WO2014187840A1 - Matrice de photodiode à absorption réglable de charge - Google Patents

Matrice de photodiode à absorption réglable de charge Download PDF

Info

Publication number
WO2014187840A1
WO2014187840A1 PCT/EP2014/060395 EP2014060395W WO2014187840A1 WO 2014187840 A1 WO2014187840 A1 WO 2014187840A1 EP 2014060395 W EP2014060395 W EP 2014060395W WO 2014187840 A1 WO2014187840 A1 WO 2014187840A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
zones
passivation layer
zone
active layer
Prior art date
Application number
PCT/EP2014/060395
Other languages
English (en)
Inventor
Yang Ni
Original Assignee
New Imaging Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Imaging Technologies filed Critical New Imaging Technologies
Priority to EP14725184.7A priority Critical patent/EP3000132A1/fr
Publication of WO2014187840A1 publication Critical patent/WO2014187840A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14694The active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures

Definitions

  • the invention relates to photodiode arrays, and more particularly photodiode arrays based on gallium indium arsenide (In GaAs) and indium phosphide (InP) layers, as well as to their photodiode process. manufacturing.
  • In GaAs gallium indium arsenide
  • InP indium phosphide
  • One of the photodiode array manufacturing methods in semiconductor materials with a narrow band gap for infrared light detection is to insert the active low-band gap detection layer between two semiconductor materials with large band gap.
  • the two large band gap semiconductor layers provide effective protection / passivation while remaining transparent to the wavelength of the radiation to be detected by the photodiodes.
  • the two heterojunctions between the active layer and the two protection / passivation layers confine the photoelectric charges in the active detection layer and improve the quantum yield of the photodiode thus constructed.
  • the active detection layer made of the InGaAs material can have an adjustable band gap depending on the indium and gallium composition in the InGaAs, ideal for operating in the SWIR (Short Wave Infrared) short-wave infrared band. wave), of the order of 1, 4 to 3 ⁇ .
  • Indium phosphide and gallium-indium arsenide share the same face-centered cubic crystal structure.
  • the most used composition is lno.53Gao.47As.
  • the crystal mesh size is then comparable to that of the InP substrate, in particular the mesh parameters. This crystal compatibility allows the epitaxial growth of an InGaAs active layer of excellent quality on an InP substrate.
  • the band gap of ln 0 .53Ga 0 .47As is about 0.73eV, capable of detecting up to a wavelength of 1.68 ⁇ in the SWIR band. It has a growing interest in the fields applications such as spectrometry, night vision, sorting used plastics, etc.
  • Both protection / passivation layers are usually made in InP.
  • lnO.53GaO.47As composition having the same crystal mesh size as InP, this allows a very low dark current from room temperature.
  • Figure 1 illustrates the physical structure of a matrix 1 of photodiodes.
  • An active layer 5 composed of InGaAs is sandwiched between two layers of In P.
  • the lower layer is in fact the substrate 4 on which the InGaAs layer is formed by vapor phase epitaxy in organometallic (or MO-CVD for metalorganic vapor phase epitaxy according to the Anglo-Saxon terminology).
  • This InGaAs layer is then protected by a thin passivation layer 6 composed of InP, also deposited by epitaxy.
  • the InP layers are generally N type, doped with silicon.
  • the active layer 5 of InGaAs may be slightly N-doped or remain quasi-intrinsic.
  • the two lower / upper InP layers and the InGaAs active layer 5 form the common cathode of the photodiodes in this matrix.
  • Individual anodes 3 are formed by local diffusion of zinc (Zn).
  • Zn dopant passes through the thin InP passivation layer 6 and enters the InGaAs active layer.
  • FIG. 2 illustrates an InGaAs image sensor consisting of a matrix 1 of InGaAs photodiodes connected in flip-chip mode with a reading circuit 2.
  • a matrix InGaAs sensor the The photodiode array is connected to a reading circuit generally made of silicon in order to read the photoelectric signals generated by these InGaAs photodiodes.
  • This interconnection is generally done by the flip-chip process via indium balls 8, as illustrated in FIG. 2.
  • the radiation SWIR 9 arrives on the matrix of photodiodes through the substrate 4 of indium phosphide, transparent in this optical band.
  • EP1354360 proposes a solar cell mode operation of a photodiode 51 in order to obtain a logarithmic response as a function of the intensity of the incident optical radiation 59.
  • the photodiode 51 receives no external polarization and it is polarized in direct by the photoelectric charges generated in its junction.
  • the forward bias voltage observed on the photodiode is proportional to the logarithm of the incident optical flux.
  • EP1354360 also proposes to associate a read circuit 55 with switching to the photodiode.
  • the selection signal SEL in order to select the desired photodiode 51 by closing the switch 54.
  • the first read signal RD1 is activated which will close the corresponding controlled switch in order to memorize the voltages of a first reading in the memory 56. This first reading records both the image and the fixed spatial noise.
  • EP1354360 has been applied in an InGaAs sensor and works perfectly. But a phenomenon of dazzling ("blooming" in Anglo-Saxon terminology) is observed for diurnal scenes. This phenomenon can be simply described as a loss of spatial resolution in an image. The detector nevertheless continues to be sensitive to the variation of light according to the logarithmic law.
  • French patent application FR2977982 proposes electrical insulation by etching around each photodiode. This approach makes it possible to effectively suppress this blooming phenomenon, but at the cost of a very high current of darkness in the photodiodes because of defects created by this etching.
  • Another problem of this approach lies in the fact that the etching and diffusion stages of the photodiode anodes constitute two distinct stages of the manufacturing process, requiring different masks. Mask alignment errors can create additional nonuniformities between photodiodes in a matrix.
  • each photodiode contains several PN junctions, one of which is wanted and a certain number which are parasitic. These PN junctions are illustrated in FIG. 4.
  • the PN junctions 31 between the anodes 3 and the active layer 5 are desired and constitute the diodes of the photodiode array.
  • the side parasitic PN junctions 32 between the anodes 3 and the passivation layer 6 constitute a possible electrical pathway between the neighboring photodiodes via the passivation layer.
  • a conventional read circuit integrates, in a capacitance, the reverse current into the photodiode by applying an inverse bias on the photodiode.
  • the side parasitic junctions 32 in the photodiodes are reverse biased at the same time with the effect of adding an additional parasitic current in the integration capacity.
  • This parasitic current degrades the image quality, but generates almost no crosstalk between neighboring photodiodes.
  • These parasitic currents can be partially compensated by complex image processing on the raw image coming out of the read circuit.
  • the junction When a photodiode is operating in solar cell mode, the junction is forward biased by the incident light.
  • the side parasitic junctions 32 are also forward biased and they constitute a passage of electric current between neighboring photodiodes. This direct polarization becomes all the more important as the incident optical intensity increases, thus creating a blooming phenomenon which considerably degrades the spatial resolution of the sensor.
  • French Patent Application No. 1350830 proposes a matrix of photodiodes, a sectional view of which is illustrated in FIG. 5, comprising:
  • a cathode comprising at least one substrate layer 4 made of a material of the indium phosphide family and an active layer 5 made of a material of the gallium-indium arsenide family, and
  • FIG. 6 schematically illustrates the structure of energy bands according to section AA 'of the photodiode array of FIG. 5, that is to say in a section crossing the substrate 4, the active layer 5 and the layer of Passivation 6.
  • the different levels of energy are represented as a function of depth according to arbitrary scales of depth and energy, for purely illustrative purposes: the energy of the valence band E v , the energy of the band of conduction E c , and the level of Fermi E F.
  • FIG. 7 schematically illustrates the structure of energy bands according to the BB 'and CC sections of the photodiode array of FIG. 5, that is to say in a cross-section through the substrate. 4, the active layer 5 and a first doped zone 3 or a second doped zone 20, these two doped zones 3, 20 having the same level of doping at the same depth.
  • a zone 13 corresponding to a doped zone 3 has a valence energy E v greater than the zones 15 and 14, respectively corresponding as above to the active layer 5 and to the substrate 4.
  • the holes 9 constituting here the charge carriers are not confined in the active layer 5, and their passage in the doped zones 3, 20 is possible.
  • the patent application US 2010/0258894 A1 discloses a matrix of photodiodes in which a P-doped zone of an anti-crosstalk part advances more deeply towards the substrate than the P doped zone of the photodiodes, in order to form between the photodiodes of the photodiodes. depletion zones acting as anti-crosstalk walls. This approach also deteriorates the performance at low light level, since too much charge is absorbed by the anti-crosstalk part.
  • the present invention provides a matrix of photodiodes comprising
  • a first common electrode of a PN junction comprising at least one substrate layer made of a material of the indium phosphide family and an active layer made of a material of the gallium-indium arsenide family,
  • a passivation layer made of a material of the indium phosphide family, the active layer being situated between the substrate layer and the passivation layer, and
  • first doped regions formed at least partly in the active layer, defining second electrodes for forming, with the first common electrode, photodiodes connected to reading circuits and adapted for image formation,
  • biasing means being adapted to apply to said second doped zone an electric potential (Vring) by which the absorption of charge carriers by said second doped zone,
  • said at least one second doped region being formed in the passivation layer and being separated from the active layer by a portion of said passivation layer.
