WO2014188589A1 - Water-in-oil emulsion mold release agent for polyurethane foam molding - Google Patents

Water-in-oil emulsion mold release agent for polyurethane foam molding Download PDF

Info

Publication number
WO2014188589A1
WO2014188589A1 PCT/JP2013/064493 JP2013064493W WO2014188589A1 WO 2014188589 A1 WO2014188589 A1 WO 2014188589A1 JP 2013064493 W JP2013064493 W JP 2013064493W WO 2014188589 A1 WO2014188589 A1 WO 2014188589A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
release agent
oil emulsion
polyurethane foam
oil
Prior art date
Application number
PCT/JP2013/064493
Other languages
French (fr)
Japanese (ja)
Inventor
末信 杉田
邦博 内村
Original Assignee
有限会社エスアコード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エスアコード filed Critical 有限会社エスアコード
Priority to PCT/JP2013/064493 priority Critical patent/WO2014188589A1/en
Publication of WO2014188589A1 publication Critical patent/WO2014188589A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a mold release agent used for molding a polyurethane foam. More specifically, the present invention relates to a water-in-oil (W / O) emulsion type release agent in which an aqueous phase is dispersed in an oil phase.
  • W / O water-in-oil
  • a mold release agent is applied to the mold to prevent adhesion between the foam and the mold, improving workability and reducing the defective rate.
  • the mold temperature during curing is usually set to 20 to 60 ° C.
  • a mold release agent used for molding such a semi-rigid polyurethane foam various waxes and a composition obtained by mixing or dispersing silicone or petrolatum or hydrocarbon oil alone or mixed in a low-boiling industrial gasoline or chlorinated solvent. Often used are solvent-based mold release agents.
  • HR foam A highly elastic polyurethane foam (hereinafter abbreviated as HR foam) is usually produced by curing in a low temperature range to a medium temperature range (45 to 70 ° C.).
  • a mold release agent used for molding this HR foam a solvent-type mold release agent in which various waxes are dispersed in an organic solvent is frequently used (see Patent Document 1).
  • water-in-oil (W / O) emulsions and oil-in-water (O / W) emulsion release agents are proposed as mold release agents for polyurethane foam molding.
  • the water-in-oil emulsion release agent has less influence on the human body and the environment and is easier to maintain than the solvent-based release agent.
  • water-in-oil emulsion release agents are superior in wettability compared to oil-in-water emulsion release agents, and are excellent in mold release properties and surface properties of molded products (low cell roughness). There is an advantage.
  • water-in-oil emulsion mold release agents are not sufficient in properties such as viscosity and drying properties when cured at mold temperatures ranging from room temperature to medium temperature, and mold release properties and molded products In view of the surface characteristics of the resin, it has not yet achieved the same performance as the solvent-based mold release agent.
  • the present invention has been made in view of the current situation, and its purpose is a water-in-oil emulsion type water-in-oil emulsion mold release agent for polyurethane foam molding, which is superior to conventional configurations. It is to provide a product having the above characteristics.
  • the present inventors have used a nonionic surfactant as an emulsifier for a water-in-oil (W / O) emulsion mold release agent, and have a specific chlorination in the aqueous phase. It has been found that the properties as a release agent for molding polyurethane foam can be improved by dissolving the product, and the present invention has been completed.
  • the present invention is a water-in-oil emulsion in which an aqueous phase and an oil phase are emulsified using a nonionic surfactant, wherein a chloride is dissolved in the aqueous phase, and the metal of the chloride is It is a water-in-oil emulsion release agent for polyurethane foam molding, which is at least one selected from sodium and calcium.
  • a water-in-oil emulsion mold release agent for molding polyurethane foam which has a lower viscosity than conventional products and has excellent storage stability and drying properties.
  • the water-in-oil emulsion release agent for molding polyurethane foam of the present invention (hereinafter abbreviated as water-in-oil emulsion release agent) is an oil obtained by emulsifying a water phase and an oil phase using a nonionic surfactant.
  • the oil phase is mainly composed of a solvent, waxes, and the nonionic surfactant, but may contain other components as necessary.
  • both nonpolar solvents and polar solvents can be used. These may be used singly or in combination of two or more as long as they form a single phase. Since the polar solvent interacts with the nonionic surfactant by hydrogen bonding or the like, it has the effect of improving the storage stability of the emulsion. Therefore, in the present invention, it is preferable to use a nonpolar solvent mixed with a polar solvent as a solvent.
  • non-polar solvent petroleum hydrocarbon solvents such as naphthenic, paraffinic, and isoparaffinic solvents can be used.
  • aliphatic saturated hydrocarbons such as dodecane, manufactured by ExxonMobil ⁇ Isopar, Exol ⁇ (All are registered trademarks) and other companies' products. These can be used alone or in combination of two or more.
  • polar solvent examples include ester solvents, higher fatty acid solvents, ether solvents and the like. These can be used alone or in combination of two or more.
  • ester solvent examples include methyl oleate, ethyl oleate, isopropyl oleate, butyl oleate, hexyl oleate, methyl linoleate, isobutyl linoleate, ethyl linoleate, butyl stearate, hexyl stearate, and isooctyl stearate.
  • examples include trimethylolpropane acid and glyceryl tri-2-ethylhexanoate.
  • Examples of the higher fatty acid solvents include isononanoic acid, isomyristic acid, hexadecanoic acid, isopalmitic acid, oleic acid, and isostearic acid.
  • ether solvent examples include diethyl glycol monobutyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol dibutyl ether and the like.
  • waxes examples include non-polar waxes such as polyethylene wax or microcrystalline wax and paraffin wax having a melting point of 40 to 110 ° C. and 25 ° C. of 5 to 150, a weight average molecular weight of 500 to 1000, An ethylene / propylene copolymer wax having a melting point of 75 to 105 ° C. is preferred. If necessary, silicone oils may also be added and used. These can be used alone or in combination of two or more.
  • non-polar waxes such as polyethylene wax or microcrystalline wax and paraffin wax having a melting point of 40 to 110 ° C. and 25 ° C. of 5 to 150, a weight average molecular weight of 500 to 1000, An ethylene / propylene copolymer wax having a melting point of 75 to 105 ° C. is preferred.
  • silicone oils may also be added and used. These can be used alone or in combination of two or more.
  • the waxes are preferably contained in a range of 0.01 to 20% by mass with respect to the total amount of the release agent.
  • the nonionic surfactant is not particularly limited, but for example, sorbitan higher fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate and the like.
  • sorbitan higher fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate and the like.
  • fatty acid glycerides, polyglycerin fatty acid esters, fatty acid diglycerides, and ethylene oxide adducts such as higher alcohols, alkylphenols, and fatty acids.
  • sorbitan fatty acid esters that form a stable water-in-oil emulsion in a water-rich system are particularly preferred as the nonionic surfactant.
  • the sorbitan fatty acid ester here means an esterified product of sorbitan and a fatty acid.
  • the fatty acid is preferably a fatty acid having 8 to 24 carbon atoms, more preferably an oxy fatty acid.
  • the HLB of the nonionic surfactant is preferably 3 to 8 from the viewpoint of easily forming a water-in-oil emulsion, and more preferably 3 to 5 from the viewpoint of improving the dispersion stability.
  • the content of the nonionic surfactant is preferably 0.1 to 20% by mass in terms of the solid content weight ratio with respect to the total amount of the release agent. More preferably, it is 0.2 to 15% by mass, and still more preferably 0.3 to 12% by mass.
  • the content of the nonionic surfactant is less than 0.1% by mass, the water-in-oil emulsion may become unstable depending on the components.
  • the content of the nonionic surfactant exceeds 20% by mass, the viscosity increases depending on the type of the nonionic surfactant, which may not be suitable for polyurethane foam molding applications.
  • the oil phase can be prepared by, for example, supplying all components in a known disperser such as a ball mill in a batch or divided and dispersing the mixture, and passing it through a known filter such as a membrane filter, if desired.
  • a known disperser such as a ball mill
  • a filter such as a membrane filter
  • the remaining components are added to the dispersion and passed through a filter.
  • the aqueous phase is constituted by dissolving chloride in water.
  • the chloride at least one metal salt selected from sodium and calcium is used.
  • the drying property of the water-in-oil emulsion release agent can be improved. Since the mold release agent applied to the mold needs to be dried before molding, the release agent with higher drying property can shorten the working time. Surface roughness of the molded product due to moisture remaining is less likely to occur.
  • the storage stability of the water-in-oil emulsion release agent can be improved by dissolving the chloride in the aqueous phase.
  • the water-in-oil emulsion is stable, and even when stored for a long time, the water phase and the oil phase do not separate.
  • the chloride is preferably a sodium salt, and particularly preferably sodium chloride.
  • Sodium chloride is preferably dissolved in an aqueous phase in an amount of 0.01 to 5% by mass based on the total amount of the release agent.
  • the aqueous phase may further contain an electrolyte, a humectant, a fungicide, a preservative, a pH adjuster, a flame retardant, and the like as necessary.
  • the water-in-oil emulsion release agent of the present invention further contains bubbles having a non-combustible gas diameter of 50 microns or less (hereinafter referred to as microbubbles).
  • the viscosity of the release agent can be further reduced by incorporating microbubbles of non-combustible gas.
  • the microbubbles of incombustible gas can be mixed in the release agent by, for example, forcibly stirring while injecting the incombustible gas and shearing the bubbles to 50 microns or less during emulsification of the release agent.
  • the water-in-oil emulsion release agent of the present invention can be produced by mixing and emulsifying the above oil phase and water phase.
  • the aqueous phase and the oil phase may be prepared separately in advance, and then the aqueous phase solution may be added to the oil phase solution to emulsify, or the components constituting the oil phase may be added to the aqueous phase collectively or individually. Thereafter, it may be emulsified.
  • a known emulsifier such as a disper mixer or a homomixer can be used for the production.
  • the particle size of the aqueous phase dispersed by emulsification preferably has a particle size distribution of 0.1 to 50 microns.
  • the polyurethane foam release agent of the present invention is preferably blended so that the oil phase is 33 to 50% by mass and the aqueous phase is 67 to 50% by mass.
  • the ratio of the water phase exceeds 67% by mass, it becomes difficult to form a water-in-oil emulsion.
  • the aqueous phase is 50% by mass or more, the release agent is difficult to burn and safety is increased.
  • the blending ratio of both phases is 40 to 50% by mass of the oil phase and 60 to 50% by mass of the aqueous phase. It is particularly preferable to do this.
  • the viscosity at 25 ° C. of the water-in-oil emulsion release agent of the present invention is preferably set in the range of 3 to 300 mPa ⁇ s, more preferably set in the range of 50 to 250 mPa ⁇ s, and more preferably 100 to 200 mPa ⁇ s.
  • a range of s is particularly preferable. If a viscosity is in the said range, a mold release agent can be appropriately apply
  • the viscosity of the water-in-oil emulsion release agent can be adjusted by changing the components of the oil phase and the ratio of the oil phase to the water phase.
  • the viscosity of the water-in-oil emulsion release agent can be reduced.
  • the storage stability of the release agent tends to decrease due to a decrease in the amount of the ionic surfactant.
  • the viscosity can be lowered and the storage stability can be improved, so that the storage stability of the release agent is impaired.
  • the viscosity of the release agent can be adjusted appropriately.
  • the water-in-oil emulsion release agent of the present invention can be suitably used for molding a polyurethane foam in which the mold temperature during curing is from room temperature to medium temperature (20 to 70 ° C.).
  • Examples of the polyurethane foam molded using the water-in-oil emulsion release agent of the present invention include rigid polyurethane foam, semi-rigid polyurethane foam, and highly elastic polyurethane foam.
  • Examples 1 to 3 The oil phase and the water phase are mixed in the oil phase having the composition shown in Table 1 while stirring the water phase component shown in Table 1 at 3,000 rpm for 5 minutes using a high-speed homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.). Drip until the ratio shown in. Then, the stirring process which stirs for 5 minutes at 10,000 rpm is performed.
  • the water-in-oil emulsion release agents of Examples 1 to 3, which are examples of the present invention, were prepared.
  • carbon dioxide microbubbles were mixed in the liquid by stirring while injecting carbon dioxide gas into the liquid to shear the bubbles.
  • Example 4 A water-in-oil emulsion release agent of Example 4, which is an example of the present invention, was prepared in the same manner as in Example 1 except that carbon dioxide microbubbles were not mixed in the stirring step. As shown in Table 1, Example 4 has the same composition as Example 1 except that the liquid does not contain carbon dioxide microbubbles.
  • Comparative Examples 1 to 3 The water-in-oil emulsion release agents of Comparative Examples 1 to 3 having the compositions shown in Table 1 were prepared in the same manner as in Examples 1 to 3, except that carbon dioxide microbubbles were not mixed in the stirring step.
  • the compositions of Comparative Examples 1 to 3 are almost the same as the compositions of Examples 1 to 3 except that they do not contain chloride and carbon dioxide microbubbles.
  • Comparative Examples 1 to 3 had a viscosity higher than that suitable for application to the mold, poor drying properties, and extremely poor storage stability. In contrast, Examples 1 to 3 have viscosities suitable for application to molds, are excellent in drying properties and storage stability, and have characteristics required for mold release agents for polyurethane foam molding. Was enough. As shown in Table 1, the difference between Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 is whether or not they contain chloride and microbubbles. . Therefore, this result suggests that the chlorides and microbubbles contained in Examples 1 to 3 contribute to a decrease in the viscosity of the release agent and an improvement in storage stability and drying property.
  • Example 4 was lower in viscosity than Comparative Example 1 and was excellent in drying property and storage stability. On the other hand, compared with Example 1, Example 4 had a high viscosity and was inferior in terms of drying properties.
  • Example 4 is a composition in which sodium chloride is dissolved in the aqueous phase of Comparative Example 1, and Example 1 is a composition obtained by further adding carbon dioxide microbubbles to Example 4. . Therefore, this result shows that even in the absence of microbubbles, by dissolving sodium chloride in the aqueous phase, the viscosity of the water-in-oil emulsion release agent can be reduced, and storage stability and drying can be reduced. It suggests that it can improve the sex. In addition to the dissolution of sodium chloride in the aqueous phase, this result further reduced the viscosity of the water-in-oil emulsion release agent by adding microbubbles, and further improved the drying properties. Suggest to get.
  • Examples 5 to 7 In the same manner as in Example 1, water-in-oil emulsion release agents of Examples 5 to 7 which are examples of the present invention having the composition shown in Table 3 were prepared.
  • Example 8 A water-in-oil emulsion release agent of Example 8, which is an example of the present invention, was prepared in the same manner as in Example 1 except that carbon dioxide microbubbles were not mixed in the stirring step. As shown in Table 3, the composition of Example 8 is the same as that of Example 5 except that it does not contain carbon dioxide microbubbles.
  • Comparative Examples 4 to 6 According to a conventional method, release agents of Comparative Examples 4 to 6 having the compositions shown in Table 3 were prepared. These are conventionally used oil-in-water (O / W) emulsion release agents.
  • a release agent of Comparative Example 7 having the composition shown in Table 3 was prepared.
  • This is a solvent-based mold release agent in which wax is dispersed in a second petroleum solvent (boiling point 150 to 200 ° C.) and is currently used as a main product for molding HR foam.
  • release agent The temperature of an iron mold (180 mm x 250 mm x 30 mm) was adjusted to 55 ° C, and the solid content of the release agent was about 10 for each of Examples 5 to 8 and Comparative Examples 4 to 7. What was adjusted to be% was applied with about 20 g / m 2 with an air gun and left to dry for about 60 seconds.
  • Polyurethane foam molded urethane foam raw material Polyol component 100 parts by weight TDI-80 43 parts by weight The above urethane foam raw material is stirred at 1500 rpm for 10 seconds at room temperature, and then the release agent is applied as described above for 60 seconds. The reaction was completed by pouring into a dried mold (55 ° C.), closing the lid, and curing in an oven at 60 ° C. for 7 minutes.
  • Examples 5 to 8 good results were obtained in both releasability and surface characteristics. This result shows that Examples 5 to 8 have sufficient characteristics as a release agent for molding polyurethane foam.
  • Examples 5 to 7 containing microbubbles showed excellent results in both releasability and surface characteristics compared to Example 8 not containing microbubbles. This is considered to be due to the fact that the viscosity of the release agent is lowered and the drying property is improved by the action of the microbubbles.
  • the water-in-oil emulsion mold release agent of the present invention has a low viscosity and excellent storage stability compared with existing water-in-oil emulsion mold release agents, and the drying property of the mold release agent is remarkably improved. Therefore, it is expected to be used for molding polyurethane foams such as semi-rigid polyurethane foams and HR foams, in which the mold temperature during curing is from room temperature to medium temperature. Since the water-in-oil emulsion release agent of the present invention has little influence on the human body and the environment and is easy to maintain, it can be used as a substitute for solvent-based release agents in the polyurethane foam molding field. It is expected to improve safety. In addition, in the HR foam molding field where a release agent having a second petroleum having poor drying property as a main solvent is used, the water-in-oil emulsion release agent of the present invention having excellent drying property is particularly useful. Is considered high.

