resin flowing from the gate G into the body part space C21 also changes, and there is a possibility that a turbulent flow of the molten resin occurs. Since the PBT resin and the glass fiber in the melted resin have different flow speeds, when turbulent flow occurs, the glass fiber may solidify and float in one place, so-called glass floating state may occur. .
 また、ゲートGから胴体部空間C21へと流入した溶解樹脂の流れが変化することで、溶解樹脂の流れる圧力によって、胴体部空間C21に固定されている構造体101が、胴体部空間C21の軸からずれるおそれがある。構造体101が軸から何れかの方向に偏った位置で成形された場合、偏った方向の感温部10付近の樹脂の肉厚が、設計値よりも小さくなり、その結果、強度が足りないといった不良が生じる恐れが生じる。 In addition, the flow of the dissolved resin flowing from the gate G into the body part space C21 changes, so that the structure 101 fixed to the body part space C21 by the flowing pressure of the dissolved resin becomes the axis of the body part space C21. There is a risk of dislodging. When the structure 101 is molded at a position deviated in any direction from the axis, the thickness of the resin in the vicinity of the temperature sensitive portion 10 in the deviated direction becomes smaller than the design value, and as a result, the strength is insufficient. Such a failure may occur.
 言い換えれば、ゲートGの位置を変更することで、ゲートGから狭小部分R10までの空間にボイドが発生する可能性を低減できたとしても、ガラス浮き状態や強度不足など、異なった種類の不良が生じる恐れがある。 In other words, by changing the position of the gate G, even if the possibility of voids occurring in the space from the gate G to the narrow portion R10 can be reduced, there are different types of defects such as glass floating and insufficient strength. May occur.
 また、溶解樹脂が狭小部分R10に到達する速度が、ゲートGから狭小部分R10までの空間のガスが抜けていく速度よりも小さければ、ゲートGから狭小部分R10までの空間にボイドが発生する可能性を低減することができる。そこで、他の解決方法として、溶解樹脂の射出速度を低下させる方法も考えられる。しかしながら、射出速度を低下させると、胴体部空間C21を溶解樹脂が充填するために要する時間が増大するため、時間あたりの生産効率が低下してしまう。 Further, if the speed at which the molten resin reaches the narrow portion R10 is lower than the speed at which the gas in the space from the gate G to the narrow portion R10 escapes, voids may be generated in the space from the gate G to the narrow portion R10. Can be reduced. Therefore, as another solution, a method of reducing the injection speed of the dissolved resin is also conceivable. However, when the injection speed is lowered, the time required for the melted resin to fill the body portion space C21 increases, and thus the production efficiency per hour is lowered.
 これらの事情を鑑みると、本実施形態のように、ゲートGからヘッド部側端部の間にガス抜き通路を増設した構成とすることで、ゲート位置や射出速度を変更せずに、ゲートGから感温部10までの空間にボイドが発生する可能性を低減することができる。 In view of these circumstances, as in the present embodiment, a configuration in which a gas vent passage is additionally provided between the gate G and the head side end portion allows the gate G to be changed without changing the gate position or the injection speed. The possibility that voids are generated in the space from to the temperature sensing unit 10 can be reduced.
 なお、一般に、ガス抜き通路を設けた場合、ガス抜き通路となる微小な間隙は、溶解樹脂を通しにくい小ささとするが、射出圧力によってわずかながらにその間隙に溶解樹脂が入り込み、小さな凸状の跡が完成品に残る。 In general, when a gas vent passage is provided, the minute gap serving as the gas vent passage is small enough to prevent the dissolved resin from passing therethrough. The trace of remains in the finished product.
 しかしながら、本実施形態のように、胴体部空間C21におけるヘッド部21Hに相当する部分の断面積が、ヘッド側端部に向かって階段状に小さくなる形状とし、その段差部分にガス抜き構造第1ヘッド側ガス抜き通路A1、第2ヘッド側ガス抜き通路A2を設けている。これによって、完成品におけるガス抜き構造の痕跡を目立たなくさせ、商品性を維持することができる。 However, as in the present embodiment, the cross-sectional area of the portion corresponding to the head portion 21H in the body portion space C21 is reduced in a stepped manner toward the head side end portion, and the gas vent structure first in the step portion. A head-side gas vent passage A1 and a second head-side gas vent passage A2 are provided. Thereby, the trace of the degassing structure in the finished product can be made inconspicuous, and the merchantability can be maintained.