  • the photodiode matrix according to the invention is advantageously completed by the following characteristics, taken alone or in any of their technically possible combinations:
  • the matrix is configured so that the electric potential applied to the second doped zone is modulated according to the level of illumination on the photodiode array;
  • the second doped zone is located between at least some of the first doped zones
  • the second doped zone individually surrounds the first doped zones
  • a plurality of second doped zones are distributed parallel to each other and interspersed with first doped zones;
  • the matrix comprises a plurality of second doped zones distributed between the first doped zones along the diagonals of the photodiode array;
  • the second doped zone is separated from the first doped zones by a sufficient distance so that the space charge zones respectively associated with the second doped zone and the first doped zones are separated;
  • a metal grid on the surface of said matrix connects different points of the second doped zone (s) in order to homogenize the electric potential of the second doped zone (s) (s); ).
  • the invention also relates to an image sensor incorporating a matrix of photodiodes according to the invention.
  • the present invention provides an improvement by electrically controlling the degree of absorption of the photoelectric charges.
  • the degree of absorption by the second doped zones will be minimized in order to favor the collection charge by the photodiodes.
  • the degree of absorption by the second doped zones will be reinforced in order to minimize the crosstalk between the photodiodes.
  • the invention also relates to a method for manufacturing a matrix of photodiodes according to the invention, said method comprising the steps according to which, from a first common electrode comprising at least one substrate layer made of a material of the family of the indium phosphide and an active layer made of a material of the gallium-indium arsenide family, and a passivation layer made of a material of the indium phosphide family, the active layer being located between the layer of substrate and the passivation layer:
  • the first doped zones and said at least one second doped zone are formed, said first doped zones being formed at the zones of the selective etching of the passivation layer previously produced.
  • the first doped zones and said at least one second doped zone are formed during the same selective doping step.
  • the selective etching of the passivation layer removes a thickness of the passivation layer greater than the thickness of the portion of said passivation layer ultimately separating the second doped regions of the active layer.
  • the invention also relates to a method for manufacturing a matrix of photodiodes according to the invention, said method comprising the steps according to which, from a first common electrode comprising at least one substrate layer made of a material of the family of the indium phosphide and an active layer made of a material of the gallium-indium arsenide family, and a passivation layer made of a material of the indium phosphide family, the active layer being located between the layer of substrate and the passivation layer:
  • a first selective doping is carried out in order to start forming the first doped zones
  • a second selective doping is then performed to finish forming the first doped zones and to form said at least one second doped zone.
  • FIG. 1 is a diagram illustrating the structure of a matrix of InGaAs photodiodes of the state of the art
  • FIG. 2 already commented on, illustrates an InGaAs image sensor consisting of a matrix of InGaAs photodiodes connected in flip-chip with a silicon substrate reading circuit;
  • FIG. 4 illustrates the different junctions in a matrix of photodiodes of the state of the art
  • FIG. 5 illustrates a sectional view of a photodiode array according to French Patent Application No. 1350830, comprising absorption zones;
  • FIG. 6 schematically illustrates the structure of energy bands according to section AA 'of the photodiode array of FIG. 5;
  • FIG. 7 schematically illustrates the structure of energy bands according to sections BB 'and CC of the photodiode array of FIG. 5;
  • FIG. 8 illustrates a sectional view of a matrix of photodiodes according to the invention
  • FIG. 9 schematically illustrates the structure of energy bands according to section AA 'of the photodiode array of FIG. 8;
  • FIG. 10 schematically illustrates the energy band structure according to section BB 'of the photodiode array of FIG. 8;
  • FIGS. 11, 12 and 13 schematically illustrate the structure of energy bands according to section CC of the photodiode array of FIG. 8 under the influence of three different polarizations;
  • FIGS. 14, 15, 16 and 17 are top views of various possible embodiments of the photodiode array according to the invention.
  • FIGS. 18, 19 and 20 schematically illustrate successive steps of a method of possible fabrication of the photodiode matrix according to the invention
  • the present invention provides a structure for varying the absorption of charge carriers by an absorption zone.
  • a matrix of photodiodes manufactured according to the present invention can be exploited in solar cell mode as described in EP1354360, without loss of spatial resolution, even in the presence of very high optical intensities.
  • Such a matrix also provides an improvement in image quality with a conventional reading circuit in integration mode, such as, for example, the different ISC9705 and ISC9809 CMOS reading circuits marketed by Indigo / FLIR in the USA.
  • the ISC9705 circuit integrates the photoelectric current of a photodiode directly onto a capacitor (direct injection mode) and the ISC9809 circuit integrates the photoelectric current through an operational amplifier (CTIA mode).
  • CTIA mode allows a higher charge-to-voltage conversion gain that promotes detection sensitivity.
  • a photodiode array comprises a first common electrode comprising at least one substrate layer 4 made of a material of the indium phosphide family and an active layer 5 made of a material of the arsenide family. of gallium-indium.
  • the active layer 5 is thus located between the substrate layer 4 and the passivation layer 6.
  • a material of the family of indium phosphide means a semiconductor material composed mainly, or almost exclusively, of indium phosphide, and possibly other components in a much smaller quantity, for example dopants. This material will therefore be designated by its main component, that is to say indium phosphide, or InP.
  • gallium-indium arsenide is a semiconductor material composed mainly or exclusively of gallium-indium arsenide, and possibly other components in a much smaller amount, by examples of dopants. This material will therefore be designated by its main component, ie gallium-indium arsenide, or InGaAs.
  • the photodiode matrix further comprises at least two kinds of doped zones of the same type:
  • first doped regions 3 formed at least partly in the active layer 5, defining second electrodes for forming, with the first common electrode, photodiodes for forming images,
  • At least one second doped zone forming a third electrode absorbing excess charge carriers to evacuate them.
  • the first doped zones 3 and the second doped zone 10 have the closest possible doping characteristics, and are preferably formed by the same dopants.
  • a plurality of second doped regions 10 may be provided for absorbing excess charge carriers and discharging them from the photodiode array.
  • the second doped zone 10 is formed in the passivation layer 6 and is separated from the active layer 5 by a portion of said passivation layer 6.
  • the second doped zone 10 is therefore not in contact with the active layer 5, while that the first doped zones 3 extend from the passivation layer 6 into the active layer 5.
  • the thickness of the portion of the passivation layer 6 separating the second doped zone 10 from the active layer 5 is less than at 0.5 ⁇ , and is preferably between 0.1 ⁇ and 0.5 ⁇ .
  • the two kinds of doped zones are of the same type, that is to say N or P.
  • N or P For reasons of simplicity, we will present here the case where the two kinds of doped zones are of the P type.
  • the InP layers are then of the N type, for example doped with silicon.
  • the active layer 5 of InGaAs may be slightly N-doped or remain quasi-intrinsic.
  • the two lower / upper InP layers, that is to say the substrate 4 and the passivation layer 6, and the active layer 5 of InGaAs form a common cathode of the photodiodes in this matrix, said common cathode therefore being the first common electrode already mentioned.
  • the first doped zones 3 then constitute a plurality of anodes formed at least in part in the active layer 5, the cooperation between an anode and the cathode forming a photodiode.
  • Each of the first doped zones 3 is connected to a read circuit which makes it possible to read the photoelectric signals generated by the photodiodes constituted by said first doped zones 3 and the first common electrode.
  • the photodiodes are connected to circuits of readings similar to that illustrated in FIG. 3, and the electric potentials Vpd1, Vpd2 that they exhibit, as a function, in particular, of the exposure to which they are subjected and of their polarization before the exposure, are read by these read circuits to determine an image.
  • the second doped zone 10 is connected by an electrical connection to polarization means configured to apply an adjustable electric potential to said second doped zone 10.
  • Polarization means therefore apply to said second doped zone 10 an electric potential Vring by which is adjusted the absorption of the charge carriers by said second doped zone 10.
  • the Vring electrical potential of the second doped zone 10 is chosen to be lower than the lowest potential among the potentials Vpd1, Vpd2 of the first doped zones 3 so that Vring ⁇ min ( Vpd1, Vpd2).
  • it is an electrical connection connecting the second doped zone 10 to a power supply by which the Vring electrical potential is imposed and through which the excess charges absorbed by the second doped zone 10 are discharged.
  • the Vring electric potential applied by said biasing means to said second doped zone 10 may vary within a value range comprising at least:
  • FIG. 9 schematically illustrates the structure of energy bands according to section AA 'of the photodiode array of FIG. 8, that is to say in a section crossing the substrate 4, the active layer 5 and the layer of Passivation 6.