Abstract

Provided is a water-in-oil (W/O) emulsion mold release agent which has excellent drying properties, low viscosity and excellent storage stability and is suitable for polyurethane foam molding. A water-in-oil emulsion mold release agent for polyurethane foam molding, which is obtained by emulsifying an aqueous phase and an oil phase using a nonionic surfactant, and wherein the aqueous phase contains sodium chloride and/or calcium chloride. It is preferable that this mold release agent contains air bubbles of a non-combustible gas having a size of 50 microns or less, said air bubbles serving to promote the drying properties and the like.

Description

ポリウレタンフォーム成形用油中水型エマルション離型剤Water-in-oil emulsion mold release agent for polyurethane foam molding
 本発明は、ポリウレタンフォームを成形するのに用いられる離型剤に関するものである。さらに詳細には、油相中に水相が分散してなる油中水(W/O)型エマルションタイプの離型剤に関する。 The present invention relates to a mold release agent used for molding a polyurethane foam. More specifically, the present invention relates to a water-in-oil (W / O) emulsion type release agent in which an aqueous phase is dispersed in an oil phase.
 ポリウレタンフォームの成形時にフォームと金型との付着を防止するために離型剤を金型に塗布し、作業性の向上と不良率の減少などがはかられている。アームレスト、ヘッドレスト、クラッシュパッド等の半硬質ポリウレタンフォームの成形では、通常、キュアーする際の金型温度は20~60℃に設定される。こうした半硬質ポリウレタンフォームの成形に用いられる離型剤としては、各種ワックス及びシリコーンあるいはペトロラタムや炭化水素油を単独乃至は混合した組成物を、低沸点の工業用ガソリンあるいは塩素化溶剤に溶解または分散させた溶剤系の離型剤が多用されている。また、高弾性ポリウレタンフォーム(以下HRフォームと略記)は、通常、低温域から中温域(45~70℃)でキュアーして生産される。このHRフォームの成形に用いられる離型剤には、各種ワックスを有機溶剤に分散させた溶剤系の離型剤が多用されている(特許文献1参照)。 ¡When a polyurethane foam is molded, a mold release agent is applied to the mold to prevent adhesion between the foam and the mold, improving workability and reducing the defective rate. In the molding of semi-rigid polyurethane foams such as armrests, headrests and crash pads, the mold temperature during curing is usually set to 20 to 60 ° C. As a mold release agent used for molding such a semi-rigid polyurethane foam, various waxes and a composition obtained by mixing or dispersing silicone or petrolatum or hydrocarbon oil alone or mixed in a low-boiling industrial gasoline or chlorinated solvent. Often used are solvent-based mold release agents. A highly elastic polyurethane foam (hereinafter abbreviated as HR foam) is usually produced by curing in a low temperature range to a medium temperature range (45 to 70 ° C.). As a mold release agent used for molding this HR foam, a solvent-type mold release agent in which various waxes are dispersed in an organic solvent is frequently used (see Patent Document 1).
 また、ポリウレタンフォーム成形用の離型剤としては、上記以外の溶剤系離型剤以外に、油中水(W/O)型エマルションや水中油型(O/W)エマルションの離型剤が提案されている(特許文献2参照)。油中水型エマルション離型剤は、上記溶剤系離型剤と比べると、人体や環境に及ぼす影響が少なく、保守管理も容易である。また、油中水型エマルション離型剤は、水中油型のエマルション離型剤と比べると、ぬれ性に優れ、金型の離型性や成形品の表面特性(セル荒れの少なさ)に優れるという利点がある。しかしながら、従来の油中水型エマルション離型剤は、常温から中温域の金型温度でキュアーさせるものに関しては、粘度や乾燥性などの特性が十分でなく、金型の離型性や成形品の表面特性などの点で、溶剤系離型剤と同等の性能を発揮するには至っていない。 In addition to solvent-based mold release agents other than those described above, water-in-oil (W / O) emulsions and oil-in-water (O / W) emulsion release agents are proposed as mold release agents for polyurethane foam molding. (See Patent Document 2). The water-in-oil emulsion release agent has less influence on the human body and the environment and is easier to maintain than the solvent-based release agent. In addition, water-in-oil emulsion release agents are superior in wettability compared to oil-in-water emulsion release agents, and are excellent in mold release properties and surface properties of molded products (low cell roughness). There is an advantage. However, conventional water-in-oil emulsion mold release agents are not sufficient in properties such as viscosity and drying properties when cured at mold temperatures ranging from room temperature to medium temperature, and mold release properties and molded products In view of the surface characteristics of the resin, it has not yet achieved the same performance as the solvent-based mold release agent.
特開2004-34464号公報JP 2004-34464 A 特開2010-58310号公報JP 2010-58310 A
 本発明は、かかる現状に鑑みて為されたものであり、その目的は、油中水型エマルションタイプのポリウレタンフォーム成形用油中水型エマルション離型剤であって、従来構成に比べて、優れた特性を有するものを提供することにある。 The present invention has been made in view of the current situation, and its purpose is a water-in-oil emulsion type water-in-oil emulsion mold release agent for polyurethane foam molding, which is superior to conventional configurations. It is to provide a product having the above characteristics.
 本発明者等は、上記目的の下に鋭意研究した結果、油中水(W/O)型エマルション離型剤の乳化剤として非イオン性界面活性剤を使用し、且つ、水相に特定の塩化物を溶解させることにより、ポリウレタンフォーム成形用離型剤としての特性を向上できることを見出し、本発明を完成するに至った。 As a result of diligent research under the above-mentioned objectives, the present inventors have used a nonionic surfactant as an emulsifier for a water-in-oil (W / O) emulsion mold release agent, and have a specific chlorination in the aqueous phase. It has been found that the properties as a release agent for molding polyurethane foam can be improved by dissolving the product, and the present invention has been completed.
 すなわち、本発明は、非イオン性界面活性剤を用いて水相と油相を乳化した油中水型エマルションであって 前記水相には塩化物が溶解しており、該塩化物の金属はナトリウム及びカルシウムから選ばれた少なくとも1種であるポリウレタンフォーム成形用油中水型エマルション離型剤である。 That is, the present invention is a water-in-oil emulsion in which an aqueous phase and an oil phase are emulsified using a nonionic surfactant, wherein a chloride is dissolved in the aqueous phase, and the metal of the chloride is It is a water-in-oil emulsion release agent for polyurethane foam molding, which is at least one selected from sodium and calcium.
 本発明によれば、従来品に比べて、粘度が低く、かつ、保存安定性と乾燥性に優れたポリウレタンフォーム成形用油中水型エマルション離型剤を実現できる。 According to the present invention, it is possible to realize a water-in-oil emulsion mold release agent for molding polyurethane foam, which has a lower viscosity than conventional products and has excellent storage stability and drying properties.
 以下、本発明の実施形態を詳細に説明する。
 本発明のポリウレタンフォーム成形用油中水型エマルション離型剤(以下、油中水型エマルション離型剤と略す。)は、非イオン性界面活性剤を用いて水相と油相を乳化した油中水型エマルションであって 前記水相には塩化物が溶解しており、該塩化物の金属はナトリウム及びカルシウムから選ばれた少なくとも1種であることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The water-in-oil emulsion release agent for molding polyurethane foam of the present invention (hereinafter abbreviated as water-in-oil emulsion release agent) is an oil obtained by emulsifying a water phase and an oil phase using a nonionic surfactant. A water-in-water emulsion, wherein a chloride is dissolved in the aqueous phase, and the metal of the chloride is at least one selected from sodium and calcium.
 前記油相は、溶剤、ワックス類、前記非イオン性界面活性剤から主として構成されるが、必要に応じて、その他の成分を含有してもよい。 The oil phase is mainly composed of a solvent, waxes, and the nonionic surfactant, but may contain other components as necessary.
 前記溶剤としては、非極性溶剤及び極性溶剤のいずれも使用できる。これらは、単独で使用してもよく、又は、単一の相を形成する限り、2種以上組み合わせて使用できる。極性溶剤は、非イオン性界面活性剤との水素結合等による相互作用が働くので、エマルションの保存安定性を向上させる作用がある。したがって、本発明では、溶剤として、非極性溶剤に極性溶剤を混合して使用することが好ましい。 As the solvent, both nonpolar solvents and polar solvents can be used. These may be used singly or in combination of two or more as long as they form a single phase. Since the polar solvent interacts with the nonionic surfactant by hydrogen bonding or the like, it has the effect of improving the storage stability of the emulsion. Therefore, in the present invention, it is preferable to use a nonpolar solvent mixed with a polar solvent as a solvent.