 なお、本実施形態の製造方法で用いる第2金型50Aは、ゲートGからヘッド側端部の間に、第1ヘッド側ガス抜き通路A1、第2ヘッド側ガス抜き通路A2、および第3ヘッド側ガス抜き通路A3の、3つのガス抜き通路を備える構成としたが、これに限らない。ガス抜き通路は、2つであっても、4つ以上であってもよい。 The second mold 50A used in the manufacturing method of the present embodiment includes the first head side gas vent passage A1, the second head side gas vent passage A2, and the third head between the gate G and the head side end. Although it was set as the structure provided with three degassing passages of the side degassing passage A3, it is not restricted to this. There may be two degassing passages or four or more.
 また、ゲートGからヘッド側端部の間に備えられるガス抜き通路のうち、ゲートGに最も近いもの(すなわち、第3ヘッド側ガス抜き通路A3)を感温部10の中心とヘッド部21H側端部との間に設けた構成としたが、これに限らない。追加されるガス抜き通路は、ゲートGからヘッド側端部の間に設けられればよく、例えば図11に示すように、感温部10よりもゲートG側に設けられていてもよい。しかしながら、ガス抜き通路は、よりゲートGに近いほどより早い時点で溶解樹脂によって覆われ、ガスを抜く機能が損なわれてしまうため、ガス抜き通路をより効果的に作動させるためには、ゲートG付近から離れているほうが望ましい。 Of the gas vent passages provided between the gate G and the head side end, the one closest to the gate G (that is, the third head side gas vent passage A3) is the center of the temperature sensing unit 10 and the head portion 21H side. Although it was set as the structure provided between the edge parts, it is not restricted to this. The additional gas vent passage may be provided between the gate G and the head side end, and may be provided on the gate G side with respect to the temperature sensing unit 10 as shown in FIG. However, as the gas vent passage is closer to the gate G, it is covered with the molten resin at an earlier time, and the function of venting gas is impaired. Therefore, in order to operate the gas vent passage more effectively, the gate G It is desirable to be away from the vicinity.
 一方で、ガスを逃したい空間の近くにガス抜き通路があったほうが、ガスを抜く効果が大きい場合も考えられる。本実施形態のように感温部10による狭小部分R10付近にガス抜き通路を増設することによって、狭小部分R10付近にガスが残留しにくくすることが期待される。 On the other hand, there may be a case where there is a greater effect of degassing if there is a degassing passage near the space where you want to escape gas. As in the present embodiment, by adding a gas vent passage in the vicinity of the narrow portion R10 by the temperature sensing unit 10, it is expected that the gas hardly remains in the vicinity of the narrow portion R10.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  感温部(10)、リード線(13)、及びターミナル(14)がこの順に直線状に連なって一体化した構造体(101)を収容するハウジング(21)を成形するための温度センサ製造用の金型(50A)であって、
     前記感温部、前記リード線、および前記ターミナルが連なる方向を軸方向とし、前記構造体を収容する円柱状のキャビティ(C21)と、
     前記キャビティの端部のうち、前記構造体の感温部を収容する側の第1端部に、キャビティ内のガスを抜くために、前記キャビティと金型外部とを連通する第1ガス抜き通路(A1)と、
     前記キャビティの、前記第1端部とは反対側の端部である第2端部に配置され、前記ターミナルにおいて前記リード線と接続していない方の端末が差し込まれることで前記構造体を前記キャビティ内の所定の位置に保持する構造体支持部(55a)と、
     前記第2端部から前記感温部までの間に形成され、前記キャビティ内に樹脂を注入するゲート(G)と、
     前記第1端部と前記ゲートとの間に、前記キャビティ内のガスを逃がすために、前記キャビティと金型外部とを連通する第2ガス抜き通路(A3)と、を備える温度センサ製造用の金型。
    For manufacturing a temperature sensor for forming a housing (21) that houses a structure (101) in which a temperature sensing part (10), a lead wire (13), and a terminal (14) are connected in a straight line in this order. Mold (50A),
    A columnar cavity (C21) that houses the structure, with the direction in which the temperature sensing unit, the lead wire, and the terminal are connected as an axial direction,
    A first degassing passage that communicates the cavity with the outside of the mold in order to vent the gas in the cavity to the first end of the cavity that houses the temperature sensing portion of the structure. (A1),
    The cavity is disposed at a second end which is an end opposite to the first end, and the terminal that is not connected to the lead wire is inserted into the terminal to insert the structure into the structure. A structure support (55a) for holding in place in the cavity;
