WO2014188621A1 - Examination method and sensor - Google Patents

Examination method and sensor Download PDF

Info

Publication number
WO2014188621A1
WO2014188621A1 PCT/JP2013/081663 JP2013081663W WO2014188621A1 WO 2014188621 A1 WO2014188621 A1 WO 2014188621A1 JP 2013081663 W JP2013081663 W JP 2013081663W WO 2014188621 A1 WO2014188621 A1 WO 2014188621A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
protective layer
test piece
substrate
electromagnetic field
Prior art date
Application number
PCT/JP2013/081663
Other languages
French (fr)
Japanese (ja)
Inventor
三津夫 川▲崎▼
哲郎 高松
義規 原田
丈夫 南川
昂司 竹田
祐 山崎
昌博 川▲崎▼
Original Assignee
ウシオ電機株式会社
国立大学法人 京都大学
京都府公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社, 国立大学法人 京都大学, 京都府公立大学法人 filed Critical ウシオ電機株式会社
Publication of WO2014188621A1 publication Critical patent/WO2014188621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to an inspection method, and more particularly to an inspection method for a test piece including a cell membrane, which can analyze the spectrum of the cell membrane surface with high sensitivity.
  • the present invention also relates to a sensor used for such an inspection method.
  • Cell membranes are composed of various phospholipids, proteins, or sugar chains. Not only functions as a partition between cells inside and outside, but also signaling between cells inside and outside through receptors, selection of specific molecules by channels It plays important functions for cells, such as general permeation, sensing outside the cell, and uptake of external substances by endocytosis. Therefore, if it is possible to visualize the molecular localization and functions of phospholipids, proteins, sugar chains, etc. present in the cell membrane, the possibility of leading to the elucidation of functions important for these cells widens (see Non-Patent Document 1). .
  • a method using a fluorescent dye as a label As a conventional method for observing cell membranes, a method using a fluorescent dye as a label, an observation method using an electron microscope, a TIRF (Total Internal Reflection Fluorescence) method, a structured illumination microscope, a photoactivated localization microscope, or stimulated emission fluorescence Examples thereof include an observation method using a super-resolution microscope such as a microscope.
  • a TIRF Total Internal Reflection Fluorescence
  • the electron microscope Since the electron microscope has high spatial resolution (on the order of nm), it is possible to observe a fine structure such as a cell membrane (thickness of about 10 nm).
  • the super-resolution microscope uses light-specific phenomena such as light interference, single-molecule excitation / measurement and high-accuracy position measurement, and stimulated emission to achieve resolution that exceeds the conventional diffraction limit.
  • a fine structure such as a cell membrane can be observed.
  • the method using a fluorescent dye as a label requires introducing a fluorescent dye exogenously according to the protein or sugar chain component to be observed, preparing an antibody, or introducing a gene into a cell to express the fluorescent protein. was there.
  • the only fluorescent dyes that can be used for such applications are dyes that have a very high emission quantum yield, and thus there are restrictions on the types of dyes that can be used.
  • the state of cells may change during the process of introducing a fluorescent dye, binding of an antibody, or expression of a fluorescent protein, and the observed information may not be in a normal state. Furthermore, since it was necessary to carry out the above process, it could not be used for clinical purposes.
  • the TIRF method Since the TIRF method has a very low fluorescence detection efficiency, this method is limited to observation using a fluorescent dye exhibiting a very high emission quantum yield.
  • Observation methods using a super-resolution microscope perform complicated interference optical systems for realizing structured illumination, fluorescent dyes that emit light with high brightness that enables photoactivation and single-molecule measurement, and stimulated emission.
  • fluorescent dyes that emit light with high brightness that enables photoactivation and single-molecule measurement, and stimulated emission.
  • a fluorescent dye that does not fade even under strong laser light intensity is required.
  • the selectivity of the dye is extremely narrow and a complicated optical system is required as an inspection apparatus.
  • a conventional method for measuring the Raman spectrum and fluorescence spectrum of the outermost surface using the localized surface plasmon effect there is a conventional method for measuring the Raman spectrum and fluorescence spectrum of the outermost surface using the localized surface plasmon effect.
  • a device for realizing a localized surface plasmon effect is prepared, light is irradiated in a state where a test piece to be inspected is placed on the device, and light emission from the test piece is spectrally analyzed. It is.
  • the light enhancement effect by the localized surface plasmon effect enhances light emission from the test piece.
  • an object of the present invention is to provide an inspection method capable of inspecting a cell membrane of a biological material under an optical system that does not require strict accuracy design. Moreover, an object of this invention is to provide the sensor utilized for such an inspection method.
  • the inspection method of the present invention is an inspection method for a test piece including a cell membrane,
  • An optical enhancement element comprising: a substrate; an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate; and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer
  • Preparing step (a) Placing the test piece to be inspected on the upper surface of the protective layer (b), Irradiating the light enhancement element with excitation light (c), And (d) measuring light emission spectrum by receiving light emitted from the test piece.
  • the localized surface plasmon effect can be used because the structure includes an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently from each other on the surface of the substrate. For this reason, unlike the surface plasmon effect using evanescent waves, there is no strict restriction on the incident angle of light with respect to the substrate, and the degree of freedom is ensured.
  • a test piece to be inspected is placed on the upper surface of the protective layer formed on the enhanced electromagnetic field forming layer. For this reason, even when a biological material is included as a test piece, the test piece is only in direct contact with the protective layer, and the metal fine particles are not in direct contact with the test piece for a long time. For this reason, when the metal fine particles are continuously exposed to the halide ions for a long time, the halide ions and the metal fine particles do not undergo chemical reaction and change in quality. As a result, Ag having a high light enhancement effect can be used as the metal fine particles. In the configuration of the present invention, Ag is preferably used as the metal fine particles, but other metal materials (for example, Au) may be used.
  • the light enhancement effect acts only in the vicinity of a large number of metal fine particles constituting the enhanced electromagnetic field forming layer.
  • the test piece is placed on the upper surface of the protective layer formed on the upper layer of the enhanced electromagnetic field forming layer, the strong enhancing effect reaches the surface through the protective layer formed on the upper layer of the enhanced electromagnetic field forming layer.
  • the light-enhancing effect can be exerted on the test piece placed on the upper surface of the protective layer far from the metal fine particles, particularly on the surface layer portion of the test piece. Therefore, strong luminescence derived from the surface layer portion of the biological material as the test piece, that is, the cell membrane can be obtained.
  • the output of the excitation light to be irradiated is kept low, high Raman scattered light from the test piece can be received by the light enhancement effect, and can be used for spectrum analysis. And as a result of not having to irradiate strong excitation light at the time of inspection, it is possible to prevent light (thermal) decomposition of the biological material.
  • the response time can be increased without applying a time constant to the electronic circuit, it is possible to observe rapid changes such as cell differentiation, morphological changes in the cell membrane, and biochemical changes in the cell membrane. Specific examples include observation of phenomena such as cell membrane protein turnover, cell membrane rip-flop, and signaling by receptors in the cell membrane.
  • the composition can be specified by measuring the Raman spectrum of the living cell membrane and the surface of the living tissue simultaneously with the collection.
  • the method of the present invention can be used not only for Raman scattered light from a test piece but also for fluorescence spectrum analysis.
  • the localized surface plasmon effect can be used, it is possible to use a non-luminous dye (luminescence quantum yield of about 0.01 or less) that does not emit light in a normal state as a dye for labeling the test piece. Become. That is, when light is incident on the light enhancement element on which the test piece is placed, the light enhancement effect by the enhanced electromagnetic field forming layer is exerted through the protective layer, and thus the non-luminescent pigment labeled on the test piece emits light.
  • the test piece can be inspected by receiving the emitted light at the light receiving unit and performing spectrum analysis. And according to this method, it becomes possible to use a non-light-emitting dye that does not shine in a normal state as a labeling dye, so that the selectivity of the dye is extremely widened.
  • a non-luminescent pigment for example, a carotenoid, flavonoid, or quinoid pigment
  • a non-luminescent pigment for example, a carotenoid, flavonoid, or quinoid pigment
  • self-luminous substances include collagen, riboflavin, NADH (reduced nicotinamide adenine dinucleotide), FDH (flavin adenine dinucleotide), and colored proteins.
  • an autoluminescent substance for example, autoluminescent protein
  • the label itself is not necessary. According to this method, since the light enhancement effect is high, it is possible to detect the light emission utilizing the self-luminous property of the test piece by the light receiving unit.
  • the step (c) may be a step of irradiating the light enhancement element with excitation light from the side opposite to the side on which the test piece is placed.
  • the cell membrane can be observed in-situ while the cells are cultured.
  • the cell membrane can be observed even for a biological tissue sample having a thickness that does not transmit light.
  • the protective layer may be composed of an inorganic substance having an orientation in connection with the large number of metal fine particles or a polymer of an organic substance having an orientation.
  • the protective layer may contain a halogen element.
  • this configuration it is possible to transmit the enhanced electromagnetic field caused by the localized surface plasmon effect in the enhanced electromagnetic field forming layer to the surface of the protective layer with higher efficiency.
  • this configuration is different from the case where a biological substance (biological sample) containing halide ions is directly brought into contact with exposed metal fine particles in a configuration having no protective layer, and a material containing a halogen element is used as the protective layer. Therefore, the function which protects the damage to the metal fine particle by halide ion is ensured similarly to said structure.
  • the sensor of the present invention is a sensor used for inspection of a test piece including a cell membrane,
  • An optical enhancement element comprising: a substrate; an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate; and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer
  • the light enhancement element includes a first region in which the enhanced electromagnetic field forming layer is formed on the substrate, the protective layer is formed on the enhanced electromagnetic field forming layer, and the enhanced electromagnetic field forming layer on the substrate. And a second region where the protective layer is formed.
  • the portion of the test piece placed on the first region has an enhanced electromagnetic field. While the light enhancement effect by the formation layer extends, the light enhancement effect by the enhanced electromagnetic field formation layer does not reach the location of the test piece placed on the second region. Since the light enhancement effect extends only in the vicinity of a large number of metal fine particles constituting the enhanced electromagnetic field forming layer and in the vicinity of the surface of the protective layer on the upper layer, it is applied to the surface layer portion of the test piece placed on the first region. On the other hand, the effect of enhancing light is exerted. For this reason, the light which has the spectrum derived from the constituent material of the surface layer part of a test piece is obtained from the part of the test piece mounted on the 1st field.
  • the enhanced electromagnetic field forming layer does not exist on the second region, the light enhancing action of the enhanced electromagnetic field forming layer does not reach the part of the test piece placed on the second region. For this reason, the portion of the test piece placed on the second region emits light having a spectrum derived from the substance constituting the inside of the surface layer as well as the surface layer of the test piece.
  • the test piece is a biological material, the volume of the cytoplasm that forms the inner surface of the surface layer is extremely large compared to the cell membrane that forms the surface layer, and thus light emission having a cytoplasm-derived spectrum is obtained.
  • this sensor by irradiating light, it is possible to obtain the spectrum of the substance constituting the surface layer of the test piece and the substance constituting the inside of the surface layer from one test piece.
  • the test piece is a biological material-derived adipocyte, it is possible to easily obtain both the cell membrane constituting the surface layer and the spectrum data of the adipocyte covered with the cell membrane.
  • an inspection method capable of inspecting a biological material can be realized under an optical system that does not require strict accuracy design. Further, according to the sensor of the present invention, a sensor suitable for inspection using the above inspection method can be realized.
  • FIG. 1 It is a graph which shows the Raman spectrum received by the light-receiving part when each sensor of Example 3 and Example 1 was irradiated with excitation light. It is a graph which shows the Raman spectrum light-received by the light-receiving part, when a fat tissue is mounted on a sensor (or board
  • FIG. 1 is a drawing schematically showing the structure of a sensor used in the inspection method of the present invention.
  • the sensor 1 includes a substrate 7, an enhanced electromagnetic field forming layer 9, and a protective layer 11 to constitute a light enhancement element. Then, the test piece 5 to be inspected is placed on the upper surface of the protective layer 11 and inspected.
  • the material of the substrate 7 is not particularly limited, and for example, glass, ceramics, resin, or the like can be used. As will be described later, when heat treatment (for example, heating at 100 ° C. or higher) is performed in the manufacturing process of the sensor 1, it is preferable to have heat resistance such as glass or polyimide resin.
  • the enhanced electromagnetic field forming layer 9 is configured by a large number of metal fine particles 10 being dispersed and arranged on the surface of the substrate 7 independently of each other.
  • the arrangement method of the metal fine particles 10 on the surface of the substrate 7 may be a two-dimensional random arrangement or a regular arrangement.
  • the metal fine particles 10 constituting the enhanced electromagnetic field forming layer 9 for example, Ag can be suitably used, but Au, Al, and the like can be used as long as they can be excited by irradiation with excitation light to realize the localized surface plasmon effect.
  • Other materials such as Cu can also be used.
  • shape of the metal fine particles 10 for example, those having shape anisotropy such as a flat hemispherical shape or a flat plate shape can be suitably used. Note that it is desirable that all the metal fine particles 10 have a uniform size and shape, but there may be some variation in size and shape.
  • the particle diameter of the metal fine particles 10 is preferably smaller than the wavelength of the excitation light.
  • particle size refers to a projected area equivalent circle diameter measured by microscopy. Specifically, it is obtained as follows. Field of view of a scanning electron microscope (for example, 1.5 ⁇ m ⁇ 2 ⁇ m) in which a 2 ⁇ m-long line segment is observed to be enlarged to a length of 6 cm (magnification: 30000 times) in an arbitrarily selected region on the surface of the sensor 1 As an imaging region, a secondary electron image of the region in the sensor 1 is obtained. At this time, for each of the metal fine particles having a brightness index (256 steps) of about 100 or more, the diameter of a perfect circle having the same area as the metal fine particle 10 is obtained as the particle diameter of the metal fine particle 10.
  • the particle size of the metal fine particles 10 is in the range of 5 to 300 nm, for example, and the thickness is in the range of 5 to 70 nm, for example. Further, the density of the metal fine particles 10 constituting the enhanced electromagnetic field forming layer 9 can be, for example, about 10 8 to 10 11 particles / cm 2 .
  • a method for forming such an enhanced electromagnetic field forming layer 9 a method in which a dispersion liquid in which a precursor of metal fine particles 10 is dispersed in an appropriate solvent is applied to the surface of the substrate 7 by a spin coating method and heated. be able to. Further, as another method, a method of dipping the precursor of the metal fine particles 10 on the surface of the substrate 7 and heating, a method of vacuum-depositing the metal fine particles 10 on the surface of the substrate 7, and a method of depositing the metal fine particles 10 on the surface of the substrate 7 A sputter deposition method or the like can be used.
  • a protective layer 11 is formed on the enhanced electromagnetic field forming layer 9 including the surface of the substrate 7 exposed between adjacent metal fine particles 10.
  • the material constituting the protective layer 11 include silicon oxide, titanium oxide, cerium oxide, boron oxide, phosphorus oxide, magnesium oxide, calcium oxide, aluminum oxide, gallium oxide, germanium oxide, and zinc oxide.
  • the average thickness of the protective layer 11 is preferably 50 to 250 nm, for example. In particular, since the thickness of the protective layer 11 is 85 nm or more, even when the test piece 5 contains a halide ion (for example, Cl ⁇ ) such as a biological material, sufficient resistance to the metal fine particles 10 ( Protection function).
  • a halide ion for example, Cl ⁇
  • Such a sensor 1 is manufactured by the following method, for example. First, a metal nanoparticle film is formed on the surface of the substrate 7, and the graininess is changed by heat-treating the film, whereby an enhanced electromagnetic field forming layer 9 made of metal fine particles 10 having a particle diameter within a predetermined range is formed. Form. At this time, the particle diameter of the metal fine particles 10 to be formed can be adjusted by appropriately changing the heat treatment conditions.
  • a protective layer is grown in the thickness direction from the metal fine particle 10 as a starting point on the surface of the enhanced electromagnetic field forming layer 9 including the surface portion of the substrate 7 exposed between the adjacent metal fine particles 10 by vapor deposition.
  • the protective layer 11 having a columnar structure is formed.
  • the thickness of the protective layer 11 can be adjusted by appropriately changing the growth conditions and time.
  • methods such as a radio frequency (RF) sputter vapor deposition method, an electron beam vapor deposition method, or an electron cyclotron resonance (ECR) sputter vapor deposition method, can be selected suitably and can be utilized.
  • FIG. 2 is a conceptual diagram for explaining the inspection method.
  • a method for performing spectrum analysis by irradiating the sensor 1 on which the test piece 5 is placed with excitation light and receiving Raman scattered light emitted from the test piece 5 will be described.
  • the light source 41 for irradiating excitation light from the back side of the substrate 7 of the sensor 1 (the side opposite to the side on which the test piece 5 is placed) and the light emission from the test piece 5 are emitted.
  • a light receiving unit 43 for receiving light is used.
  • the light source unit 41 includes an excitation light source 50, a filter 51, and a mirror 61.
  • the light receiving unit 43 includes a filter 53, a spectroscope 55, and a photodetector 56.
  • FIG. 2 a configuration is provided in which a half mirror 62 that transmits excitation light from the light source unit 41 and reflects light emitted from the test piece 5 is provided.
  • the condenser lens 52 is installed for the purpose of condensing excitation light from the light source unit 41 and light emission from the test piece 5.
  • the apparatus configuration shown in FIG. 2 is merely an example, and the present invention is not limited to this configuration.
  • excitation light is incident from the light source unit 41 toward the sensor 1. Due to the incident light, the plasmon electric field generated in the enhanced electromagnetic field forming layer 9 of the sensor 1 propagates to the test piece 5 placed on the upper surface of the protective layer 11. Thereby, strong excitation light is exerted on the test piece 5, and high-output Raman scattered light is emitted from the test piece 5.
  • the Raman scattered light is reflected by the half mirror 62 and received by the light receiving unit 43. Wavelength decomposition is performed by the spectroscope 55 of the light receiving unit 43, and a spectral distribution of light received by the photodetector 56 is obtained.
  • the enhanced electromagnetic field forming layer 9 formed by a large number of metal fine particles 10 suppresses the excitation light from entering the inside of the test piece 5, that is, the inside of the cell membrane, and the excitation light partially penetrates to the inside of the cell. It also acts as a filter for non-enhanced Raman scattered light due to, thereby simultaneously playing an important role in preventing unenhanced Raman signals from being doubled.
  • the enhanced electromagnetic field formed by the enhanced electromagnetic field forming layer 9 selectively excites the surface layer of the biological material, that is, the molecular species in the vicinity of the cell membrane, through the protective layer 11 having electromagnetic field propagating property, thereby the cell surface ( The Raman signal of the cell membrane is selectively obtained. Since the enhanced Raman scattered light generated in this way is optically strongly coupled to the enhanced electromagnetic field forming layer 9, the enhanced electromagnetic field forming layer 9 efficiently transmits the scattered light to the light receiving portion 43 disposed on the back side of the test piece 5. It leads well and gives a strong Raman signal due to these synergistic effects.
  • Example 1 First, a method for manufacturing the sensor 1 of Example 1 will be described. A glass slide having a size of several centimeters was used as the substrate 7, and an Ag film for forming the metal fine particles 10 was formed on the surface of the glass slide by depositing Ag with a thickness of about 10 nm. Thereafter, the substrate 7 on which the Ag film is formed is heated for several minutes on a hot plate at about 100 ° C., thereby changing the granularity of the Ag film and thereby increasing the number of metals (Ag) as the enhanced electromagnetic field forming layer 9. An Ag fine particle monolayer film of fine particles 10 was formed.
  • a glass slide having a size of several centimeters was used as the substrate 7, and an Ag film for forming the metal fine particles 10 was formed on the surface of the glass slide by depositing Ag with a thickness of about 10 nm. Thereafter, the substrate 7 on which the Ag film is formed is heated for several minutes on a hot plate at about 100 ° C., thereby changing the granularity of the Ag film and
  • the particle diameter of the metal fine particles 10 in the obtained Ag fine particle monolayer film is in the range of 50 to 150 nm, the thickness is about 20 nm on average, and the density of the metal fine particles 10 is approximately 5 ⁇ 10 9 particles / cm 3. 2 .
  • RF sputtering apparatus “RFS-200 type” (manufactured by Ulvac)
  • SiO 2 silicon oxide
  • the sensor 1 was produced by forming the protective layer 11 on the surface of the enhanced electromagnetic field forming layer 9 including the surface portion of the above.
  • the thickness of the protective layer 11 was adjusted by appropriately changing the sputtering time.
  • the sputtering conditions are as follows. -Distance from the target to the surface of the enhanced electromagnetic field forming layer 9: 45 mm ⁇ Atmosphere: Ar 3.0Pa (during discharge) ⁇ Discharge output: 100W ⁇ RF frequency: 13.6MHz -Growth rate of the protective layer 11: 8.5 nm / min
  • the fluorescence enhancement effect is verified. That is, the dye molecule is coated on the surface of the protective layer 11 by spin-coating a diluted ethanol solution of rhodamine 6G dye (Rh6G: emission quantum yield of about 1) at 3000 revolutions on the surface of the protective layer 11 on the sensor 1. It was made to carry on.
  • the relationship between the density of the dye molecules carried on the surface of the sensor 1 and the dye concentration of the solution used for spin coating is that the amount of dye molecules carried is 3 ⁇ 10 11 when the concentration of rhodamine 6G dye is 1 ⁇ M. / Cm 2 .
  • the emission quantum yield ⁇ is defined by the ratio between the number of photons absorbed by the molecule and the number of photons emitted by fluorescence (see Equation 1).
  • k f is a fluorescence transition rate constant of a molecule in an electronically excited state
  • knr is a non-radiative transition rate constant (speed at which quenching occurs per unit time).
  • the non-radiative transition is a transition that returns to the ground state without emitting fluorescence.
  • a dye having a low emission quantum yield is a dye having k f ⁇ kn nr . Note that a dye that hardly emits light under the condition of k f ⁇ k nr is called a non-light emitting dye.
  • FIG. 3 is a conceptual diagram of a measuring device for verifying the performance of the sensor 1.
  • a light source unit 41 is configured by the diode laser as the excitation light source 50 and the filter 51, light is incident on the sensor 1 from the light source unit 41, and light from the dye molecules carried on the surface of the protective layer 11 is received by the light receiving unit. 43 receives light.
  • the light receiving unit 43 is composed of a condenser lens 52, a filter 53, a light receiving head 54, and a photodetector 55 (electronically cooled diode array detector).
  • a green diode laser (wavelength of 532 nm) having an output of less than 1 mW is used as the excitation light source 50, and light emitted from the excitation light source 50 is not condensed through the filter 51 (energy density is about 30 mW / cm). 2 ) or anti-condensation (energy density of about 10 mW / cm 2 or less) is made incident on the sensor 1 at an angle of about 45 ° as excitation light. Then, the light scattered in the 90 ° angle direction by the dye molecules carried on the sensor 1 was condensed by the condenser lens 52 onto the light receiving head 54 of the photodetector 55 through the filter 53.
  • FIG. 4 shows the measurement results of the measurement apparatus shown in FIG.
  • the vertical axis represents the increase in luminescence intensity (unit: times), corresponding to the relative ratio to the luminescence intensity measured by the same method for the same amount of dye supported on the glass substrate without the enhancement effect. To do.
  • a non-luminescent fuchsine dye (luminescence quantum yield ⁇ 0.01) is used instead of rhodamine 6G dye as a sample, and the sample is supported on the surface of the protective layer 11 at a density of 3 ⁇ 10 12 particles / cm 2.
  • the emission intensity was measured by the same method as described above. The measurement results are shown in FIG.
  • the radiation transition speed k f of the dye is increased as a result.
  • k f >> kn nr the above-mentioned light emission quantum yield becomes large, and originally, it is a non-light emitting substance (k f ⁇ k nr ) whose light emission quantum yield is 0.01 or less. It can be seen that even pigments emit light strongly.
  • the Raman scattering intensity of rhodamine 6G dye with the same arrangement as in FIG. 3 except that a He—Ne laser (wavelength 632.8 nm) with an output of less than 1 mW was used as the excitation light source 50 instead of the diode laser.
  • a He—Ne laser wavelength 632.8 nm
  • the excitation light source 50 instead of the diode laser.
  • the film thickness of the protective layer 11 exceeds 200 nm, an enhanced Raman signal (intensity is about 10) which is not different from the signal obtained when the dye molecules are directly adsorbed on the surface of the metal fine particles 10. 5 times) was obtained.
  • the enhancement effect propagates about the thickness of the protective layer 11 as described above, the following points can be considered.
  • the plasmon electric field is not disturbed and reaches the surface of the protective layer 11 without loss. Therefore, even when the thickness of the protective layer 11 is increased to some extent, the electromagnetic field (localized surface plasmon) generated in the metal fine particles 10 is transmitted to the surface of the protective layer 11.
  • the test piece 5 made of a biological material on the surface of the protective layer 11 and irradiating the excitation light, the influence of the enhanced electromagnetic field is exerted on the surface layer portion of the test piece 5.
  • a substance that constitutes the surface layer portion of the test piece 5, that is, light that strongly contains a spectrum derived from the cell membrane is emitted.
  • the cell membrane can be analyzed by receiving the emitted light at the light receiving unit 43 and obtaining a spectral distribution.
  • Example 2 An aqueous solution of antibody IgG labeled with a fuchsin dye was added dropwise to the sensor 1 produced by the same method as in Example 1. More specifically, an aqueous solution of antibody IgG labeled with a fuchsin dye was dropped onto the upper surface of the protective layer 11.
  • FIG. 6 shows the result of examining the spectral distribution of the light obtained by the light receiving unit 43 by causing excitation light to enter the respective elements of Example 2 and Comparative Example 1 using the measuring device shown in FIG. .
  • the horizontal axis represents the wavelength of light
  • the vertical axis represents the emission intensity.
  • the fuchsin dye which is a non-luminescent labeling substance, emits luminescence quantum by the interaction through the protective layer 11 with the localized plasmon generated by the enhanced electromagnetic field forming layer 9. It can be seen that the yield is improved and the amount of light emitted by the fuchsin dye is significantly increased.
  • Comparative Example 1 there is no light emission enhancement effect. This shows that the sensor 1 of the present invention has a very high light emission enhancement effect.
  • the protective layer 11 of the sensor 1 may contain a halogen element in advance.
  • a method of containing the halogen element in the protective layer 11 a method of immersing the sensor 1 in which the protective layer 11 is formed in an aqueous solution of a halide salt can be used.
  • concentration of the halide salt aqueous solution is 0.1 to 0.3 mol / L
  • the maximum effect can be obtained by room temperature immersion for about 5 to 30 minutes, but the concentration of the aqueous solution is higher than that.
  • the halogen element content in the protective layer 11 is preferably 0.002% by mass to 0.05% by mass.
  • halide salt examples include alkali metal salts such as sodium chloride (NaCl), potassium chloride (KCl), sodium bromide (NaBr), and potassium iodide (KI), and calcium chloride (CaCl 2 ). And alkaline earth metal salts.
  • Example 3 Using the same method as in Example 1, the processing time by the RF sputtering apparatus was adjusted, and the sensor 1 having the protective layer 11 having a thickness of 100 nm was produced. Thereafter, the substrate 7 on which the enhanced electromagnetic field forming layer 9 and the protective layer 11 are formed is immersed in a sodium chloride aqueous solution having a chloride ion concentration of 0.2 to 0.3 mol / L for about 30 minutes. By washing with water and drying, halide ions were contained in the protective layer 11 to obtain the sensor 1 of this example. Although it is difficult to accurately determine the content ratio of the halogen element contained in the protective layer in the light enhancement element obtained by this method, it is estimated to be about 0.01% by mass.
  • a thin ethanol solution of rhodamine 6G dye is spin-coated at 3000 revolutions on the upper surface of the protective layer 11 of the sensor 1, so that the dye molecules have a density of 3 ⁇ 10 11 particles / cm 2 on the surface of the protective layer 11. It was made to carry by.
  • the senor 1 was also produced in the same manner except that it was not immersed in an aqueous sodium chloride solution.
  • the sensor 1 corresponds to the element of the first embodiment.
  • the intensity of Raman scattered light emitted from the sample (dye molecule) by irradiating excitation light to the sensor 1 of Example 3 and Example 1 is changed to a He—Ne laser whose output is less than 1 mW instead of the diode laser 50.
  • the measurement was performed with the same measuring apparatus as in FIG. 3 except that (wavelength 632.8 nm) was used as the excitation light source. The result is shown in FIG. In the graph of FIG. 7, the vertical axis indicates the Raman scattering intensity (cps), and the horizontal axis indicates the Raman shift (cm ⁇ 1 ).
  • Example 7 the intensity of Raman scattered light was compared for each sensor 1 of Example 3 and Example 1. This is because the intensity of Raman scattered light itself is smaller than the intensity of fluorescence, so that it is easy to compare in comparing the light enhancement effects of both.
  • Example 3 in which halide ions were immersed, a remarkable Raman signal was observed compared to Example 1 in which halide ions were not immersed, suggesting that the light enhancement effect was even higher.
  • Example 3 in which halide ions are immersed has a higher light emission enhancement effect than Example 1.
  • Example 3 a sodium chloride aqueous solution having a chloride ion concentration of 0.2 to 0.3 mol / L was immersed, but instead, the chloride ion concentration was 0.2 mol / L.
  • An element formed by immersing a certain potassium chloride aqueous solution an element formed by immersing a sodium bromide aqueous solution having a bromide ion concentration of 0.2 mol / L, an iodine having a iodide ion concentration of 0.2 mol / L
  • the same measurement was performed on the element formed by immersing the potassium chloride aqueous solution and the element formed by immersing the calcium chloride aqueous solution having a chloride ion concentration of 0.2 mol / L.
  • Example 4 Using the sensor 1 of the present invention, the fatty tissue of a Wistar rat (8 weeks old, female) as the test piece 5 is placed on the upper surface of the protective layer 11 and excited by the light source unit 41 in the same manner as in FIG. The Raman spectrum from the test piece 5 was measured by irradiation with light.
  • Example 2 A fatty tissue of a Wistar rat (8 weeks old, female) as the test piece 5 was placed on the upper surface of the substrate 7, and the excitation light was irradiated from the light source unit 41 in the same manner as in Example 4 to find the Raman from the test piece 5. The spectrum was measured.
  • Example 4 and Comparative Example 2 The Raman spectrum measurement results in Example 4 and Comparative Example 2 are shown in FIG. In the graph of FIG. 8, the vertical axis indicates the Raman scattering intensity (cps), and the horizontal axis indicates the Raman shift (cm ⁇ 1 ). In addition, the spectrum measured by the micro Raman spectroscope for the section sample of the adipose tissue is also listed as “document value”. The measurement conditions and the like are described, for example, in T. Minamikawa et al., Histochem Cell Biol. 139 (1), 181-93 (2013).
  • FIG. 9 is a schematic view when a cell sample such as adipose tissue as the test piece 5 is placed on the light enhancement element (on the sensor 1).
  • the adipocyte 71 constituting the adipose tissue has a cell membrane 73 of about 10 nm.
  • the fat cells 71 have a cytoplasm 74 containing fat droplets inside the cell membrane 73.
  • the inside of the cell membrane 73 includes a cell nucleus and the like in addition to the cytoplasm 74.
  • the occupied area is smaller than the cytoplasm 74, only the cytoplasm 74 will be described here for convenience.
  • the cytoplasm 74 has a diameter of about ⁇ 100 ⁇ m, and the cell membrane 73 covering the cytoplasm 74 has a thickness of about 10 nm.
  • the light emission enhancement effect by the enhanced electromagnetic field forming layer 9 is propagated to the region near the surface of the protective layer 11 through the protective layer 11, but does not propagate to a location far away from the surface of the protective layer 11.
  • the fat cell 71 has a cell membrane 73 having a thickness of about 10 nm in the vicinity of the surface of the protective layer 11.
  • the Raman scattered light derived from the cell membrane 73 was remarkably enhanced as compared with the Raman scattered light derived from the cytoplasm 74 inside thereof, and as a result, almost the same peak position was shown. It is thought that.
  • the Raman scattered light intensity of the cell membrane 73 is about 1/10000 with respect to the Raman scattered light intensity of the cytoplasm 74.
  • the Raman scattered light obtained in Comparative Example 2 is considered to be mainly composed of the Raman scattered light of the cytoplasm 74. This is consistent with the fact that the peak value of Comparative Example 2 is different in FIG. 8 and that the peak value and the document value are substantially equal.
  • the light emission enhancing effect due to the enhanced electromagnetic field forming layer 9 propagates at a position of about 10 nm from the surface of the protective layer 11. This is also understood from the fact that in Example 4, the Raman spectrum derived from the cell membrane 73 is strongly confirmed in FIG. In this case, the enhancement of Raman scattered light is about 10 5 to 10 6 times.
  • excitation light (wavelength: 632.8 nm) is irradiated from the back side of the substrate 7 from the light source unit 41.
  • the sensor 1 of this invention has the augmented electromagnetic field formation layer 9 and the protective layer 11 on the board
  • FIG. The transmittance of light at a wavelength of 600 to 800 nm of the sensor 1 of the present invention is about 10% of the transmittance of the substrate 7.
  • the upper surface of the sensor 1 and the test piece 5 are not completely adhered to each other, and the distance between the upper surface of the protective layer 11 and the cell membrane 73 is about several nanometers away. The value is smaller than “double”.
  • the intensity of the Raman spectrum of the test piece 5 placed on the upper surface of the sensor 1 is approximately the same as the intensity of the Raman spectrum of the test piece 5 placed on the upper surface of the substrate 7.
  • the sensor 1 of the present invention including the enhanced electromagnetic field forming layer 9 does not have a light emission enhancing effect as compared with the case where the test piece 5 is directly placed on the substrate 7.
  • the sensor 1 of the present invention has an effect of enhancing the Raman scattered light in the vicinity of the surface of the protective layer 11 extremely high, whereby the surface layer of the test piece 5 is obtained by performing spectral analysis of the Raman scattered light. It can be used for part inspection.
  • Example 5 Using the sensor 1 of the present invention, the MCF-7 cell line (derived from human breast cancer) as the test piece 5 was placed on the upper surface of the protective layer 11, and DiI (Molecular probes, Cell Tracker (registered trademark) CM-DiI) Labeled with dye.
  • DiI Molecular probes, Cell Tracker (registered trademark) CM-DiI Labeled with dye.
  • FIG. 3 an erecting confocal laser microscope (FV1000, Olympus) is used as the photodetector 56, and the light source unit 41 is passed through a water immersion objective lens (Olympus, LUMFL N, 60 times, NA 1.10).
  • the test piece 5 was irradiated with He—Ne laser light (543 nm) to receive light emitted from the dye labeled on the test piece 5.
  • MCF-7 cells were cultured on a culture dish using DME medium (Dulbecco's modified Eagle's medium) until they became subconfluent. Thereafter, 2 ⁇ 10 5 cells in total were passaged to sensor 1 placed on a plastic culture dish (BD Falcon, 353001, diameter 35 nm).
  • DME medium Dulbecco's modified Eagle's medium
  • the culture solution was washed with PBS (phosphate buffered saline), and then the DiI dye was added dropwise to a culture dish filled with 2 mL of PBS to a concentration of 1 ⁇ mol and incubated for 15 minutes (37 °, 5% CO 2 ).
  • PBS phosphate buffered saline
  • the excitation light was irradiated by the said method and the light emission from the labeled pigment
  • an upright confocal laser microscope was used, irradiated with excitation light through a water immersion objective lens, and scanned in the height direction. Of the generated fluorescence, it was transmitted through a confocal pinhole (aperture diameter: 110 ⁇ m), and a wavelength range of 560 nm to 660 nm was detected by the filter 53.
  • FIG. 10 shows the results of Example 5 and Comparative Example 3.
  • the horizontal axis represents the scanning displacement ( ⁇ m) and indicates how far away from the surface of the protective layer 11 (Example 5) or the surface of the substrate 7 (Comparative Example 3).
  • the vertical axis represents the emission (fluorescence) intensity. According to FIG. 10, the fluorescence intensity of Example 5 is about twice that of Comparative Example 3, which suggests that the fluorescence spectrum can be easily measured.
  • FIG. 11 is a plan view schematically showing the structure of the sensor 1a according to the second embodiment of the present invention.
  • the protective layer 11 is not shown for convenience of explanation.
  • the sensor 1a includes a substrate 7, an enhanced electromagnetic field forming layer 9, and a protective layer 11.
  • the difference is that a region (first region 20) where the enhanced electromagnetic field forming layer 9 is formed and a region (second region 21) where the enhanced electromagnetic field forming layer 9 is not formed exist on the substrate 7. That is, on the first region 20, as in the sensor 1 described in the first embodiment, an enhanced electromagnetic field forming layer 9 composed of a large number of metal fine particles 10 is formed on the substrate 7, and the protective layer 11 is formed thereon. Is formed.
  • the second region 21 the enhanced electromagnetic field forming layer 9 does not exist on the substrate 7, and only the protective layer 11 is formed.
  • test piece 5 is placed on the surface of the sensor 1a as in FIG.
  • the Raman scattered light or fluorescence from 5 is received and analyzed.
  • the test piece 5 is placed on the surface of the protective layer 11 so as to straddle the first region 20 and the second region 21 of the sensor 1a.
  • the emission intensity in the vicinity of the surface of the protective layer 11 is enhanced on the first region 20, and as a result, mainly derived from the surface layer portion of the test piece 5.
  • Light emission is received by the light receiving unit 43.
  • the second region 21 since there is no effect of increasing the light emission intensity, light emitted mainly from the internal tissue of the test piece 5 is received by the light receiving unit 43. Therefore, according to such a sensor 1a, it is possible to inspect both the surface layer portion of the test piece 5 and the internal tissue from one test piece 5. Specifically, as shown in FIG.
  • the emission spectrum mainly derived from the cell membrane 73 is received from the portion placed on the first region 20.
  • the emission spectrum derived mainly from the cytoplasm 74 is received from the portion placed on the second region 21.
  • the labeling dye is used to receive light emitted from the dye.
  • the dye labeling as described above may not be performed.
  • Example 6 An aqueous solution of a self-luminous biopolymer collagen having a low luminescence quantum yield was spin-coated on the upper surface of the protective layer 11 of the sensor 1 produced by the same method as in Example 1.
  • Example 4 As in Example 6, the substrate 7 was spin-coated with an aqueous solution of self-luminous biopolymer collagen having a low luminescence quantum yield.
  • Example 7 An aqueous solution of self-luminous riboflavin having a low emission quantum yield was spin-coated on the upper surface of the protective layer 11 of the sensor 1 produced by the same method as in Example 1.
  • Example 5 (Comparative Example 5) Similarly to Example 7, the substrate 7 was spin-coated with an aqueous solution of self-luminous riboflavin having a low emission quantum yield.
  • FIG. 12 shows the results of examining the spectral distribution of the luminescence obtained by the light receiving unit 43 by causing excitation light to enter the elements of Example 6 and Comparative Example 4 using the measurement apparatus shown in FIG.
  • FIG. 13 shows the results of examining the spectral distribution of the light emission obtained by the light receiving unit 43 when the excitation light is incident on the respective elements of Example 7 and Comparative Example 5 using the measuring apparatus shown in FIG. Show. 12 and 13, the horizontal axis represents the wavelength of light, and the vertical axis represents the emission intensity.
  • the self-luminous biopolymer collagen having a low luminescence quantum yield passes through the protective layer 11 with the localized plasmon generated by the enhanced electromagnetic field forming layer 9. It can be seen that the quantum yield of light emission is improved by the interaction, and the amount of light emitted from the biopolymer collagen is significantly increased.
  • Comparative Example 4 there is no luminescence enhancement effect, and it is suggested that analysis by receiving light emitted from the self-luminous biopolymer collagen is difficult.
  • the self-luminous riboflavin having a low emission quantum yield passes through the protective layer 11 with the localized plasmon generated by the enhanced electromagnetic field forming layer 9. It can be seen that the quantum yield of light emission is improved by the interaction, and the amount of light emitted by riboflavin is significantly increased.
  • Comparative Example 5 there is no effect of enhancing luminescence, and it is suggested that analysis by receiving light emitted from self-luminous riboflavin is difficult.
  • the sensor in this embodiment is different only in that the protective layer 11 provided in the sensor 1 of each embodiment described above is composed of an organic polymer having crystallinity (orientation), and the others are common.
  • the organic polymer an acrylic polymer such as polymethyl methacrylate, polyvinyl alcohol, or the like can be used.
  • the protective layer 11 is formed by dropping or applying the protective layer forming liquid onto the substrate 7 using a spin coat method, a dip coat method, a spray coat method, a slit coat method, a bar coat method, or the like.
  • the spin coating method can be suitably used as a method for forming the protective layer 11 having the most uniform thickness.
  • the protective layer forming liquid may be prepared by dissolving a predetermined polymer and a metal salt of a halogen in a solvent, or dissolving a predetermined polymer in the solvent.
  • the solvent for preparing the protective layer forming liquid is appropriately selected according to the polymer and metal salt used. Specifically, any polymer that can dissolve the polymer and metal salt used may be used. For example, when a water-soluble polymer such as polyvinyl alcohol is used as the polymer, water can be used as the solvent. When a polymer insoluble in water such as polymethyl methacrylate is used as the polymer, for example, cyclohexanone is used as a solvent for preparing the polymer solution, and water and acetone are used as the solvent for preparing the metal salt solution.
  • a protective layer forming solution can be prepared by mixing a polymer solution and a metal salt solution using a mixed solvent.
  • the content ratio of the polymer in the protective layer forming liquid is determined by the combination of the above coating method and the target protective film thickness. For example, when a polyvinyl alcohol film is formed from the aqueous solution by using a spin coating method (3000 rpm), the content of the polymer necessary for adjusting the film thickness to 100 nm is about 4.5% by mass.
  • the ratio of the metal salt in the protective layer forming liquid is set according to the content ratio of the halogen element in the target protective layer 11 and the content ratio of the polymer in the protective layer forming liquid.
  • Example 8 In the same manner as in Example 1, an Ag fine particle monolayer film composed of a large number of metal (Ag) fine particles 10 as the enhanced electromagnetic field forming layer 9 was formed on the substrate 7.
  • a protective layer forming solution was prepared by dissolving 5% by mass of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization of about 500) and 0.2 mmol / L of sodium chloride in pure water. . Thereafter, the prepared protective layer forming solution is applied to the surface of the substrate 7 by spin coating, and dried at about 60 ° C., and crystallization is promoted, thereby enhancing the electromagnetic field forming layer 9 including the surface portion of the substrate 7.
  • the sensor 1 was produced by forming the protective layer 11 on the surface.
  • the protective layer 11 had a crystallinity of 50% or more and a thickness of 110 nm.
  • the upper surface of the protective layer 11 is spin-coated with a diluted ethanol solution of rhodamine 6G dye at 3000 revolutions so that the dye molecules are supported on the surface of the protective layer 11 at a density of 3 ⁇ 10 11 particles / cm 2. It was.
  • Example 9 A light enhancement element was produced in the same manner as in Example 6 except that the protective layer forming solution was changed to one prepared as follows. That is, a polymer solution in which 3% by mass of polymethyl methacrylate (Wako Pure Chemical Industries, Ltd.) was dissolved in cyclohexanone (Wako Pure Chemical Industries, Ltd.) was prepared. On the other hand, a metal salt solution in which 20 mmol / L of sodium chloride was dissolved in a mixed solvent in which pure water and acetone were mixed at a mass ratio of 1: 1 was prepared. Then, a protective layer forming solution was prepared by mixing the polymer solution and the metal salt solution at a volume ratio of 9: 1.
  • the intensity of Raman scattered light emitted from the sample (dye molecule) was measured by irradiating the sensor 1 of Example 8 and Example 9 with excitation light by the same method as in FIG. The result is shown in FIG. Similarly to FIG. 7, in the graph of FIG. 14, the vertical axis indicates the Raman scattering intensity (cps), and the horizontal axis indicates the Raman shift (cm ⁇ 1 ). From the graph of FIG. 14, even when the protective layer 11 is composed of an organic polymer, a strong Raman scattering signal can be confirmed, and it can be seen that the light enhancement effect can be propagated to the upper surface of the protective layer 11. .
  • the senor 1 includes a protective layer 11 made of an organic polymer, and a biological material having a cell membrane as a test piece 5 is placed on the upper surface of the protective layer 11 to provide a light source.
  • a protective layer 11 made of an organic polymer
  • a biological material having a cell membrane as a test piece 5 is placed on the upper surface of the protective layer 11 to provide a light source.
  • the protective layer 11 contains a halogen element.
  • the protective layer 11 may be made of an organic polymer without containing a halogen element. .
  • the senor 1 may be configured to have a multilayer structure further including a highly reflective layer and a dielectric layer.
  • the highly reflective layer and the dielectric layer are formed in this order on the surface of the substrate 7, and the enhanced electromagnetic field forming layer 9 is formed on the surface of the dielectric layer.