  • the different levels of energy are represented as a function of depth according to arbitrary scales of depth and energy, for purely illustrative purposes: the energy of the valence band E v , the energy of the band of conduction E c , and the level of Fermi E F.
  • the holes 9 constituting here the charge carriers are thus confined in the active layer 5.
  • FIG. 10 schematically illustrates the structure of energy bands according to the section BB 'of the photodiode array of FIG. 8, that is to say in a section crossing the substrate 4. the active layer 5 and a first doped zone 3.
  • FIGS. 11, 12 and 13 schematically illustrate the structure of energy bands according to the section CC of the photodiode array of FIG. 8, that is to say in a section crossing the substrate 4, the active layer 5 , the passivation layer 6 and a second doped zone 10, in a manner similar to that of FIGS. 9 and 10 for their respective cuts.
  • FIG. 11 illustrates a case in which the Vring electrical potential applied to the second doped zone 10 corresponds to a first polarization value at which the charge carriers are confined in the active layer 5 because of a barrier of energy corresponding to the portion of the passivation layer 6 separating said second doped zone 10 from said active layer 5.
  • it may be a weak polarization, applied in the case of low light to limit or prevent the absorption of charge carriers by the second doped zone 10.
  • FIG. 11 shows a zone 16 corresponding to the portion of the passivation layer 6 separating said second doped zone 10 from said active layer 5, said zone 16 having a lower energy E v than the two zones 1 framing, that is to say the zone 17 corresponding to the second doped zone 10 and the zone 15 corresponding to the active layer 5.
  • This zone 16 thus makes it possible to confine the holes 9 in the active layer 5 by defining a barrier of potential preventing them from joining the second doped zone 10.
  • FIG. 12 has the same configuration as FIG. 11, but in the case of a Vring electric potential applied to the second doped zone 10 by the biasing means whose value is situated between the first value and the second potential value. mentioned above, for example a more negative voltage than that applied in the case of Figure 1 1.
  • FIG. 13 has the same configuration as FIGS. 11 and 12, but in the case of a Vring electric potential applied to the second doped zone 10 by the polarization means corresponding to the second polarization value at which the portion of the passivation layer 6 separating said second doped zone 10 from said active layer 5 does not cause an energy barrier for the charge carriers of the active layer 5. For example, it is a more negative voltage than those of Figures 1 1 and 12.
  • the holes 9 are no longer confined in the active layer 5 because of the disappearance of this barrier and the high energy level of the valence band at the zone 17 corresponding to the second doped zone 10, and can therefore join said second doped zone 10.
  • the applied potential Vring allows adjust the passage of the charge carriers from the active layer 5 to the second doped zone 10, and thus modulate the absorption of the charges by said second doped zone 10.
  • the potential of the second doped zone 10 is modulated according to the level of illumination on the photodiode array.
  • an illumination measurement can be provided on the photodiode array, in particular by means of the readout circuit as illustrated in FIG. 3.
  • This illumination measurement makes it possible to determine which potential must be applied to the second doped zone 10. It is also possible to reduce the resistivity of the second doped zone by seconding it by a metal grid covering said second doped zone 10 so that the application of the potential, as well as the drainage of the charges, is uniform.
  • This metal grid can also be used to connect together several second doped zones 10, thus fulfilling the role of connection and polarization means for applying the Vring potential.
  • the second doped zone 10 is located between at least some of the first doped zones 3 in order to separate them.
  • the sectional view shows an alternation between the first doped zones 3 and one or more second doped zones 10.
  • the second doped zone or zones 10 separate the first doped zones. 3 constituting the anodes of the photodiodes in order to absorb the excess charges likely to pass via the active layer 5 from a first doped zone 3 to the other.
  • FIG. 14 shows a view from above of an embodiment in which first doped zones 3 are each at least partially surrounded by a doped zone 10 of the same type, here of N type, as said first doped zones 3, and formed at least partly in the active layer 5, to separate each of the anodes formed by said first doped areas 3 of the other anodes of said matrix.
  • FIG. 15 shows a view from above of an embodiment in which the second doped zone 10 forms a grid between first doped zones 3 in order to individually surround first doped zones 3.
  • a single doped zone 10 is distributed on the surface of the matrix of photodiodes.
  • FIG. 17 shows another example, in which the matrix comprises a plurality of second doped zones 10 distributed between the first doped zones 3 along the diagonals of the photodiode array, so that the majority of said second doped zones 10 are each adjacent to four first doped zones 3.
  • all the anodes 3 are surrounded by one or more second doped zones 10. However, it is not strictly necessary, although preferable and coherent, for all the photodiodes to be surrounded. Nevertheless, in order to obtain a significant reduction in the crosstalk between photodiodes, preferably the majority of the photodiodes are surrounded by at least a second doped zone 10.
  • the first zones 3 are completely surrounded by doped second zones 10.
  • a doped zone 10 around a first doped zone 3 may have openings, and thus only partially surround a first doped zone 3.
  • first doped areas 3 with at least one second doped zone 10 may be dictated by manufacturing considerations but also to optimize the operation of the photodiode array. Indeed, the second doped zones compete with the photodiodes at the level of the charge carriers. In order to limit this competition, it can be expected that the second or second doped zones 10 do not completely surround the anodes, but nevertheless sufficiently to significantly reduce the crosstalk between photodiodes.
  • the second doped zone 10 is separated from the first doped zones 3 by a sufficient distance so that the space charge areas associated respectively with the second doped zone 10 and the first doped zones 3 are separated. Thus, preferably, the second doped zone 10 is distant from the anode and surrounds it with at least 0.5 ⁇ .
  • a second doped zone 10 has a width (top view) of at least 0.5 ⁇ in order to sufficiently insulate the photodiodes from each other.
  • the width, (top view) of a doped zone 10 can thus extend to for example 2 ⁇ , or even reach 5 ⁇ .
  • a matrix of photodiodes according to the invention can naturally be manufactured by means of two selective doping steps:
  • the invention also relates to a method for manufacturing a photodiode matrix according to the first aspect.
  • a first electrode comprising at least one substrate layer 4 of a material of the family of indium phosphide and an active layer 5 of a material of the family of the gallium-indium arsenide, and a passivation layer 6 made of a material of the indium phosphide family, the active layer 5 being situated between the substrate layer 4 and the passivation layer 6, said process comprising the steps whereby :
  • a selective etching of the passivation layer 6 is carried out (FIG. 19), the first doped zones 3 and the said at least one second doped zone 10 are formed during the same selective doping step, the said first doped zones 3 being formed at the zones 11 of the selective etching of the passivation layer 6 previously made (FIG. 20).
  • Selective etching of the passivation layer allows removal of material at the zones 11 intended to form the first doped zones 3.
  • the dopants at the level of the etched zones 11, thus forming the first doped zones 3, thus penetrate further into the stack constituted by the passivation layer 6 and the active layer 5, until it reaches the latter.
  • the dopants outside these etched zones 11, thus forming the second doped zones 6, do not reach the active layer 5 because of the additional thickness of the passivation layer 6 in the non-etched zones. It is therefore necessary that this additional thickness of the passivation layer 6 is sufficient so that, during the same doping step, the first doped zones 3 reach the active layer 5 while the second doped zones 10 do not reach this layer active 5.
  • the selective etching of the passivation layer 6 must remove a thickness of the passivation layer 6 greater than the thickness of the portion of said passivation layer 6 finally separating the second doped zones 10 from the active layer 5 .
  • the doping step can then be performed at the same time for the formation of the first doped zones 3 and the second doped zones 10, for example by means of a mask 12 with recessed zones corresponding to the first zones doped 3 and the second doped zones 10.
  • a first common electrode comprising at least one substrate layer 4 made of a material of the indium phosphide family and an active layer 5 made of a material of the family of gallium-indium arsenide, and a passivation layer 6 of a material of the indium phosphide family, the active layer 5 being located between the substrate layer 4 and the passivation layer 6, another method comprises the steps according to which:
  • a first selective doping is performed to begin forming the first doped zones 3 (FIG. 22);
  • a second selective doping is then performed to finish forming the first doped zones 3 and to form the second doped zone 10 (FIG. 23).
  • a so-called "hardmask" film 12 deposited on the surface of the passivation layer 6 and made of a polymer that can be etched, for example by plasma, in order to create hollow zones through which doping zones are doped. -jacentes.
  • the film 12 has recessed areas corresponding to the location of the first doped areas 3.
  • the film 12 has recessed areas corresponding to the location of the first doped areas 3 and the location of the second doped zones 10.
  • the first common electrode for the implementation of the various processes by the following steps:
  • the first doped zones 3 and said at least one second doped zone 10 can in turn be formed by a selective diffusion of zinc as a P-type dopant in the passivation layer 6 and, for the first doped zones 3, in the active layer 5, when said layers are N-type.
  • the doping is preferentially by diffusion.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