    A gate (G) formed between the second end portion and the temperature sensing portion and injecting resin into the cavity;
    For producing a temperature sensor, a second gas vent passage (A3) that communicates between the cavity and the outside of the mold is provided between the first end and the gate to allow gas in the cavity to escape. Mold.
  2. 請求項1において、
     前記第2ガス抜き通路は、前記第1端部から前記感温部の前記第2端部側の端部まで間に設けられている温度センサ製造用の金型。
    In claim 1,
    The second gas vent passage is a mold for manufacturing a temperature sensor provided between the first end portion and an end portion of the temperature sensing portion on the second end side.
  3. 請求項2において、
     前記第2ガス抜き通路は、前記感温部の前記第1端部側の第1端から前記感温部の前記第2端部側の第2端までの間に設けられている温度センサ製造用の金型。
    In claim 2,
    The second gas vent passage is provided between the first end of the temperature sensing portion on the first end side and the second end of the temperature sensing portion on the second end side. Mold.
  4. 請求項1から3の何れか1項において、
     前記金型は、前記ゲートから前記第1端部の間に段差部を備え、
     前記段差部は、前記キャビティの軸に垂直な環状平面と、前記環状平面の内周円に接続し、前記環状平面に対して前記第1端部側に位置する小径筒面と、前記環状平面に対して前記第2端部側に位置し、前記環状平面の内周円の直径より大きい直径を備え大径筒面により形成され、
     前記環状平面と前記大径筒面との間には間隙が形成され、前記第2ガス抜き通路は、その隙間を一部に含む通路である、温度センサ製造用の金型。
    In any one of Claims 1-3,
    The mold includes a step portion between the gate and the first end,
    The stepped portion is connected to an annular plane perpendicular to the axis of the cavity, an inner circumference of the annular plane, and is located on the first end side with respect to the annular plane, and the annular plane Is formed by a large-diameter cylindrical surface with a diameter larger than the diameter of the inner circumferential circle of the annular plane,
    A mold for producing a temperature sensor, wherein a gap is formed between the annular plane and the large-diameter cylindrical surface, and the second gas vent passage is a passage partially including the gap.
  5. 請求項4において、
     前記金型は、前記段差部を複数箇所に備え、
     各段差部に形成された隙間をそれぞれ含む複数の前記第2ガス抜き通路が形成されている温度センサ製造用の金型。
    In claim 4,
    The mold includes the stepped portion at a plurality of locations,
    A mold for manufacturing a temperature sensor in which a plurality of the second gas vent passages each including a gap formed in each stepped portion are formed.
  6. 請求項1から5の何れか1項において、前記金型の前記ゲートより前記キャビティに溶解樹脂を注入することで、前記ハウジングを射出成形する温度センサの製造方法。 6. The method for manufacturing a temperature sensor according to claim 1, wherein the housing is injection-molded by injecting a molten resin into the cavity from the gate of the mold.
  7.  感温部(10)、リード線(13)、及びターミナル(14)がこの順に直線状に連なって一体化した構造体(101)と、
     前記構造体を収容し、前記感温部、前記リード線、および前記ターミナルが連なる方向を軸方向とする円柱状のハウジング(21)と、
     前記ハウジングの端部のうち、前記感温部を収容する側の第1端部に、段差部を備える温度センサ。
    A temperature sensor (10), a lead wire (13), and a structure (101) in which a terminal (14) is integrated in a straight line in this order;
    A cylindrical housing (21) that houses the structure and has an axial direction in which the temperature sensing unit, the lead wire, and the terminal are connected;
    A temperature sensor comprising a step portion at a first end portion on the side of housing the temperature sensing portion among the end portions of the housing.
PCT/JP2014/002638 2013-05-23 2014-05-20 Die for temperature sensor, production method, and temperature sensor WO2014188707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480029244.0A CN105228807B (en) 2013-05-23 2014-05-20 The mould of temperature sensor manufacture, manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109052 2013-05-23
JP2013109052A JP6102510B2 (en) 2013-05-23 2013-05-23 Mold for temperature sensor manufacturing, manufacturing method