Abstract

This invention provides an examination method whereby cell membranes in a biological material can be examined using optics that do not require rigorously precise design. Said examination method, which is used to examine specimens containing cell membranes, has the following steps: a step (a) in which a light-intensifying element that has a substrate, an intensifying-electromagnetic-field formation layer in which a large number of separate metal microparticles are dispersed across the surface of the substrate, and a protective layer formed on top of the substrate and the intensifying-electromagnetic-field formation layer is prepared; a step (b) in which a specimen to be examined is placed on the top surface of the protective layer; a step (c) in which the light-intensifying element is exposed to excitation light; and a step (d) in which light emitted from the specimen is received and the emission spectrum thereof is measured.

Description

検査方法、センサInspection method, sensor
 本発明は検査方法に関し、より詳細には、細胞膜を含む試験片の検査方法であって、細胞膜表面のスペクトルを高感度で分析できる検査方法に関する。また、本発明は、このような検査方法に利用されるセンサに関する。 The present invention relates to an inspection method, and more particularly to an inspection method for a test piece including a cell membrane, which can analyze the spectrum of the cell membrane surface with high sensitivity. The present invention also relates to a sensor used for such an inspection method.
 細胞膜は様々なリン脂質、タンパク質、又は糖鎖などから構成されており、単なる細胞内部と外部の隔壁としての機能のみならず、受容体を介した細胞内外とのシグナリング、チャネルによる特定分子の選択的透過、細胞外部のセンシングやエンドサイトーシスによる外部物質の取り込みなど、細胞にとって重要な機能を担っている。そのため、細胞膜に存在するリン脂質、タンパク質、又は糖鎖などの分子局在や機能などを可視化することができれば、これら細胞にとって重要な機能の解明につながる可能性が広がる(非特許文献1参照)。 Cell membranes are composed of various phospholipids, proteins, or sugar chains. Not only functions as a partition between cells inside and outside, but also signaling between cells inside and outside through receptors, selection of specific molecules by channels It plays important functions for cells, such as general permeation, sensing outside the cell, and uptake of external substances by endocytosis. Therefore, if it is possible to visualize the molecular localization and functions of phospholipids, proteins, sugar chains, etc. present in the cell membrane, the possibility of leading to the elucidation of functions important for these cells widens (see Non-Patent Document 1). .
 従来の細胞膜を観察する方法としては、蛍光色素を標識として利用する方法、電子顕微鏡による観察方法、TIRF(Total Internal Reflection Fluorescence)法、構造化照明顕微鏡、光活性化局在顕微鏡、又は誘導放出蛍光顕微鏡などの超解像顕微鏡による観察方法などが挙げられる。 As a conventional method for observing cell membranes, a method using a fluorescent dye as a label, an observation method using an electron microscope, a TIRF (Total Internal Reflection Fluorescence) method, a structured illumination microscope, a photoactivated localization microscope, or stimulated emission fluorescence Examples thereof include an observation method using a super-resolution microscope such as a microscope.
 電子顕微鏡は、高い空間分解能(nmオーダー)を有するため、細胞膜(厚み10nm程度)のような微細構造の観察が可能である。 Since the electron microscope has high spatial resolution (on the order of nm), it is possible to observe a fine structure such as a cell membrane (thickness of about 10 nm).
 TIRF法は、分析深さが100nm程度と浅いため、表面とその近傍の状態を観察することが可能であり、細胞膜のみを観察することが可能である(特許文献1参照)。 Since the analysis depth of the TIRF method is as shallow as about 100 nm, the surface and the vicinity thereof can be observed, and only the cell membrane can be observed (see Patent Document 1).
 超解像顕微鏡は、光の干渉、単分子励起・計測と高精度位置計測、誘導放出などの光に特異的な現象などを利用することで、従来の回折限界を超える分解能を実現しており、細胞膜のような微細な構造の観察が可能である。 The super-resolution microscope uses light-specific phenomena such as light interference, single-molecule excitation / measurement and high-accuracy position measurement, and stimulated emission to achieve resolution that exceeds the conventional diffraction limit. A fine structure such as a cell membrane can be observed.
特表2010-525313号公報Special table 2010-525313 gazette
 蛍光色素を標識として用いる方法は、観察するタンパク質や糖鎖の成分に合わせて外因的に蛍光色素を導入し、抗体を準備し、又は蛍光性タンパク質を発現させるように細胞へ遺伝子を導入する必要があった。従来、このような用途に利用できる蛍光色素は、発光量子収率が非常に高い色素のみであるため、利用可能な色素の種類に制約があった。 The method using a fluorescent dye as a label requires introducing a fluorescent dye exogenously according to the protein or sugar chain component to be observed, preparing an antibody, or introducing a gene into a cell to express the fluorescent protein. was there. Conventionally, the only fluorescent dyes that can be used for such applications are dyes that have a very high emission quantum yield, and thus there are restrictions on the types of dyes that can be used.
 また、蛍光色素の導入、抗体の結合、又は蛍光タンパク質の発現などの過程で細胞の状態が変化する場合があり、観測される情報が必ずしも正常な状態ではない可能性があった。更に、上記過程を行う必要があることから、臨床目的では使用することができなかった。 In addition, the state of cells may change during the process of introducing a fluorescent dye, binding of an antibody, or expression of a fluorescent protein, and the observed information may not be in a normal state. Furthermore, since it was necessary to carry out the above process, it could not be used for clinical purposes.
 TIRF法は、蛍光の検出効率が非常に低いため,この手法は極めて高い発光量子収率を示す蛍光色素を用いた観察の用途に限定されてしまう。 Since the TIRF method has a very low fluorescence detection efficiency, this method is limited to observation using a fluorescent dye exhibiting a very high emission quantum yield.
 超解像顕微鏡を用いる観察方法では、構造化照明を実現するための煩雑な干渉光学系や、光活性化し且つ単分子計測が可能なほどの高輝度で発光する蛍光色素や、誘導放出を行う際に強いレーザ光強度下においても退色しない蛍光色素などが必要となる。このため、上記2つの方法と同様に色素の選択性が極めて狭い上、検査用装置として複雑な光学系を必要とする。 Observation methods using a super-resolution microscope perform complicated interference optical systems for realizing structured illumination, fluorescent dyes that emit light with high brightness that enables photoactivation and single-molecule measurement, and stimulated emission. In particular, a fluorescent dye that does not fade even under strong laser light intensity is required. For this reason, as in the above two methods, the selectivity of the dye is extremely narrow and a complicated optical system is required as an inspection apparatus.
 また、上記の方法とは別に、従来、局在表面プラズモン効果を用いて最表面のラマンスペクトルや蛍光スペクトルを測定する方法が存在する。この方法は、局在表面プラズモン効果を実現させるための素子を準備し、この素子上に検査対象となる試験片を載置した状態で光を照射し、試験片からの発光をスペクトル分析する方法である。局在表面プラズモン効果による光増強作用により、試験片からの発光が増強される。 In addition to the above method, there is a conventional method for measuring the Raman spectrum and fluorescence spectrum of the outermost surface using the localized surface plasmon effect. In this method, a device for realizing a localized surface plasmon effect is prepared, light is irradiated in a state where a test piece to be inspected is placed on the device, and light emission from the test piece is spectrally analyzed. It is. The light enhancement effect by the localized surface plasmon effect enhances light emission from the test piece.
 しかし、この方法によれば、局在表面プラズモン効果を実現させるための素子は、表面に銀微粒子などが塗布されている。従って、生体物質を検査対象とする場合、この生体物質を素子上に載置すると、生体物質に含まれるハロゲン化物イオンと銀微粒子などが化学反応して変質し、銀微粒子の脱離や溶解などが生じて、光増強効果が得られなくなるという問題がある。つまり、従来は局在表面プラズモン効果を利用して、生体物質の検査は行えないと考えられていた。 However, according to this method, silver fine particles or the like are coated on the surface of the element for realizing the localized surface plasmon effect. Therefore, when a biological material is to be inspected, if this biological material is placed on the device, halide ions contained in the biological material and silver fine particles etc. are chemically reacted and altered, and the silver fine particles are detached and dissolved. Occurs, and the light enhancement effect cannot be obtained. In other words, conventionally, it has been thought that a biological material cannot be inspected using the localized surface plasmon effect.
 本発明は、上記の課題に鑑み、厳密な精度設計の不要な光学系の下で、生体物質の細胞膜の検査が可能な検査方法を提供することを目的とする。また、本発明は、このような検査方法に利用されるセンサを提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an inspection method capable of inspecting a cell membrane of a biological material under an optical system that does not require strict accuracy design. Moreover, an object of this invention is to provide the sensor utilized for such an inspection method.
 本発明の検査方法は、細胞膜を含む試験片の検査方法であって、
 基板と、前記基板の表面上に互いに独立して多数の金属微粒子が分散配置された増強電磁場形成層と、前記基板及び前記増強電磁場形成層の上層に形成された保護層とを有する光増強素子を準備する工程(a)、
 前記保護層の上面に検査対象となる前記試験片を載置する工程(b)、
 前記光増強素子に励起光を照射する工程(c)、
 及び、前記試験片からの発光を受光して発光スペクトルを測定する工程(d)を有することを特徴とする。
The inspection method of the present invention is an inspection method for a test piece including a cell membrane,
An optical enhancement element comprising: a substrate; an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate; and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer Preparing step (a),
Placing the test piece to be inspected on the upper surface of the protective layer (b),
Irradiating the light enhancement element with excitation light (c),
And (d) measuring light emission spectrum by receiving light emitted from the test piece.
 本発明の方法では、基板の表面上に互いに独立して多数の金属微粒子が分散配置された増強電磁場形成層を備える構成であるため、局在表面プラズモン効果を利用することができる。このため、エバネッセント波を利用した表面プラズモン効果とは異なり、基板に対する光の入射角度に関する厳しい制限がなく、自由度が担保される。 In the method of the present invention, the localized surface plasmon effect can be used because the structure includes an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently from each other on the surface of the substrate. For this reason, unlike the surface plasmon effect using evanescent waves, there is no strict restriction on the incident angle of light with respect to the substrate, and the degree of freedom is ensured.
 また、本発明の方法では、増強電磁場形成層の上層に形成された保護層の上面に検査対象となる試験片が載置される。このため、試験片として生体物質を含む場合においても、この試験片は保護層に直接接触するのみであり、金属微粒子が直接試験片と長時間接触し続けるということがない。このため、金属微粒子がハロゲン化物イオンに直接長時間晒され続けることにより、ハロゲン化物イオンと金属微粒子などが化学反応して変質するということがない。この結果、金属微粒子として光の増強効果の高いAgを用いることが可能となる。なお、本発明の構成においては、金属微粒子としてAgを用いるのが好適であるが、他の金属材料(例えばAu)を用いても構わない。 Further, in the method of the present invention, a test piece to be inspected is placed on the upper surface of the protective layer formed on the enhanced electromagnetic field forming layer. For this reason, even when a biological material is included as a test piece, the test piece is only in direct contact with the protective layer, and the metal fine particles are not in direct contact with the test piece for a long time. For this reason, when the metal fine particles are continuously exposed to the halide ions for a long time, the halide ions and the metal fine particles do not undergo chemical reaction and change in quality. As a result, Ag having a high light enhancement effect can be used as the metal fine particles. In the configuration of the present invention, Ag is preferably used as the metal fine particles, but other metal materials (for example, Au) may be used.
 本発明のように局在表面プラズモン効果を利用する場合、増強電磁場形成層を構成する多数の金属微粒子の近傍箇所にのみ、その光の増強効果が作用する。試験片は、増強電磁場形成層の上層に形成された保護層の上面に載置されるが、増強電磁場形成層の上層に形成された保護層を介してその表面まで強い増強効果が及ぶため、金属微粒子から遠く離れた保護層の上面に載置された試験片、特に、試験片の表層部分に対して光増強作用を及ぼすことができる。よって、試験片としての生体物質の表層部、すなわち細胞膜由来の強い発光を得ることができる。 When utilizing the localized surface plasmon effect as in the present invention, the light enhancement effect acts only in the vicinity of a large number of metal fine particles constituting the enhanced electromagnetic field forming layer. Although the test piece is placed on the upper surface of the protective layer formed on the upper layer of the enhanced electromagnetic field forming layer, the strong enhancing effect reaches the surface through the protective layer formed on the upper layer of the enhanced electromagnetic field forming layer. The light-enhancing effect can be exerted on the test piece placed on the upper surface of the protective layer far from the metal fine particles, particularly on the surface layer portion of the test piece. Therefore, strong luminescence derived from the surface layer portion of the biological material as the test piece, that is, the cell membrane can be obtained.
 つまり、照射する励起光の出力を低く抑えても、光増強作用によって試験片からの高いラマン散乱光を受光することができ、スペクトル分析に利用できる。そして、検査時に強い励起光を照射する必要がなくなる結果、生体物質の光(熱)分解を防止できる。また、電子回路に時定数をかけずに応答時間を速くできるので、細胞分化、細胞膜の形態的な変化、細胞膜中の生化学的な変化など急激な変化を観測することが可能になる。その具体例として、細胞膜タンパク質のターンオーバーや細胞膜のプリップフロップ、細胞膜中の受容体によるシグナリングなどの現象観測がある。 That is, even if the output of the excitation light to be irradiated is kept low, high Raman scattered light from the test piece can be received by the light enhancement effect, and can be used for spectrum analysis. And as a result of not having to irradiate strong excitation light at the time of inspection, it is possible to prevent light (thermal) decomposition of the biological material. In addition, since the response time can be increased without applying a time constant to the electronic circuit, it is possible to observe rapid changes such as cell differentiation, morphological changes in the cell membrane, and biochemical changes in the cell membrane. Specific examples include observation of phenomena such as cell membrane protein turnover, cell membrane rip-flop, and signaling by receptors in the cell membrane.
 また、ラマン散乱光を利用したスペクトル分析が行えるため、観察するタンパク質や糖鎖の成分に合わせた抗体の準備や、特定の蛍光タンパク質を発現するような遺伝子導入の必要がなくなり、タンパク質や糖鎖のラベル(標識)フリー観察が可能になる。また、従来選択的に検出する色素が存在しなかった脂質についても選択的な観察が可能となる。 In addition, because spectrum analysis can be performed using Raman scattered light, it is not necessary to prepare antibodies that match the components of the protein or sugar chain to be observed or to introduce a gene that expresses a specific fluorescent protein. Label-free observation is possible. Moreover, selective observation is possible even for lipids for which there has conventionally not been a selectively detected dye.
 そして、この場合、標識色素として蛍光物質の導入を行う前処理操作がなくなるので、採取と同時に生きたままの細胞膜、生体組織表面のラマンスペクトルを計測し組成を特定することができる。 In this case, since the pretreatment operation for introducing the fluorescent substance as the labeling dye is eliminated, the composition can be specified by measuring the Raman spectrum of the living cell membrane and the surface of the living tissue simultaneously with the collection.
 また、本発明の手法は、試験片からのラマン散乱光だけでなく、蛍光のスペクトル分析にも利用できる。 The method of the present invention can be used not only for Raman scattered light from a test piece but also for fluorescence spectrum analysis.
 この場合、局在表面プラズモン効果を利用できるため、試験片を標識する色素として、通常状態で光らない非発光性(発光量子収率が0.01程度以下)の色素を利用することが可能となる。つまり、試験片が載置された光増強素子に光を入射すると、保護層を介して増強電磁場形成層による光の増強効果が及ぶため、試験片に標識された非発光性色素が発光する。この発光を受光部で受光し、スペクトル分析をすることで、試験片の検査を行うことができる。そして、この方法によれば、通常状態で光らない非発光性の色素を標識色素として利用することが可能となるため、色素の選択性が極めて広がる。 In this case, since the localized surface plasmon effect can be used, it is possible to use a non-luminous dye (luminescence quantum yield of about 0.01 or less) that does not emit light in a normal state as a dye for labeling the test piece. Become. That is, when light is incident on the light enhancement element on which the test piece is placed, the light enhancement effect by the enhanced electromagnetic field forming layer is exerted through the protective layer, and thus the non-luminescent pigment labeled on the test piece emits light. The test piece can be inspected by receiving the emitted light at the light receiving unit and performing spectrum analysis. And according to this method, it becomes possible to use a non-light-emitting dye that does not shine in a normal state as a labeling dye, so that the selectivity of the dye is extremely widened.
 非発光性の色素で標識する場合には、例えばカロテノイド系、フラボノイド系、又はキノイド系の色素が利用できる。また、自家発光性の物質としては、例えばコラーゲン、リボフラビン、NADH(還元型ニコチンアミドアデニンジヌクレオチド)、FDH(フラビンアデニンジヌクレオチド)、有色タンパク質などが利用できる。また、自家発光性物質(例えば自家発光性タンパク質)で標識するものとしても構わない。 When labeling with a non-luminescent pigment, for example, a carotenoid, flavonoid, or quinoid pigment can be used. Examples of self-luminous substances that can be used include collagen, riboflavin, NADH (reduced nicotinamide adenine dinucleotide), FDH (flavin adenine dinucleotide), and colored proteins. Further, it may be labeled with an autoluminescent substance (for example, autoluminescent protein).
 更に、試験片自体が自家発光性を有する場合には、標識自体が不要になる。本方法によれば、光増強効果が高いため、試験片が有する自家発光性を利用した発光を受光部にて検知することが可能である。 Furthermore, when the test piece itself is self-luminous, the label itself is not necessary. According to this method, since the light enhancement effect is high, it is possible to detect the light emission utilizing the self-luminous property of the test piece by the light receiving unit.
 また、前記工程(c)を、前記試験片が載置された側とは反対側から前記光増強素子に励起光を照射する工程とすることができる。これにより、細胞を培養した状態のままin-situで細胞膜が観察可能である。また、光が透過しない程の厚みをもった生体組織試料についても、細胞膜の観察が可能となる。 The step (c) may be a step of irradiating the light enhancement element with excitation light from the side opposite to the side on which the test piece is placed. Thereby, the cell membrane can be observed in-situ while the cells are cultured. In addition, the cell membrane can be observed even for a biological tissue sample having a thickness that does not transmit light.
 前記保護層は、前記多数の金属微粒子に関連して配向性を有する無機物質、又は配向性を有する有機物の重合体で構成されているものとしても構わない。 The protective layer may be composed of an inorganic substance having an orientation in connection with the large number of metal fine particles or a polymer of an organic substance having an orientation.
 この構成により、増強電磁場形成層における局在表面プラズモン効果に起因した増強電磁場を、高効率で保護層の表面に伝達させることが可能となり、保護層の表面に載置された試験片を高効率で発光させることができる。 With this configuration, it is possible to transmit the enhanced electromagnetic field due to the localized surface plasmon effect in the enhanced electromagnetic field forming layer to the surface of the protective layer with high efficiency, and the test piece placed on the surface of the protective layer can be highly efficient. Can emit light.
 また、前記保護層は、ハロゲン元素を含有するものとしても構わない。 The protective layer may contain a halogen element.
 この構成により、増強電磁場形成層における局在表面プラズモン効果に起因した増強電磁場を、更に高効率で保護層の表面に伝達させることが可能となる。なお、この構成は、保護層を有しない構成において露出した金属微粒子にハロゲン化物イオンを含む生体物質(生体試料)を直接接触させる場合とは異なり、保護層としてハロゲン元素を含有した材料を用いるというものであるので、上記の構成と同様に、ハロゲン化物イオンによる金属微粒子へのダメージを防御する機能は担保される。 With this configuration, it is possible to transmit the enhanced electromagnetic field caused by the localized surface plasmon effect in the enhanced electromagnetic field forming layer to the surface of the protective layer with higher efficiency. Note that this configuration is different from the case where a biological substance (biological sample) containing halide ions is directly brought into contact with exposed metal fine particles in a configuration having no protective layer, and a material containing a halogen element is used as the protective layer. Therefore, the function which protects the damage to the metal fine particle by halide ion is ensured similarly to said structure.