L'invention concerne une matrice de photodiodes comprenant une première électrode commune d'une jonction PN, comprenant au moins une couche de substrat (4) et une couche active (5), - une couche de passivation (6), et au moins deux sortes de zones dopées de même type: - des premières zones dopées (3) formées au moins en partie dans la couche active (5), définissant des secondes électrodes pour former, avec la première électrode commune, des photodiodes connectées à des circuits de lecture pour la formation d'images, - au moins une seconde zone dopée (10) formant une troisième électrode adaptée pour absorber des porteurs de charge excédentaires pour les évacuer, des moyens de polarisation étant adaptés pour appliquer à ladite seconde zone dopée un potentiel électrique (Vring) par lequel est réglable l'absorption des porteurs de charge par ladite seconde zone dopée (10), ladite au moins une seconde zone dopée (10) étant formée dans la couche de passivation (6) et étant séparée de la couche active (5) par une portion de ladite couche de passivation (6).

Description

MATRICE DE PHOTODIODE A ABSORPTION REGLABLE DE CHARGE
DOMAINE DE L'INVENTION L'invention concerne les matrices de photodiodes, et plus particulièrement les matrices de photodiodes à base de couches d'arséniure de gallium-indium(lnGaAs) et de phosphure d'indium (InP), ainsi que leur procédé de fabrication.
CONTEXTE DE L'INVENTION
Une des méthodes de fabrication de matrice de photodiodes dans des matériaux semiconducteurs à faible bande interdite - « band gap » en terminologie anglo-saxonne- couvent pour la détection en lumière infrarouge) consiste à insérer la couche active de détection à faible band gap entre deux matériaux semi-conducteurs à grand band gap. Les deux couches de semi-conducteurs à grand band gap constituent une protection/passivation efficace tout en restant transparentes à la longueur d'onde du rayonnement destiné à être détecté par les photodiodes.
De plus, avec des dopages appropriés, les deux hétérojonctions entre la couche active et les deux couches de protection/passivation confinent les charges photoélectriques dans la couche active de détection et améliorent le rendement quantique de la photodiode ainsi construite.
Une photodiode InGaAs est un exemple type de cette structure physique. La couche active de détection constituée du matériau InGaAs peut avoir un band gap ajustable en fonction de la composition en indium et gallium dans le InGaAs, idéale pour opérer dans la bande SWIR (acronyme de l'anglais Short Wave InfraRed pour infrarouge de courte longueur d'onde), de l'ordre de 1 ,4 à 3 μιη. Le phosphure d'indium et l'arséniure de gallium-indium partage la même structure cristalline cubique face centrée. La composition la plus utilisée est lno.53Gao.47As. La taille de maille cristalline est alors comparable à celle du substrat InP, notamment les paramètres de maille. Cette compatibilité cristalline permet la croissance par épitaxie d'une couche active InGaAs d'excellente qualité sur un substrat InP. Le band gap d'ln0.53Ga0.47As est d'environ 0.73eV, capable de détecter jusqu'à une longueur d'onde de 1.68 μιη dans la bande SWIR. Elle présente un intérêt grandissant dans les domaines d'applications tel que la spectrométrie, la vision nocturne, le tri des plastiques usagés, etc.
Les deux couches de protection/passivation sont généralement faites en InP. Surtout la composition lnO.53GaO.47As, ayant la même taille de maille cristalline qu'InP, cela permet un courant d'obscurité très faible dès la température ambiante.
La figure 1 illustre la structure physique d'une matrice 1 de photodiodes. Une couche active 5 composée de InGaAs est prise en sandwich entre deux couches de In P. La couche inférieure constitue en effet le substrat 4 sur lequel la couche InGaAs est formée par épitaxie en phase vapeur aux organométalliques (ou MO-CVD pour metalorganic vapour phase epitaxy selon la terminologie anglo-saxonne). Cette couche InGaAs est ensuite protégée par une fine couche de passivation 6 composée de InP, déposée aussi par épitaxie. Les couches InP sont en générale du type N, dopées au silicium. La couche active 5 de InGaAs peut être légèrement dopée N ou rester quasi-intrinsèque. Donc les deux couches InP inférieure/supérieure et la couche active 5 de InGaAs forment la cathode commune des photodiodes dans cette matrice.
Les anodes individuelles 3 sont formées par une diffusion locale de zinc (Zn). Le dopant Zn traverse la fine couche de passivation 6 d'InP et pénètre dans la couche active 5 d'InGaAs.
La figure 2 illustre un capteur d'image InGaAs constitué d'une matrice 1 de photodiodes InGaAs connectée en mode puce retournée (« flip-chip » en terminologie anglo-saxonne) avec un circuit de lecture 2. Dans un capteur InGaAs matriciel, la matrice des photodiodes est connectée à un circuit de lecture généralement réalisé en silicium afin de lire les signaux photoélectriques générés par ces photodiodes InGaAs. Cette interconnexion se fait en général par le procédé flip-chip via des billes d'indium 8, ainsi qu'illustré sur la figure 2. Le rayonnement SWIR 9 arrive sur la matrice des photodiodes à travers le substrat 4 de phosphure d'indium, transparent dans cette bande optique.
Avec un détecteur fonctionnant en mode d'intégration, on obtient un signal de sortie proportionnel au produit du flux et de la durée d'exposition. Cependant, le signal de sortie est limité par la capacité d'intégration maximale du détecteur. Pour des scènes à fort contraste, il est souvent impossible d'obtenir un bon rendu des zones sombres et en même temps de garder des zones lumineuses sans saturation. Ce problème est d'autant plus sérieux pour la vision nocturne à laquelle un capteur matriciel à photodiodes InGaAs est souvent destiné.
Une autre manière de lire les signaux photoélectriques des photodiodes de manière générale est proposée par le document EP1354360 et illustrée dans son principe par la figure 3 des dessins ci-annexés. Le document EP1354360 propose un fonctionnement en mode cellule solaire d'une photodiode 51 afin d'obtenir une réponse logarithmique en fonction de l'intensité du rayonnement optique incident 59. Dans ce mode de fonctionnement, la photodiode 51 ne reçoit pas de polarisation extérieure et elle est polarisée en directe par les charges photoélectriques générées dans sa jonction. La tension de polarisation directe observée sur la photodiode est proportionnelle au logarithme du flux optique incident. Cette réponse logarithmique permet de couvrir sans aucun ajustement électrique et optique une plage dynamique de fonctionnement supérieure à 120dB, indispensable pour l'utilisation d'un capteur SWIR InGaAs dans des conditions naturelles à l'extérieur. Le document EP1354360 propose également d'associer un circuit de lecture 55 à commutation à la photodiode.
Le principe d'utilisation de la matrice de capteur d'image illustré à la figure 3 est le suivant :
a) On active le signal de sélection SEL afin de sélectionner la photodiode 51 désirée en fermant l'interrupteur 54. Une fois cette photodiode sélectionnée, on active le premier signal de lecture RD1 qui va fermer l'interrupteur commandé correspondant dans le but de mémoriser les tensions d'une première lecture dans la mémoire 56. Cette première lecture enregistre à la fois l'image et le bruit spatial fixe.
b) On active alors le signal de remise à zéro RSI, signal qui va provoquer la fermeture de l'interrupteur 53. La photodiode 51 étant ainsi court-circuitée, on simule ainsi une image de référence en obscurité absolue.
c) On active alors le second signal de lecture RD2 pour ainsi enregistrer dans l'élément de mémoire 57 les tensions de la deuxième lecture. On a ainsi mémorisé le bruit spatial fixe seul.
d) On calcule la différence entre le résultat des deux mémorisations contenues dans les éléments de mémoire 56 et 57 respectives par un amplificateur différentiel 58. Le signal de sortie de cet amplificateur 58 correspond alors à une image exempte de bruit spatial fixe.
Grâce à la seconde lecture, une tension zéro correspondant à la condition d'obscurité est générée. Ce signal d'obscurité électronique permet de supprimer les décalages de signal (« offsets ») dans la chaîne de lecture dans un détecteur matriciel.
Le principe proposé par EP1354360 a été appliqué dans un capteur InGaAs et fonctionne parfaitement. Mais un phénomène d'éblouissement (« blooming » en terminologie anglo- saxonne) est observé pour des scènes diurnes. Ce phénomène peut être simplement décrit comme une perte de la résolution spatiale dans une image. Le détecteur continue néanmoins à être sensible à la variation de la lumière en suivant la loi logarithmique.
La demande de brevet français FR2977982 propose une isolation électrique par une gravure autour de chaque photodiode. Cette approche permet de supprimer efficacement ce phénomène de blooming mais au prix d'un très fort courant d'obscurité dans les photodiodes à cause de défauts créés par cette gravure. Un autre problème de cette approche réside dans le fait que les étapes de gravure et de diffusion des anodes de photodiode constituent deux étapes distinctes du procédé de fabrication, requérant des masques différents. Des erreurs d'alignements des masques peuvent créer des non- uniformités supplémentaires entre les photodiodes d'une matrice.
Dans une structure de l'état de la technique telle qu'illustrée par la figure 1 , il peut être constaté que chaque photodiode contient plusieurs jonctions PN, dont une voulue et un certain nombre qui sont parasites. Ces jonctions PN sont illustrées par la Figure 4. Les jonctions PN 31 entre les anodes 3 et la couche active 5 sont voulues et constituent les diodes de la matrice de photodiodes.
Les jonctions PN parasites latérales 32 entre les anodes 3 et la couche de passivation 6 constituent un chemin de passage électrique possible entre les photodiodes voisines via la couche de passivation.
Un circuit de lecture classique intègre, dans une capacité, le courant inverse dans la photodiode en appliquant une polarisation inverse sur cette dernière. Dans cette configuration, les jonctions parasites latérales 32 dans les photodiodes sont polarisées en inverse en même temps avec pour effet d'ajouter un courant parasite supplémentaire dans la capacité d'intégration. Ce courant parasite dégrade la qualité d'image, mais ne génère quasiment pas de diaphonie entre les photodiodes voisines. Ces courants parasites peuvent être compensés partiellement par des traitements d'image complexes sur l'image brute sortant du circuit de lecture.
Quand une photodiode fonctionne en mode cellule solaire, la jonction est polarisée en direct par la lumière incidente. Dans ce cas, les jonctions parasites latérales 32 sont aussi polarisées en direct et elles constituent un passage de courant électrique entre des photodiodes voisines. Cette polarisation directe devient d'autant plus importante que l'intensité optique incidente augmente, créant ainsi un phénomène de blooming qui dégrade considérablement la résolution spatiale du capteur.