 前記非極性溶剤としては、ナフテン系、パラフィン系、イソパラフィン系等の石油系炭化水素溶剤を使用でき、具体的には、ドデカンなどの脂肪族飽和炭化水素類、エクソンモービル社製{アイソパー、エクソール}(いずれも登録商標)、その他数社の製品等が挙げられる。これらは、単独で、又は、2種以上組み合わせて用いることができる。 As the non-polar solvent, petroleum hydrocarbon solvents such as naphthenic, paraffinic, and isoparaffinic solvents can be used. Specifically, aliphatic saturated hydrocarbons such as dodecane, manufactured by ExxonMobil {Isopar, Exol} (All are registered trademarks) and other companies' products. These can be used alone or in combination of two or more.
 前記極性溶剤としては、エステル系溶剤、高級脂肪酸系溶剤、エーテル系溶剤等が挙げられる。これらは、単独で、又は、2種以上組み合わせて用いることができる。 Examples of the polar solvent include ester solvents, higher fatty acid solvents, ether solvents and the like. These can be used alone or in combination of two or more.
 前記エステル系溶剤としては、オレイン酸メチル、オレイン酸エチル、オレイン酸イソプロピル、オレイン酸ブチル、オレイン酸ヘキシル、リノール酸メチル、リノール酸イソブチル、リノール酸エチル、ステアリン酸ブチル、ステアリン酸ヘキシル、ステアリン酸イソオクチル、イソステアリン酸イソブチル、ビバリン酸2-オクチルドデシル、大豆油メチル、大豆油イソブチル、トール油メチル、トール油イソブチル、アジピン酸ジイソプロピル、セバシン酸ジイソプロピル、セバシン酸ジエチル、モノカプリン酸プロピレングリコール、トリ2エチルヘキサン酸トリメチロールプロパン、トリ2エチルヘキサン酸グリセリルなどが挙げられる。 Examples of the ester solvent include methyl oleate, ethyl oleate, isopropyl oleate, butyl oleate, hexyl oleate, methyl linoleate, isobutyl linoleate, ethyl linoleate, butyl stearate, hexyl stearate, and isooctyl stearate. , Isobutyl isostearate, 2-octyldodecyl bivalate, soybean oil methyl, soybean oil isobutyl, tall oil methyl, tall oil isobutyl, diisopropyl adipate, diisopropyl sebacate, diethyl sebacate, propylene glycol monocaprate, tri-2-ethylhexane Examples include trimethylolpropane acid and glyceryl tri-2-ethylhexanoate.
 前記高級脂肪酸系溶剤としては、イソノナン酸、イソミリスチン酸、ヘキサデカン酸、イソパルミチン酸、オレイン酸、イソステアリン酸等が挙げられる。 Examples of the higher fatty acid solvents include isononanoic acid, isomyristic acid, hexadecanoic acid, isopalmitic acid, oleic acid, and isostearic acid.
 前記エーテル系溶剤としては、ジエチルグリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジブチルエーテル等が挙げられる。 Examples of the ether solvent include diethyl glycol monobutyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, propylene glycol dibutyl ether and the like.
 前記ワックス類としては、融点が40~110℃で25℃の針入度が5~150であるポリエチレンワックスまたはマイクロクリスタリンワックスやパラフィンワックス等の無極性ワックスや、重量平均分子量が500~1000で、融点が75~105℃であるエチレン/プロピレン共重合体ワックスであることが好ましい。必要に応じてシリコーンオイル類も添加して使用してもよい。これらは、単独で、又は、2種以上組み合わせて用いることができる。 Examples of the waxes include non-polar waxes such as polyethylene wax or microcrystalline wax and paraffin wax having a melting point of 40 to 110 ° C. and 25 ° C. of 5 to 150, a weight average molecular weight of 500 to 1000, An ethylene / propylene copolymer wax having a melting point of 75 to 105 ° C. is preferred. If necessary, silicone oils may also be added and used. These can be used alone or in combination of two or more.
 前記ワックス類は、離型剤全量に対して0.01~20質量%の範囲で含有されることが好ましい。 The waxes are preferably contained in a range of 0.01 to 20% by mass with respect to the total amount of the release agent.
 前記非イオン性界面活性剤としては、特に制限されるものではないが、例えばソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリステアレート、ソルビタンモノオレエート等のソルビタン高級脂肪酸エステル、脂肪酸グリセリド、ポリグリセリン脂肪酸エステル、脂肪酸ジグリセリド、及び高級アルコール、アルキルフェノール、脂肪酸等の酸化エチレン付加物等を挙げることができる。 The nonionic surfactant is not particularly limited, but for example, sorbitan higher fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate and the like. And fatty acid glycerides, polyglycerin fatty acid esters, fatty acid diglycerides, and ethylene oxide adducts such as higher alcohols, alkylphenols, and fatty acids.
 上記非イオン性界面活性剤のうち、水の多い系で安定な油中水型エマルションを形成するソルビタン脂肪酸エステルが、非イオン性界面活性剤として特に好ましい。ここでいうソルビタン脂肪酸エステルとはソルビタンと脂肪酸のエステル化物を言う。脂肪酸としては、炭素数8~24の脂肪酸が好ましく、オキシ脂肪酸であることがより好ましい。 Among the nonionic surfactants, sorbitan fatty acid esters that form a stable water-in-oil emulsion in a water-rich system are particularly preferred as the nonionic surfactant. The sorbitan fatty acid ester here means an esterified product of sorbitan and a fatty acid. The fatty acid is preferably a fatty acid having 8 to 24 carbon atoms, more preferably an oxy fatty acid.
 非イオン性界面活性剤のHLBは、油中水型エマルションを形成しやすい点から、3~8が好ましく、分散安定性が良くなる点から、3~5がより好ましい。 The HLB of the nonionic surfactant is preferably 3 to 8 from the viewpoint of easily forming a water-in-oil emulsion, and more preferably 3 to 5 from the viewpoint of improving the dispersion stability.
 本発明における非イオン系界面活性剤の含有量は、離型剤全量に対し、固形分重量比で0.1~20質量%であることが好ましく。より好ましくは0.2~15質量%であり、更に好ましくは0.3~12質量%である。非イオン系界面活性剤の含有量が0.1質量%に満たない場合は、成分によっては油中水型エマルションが不安定となることがある。また、非イオン系界面活性剤の含有量が20質量%を超えた場合は、非イオン性界面活性剤の種類によっては、粘度が高くなり、ポリウレタンフォーム成型用途に適さなくなるおそれがある。 In the present invention, the content of the nonionic surfactant is preferably 0.1 to 20% by mass in terms of the solid content weight ratio with respect to the total amount of the release agent. More preferably, it is 0.2 to 15% by mass, and still more preferably 0.3 to 12% by mass. When the content of the nonionic surfactant is less than 0.1% by mass, the water-in-oil emulsion may become unstable depending on the components. In addition, when the content of the nonionic surfactant exceeds 20% by mass, the viscosity increases depending on the type of the nonionic surfactant, which may not be suitable for polyurethane foam molding applications.
 油相は、例えばボールミル等の公知の分散機に全成分を一括又は分割して投入して分散させ、所望により、メンブレンフィルター等の公知のろ過機を通すことにより調製できる。例えば、予め溶剤の一部とワックス類の全量を均一に混合させた混合液を調製して分散機にて分散させた後、この分散液に残りの成分を添加してろ過機を通すことにより調製することができる。 The oil phase can be prepared by, for example, supplying all components in a known disperser such as a ball mill in a batch or divided and dispersing the mixture, and passing it through a known filter such as a membrane filter, if desired. For example, by preparing a mixed solution in which a part of the solvent and the whole amount of the wax are uniformly mixed in advance and dispersing in a disperser, the remaining components are added to the dispersion and passed through a filter. Can be prepared.
 水相は、水に塩化物を溶解して構成される。本発明においては、該塩化物として、ナトリウム及びカルシウムから選ばれた少なくとも1種の金属の塩が用いられる。水相にかかる塩化物を溶解させることで、油中水型エマルション離型剤の粘度を低下させることができる。離型剤の粘度が低くなれば、金型に吹き付ける際の粒子が小さくなって、金型の表面に離型剤をより均一に塗布可能となるため、成形品の表面荒れを低減し、また、離型性を向上させることができる。 The aqueous phase is constituted by dissolving chloride in water. In the present invention, as the chloride, at least one metal salt selected from sodium and calcium is used. By dissolving the chloride applied to the aqueous phase, the viscosity of the water-in-oil emulsion release agent can be reduced. If the viscosity of the release agent is lowered, the particles when sprayed onto the mold become smaller, and the release agent can be more uniformly applied to the surface of the mold, reducing the surface roughness of the molded product, and , Mold releasability can be improved.
 また、水相に上記塩化物を溶解させることで、油中水型エマルション離型剤の乾燥性を向上させることができる。金型に塗布した離型剤は、成形前に乾燥させる必要があるため、乾燥性が高い離型剤ほど、作業時間を短縮することができ、また、金型表面に離型剤の溶剤や水分が残留することによる成形品の表面荒れが生じにくくなる。 Also, by drying the chloride in the aqueous phase, the drying property of the water-in-oil emulsion release agent can be improved. Since the mold release agent applied to the mold needs to be dried before molding, the release agent with higher drying property can shorten the working time. Surface roughness of the molded product due to moisture remaining is less likely to occur.