 また、本発明のセンサは、細胞膜を含む試験片の検査に利用されるセンサであって、
 基板と、前記基板の表面上に互いに独立して多数の金属微粒子が分散配置された増強電磁場形成層と、前記基板及び前記増強電磁場形成層の上層に形成された保護層とを有する光増強素子を構成しており、
 前記光増強素子は、前記基板上に前記増強電磁場形成層が形成され、当該増強電磁場形成層の上層に前記保護層が形成されている第1領域と、前記基板上に前記増強電磁場形成層が形成されておらず、前記保護層が形成されている第2領域とを有することを特徴とする。
The sensor of the present invention is a sensor used for inspection of a test piece including a cell membrane,
An optical enhancement element comprising: a substrate; an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate; and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer Comprising
The light enhancement element includes a first region in which the enhanced electromagnetic field forming layer is formed on the substrate, the protective layer is formed on the enhanced electromagnetic field forming layer, and the enhanced electromagnetic field forming layer on the substrate. And a second region where the protective layer is formed.
 この構成によれば、センサ上の第1領域と第2領域にまたがるように試験片を載置して光を照射すると、第1領域上に載置された試験片の箇所には、増強電磁場形成層による光増強作用が及ぶ一方、第2領域上に載置された試験片の箇所には、増強電磁場形成層による光増強作用が及ばない。光の増強効果は、増強電磁場形成層を構成する多数の金属微粒子の近傍箇所、及びその上層の保護層の表面近傍にのみ及ぶため、第1領域上に載置された試験片の表層部分に対して光の増強効果が及ぶことになる。このため、第1領域上に載置された試験片の部分からは、試験片の表層部分の構成物質由来のスペクトルを有した光が得られる。 According to this configuration, when the test piece is placed so as to straddle the first region and the second region on the sensor and irradiated with light, the portion of the test piece placed on the first region has an enhanced electromagnetic field. While the light enhancement effect by the formation layer extends, the light enhancement effect by the enhanced electromagnetic field formation layer does not reach the location of the test piece placed on the second region. Since the light enhancement effect extends only in the vicinity of a large number of metal fine particles constituting the enhanced electromagnetic field forming layer and in the vicinity of the surface of the protective layer on the upper layer, it is applied to the surface layer portion of the test piece placed on the first region. On the other hand, the effect of enhancing light is exerted. For this reason, the light which has the spectrum derived from the constituent material of the surface layer part of a test piece is obtained from the part of the test piece mounted on the 1st field.
 一方、第2領域上には増強電磁場形成層が存在しないため、当該第2領域上に載置された試験片の部分に対しては、増強電磁場形成層の光増強作用が及ばない。このため、第2領域上に載置された試験片の部分からは、試験片の表層のみならず表層の内側を構成する物質由来のスペクトルを有した発光が生じる。試験片を生体物質とした場合、表層を構成する細胞膜と比べて、表層の内側を構成する細胞質の体積が極めて大きいため、細胞質由来のスペクトルを有した発光が得られる。 On the other hand, since the enhanced electromagnetic field forming layer does not exist on the second region, the light enhancing action of the enhanced electromagnetic field forming layer does not reach the part of the test piece placed on the second region. For this reason, the portion of the test piece placed on the second region emits light having a spectrum derived from the substance constituting the inside of the surface layer as well as the surface layer of the test piece. When the test piece is a biological material, the volume of the cytoplasm that forms the inner surface of the surface layer is extremely large compared to the cell membrane that forms the surface layer, and thus light emission having a cytoplasm-derived spectrum is obtained.
 よって、このセンサによれば、光を照射することで、試験片の表層を構成する物質と表層の内側を構成する物質のスペクトルを、一の試験片から得ることが可能となる。例えば、試験片を生体物質由来の脂肪細胞とした場合、表層を構成する細胞膜と、当該細胞膜に覆われた脂肪細胞のスペクトルデータの両者を容易に得ることが可能となる。 Therefore, according to this sensor, by irradiating light, it is possible to obtain the spectrum of the substance constituting the surface layer of the test piece and the substance constituting the inside of the surface layer from one test piece. For example, when the test piece is a biological material-derived adipocyte, it is possible to easily obtain both the cell membrane constituting the surface layer and the spectrum data of the adipocyte covered with the cell membrane.
 本発明によれば、厳密な精度設計の不要な光学系の下で、生体物質の検査も可能な検査方法が実現できる。また、本発明のセンサによれば、上記のような検査方法を用いた検査に適したセンサが実現できる。 According to the present invention, an inspection method capable of inspecting a biological material can be realized under an optical system that does not require strict accuracy design. Further, according to the sensor of the present invention, a sensor suitable for inspection using the above inspection method can be realized.
本発明のセンサの構造を模式的に示す図面である。It is drawing which shows the structure of the sensor of this invention typically. 本発明の検査方法を説明するための概念図である。It is a conceptual diagram for demonstrating the inspection method of this invention. 本発明のセンサの性能を検証するための測定装置の概念図である。It is a conceptual diagram of the measuring apparatus for verifying the performance of the sensor of this invention. センサに対してローダミン6G色素を担持させたときの、保護層の厚みと光増強度の関係をプロットした結果を示すグラフである。It is a graph which shows the result of having plotted the relationship between the thickness of a protective layer, and photointensity | strength when a rhodamine 6G pigment | dye is carry | supported with respect to a sensor. センサに対してフクシン色素を担持させたときの、保護層の厚みと光増強度の関係をプロットした結果を示すグラフである。It is a graph which shows the result of having plotted the relationship between the thickness of a protective layer when a fuchsin pigment | dye is carry | supported with respect to a sensor, and photointensity. 実施例2と比較例1の受光部で受光された光のスペクトル分布を比較したグラフである。6 is a graph comparing spectral distributions of light received by the light receiving units of Example 2 and Comparative Example 1. FIG. 実施例3と実施例1の各センサに励起光を照射した際に受光部で受光されたラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum received by the light-receiving part when each sensor of Example 3 and Example 1 was irradiated with excitation light. 脂肪組織をセンサ上(又は基板上)に載置して光を照射した際に受光部で受光されたラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum light-received by the light-receiving part, when a fat tissue is mounted on a sensor (or board | substrate) and light is irradiated. 試験片としての脂肪組織などの細胞試料を光増強素子上(センサ上)に載置した際の模式図である。It is a schematic diagram at the time of mounting a cell sample such as adipose tissue as a test piece on a light enhancement element (on a sensor). 実施例5及び比較例3において受光された蛍光強度を比較したグラフである。It is the graph which compared the fluorescence intensity received in Example 5 and Comparative Example 3. FIG. 本発明の第2実施形態のセンサの構造を模式的に示す図面である。It is drawing which shows typically the structure of the sensor of 2nd Embodiment of this invention. 実施例6と比較例4の各センサに励起光を照射した際に受光部で受光された光のスペクトル分布を比較したグラフである。It is the graph which compared the spectrum distribution of the light received by the light-receiving part when each sensor of Example 6 and Comparative Example 4 was irradiated with excitation light. 実施例7と比較例5の各センサに励起光を照射した際に受光部で受光された光のスペクトル分布を比較したグラフである。It is the graph which compared the spectral distribution of the light received by the light-receiving part when each sensor of Example 7 and Comparative Example 5 was irradiated with excitation light. 実施例8と実施例9の各センサに励起光を照射した際に受光部で受光されたラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum light-received by the light-receiving part when each sensor of Example 8 and Example 9 was irradiated with excitation light.
 [第1実施形態]
 本発明の第1実施形態につき、図面を参照して説明する。なお、各図において図面の寸法比と実際の寸法比は必ずしも一致しない。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the drawings. In each figure, the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
  〈センサ構造〉
 図1は、本発明の検査方法に利用されるセンサの構造を模式的に示す図面である。センサ1は、基板7、増強電磁場形成層9及び保護層11を備えて光増強素子を構成している。そして、検査対象となる試験片5を保護層11の上面に載置して、検査を行う。
<Sensor structure>
FIG. 1 is a drawing schematically showing the structure of a sensor used in the inspection method of the present invention. The sensor 1 includes a substrate 7, an enhanced electromagnetic field forming layer 9, and a protective layer 11 to constitute a light enhancement element. Then, the test piece 5 to be inspected is placed on the upper surface of the protective layer 11 and inspected.
 基板7の材質は特に限定されるものではなく、例えば、ガラス、セラミックス、樹脂などを用いることができる。なお、後述するように、センサ1の作製工程において加熱処理(例えば100℃以上の加熱)が行われる場合には、例えばガラス、ポリイミド樹脂などの耐熱性を有するものであることが好ましい。 The material of the substrate 7 is not particularly limited, and for example, glass, ceramics, resin, or the like can be used. As will be described later, when heat treatment (for example, heating at 100 ° C. or higher) is performed in the manufacturing process of the sensor 1, it is preferable to have heat resistance such as glass or polyimide resin.
 増強電磁場形成層9は、基板7の表面上に互いに独立して多数の金属微粒子10が分散配置されて構成されている。基板7の表面上における金属微粒子10の配列方法については、二次元的にランダムに配列された構成であっても、規則的に配列された構成であっても構わない。 The enhanced electromagnetic field forming layer 9 is configured by a large number of metal fine particles 10 being dispersed and arranged on the surface of the substrate 7 independently of each other. The arrangement method of the metal fine particles 10 on the surface of the substrate 7 may be a two-dimensional random arrangement or a regular arrangement.
 増強電磁場形成層9を構成する金属微粒子10としては、例えばAgを好適に用いることができるが、励起光の照射により励起されて局在表面プラズモン効果を実現し得るものであれば、Au、Al、Cuなどの他の材料を利用することもできる。また、この金属微粒子10の形状としては、例えば扁平な半球形状、平板状の形状など、形状異方性を有するものを好適に用いることができる。なお、多数の金属微粒子10は、いずれも均一の大きさ及び形状を備えていることが望ましいが、大きさや形状に多少のばらつきがあっても構わない。 As the metal fine particles 10 constituting the enhanced electromagnetic field forming layer 9, for example, Ag can be suitably used, but Au, Al, and the like can be used as long as they can be excited by irradiation with excitation light to realize the localized surface plasmon effect. Other materials such as Cu can also be used. In addition, as the shape of the metal fine particles 10, for example, those having shape anisotropy such as a flat hemispherical shape or a flat plate shape can be suitably used. Note that it is desirable that all the metal fine particles 10 have a uniform size and shape, but there may be some variation in size and shape.
 また、金属微粒子10の粒径としては、励起光の波長以下の大きさであることが好ましい。ここで、本明細書において「粒径」とは、顕微鏡法による投影面積円相当径をいう。具体的には、次のようにして求められる。センサ1の表面における任意に選ばれる領域について、長さ2μmの線分が長さ6cmに拡大(倍率30000倍)されるよう観察される走査型電子顕微鏡の視野領域(例えば1.5μm×2μm)を撮像領域として、センサ1における当該領域の二次電子像を得る。このとき、明るさの指標(256段階)が100程度以上の金属微粒子の各々について、金属微粒子10の面積と同一面積の真円の直径が当該金属微粒子10の粒径として得られる。 Further, the particle diameter of the metal fine particles 10 is preferably smaller than the wavelength of the excitation light. Here, in the present specification, “particle size” refers to a projected area equivalent circle diameter measured by microscopy. Specifically, it is obtained as follows. Field of view of a scanning electron microscope (for example, 1.5 μm × 2 μm) in which a 2 μm-long line segment is observed to be enlarged to a length of 6 cm (magnification: 30000 times) in an arbitrarily selected region on the surface of the sensor 1 As an imaging region, a secondary electron image of the region in the sensor 1 is obtained. At this time, for each of the metal fine particles having a brightness index (256 steps) of about 100 or more, the diameter of a perfect circle having the same area as the metal fine particle 10 is obtained as the particle diameter of the metal fine particle 10.
 なお、金属微粒子10の粒径は、例えば5~300nmの範囲内であり、厚みは例えば5~70nmの範囲内である。また、増強電磁場形成層9を構成する金属微粒子10の密度は、例えば10~1011個/cm程度とすることができる。 The particle size of the metal fine particles 10 is in the range of 5 to 300 nm, for example, and the thickness is in the range of 5 to 70 nm, for example. Further, the density of the metal fine particles 10 constituting the enhanced electromagnetic field forming layer 9 can be, for example, about 10 8 to 10 11 particles / cm 2 .
 このような増強電磁場形成層9の形成方法の一例としては、基板7の表面に金属微粒子10の前駆体が適宜の溶媒に分散された分散液をスピンコート法により塗布して加熱する方法を用いることができる。また、別の方法としては、基板7の表面に金属微粒子10の前駆体をディッピングして加熱する方法、基板7の表面に金属微粒子10を真空蒸着する方法、基板7の表面に金属微粒子10をスパッタ蒸着する方法などを用いることができる。 As an example of a method for forming such an enhanced electromagnetic field forming layer 9, a method in which a dispersion liquid in which a precursor of metal fine particles 10 is dispersed in an appropriate solvent is applied to the surface of the substrate 7 by a spin coating method and heated. be able to. Further, as another method, a method of dipping the precursor of the metal fine particles 10 on the surface of the substrate 7 and heating, a method of vacuum-depositing the metal fine particles 10 on the surface of the substrate 7, and a method of depositing the metal fine particles 10 on the surface of the substrate 7 A sputter deposition method or the like can be used.
 そして、センサ1において、隣接する金属微粒子10間において露出される基板7の表面を含む増強電磁場形成層9の上層には保護層11が形成されている。保護層11を構成する材料としては、例えば酸化ケイ素、酸化チタン、酸化セリウム、酸化ボロン、酸化リン、酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化ガリウム、酸化ゲルマニウム、酸化亜鉛などを用いることができる。 In the sensor 1, a protective layer 11 is formed on the enhanced electromagnetic field forming layer 9 including the surface of the substrate 7 exposed between adjacent metal fine particles 10. Examples of the material constituting the protective layer 11 include silicon oxide, titanium oxide, cerium oxide, boron oxide, phosphorus oxide, magnesium oxide, calcium oxide, aluminum oxide, gallium oxide, germanium oxide, and zinc oxide.
 保護層11の平均厚さは、例えば50~250nmであることが好ましい。特に、保護層11の厚さが85nm以上であることにより、試験片5が生体物質のようなハロゲン化物イオン(例えばCl)を含有する場合であっても、金属微粒子10に対する十分な耐性(保護機能)が得られる。 The average thickness of the protective layer 11 is preferably 50 to 250 nm, for example. In particular, since the thickness of the protective layer 11 is 85 nm or more, even when the test piece 5 contains a halide ion (for example, Cl ) such as a biological material, sufficient resistance to the metal fine particles 10 ( Protection function).
 このようなセンサ1は、例えば以下の方法により作製される。まず、基板7の表面上に金属ナノ粒子膜を形成し、これを加熱処理することにより粒状性を変化させ、これにより、粒径が所定範囲内にある金属微粒子10による増強電磁場形成層9を形成する。このとき、形成すべき金属微粒子10の粒径は、加熱処理条件を適宜変更することにより調整できる。 Such a sensor 1 is manufactured by the following method, for example. First, a metal nanoparticle film is formed on the surface of the substrate 7, and the graininess is changed by heat-treating the film, whereby an enhanced electromagnetic field forming layer 9 made of metal fine particles 10 having a particle diameter within a predetermined range is formed. Form. At this time, the particle diameter of the metal fine particles 10 to be formed can be adjusted by appropriately changing the heat treatment conditions.
 次に、隣接する金属微粒子10間において露出される基板7の表面部分を含む増強電磁場形成層9の表面上に、蒸着法により、金属微粒子10を起点として保護層を厚さ方向に成長させることにより柱状組織構造を有する保護層11を形成する。保護層11の厚さは、成長条件、時間を適宜変更することにより調整できる。また、保護層11の形成方法としては、高周波(RF)スパッタ蒸着法、電子線蒸着法、又は電子サイクロトロン共鳴(ECR)スパッタ蒸着法などの方法を適宜選択して利用できる。 Next, a protective layer is grown in the thickness direction from the metal fine particle 10 as a starting point on the surface of the enhanced electromagnetic field forming layer 9 including the surface portion of the substrate 7 exposed between the adjacent metal fine particles 10 by vapor deposition. Thus, the protective layer 11 having a columnar structure is formed. The thickness of the protective layer 11 can be adjusted by appropriately changing the growth conditions and time. Moreover, as a formation method of the protective layer 11, methods, such as a radio frequency (RF) sputter vapor deposition method, an electron beam vapor deposition method, or an electron cyclotron resonance (ECR) sputter vapor deposition method, can be selected suitably and can be utilized.
  〈センサ1の使用方法〉
 次に、本実施形態のセンサ1を用いて試験片5の検査を行う方法について説明する。図2は、検査方法を説明するための概念図である。なお、ここでは、試験片5が載置されたセンサ1に対して励起光を照射し、試験片5から放射されるラマン散乱光を受光してスペクトル分析を行う方法について説明する。
<How to use sensor 1>
Next, a method for inspecting the test piece 5 using the sensor 1 of the present embodiment will be described. FIG. 2 is a conceptual diagram for explaining the inspection method. Here, a method for performing spectrum analysis by irradiating the sensor 1 on which the test piece 5 is placed with excitation light and receiving Raman scattered light emitted from the test piece 5 will be described.
 本実施形態では、検査に際し、センサ1の基板7の裏側(試験片5が載置された側とは反対側)から励起光を照射するための光源部41及び、試験片5からの発光を受光するための受光部43を利用する。光源部41は、励起光源50、フィルタ51、ミラー61を備える。受光部43は、フィルタ53、分光器55及び光検出器56を備える。また、図2においては、光源部41からの励起光を透過し、試験片5からの発光を反射するハーフミラー62を備える構成としている。また、集光レンズ52は、光源部41からの励起光の集光や試験片5からの発光の集光の目的で設置されている。図2に示す装置構成は、あくまで一例であって、この構成に限定されるものではない。 In the present embodiment, in the inspection, the light source 41 for irradiating excitation light from the back side of the substrate 7 of the sensor 1 (the side opposite to the side on which the test piece 5 is placed) and the light emission from the test piece 5 are emitted. A light receiving unit 43 for receiving light is used. The light source unit 41 includes an excitation light source 50, a filter 51, and a mirror 61. The light receiving unit 43 includes a filter 53, a spectroscope 55, and a photodetector 56. Further, in FIG. 2, a configuration is provided in which a half mirror 62 that transmits excitation light from the light source unit 41 and reflects light emitted from the test piece 5 is provided. Further, the condenser lens 52 is installed for the purpose of condensing excitation light from the light source unit 41 and light emission from the test piece 5. The apparatus configuration shown in FIG. 2 is merely an example, and the present invention is not limited to this configuration.
 試験片5を保護層11上に載置した状態で、光源部41から励起光をセンサ1に向けて入射させる。入射された光により、センサ1の増強電磁場形成層9において生成したプラズモン電場が、保護層11の上面に載置された試験片5に伝搬する。これにより、試験片5に対して強い励起光が及ぼされ、試験片5から高い出力のラマン散乱光が放射される。このラマン散乱光は、ハーフミラー62で反射されて受光部43にて受光される。受光部43の分光器55によって波長分解されて、光検出器56によって受光した光のスペクトル分布が得られる。 In a state where the test piece 5 is placed on the protective layer 11, excitation light is incident from the light source unit 41 toward the sensor 1. Due to the incident light, the plasmon electric field generated in the enhanced electromagnetic field forming layer 9 of the sensor 1 propagates to the test piece 5 placed on the upper surface of the protective layer 11. Thereby, strong excitation light is exerted on the test piece 5, and high-output Raman scattered light is emitted from the test piece 5. The Raman scattered light is reflected by the half mirror 62 and received by the light receiving unit 43. Wavelength decomposition is performed by the spectroscope 55 of the light receiving unit 43, and a spectral distribution of light received by the photodetector 56 is obtained.