La demande de brevet français n° 1350830 propose une matrice de photodiodes dont une vue en coupe est illustrée par la figure 5, comprenant :
- une cathode comprenant au moins une couche de substrat 4 en un matériau de la famille du phosphure d'indium et une couche active 5 en un matériau de la famille de l'arséniure de gallium-indium, et
- au moins deux sortes de zones dopées de même type formées au moins en partie dans la couche active 5:
- des premières zones dopées 3 formant avec la cathode des photodiodes pour la formation d'images,
- au moins une seconde zone dopée 20 absorbant des porteurs de charge excédentaires pour les évacuer. La figure 6 illustre schématiquement la structure de bandes d'énergie selon la coupe AA' de la matrice de photodiodes de la figure 5, c'est-à-dire selon une coupe traversant le substrat 4, la couche active 5 et la couche de passivation 6. Les différents niveaux d'énergie sont représentés en fonction de la profondeur selon des échelles de profondeur et d'énergie arbitraires, à vocation purement illustrative: l'énergie de la bande de valence Ev, l'énergie de la bande de conduction Ec, et le niveau de Fermi EF.
On distingue ainsi une zone 15 correspondant à la couche active 5 présentant une énergie de valence Ev supérieure aux deux zones l'encadrant, c'est-à-dire une zone 14 correspondant au substrat 4 et une zone 16 correspondant à la couche de passivation 6. Les trous 9 constituant ici les porteurs de charge sont ainsi confinés dans la couche active 5. De manière similaire à la figure 6, la figure 7 illustre schématiquement la structure de bandes d'énergie selon les coupes BB' et CC de la matrice de photodiodes de la figure 5, c'est-à-dire selon une coupe traversant le substrat 4, la couche active 5 et une première zone dopée 3 ou une seconde zone dopée 20, ces deux zones dopées 3, 20 présentant un même niveau de dopage à une même profondeur.
On distingue alors qu'une zone 13 correspondant à une zone dopée 3, 20 présente une énergie de valence Ev supérieure aux zones 15 et 14, correspondant respectivement comme ci-dessus à la couche active 5 et au substrat 4. Les trous 9 constituant ici les porteurs de charge ne sont pas confinés dans la couche active 5, et leur passage dans les zones dopées 3, 20 est possible.
Cette approche permet de supprimer efficacement ce phénomène de blooming, en diminuant la conductivité latérale dans la matrice de photodiode, mais au prix d'une perte de l'efficacité de collection (efficacité quantique). En effet, une partie des charges photoélectriques sont absorbée par les zones d'absorption constituées par les secondes zones dopées 20, et, en cas de faible niveau de lumière, cette perte devient inacceptable. Ainsi, ces approches, malgré leur efficacité, détériorent la performance en bas niveau de lumière.
La demande de brevet US 2010/0258894 A1 présente une matrice de photodiodes dans laquelle une zone dopée P d'une partie anti-diaphonie s'avance plus profondément vers le substrat que la zone dopée P des photodiodes, afin de former entre les photodiodes des zones de déplétion faisant office de murs anti-diaphoniques. Cette approche détériore également la performance en bas niveau de lumière, dans la mesure où trop de charges sont absorbées par la partie anti-diaphonique.
PRESENTATION DE L'INVENTION
La présente invention propose une matrice de photodiodes comprenant
- une première électrode commune d'une jonction PN, comprenant au moins une couche de substrat en un matériau de la famille du phosphure d'indium et une couche active en un matériau de la famille de l'arséniure de gallium-indium,
- une couche de passivation en un matériau de la famille du phosphure d'indium, la couche active étant située entre la couche de substrat et la couche de passivation, et
- au moins deux sortes de zones dopées de même type: - des premières zones dopées formées au moins en partie dans la couche active, définissant des secondes électrodes pour former, avec la première électrode commune, des photodiodes connectées à des circuits de lecture et adaptées pour la formation d'images,
- au moins une seconde zone dopée formant une troisième électrode adaptée pour absorber des porteurs de charge excédentaires pour les évacuer, des moyens de polarisation étant adaptés pour appliquer à ladite seconde zone dopée un potentiel électrique (Vring) par lequel est réglable l'absorption des porteurs de charge par ladite seconde zone dopée,
ladite au moins une seconde zone dopée étant formée dans la couche de passivation et étant séparée de la couche active par une portion de ladite couche de passivation.
La matrice de photodiode selon l'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leurs combinaisons techniquement possible :
- la matrice est configurée pour que le potentiel électrique appliqué à la seconde zone dopée soit modulé en fonction du niveau d'illumination sur la matrice de photodiodes;
- la seconde zone dopée est située entre au moins certaines des premières zones dopées;
- la seconde zone dopée entoure individuellement des premières zones dopées;
- une pluralité de secondes zones dopées sont réparties parallèlement entre elles et intercalées avec des premières zones dopées;
- la matrice comprend une pluralité de secondes zones dopées réparties entre les premières zones dopées le long des diagonales de la matrice de photodiodes;
- la seconde zone dopée est séparée des premières zones dopées d'une distance suffisante de sorte les zones de charge d'espace associées respectivement à la seconde zone dopée et aux premières zones dopées sont séparées;
- une grille métallique en surface de ladite matrice relie différents points de la ou les seconde(s) zone(s) dopée(s) afin d'homogénéiser le potentiel électrique de la ou les seconde(s) zone(s) dopée(s).
L'invention concerne également un capteur d'images incorporant une matrice de photodiodes selon l'invention.
La présente invention apporte une amélioration en contrôlant électriquement le degré d'absorption des charges photoélectriques. En cas de bas niveau de lumière, le degré d'absorption par les secondes zones dopées sera minimisé afin de favoriser la collection de charge par les photodiodes. Mais en cas de fort niveau d'illumination, le degré d'absorption par les secondes zones dopées sera renforcé afin de minimiser la diaphonie entre les photodiodes. L'invention concerne également un procédé de fabrication d'une matrice de photodiodes selon l'invention, ledit procédé comprenant les étapes selon lesquelles, à partir d'une première électrode commune comprenant au moins une couche de substrat en un matériau de la famille du phosphure d'indium et une couche active en un matériau de la famille de l'arséniure de gallium-indium, et d'une couche de passivation en un matériau de la famille du phosphure d'indium, la couche active étant située entre la couche de substrat et la couche de passivation:
- on réalise une gravure sélective de la couche de passivation,
- on forme les premières zones dopées et ladite au moins une seconde zone dopée, lesdites premières zones dopées étant formées au niveau des zones de la gravure sélective de la couche de passivation précédemment réalisée.
De préférence, les premières zones dopées et ladite au moins une seconde zone dopée sont formées lors d'une même étape de dopage sélectif. De préférence, la gravure sélective de la couche de passivation enlève une épaisseur de la couche de passivation supérieure à l'épaisseur de la portion de ladite couche de passivation séparant au final les secondes zones dopées de la couche active.
L'invention concerne également un procédé de fabrication d'une matrice de photodiodes selon l'invention, ledit procédé comprenant les étapes selon lesquelles, à partir d'une première électrode commune comprenant au moins une couche de substrat en un matériau de la famille du phosphure d'indium et une couche active en un matériau de la famille de l'arséniure de gallium-indium, et d'une couche de passivation en un matériau de la famille du phosphure d'indium, la couche active étant située entre la couche de substrat et la couche de passivation :
- on réalise un premier dopage sélectif pour commencer à former les premières zones dopées,
- on réalise ensuite un second dopage sélectif pour finir de former les premières zones dopées et pour former ladite au moins une seconde zone dopée. BREVE DESCRIPTION DES FIGURES
D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée qui suit. L'invention sera aussi mieux comprise en référence à cette description considérée conjointement avec les dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1 , déjà commentée, est un schéma illustrant la structure d'une matrice de photodiodes InGaAs de l'état de la technique ;
- la figure 2, déjà commentée, illustre un capteur d'image InGaAs constitué d'une matrice de photodiodes InGaAs connectée en flip-chip avec un circuit de lecture sur substrat silicium ;
- la figure 3, déjà commentée, est un schéma de principe de réalisation d'un capteur logarithmique avec les photodiodes en mode cellule solaire ;
- la figure 4 illustre les différentes jonctions dans une matrice de photodiodes de l'état de la technique ;
- la figure 5 illustre une vue en coupe d'une matrice de photodiodes selon demande de brevet français n° 1350830, comprenant des zones d'absorption;
- la figure 6 illustre schématiquement la structure de bandes d'énergie selon la coupe AA' de la matrice de photodiodes de la figure 5;
- la figure 7 illustre schématiquement la structure de bandes d'énergie selon les coupes BB' et CC de la matrice de photodiodes de la figure 5;
- la figure 8 illustre une vue en coupe d'une matrice de photodiodes selon l'invention;
- la figure 9 illustre schématiquement la structure de bandes d'énergie selon la coupe AA' de la matrice de photodiodes de la figure 8;
- la figure 10 illustre schématiquement la structure de bandes d'énergie selon la coupe BB' de la matrice de photodiodes de la figure 8;
- les figures 11 , 12 et 13 illustrent schématiquement la structure de bandes d'énergie selon la coupe CC de la matrice de photodiodes de la figure 8 sous l'influence de trois polarisations différentes;
- les figures 14, 15,16 et 17 sont des vues de dessus de différents modes de réalisation possible de la matrice de photodiode selon l'invention;
- les figures 18, 19 et 20 illustrent schématiquement des étapes successives d'un procédé de fabrication possible de la matrice de photodiode selon l'invention;
- les figures 21 , 22 et 23 illustrent schématiquement des étapes successives d'un procédé de fabrication possible de la matrice de photodiode selon l'invention. DESCRIPTION DETAILLEE