Publications (1)

Publication Number Publication Date
WO2014188707A1 true WO2014188707A1 (en) 2014-11-27

Family

ID=51933274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002638 WO2014188707A1 (en) 2013-05-23 2014-05-20 Die for temperature sensor, production method, and temperature sensor

Country Status (3)

Country Link
JP (1) JP6102510B2 (en)
CN (1) CN105228807B (en)
WO (1) WO2014188707A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384337B2 (en) * 2015-01-15 2018-09-05 株式会社デンソー Temperature sensor and manufacturing method thereof
JP7276061B2 (en) * 2019-10-09 2023-05-18 株式会社デンソー temperature sensor
CN111923322B (en) * 2020-05-22 2021-03-02 帕艾斯电子技术(南京)有限公司 Temperature sensor, injection molding packaging mold and injection molding packaging method
JP7310726B2 (en) * 2020-06-10 2023-07-19 トヨタ自動車株式会社 Forming mold and forming method for pressure vessel liner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182142A (en) * 1984-02-28 1985-09-17 Toshiba Corp Resin sealing mold for semiconductor device
JPH0529369A (en) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp Mold for sealing semiconductor element with resin
JPH0972793A (en) * 1995-09-06 1997-03-18 Niles Parts Co Ltd Method for forming temperature sensor and forming mold
JPH11351974A (en) * 1999-05-17 1999-12-24 Niles Parts Co Ltd Structure of temperature detecting sensor
JP2000311909A (en) * 1999-02-24 2000-11-07 Aoi Electronics Co Ltd Molding apparatus for resin-sealed semiconductor devices
JP2005019644A (en) * 2003-06-25 2005-01-20 Tdk Corp Temperature sensor, manufacturing method thereof, and mold therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191629U (en) * 1983-06-07 1984-12-19 石塚電子株式会社 temperature detector
JP2008101550A (en) * 2006-10-19 2008-05-01 Bosch Corp Method for diagnosing failure of outside air temperature sensor and vehicle movement control device
JP5280753B2 (en) * 2008-06-30 2013-09-04 三菱電線工業株式会社 Temperature sensor and manufacturing method thereof
JP5699735B2 (en) * 2011-03-25 2015-04-15 日本電気株式会社 Injection molding apparatus and injection molding method
JP5682794B2 (en) * 2011-11-10 2015-03-11 アイシン精機株式会社 Intake Manifold Resin Mold, Intake Manifold and Intake Manifold Resin Molding Method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182142A (en) * 1984-02-28 1985-09-17 Toshiba Corp Resin sealing mold for semiconductor device
JPH0529369A (en) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp Mold for sealing semiconductor element with resin
JPH0972793A (en) * 1995-09-06 1997-03-18 Niles Parts Co Ltd Method for forming temperature sensor and forming mold
JP2000311909A (en) * 1999-02-24 2000-11-07 Aoi Electronics Co Ltd Molding apparatus for resin-sealed semiconductor devices
JPH11351974A (en) * 1999-05-17 1999-12-24 Niles Parts Co Ltd Structure of temperature detecting sensor
JP2005019644A (en) * 2003-06-25 2005-01-20 Tdk Corp Temperature sensor, manufacturing method thereof, and mold therefor

Also Published As

Publication number Publication date
JP6102510B2 (en) 2017-03-29
CN105228807A (en) 2016-01-06
JP2014226862A (en) 2014-12-08
CN105228807B (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2014188707A1 (en) Die for temperature sensor, production method, and temperature sensor
CN101256197A (en) Rotation detecting sensor
JP2009074993A (en) Rotation detecting apparatus and method for manufacturing the rotation detecting apparatus
WO2011007385A1 (en) Vehicle condition detection device and method for manufacturing the same
EP3105842A2 (en) Stator for rotary electric machine
CN105705924A (en) Temperature sensor and manufacturing method therefor
CN111344133A (en) Internal member and resin molded article
JP5123710B2 (en) Rotation detection device and method of manufacturing rotation detection device
JP6245204B2 (en) Stator and stator sealing method
EP3404384B1 (en) Temperature detection device
JP5280753B2 (en) Temperature sensor and manufacturing method thereof
JP2009262548A (en) Molding and molding method
JP6302850B2 (en) Air flow measurement device
JP6044451B2 (en) Temperature sensor
JP5119135B2 (en) Ignition coil manufacturing method
JP5640871B2 (en) Resin molded product and manufacturing method thereof
JP2014137222A (en) Manufacturing method of temperature sensor
JP5589399B2 (en) Method for manufacturing liquid level detection device, and liquid level detection device
JP5645508B2 (en) Method for producing electronic component and electronic component
JP5971220B2 (en) Method for manufacturing resin hollow body and air flow measuring device
JP2010048734A (en) Pressure sensor for engine, pressure sensor unit, and manufacturing method of the pressure sensor
JP6928875B2 (en) Resin molded product
JP6297790B2 (en) Temperature sensor
CN113165239B (en) Resin molded body and method for producing resin molded body
JP6782536B2 (en) Manufacturing method of resin molded product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029244.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800487

Country of ref document: EP

Kind code of ref document: A1