 試験片5として細胞膜を含む生体物質を想定する。このとき、多数の金属微粒子10によって形成される増強電磁場形成層9は、試験片5の内部、すなわち細胞膜の内側への励起光の侵入を抑制し、また部分的に細胞内部まで侵入した励起光による非増強ラマン散乱光のフィルタとしても働くため、非増強ラマン信号を二重に防ぐ重要な役割を同時に果たす。 Suppose a biological material including a cell membrane as the test piece 5. At this time, the enhanced electromagnetic field forming layer 9 formed by a large number of metal fine particles 10 suppresses the excitation light from entering the inside of the test piece 5, that is, the inside of the cell membrane, and the excitation light partially penetrates to the inside of the cell. It also acts as a filter for non-enhanced Raman scattered light due to, thereby simultaneously playing an important role in preventing unenhanced Raman signals from being doubled.
 また、増強電磁場形成層9によって形成された増強電磁場は、電磁場伝搬性を有する保護層11を介して、生体物質の表層、すなわち細胞膜近傍の分子種を選択的に励起し、これにより細胞表面(細胞膜)のラマン信号が選択的に得られる。このようにして生じる増強ラマン散乱光は増強電磁場形成層9と光学的に強く結合しているため、増強電磁場形成層9はこの散乱光を試験片5の裏側に配置された受光部43に効率よく導き、もってこれらの相乗効果により強いラマン信号を与える。 Further, the enhanced electromagnetic field formed by the enhanced electromagnetic field forming layer 9 selectively excites the surface layer of the biological material, that is, the molecular species in the vicinity of the cell membrane, through the protective layer 11 having electromagnetic field propagating property, thereby the cell surface ( The Raman signal of the cell membrane is selectively obtained. Since the enhanced Raman scattered light generated in this way is optically strongly coupled to the enhanced electromagnetic field forming layer 9, the enhanced electromagnetic field forming layer 9 efficiently transmits the scattered light to the light receiving portion 43 disposed on the back side of the test piece 5. It leads well and gives a strong Raman signal due to these synergistic effects.
  〈センサ1の性能についての説明〉
 以下、本発明のセンサ1が備える増強電磁場形成層9によって、光増強効果が実現できる点につき、実施例を参照しながら説明する。
<Description of sensor 1 performance>
Hereinafter, the fact that the light enhancement effect can be realized by the enhanced electromagnetic field forming layer 9 provided in the sensor 1 of the present invention will be described with reference to examples.
  (実施例1)
 まず、実施例1のセンサ1の作製方法につき説明する。基板7として数cm角の大きさのスライドガラスを用い、このスライドガラスの表面上に、Agを10nm程度の厚みで蒸着させて金属微粒子10を形成するためのAg膜を形成した。その後、約100℃のホットプレート上で、Ag膜が形成された基板7を数分間加熱処理することにより、Ag膜の粒状性を変化させて増強電磁場形成層9としての多数の金属(Ag)微粒子10によるAg微粒子単層膜を形成した。得られたAg微粒子単層膜における金属微粒子10の粒径は、50~150nmの範囲内にあり、厚さは平均で約20nmであり、金属微粒子10の密度はおおよそ5×10個/cmであった。
(Example 1)
First, a method for manufacturing the sensor 1 of Example 1 will be described. A glass slide having a size of several centimeters was used as the substrate 7, and an Ag film for forming the metal fine particles 10 was formed on the surface of the glass slide by depositing Ag with a thickness of about 10 nm. Thereafter, the substrate 7 on which the Ag film is formed is heated for several minutes on a hot plate at about 100 ° C., thereby changing the granularity of the Ag film and thereby increasing the number of metals (Ag) as the enhanced electromagnetic field forming layer 9. An Ag fine particle monolayer film of fine particles 10 was formed. The particle diameter of the metal fine particles 10 in the obtained Ag fine particle monolayer film is in the range of 50 to 150 nm, the thickness is about 20 nm on average, and the density of the metal fine particles 10 is approximately 5 × 10 9 particles / cm 3. 2 .
 その後、RFスパッタ装置「RFS-200型」(Ulvac社製)を用いて、酸化ケイ素(SiO)をターゲットとして下記条件でスパッタを行うことにより、隣接する金属微粒子10間において露出される基板7の表面部分を含む増強電磁場形成層9の表面上に保護層11を形成することでセンサ1を作製した。なお、保護層11の厚さは、スパッタ時間を適宜に変更することにより調整した。 Thereafter, using an RF sputtering apparatus “RFS-200 type” (manufactured by Ulvac), sputtering is performed under the following conditions using silicon oxide (SiO 2 ) as a target, thereby exposing the substrate 7 exposed between the adjacent metal fine particles 10. The sensor 1 was produced by forming the protective layer 11 on the surface of the enhanced electromagnetic field forming layer 9 including the surface portion of the above. The thickness of the protective layer 11 was adjusted by appropriately changing the sputtering time.
 スパッタ条件は以下のとおりである。
 ・ターゲットから増強電磁場形成層9の表面までの離間距離:45mm
 ・雰囲気:Ar 3.0Pa(放電時)
 ・放電出力:100W
 ・RF周波数:13.6MHz
 ・保護層11の成長速度:8.5nm/分
The sputtering conditions are as follows.
-Distance from the target to the surface of the enhanced electromagnetic field forming layer 9: 45 mm
・ Atmosphere: Ar 3.0Pa (during discharge)
・ Discharge output: 100W
・ RF frequency: 13.6MHz
-Growth rate of the protective layer 11: 8.5 nm / min
 次に、実施例1として作製されたセンサ1に対する性能検証方法について説明する。ここでは、センサ1が光増強効果を有することを示す目的で、蛍光の増強効果の検証を行う。すなわち、センサ1に対し、保護層11の表面上にローダミン6G色素(Rh6G:発光量子収率およそ1)の希薄エタノール溶液を3000回転でスピンコートすることにより、色素分子を保護層11の表面上に担持させた。センサ1の表面に担持される色素分子の密度とスピンコートに用いた溶液の色素濃度との関係は、ローダミン6G色素の濃度が1μMである場合に、色素分子の担持量が3×1011個/cmである。 Next, a performance verification method for the sensor 1 manufactured as Example 1 will be described. Here, in order to show that the sensor 1 has a light enhancement effect, the fluorescence enhancement effect is verified. That is, the dye molecule is coated on the surface of the protective layer 11 by spin-coating a diluted ethanol solution of rhodamine 6G dye (Rh6G: emission quantum yield of about 1) at 3000 revolutions on the surface of the protective layer 11 on the sensor 1. It was made to carry on. The relationship between the density of the dye molecules carried on the surface of the sensor 1 and the dye concentration of the solution used for spin coating is that the amount of dye molecules carried is 3 × 10 11 when the concentration of rhodamine 6G dye is 1 μM. / Cm 2 .
 なお、発光量子収率Φとは、分子に吸収された光子数と蛍光により放出された光子数の比で定義される(数1参照)。ここでkが電子励起状態にある分子の蛍光遷移速度定数であり、knrが無輻射遷移速度定数(単位時間当たりに消光を起こす速さ)である。
 (数1)
  Φ=k/(k+knr
The emission quantum yield Φ is defined by the ratio between the number of photons absorbed by the molecule and the number of photons emitted by fluorescence (see Equation 1). Here, k f is a fluorescence transition rate constant of a molecule in an electronically excited state, and knr is a non-radiative transition rate constant (speed at which quenching occurs per unit time).
(Equation 1)
Φ = k f / (k f + k nr)
 励起された分子のすべてが蛍光によって基底状態に戻れば、発光量子収率は1となり、この値に近い発光量子収率を持つ物質を「発光量子収率の高い物質」と呼ぶ。しかし、実際には、無輻射遷移によって1とはならない。無輻射遷移とは、蛍光を発しないで基底状態に戻る遷移である。発光量子収率が低い色素とはk<knrである色素のことである。なお、k<<knrの条件ではほとんど発光せず、このような条件を満たす色素を非発光性色素と呼ぶ。 If all excited molecules return to the ground state by fluorescence, the emission quantum yield becomes 1, and a substance having an emission quantum yield close to this value is called a “substance with a high emission quantum yield”. However, in practice, it is not 1 due to non-radiative transition. The non-radiative transition is a transition that returns to the ground state without emitting fluorescence. A dye having a low emission quantum yield is a dye having k f <kn nr . Note that a dye that hardly emits light under the condition of k f << k nr is called a non-light emitting dye.
 センサ1に対して励起光を照射して試料(色素分子)から発せられる光の強度を図3に示す測定装置により測定した。図3は、センサ1の性能を検証するための測定装置の概念図である。励起光源50としてのダイオードレーザ及びフィルタ51によって光源部41を構成し、光源部41からセンサ1に対して光を入射させ、保護層11の表面上に担持させた色素分子からの光を受光部43によって受光する。受光部43は、集光レンズ52、フィルタ53、受光ヘッド54及び光検出器55(電子冷却型ダイオードアレイ検出器)によって構成した。 The intensity of light emitted from the sample (dye molecule) by irradiating the sensor 1 with excitation light was measured by a measuring apparatus shown in FIG. FIG. 3 is a conceptual diagram of a measuring device for verifying the performance of the sensor 1. A light source unit 41 is configured by the diode laser as the excitation light source 50 and the filter 51, light is incident on the sensor 1 from the light source unit 41, and light from the dye molecules carried on the surface of the protective layer 11 is received by the light receiving unit. 43 receives light. The light receiving unit 43 is composed of a condenser lens 52, a filter 53, a light receiving head 54, and a photodetector 55 (electronically cooled diode array detector).
 より詳細には、励起光源50としては、出力1mW未満の緑色ダイオードレーザ(波長532nm)を用い、この励起光源50からの射出光を、フィルタ51を介して非集光(エネルギー密度約30mW/cm)又は反集光(エネルギー密度約10mW/cm以下)励起光としてセンサ1に対して、約45°の角度で入射させる。そして、センサ1に担持された色素分子による90°の角度方向に散乱される光を、集光レンズ52によって、光検出器55の受光ヘッド54にフィルタ53を介して集光した。 More specifically, a green diode laser (wavelength of 532 nm) having an output of less than 1 mW is used as the excitation light source 50, and light emitted from the excitation light source 50 is not condensed through the filter 51 (energy density is about 30 mW / cm). 2 ) or anti-condensation (energy density of about 10 mW / cm 2 or less) is made incident on the sensor 1 at an angle of about 45 ° as excitation light. Then, the light scattered in the 90 ° angle direction by the dye molecules carried on the sensor 1 was condensed by the condenser lens 52 onto the light receiving head 54 of the photodetector 55 through the filter 53.
 図3に示す測定装置による測定結果を図4に示す。図4において、縦軸は発光の増強度(単位:倍)を示しており、増強効果がないガラス基板上に担持された同じ量の色素について同じ方法で測定された発光強度に対する相対比率に対応する。 FIG. 4 shows the measurement results of the measurement apparatus shown in FIG. In FIG. 4, the vertical axis represents the increase in luminescence intensity (unit: times), corresponding to the relative ratio to the luminescence intensity measured by the same method for the same amount of dye supported on the glass substrate without the enhancement effect. To do.
 また、試料としてローダミン6G色素に代えて非発光性のフクシン色素(発光量子収率<<0.01)を用い、保護層11の表面上に3×1012個/cmの密度で担持させ、上記と同様の方法により発光強度を測定した。この測定結果を図5に示す。 In addition, a non-luminescent fuchsine dye (luminescence quantum yield << 0.01) is used instead of rhodamine 6G dye as a sample, and the sample is supported on the surface of the protective layer 11 at a density of 3 × 10 12 particles / cm 2. The emission intensity was measured by the same method as described above. The measurement results are shown in FIG.
 図4及び図5によれば、色素自体の発光量子収率とは関係なく、保護層11の膜厚を200nm以上としても高い発光増強率が維持されていることが分かる。特に、発光量子収率が0.01未満、すなわち非発光性の色素に対しては、数千倍以上の光増強率が確保されていることが分かる。これにより、金属微粒子10の上層に、所定の膜厚の保護層11を形成しても、その上面にまで発光増強効果を伝搬できることが分かる。 4 and 5, it can be seen that a high light emission enhancement rate is maintained even when the thickness of the protective layer 11 is 200 nm or more regardless of the light emission quantum yield of the dye itself. In particular, it can be seen that a light enhancement factor of several thousand times or more is ensured for a dye having an emission quantum yield of less than 0.01, that is, a non-luminescent pigment. Thereby, even if the protective layer 11 having a predetermined thickness is formed on the upper layer of the metal fine particles 10, it can be seen that the light emission enhancing effect can be propagated to the upper surface.
 すなわち、センサ1によれば、分子発光双極子と双極子型表面プラズモン(局在表面プラズモン)の相互作用により、結果的に色素の輻射遷移速度k(上記数1参照)が大きくなる。これにより、k>>knrとなるため、上式の発光量子収率が大きくなり、もともとは発光量子収率が0.01以下の非発光性物質(k<<knr)である色素でも光を強く発するようになることが分かる。 That is, according to the sensor 1, due to the interaction between the molecular light-emitting dipole and the dipole-type surface plasmon (localized surface plasmon), the radiation transition speed k f of the dye (see Equation 1 above) is increased as a result. Thereby, since k f >> kn nr , the above-mentioned light emission quantum yield becomes large, and originally, it is a non-light emitting substance (k f << k nr ) whose light emission quantum yield is 0.01 or less. It can be seen that even pigments emit light strongly.
 なお、別の検証として、励起光源50として、ダイオードレーザに代えて出力1mW未満のHe-Neレーザ(波長632.8nm)を用いた他は、図3と同じ配置でローダミン6G色素のラマン散乱強度を保護層11の厚さの関数として測定した。この結果、保護層11の膜厚が200nmを超えても、色素分子が直接に金属微粒子10に表面に吸着した場合に得られた信号と変わらない大きさの増強ラマン信号(増強度は約10倍)が得られた。 As another verification, the Raman scattering intensity of rhodamine 6G dye with the same arrangement as in FIG. 3 except that a He—Ne laser (wavelength 632.8 nm) with an output of less than 1 mW was used as the excitation light source 50 instead of the diode laser. Was measured as a function of the thickness of the protective layer 11. As a result, even if the film thickness of the protective layer 11 exceeds 200 nm, an enhanced Raman signal (intensity is about 10) which is not different from the signal obtained when the dye molecules are directly adsorbed on the surface of the metal fine particles 10. 5 times) was obtained.
 このように増強効果が保護層11の膜厚程度分程度を伝搬する理由の一つとしては、以下の点が考えられる。蒸着により配向性を持った誘電体で形成された柱状の保護層11中では、プラズモン電場が乱されず、損失を受けずに保護層11の表面にまで達する。従って、保護層11の厚さをある程度大きくした場合であっても、金属微粒子10に生ずる電磁場(局在表面プラズモン)が保護層11の表面に伝達される。 As one of the reasons why the enhancement effect propagates about the thickness of the protective layer 11 as described above, the following points can be considered. In the columnar protective layer 11 formed of a dielectric having orientation by vapor deposition, the plasmon electric field is not disturbed and reaches the surface of the protective layer 11 without loss. Therefore, even when the thickness of the protective layer 11 is increased to some extent, the electromagnetic field (localized surface plasmon) generated in the metal fine particles 10 is transmitted to the surface of the protective layer 11.
 つまり、図2に示すように、保護層11の表面に生体物質からなる試験片5を載置して励起光を照射することで、試験片5の表層部に対して増強電磁場の影響が及び、これにより、試験片5の表層部を構成する物質、すなわち細胞膜由来のスペクトルを強く含む光が放射される。受光部43でこの発光を受光してスペクトル分布を得ることで、細胞膜の分析が行える。 That is, as shown in FIG. 2, by placing the test piece 5 made of a biological material on the surface of the protective layer 11 and irradiating the excitation light, the influence of the enhanced electromagnetic field is exerted on the surface layer portion of the test piece 5. As a result, a substance that constitutes the surface layer portion of the test piece 5, that is, light that strongly contains a spectrum derived from the cell membrane is emitted. The cell membrane can be analyzed by receiving the emitted light at the light receiving unit 43 and obtaining a spectral distribution.
  (実施例2)
 実施例1と同様の方法により作製されたセンサ1に対し、フクシン色素で標識した抗体IgGの水溶液を滴下した。より詳細には、保護層11の上面にフクシン色素で標識した抗体IgGの水溶液を滴下した。
(Example 2)
An aqueous solution of antibody IgG labeled with a fuchsin dye was added dropwise to the sensor 1 produced by the same method as in Example 1. More specifically, an aqueous solution of antibody IgG labeled with a fuchsin dye was dropped onto the upper surface of the protective layer 11.
  (比較例1)
 基板7に対し、実施例2と同様にフクシン色素で標識した抗体IgGの水溶液を滴下した。
(Comparative Example 1)
An aqueous solution of antibody IgG labeled with a fuchsin dye was dropped onto the substrate 7 in the same manner as in Example 2.
 そして、実施例2及び比較例1のそれぞれの素子に対し、図3に示す測定装置によって励起光を入射させて、受光部43で得られた光のスペクトル分布を調べた結果を図6に示す。なお、図6において、横軸は光の波長、縦軸は発光強度を表している。 Then, FIG. 6 shows the result of examining the spectral distribution of the light obtained by the light receiving unit 43 by causing excitation light to enter the respective elements of Example 2 and Comparative Example 1 using the measuring device shown in FIG. . In FIG. 6, the horizontal axis represents the wavelength of light, and the vertical axis represents the emission intensity.
 図6を参照すると、実施例2の構成によれば、非発光性の標識物質であるフクシン色素は、増強電磁場形成層9によって生じる局在プラズモンとの保護層11を介した相互作用で発光量子収率が向上し、それに伴ってフクシン色素が発する光の光量が著しく増加していることが分かる。これに対し、比較例1の構成によれば、発光の増強効果はない。これにより、本発明のセンサ1が極めて高い発光増強効果を有していることが分かる。 Referring to FIG. 6, according to the configuration of Example 2, the fuchsin dye, which is a non-luminescent labeling substance, emits luminescence quantum by the interaction through the protective layer 11 with the localized plasmon generated by the enhanced electromagnetic field forming layer 9. It can be seen that the yield is improved and the amount of light emitted by the fuchsin dye is significantly increased. On the other hand, according to the configuration of Comparative Example 1, there is no light emission enhancement effect. This shows that the sensor 1 of the present invention has a very high light emission enhancement effect.
  〈別構成のセンサ1の性能についての説明〉
 センサ1が有する保護層11に予めハロゲン元素を含有させても構わない。保護層11に対してハロゲン元素を含有させる方法としては、保護層11が形成されたセンサ1に対してハロゲン化物塩の水溶液に浸漬する方法を用いることができる。例えば、ハロゲン化物塩水溶液の濃度が0.1~0.3mol/Lの場合には、5~30分間程度の室温浸漬により最大の効果を得ることができるが、水溶液の濃度がそれより高い場合、あるいは逆に低い場合には、その濃度に応じて浸漬時間を調整することにより同等の効果を得ることができる。なお、保護層11におけるハロゲン元素の含有割合は、0.002質量%~0.05質量%であることが好ましい。
<Description of Performance of Sensor 1 with Different Configuration>
The protective layer 11 of the sensor 1 may contain a halogen element in advance. As a method of containing the halogen element in the protective layer 11, a method of immersing the sensor 1 in which the protective layer 11 is formed in an aqueous solution of a halide salt can be used. For example, when the concentration of the halide salt aqueous solution is 0.1 to 0.3 mol / L, the maximum effect can be obtained by room temperature immersion for about 5 to 30 minutes, but the concentration of the aqueous solution is higher than that. On the other hand, if it is low, the same effect can be obtained by adjusting the immersion time according to the concentration. The halogen element content in the protective layer 11 is preferably 0.002% by mass to 0.05% by mass.
 なお、上記ハロゲン化物塩の具体例としては、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、臭化ナトリウム(NaBr)、ヨウ化カリウム(KI)などのアルカリ金属塩や、塩化カルシウム(CaCl)などのアルカリ土類金属塩などが挙げられる。 Specific examples of the halide salt include alkali metal salts such as sodium chloride (NaCl), potassium chloride (KCl), sodium bromide (NaBr), and potassium iodide (KI), and calcium chloride (CaCl 2 ). And alkaline earth metal salts.
 このように予めハロゲン化物塩水溶液にセンサ1を浸漬させた場合においても、多数の金属微粒子10はその周囲及び上方を保護層11で覆われているため、ハロゲン化物イオンが直接金属微粒子10に接触して、金属微粒子10がハロゲン化物イオンと反応して基板7から離脱してしまうということがない。そして、このように保護層11に予めハロゲン元素を含有させることで、後述の実施例に示すように、光増強効果を更に高めることができる。 Thus, even when the sensor 1 is immersed in the halide salt aqueous solution in advance, since many metal fine particles 10 are covered with the protective layer 11 around and above the metal fine particles 10, halide ions directly contact the metal fine particles 10. Thus, the metal fine particles 10 do not react with the halide ions and leave the substrate 7. Then, by adding a halogen element to the protective layer 11 in advance as described above, the light enhancement effect can be further enhanced as shown in Examples described later.
 (実施例3)
 実施例1と同様の方法を用い、RFスパッタ装置による処理時間を調整して、厚さが100nmの保護層11を有するセンサ1を作製した。その後、塩化物イオンの濃度が0.2~0.3mol/Lである塩化ナトリウム水溶液中に、増強電磁場形成層9及び保護層11が形成された基板7を約30分間浸漬させ、その後、純水で洗浄して乾燥することにより、保護層11中にハロゲン化物イオンを含有させて、本実施例のセンサ1とした。この方法で得られた光増強素子における保護層に含有されたハロゲン元素の含有割合は正確には決定することが難しいが、およそ0.01質量%のオーダーと推定される。そして、このセンサ1の保護層11の上面に、ローダミン6G色素の希薄エタノール溶液を3000回転でスピンコートすることにより、色素分子を保護層11の表面上に3×1011個/cmの密度で担持させた。