 また、水相に上記塩化物を溶解させることで、油中水型エマルション離型剤の保存安定性も向上させることができる。具体的には、油中水型エマルションが安定し、長期間保存した場合でも、水相と油相が分離しなくなる。なお、保存安定性向上効果の観点では、上記塩化物は、ナトリウム塩であることが好ましく、塩化ナトリウムであることが特に好ましい。塩化ナトリウムは、離型剤全量に対して0.01~5質量%を水相に溶解させることが好ましい。 Also, the storage stability of the water-in-oil emulsion release agent can be improved by dissolving the chloride in the aqueous phase. Specifically, the water-in-oil emulsion is stable, and even when stored for a long time, the water phase and the oil phase do not separate. From the viewpoint of the effect of improving storage stability, the chloride is preferably a sodium salt, and particularly preferably sodium chloride. Sodium chloride is preferably dissolved in an aqueous phase in an amount of 0.01 to 5% by mass based on the total amount of the release agent.
 水相には、必要に応じて、さらに、電解質、保湿剤、防カビ剤、防腐剤、pH調整剤、難燃剤等を含有しても良い。 The aqueous phase may further contain an electrolyte, a humectant, a fungicide, a preservative, a pH adjuster, a flame retardant, and the like as necessary.
 本発明の油中水型エマルション離型剤には、さらに、不燃性ガスの直径が50ミクロン以下の気泡(以下、マイクロバブルと言う。)を含有させることが好ましい。上記塩化物の水相への溶解に加えて、不燃性ガスのマイクロバブルを含有させることにより、離型剤の粘度を一層低下させることができる。また、乾燥性及び保存安定性についても一層向上させることが可能となる。不燃性ガスのマイクロバブルは、例えば、離型剤乳化時に、不燃性ガスを注入しながら強制攪拌して、気泡を50ミクロン以下に剪断することによって離型剤中に混入させることができる。 It is preferable that the water-in-oil emulsion release agent of the present invention further contains bubbles having a non-combustible gas diameter of 50 microns or less (hereinafter referred to as microbubbles). In addition to the dissolution of the chloride in the aqueous phase, the viscosity of the release agent can be further reduced by incorporating microbubbles of non-combustible gas. In addition, it is possible to further improve the drying property and the storage stability. The microbubbles of incombustible gas can be mixed in the release agent by, for example, forcibly stirring while injecting the incombustible gas and shearing the bubbles to 50 microns or less during emulsification of the release agent.
 本発明の油中水型エマルション離型剤は、上記の油相と水相を混合、乳化させることにより製造できる。水相と油相は、予め別々に調製したのち、油相液中に水相液を添加して乳化させてもよく、又は、水相に油相を構成する成分を一括又は個別に添加した後、乳化させてもよい。製造には、ディスパーミキサー、ホモミキサー等の公知の乳化機を用いることができる。乳化により分散された水相の粒子径は、0.1~50ミクロンの粒度分布をもつことが好ましい。 The water-in-oil emulsion release agent of the present invention can be produced by mixing and emulsifying the above oil phase and water phase. The aqueous phase and the oil phase may be prepared separately in advance, and then the aqueous phase solution may be added to the oil phase solution to emulsify, or the components constituting the oil phase may be added to the aqueous phase collectively or individually. Thereafter, it may be emulsified. A known emulsifier such as a disper mixer or a homomixer can be used for the production. The particle size of the aqueous phase dispersed by emulsification preferably has a particle size distribution of 0.1 to 50 microns.
 本発明のポリウレタンフォーム離型剤は、油相33~50質量%、水相67~50質量%となるように配合することが好ましい。水相の比率が67質量%を越えると、油中水型エマルションを形成しにくくなる。また、水相が50質量%以上であれば、離型剤が燃え難くなり安全性が高くなる。また、一般に、水相の比率が高くなると、離型剤の粘度が上昇する傾向があるため、両相の配合比率は油相40~50質量%、水相60~50質量%となるようにすることが特に好ましい。 The polyurethane foam release agent of the present invention is preferably blended so that the oil phase is 33 to 50% by mass and the aqueous phase is 67 to 50% by mass. When the ratio of the water phase exceeds 67% by mass, it becomes difficult to form a water-in-oil emulsion. On the other hand, if the aqueous phase is 50% by mass or more, the release agent is difficult to burn and safety is increased. In general, when the ratio of the aqueous phase increases, the viscosity of the release agent tends to increase. Therefore, the blending ratio of both phases is 40 to 50% by mass of the oil phase and 60 to 50% by mass of the aqueous phase. It is particularly preferable to do this.
 本発明の油中水型エマルション離型剤の25℃における粘度は3~300mPa・sの範囲に設定することが好ましく、50~250mPa・sの範囲に設定することがより好ましく、100~200mPa・sの範囲にすることが特に好ましい。粘度が上記範囲内であれば、既存の噴霧装置等を用いて離型剤を金型に適切に塗布することができる。 The viscosity at 25 ° C. of the water-in-oil emulsion release agent of the present invention is preferably set in the range of 3 to 300 mPa · s, more preferably set in the range of 50 to 250 mPa · s, and more preferably 100 to 200 mPa · s. A range of s is particularly preferable. If a viscosity is in the said range, a mold release agent can be appropriately apply | coated to a metal mold | die using the existing spray apparatus etc.
 油中水型エマルション離型剤の粘度は、油相の構成成分や、油相と水相の比率を変えることによって調整できる。ここで、一般的には、水相比率や非イオン界面活性剤の量を少なくすれば、油中水型エマルション離型剤の粘度を低下させることができるが、一方で、水相比率や非イオン界面活性剤の量の低下により、離型剤の保存安定性が低下してしまう傾向がある。これに対して、本発明では、水相に上記特定の塩化物を溶解させることにより、粘度を低下させるとともに、保存安定性を向上させることができるから、離型剤の保存安定性を損なうことなく、離型剤の粘度を適切に調整できる。 The viscosity of the water-in-oil emulsion release agent can be adjusted by changing the components of the oil phase and the ratio of the oil phase to the water phase. Here, in general, if the water phase ratio and the amount of the nonionic surfactant are reduced, the viscosity of the water-in-oil emulsion release agent can be reduced. The storage stability of the release agent tends to decrease due to a decrease in the amount of the ionic surfactant. On the other hand, in the present invention, by dissolving the specific chloride in the aqueous phase, the viscosity can be lowered and the storage stability can be improved, so that the storage stability of the release agent is impaired. The viscosity of the release agent can be adjusted appropriately.
 本発明の油中水型エマルション離型剤は、キュアーする際の金型温度が、常温から中温域(20~70℃)程度であるポリウレタンフォームの成形に、好適に用いることができる。本発明の油中水型エマルション離型剤を用いて成形するポリウレタンフォームとしては、硬質ポリウレタンフォームや、半硬質ポリウレタンフォーム、高弾性ポリウレタンフォームなどが挙げられる。 The water-in-oil emulsion release agent of the present invention can be suitably used for molding a polyurethane foam in which the mold temperature during curing is from room temperature to medium temperature (20 to 70 ° C.). Examples of the polyurethane foam molded using the water-in-oil emulsion release agent of the present invention include rigid polyurethane foam, semi-rigid polyurethane foam, and highly elastic polyurethane foam.
 以下、本発明を実施例により詳細に説明するが本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
<実施例1~3>
 表1に示す組成の油相に、表1に示す水相成分を高速ホモジナイザー(特殊機化工業社製)を用いて、3,000rpmで5分間撹拌しながら、油相と水相が同表に示す割合になるまで滴下する。その後、10,000rpmで5分間撹拌する攪拌工程を行い。本発明の実施例である、実施例1~3の油中水型エマルション離型剤を調整した。なお、上記攪拌工程では、液中に二酸化炭素ガスを注入しながら攪拌して気泡を剪断することにより、液中に二酸化炭素のマイクロバブルを混入させた。
<Examples 1 to 3>
The oil phase and the water phase are mixed in the oil phase having the composition shown in Table 1 while stirring the water phase component shown in Table 1 at 3,000 rpm for 5 minutes using a high-speed homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.). Drip until the ratio shown in. Then, the stirring process which stirs for 5 minutes at 10,000 rpm is performed. The water-in-oil emulsion release agents of Examples 1 to 3, which are examples of the present invention, were prepared. In the stirring step, carbon dioxide microbubbles were mixed in the liquid by stirring while injecting carbon dioxide gas into the liquid to shear the bubbles.
<実施例4>
 攪拌工程で二酸化炭素のマイクロバブルを混入させない他は、実施例1と同様にして、本発明の実施例である、実施例4の油中水型エマルション離型剤を調整した。表1に示すように、液中に二酸化炭素のマイクロバブルを含有しない他は、実施例4は実施例1と同組成である。
<Example 4>