La présente invention propose une structure permettant de faire varier l'absorption des porteurs de charge par une zone d'absorption. Une matrice de photodiodes fabriquée selon la présente invention peut être exploitée en mode cellule solaire comme décrit dans le document EP1354360, sans perte de résolution spatiale, même en présence de très fortes intensités optiques. Une telle matrice procure aussi une amélioration de la qualité d'image avec un circuit de lecture classique en mode d'intégration, comme par exemple, les différents circuits de lecture CMOS ISC9705 et ISC9809 commercialisés par la société Indigo/FLIR aux USA. Le circuit ISC9705 intègre le courant photoélectrique d'une photodiode directement sur un condensateur (mode injection directe) et le circuit ISC9809 intègre le courant photoélectrique à travers un amplificateur opérationnel (mode CTIA). Le mode CTIA permet un gain de conversion charge-tension plus important qui favorise la sensibilité de détection.
En référence à la figure 8, une matrice de photodiodes comprend une première électrode commune comprenant au moins une couche de substrat 4 en un matériau de la famille du phosphure d'indium et une couche active 5 en un matériau de la famille de l'arséniure de gallium-indium.
Une couche de passivation 6, par exemple en matériau de la famille du phosphure d'indium, est prévue au-dessus de la couche active 5 d'arséniure de gallium-indium. La couche active 5 est ainsi située entre la couche de substrat 4 et la couche de passivation 6.
On entend par un matériau de la famille du phosphure d'indium un matériau semiconducteur composé principalement, voire quasi-exclusivement, de phosphure d'indium, et éventuellement d'autre composants en quantité bien moindre, par exemples des dopants. On désignera donc ce matériau par son composant principal, c'est-à-dire le phosphure d'indium, ou InP.
De même, on entend par matériau de la famille de l'arséniure de gallium-indium un matériau semi-conducteur composé principalement, voire exclusivement, d'arséniure de gallium-indium, et éventuellement d'autre composants en quantité bien moindre, par exemples des dopants. On désignera donc ce matériau par son composant principal, c'est- à-dire l'arséniure de gallium-indium, ou InGaAs.
La matrice de photodiode comporte en outre au moins deux sortes de zones dopées de même type:
- des premières zones dopées 3 formées au moins en partie dans la couche active 5, définissant des secondes électrodes pour former, avec la première électrode commune, des photodiodes pour la formation d'images,
- au moins une seconde zone dopée 10 formant une troisième électrode absorbant des porteurs de charge excédentaires pour les évacuer.
De préférence, les premières zones dopées 3 et la seconde zone dopée 10 présentent des caractéristiques de dopage les plus proches possibles, et sont de préférence formées par les mêmes dopants.
Il peut être prévu une pluralité de seconde zone dopée 10 pour absorber des porteurs de charge en excès et les évacuer de la matrice de photodiodes.
La seconde zone dopée 10 est formée dans la couche de passivation 6 et est séparée de la couche active 5 par une portion de ladite couche de passivation 6. La seconde zone dopée 10 n'est donc pas en contact avec la couche active 5, tandis que les premières zones dopées 3 s'étendent depuis la couche de passivation 6 jusque dans la couche active 5. De préférence, l'épaisseur de la portion de la couche de passivation 6 séparant la seconde zone dopée 10 de la couche active 5 est inférieure à 0,5 μιη, et est compris de préférence entre 0,1 μιη et 0,5 μιη.
Les deux sortes de zones dopées sont de même type, c'est-à-dire N ou P. Pour des raisons de simplicité, nous présenterons ici le cas où les deux sortes de zones dopées sont du type P.
Les couches InP sont alors du type N, par exemple dopées au silicium. La couche active 5 de InGaAs peut être légèrement dopée N ou rester quasi-intrinsèque. Donc les deux couches InP inférieure/supérieure, c'est-à-dire le substrat 4 et la couche de passivation 6, et la couche active 5 de InGaAs forment une cathode commune des photodiodes dans cette matrice, ladite cathode commune étant donc la première électrode commune déjà évoquée. Les premières zones dopées 3 constituent alors une pluralité d'anodes formées au moins en partie dans la couche active 5, la coopération entre une anode et la cathode formant une photodiode.
Chacune des premières zones dopées 3 est connectée à un circuit de lecture qui permet de lire les signaux photoélectriques générés par les photodiodes constituées par lesdites premières zones dopées 3 et la première électrode commune. Notamment, les photodiodes sont connectées à des circuits de lectures similaires à celui illustré par la figure 3, et les potentiels électriques Vpd1 , Vpd2 qu'elles présentent, en fonction notamment de l'exposition à laquelle elles sont soumises et de leur polarisation avant l'exposition, sont lus par ces circuits de lectures pour déterminer une image.
La seconde zone dopée 10 est reliée par une connexion électrique à des moyens de polarisation configuré pour appliquer un potentiel électrique réglable à ladite seconde zone dopée 10. Des moyens de polarisation appliquent donc à ladite seconde zone dopée 10 un potentiel électrique Vring par lequel est réglée l'absorption des porteurs de charge par ladite seconde zone dopée 10. Le potentiel électrique Vring de la seconde zone dopée 10 est choisi inférieur au potentiel le plus bas parmi les potentiels Vpd1 , Vpd2 des premières zones dopées 3 de sorte que Vring < min(Vpd1 , Vpd2).
Typiquement, il s'agit d'une connexion électrique reliant la seconde zone dopée 10 à une alimentation par laquelle est imposée le potentiel électrique Vring et par laquelle sont évacuées les charges excédentaires absorbées par la seconde zone dopée 10.
Le potentiel électrique Vring appliqué par lesdits moyens de polarisation à ladite seconde zone dopée 10 peut varier dans une plage de valeur comprenant au moins:
- une première valeur de polarisation au niveau de laquelle les porteurs de charge sont confinés dans la couche active 5 en raison d'une barrière d'énergie correspondant à la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5; et
- une seconde valeur de polarisation au niveau de laquelle la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5 n'entraîne pas de barrière d'énergie pour les porteurs de charge de la couche active 5. La figure 9 illustre schématiquement la structure de bandes d'énergie selon la coupe AA' de la matrice de photodiodes de la figure 8, c'est-à-dire selon une coupe traversant le substrat 4, la couche active 5 et la couche de passivation 6. Les différents niveaux d'énergie sont représentés en fonction de la profondeur selon des échelles de profondeur et d'énergie arbitraires, à vocation purement illustrative: l'énergie de la bande de valence Ev, l'énergie de la bande de conduction Ec, et le niveau de Fermi EF.
On distingue ainsi une zone 15 correspondant à la couche active 5 présentant une énergie de valence Ev supérieure à celle des deux zones l'encadrant, c'est-à-dire une zone 14 correspondant au substrat 4 et une zone 16 correspondant à la couche de passivation 6. Les trous 9 constituant ici les porteurs de charge sont ainsi confinés dans la couche active 5.
De manière similaire à la figure 9, la figure 10 illustre schématiquement la structure de bandes d'énergie selon la coupe BB' de la matrice de photodiodes de la figure 8, c'est-à- dire selon une coupe traversant le substrat 4, la couche active 5 et une première zone dopée 3.
On distingue alors qu'une zone 13 correspondant à la première zone dopée 3 présente une énergie de valence Ev supérieure aux zones 15 et 14, correspondant respectivement comme ci-dessus à la couche active 5 et au substrat 4. Les trous 9 constituant ici les porteurs de charge ne sont pas confinés dans la couche active 5, et leur passage dans la première zone dopée 3 est possible. Les figures 1 1 , 12 et 13 illustrent schématiquement la structure de bandes d'énergie selon la coupe CC de la matrice de photodiodes de la figure 8, c'est-à-dire selon une coupe traversant le substrat 4, la couche active 5, la couche de passivation 6 et une seconde zone dopée 10, de manière similaire à celle des figures 9 et 10 pour leurs coupes respectives.
La figure 1 1 illustre un cas dans lequel le potentiel électrique Vring appliqué à la seconde zone dopée 10 correspond à une première valeur de polarisation au niveau de laquelle les porteurs de charge sont confinés dans la couche active 5 en raison d'une barrière d'énergie correspondant à la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5. Par exemple, il peut s'agir d'une faible polarisation, appliquée dans le cas d'une faible luminosité afin de limiter ou d'empêcher l'absorption des porteurs de charge par la seconde zone dopée 10.
On distingue sur la figure 1 1 une zone 16 correspondant à la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5, ladite zone 16 présentant une énergie de valence Ev inférieure à celle des deux zones l'encadrant, c'est-à-dire la zone 17 correspondant à la seconde zone dopée 10 et la zone 15 correspondant à la couche active 5. Cette zone 16 permet donc de confiner les trous 9 dans la couche active 5 en définissant une barrière de potentiel les empêchant de rejoindre la seconde zone dopée 10.
La figure 12 présente la même configuration que la figure 1 1 , mais dans le cas d'un potentiel électrique Vring appliqué à la seconde zone dopée 10 par les moyens de polarisation dont la valeur est située entre la première valeur et la seconde valeur de potentiel mentionnées plus haut, par exemple une tension plus négative que celle appliqué dans le cas de la figure 1 1 .
On constate une diminution de la hauteur de la barrière de potentiel de la zone 16 correspondant à la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5, tandis que les énergies de valence Ev et de conduction Ec de la zone 17 correspondant à la seconde zone dopée 10 s'élèvent. Certains des trous 9 sont encore confinés dans la couche active 5 en raison de la présence de la barrière de potentiel de la zone 16, tandis que certains trous 9 franchissent cette barrière pour rejoindre la seconde zone dopée 10.
La figure 13 présente la même configuration que les figures 1 1 et 12, mais dans le cas d'un potentiel électrique Vring appliqué à la seconde zone dopée 10 par les moyens de polarisation correspondant à la seconde valeur de polarisation au niveau de laquelle la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5 n'entraîne pas de barrière d'énergie pour les porteurs de charge de la couche active 5. Par exemple, il s'agit d'une tension plus négative que celles des figures 1 1 et 12.
On constate ainsi la disparition de la barrière de potentiel de la zone 16 correspondant à la portion de la couche de passivation 6 séparant ladite seconde zone dopée 10 de ladite couche active 5. Les trous 9 ne sont plus confinés dans la couche active 5 en raison de la disparition de cette barrière et du niveau d'énergie élevé de la bande de valence au niveau de la zone 17 correspondant à la seconde zone dopée 10, et peuvent donc rejoindre ladite seconde zone dopée 10. On voit bien que le potentiel appliqué Vring permet de régler le passage des porteurs de charge depuis la couche active 5 vers la seconde zone dopée 10, et donc de moduler l'absorption des charges par ladite seconde zone dopée 10.
De préférence, le potentiel de la seconde zone dopée 10 est modulé en fonction du niveau d'illumination sur la matrice de photodiodes. A cet effet, il peut être prévu une mesure de d'illumination sur la matrice de photodiodes, notamment au moyen du circuit de lecture tel qu'illustré sur la figure 3. Cette mesure d'illumination permet de déterminer quel potentiel doit être appliqué à la seconde zone dopée 10. On peut également prévoir de réduire la résistivité de la seconde zone dopée en la secondant par une grille métallique recouvrant ladite seconde zone dopée 10 afin que l'application du potentiel, ainsi que le drainage des charges, soit uniforme. Cette grille métallique peut d'ailleurs être utilisée pour relier entre elles plusieurs secondes zones dopées 10, remplissant ainsi le rôle de moyen de connexion et de polarisation pour l'application du potentiel Vring.
La seconde zone dopée 10 est située entre au moins certaines des premières zones dopées 3 afin de les séparer. Ainsi, dans la figure 8, la vue en coupe montre une alternance entre les premières zones dopées 3 et une ou plusieurs secondes zones dopées 10. Ainsi, dans la direction de la coupe, la ou les secondes zones dopées 10 séparent les premières zones dopées 3 constituant les anodes des photodiodes afin d'absorber les charges excédentaires susceptibles de transiter via la couche active 5 d'une première zone dopée 3 à l'autre. La figure 14 présente une vue de dessus d'un mode de réalisation dans lequel des premières zones dopées 3 sont chacune entourées au moins partiellement d'une zone dopée 10 de même type, ici de type N, que lesdites premières zones dopées 3, et formée au moins en partie dans la couche active 5, pour séparer chacune des anodes constituées par lesdites premières zones dopées 3 des autres anodes de ladite matrice. La figure 15 présente une vue de dessus d'un mode de réalisation dans lequel la seconde zone dopée 10 forme un quadrillage entre des premières zones dopées 3 afin d'entourer individuellement des premières zones dopées 3. De préférence, afin de diminuer la complexité de fabrication ainsi que des interconnexions, une seule zone dopée 10 est répartie à la surface de la matrice de photodiodes. Cependant, on peut choisir de disposer une pluralité de secondes zones dopées 10, comme par exemple dans le mode de réalisation illustré à la figure 16, dans lequel une pluralité de secondes zones dopées 10 sont réparties parallèlement entre elles et intercalées avec des premières zones dopées 3. La figure 17 présente un autre exemple, dans lequel la matrice comprend une pluralité de secondes zones dopées 10 réparties entre les premières zones dopées 3 le long des diagonales de la matrice de photodiodes, de sorte que la majorité desdites secondes zones dopées 10 sont chacune adjacentes à quatre premières zones dopées 3.
Dans les exemples illustrés par les figures 1 et 15, toutes les anodes 3 sont entourées par une ou plusieurs secondes zones dopées 10. Cependant, il n'est pas strictement nécessaire, bien que préférable et cohérent, que toutes les photodiodes soient entourées. Néanmoins, afin d'obtenir une réduction significative de la diaphonie entre photodiodes, de préférence la majorité des photodiodes sont entourées par au moins une seconde zone dopée 10.
De même, dans les exemples illustrés par les figures 1 et 15, les premières zones 3 sont complètement entourées par des zones secondes dopées 10. Cependant, une zone dopée 10 autour d'une première zone dopée 3 peut présenter des ouvertures, et ainsi n'entourer que partiellement une première zone dopée 3.
Le fait de ne pas entourer complètement des premières zones dopées 3 par au moins une seconde zone dopée 10 peut être dicté par des considérations de fabrication mais également pour optimiser le fonctionnement de la matrice de photodiodes. En effet, les secondes zones dopées 10 concurrencent les photodiodes au niveau des porteurs de charge. Afin de limiter cette concurrence, on peut prévoir que la ou les secondes zones dopées 10 n'entourent pas complètement les anodes, mais néanmoins suffisamment pour diminuer significativement la diaphonie entre photodiodes. La seconde zone dopée 10 est séparée des premières zones dopées 3 d'une distance suffisante de sorte que les zones de charge d'espace associées respectivement à la seconde zone dopée 10 et aux premières zones dopées 3 sont séparées. Ainsi, de préférence, la seconde zone dopée 10 est distante de l'anode qu'elle entoure d'au moins 0,5 μιη.
De préférence, une seconde zone dopée 10 présente une largeur (vue de dessus) d'au moins 0,5 μιη afin de suffisamment isoler les photodiodes les unes des autres. La largeur, (vue de dessus) d'une zone dopée 10 peut ainsi s'étendre jusqu'à par exemple 2 μιη, voire atteindre 5 μιη.
Une matrice de photodiodes selon l'invention peut naturellement être fabriquée au moyen de deux étapes de dopage sélectif:
- une étape de dopage profond au moyen d'un masque exposant les parties du substrat destinées à accueillir les premières zones dopées, et
- une autre étape de dopage moins profond au moyen d'un autre masque exposant les parties du substrat destinées à accueillir les secondes zones dopées, l'ordre de ces deux étapes n'ayant pas d'importance. Si un tel procédé de fabrication présente l'avantage de la simplicité, il n'est cependant pas optimal, dans la mesure où les opérations de changement de masque et/ou de dopage successif sont longues, risquées et donc coûteuses. Il est donc présenté ci-dessous deux procédés de fabrication présentant de substantiels avantages en termes de rapidité et de fiabilité.
Ainsi, selon un second aspect, l'invention concerne également un procédé de fabrication d'une matrice de photodiode selon le premier aspect. En référence aux figures 18, 19 et 20, à partir d'une première électrode comprenant au moins une couche de substrat 4 en un matériau de la famille du phosphure d'indium et une couche active 5 en un matériau de la famille de l'arséniure de gallium-indium, et d'une couche de passivation 6 en un matériau de la famille du phosphure d'indium, la couche active 5 étant située entre la couche de substrat 4 et la couche de passivation 6, ledit procédé comprenant les étapes selon lesquelles :
- on réalise une gravure sélective de la couche de passivation 6 (figure 19), - on forme les premières zones dopées 3 et ladite au moins une seconde zone dopée 10 lors d'une même étape de dopage sélectif, lesdites premières zones dopées 3 étant formées au niveau des zones 11 de la gravure sélective de la couche de passivation 6 précédemment réalisée (figure 20).
La gravure sélective de la couche de passivation permet un enlèvement de matière au niveau des zones 11 destinées à former les premières zones dopées 3. Lors de l'étape subséquente de dopage sélectif, les dopants au niveau des zones gravées 11 , formant donc les premières zones dopées 3, pénètrent ainsi plus loin dans l'empilement constitué par la couche de passivation 6 et la couche active 5, jusqu'à atteindre cette dernière. En revanche, les dopants en dehors de ces zones gravées 11 , formant donc les secondes zones dopées 6, n'atteignent pas la couche active 5 en raison de l'épaisseur supplémentaire de la couche de passivation 6 dans les zones non gravées. Il faut donc que cette épaisseur supplémentaire de la couche de passivation 6 soit suffisante pour que, lors d'une même étape de dopage, les premières zones dopées 3 atteignent la couche active 5 tandis que les secondes zones dopées 10 n'atteignent pas cette couche active 5.
Il en résulte que la gravure sélective de la couche de passivation 6 doit enlever une épaisseur de la couche de passivation 6 supérieure à l'épaisseur de la portion de ladite couche de passivation 6 séparant au final les secondes zones dopées 10 de la couche active 5.
Une fois la gravure effectuée, l'étape de dopage peut alors être réalisée en même temps pour la formation des premières zones dopées 3 et des secondes zones dopées 10, par exemple au moyen d'un masque 12 avec des zones évidées correspondant aux premières zones dopées 3 et aux secondes zones dopées 10.
En référence aux figures 21 , 22 et 23, à partir d'une première électrode commune comprenant au moins une couche de substrat 4 en un matériau de la famille du phosphure d'indium et une couche active 5 en un matériau de la famille de l'arséniure de gallium- indium, et d'une couche de passivation 6 en un matériau de la famille du phosphure d'indium, la couche active 5 étant située entre la couche de substrat 4 et la couche de passivation 6, un autre procédé comprend les étapes selon lesquelles :
- on réalise un premier dopage sélectif pour commencer à former les premières zones dopées 3 (figure 22);
- on réalise ensuite un second dopage sélectif pour finir de former les premières zones dopées 3 et pour former la seconde zone dopée 10 (figure 23). On peut à cet effet utiliser un film 12 dit "hardmask" déposé à la surface de la couche de passivation 6 et constitué d'un polymère gravable par exemple par plasma, afin de créer des zones évidées par lesquelles se fait le dopage des zones sous-jacentes. Ainsi, pour le premier dopage sélectif, le film 12 présente des zones évidées correspondant à l'emplacement des premières zones dopées 3. Ensuite, on réalise dans le film 12 d'autres zones évidées correspondant à l'emplacement des secondes zones dopées 10 afin qu'au cours du second dopage sélectif, le film 12 dit "hardmask" présente des zones évidées correspondant à l'emplacement des premières zones dopées 3 et à l'emplacement des secondes zones dopées 10.
On peut par exemple obtenir la première électrode commune pour la mise en œuvre des différents procédés par les étapes suivantes:
- croissance épitaxiale d'une couche active 5 en un matériau de la famille de l'arséniure de gallium-indium InGaAs sur un substrat 4 en un matériau de la famille du phosphore d'indium, puis
- croissance épitaxiale d'une couche de passivation 6 en un matériau de la famille du phosphore d'indium InP sur la couche active 5. Les premières zones dopées 3 et ladite au moins une seconde zone dopée 10 peuvent quant à elle être formées par une diffusion sélective de zinc en tant que dopant de type P dans la couche de passivation 6 et, pour les premières zones dopées 3, dans la couche active 5, lorsque lesdites couches sont de type N. Le dopage se fait préférentiellement par diffusion.

Claims

Revendications
1 . Matrice de photodiodes comprenant
- une première électrode commune d'une jonction PN, comprenant au moins une couche de substrat (4) en un matériau de la famille du phosphure d'indium et une couche active (5) en un matériau de la famille de l'arséniure de gallium-indium, - une couche de passivation (6) en un matériau de la famille du phosphure d'indium, la couche active (5) étant située entre la couche de substrat (4) et la couche de passivation (6), et
- au moins deux sortes de zones dopées de même type:
- des premières zones dopées (3) formées au moins en partie dans la couche active (5), définissant des secondes électrodes pour former, avec la première électrode commune, des photodiodes connectées à des circuits de lecture et adaptées pour la formation d'images,
- au moins une seconde zone dopée (10) formant une troisième électrode adaptée pour absorber des porteurs de charge excédentaires pour les évacuer, des moyens de polarisation étant adaptés pour appliquer à ladite seconde zone dopée un potentiel électrique (Vring) par lequel est réglable l'absorption des porteurs de charge par ladite seconde zone dopée (10),
caractérisé en ce que ladite au moins une seconde zone dopée (10) est formée dans la couche de passivation (6) et est séparée de la couche active (5) par une portion de ladite couche de passivation (6).
2. Matrice selon la revendication précédente, dans laquelle le potentiel électrique (Vring) appliqué à la seconde zone dopée (10) est modulé en fonction du niveau d'illumination sur la matrice de photodiodes.
3. Matrice selon l'une des revendications précédentes, dans laquelle la seconde zone dopée (10) est située entre au moins certaines des premières zones dopées (3).
4. Matrice selon l'une des revendications précédentes, dans laquelle la seconde zone (10) dopée entoure individuellement des premières zones dopées (3).
5. Matrice selon l'une des revendications 1 à 4, dans laquelle une pluralité de secondes zones dopées (10) sont réparties parallèlement entre elles et intercalées avec des premières zones dopées (3).
6. Matrice selon l'une des revendications 1 à 4, comprenant une pluralité de secondes zones dopées (10) réparties entre les premières zones dopées (3) le long des diagonales de la matrice de photodiodes.
7. Matrice selon l'une des revendications précédentes, dans laquelle la seconde zone dopée (10) est séparée des premières zones dopées (3) d'une distance suffisante de sorte les zones de charge d'espace associées respectivement à la seconde zone dopée (10) et aux premières zones dopées (3) sont séparées.
8. Matrice selon l'une des revendications précédentes, dans laquelle une grille métallique en surface de ladite matrice relie différents points de la ou les seconde(s) zone(s) dopée(s) (10) afin d'homogénéiser le potentiel électrique de la ou les seconde(s) zone(s) dopée(s) (10).
9. Capteur d'images incorporant une matrice de photodiodes selon l'une quelconque des revendications précédentes.
10. Procédé de fabrication d'une matrice de photodiodes selon l'une des revendications 1 à 8, ledit procédé comprenant les étapes selon lesquelles, à partir d'une première électrode commune comprenant au moins une couche de substrat (4) en un matériau de la famille du phosphure d'indium et une couche active (5) en un matériau de la famille de l'arséniure de gallium-indium, et d'une couche de passivation (6) en un matériau de la famille du phosphure d'indium, la couche active (5) étant située entre la couche de substrat (4) et la couche de passivation (6) :
- on réalise une gravure sélective de la couche de passivation (6),
- on forme les premières zones dopées (3) et ladite au moins une seconde zone dopée (10), lesdites premières zones dopées (3) étant formées au niveau des zones de la gravure sélective de la couche de passivation (6) précédemment réalisée.
1 1 . Procédé selon la revendication précédente, dans lequel les premières zones dopées (3) et ladite au moins une seconde zone dopée (10) sont formées lors d'une même étape de dopage sélectif.
12. Procédé selon l'une des revendications 10 à 1 1 , dans lequel la gravure sélective de la couche de passivation enlève une épaisseur de la couche de passivation (6) supérieure à l'épaisseur de la portion de ladite couche de passivation (6) séparant au final les secondes zones dopées (10) de la couche active (5).
13. Procédé de fabrication d'une matrice de photodiodes selon l'une des revendications 1 à 8, ledit procédé comprenant les étapes selon lesquelles, à partir d'une première électrode commune comprenant au moins une couche de substrat (4) en un matériau de la famille du phosphure d'indium et une couche active (5) en un matériau de la famille de l'arséniure de gallium-indium, et d'une couche de passivation (6) en un matériau de la famille du phosphure d'indium, la couche active (5) étant située entre la couche de substrat (4) et la couche de passivation (6) :
- on réalise un premier dopage sélectif pour commencer à former les premières zones dopées (3),
- on réalise ensuite un second dopage sélectif pour finir de former les premières zones dopées (3) et pour former ladite au moins une seconde zone dopée (10).
PCT/EP2014/060395 2013-05-22 2014-05-21 Matrice de photodiode à absorption réglable de charge WO2014187840A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14725184.7A EP3000132A1 (fr) 2013-05-22 2014-05-21 Matrice de photodiode à absorption réglable de charge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354597A FR3006105B1 (fr) 2013-05-22 2013-05-22 Matrice de photodiode a absorption reglable de charge
FR1354597 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014187840A1 true WO2014187840A1 (fr) 2014-11-27

Family

ID=49378370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/060395 WO2014187840A1 (fr) 2013-05-22 2014-05-21 Matrice de photodiode à absorption réglable de charge

Country Status (3)

Country Link
EP (1) EP3000132A1 (fr)
FR (1) FR3006105B1 (fr)
WO (1) WO2014187840A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428159A1 (fr) * 1989-11-14 1991-05-22 Sumitomo Electric Industries, Ltd. Dispositif capteur de lumière
EP0967663A2 (fr) * 1998-06-22 1999-12-29 Sumitomo Electric Industries, Ltd. Photodiode et module de photodiode
US20020011642A1 (en) * 2000-05-23 2002-01-31 Dries J. Christopher Method for combined fabrication of indium gallium arsenide / indium phosphide avalanche photodiodes and p-i-n photodiodes
US20050199976A1 (en) * 2004-03-10 2005-09-15 Yasuhiro Iguchi Rear-illuminated-type photodiode array
US20090045395A1 (en) * 2007-08-17 2009-02-19 Kim Jin K Strained-Layer Superlattice Focal Plane Array Having a Planar Structure
US20100258894A1 (en) * 2009-04-08 2010-10-14 Sumitomo Electric Industries, Ltd. Photodiode array and image pickup device using the same
US20110095334A1 (en) * 2009-10-23 2011-04-28 Lockheed Martin Corporation Barrier photodetector with planar top layer
JP2012199554A (ja) * 2012-04-16 2012-10-18 Sumitomo Electric Ind Ltd 受光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428159A1 (fr) * 1989-11-14 1991-05-22 Sumitomo Electric Industries, Ltd. Dispositif capteur de lumière
EP0967663A2 (fr) * 1998-06-22 1999-12-29 Sumitomo Electric Industries, Ltd. Photodiode et module de photodiode
US20020011642A1 (en) * 2000-05-23 2002-01-31 Dries J. Christopher Method for combined fabrication of indium gallium arsenide / indium phosphide avalanche photodiodes and p-i-n photodiodes
US20050199976A1 (en) * 2004-03-10 2005-09-15 Yasuhiro Iguchi Rear-illuminated-type photodiode array
US20090045395A1 (en) * 2007-08-17 2009-02-19 Kim Jin K Strained-Layer Superlattice Focal Plane Array Having a Planar Structure
US20100258894A1 (en) * 2009-04-08 2010-10-14 Sumitomo Electric Industries, Ltd. Photodiode array and image pickup device using the same
US20110095334A1 (en) * 2009-10-23 2011-04-28 Lockheed Martin Corporation Barrier photodetector with planar top layer
JP2012199554A (ja) * 2012-04-16 2012-10-18 Sumitomo Electric Ind Ltd 受光装置

Also Published As

Publication number Publication date
EP3000132A1 (fr) 2016-03-30
FR3006105A1 (fr) 2014-11-28
FR3006105B1 (fr) 2016-09-09

Similar Documents

Publication Publication Date Title
KR102221682B1 (ko) 이중 대역 광검출기 및 이의 제작 방법
EP2732473A1 (fr) Matrice de photodiodes ingaas
EP3381057B1 (fr) Dispositif de photo-détection comportant des tranchées à revêtement de grande bande interdite et procédé de fabrication
FR2888989A1 (fr) Capteur d&#39;images
EP3012876B1 (fr) Procede de fabrication d&#39;une photodiode a faible bruit
EP2975643B1 (fr) Matrice de photodiodes cdhgte a faible bruit
EP1756872A2 (fr) Circuit de detection photonique a structure mesa
EP2339640A1 (fr) Photodétecteur à structure plasmon
EP1903612B1 (fr) Photodiode à avalanche
EP2937902B1 (fr) Matrice de photodiodes en cdhgte
FR2984607A1 (fr) Capteur d&#39;image a photodiode durcie
WO2014118308A1 (fr) Matrice de photodiode a zone dopee absorbant les charges
FR2954996A1 (fr) Photodiode, reseau de photodiodes et procede de passivation d&#39;une photodiode de groupes ii-vi
EP3240030B1 (fr) Dispositif de photo-détection à réseau inter-diodes sur-dopé et procédé de fabrication
EP2276072A1 (fr) Element photodetecteur
FR2965105A1 (fr) Detecteur bispectral multicouche a photodiodes
Destefanis et al. Bi-color and dual-band HgCdTe infrared focal plane arrays at DEFIR
EP3381056B1 (fr) Dispositif de photo-détection à réseau inter-diodes sur-dopé par diffusion de metal et procédé de fabrication
EP2950347B1 (fr) Matrice de photodiodes mesa a ftm amelioree
EP3000132A1 (fr) Matrice de photodiode à absorption réglable de charge
Stobie et al. VLIWR HgCdTe staring focal plane array development
WO2017032955A1 (fr) Matrice de photodiodes a cathodes isolees
FR2879818A1 (fr) Photodetecteur a semi-conducteur, dispositif de detection multi-spectrale d&#39;un rayonnement electromagnetique mettant en oeuvre un tel photodetecteur, et procede de mise en oeuvre d&#39;un tel dispositif
FR3092700A1 (fr) Matrice de photo-détecteurs à barrière avec pixellisation par déplétions locales
EP2382672A1 (fr) Procede de fabrication d &#39; une photodiode et photodiode et detecteur de rayonnement electromagnetique correspondants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14725184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014725184

Country of ref document: EP