(Example 3)
Using the same method as in Example 1, the processing time by the RF sputtering apparatus was adjusted, and the sensor 1 having the protective layer 11 having a thickness of 100 nm was produced. Thereafter, the substrate 7 on which the enhanced electromagnetic field forming layer 9 and the protective layer 11 are formed is immersed in a sodium chloride aqueous solution having a chloride ion concentration of 0.2 to 0.3 mol / L for about 30 minutes. By washing with water and drying, halide ions were contained in the protective layer 11 to obtain the sensor 1 of this example. Although it is difficult to accurately determine the content ratio of the halogen element contained in the protective layer in the light enhancement element obtained by this method, it is estimated to be about 0.01% by mass. Then, a thin ethanol solution of rhodamine 6G dye is spin-coated at 3000 revolutions on the upper surface of the protective layer 11 of the sensor 1, so that the dye molecules have a density of 3 × 10 11 particles / cm 2 on the surface of the protective layer 11. It was made to carry by.
 なお、比較のために、塩化ナトリウム水溶液に浸漬させなかった以外は同様の方法でセンサ1についても作製した。なお、このセンサ1は実施例1の素子に対応する。 For comparison, the sensor 1 was also produced in the same manner except that it was not immersed in an aqueous sodium chloride solution. The sensor 1 corresponds to the element of the first embodiment.
 そして、実施例3及び実施例1のセンサ1に対し、励起光を照射して試料(色素分子)から発せられるラマン散乱光の強度を、ダイオードレーザ50に代えて出力1mW未満のHe-Neレーザ(波長632.8nm)を励起光源として用いた他は、図3と同じ測定装置により測定した。この結果を図7に示す。なお、図7のグラフでは、縦軸はラマン散乱強度(cps)を示し、横軸はラマンシフト(cm-1)を示す。 Then, the intensity of Raman scattered light emitted from the sample (dye molecule) by irradiating excitation light to the sensor 1 of Example 3 and Example 1 is changed to a He—Ne laser whose output is less than 1 mW instead of the diode laser 50. The measurement was performed with the same measuring apparatus as in FIG. 3 except that (wavelength 632.8 nm) was used as the excitation light source. The result is shown in FIG. In the graph of FIG. 7, the vertical axis indicates the Raman scattering intensity (cps), and the horizontal axis indicates the Raman shift (cm −1 ).
 図7では、実施例3と実施例1のそれぞれのセンサ1に対して、ラマン散乱光の強度を比較した。これは、ラマン散乱光自体の強度が蛍光の強度よりも小さいため、両者の光増強効果を比較する上での比較のしやすさを考慮して行われたものである。ハロゲン化物イオンを浸漬した実施例3の方が、ハロゲン化物イオンを浸漬しなかった実施例1よりも顕著なラマン信号が観測されており、光の増強効果が更に高いことが示唆される。 In FIG. 7, the intensity of Raman scattered light was compared for each sensor 1 of Example 3 and Example 1. This is because the intensity of Raman scattered light itself is smaller than the intensity of fluorescence, so that it is easy to compare in comparing the light enhancement effects of both. In Example 3 in which halide ions were immersed, a remarkable Raman signal was observed compared to Example 1 in which halide ions were not immersed, suggesting that the light enhancement effect was even higher.
 図7における、ハロゲン化物イオンを浸漬しなかった実施例1のセンサ1においても、図4及び図5を参照して上述したように、発光の強度を極めて高くする効果は得られている。またハロゲン化物イオンを浸漬した実施例3では、実施例1よりも更に発光増強効果が高くなっていることが示唆される。 In the sensor 1 of Example 1 in which the halide ions in FIG. 7 are not immersed, as described above with reference to FIGS. 4 and 5, the effect of extremely increasing the emission intensity is obtained. Further, it is suggested that Example 3 in which halide ions are immersed has a higher light emission enhancement effect than Example 1.
 なお、実施例3では、塩化物イオンの濃度が0.2~0.3mol/Lである塩化ナトリウム水溶液を浸漬させたが、これに代えて、塩化物イオンの濃度が0.2mol/Lである塩化カリウム水溶液を浸漬させて形成した素子、臭化物イオンの濃度が0.2mol/Lである臭化ナトリウム水溶液を浸漬させて形成した素子、ヨウ化物イオンの濃度が0.2mol/Lであるヨウ化カリウム水溶液を浸漬させて形成した素子、塩化物イオンの濃度が0.2mol/Lである塩化カルシウム水溶液を浸漬させて形成した素子についても、同様の測定を行った結果、実施例3と同様に高いラマン散乱光を受光できた。一方、塩化ナトリウム水溶液の代わりに硫酸イオンの濃度が0.2mol/Lである硫酸ナトリウム水溶液を浸漬させて形成した素子について同様の測定を行ったところ、受光したラマン散乱光の強度は低いものであった。このことから、保護層11にハロゲン元素を添加した場合に、光増強効果を更に高められることが分かる。 In Example 3, a sodium chloride aqueous solution having a chloride ion concentration of 0.2 to 0.3 mol / L was immersed, but instead, the chloride ion concentration was 0.2 mol / L. An element formed by immersing a certain potassium chloride aqueous solution, an element formed by immersing a sodium bromide aqueous solution having a bromide ion concentration of 0.2 mol / L, an iodine having a iodide ion concentration of 0.2 mol / L The same measurement was performed on the element formed by immersing the potassium chloride aqueous solution and the element formed by immersing the calcium chloride aqueous solution having a chloride ion concentration of 0.2 mol / L. High Raman scattered light was received. On the other hand, when the same measurement was performed on an element formed by immersing a sodium sulfate aqueous solution having a sulfate ion concentration of 0.2 mol / L instead of a sodium chloride aqueous solution, the intensity of the received Raman scattered light was low. there were. This shows that the light enhancement effect can be further enhanced when a halogen element is added to the protective layer 11.
  〈センサ1を用いた検査例〉
 以下、上述したセンサ1の使用方法に基づいて行った試験片5の検査結果について説明する。
<Inspection example using sensor 1>
Hereinafter, the test result of the test piece 5 performed based on the usage method of the sensor 1 mentioned above is demonstrated.
 (実施例4)
 本発明のセンサ1を用い、この保護層11の上面に試験片5としてのWistarラット(8週齢、雌)の脂肪組織を載置し、図2と同様の方法によって、光源部41より励起光を照射して試験片5からのラマンスペクトルを測定した。
Example 4
Using the sensor 1 of the present invention, the fatty tissue of a Wistar rat (8 weeks old, female) as the test piece 5 is placed on the upper surface of the protective layer 11 and excited by the light source unit 41 in the same manner as in FIG. The Raman spectrum from the test piece 5 was measured by irradiation with light.
 計測条件は以下のとおりである.
 ・計測装置:DXR-Smart Raman
 ・励起光波長:632.8 nm
 ・励起光強度:4mW
 ・励起光径:φ10μm
 ・励起光照度:50μW/μm = 5KW/cm
 ・計測条件:毎回2秒間の露光を間欠的に16回行う。
The measurement conditions are as follows.
・ Measuring device: DXR-Smart Raman
Excitation light wavelength: 632.8 nm
Excitation light intensity: 4mW
Excitation light diameter: φ10μm
Excitation light illuminance: 50 μW / μm 2 = 5 KW / cm 2
Measurement conditions: Exposure for 2 seconds each time is intermittently performed 16 times.
 (比較例2)
 基板7の上面に試験片5としてのWistarラット(8週齢、雌)の脂肪組織を載置し、実施例4と同様に、光源部41より励起光を照射して試験片5からのラマンスペクトルを測定した。
(Comparative Example 2)
A fatty tissue of a Wistar rat (8 weeks old, female) as the test piece 5 was placed on the upper surface of the substrate 7, and the excitation light was irradiated from the light source unit 41 in the same manner as in Example 4 to find the Raman from the test piece 5. The spectrum was measured.
 実施例4及び比較例2におけるラマンスペクトル計測結果を、図8に示す。図8のグラフでは、縦軸はラマン散乱強度(cps)を示し、横軸はラマンシフト(cm-1)を示す。なお、脂肪組織の切片試料を、顕微ラマン分光器により計測したスペクトルを「文献値」として併せて載せている。この計測条件等は、例えばT. Minamikawa et al., Histochem Cell Biol. 139 (1), 181-93(2013)に記載されている。 The Raman spectrum measurement results in Example 4 and Comparative Example 2 are shown in FIG. In the graph of FIG. 8, the vertical axis indicates the Raman scattering intensity (cps), and the horizontal axis indicates the Raman shift (cm −1 ). In addition, the spectrum measured by the micro Raman spectroscope for the section sample of the adipose tissue is also listed as “document value”. The measurement conditions and the like are described, for example, in T. Minamikawa et al., Histochem Cell Biol. 139 (1), 181-93 (2013).
 基板7の上に直接試験片5を載置させた比較例2におけるスペクトルは、文献に記載のスペクトルとピークの位置が比較的よく一致している。これに対し、本発明のセンサ1上、より詳細には保護層11上に試験片5を載置させた実施例4におけるスペクトルは、比較例2及び文献値と比較して、異なる位置にラマンシフトのピークが見られた。つまり、同じように脂肪組織の切片試料を載置して励起光を照射し、ラマン散乱光のスペクトルを計測したにも関わらず、センサ1の保護層11の上面に脂肪組織を載置した実施例4と、基板7の上面に脂肪組織を載置した比較例2では、スペクトルのピークの位置に違いが生じている。このことより、以下の内容が推察される。 The spectrum in Comparative Example 2 in which the test piece 5 is directly placed on the substrate 7 has a relatively good match with the spectrum described in the literature. On the other hand, the spectrum in Example 4 in which the test piece 5 is placed on the sensor 1 of the present invention, more specifically, on the protective layer 11, is different from that in Comparative Example 2 and literature values in a different position. A shift peak was observed. That is, in the same manner, the adipose tissue was placed on the upper surface of the protective layer 11 of the sensor 1 even though the sliced sample of the adipose tissue was placed and irradiated with excitation light and the spectrum of Raman scattered light was measured. In Example 4 and Comparative Example 2 in which the adipose tissue is placed on the upper surface of the substrate 7, there is a difference in the position of the spectrum peak. From this, the following contents are inferred.
 図9は、試験片5としての脂肪組織などの細胞試料を光増強素子上(センサ1上)に載置した際の模式図である。脂肪組織を構成する脂肪細胞71は、10nm程度の細胞膜73を有している。そして、脂肪細胞71は、この細胞膜73の内側に脂肪滴を含む細胞質74を有する。なお、実際には細胞膜73の内側には細胞質74の他に細胞核等も含まれるが、細胞質74よりも占有領域が小さいので、ここでは便宜上細胞質74のみを採り上げて説明する。なお、細胞質74は径がφ100μm程度であり、細胞質74を覆う細胞膜73は、厚みが10nm程度である。 FIG. 9 is a schematic view when a cell sample such as adipose tissue as the test piece 5 is placed on the light enhancement element (on the sensor 1). The adipocyte 71 constituting the adipose tissue has a cell membrane 73 of about 10 nm. The fat cells 71 have a cytoplasm 74 containing fat droplets inside the cell membrane 73. Actually, the inside of the cell membrane 73 includes a cell nucleus and the like in addition to the cytoplasm 74. However, since the occupied area is smaller than the cytoplasm 74, only the cytoplasm 74 will be described here for convenience. The cytoplasm 74 has a diameter of about φ100 μm, and the cell membrane 73 covering the cytoplasm 74 has a thickness of about 10 nm.
 増強電磁場形成層9による発光増強効果は、保護層11を介して保護層11の表面近傍領域に対して伝搬されるが、保護層11の表面から大きく離れた箇所には伝搬しない。図9に示すように、脂肪細胞71は、保護層11の表面近傍に10nm程度の厚みの細胞膜73を有している。このため、実施例4では、図8に示すように、細胞膜73由来のラマン散乱光がその内側の細胞質74由来のラマン散乱光に比べて、著しく高く増強された結果、ほぼ同じピーク位置を示しているものと考えられる。 The light emission enhancement effect by the enhanced electromagnetic field forming layer 9 is propagated to the region near the surface of the protective layer 11 through the protective layer 11, but does not propagate to a location far away from the surface of the protective layer 11. As shown in FIG. 9, the fat cell 71 has a cell membrane 73 having a thickness of about 10 nm in the vicinity of the surface of the protective layer 11. For this reason, in Example 4, as shown in FIG. 8, the Raman scattered light derived from the cell membrane 73 was remarkably enhanced as compared with the Raman scattered light derived from the cytoplasm 74 inside thereof, and as a result, almost the same peak position was shown. It is thought that.
 これに対し、基板7上に試験片5を直接載置した比較例2の場合、細胞膜73由来のラマン散乱光とその内側の細胞由来のラマン散乱光が得られることになる。ここで、集光レンズ52による励起光の集光程度、試験片5内での光の拡散程度、又はラマン散乱光の集光レンズ52による集光程度などを考慮すると、基板7上に載置された細胞試料では、約10μmの光路からのラマン散乱光を計測していると考えられる。 On the other hand, in the case of Comparative Example 2 in which the test piece 5 is directly placed on the substrate 7, Raman scattered light derived from the cell membrane 73 and Raman scattered light derived from cells inside the cell film 73 are obtained. Here, in consideration of the degree of concentration of excitation light by the condenser lens 52, the degree of diffusion of light within the test piece 5, or the degree of condensation of Raman scattered light by the condenser lens 52, it is placed on the substrate 7. In the obtained cell sample, it is considered that Raman scattered light from an optical path of about 10 μm is measured.
 上述したように、細胞膜73の内側には細胞質74が大半を占有していることから、細胞試料内の10μm分の光路を考えると、10nmが細胞膜73に対応し、残りの9990nmは細胞質74に対応すると考えることができる。よって、細胞膜73のラマン散乱光強度は、細胞質74のラマン散乱光強度に対して約1/10000程度となる。これにより、比較例2で得られたラマン散乱光は、細胞質74のラマン散乱光が主成分であると考えられる。このことは、図8において、比較例2のピーク値が異なっている上、そのピーク値と文献値がほぼ等しくなっていることとも整合する。 As described above, since most of the cytoplasm 74 occupies the inner side of the cell membrane 73, 10 nm corresponds to the cell membrane 73 and the remaining 9990 nm corresponds to the cytoplasm 74 when considering the optical path of 10 μm in the cell sample. It can be considered that it corresponds. Therefore, the Raman scattered light intensity of the cell membrane 73 is about 1/10000 with respect to the Raman scattered light intensity of the cytoplasm 74. Thereby, the Raman scattered light obtained in Comparative Example 2 is considered to be mainly composed of the Raman scattered light of the cytoplasm 74. This is consistent with the fact that the peak value of Comparative Example 2 is different in FIG. 8 and that the peak value and the document value are substantially equal.
 なお、図8において、実施例4のピークレベルと比較例2のピークレベルが同等の値を示しているのは、以下の理由によるものと考えられる。 In FIG. 8, the reason why the peak level of Example 4 and the peak level of Comparative Example 2 show the same value is considered as follows.
 増強電磁場形成層9による発光増強効果が伝搬するのは、保護層11の表面から約10nm程度の位置であると考えられる。このことは、実施例4において、図8において、いずれも細胞膜73由来のラマンスペクトルが強く確認されていることからも理解される。その際の、ラマン散乱光の増強度は約10~10倍である。 It is considered that the light emission enhancing effect due to the enhanced electromagnetic field forming layer 9 propagates at a position of about 10 nm from the surface of the protective layer 11. This is also understood from the fact that in Example 4, the Raman spectrum derived from the cell membrane 73 is strongly confirmed in FIG. In this case, the enhancement of Raman scattered light is about 10 5 to 10 6 times.
 図2を参照して上述したように、光源部41より基板7の裏側より励起光(波長:632.8nm)を照射している。そして、本発明のセンサ1は、基板7の上に増強電磁場形成層9及び保護層11を有しているため、基板7のみで構成される場合よりも光透過率が低下する。本発明のセンサ1の、波長600~800nmにおける光の透過率は、基板7の同透過率の約10%である。 As described above with reference to FIG. 2, excitation light (wavelength: 632.8 nm) is irradiated from the back side of the substrate 7 from the light source unit 41. And since the sensor 1 of this invention has the augmented electromagnetic field formation layer 9 and the protective layer 11 on the board | substrate 7, light transmittance falls compared with the case where it comprises only the board | substrate 7. FIG. The transmittance of light at a wavelength of 600 to 800 nm of the sensor 1 of the present invention is about 10% of the transmittance of the substrate 7.
 そして、比較例2の場合、上述したように分析深さが約10μmである。このことから、比較例2に対する実施例4で得られるラマン散乱光の増強度は、(分析深さの違い)×(増強度)×(透過率)=(10nm/10000nm)×(10~10倍)×(1/10)=10倍程度となる。 In the case of Comparative Example 2, the analysis depth is about 10 μm as described above. From this, the enhancement of Raman scattered light obtained in Example 4 relative to Comparative Example 2 is (difference in analysis depth) × (intensification) × (transmittance) = (10 nm / 10000 nm) × (10 5 to 10 6 times) × (1/10) = about 10 times.
 更に、実際の実験では、センサ1の上面と試験片5が完全には密着せず、保護層11の上面と細胞膜73の距離が数nm程度離れてしまっているなどの問題により、上記「10倍」よりも小さい値となる。この結果、センサ1の上面に載置した試験片5のラマンスペクトルの強度が、基板7の上面に載置した試験片5のラマンスペクトルの強度と同程度になったものと推測される。 Further, in the actual experiment, the upper surface of the sensor 1 and the test piece 5 are not completely adhered to each other, and the distance between the upper surface of the protective layer 11 and the cell membrane 73 is about several nanometers away. The value is smaller than “double”. As a result, it is presumed that the intensity of the Raman spectrum of the test piece 5 placed on the upper surface of the sensor 1 is approximately the same as the intensity of the Raman spectrum of the test piece 5 placed on the upper surface of the substrate 7.
 ただし、このことは、増強電磁場形成層9を含む本発明のセンサ1が、基板7に直接試験片5を載置した場合と比較して発光増強効果を有していないことを示すものではない。本発明のセンサ1は、特に保護層11の表面近傍でのラマン散乱光を極めて高く増強させる効果を有しており、これによって、ラマン散乱光のスペクトル分析を行うことで、試験片5の表層部の検査に利用できるというものである。 However, this does not indicate that the sensor 1 of the present invention including the enhanced electromagnetic field forming layer 9 does not have a light emission enhancing effect as compared with the case where the test piece 5 is directly placed on the substrate 7. . The sensor 1 of the present invention has an effect of enhancing the Raman scattered light in the vicinity of the surface of the protective layer 11 extremely high, whereby the surface layer of the test piece 5 is obtained by performing spectral analysis of the Raman scattered light. It can be used for part inspection.
 (実施例5)
 本発明のセンサ1を用い、この保護層11の上面に試験片5としてのMCF-7細胞株(ヒト乳癌由来)を載置し、DiI(Molecular probes、Cell Tracker(登録商標)CM-DiI)色素で標識した。そして、図3において、光検出器56として正立型共焦点レーザ顕微鏡(FV1000、Olympus社)を用い、水浸型対物レンズ(Olympus社、LUMFL N、60倍、NA1.10)を通して光源部41からHe-Neレーザ光(543nm)を試験片5に照射して、試験片5に標識された色素からの発光を受光した。
(Example 5)
Using the sensor 1 of the present invention, the MCF-7 cell line (derived from human breast cancer) as the test piece 5 was placed on the upper surface of the protective layer 11, and DiI (Molecular probes, Cell Tracker (registered trademark) CM-DiI) Labeled with dye. In FIG. 3, an erecting confocal laser microscope (FV1000, Olympus) is used as the photodetector 56, and the light source unit 41 is passed through a water immersion objective lens (Olympus, LUMFL N, 60 times, NA 1.10). The test piece 5 was irradiated with He—Ne laser light (543 nm) to receive light emitted from the dye labeled on the test piece 5.
 より詳細には、MCF-7細胞を培養ディッシュ上でDME培養液(ダルベッコ変法イーグル培地)を用いサブコンフレントになるまで培養した。その後、プラスチック培養ディッシュ(BD Falcon、353001、直径35nm)上に設置したセンサ1へ細胞総数2×10個継代した。 More specifically, MCF-7 cells were cultured on a culture dish using DME medium (Dulbecco's modified Eagle's medium) until they became subconfluent. Thereafter, 2 × 10 5 cells in total were passaged to sensor 1 placed on a plastic culture dish (BD Falcon, 353001, diameter 35 nm).
 48時間後、PBS(リン酸緩衝生理食塩水)で培養液を洗浄後、2mLのPBSで満たした培養ディッシュに対してDiI色素を1μmolの濃度になるよう滴下し、15分間インキュベート(37度、5%CO)した。 After 48 hours, the culture solution was washed with PBS (phosphate buffered saline), and then the DiI dye was added dropwise to a culture dish filled with 2 mL of PBS to a concentration of 1 μmol and incubated for 15 minutes (37 °, 5% CO 2 ).
 その後、5分間冷蔵庫内(4℃下)に静置した後、上記方法によって励起光を照射して、試験片5の標識色素からの発光を測定した。測定には、正立型共焦点レーザ顕微鏡を用い、水浸型対物レンズを通して励起光を照射し、高さ方向に走査した。発生した蛍光のうち、共焦点ピンホール(開口径110μm)を透過し、フィルタ53により560nm以上660nm以下の波長範囲を検出対象とした。 Then, after leaving still in a refrigerator (under 4 degreeC) for 5 minutes, the excitation light was irradiated by the said method and the light emission from the labeled pigment | dye of the test piece 5 was measured. For the measurement, an upright confocal laser microscope was used, irradiated with excitation light through a water immersion objective lens, and scanned in the height direction. Of the generated fluorescence, it was transmitted through a confocal pinhole (aperture diameter: 110 μm), and a wavelength range of 560 nm to 660 nm was detected by the filter 53.