A water-in-oil emulsion release agent of Example 4, which is an example of the present invention, was prepared in the same manner as in Example 1 except that carbon dioxide microbubbles were not mixed in the stirring step. As shown in Table 1, Example 4 has the same composition as Example 1 except that the liquid does not contain carbon dioxide microbubbles.
<比較例1~3>
 攪拌工程で二酸化炭素のマイクロバブルを混入させない他は、実施例1~3と同様にして、表1に示す組成を有する比較例1~3の油中水型エマルション離型剤を調整した。塩化物と二酸化炭素のマイクロバブルを含有しない他は、比較例1~3の各組成は、実施例1~3の各組成とほぼ同じである。
<Comparative Examples 1 to 3>
The water-in-oil emulsion release agents of Comparative Examples 1 to 3 having the compositions shown in Table 1 were prepared in the same manner as in Examples 1 to 3, except that carbon dioxide microbubbles were not mixed in the stirring step. The compositions of Comparative Examples 1 to 3 are almost the same as the compositions of Examples 1 to 3 except that they do not contain chloride and carbon dioxide microbubbles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1に記載の各成分の詳細は、以下の通りである。
  ワックス1:ペトロライト EP-700 融点93℃:ペトロライト社
  ワックス2:バイバー260 融点51℃:ペトロライト社
  溶剤:ニューソルベントA:JX日鉱日石エネルギー株式会社
  非イオン性界面活性剤:モノオレイン酸ソルビタン(HLB4.3):日光ケミカル株式会社
  水溶性溶剤:ジエチレングリコールモノブチルエーテル
In addition, the detail of each component of Table 1 is as follows.
Wax 1: Petrolite EP-700 Melting point 93 ° C .: Petrolite Co. Wax 2: Viver 260 Melting point 51 ° C .: Petrolite Co. Solvent: New Solvent A: JX Nippon Oil & Energy Corporation Nonionic surfactant: Monooleic acid Sorbitan (HLB4.3): Nikko Chemical Co., Ltd. Water-soluble solvent: Diethylene glycol monobutyl ether
<評価試験1>
 実施例1~3及び比較例1~3の夫々について、以下の方法により粘性、保存安定性、及び乾燥性の評価を行った。結果を表2に示す。
<Evaluation Test 1>
For each of Examples 1 to 3 and Comparative Examples 1 to 3, viscosity, storage stability, and drying properties were evaluated by the following methods. The results are shown in Table 2.
(1)粘性の評価
 BII型回転粘度計(東機産業社製 )を用いて夫々の粘度を測定した。
(1) Evaluation of viscosity Each viscosity was measured using BII type rotational viscometer (made by Toki Sangyo Co., Ltd.).
(2)保存安定性の評価
 実施例1~3及び比較例1~3の夫々について、調整後に室温で放置し、水相が分離したか否かを定期的に目視判定して、下記の基準に従い評価した。
 ×:数時間以内に水相が分離
 △:数時間~1日で水相が分離
 ○:1日~3ヶ月で水相が分離
 ◎:3ヶ月以上安定
(2) Evaluation of storage stability For each of Examples 1 to 3 and Comparative Examples 1 to 3, the sample was allowed to stand at room temperature after adjustment, and whether or not the aqueous phase had been separated was visually determined periodically. It evaluated according to.
×: Aqueous phase separated within several hours △: Aqueous phase separated within several hours to 1 day ○: Aqueous phase separated within 1 day to 3 months ◎: Stable for 3 months or more
(3)乾燥性の評価
 実施例1~3及び比較例1~3の夫々について、調整直後のものを、ハンドガンを用いて40℃の板状アルミニウム面に塗布し、目視で完全に乾燥したと判定するまでの秒数を測定し、下記の基準に従い評価した。
 ×:60秒以上
 △:30秒以上~60秒未満
 ○:10秒以上~30秒未満
 ◎:10秒未満
(3) Evaluation of drying property Each of Examples 1 to 3 and Comparative Examples 1 to 3 was applied to a plate-like aluminum surface at 40 ° C. using a hand gun and completely dried visually. The number of seconds until determination was measured and evaluated according to the following criteria.
×: 60 seconds or more △: 30 seconds to less than 60 seconds ○: 10 seconds to less than 30 seconds ◎: Less than 10 seconds
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、比較例1~3は、金型に塗布するのに適した粘度よりも高く、乾燥性も悪く、また、保存安定性も著しく劣っていた。これに対して、実施例1~3は、金型に塗布するのに適した粘度を有し、乾燥性や保存安定性にも優れており、ポリウレタンフォーム成形用の離型剤に必要な特性を十分に備えるものであった。表1に示されるように、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3の差異は、塩化物とマイクロバブルを含有するか否かの差である。したがって、この結果は、実施例1~3に含まれる塩化物とマイクロバブルが、離型剤の粘度の低下、および、保存安定性と乾燥性の向上に寄与することを示唆している。 As shown in Table 2, Comparative Examples 1 to 3 had a viscosity higher than that suitable for application to the mold, poor drying properties, and extremely poor storage stability. In contrast, Examples 1 to 3 have viscosities suitable for application to molds, are excellent in drying properties and storage stability, and have characteristics required for mold release agents for polyurethane foam molding. Was enough. As shown in Table 1, the difference between Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 is whether or not they contain chloride and microbubbles. . Therefore, this result suggests that the chlorides and microbubbles contained in Examples 1 to 3 contribute to a decrease in the viscosity of the release agent and an improvement in storage stability and drying property.
 また、表2に示すように、実施例4は、比較例1と比べると、粘度が低く、乾燥性や保存安定性にも優れていた。一方で、実施例4は、実施例1と比べると、粘度が高く、乾燥性の点で劣っていた。表1に示すように、実施例4は、比較例1の水相に塩化ナトリウムを溶解させた組成であり、実施例1は、実施例4にさらに二酸化炭素のマイクロバブルを加えた組成である。したがって、この結果は、マイクロバブルの非存在下でも、水相中に塩化ナトリウムを溶解させることで、油中水型エマルション離型剤の粘度を低下させることができ、また、保存安定性と乾燥性を向上させ得ることを示唆している。また、この結果は、塩化ナトリウムの水相への溶解に加えて、マイクロバブルを含有させることで、油中水型エマルション離型剤の粘度をさらに低下させ、また、乾燥性についてもさらに向上させ得ることを示唆している。 Also, as shown in Table 2, Example 4 was lower in viscosity than Comparative Example 1 and was excellent in drying property and storage stability. On the other hand, compared with Example 1, Example 4 had a high viscosity and was inferior in terms of drying properties. As shown in Table 1, Example 4 is a composition in which sodium chloride is dissolved in the aqueous phase of Comparative Example 1, and Example 1 is a composition obtained by further adding carbon dioxide microbubbles to Example 4. . Therefore, this result shows that even in the absence of microbubbles, by dissolving sodium chloride in the aqueous phase, the viscosity of the water-in-oil emulsion release agent can be reduced, and storage stability and drying can be reduced. It suggests that it can improve the sex. In addition to the dissolution of sodium chloride in the aqueous phase, this result further reduced the viscosity of the water-in-oil emulsion release agent by adding microbubbles, and further improved the drying properties. Suggest to get.
<実施例5~7>
 実施例1と同様の方法で、表3に示す組成を有する、本発明の実施例である実施例5~7の油中水型エマルション離型剤を調整した。
<Examples 5 to 7>
In the same manner as in Example 1, water-in-oil emulsion release agents of Examples 5 to 7 which are examples of the present invention having the composition shown in Table 3 were prepared.
<実施例8>
 攪拌工程で二酸化炭素のマイクロバブルを混入させない他は、実施例1と同様にして、本発明の実施例である、実施例8の油中水型エマルション離型剤を調整した。表3に示すように、二酸化炭素のマイクロバブルを含有しない他は、実施例8の組成は実施例5と同じである。
<Example 8>
A water-in-oil emulsion release agent of Example 8, which is an example of the present invention, was prepared in the same manner as in Example 1 except that carbon dioxide microbubbles were not mixed in the stirring step. As shown in Table 3, the composition of Example 8 is the same as that of Example 5 except that it does not contain carbon dioxide microbubbles.
<比較例4~6>
 常法に従って、表3に示す組成を有する比較例4~6の離型剤を調整した。これらは従来から使用されている水中油(O/W)型エマルション離型剤である。
<Comparative Examples 4 to 6>
According to a conventional method, release agents of Comparative Examples 4 to 6 having the compositions shown in Table 3 were prepared. These are conventionally used oil-in-water (O / W) emulsion release agents.
<比較例7>
 常法に従って、表3に示す組成を有する比較例7の離型剤を調整した。これは、ワックスを第二石油類溶剤(沸点150~200℃)に分散させたもので、現在、HRフォームの成形用に主力製品として使用されている溶剤系離型剤である。
<Comparative Example 7>
According to a conventional method, a release agent of Comparative Example 7 having the composition shown in Table 3 was prepared. This is a solvent-based mold release agent in which wax is dispersed in a second petroleum solvent (boiling point 150 to 200 ° C.) and is currently used as a main product for molding HR foam.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表3に記載の各成分の詳細は、以下の通りである。
  ワックス1:ペトロライト EP-700 融点93℃:ペトロライト社
  ワックス2:バイバー260 融点51℃:ペトロライト社
  ワックス3:ポリワックス655、分子量655、融点102℃ ペトロライト社
  溶剤:ニューソルベントA:JX日鉱日石エネルギー株式会社
  非イオン性界面活性剤:モノオレイン酸ソルビタン(HLB4.3):日光ケミカル株式会社
  イオン性界面活性剤:ステアリン酸モルホリン塩:ステアリン酸とモルホリンを添加して生成させたもの。
  水溶性溶剤:ジエチレングリコールモノブチルエーテル
In addition, the detail of each component of Table 3 is as follows.
Wax 1: Petrolite EP-700 Melting point 93 ° C .: Petrolite Corp. Wax 2: Viver 260 Melting point 51 ° C .: Petrolite Corp. Wax 3: Polywax 655, molecular weight 655, melting point 102 ° C. Petrolite Corp. Solvent: New Solvent A: JX Nikko Nisseki Energy Co., Ltd. Nonionic surfactant: Sorbitan monooleate (HLB4.3): Nikko Chemical Co., Ltd. Ionic surfactant: Stearic acid morpholine salt: Made by adding stearic acid and morpholine .
Water-soluble solvent: Diethylene glycol monobutyl ether
<評価試験2>
 実施例5~8及び比較例4~7の組成物について、次のような性能評価を行った。試験項目と試験方法を以下に示し、その結果を表4に示す。
<Evaluation Test 2>
The following performance evaluation was performed on the compositions of Examples 5 to 8 and Comparative Examples 4 to 7. Test items and test methods are shown below, and the results are shown in Table 4.
(1) 離型剤の塗布
 鉄製金型(180mm×250mm×30mm)を55℃に温度調整し、実施例5~8及び比較例4~7の夫々について、離型剤の固形分が約10%になるように調整したものをエアーガンで約20g/m塗布して約60秒間放置乾燥させた。
(1) Application of release agent The temperature of an iron mold (180 mm x 250 mm x 30 mm) was adjusted to 55 ° C, and the solid content of the release agent was about 10 for each of Examples 5 to 8 and Comparative Examples 4 to 7. What was adjusted to be% was applied with about 20 g / m 2 with an air gun and left to dry for about 60 seconds.
(2) ポリウレタンフォームの成形
ウレタンフォームの原料
 ポリオール成分    100重量部
 TDI-80     43重量部
上記ウレタンフォーム原料を室温で、1500rpmで10秒撹拌し、上記のように離型剤を塗布して60秒間乾燥させた金型(55℃)に注入して、蓋を閉じ60℃のオーブン内で7分間キュアーして反応を完結させた。
(2) Polyurethane foam molded urethane foam raw material Polyol component 100 parts by weight TDI-80 43 parts by weight The above urethane foam raw material is stirred at 1500 rpm for 10 seconds at room temperature, and then the release agent is applied as described above for 60 seconds. The reaction was completed by pouring into a dried mold (55 ° C.), closing the lid, and curing in an oven at 60 ° C. for 7 minutes.
(3) 離型性の評価
 上記の金型の蓋をあけ、フォームを手動で金型から引き抜き、脱型時の抵抗度合いを下記の評価方法で評価した。
 × :脱型時にフォームが破れる。
 △ :重くて部分的にフォームの張り付きがある状態。
 ○ :多少重くはあるが、脱型はできる。
 ◎ :抵抗なくスムースに脱型できる。
(3) Evaluation of releasability The lid of the above mold was opened, the foam was manually pulled out from the mold, and the degree of resistance at the time of demolding was evaluated by the following evaluation method.
X: The foam is torn during demolding.
Δ: Heavy and partially sticking foam.
○: Although it is somewhat heavy, demolding is possible.
A: It can be removed smoothly without resistance.
(4) 成形品の表面特性の評価
 成形したフォームの表面荒れを目視観察し、下記の基準で評価した。
 × :荒れた面が多く発生、あるいはスキンが発生している状態。
 △ :やや荒れている部分がある。
 ○ :セル荒れはない。
(4) Evaluation of surface characteristics of molded product The surface roughness of the molded foam was visually observed and evaluated according to the following criteria.
X: A state in which many rough surfaces are generated or skin is generated.
Δ: Some parts are rough.
○: No cell roughness.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、実施例5~8では、離型性、表面特性ともに良好な結果が得られた。この結果は、実施例5~8が、ポリウレタンフォーム成形用離型剤として十分な特性を備えていることを示している。特に、マイクロバブルを含有する実施例5~7は、マイクロバブルを含有しない実施例8に比べて、離型性、表面特性ともに優れた結果を示した。これは、マイクロバブルの作用によって、離型剤の粘度が低下し、かつ、乾燥性が向上したことによるものと考えられる。 As shown in Table 4, in Examples 5 to 8, good results were obtained in both releasability and surface characteristics. This result shows that Examples 5 to 8 have sufficient characteristics as a release agent for molding polyurethane foam. In particular, Examples 5 to 7 containing microbubbles showed excellent results in both releasability and surface characteristics compared to Example 8 not containing microbubbles. This is considered to be due to the fact that the viscosity of the release agent is lowered and the drying property is improved by the action of the microbubbles.
 一方、表4に示すように、比較例4~6の水中油型エマルション離型剤は、いずれも脱型時の抵抗が大きく、成形品の表面荒れもひどいものであった。これは、比較例4~6は乾燥性が悪く、55℃の金型温度で60秒間の乾燥時間では不十分で、金型表面に水滴が残ってしまったことによるものと考えられる。また、比較例7の溶剤系離型剤も、離型が重く、成形品には表面が荒れが多数確認された。この結果は、比較例7でも、55℃の金型温度で60秒間の乾燥時間では不十分であり、金型表面に溶剤が残ってしまったためと考えられる。 On the other hand, as shown in Table 4, all of the oil-in-water emulsion release agents of Comparative Examples 4 to 6 had large resistance during demolding, and the surface roughness of the molded product was also severe. This is presumably because Comparative Examples 4 to 6 had poor drying properties, and a drying time of 60 seconds at a mold temperature of 55 ° C. was insufficient, and water droplets remained on the mold surface. In addition, the solvent-based mold release agent of Comparative Example 7 was heavy, and many surface roughness was confirmed in the molded product. This result is considered to be because, even in Comparative Example 7, the drying time of 60 seconds at the mold temperature of 55 ° C. is insufficient, and the solvent remains on the mold surface.
 実施例5~8と比較例4~7を比べると明らかなように、本発明の実施例(実施例5~8)は、従来品(比較例4~7)では良好な結果が得られない成形条件でも、良好な成形品を得ることができる。これは、実施例5~8の乾燥性が著しく良好で、55℃の金型に塗布した場合に、短時間で乾燥するためと考えられる。このことは、本発明の油中水型エマルション離型剤を用いることによって、離型剤の乾燥時間を短縮し得ることを示唆している。 As is clear when Examples 5 to 8 and Comparative Examples 4 to 7 are compared, the results of Examples (Examples 5 to 8) of the present invention cannot be obtained with conventional products (Comparative Examples 4 to 7). Even under molding conditions, a good molded product can be obtained. This is considered to be because the drying properties of Examples 5 to 8 are remarkably good, and when applied to a 55 ° C. mold, they are dried in a short time. This suggests that the drying time of the release agent can be shortened by using the water-in-oil emulsion release agent of the present invention.
 本発明の油中水型エマルション離型剤は、既存の油中水型エマルション離型剤に比べて、低粘度でかつ保存安定性に優れている上に、離型剤の乾燥性が著しく向上しているため、半硬質ポリウレタンフォームやHRフォームなどの、キュアーする際の金型温度が常温から中温域であるポリウレタンフォームの成形に使用することが期待される。本発明の油中水型エマルション離型剤は、人体や環境に及ぼす影響が少なく、保守管理も容易であるから、溶剤系離型剤の代替品として使用することで、ポリウレタンフォームの成形現場の安全性を向上することが期待される。また、乾燥性が悪い第二石油類を主要溶剤とする離型剤が使用されているHRフォーム成型分野では、乾燥性に優れた本発明の油中水型エマルション離型剤は、特に有用性が高いと考えられる。 The water-in-oil emulsion mold release agent of the present invention has a low viscosity and excellent storage stability compared with existing water-in-oil emulsion mold release agents, and the drying property of the mold release agent is remarkably improved. Therefore, it is expected to be used for molding polyurethane foams such as semi-rigid polyurethane foams and HR foams, in which the mold temperature during curing is from room temperature to medium temperature. Since the water-in-oil emulsion release agent of the present invention has little influence on the human body and the environment and is easy to maintain, it can be used as a substitute for solvent-based release agents in the polyurethane foam molding field. It is expected to improve safety. In addition, in the HR foam molding field where a release agent having a second petroleum having poor drying property as a main solvent is used, the water-in-oil emulsion release agent of the present invention having excellent drying property is particularly useful. Is considered high.