 (比較例3)
 基板7の上面に試験片5を載置した点を除けば、実施例5と同様である。
(Comparative Example 3)
Except for the point that the test piece 5 is placed on the upper surface of the substrate 7, it is the same as the fifth embodiment.
 図10に実施例5及び比較例3の結果を示す。図10において、横軸は走査変位(μm)であり、保護層11の表面(実施例5)又は基板7の表面(比較例3)からどれだけの距離離れているかを示している。また、縦軸は発光(蛍光)強度を示している。図10によれば、比較例3に比べて実施例5の蛍光強度は約2倍になっており、蛍光スペクトルの計測が容易になっていることが示唆される。 FIG. 10 shows the results of Example 5 and Comparative Example 3. In FIG. 10, the horizontal axis represents the scanning displacement (μm) and indicates how far away from the surface of the protective layer 11 (Example 5) or the surface of the substrate 7 (Comparative Example 3). The vertical axis represents the emission (fluorescence) intensity. According to FIG. 10, the fluorescence intensity of Example 5 is about twice that of Comparative Example 3, which suggests that the fluorescence spectrum can be easily measured.
 [第2実施形態]
 本発明の第2実施形態について図面を参照して説明する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to the drawings.
 図11は、本発明の第2実施形態のセンサ1aの構造を模式的に示す平面図である。なお、図11では、説明の都合上、保護層11の図示を省略している。このセンサ1aは、第1実施形態で上述したセンサ1と同様に、基板7、増強電磁場形成層9及び保護層11を備える構成である。ただし、基板7上に、増強電磁場形成層9が形成されている領域(第1領域20)と、増強電磁場形成層9が形成されていない領域(第2領域21)が存在する点が異なる。つまり、第1領域20上においては、第1実施形態で上述したセンサ1と同様に、基板7上に多数の金属微粒子10からなる増強電磁場形成層9が形成され、その上層に保護層11が形成されている。一方、第2領域21上においては、基板7上には増強電磁場形成層9が存在せず、単に保護層11が形成されているのみである。 FIG. 11 is a plan view schematically showing the structure of the sensor 1a according to the second embodiment of the present invention. In FIG. 11, the protective layer 11 is not shown for convenience of explanation. Similar to the sensor 1 described above in the first embodiment, the sensor 1a includes a substrate 7, an enhanced electromagnetic field forming layer 9, and a protective layer 11. However, the difference is that a region (first region 20) where the enhanced electromagnetic field forming layer 9 is formed and a region (second region 21) where the enhanced electromagnetic field forming layer 9 is not formed exist on the substrate 7. That is, on the first region 20, as in the sensor 1 described in the first embodiment, an enhanced electromagnetic field forming layer 9 composed of a large number of metal fine particles 10 is formed on the substrate 7, and the protective layer 11 is formed thereon. Is formed. On the other hand, on the second region 21, the enhanced electromagnetic field forming layer 9 does not exist on the substrate 7, and only the protective layer 11 is formed.
 このようなセンサ1aを用いて検査を行う場合も、図2と同様に、センサ1aの表面に試験片5を載置し、光源部41から励起光を照射して、受光部43によって試験片5からのラマン散乱光又は蛍光を受光して分析する。ここで、試験片5は、センサ1aの第1領域20と第2領域21にまたがるように保護層11の表面に載置される。 Also in the case of performing an inspection using such a sensor 1a, the test piece 5 is placed on the surface of the sensor 1a as in FIG. The Raman scattered light or fluorescence from 5 is received and analyzed. Here, the test piece 5 is placed on the surface of the protective layer 11 so as to straddle the first region 20 and the second region 21 of the sensor 1a.
 このように試験片5を載置したことで、上述したように、第1領域20上においては、保護層11の表面近傍の発光強度が増強される結果、主として試験片5の表層部由来の発光が受光部43によって受光される。一方、第2領域21上においては、発光強度の増強効果が存在しないため、主として試験片5の内部組織由来の発光が受光部43によって受光される。よって、このようなセンサ1aによれば、一の試験片5から、試験片5の表層部と内部組織の両者の検査が可能になる。具体的には、図9(a)のように、試験片5として脂肪細胞71を用いた場合には、第1領域20上に載置された部分からは主として細胞膜73由来の発光スペクトルが受光され、第2領域21上に載置された部分からは主として細胞質74由来の発光スペクトルが受光される。これにより、試験片5に対する検査対象を拡げることができる。 By placing the test piece 5 in this manner, as described above, the emission intensity in the vicinity of the surface of the protective layer 11 is enhanced on the first region 20, and as a result, mainly derived from the surface layer portion of the test piece 5. Light emission is received by the light receiving unit 43. On the other hand, on the second region 21, since there is no effect of increasing the light emission intensity, light emitted mainly from the internal tissue of the test piece 5 is received by the light receiving unit 43. Therefore, according to such a sensor 1a, it is possible to inspect both the surface layer portion of the test piece 5 and the internal tissue from one test piece 5. Specifically, as shown in FIG. 9A, when fat cells 71 are used as the test piece 5, the emission spectrum mainly derived from the cell membrane 73 is received from the portion placed on the first region 20. The emission spectrum derived mainly from the cytoplasm 74 is received from the portion placed on the second region 21. Thereby, the test object with respect to the test piece 5 can be expanded.
 [第3実施形態]
 本発明の第3実施形態について図面を参照して説明する。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to the drawings.
 本発明のセンサ1を用いて試験片5からの蛍光強度を得る場合において、上述した実施例1~3、及び実施例5では標識色素を用いて、当該色素からの発光を受光することを想定して説明した。しかし、試験片5自体に自家発光性が存在する場合には、上記のような色素標識を行わなくても構わない。 In the case of obtaining the fluorescence intensity from the test piece 5 using the sensor 1 of the present invention, it is assumed that in Examples 1 to 3 and 5 described above, the labeling dye is used to receive light emitted from the dye. Explained. However, when the test piece 5 itself has a self-luminous property, the dye labeling as described above may not be performed.
  (実施例6)
 実施例1と同様の方法により作製されたセンサ1の保護層11の上面に、低発光量子収率を有する自家発光性の生体高分子コラーゲンの水溶液をスピンコートした。
(Example 6)
An aqueous solution of a self-luminous biopolymer collagen having a low luminescence quantum yield was spin-coated on the upper surface of the protective layer 11 of the sensor 1 produced by the same method as in Example 1.
  (比較例4)
 基板7に対し、実施例6と同様に、低発光量子収率を有する自家発光性の生体高分子コラーゲンの水溶液をスピンコートした。
(Comparative Example 4)
As in Example 6, the substrate 7 was spin-coated with an aqueous solution of self-luminous biopolymer collagen having a low luminescence quantum yield.
  (実施例7)
 実施例1と同様の方法により作製されたセンサ1の保護層11の上面に、低発光量子収率を有する自家発光性のリボフラビンの水溶液をスピンコートした。
(Example 7)
An aqueous solution of self-luminous riboflavin having a low emission quantum yield was spin-coated on the upper surface of the protective layer 11 of the sensor 1 produced by the same method as in Example 1.
  (比較例5)
 基板7に対し、実施例7と同様に、低発光量子収率を有する自家発光性のリボフラビンの水溶液をスピンコートした。
(Comparative Example 5)
Similarly to Example 7, the substrate 7 was spin-coated with an aqueous solution of self-luminous riboflavin having a low emission quantum yield.
 実施例6及び比較例4のそれぞれの素子に対し、図3に示す測定装置によって励起光を入射させて、受光部43で得られた発光のスペクトル分布を調べた結果を図12に示す。同様に、実施例7及び比較例5のそれぞれの素子に対し、図3に示す測定装置によって励起光を入射させて、受光部43で得られた発光のスペクトル分布を調べた結果を図13に示す。なお、図12及び図13において、横軸は光の波長、縦軸は発光強度を表している。 FIG. 12 shows the results of examining the spectral distribution of the luminescence obtained by the light receiving unit 43 by causing excitation light to enter the elements of Example 6 and Comparative Example 4 using the measurement apparatus shown in FIG. Similarly, FIG. 13 shows the results of examining the spectral distribution of the light emission obtained by the light receiving unit 43 when the excitation light is incident on the respective elements of Example 7 and Comparative Example 5 using the measuring apparatus shown in FIG. Show. 12 and 13, the horizontal axis represents the wavelength of light, and the vertical axis represents the emission intensity.
 図12を参照すると、実施例6の構成によれば、低発光量子収率を有する自家発光性の生体高分子コラーゲンは、増強電磁場形成層9によって生じる局在プラズモンとの保護層11を介した相互作用で発光量子収率が向上し、それに伴って生体高分子コラーゲンが発する光の光量が著しく増加していることが分かる。これに対し、比較例4の構成によれば、発光の増強効果はなく、自家発光性の生体高分子コラーゲンからの発光を受光することによる分析が困難であることが示唆される。 Referring to FIG. 12, according to the configuration of Example 6, the self-luminous biopolymer collagen having a low luminescence quantum yield passes through the protective layer 11 with the localized plasmon generated by the enhanced electromagnetic field forming layer 9. It can be seen that the quantum yield of light emission is improved by the interaction, and the amount of light emitted from the biopolymer collagen is significantly increased. On the other hand, according to the configuration of Comparative Example 4, there is no luminescence enhancement effect, and it is suggested that analysis by receiving light emitted from the self-luminous biopolymer collagen is difficult.
 同様に、図13を参照すると、実施例7の構成によれば、低発光量子収率を有する自家発光性のリボフラビンは、増強電磁場形成層9によって生じる局在プラズモンとの保護層11を介した相互作用で発光量子収率が向上し、それに伴ってリボフラビンが発する光の光量が著しく増加していることが分かる。これに対し、比較例5の構成によれば、発光の増強効果はなく、自家発光性のリボフラビンからの発光を受光することによる分析が困難であることが示唆される。 Similarly, referring to FIG. 13, according to the configuration of Example 7, the self-luminous riboflavin having a low emission quantum yield passes through the protective layer 11 with the localized plasmon generated by the enhanced electromagnetic field forming layer 9. It can be seen that the quantum yield of light emission is improved by the interaction, and the amount of light emitted by riboflavin is significantly increased. On the other hand, according to the configuration of Comparative Example 5, there is no effect of enhancing luminescence, and it is suggested that analysis by receiving light emitted from self-luminous riboflavin is difficult.
 [第4実施形態]
 本発明の第4実施形態について図面を参照して説明する。
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to the drawings.
 本実施形態におけるセンサは、上述した各実施形態のセンサ1が備える保護層11を、結晶性(配向性)を有する有機物の重合体で構成した点のみが異なり、他は共通である。 The sensor in this embodiment is different only in that the protective layer 11 provided in the sensor 1 of each embodiment described above is composed of an organic polymer having crystallinity (orientation), and the others are common.
 なお、この有機物の重合体としては、ポリメチルメタクリレートなどのアクリル系重合体、ポリビニルアルコールなどを利用することができる。この場合、保護層11の形成方法としては、保護層形成液をスピンコート法、デイップコート法、スプレーコート法、スリットコート法、バーコート法などを用いて基板7に滴下又は塗布することで実現できるが、スピンコート法は厚さが最も均一な保護層11を形成する方法として好適に用いることができる。 As the organic polymer, an acrylic polymer such as polymethyl methacrylate, polyvinyl alcohol, or the like can be used. In this case, the protective layer 11 is formed by dropping or applying the protective layer forming liquid onto the substrate 7 using a spin coat method, a dip coat method, a spray coat method, a slit coat method, a bar coat method, or the like. However, the spin coating method can be suitably used as a method for forming the protective layer 11 having the most uniform thickness.
 なお、この保護層11にハロゲン元素を含有させる場合、保護層形成液としては、溶媒中に所定の重合体およびハロゲンの金属塩を溶解させることにより、或いは溶媒中に所定の重合体が溶解されてなる重合体溶液と、溶媒中にハロゲンの金属塩が溶解されてなる金属塩溶液とを混合することにより、調製することができる。 When the protective layer 11 contains a halogen element, the protective layer forming liquid may be prepared by dissolving a predetermined polymer and a metal salt of a halogen in a solvent, or dissolving a predetermined polymer in the solvent. Can be prepared by mixing a polymer solution obtained by mixing a metal salt solution in which a halogen metal salt is dissolved in a solvent.
 保護層形成液を調製するための溶媒としては、用いられる重合体および金属塩に応じて適宜選択される。具体的には、用いられる重合体および金属塩を溶解し得るものであればよい。例えば、重合体としてポリビニルアルコール等の水溶性のものを用いる場合には、溶媒として水を用いることができる。また、重合体として水に不溶な重合体例えばポリメチルメタクリレートを用いる場合には、重合体溶液を調製するための溶媒として例えばシクロヘキサノンを用いると共に、金属塩溶液を調製するための溶媒として水とアセトンとの混合溶媒を用い、重合体溶液と金属塩溶液とを混合することによって、保護層形成液を調製することができる。 The solvent for preparing the protective layer forming liquid is appropriately selected according to the polymer and metal salt used. Specifically, any polymer that can dissolve the polymer and metal salt used may be used. For example, when a water-soluble polymer such as polyvinyl alcohol is used as the polymer, water can be used as the solvent. When a polymer insoluble in water such as polymethyl methacrylate is used as the polymer, for example, cyclohexanone is used as a solvent for preparing the polymer solution, and water and acetone are used as the solvent for preparing the metal salt solution. A protective layer forming solution can be prepared by mixing a polymer solution and a metal salt solution using a mixed solvent.
 保護層形成液中における重合体の含有割合は、上記塗布方法と目的とする保護膜の厚さとの組合せによって決定される。例えばスピンコート法(3000rpm)を用いてポリビニルアルコール膜をその水溶液から形成する場合において、膜厚を100nmに調整するために必要な重合体の含有割合は約4.5質量%である。保護層形成液中における金属塩の割合は、目的とする保護層11中のハロゲン元素の含有割合や、保護層形成液中の重合体の含有割合に応じて設定される。 The content ratio of the polymer in the protective layer forming liquid is determined by the combination of the above coating method and the target protective film thickness. For example, when a polyvinyl alcohol film is formed from the aqueous solution by using a spin coating method (3000 rpm), the content of the polymer necessary for adjusting the film thickness to 100 nm is about 4.5% by mass. The ratio of the metal salt in the protective layer forming liquid is set according to the content ratio of the halogen element in the target protective layer 11 and the content ratio of the polymer in the protective layer forming liquid.
  (実施例8)
 実施例1と同様の方法で、基板7上に増強電磁場形成層9としての多数の金属(Ag)微粒子10によるAg微粒子単層膜を形成した。
(Example 8)
In the same manner as in Example 1, an Ag fine particle monolayer film composed of a large number of metal (Ag) fine particles 10 as the enhanced electromagnetic field forming layer 9 was formed on the substrate 7.
 また、純水中に、5質量%のポリビニルアルコール(和光純薬工業(株)製、重合度約500)、及び0.2mmol/Lの塩化ナトリウムが溶解されてなる保護層形成液を調製した。その後、スピンコート法によって、基板7の表面に、調製した保護層形成液を塗布して約60℃で乾燥すると共に結晶化を促すことにより、基板7の表面部分を含む増強電磁場形成層9の表面上に保護層11を形成することでセンサ1を作製した。なお、保護層11は、結晶度が50%以上で厚さが110nmであった。 Also, a protective layer forming solution was prepared by dissolving 5% by mass of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization of about 500) and 0.2 mmol / L of sodium chloride in pure water. . Thereafter, the prepared protective layer forming solution is applied to the surface of the substrate 7 by spin coating, and dried at about 60 ° C., and crystallization is promoted, thereby enhancing the electromagnetic field forming layer 9 including the surface portion of the substrate 7. The sensor 1 was produced by forming the protective layer 11 on the surface. The protective layer 11 had a crystallinity of 50% or more and a thickness of 110 nm.
 そして、この保護層11の上面に、ローダミン6G色素の希薄エタノール溶液を3000回転でスピンコートすることにより、色素分子を保護層11の表面上に3×1011個/cmの密度で担持させた。 The upper surface of the protective layer 11 is spin-coated with a diluted ethanol solution of rhodamine 6G dye at 3000 revolutions so that the dye molecules are supported on the surface of the protective layer 11 at a density of 3 × 10 11 particles / cm 2. It was.
  (実施例9)
 保護層形成液を、以下のようにして調製されたものに変更したこと以外は、実施例6と同様にして光増強素子を製造した。すなわち、シクロヘキサノン(和光純薬工業(株)製)中に3質量%のポリメチルメタクリレート(和光純薬工業(株)製)が溶解されてなる重合体溶液を調製した。一方、純水とアセトンとが質量比で1:1の割合で混合されてなる混合溶媒中に、20mmol/Lの塩化ナトリウムが溶解されてなる金属塩溶液を調製した。そして、重合体溶液と金属塩溶液とを容量比9:1で混合することにより、保護層形成液を調製した。
Example 9
A light enhancement element was produced in the same manner as in Example 6 except that the protective layer forming solution was changed to one prepared as follows. That is, a polymer solution in which 3% by mass of polymethyl methacrylate (Wako Pure Chemical Industries, Ltd.) was dissolved in cyclohexanone (Wako Pure Chemical Industries, Ltd.) was prepared. On the other hand, a metal salt solution in which 20 mmol / L of sodium chloride was dissolved in a mixed solvent in which pure water and acetone were mixed at a mass ratio of 1: 1 was prepared. Then, a protective layer forming solution was prepared by mixing the polymer solution and the metal salt solution at a volume ratio of 9: 1.
 そして、図7と同様の方法により、実施例8及び実施例9のセンサ1に対し、励起光を照射して試料(色素分子)から発せられるラマン散乱光の強度を測定した。この結果を図14に示す。図7と同様に、図14のグラフにおいても、縦軸はラマン散乱強度(cps)を示し、横軸はラマンシフト(cm-1)を示す。図14のグラフより、保護層11を有機物の重合体で構成した場合であっても、強いラマン散乱信号が確認できており、保護層11の上面に光増強効果が伝搬できていることが分かる。 Then, the intensity of Raman scattered light emitted from the sample (dye molecule) was measured by irradiating the sensor 1 of Example 8 and Example 9 with excitation light by the same method as in FIG. The result is shown in FIG. Similarly to FIG. 7, in the graph of FIG. 14, the vertical axis indicates the Raman scattering intensity (cps), and the horizontal axis indicates the Raman shift (cm −1 ). From the graph of FIG. 14, even when the protective layer 11 is composed of an organic polymer, a strong Raman scattering signal can be confirmed, and it can be seen that the light enhancement effect can be propagated to the upper surface of the protective layer 11. .
 つまり、本実施形態のように、センサ1を有機物の重合体で構成した保護層11を有する構成とし、この保護層11の上面に、試験片5として細胞膜を有する生体物質を載置して光源部41から励起光を照射して、試験片5からのラマン散乱光又は蛍光のスペクトルを分析することで、第1実施形態と同様に試験片5の細胞膜の検査を行うことが可能である。 That is, as in the present embodiment, the sensor 1 includes a protective layer 11 made of an organic polymer, and a biological material having a cell membrane as a test piece 5 is placed on the upper surface of the protective layer 11 to provide a light source. By irradiating the excitation light from the part 41 and analyzing the spectrum of Raman scattered light or fluorescence from the test piece 5, it is possible to inspect the cell membrane of the test piece 5 as in the first embodiment.
 なお、実施例8及び実施例9では、いずれも保護層11にハロゲン元素を含有した構成としたが、保護層11として、ハロゲン元素を含有せずに有機物の重合体で構成しても構わない。 In each of Examples 8 and 9, the protective layer 11 contains a halogen element. However, the protective layer 11 may be made of an organic polymer without containing a halogen element. .
  [別実施形態]
 上記の各実施形態において、センサ1を、高反射層および誘電体層を更に具えた多層構造を有する構成としてもよい。このような構造のものにおいては、基板7の表面上に高反射層および誘電体層がこの順で形成され、誘電体層の表面上に増強電磁場形成層9が形成される。
[Another embodiment]
In each of the above embodiments, the sensor 1 may be configured to have a multilayer structure further including a highly reflective layer and a dielectric layer. In such a structure, the highly reflective layer and the dielectric layer are formed in this order on the surface of the substrate 7, and the enhanced electromagnetic field forming layer 9 is formed on the surface of the dielectric layer.
    1,1a   :  センサ
    5   :  試験片
    7   :  基板
    9   :  増強電磁場形成層
   10   :  金属微粒子
   11   :  保護層
   20   :  第1領域
   21   :  第2領域
   41   :  光源部
   43   :  受光部
   50   :  励起光源
   51   :  フィルタ
   52   :  集光レンズ
   53   :  フィルタ
   54   :  受光ヘッド
   55   :  分光器
   56   :  光検出器
   61   :  ミラー
   62   :  ハーフミラー
   71   :  脂肪細胞
   73   :  細胞膜
   74   :  細胞質
DESCRIPTION OF SYMBOLS 1, 1a: Sensor 5: Test piece 7: Board | substrate 9: Enhanced electromagnetic field formation layer 10: Metal fine particle 11: Protection layer 20: 1st area | region 21: 2nd area | region 41: Light source part 43: Light receiving part 50: Excitation light source 51: Filter 52: Condensing lens 53: Filter 54: Light receiving head 55: Spectrometer 56: Photo detector 61: Mirror 62: Half mirror 71: Fat cell 73: Cell membrane 74: Cytoplasm

Claims (6)

  1.  細胞膜を含む試験片の検査方法であって、
     基板と、前記基板の表面上に互いに独立して多数の金属微粒子が分散配置された増強電磁場形成層と、前記基板及び前記増強電磁場形成層の上層に形成された保護層とを有する光増強素子を準備する工程(a)、
     前記保護層の上面に検査対象となる前記試験片を載置する工程(b)、
     前記光増強素子に励起光を照射する工程(c)、
     及び、前記試験片からの発光を受光して発光スペクトルを測定する工程(d)を有することを特徴とする検査方法。
    A test method for a test piece including a cell membrane,
    An optical enhancement element comprising: a substrate; an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate; and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer Preparing step (a),
    Placing the test piece to be inspected on the upper surface of the protective layer (b),
    Irradiating the light enhancement element with excitation light (c),
    And an inspection method comprising the step (d) of measuring light emission spectrum by receiving light emitted from the test piece.
  2.  前記工程(c)が、前記試験片が載置された側とは反対側から前記光増強素子に励起光を照射する工程であることを特徴とする請求項1に記載の検査方法。 2. The inspection method according to claim 1, wherein the step (c) is a step of irradiating the light enhancement element with excitation light from a side opposite to the side on which the test piece is placed.
  3.  前記試験片からの発光が、ラマン散乱光又は蛍光であることを特徴とする請求項2に記載の検査方法。 3. The inspection method according to claim 2, wherein light emitted from the test piece is Raman scattered light or fluorescence.
  4.  前記保護層は、前記多数の金属微粒子に関連して配向性を有する無機物質、又は配向性を有する有機物の重合体で構成されていることを特徴とする請求項1~3のいずれか1項に記載の検査方法。 4. The protective layer according to claim 1, wherein the protective layer is composed of an inorganic substance having an orientation or an organic polymer having an orientation in association with the large number of metal fine particles. Inspection method described in 1.
  5.  前記保護層は、ハロゲン元素を含有することを特徴とする請求項1~3のいずれか1項に記載の検査方法。 4. The inspection method according to claim 1, wherein the protective layer contains a halogen element.
  6.  細胞膜を含む試験片の検査に利用されるセンサであって、
     基板と、前記基板の表面上に互いに独立して多数の金属微粒子が分散配置された増強電磁場形成層と、前記基板及び前記増強電磁場形成層の上層に形成された保護層とを有する光増強素子を構成しており、
     前記光増強素子は、前記基板上に前記増強電磁場形成層が形成され、当該増強電磁場形成層の上層に前記保護層が形成されている第1領域と、前記基板上に前記増強電磁場形成層が形成されておらず、前記保護層が形成されている第2領域とを有することを特徴とするセンサ。
    A sensor used to inspect a specimen including a cell membrane,
    An optical enhancement element comprising: a substrate; an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate; and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer Comprising
    The light enhancement element includes a first region in which the enhanced electromagnetic field forming layer is formed on the substrate, the protective layer is formed on the enhanced electromagnetic field forming layer, and the enhanced electromagnetic field forming layer on the substrate. And a second region in which the protective layer is formed.
PCT/JP2013/081663 2013-05-20 2013-11-25 Examination method and sensor WO2014188621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106652A JP2014228323A (en) 2013-05-20 2013-05-20 Inspection method and sensor
JP2013-106652 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014188621A1 true WO2014188621A1 (en) 2014-11-27

Family

ID=51933200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081663 WO2014188621A1 (en) 2013-05-20 2013-11-25 Examination method and sensor

Country Status (2)

Country Link
JP (1) JP2014228323A (en)
WO (1) WO2014188621A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815347B2 (en) * 2016-09-28 2023-11-14 Kla-Tencor Corporation Optical near-field metrology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514309A (en) * 2003-03-12 2006-04-27 インテル・コーポレーション Chemical sensitization of surface-sensitized Raman spectroscopy using lithium salts
JP2007525662A (en) * 2003-12-30 2007-09-06 インテル・コーポレーション Obtaining a protein profile of a biological sample using Raman spectroscopy
JP4317989B2 (en) * 2005-01-31 2009-08-19 独立行政法人産業技術総合研究所 Molecular sensing device and chip for enhancing Raman scattering
JP2011209108A (en) * 2010-03-30 2011-10-20 Nippon Telegr & Teleph Corp <Ntt> Substrate for measurement and method of measuring biochemical binding formation and biochemical binding amount using the same
JP2011208993A (en) * 2010-03-29 2011-10-20 Toyo Univ Analyzing substrate, and method for manufacturing the same
WO2012035717A1 (en) * 2010-09-17 2012-03-22 富士フイルム株式会社 Light measurement method and measurement device using optical-electric field enhancement device
WO2012086586A1 (en) * 2010-12-22 2012-06-28 国立大学法人京都大学 Raman-scattered light intensifying element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514309A (en) * 2003-03-12 2006-04-27 インテル・コーポレーション Chemical sensitization of surface-sensitized Raman spectroscopy using lithium salts
JP2007525662A (en) * 2003-12-30 2007-09-06 インテル・コーポレーション Obtaining a protein profile of a biological sample using Raman spectroscopy
JP4317989B2 (en) * 2005-01-31 2009-08-19 独立行政法人産業技術総合研究所 Molecular sensing device and chip for enhancing Raman scattering
JP2011208993A (en) * 2010-03-29 2011-10-20 Toyo Univ Analyzing substrate, and method for manufacturing the same
JP2011209108A (en) * 2010-03-30 2011-10-20 Nippon Telegr & Teleph Corp <Ntt> Substrate for measurement and method of measuring biochemical binding formation and biochemical binding amount using the same
WO2012035717A1 (en) * 2010-09-17 2012-03-22 富士フイルム株式会社 Light measurement method and measurement device using optical-electric field enhancement device
WO2012086586A1 (en) * 2010-12-22 2012-06-28 国立大学法人京都大学 Raman-scattered light intensifying element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOJI TAKAYOSHI ET AL.: "Ihosei Silica Hogoso o Yusuru Gin Nanoisland Maku ni yoru Chokyori Zokyo Hakko Zokyo Raman Sanran", 93RD ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2013) KOEN YOKOSHU II, 8 March 2013 (2013-03-08), pages 689 *

Also Published As

Publication number Publication date
JP2014228323A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
US11009460B2 (en) Optical microscopy with phototransformable optical labels
US20050186565A1 (en) Method and spectral/imaging device for optochemical sensing with plasmon-modified polarization
US9612245B2 (en) Multiple-pulse pumping for enhanced fluorescence detection and molecular imaging in cells and tissue
US7956989B2 (en) Surface plasmon assisted microscope
CN103837499A (en) Microcell spectral measurement device based on wideband surface plasma wave
Oheim et al. Supercritical angle fluorescence microscopy and spectroscopy
Dey et al. Single-molecule photobleaching: instrumentation and applications
WO2014188620A1 (en) Sensor and test method
WO2014188621A1 (en) Examination method and sensor
WO2014188622A1 (en) Examination method
Loumaigne et al. Influence of polarization and wavelength on two-photon excited luminescence of single gold nanospheres
US8581211B2 (en) Imaging method and system using substrate functionalization
Karedla et al. Single-Molecule Metal-Induced Energy Transfer (smMIET)
Karedla et al. Discussion and Outlook

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885192

Country of ref document: EP

Kind code of ref document: A1