Claims (8)

  1.  非イオン性界面活性剤を用いて水相と油相を乳化した油中水型エマルションであって、
     前記水相には塩化物が溶解しており、
     該塩化物の金属はナトリウム及びカルシウムから選ばれた少なくとも1種であるポリウレタンフォーム成形用油中水型エマルション離型剤。
    A water-in-oil emulsion in which a water phase and an oil phase are emulsified using a nonionic surfactant,
    Chloride is dissolved in the aqueous phase,
    A water-in-oil emulsion mold release agent for molding polyurethane foam, wherein the chloride metal is at least one selected from sodium and calcium.
  2.  前記塩化物がナトリウム塩である、請求項1に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。 The water-in-oil emulsion mold release agent for molding polyurethane foam according to claim 1, wherein the chloride is a sodium salt.
  3.  前記塩化物が塩化ナトリウムである、請求項2に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。 The water-in-oil emulsion release agent for molding polyurethane foam according to claim 2, wherein the chloride is sodium chloride.
  4.  前記非イオン性界面活性剤がソルビタン脂肪酸エステルである、請求項1乃至請求項3のいずれか1項に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。 The water-in-oil emulsion mold release agent for polyurethane foam molding according to any one of claims 1 to 3, wherein the nonionic surfactant is a sorbitan fatty acid ester.
  5.  油相33~50質量%及び水相67~50質量%からなり、
     前記ソルビタン脂肪酸エステルは前記油相中に、離型剤全量に対して0.1~20質量%含有されている、請求項4に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。
    It consists of 33-50% by weight of oil phase and 67-50% by weight of water phase,
    The water-in-oil emulsion release agent for molding polyurethane foam according to claim 4, wherein the sorbitan fatty acid ester is contained in the oil phase in an amount of 0.1 to 20% by mass based on the total amount of the release agent.
  6.  前記ソルビタン脂肪酸エステルがソルビタンとオキシ脂肪酸のエステル化物である、請求項4又は請求項5に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。 The water-in-oil emulsion mold release agent for molding polyurethane foam according to claim 4 or 5, wherein the sorbitan fatty acid ester is an esterified product of sorbitan and oxy fatty acid.
  7.  25℃における粘度が3~300mPa・sである、請求項1乃至請求項6のいずれか1項に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。 The water-in-oil emulsion release agent for molding polyurethane foam according to any one of claims 1 to 6, wherein the viscosity at 25 ° C is 3 to 300 mPa · s.
  8.  直径が50ミクロン以下の不燃性ガスの気泡を含有する、請求項1乃至請求項7のいずれか1項に記載のポリウレタンフォーム成形用油中水型エマルション離型剤。 The water-in-oil emulsion mold release agent for molding polyurethane foam according to any one of claims 1 to 7, comprising bubbles of incombustible gas having a diameter of 50 microns or less.
PCT/JP2013/064493 2013-05-24 2013-05-24 Water-in-oil emulsion mold release agent for polyurethane foam molding WO2014188589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064493 WO2014188589A1 (en) 2013-05-24 2013-05-24 Water-in-oil emulsion mold release agent for polyurethane foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064493 WO2014188589A1 (en) 2013-05-24 2013-05-24 Water-in-oil emulsion mold release agent for polyurethane foam molding

Publications (1)

Publication Number Publication Date
WO2014188589A1 true WO2014188589A1 (en) 2014-11-27

Family

ID=51933170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064493 WO2014188589A1 (en) 2013-05-24 2013-05-24 Water-in-oil emulsion mold release agent for polyurethane foam molding

Country Status (1)

Country Link
WO (1) WO2014188589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251449B1 (en) * 2017-07-04 2017-12-20 長瀬産業株式会社 Release agent composition, release film forming method, and coating apparatus
WO2018051400A1 (en) * 2016-09-13 2018-03-22 マツダ株式会社 Release agent for hot-forging die, application method for same, and application device
CN113576695A (en) * 2021-09-07 2021-11-02 成都派瑞义齿科技发展有限公司 Complete denture and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319775A (en) * 2004-04-07 2005-11-17 Yamashita Rubber Co Ltd Method for manufacturing molded hose
JP2008207444A (en) * 2007-02-26 2008-09-11 Esuakoodo:Kk Mold release agent composition for molding polyurethane foam
WO2008139595A1 (en) * 2007-05-11 2008-11-20 Saccord Co., Ltd. Mold release agent composition for polyurethane foam molding
JP2010058310A (en) * 2008-09-02 2010-03-18 Esuakoodo:Kk Mold release agent composition for molding polyurethane foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319775A (en) * 2004-04-07 2005-11-17 Yamashita Rubber Co Ltd Method for manufacturing molded hose
JP2008207444A (en) * 2007-02-26 2008-09-11 Esuakoodo:Kk Mold release agent composition for molding polyurethane foam
WO2008139595A1 (en) * 2007-05-11 2008-11-20 Saccord Co., Ltd. Mold release agent composition for polyurethane foam molding
JP2010058310A (en) * 2008-09-02 2010-03-18 Esuakoodo:Kk Mold release agent composition for molding polyurethane foam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051400A1 (en) * 2016-09-13 2018-03-22 マツダ株式会社 Release agent for hot-forging die, application method for same, and application device
CN108883460A (en) * 2016-09-13 2018-11-23 马自达汽车株式会社 Hot-forging die release agent, its coating method and apparatus for coating
JPWO2018051400A1 (en) * 2016-09-13 2019-01-10 マツダ株式会社 Release agent for hot forging dies, coating method and coating apparatus
US11242496B2 (en) 2016-09-13 2022-02-08 Mazda Motor Corporation Release agent for hot-forging die, application method for same, and application device
JP6251449B1 (en) * 2017-07-04 2017-12-20 長瀬産業株式会社 Release agent composition, release film forming method, and coating apparatus
WO2019008779A1 (en) * 2017-07-04 2019-01-10 長瀬産業株式会社 Release agent composition, method for forming release film, method for producing release agent composition, and production device
WO2019008790A1 (en) * 2017-07-04 2019-01-10 長瀬産業株式会社 Release agent composition, method for forming release film, and coating device
CN113576695A (en) * 2021-09-07 2021-11-02 成都派瑞义齿科技发展有限公司 Complete denture and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5276822B2 (en) Anti-curing composition for unvulcanized rubber
US9404007B2 (en) Wax dispersion formulations, method of producing same, and uses
TWI353996B (en) Process for the preparation of an artificial latex
US4439342A (en) Aerosol preparation
EP0337511B1 (en) Aqueous emulsion systems for applying additives to polymeric particles
WO2014188589A1 (en) Water-in-oil emulsion mold release agent for polyurethane foam molding
EP1848765A1 (en) Non-aqueous slurries used as thickeners and defoamers and method of using slurries in aqueous systems
JP2007077178A (en) Silicone type emulsion and its manufacturing method
TWI391175B (en) Oil in water emulsion composition and method for manufacturing thereof
JP2006089687A (en) Method for producing polylactic acid resin aqueous dispersion
JP2002173535A (en) Method for producing water dispersion of biodegradable polyester resin
CA2881143C (en) Stable emulsions of polyisobutene and their use
CN107073421B (en) Aqueous emulsions of dialkyl peroxides
JP2017524053A (en) Ethylcellulose dispersion and powder
EP0413647A2 (en) Solid-form additive systems dispersible in aqueous media, methods for the preparation and application thereof to polymeric particles
JP2002053671A (en) Method for producing emulsified and dispersed composition and emulsified and dispersed composition obtained by the production method
JP7028042B2 (en) Tire puncture sealant
JP5881042B2 (en) Method for producing hydrophilic nanoparticles for producing emulsion
JP3297836B2 (en) Aqueous release agent composition for polyurethane foam molding
JP3118080B2 (en) Low foam resin emulsion composition
CN112663386A (en) Zinc stearate dispersion liquid and preparation method thereof
JP2002030225A (en) Aqueous mold release agent composition for molding polyurethane foam
EP0033792B1 (en) Aerosol preparation
JP3075684B2 (en) Aqueous release agent composition for cold cure polyurethane foam molding
JP4071149B2 (en) Additive for vinyl chloride paste resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP