WO2014187382A1 - 一种测距方法及设备 - Google Patents

一种测距方法及设备 Download PDF

Info

Publication number
WO2014187382A1
WO2014187382A1 PCT/CN2014/078689 CN2014078689W WO2014187382A1 WO 2014187382 A1 WO2014187382 A1 WO 2014187382A1 CN 2014078689 W CN2014078689 W CN 2014078689W WO 2014187382 A1 WO2014187382 A1 WO 2014187382A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
sound signal
curve
aspl
spl
Prior art date
Application number
PCT/CN2014/078689
Other languages
English (en)
French (fr)
Inventor
蒋晓
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014187382A1 publication Critical patent/WO2014187382A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/74Systems using reradiation of acoustic waves, e.g. IFF, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only

Definitions

  • the present invention relates to the field of sound signal processing, and in particular, to a distance measuring method and device.
  • BACKGROUND OF THE INVENTION Conventional ranging (measuring spatial distance) devices are mainly dedicated laser range finder, which has high measurement accuracy and is less affected by the use environment, but such devices have a single function, are difficult to miniaturize, and have large power consumption, requiring special use.
  • the laser generator and receiver the overall solution is difficult to transplant to the terminal equipment, the cost is high, and the application prospect is small.
  • Intelligent terminal devices have always been designed to provide users with more convenient functions and more user-friendly designs, from integrated camera functions to the introduction of sensors such as heat, optics, temperature, gyroscopes, geomagnetic acceleration and barometers.
  • sensors such as heat, optics, temperature, gyroscopes, geomagnetic acceleration and barometers.
  • the detection and notification of various environmental variables have a great impact on the user's habit of using the device.
  • it has also spawned a large number of applications that use the relevant information collected by these devices for reprocessing, bringing a lot of end users.
  • a fresh and stimulating user experience enriches the field of end applications.
  • there is no ranging function in the existing smart terminal devices so there is an urgent need for a technical solution for measuring distance using smart terminal devices to improve the user experience.
  • an embodiment of the present invention provides a ranging method, including the following steps: a primary detecting device receives a sound signal for ranging; and the primary detecting device obtains according to the received sound signal.
  • the spatial transmission distance of the sound signal, and the spatial transmission distance of the sound signal is the distance between the main measuring device and the measured party.
  • the sound signal for ranging includes: a sound signal determined by the loudness of the device to be tested; and the main measuring device obtains a spatial transmission distance of the sound signal according to the received sound signal.
  • the steps include: The main measuring device measures the sound pressure SPL of the received sound signal, obtains a loudness parameter of the sound signal played by the tested device, and finds a corresponding S in the S(d, SPL) curve cluster according to the loudness parameter.
  • SPL SPL
  • d is the spatial transmission distance of the sound signal
  • the S(d, SPL) curve is a sound signal
  • the spatial transmission attenuation characteristic curve the horizontal axis of the curve is the spatial transmission distance d of the sound signal
  • the vertical axis is the sound pressure SPL of the sound signal received by the main measuring device
  • the S(d, SPL) curve cluster is composed of The S(d, SPL) curve of the acoustic sound is aggregated.
  • the sound signal for ranging includes: a sound signal that is repeatedly sent by a user to be tested; and the step of the main measuring device obtaining a spatial transmission distance of the sound signal according to the received sound signal
  • the method includes: the main measuring device repeatedly measures the sound pressure SPL of the received sound signal, and obtains the sound pressure difference ASPL of the sound signal; according to the sound pressure difference ASPL corresponds to S' (d, ASPL, in all sound levels) a) finding the sound space transmission attenuation curve S'(d, ASPL) corresponding to the ASPL in the curve cluster; and then finding corresponding corresponding to the sound space transmission attenuation curve corresponding to the ASPL according to the sound pressure difference value ASPL Spatial transmission distance d; pre-set data processing for all acquired spatial transmission distances d to finally obtain the distance between the main measuring device and the measured party; the S'(d, ASPL, a) curve cluster is The sound space of the acoustic sound a transmits the attenuation curve cluster, the horizontal axis
  • the step of measuring, by the main measuring device, the sound pressure SPL of the received sound signal comprises: converting, by the main measuring device, the sound signal determined by the loudness played by the device to be tested into the electrical signal a flat value; acquiring a sound pressure SPL of the sound signal received by the main measuring device according to the level value.
  • the step of the main measuring device receiving the sound signal for ranging comprises: determining, by the main measuring device, an echo path with the largest energy, and receiving an echo signal of the main measuring party on the echo path;
  • the step of the main measuring device obtaining the spatial transmission distance of the sound signal according to the received sound signal comprises: the main measuring device acquiring a time parameter of receiving the echo signal; the main detecting device detecting An environmental parameter of the sound transmission, the sound propagation speed is matched according to the environmental parameter; and the main measuring device calculates a spatial transmission distance of the sound signal according to the time parameter and the sound propagation speed.
  • the embodiment of the present invention further provides a ranging device, where the ranging device functions as a main measuring device, and includes: a receiving module and a processing module; and the receiving module is configured to receive for receiving a sound signal of the ranging; the processing module is configured to obtain a spatial transmission distance of the sound signal according to the sound signal received by the receiving module, where the spatial transmission distance of the sound signal is a main measuring device and a measured party the distance between.
  • the processing module includes: a parameter acquisition module, a sound pressure measurement module, and a ranging module; the sound pressure measurement module is configured to measure a sound pressure SPL of the received sound signal; and the parameter acquisition module is configured to acquire The sounding parameter of the sound signal is played by the device to be tested; the distance measuring module is configured to acquire a loudness parameter of the sound signal played by the device to be tested, and find a corresponding S in the cluster of S(d, SPL) according to the loudness parameter.
  • a (d, SPL) curve where d is a spatial transmission distance, and a spatial transmission distance of the corresponding sound signal is matched on the curve according to the sound pressure SPL;
  • the S(d, SPL) curve is a sound signal
  • the spatial transmission attenuation characteristic curve, the horizontal axis of the curve is the spatial transmission distance d, and the vertical axis is the sound pressure SPL of the sound signal received by the main measuring device, and the S(d, SPL) curve cluster is composed of various acoustic sounds.
  • the S(d, SPL) curve is aggregated.
  • the sound pressure measurement module is configured to convert a sound signal determined by the loudness played by the device to be tested into a level value of the electrical signal; and acquire, according to the level value, the received by the main measuring device Sound pressure SPL of the sound signal.
  • the sound signal for ranging includes: a sound signal that is repeatedly sent by a user to be tested;
  • the processing module includes: a sound pressure measuring module and a distance measuring module
  • the sound pressure measuring module is configured to measure the sound pressure SPL of the received sound signal multiple times, and acquire the sound pressure difference value ASPL of the sound signal;
  • the ranging module is set to be based on the sound pressure difference ASPL in all sounds Find the sound space transmission attenuation curve S'(d, ASPL) corresponding to the ASPL in the S'(d, ASPL, a) curve cluster corresponding to the loudness; and then according to the sound pressure difference ASPL corresponding to the ASPL Finding a corresponding spatial transmission distance d on the sound space transmission attenuation curve; performing preset data processing on all acquired spatial transmission distances d to finally obtain a distance between the main measuring device and the measured party; (d, ASPL, a)
  • the curve cluster is the sound space transmission attenuation curve cluster of the acoustic sound degree a, the
  • the receiving module includes: a loop determining module; the processing module includes: a time acquiring module, a transmission speed matching module, and a calculating module; the echo determining module is configured to determine an echo path with the largest energy, and receive the echo An echo signal of the main tester on the path; the time acquisition module is configured to acquire a time parameter of receiving the echo signal; the transmission speed matching module is configured to detect an environmental parameter of the sound transmission, and match according to the environmental parameter Sound propagation speed; the calculation module is configured to calculate a spatial transmission distance of the sound signal according to the time parameter and the sound propagation speed.
  • the embodiment of the present invention provides a ranging method and a device capable of using a sound signal ranging to improve user experience.
  • the ranging method of the embodiment of the present invention includes: the main measuring device receives a sound signal for ranging; and the main detecting device obtains a spatial transmission distance of the sound signal of the sound signal according to the received sound signal.
  • the spatial transmission distance of the sound signal of the sound signal is a distance between the main measuring device and the measured party; the method of the embodiment of the present invention obtains the sound signal of the sound signal according to the sound signal used for ranging
  • the spatial transmission distance is the distance between the main measuring device and the measured party.
  • the method of the embodiment of the present invention is a new ranging method, which can be performed by interacting with the sound of the tested party.
  • Ranging instead of using an expensive device such as a laser generator for ranging, can reduce the cost;
  • the ranging method of the embodiment of the present invention has high portability, for example, can be applied to a mobile terminal, so that the mobile terminal has a ranging function.
  • the method is applied When it is on the mobile terminal, it only needs to utilize the hardware and software resources that the mobile terminal comes with to realize the ranging, and the modification to the mobile terminal is less, and the applicability is relatively strong.
  • FIG. 1 is a schematic flowchart of a distance measurement method according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a spatial transmission distance of a sound signal according to a received sound signal according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a S(d, SPL) curve cluster according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a sound signal ranging determined by a user using loudness according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a user's vocal ranging according to a loudness according to a first embodiment of the present invention
  • FIG. 7 is a schematic diagram of a voice finder according to a first embodiment of the present invention
  • FIG. 8 is a schematic diagram of a S'(d, ASPL, 60dB) curve cluster according to Embodiment 1 of the present invention
  • FIG. 9 is a schematic diagram of Embodiment 1 of the present invention
  • Figure 10 is a schematic diagram of a cluster of S'(d, ASPL, 120dB) curves
  • Figure 10 is a schematic flowchart of a device using echo ranging according to the first embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a first testing device according to Embodiment 2 of the present invention
  • FIG. 13 is a schematic structural diagram of a second testing device according to Embodiment 2 of the present invention
  • Embodiment 1 is a schematic structural diagram of a fourth testing device according to Embodiment 2 of the present invention.
  • FIG. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be further described in detail by way of specific embodiments with reference to the accompanying drawings ( Embodiment 1 As shown in FIG. 1 , this embodiment provides a ranging method, including the following steps: Step 101: A primary detecting device receives a sound signal for ranging; Step 102: The primary testing device is configured according to The received sound signal obtains a spatial transmission distance of the sound signal of the sound signal, and the spatial transmission distance of the sound signal of the sound signal is a distance between the main measuring device and the measured party.
  • the method of the embodiment of the present invention obtains the spatial transmission distance of the sound signal of the sound signal by the sound signal, that is, the distance between the main measuring device and the measured party.
  • the method of the embodiment of the present invention is A new ranging method that can interact with the sound of the measured party to complete the ranging, instead of using an expensive device such as a laser generator to measure the distance, and the cost can be reduced.
  • the ranging method of the embodiment of the present invention is portable. High, for example, can be applied to a mobile terminal, so that the mobile terminal has a ranging function, thereby improving the user experience.
  • the ranging method of this embodiment mainly includes three specific ranging schemes:
  • the process of obtaining the spatial transmission distance of the sound signal of the sound signal according to the received sound signal by the main measuring device in the above step 102 includes: Step 1021: The main measuring device measures The sound pressure SPL of the received sound signal.
  • the sound pressure SPL of the received sound signal is measured by the main measuring device in the following manner: the main measuring device converts the sound signal determined by the loudness played by the tested device into a level value of the electrical signal And acquiring, according to the level value, a sound pressure SPL of the sound signal received by the main measuring device.
  • the manner in which the loudness parameter of the sound signal of the device to be tested is obtained may be various, such as short message notification.
  • Step 1023 Match the spatial transmission distance of the corresponding sound signal on the curve according to the sound pressure SPL.
  • the S(d, SPL) curve is a spatial transmission attenuation characteristic curve of the sound
  • the horizontal axis of the curve is the spatial transmission distance d of the sound signal
  • the vertical axis is the sound pressure SPL of the sound signal received by the main measuring device.
  • the S(d, SPL) curve cluster is formed by a plurality of S(d, SPL) curves of acoustic sound.
  • the level value of converting the received sound signal into an electrical signal can be realized by an electro-acoustic device, and the conversion relationship of different electro-acoustic devices is different, and the corresponding relationship between the SPL and the V can be obtained by acoustic calibration.
  • V(S) we use the conversion function V(S) to represent. After conversion to an electrical signal, some analog and digital conversions can be performed on the small electrical signals to obtain a more accurate measurement level value V. Similarly, when the sound pressure SPL of the received sound signal is obtained from the level value, it can also be obtained by the conversion function V(S).
  • the S(d, SPL) curve cluster of the sound in this embodiment is a cluster of spatial transmission attenuation characteristic curves of sound, which is defined as:
  • SPL spatial transmission attenuation characteristic curves of sound
  • the loudness and transmission distance of the source determine that there is a specific functional relationship between the three, that is, the spatial transmission attenuation characteristic curve of the sound.
  • the horizontal axis of the curve is the spatial transmission distance d of the sound signal, and the vertical axis is the receiving end.
  • the obtained sound pressure SPL value, each different sound source / sound source loudness will have a specific curve to represent this attenuation relationship, and these curves are grouped together to form a spatial transmission attenuation characteristic curve cluster, as shown in Figure 3.
  • the generation of the cluster curve requires an acoustic special device to perform measurement, and the specific information is stored in the device using the format of the comparison table.
  • the ranging method may further include: the main measuring device detects an environmental parameter of the sound transmission, and compensates the S(d, SPL) curve in the S(d, SPL) curve cluster according to the environmental parameter; The S(d, SPL) curve is the compensated S(d, SPL) curve.
  • a series of real-time environment variables collected by the main test terminal or required by the user include atmospheric pressure Pa, humidity W, altitude H, temperature T, and geographic environment gain factor G and urban building density loss factor D.
  • the corresponding coefficient is added to the spatial transmission attenuation characteristic curve S(d, SPL).
  • the specific information of this part of the parameter also needs to be measured by the acoustic special equipment, and the corrected parameter is according to the comparison table.
  • the format is stored in the terminal.
  • the spatial transmission distance d of the more accurate sound signal is obtained by the compensated S(d, SPL) curve.
  • the first ranging scheme is described in detail below, as shown in FIG. 4 and FIG.
  • Step 501 The user 402 plays the sound source file determined by the selected loudness parameter using the device 402a, and sends the loudness parameter to the device 401a of the user 401; 502: The device 401a of the user 401 receives the sound signal and the loudness parameter of the specific sound source file, and detects the sound transmission environment parameter, and compensates the S(d, SPL) curve cluster stored by the device 401a by using the detected environmental parameter; the environmental parameter may be The method includes: atmospheric pressure Pa, humidity W, altitude H, temperature T, and geographic environment gain coefficient G and urban building density loss coefficient D; Step 503: The device 401a converts the received sound signal into a level value V of the electrical signal; Step 504: Convert the sound signal SPL value received at the device by the V(S) function;
  • the V(S) function represents the correspondence between the SPL and the level value V;
  • Step 505 The device 401a finds the S(d, SPL) corresponding to the loudness parameter in the compensated S(d, SPL) curve cluster according to the loudness parameter.
  • the curve based on the sound signal SPL value, finds the spatial transmission distance of the corresponding sound signal in the curve.
  • the distance between the device 401a of the user 401 and the device 402a of the user 402 may be performed by the steps 501-505.
  • the ranging solution of the embodiment may also perform multiple measurements to obtain a spatial transmission distance of multiple sound signals, and then take multiple sounds.
  • the spatial transmission distance of the signal is processed to obtain a more accurate spatial transmission distance d of the sound signal.
  • the second ranging scheme when the sound signal for ranging includes: a sound signal sent by the user of the tested party, the user of the tested party repeatedly sends a sound signal; as shown in FIG. 6, the user 402 emits a sound signal.
  • the process of obtaining the spatial transmission distance of the sound signal by the main measuring device according to the received sound signal in the above step 102 may include: the main measuring device is measured multiple times in the above step 102.
  • the sound pressure SPL of the received sound signal acquires the sound pressure difference value ASPL of the sound signal; and finds the sound in the S'(d, ASPL, a) curve cluster corresponding to all the acoustic sounds according to the sound pressure difference value ASPL ASPL corresponding sound space transmission attenuation curve S'(d, ASPL); then according to the sound pressure difference ASPL in the Find a corresponding spatial transmission distance d on the sound space transmission attenuation curve corresponding to the ASPL; perform preset data processing on all acquired spatial transmission distances d to finally obtain a spatial transmission distance of the sound emitted by the user to be tested;
  • the S'(d, ASPL, a) curve cluster is the sound space transmission attenuation curve cluster of the acoustic sound a, the horizontal axis is the sound space transmission distance, and the vertical axis is the sound pressure difference ASPL of the sound signal, the S'(d) , ASPL, a)
  • the curve cluster is composed of different sound loudness attenuation to loudness a sound space transmission attenuation curve.
  • the sound pressure SPL of the received sound signal measured by the main measuring device can be measured by the following methods
  • the main test device converts the received sound signal into a level value of the electrical signal; and obtains a sound pressure SPL of the sound signal received by the main test device according to the level value, for example, by V(S)
  • the function converts the SPL value of the sound signal received at the device.
  • the second ranging scheme of this embodiment is described in detail by way of an example: Step 701: The user of the tested party continuously sends out two sounds. Step 702: The main measuring device measures the sound pressure SPL of the received sound signal twice, and calculates the difference between the two measured sound pressures SPL, that is, the sound pressure difference value ASPL of the sound signal.
  • the sound pressure SPL of each sound signal is measured by the above level conversion, and then the sound pressure difference ASPL of the sound signal is obtained by subtracting the absolute values of the two sound pressures SPL.
  • the second ranging scheme is introduced by the difference of the sound pressure between the two sound signals.
  • the main measuring device when the user of the tested party contacts N (N ⁇ 2) times, the main measuring device The sound pressure SPL can be measured multiple times, all possible sound pressure difference values ASPL are calculated, and the sound pressure difference value ASPL is processed to select a suitable sound pressure difference value ASPL to accurately calculate the sound space transmission distance, for example, The average sound pressure difference ASPL is averaged.
  • Step 703 Find the sound space transmission attenuation curve S'(d, ASPL) corresponding to the ASPL in the S'(d, ASPL, a) curve cluster corresponding to all loudnesses according to the sound pressure difference value ASPL;
  • the sound pressure difference value ASPL finds a corresponding spatial transmission distance d on the sound space transmission attenuation curve corresponding to the ASPL.
  • the S'Cd, ASPL, 60dB) curve cluster with a loudness of 60dB is a S'(d, ASPL, 120dB) curve cluster with a loudness of 120dB;
  • this embodiment only stores two kinds of loudness S'(d, ASPL, a) curve clusters in the main measuring device, in order to be more accurate The spatial transmission distance is measured.
  • a plurality of S'(d, ASPL, a) curve clusters of loudness can be stored in advance. For example, 60 dB to 120 dB can be preset, and a total of 61 curve clusters can be set. As shown in Figure 8, the S'(d, ASPL, 60dB) curve cluster is attenuated by a decay curve with different loudness parameters attenuated to 60dB.
  • the A1SPL curve is a spatial transmission attenuation curve with a loudness of 61dB and a attenuation of 60dB.
  • the A2SPL curve is The loudness is 62dB sound attenuation to 60dB spatial transmission attenuation curve, other AnSPL ( ⁇ >1, is a positive integer) and so on.
  • the A1SPL curve in Fig. 9 is a spatial transmission attenuation curve with a loudness of 121 dB and a attenuation of 120 dB.
  • Step 704 Perform data processing on all acquired spatial transmission distances to finally obtain a spatial transmission distance d of the sound emitted by the user to be tested; that is, a distance between the primary testing device and the measured party.
  • d may be calculated by averaging, or a certain reference quantity may be obtained to filter dl and d2, or may be selected according to the user's selection, or other people skilled in the art may obtain The data processing method that is often used for accurate data.
  • the S'(d, ASPL, a) curve clusters of different loudness in this embodiment can be calculated by experimental measurement.
  • the second ranging solution may further include: the main measuring device detects an environmental parameter of the sound transmission, and compensates the S′(d, ASPL, a) curve cluster according to the environmental parameter.
  • the third ranging scheme when the main measuring device receives the echo signal for the ranging signal as the echo signal of the main measuring party, the echo signal of the main detecting party in this embodiment can play the echo signal of the audio file for the main detecting device. Or an echo signal that sounds for the user of the test party. As shown in FIG.
  • the ranging scheme mainly includes the following process: Step 1001: The primary detecting device determines an echo path with the largest energy, and receives an echo signal of the main measuring party on the echo path; Step 1002: The primary device The measuring device obtains the time parameter of receiving the echo signal; Step 1003: The main measuring device detects an environmental parameter of the sound transmission, and matches the sound propagation speed according to the environmental parameter; Step 1004: The main test device calculates a spatial transmission distance of the sound signal according to the time parameter and the sound propagation speed.
  • the third ranging scheme of the embodiment mainly performs the ranging by the echo signal of the main measuring side, and under the test condition that no other device emits the sound source/sound source, the echo principle is used, the user makes a sound or the user equipment makes a sound.
  • Recording the echo delay Delay of the received echo, and the terminal synchronously acquires relevant environmental variable information, such as altitude H, humidity W, and temperature T, which affect the speed of sound propagation, and select the sound propagation speed VAIR that matches the surrounding environment.
  • relevant environmental variable information such as altitude H, humidity W, and temperature T, which affect the speed of sound propagation, and select the sound propagation speed VAIR that matches the surrounding environment.
  • the distance over which the sound propagates is obtained, and the spatial transmission distance of the sound signal is obtained after calculation.
  • directional echo selection is a key algorithm to exclude echoes generated by reflection paths or diffraction paths in other directions, as shown in FIG.
  • the ranging method of the embodiment can perform ranging using a sound signal, and has the characteristics of easy transplantation and low cost.
  • the ranging method of the embodiment can be applied to a mobile terminal or other device, so that the transplantation is easy; the ranging method of the embodiment can use the existing audio device to collect and process sound pressure parameters of the sound, supplemented by other devices (including However, it is not limited to the collected environmental parameters collected by sensors such as heat, optics, temperature, gyroscope, geomagnetic acceleration and barometer, and completes the overall solution of the ranging function, which provides the terminal user with the ranging function and The practical function of measuring specific acoustic parameters; therefore, the cost is low and the user experience can be improved.
  • Embodiment 2 As shown in FIG. 12, this embodiment provides a ranging device, where the ranging device functions as a main measuring device, and includes: a receiving module and a processing module; and the receiving module is configured to receive for receiving a sound signal of the ranging; the processing module is configured to obtain a spatial transmission distance of the sound signal according to the sound signal received by the receiving module, where the spatial transmission distance of the sound signal is a main measuring device and a measured party the distance between.
  • the ranging device of this embodiment can perform ranging using a sound signal. Compared with the conventional laser ranging device, the distance measuring device of the present invention can interact with the sound of the measured party to complete the ranging, instead of using the laser generator.
  • the distance measurement device of the embodiment of the present invention may be a mobile terminal, and the mobile terminal has a ranging function, thereby improving the user experience.
  • the distance measurement can be realized only by using the hardware and software resources that the mobile terminal comes with, and the modification to the mobile terminal is less, and the applicability is relatively strong.
  • the applicability is relatively strong.
  • the processing module includes: a parameter acquisition module, a sound pressure measurement module, and a ranging module;
  • the sound signal used for ranging includes: a sound signal determined by the loudness of the device to be tested
  • the sound pressure measurement module is configured to measure a sound pressure SPL of the received sound signal
  • the parameter acquisition module is configured to acquire a loudness parameter of the sound signal played by the tested device
  • the distance measurement module is configured to acquire the measured party
  • the device plays a loudness parameter of the sound signal, and finds a corresponding S(d, SPL) curve in the S(d, SPL) curve cluster according to the loudness parameter, where d is a spatial transmission distance, and according to the sound pressure SPL
  • the spatial transmission distance of the corresponding sound signal is matched on the curve
  • the S(d, SPL) curve is a spatial transmission attenuation characteristic curve of the sound signal
  • the horizontal axis of the curve is a spatial transmission distance d
  • the vertical axis is mainly The sound pressure SPL of the
  • the sound pressure measurement module is configured to convert a sound signal determined by the loudness played by the device to be tested into a level value of the electrical signal; and acquire, according to the level value, the received by the main test device Sound pressure SPL of the sound signal.
  • the sound signal for ranging includes: a sound signal that is sent by the user of the tested party multiple times; the processing module includes: a sound pressure measuring module and a ranging module; referring to the ranging device shown in FIG. structure.
  • the sound pressure measuring module is configured to measure the sound pressure SPL of the received sound signal multiple times, and acquire the sound pressure difference value ASPL of the sound signal; the ranging module is set to be based on the sound pressure difference ASPL in all sounds Find the sound space transmission attenuation curve S'(d, ASPL) corresponding to the ASPL in the S'(d, ASPL, a) curve cluster corresponding to the loudness; and then according to the sound pressure difference ASPL corresponding to the ASPL Finding a corresponding spatial transmission distance d on the sound space transmission attenuation curve; performing preset data processing on all acquired spatial transmission distances d to finally obtain a distance between the main measuring device and the measured party; (d, ASPL, a)
  • the curve cluster is the sound space transmission attenuation curve cluster of the acoustic sound degree a, the horizontal axis is the sound space transmission distance d, and the vertical axis is the sound pressure difference value ASPL of the sound signal, the S'(d, ASPL, a)
  • the ranging device shown in FIG. 13 may further include: a detecting module;
  • the detecting module is configured to detect an environmental parameter of the sound transmission;
  • the ranging module is further configured to compensate the S(d, SPL) curve in the S(d, SPL) curve cluster according to the environmental parameter;
  • the S(d, SPL) curve is the compensated S(d, SPL) curve.
  • the ranging device shown in FIG. 14 is capable of adaptively measuring the environmental change ranging, which can measure the distance more accurately.
  • the detection module can also include the detection module to detect the environmental parameter.
  • the distance module performs curve compensation according to environmental parameters.
  • the receiving module includes: a loop determining module; the processing module includes: a time acquiring module, a transmission speed matching module, and a calculating module;
  • the echo determination module is configured to determine an echo path with the largest energy, and receive an echo signal of the main detector on the echo path;
  • the time acquisition module is configured to acquire a time parameter of receiving the echo signal;
  • the matching module is configured to detect an environmental parameter of the sound transmission, and match the sound propagation speed according to the environmental parameter;
  • the calculation module is configured to calculate a spatial transmission distance of the sound signal according to the time parameter and the sound propagation speed.
  • the ranging device of this embodiment can perform ranging using a sound signal, and has the characteristics of high practicability and low cost.
  • the ranging device of the embodiment is a mobile terminal
  • the sound pressure parameter of the sound is collected and processed by the existing audio device in the mobile terminal, and is supplemented by other devices (including but not limited to by heat, optics, temperature, gyroscope,
  • the collected environmental parameters are compensated by geomagnetic acceleration and barometers, and the overall solution of the ranging function is completed.
  • the terminal user can provide the ranging function and the practical function of measuring specific acoustic parameters, which can improve the user experience. .
  • the sound signal can be used for ranging, and has the characteristics of high practicability and low cost.
  • the ranging device of the embodiment is a mobile terminal
  • the sound pressure parameter of the sound is collected and processed by the existing audio device in the mobile terminal, and is supplemented by other devices (including but not limited to by heat, optics, temperature, gyroscope,
  • the collected environmental parameters are compensated by geomagnetic acceleration and barometers, and the overall solution of the ranging function is completed.
  • the terminal user can provide the ranging function and the practical function of measuring specific acoustic parameters, which can improve the user experience. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种测距方法及设备,其中本测距方法包括:主测方设备接收用于测距的声音信号;所述主测方设备根据接收到的所述声音信号得出所述声音信号的空间传输距离,所述声音信号的空间传输距离为主测方设备与被测方之间的距离;本测距方法及设备可以利用声音信号来测距,提升了用户的体验。

Description

一种测距方法及设备 技术领域 本发明涉及声音信号处理领域, 尤其涉及一种测距方法及设备。 背景技术 传统的测距 (测量空间距离) 设备主要是专用激光测距仪, 它测量精度高, 受使 用环境影响小, 但这类设备功能单一, 小型化困难, 且功耗巨大, 需要使用专用的激 光发生器和接收器, 整体方案向终端设备移植困难, 成本高, 应用前景小。 一直以来, 智能终端设备以为用户提供更多更方便的功能和更为人性化的设计为 理念, 从集成摄像功能, 到引入热度、 光学、 温度、 陀螺仪、 地磁加速度和气压计等 传感器, 实现各种环境变量的检测和通知, 对用户使用设备的习惯产生了的极大的影 响, 同时也催生出一大批利用这些器件采集到的相关信息进行再处理的应用, 为终端 用户带来了很多新鲜和剌激的用户体验, 丰富了终端应用的领域。 但是在现有的智能 终端设备中并没有测距功能,所以现在急需一种利用智能终端设备来测距的技术方案, 来提高用户的体验。 发明内容 本发明实施例要解决的主要技术问题是, 提供一种测距方法及设备, 能够利用声 音信号测距, 提高用户体验。 为解决上述技术问题, 本发明实施例提供一种测距方法, 包括以下步骤: 主测方设备接收用于测距的声音信号; 所述主测方设备根据接收到的所述声音信号得出所述声音信号的空间传输距离, 所述声音信号的空间传输距离为主测方设备与被测方之间的距离。 优选地地, 所述用于测距的声音信号包括: 被测方设备播放的响度确定的声音信 号; 所述主测方设备根据接收到的声音信号得出所述声音信号的空间传输距离的步骤 包括: 所述主测方设备测量接收到的声音信号的声压 SPL 获取被测方设备播放声音信号的响度参数, 根据所述响度参数在 S(d, SPL)曲线 簇中找出对应的 S(d, SPL)曲线, 其中 d为声音信号的空间传输距离; 根据所述声压 SPL在该曲线上匹配出对应的所述声音信号的空间传输距离; 所述 S(d, SPL)曲线为声音信号的空间传输衰减特性曲线, 该曲线的横轴为声音 信号的空间传输距离 d,纵轴为主测方设备收到的声音信号的声压 SPL,所述 S(d, SPL) 曲线簇由多种声音响度的 S(d, SPL)曲线聚合而成。 优选地地, 所述用于测距的声音信号包括: 被测方用户多次发出的声音信号; 所述主测方设备根据接收到的声音信号得出所述声音信号的空间传输距离的步骤 包括: 主测方设备多次测量接收到的声音信号的声压 SPL, 获取声音信号的声压差值 ASPL; 根据所述声压差值 ASPL在所有声音响度对应的 S'(d, ASPL,a)曲线簇中找出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL); 然后根据所述声压差值 ASPL在所 述 ASPL对应的声音空间传输衰减曲线上找出相应的空间传输距离 d; 对所有获取的 空间传输距离 d进行预设的数据处理最终得到所述主测方设备与被测方之间的距离; 所述 S'(d, ASPL,a)曲线簇为声音响度 a的声音空间传输衰减曲线簇, 其横轴为声 音空间传输距离 d, 纵轴为声音信号的声压差值 ASPL, 所述 S'(d, ASPL,a)曲线簇由不 同的响度衰减至响度 a的声音空间传输衰减曲线 S'(d, ASPL)聚合而成。 优选地地, 所述主测方设备测量接收到的声音信号的声压 SPL的步骤包括: 所述主测方设备将所述被测方设备播放的响度确定的声音信号转换为电信号的电 平值; 根据所述电平值获取所述主测方设备接收到的声音信号的声压 SPL。 优选地地, 所述主测方设备接收用于测距的声音信号的步骤包括: 所述主测方设备确定能量最大的回声路径, 接收该回声路径上的主测方的回声信 号; 所述主测方设备根据接收到的声音信号得出所述声音信号的空间传输距离的步骤 包括: 所述主测方设备获取接收到所述回声信号的时间参数; 所述主测方设备检测声音传输的环境参数, 根据所述环境参数匹配出声音传播速 度; 所述主测方设备根据所述时间参数和所述声音传播速度计算出所述声音信号的空 间传输距离。 同样为了解决上述的技术问题, 本发明实施例还提供了一种测距设备, 所述测距 设备作为主测方设备, 其包括: 接收模块和处理模块; 所述接收模块设置为接收用于测距的声音信号; 所述处理模块设置为根据所述接收模块接收到的声音信号得出所述声音信号的空 间传输距离, 所述声音信号的空间传输距离为主测方设备与被测方之间的距离。 优选地地, 所述处理模块包括: 参数获取模块、 声压测量模块和测距模块; 所述声压测量模块设置为测量接收到的声音信号的声压 SPL; 所述参数获取模块设置为获取被测方设备播放声音信号的响度参数; 所述测距模块设置为获取被测方设备播放声音信号的响度参数, 根据所述响度参 数在 S(d, SPL)曲线簇中找出对应的 S(d, SPL)曲线, 其中 d为空间传输距离, 以及根 据所述声压 SPL在该曲线上匹配出对应的所述声音信号的空间传输距离; 所述 S(d, SPL)曲线为声音信号的空间传输衰减特性曲线, 该曲线的横轴为空间 传输距离 d, 纵轴为主测方设备收到的声音信号的声压 SPL, 所述 S(d, SPL)曲线簇由 多种声音响度的 S(d, SPL)曲线聚合而成。 优先地, 所述声压测量模块设置为将所述被测方设备播放的响度确定的声音信号 转换为电信号的电平值; 根据所述电平值获取所述主测方设备接收到的声音信号的声 压 SPL。 优选地地, 所述用于测距的声音信号包括: 被测方用户多次发出的声音信号; 所述处理模块包括: 声压测量模块和测距模块 所述声压测量模块设置为多次测量接收到的声音信号的声压 SPL, 并获取声音信 号的声压差值 ASPL; 所述测距模块设置为根据所述声压差值 ASPL在所有声音响度对应的 S'(d, ASPL,a) 曲线簇中找出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL); 然后根据所述声 压差值 ASPL在所述 ASPL对应的声音空间传输衰减曲线上找出相应的空间传输距离 d;对所有获取的空间传输距离 d进行预设的数据处理最终得到所述主测方设备与被测 方之间的距离; 所述 S'(d, ASPL,a)曲线簇为声音响度 a的声音空间传输衰减曲线簇, 其横轴为声 音空间传输距离 d, 纵轴为声音信号的声压差值 ASPL, 所述 S'(d, ASPL,a)曲线簇由不 同的响度衰减至响度 a的声音空间传输衰减曲线 S'(d, ASPL)聚合而成。 优选地地, 所述接收模块包括: 回路确定模块; 所述处理模块包括: 时间获取模 块、 传输速度匹配模块以及计算模块; 所述回声确定模块设置为确定能量最大的回声路径, 并接收该回声路径上的主测 方的回声信号; 所述时间获取模块设置为获取接收到所述回声信号的时间参数; 所述传输速度匹配模块设置为检测声音传输的环境参数, 根据所述环境参数匹配 出声音传播速度; 所述计算模块设置为根据所述时间参数和所述声音传播速度计算出所述声音信号 的空间传输距离。 本发明实施例的有益效果是: 本发明实施例提供了一种测距方法及设备能够利用声音信号测距,提高用户体验。 本发明实施例的测距方法包括: 主测方设备接收用于测距的声音信号; 所述主测方设 备根据接收到的所述声音信号得出所述声音信号的声音信号的空间传输距离, 所述声 音信号的声音信号的空间传输距离为主测方设备与被测方之间的距离; 本发明实施例 的方法通过根据用于测距的声音信号得出该声音信号的声音信号的空间传输距离即主 测方设备与被测方之间的距离, 与传统激光测距相比, 本发明实施例的方法是一个全 新的测距方法, 其可以与被测方的声音互动来完成测距, 取代利用激光发生器这种昂 贵的设备来测距, 可以降低成本; 另外本发明实施例的测距方法移植性高, 例如可以 应用在移动终端上, 使移动终端具备测距功能, 提高了用户体验。 优选地该方法应用 在移动终端上时, 只需要利用移动终端自带的硬件和软件资源就可以实现测距, 对移 动终端的改动较少, 适用性比较强。 附图说明 图 1为本发明实施例一提供的一种测距方法的流程示意图; 图 2为本发明实施例一提供的一种根据接收的声音信号得到声音信号的空间传输 距离的流程示意图; 图 3为本发明实施例一提供的一种 S(d, SPL)曲线簇的示意图; 图 4为本发明实施例一提供的一种用户利用响度确定的声音信号测距的示意图; 图 5为本发明实施例一提供的一种设备根据响度确定的声音信号测距过程的流程 示意图; 图 6为本发明实施例一提供的一种用户通过人声测距的示意图; 图 7为本发明实施例一提供的一种利用人声测距的流程示意图; 图 8为本发明实施例一提供的一种 S'(d, ASPL,60dB)曲线簇的示意图; 图 9为本发明实施例一提供的一种 S'(d, ASPL,120dB)曲线簇的示意图; 图 10为本发明实施例一提供的设备利用回声测距的流程示意图; 图 11为本发明实施例一提供的一种用户利用回声测距的示意图; 图 12为本发明实施例二提供的第一种测试设备的结构示意图; 图 13为本发明实施例二提供的第二种测试设备的结构示意图; 图 14为本发明实施例二提供的第三种测试设备的结构示意图; 图 15为本发明实施例二提供的第四种测试设备的结构示意图。 具体实施方式 下面通过具体实施方式结合附图对本发明作进一步详细说明 ( 实施例一 如图 1所示, 本实施例提供了一种测距方法, 包括以下步骤: 步骤 101 : 主测方设备接收用于测距的声音信号; 步骤 102: 所述主测方设备根据接收到的所述声音信号得出所述声音信号的声音 信号的空间传输距离, 所述声音信号的声音信号的空间传输距离为主测方设备与被测 方之间的距离。 本发明实施例的方法通过声音信号得出该声音信号的声音信号的空间传输距离即 主测方设备与被测方之间的距离, 与传统激光测距相比, 本发明实施例的方法是一个 全新的测距方法, 其可以与被测方的声音互动来完成测距, 取代利用激光发生器这种 昂贵的设备来测距, 可以降低成本; 另外本发明实施例的测距方法移植性高, 例如可 以应用在移动终端上, 使移动终端具备测距功能, 提高了用户体验。 优选地该方法应 用在移动终端上时, 只需要利用移动终端自带的硬件和软件资源就可以实现测距, 对 移动终端的改动较少, 适用性比较强。 本实施例的测距方法主要包括三种具体的测距方案: 第一种测距方案: 当所述用于测距的声音信号包括: 被测方设备播放的响度确定的声音信号时的测 距过程, 此时上述步骤 102中所述主测方设备根据接收到的所述声音信号得出所述声 音信号的声音信号的空间传输距离的过程包括: 步骤 1021 : 所述主测方设备测量接收到的声音信号的声压 SPL。 本实施例主测方测量接收到的声音信号的声压 SPL可以通过以下方式测量: 所述 主测方设备将所述被测方设备播放的响度确定的声音信号转换为电信号的电平值; 根据所述电平值获取所述主测方设备接收到的声音信号的声压 SPL。 步骤 1022: 获取被测方设备播放声音信号的响度参数, 根据所述响度参数在 S(d, SPL)曲线簇中找出对应的 S(d, SPL)曲线, 其中 d为声音信号的空间传输距离。 本实施例获取被测方设备播放声音信号的响度参数的方式可以有多种, 例如短信 通知等。 步骤 1023 :根据所述声压 SPL在该曲线上匹配出对应的所述声音信号的空间传输 距离。 本实施例中 S(d, SPL)曲线为声音的空间传输衰减特性曲线, 该曲线的横轴为声 音信号的空间传输距离 d, 纵轴为主测方设备收到的声音信号的声压 SPL, 所述 S(d, SPL)曲线簇由多种声音响度的 S(d, SPL)曲线聚合而成。 本实施例中将接收到的声音信号转为电信号的电平值可以由电声器件实现, 不同 的电声器件的转换关系不同, 需要通过声学标定, 便可以得到这个 SPL与 V的对应关 系, 我们用转换函数 V(S)来表示。 在转换为电信号后还可以对微小电信号做某些模拟 和数字变换, 得到更加精确的测量电平值 V。 同样在根据电平值获取接收到的声音信号的声压 SPL时也可以通过转换函数 V(S) 来获得。 本实施例中声音的 S(d, SPL)曲线簇为声音的空间传输衰减特性曲线簇, 其定义 为: 在声学中, 我们用声压 SPL表征听到的声响大小, 声压的大小由声源的响度和传 输距离决定, 他们三者之间呈现出一种特定的函数关系, 即声音的空间传输衰减特性 曲线, 这个曲线的横轴为声音信号的空间传输距离 d, 纵轴是接收端得到的声压 SPL 值, 每一种不同的音源 /声源响度都会有一个特定的曲线来表示这种衰减关系, 将这些 曲线集合在一起, 形成空间传输衰减特性曲线簇, 如图 3所示为本实施例的一种成空 间传输衰减特性曲线簇, 这簇曲线的生成需要声学专用设备进行测量, 并使用对照表 的格式将具体的信息存储在设备内。 在此测距方案中还可以包括: 主测方设备检测声音传输的环境参数, 根据所述环 境参数对所述在 S(d, SPL)曲线簇中 S(d, SPL)曲线进行补偿; 所述 S(d, SPL)曲线为 经过补偿后的 S(d, SPL)曲线。 例如主测终端集到的或者需要用户选择的一系列采实时环境变量。 它们包括大气 压力 Pa、湿度 W、海拔 H、温度 T, 以及地理环境增益系数 G和城市建筑密度损耗系 数 D。 每引入一个参数, 就会有对应的系数附加在空间传输衰减特性曲线 S(d, SPL) 上, 这部分参数的具体信息也需要声学专用设备进行测量, 并将修正后的参数按对照 表的格式存储在终端内。 通过补偿后的 S(d, SPL)曲线得到更精确的声音信号的空间 传输距离 d。 下面详细介绍第一种测距方案, 如图 4和 5所示: 步骤 501 : 用户 402使用设备 402a播放选定响度参数确定的音源文件, 并将该响 度参数发送给用户 401的设备 401a; 步骤 502: 用户 401的设备 401a接到特定音源文件的声音信号和响度参数, 并检 测声音传输环境参数, 利用检测到环境参数对设备 401a存储的 S(d, SPL)曲线簇进行 补偿; 环境参数可以包括: 大气压力 Pa、 湿度 W、 海拔 H、 温度 T, 以及地理环境增益 系数 G和城市建筑密度损耗系数 D; 步骤 503 : 设备 401a将接到的声音信号转为电信号的电平值 V; 步骤 504: 通过 V(S)函数换算出设备处接收到的声音信号 SPL值;
V ( S) 函数表示 SPL与电平值 V的对应关系; 步骤 505: 设备 401a根据响度参数在补偿后的 S(d, SPL)曲线簇中找出与该响度 参数对应的 S(d, SPL)曲线, 根据声音信号 SPL值在该曲线找出相应的声音信号的空 间传输距离。 通过步骤 501-505可以用户 401的设备 401a与用户 402的设备 402a之间距离, 本实施例的测距方案还可以进行多次测量, 获取多个声音信号的空间传输距离, 然后 取多个声音信号的空间传输距离进行运算处理得到更为精确的声音信号的空间传输距 离 d。 第二种测距方案: 当所述用于测距的声音信号包括: 被测方用户发出的声音信号时, 被测方用户多 次发出声音信号; 如图 6所示, 用户 402发出声音信号被用户 401的设备 401a接收; 在此场景中上述步骤 102中所述主测方设备根据接收到的声音信号得出所述声音信号 的空间传输距离的过程可以包括: 主测方设备多次测量接收到的声音信号的声压 SPL, 获取声音信号的声压差值 ASPL; 根据所述声压差值 ASPL在所有声音响度对应的 S'(d, ASPL,a)曲线簇中找出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL); 然后根据所述声压差值 ASPL在所 述 ASPL对应的声音空间传输衰减曲线上找出相应的空间传输距离 d; 对所有获取的 空间传输距离 d进行预设的数据处理最终得到所述被测方用户发出的声音的空间传输 距离;
S'(d, ASPL,a)曲线簇为声音响度 a的声音空间传输衰减曲线簇, 其横轴为声音空 间传输距离, 纵轴为声音信号的声压差值 ASPL, 所述 S'(d, ASPL,a)曲线簇由不同的 响度衰减至响度 a的声音空间传输衰减曲线聚合而成。 本实施例中主测方设备测量接收到的声音信号的声压 SPL 可以通过以下方式测
所述主测方设备将接收到的声音信号转换为电信号的电平值; 根据所述电平值获取所述主测方设备接收到的声音信号的声压 SPL, 例如可以通 过 V(S)函数换算出设备处接收到的声音信号 SPL值。 下面通过一个例子来详细介绍本实施例的第二种测距方案: 步骤 701 : 被测方用户连续发出两次声音。 步骤 702: 主测方设备两次测量接收到的声音信号的声压 SPL, 并计算出两次测 量的声压 SPL的差值, 即声音信号的声压差值 ASPL。 通过上述电平转换测量每次声音信号的声压 SPL, 然后将两次声压 SPL相减取绝 对值得到声音信号的声压差值 ASPL。 本实施例以两次声音信号之间的声压差值来介绍第二种测距方案, 在其他应用场 景, 当被测方用户联系发出 N (N≥2) 次声音时, 主测方设备可以多次测量声压 SPL, 计算出所有可能的声压差值 ASPL,对声压差值 ASPL进行数据处理选取一个最适用的 声压差值 ASPL, 以精确计算出声音空间传输距离,例如可以对所有声压差值 ASPL加 权求平均值。 步骤 703 : 根据所述声压差值 ASPL在所有响度对应的 S'(d, ASPL,a)曲线簇中找 出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL);然后根据所述声压差值 ASPL 在所述 ASPL对应的声音空间传输衰减曲线上找出相应的空间传输距离 d。 例如, 如图 8所示为响度为 60dB的 S'Cd, ASPL,60dB)曲线簇, 如图 9所示为, 为响度为 120dB 的 S'(d, ASPL, 120dB)曲线簇; 当主测方设备计算出声音差值 ASPL=ldB 时, 在图 8 所示曲线簇中找出 ASPL=ldB 对应的空间传输衰减曲线, 即 A1SPL的曲线,然后根据 ASPL=ldB在 A1SPL的曲线上找出相应的空间传输距离 dl ; 在图 9所示曲线簇中找出 ASPL=ldB对应的空间传输衰减曲线, 即 A1SPL曲线,然后 根据 ASPL=ldB在 A1SPL的曲线上找出相应的空间传输距离 d2; 当然本实施例只是 在主测方设备中存储了两种响度的 S'(d, ASPL,a)曲线簇, 为了能够更精确地测量出空 间传输距离, 本实施例可以预先存储多种响度的 S'(d, ASPL,a)曲线簇, 例如可以预先 设置 60dB到 120dB, 共 61个曲线簇。 如图 8中 S'(d, ASPL,60dB)曲线簇是由不同响度参数衰减至 60dB的衰减曲线聚 合而成,其中 A1SPL曲线为响度为 61dB声音衰减至 60dB的空间传输衰减曲线, A2SPL 曲线为响度为 62dB声音衰减至 60dB的空间传输衰减曲线, 其他 AnSPL (η>1,为正整 数) 以此类推。 同理图 9中 A1SPL曲线为响度为 121dB声音衰减至 120dB的空间传 输衰减曲线。 步骤 704: 对所有获取的空间传输距离进行数据处理最终得到所述被测方用户发 出的声音的空间传输距离 d; 即主测方设备与被测方之间的距离。 例如, 在获取 dl和 d2之后, 可以采用求平均值的方式计算 d, 或者也可以获取 某个参考量对 dl和 d2进行筛选, 或者根据用户的选择进行筛选, 或者其他本领域技 术人员为了获取精确数据经常采用的数据处理方式。 本实施例中的不同响度的 S'(d, ASPL,a)曲线簇可以经过实验测量计算得到。 在第二种测距方案中还可以包括: 主测方设备检测声音传输的环境参数, 根据所 述环境参数对 S'(d, ASPL,a)曲线簇进行补偿。 第三种测距方案: 当主测方设备接收用于测距的声音信号为主测方的回声信号, 本实施例中主测方 的回声信号可以为主测方设备播放音频文件的回声信号, 或者为主测方用户发出声音 的回声信号。 如图 10所示, 该测距方案主要包括以下过程: 步骤 1001 : 所述主测方设备确定能量最大的回声路径, 接收该回声路径上的主测 方的回声信号; 步骤 1002: 所述主测方设备获取接收到所述回声信号的时间参数; 步骤 1003 : 所述主测方设备检测声音传输的环境参数, 根据所述环境参数匹配出 声音传播速度; 步骤 1004: 所述主测方设备根据所述时间参数和所述声音传播速度计算出所述声 音信号的空间传输距离。 本实施例的第三种测距方案主要是通过主测方的回声信号进行测距, 在没有其他 设备发出音源 /声源的测试条件下, 利用回声原理, 用户自己发出声响或用户设备发出 声音, 记录接收到回声的回声延时 Delay, 终端同步获取相关环境变量信息, 例如海 拔 H,湿度 W和温度 T等会影响声音传播速度的参数,选择与周围环境匹配的声音传 播速度 VAIR, 便可得到声音传播的距离, 计算后可得声音信号的空间传输距离。在该 方案中, 定向回声选择是关键算法, 用以排除其他方向上的反射路径或衍射路径产生 的回声,如图 11所示。众所周知,声音的传播是全向性的,但能量的分布是不均匀的, 利用这种原理结合多 MIC定向分析算法, 就可以非常准确的找到最大能量回声方向, 即用户正面朝向的法线方向, 完成定向的操作。 本实施例的测距方法可以利用声音信号进行测距, 具有移植容易,成本低的特点。 本实施例的测距方法可以应用于移动终端或者其他设备上, 所以移植容易; 本实施例 的测距方法可以利用已有音频器件采集、 处理声音的声压参数, 辅之以其它设备 (包 含但不限于由热、 光学、 温度、 陀螺仪、 地磁加速度和气压计等传感器采集到的) 采 集到的环境参数进行补偿, 完成测距功能的整体解决方案, 可为终端用户提供测距功 能和测量特定声学参数的实用功能; 所以成本低, 并能够提高用户的体验。
实施例二: 如图 12所示, 本实施例提供了一种测距设备, 所述测距设备作为主测方设备, 其 包括: 接收模块和处理模块; 所述接收模块设置为接收用于测距的声音信号; 所述处理模块设置为根据所述接收模块接收到的声音信号得出所述声音信号的空 间传输距离, 所述声音信号的空间传输距离为主测方设备与被测方之间的距离。 本实施例的测距设备可以利用声音信号进行测距, 与传统激光测距设备相比, 本 发明测距设备可以与被测方的声音互动来完成测距, 取代利用激光发生器这种昂贵的 设备来测距, 可以降低成本; 另外本发明实施例的测距设备可以为移动终端, 此时移 动终端具备测距功能, 提高了用户体验。 优选地当测试设备为移动终端时, 只需要利 用移动终端自带的硬件和软件资源就可以实现测距, 对移动终端的改动较少, 适用性 比较强。 优选地, 如图 13所示, 所述处理模块包括: 参数获取模块、 声压测量模块和测距 模块; 所述用于测距的声音信号包括: 被测方设备播放的响度确定的声音信号; 所述声压测量模块设置为测量接收到的声音信号的声压 SPL; 所述参数获取模块设置为获取被测方设备播放声音信号的响度参数; 所述测距模块设置为获取被测方设备播放声音信号的响度参数, 根据所述响度参 数在 S(d, SPL)曲线簇中找出对应的 S(d, SPL)曲线, 其中 d为空间传输距离, 以及根 据所述声压 SPL在该曲线上匹配出对应的所述声音信号的空间传输距离; 所述 S(d, SPL)曲线为声音信号的空间传输衰减特性曲线, 该曲线的横轴为空间 传输距离 d, 纵轴为主测方设备收到的声音信号的声压 SPL, 所述 S(d, SPL)曲线簇由 多种声音响度的 S(d, SPL)曲线聚合而成。 优选地, 所述声压测量模块设置为将所述被测方设备播放的响度确定的声音信号 转换为电信号的电平值; 根据所述电平值获取所述主测方设备接收到的声音信号的声 压 SPL。 优选地, 所述用于测距的声音信号包括: 被测方用户多次发出的声音信号; 所述 处理模块包括: 声压测量模块和测距模块; 参考图 13所示的测距设备的结构。 所述声压测量模块设置为多次测量接收到的声音信号的声压 SPL, 并获取声音信 号的声压差值 ASPL; 所述测距模块设置为根据所述声压差值 ASPL在所有声音响度对应的 S'(d, ASPL,a) 曲线簇中找出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL); 然后根据所述声 压差值 ASPL在所述 ASPL对应的声音空间传输衰减曲线上找出相应的空间传输距离 d;对所有获取的空间传输距离 d进行预设的数据处理最终得到所述主测方设备与被测 方之间的距离; 所述 S'(d, ASPL,a)曲线簇为声音响度 a的声音空间传输衰减曲线簇, 其横轴为声 音空间传输距离 d, 纵轴为声音信号的声压差值 ASPL, 所述 S'(d, ASPL,a)曲线簇由不 同的响度衰减至响度 a的声音空间传输衰减曲线 S'(d, ASPL)聚合而成。 优选地, 如图 14所示, 图 13所示的测距设备还可以包括: 检测模块; 所述检测模块设置为检测声音传输的环境参数; 所述测距模块还设置为根据所述环境参数对所述在 S(d, SPL)曲线簇中 S(d, SPL) 曲线进行补偿; 所述 S(d, SPL)曲线为经过补偿后的 S(d, SPL)曲线。 图 14所示的测距设备能够自适应环境变化测距,其能更精确地测量距离,测试设 备在根据被测方用户声音信号测距时, 同样也可以还包括检测模块检测环境参数, 测 距模块根据环境参数进行曲线补偿。 优选地, 如图 15所示, 在图 12所示的测距设备的基础上, 所述接收模块包括: 回路确定模块; 所述处理模块包括: 时间获取模块、传输速度匹配模块以及计算模块; 所述回声确定模块设置为确定能量最大的回声路径, 并接收该回声路径上的主测 方的回声信号; 所述时间获取模块设置为获取接收到所述回声信号的时间参数; 所述传输速度匹配模块设置为检测声音传输的环境参数, 根据所述环境参数 匹配出声音传播速度; 所述计算模块设置为根据所述时间参数和所述声音传播速度计算出所述声音信号 的空间传输距离。 本实施例的测距设备可以利用声音信号进行测距, 具有实用性强,成本低的特点。 本实施例的测距设备为移动终端时, 可以利用移动终端中已有音频器件采集、 处理声 音的声压参数, 辅之以其它设备 (包含但不限于由热、 光学、 温度、 陀螺仪、 地磁加 速度和气压计等传感器采集到的) 采集到的环境参数进行补偿, 完成测距功能的整体 解决方案, 可为终端用户提供测距功能和测量特定声学参数的实用功能, 能够提高用 户的体验。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在 不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发 明的保护范围。
工业实用性 如上所述, 本发明实施例提供的一种测距方法及设备具有以下有益效果: 可 以利用声音信号进行测距, 具有实用性强, 成本低的特点。 本实施例的测距设备为 移动终端时, 可以利用移动终端中已有音频器件采集、 处理声音的声压参数, 辅之 以其它设备 (包含但不限于由热、 光学、 温度、 陀螺仪、 地磁加速度和气压计等传 感器采集到的) 采集到的环境参数进行补偿, 完成测距功能的整体解决方案, 可为 终端用户提供测距功能和测量特定声学参数的实用功能, 能够提高用户的体验。

Claims

权 利 要 求 书
1. 一种测距方法, 包括以下步骤:
主测方设备接收用于测距的声音信号;
所述主测方设备根据接收到的所述声音信号得出所述声音信号的空间传输 距离, 所述声音信号的空间传输距离为主测方设备与被测方之间的距离。
2. 如权利要求 1所述的测距方法, 其中, 所述用于测距的声音信号包括: 被测方 设备播放的响度确定的声音信号;
所述主测方设备根据接收到的声音信号得出所述声音信号的空间传输距离 的步骤包括:
所述主测方设备测量接收到的声音信号的声压 SPL;
获取被测方设备播放声音信号的响度参数,根据所述响度参数在 S(d, SPL) 曲线簇中找出对应的 S(d, SPL)曲线, 其中 d为声音信号的空间传输距离; 根据所述声压 SPL 在该曲线上匹配出对应的所述声音信号的空间传输距 离;
所述 S(d, SPL)曲线为声音信号的空间传输衰减特性曲线, 该曲线的横轴 为声音信号的空间传输距离 d, 纵轴为主测方设备收到的声音信号的声压 SPL, 所述 S(d, SPL)曲线簇由多种声音响度的 S(d, SPL)曲线聚合而成。
3. 如权利要求 1所述的测距方法, 其中, 所述用于测距的声音信号包括: 被测方 用户多次发出的声音信号;
所述主测方设备根据接收到的声音信号得出所述声音信号的空间传输距离 的步骤包括:
主测方设备多次测量接收到的声音信号的声压 SPL, 并获取声音信号的声 压差值 ASPL;
根据所述声压差值 ASPL在所有声音响度对应的 S'(d, ASPL,a)曲线簇中找 出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL); 然后根据所述声压差 值 ASPL在所述 ASPL对应的声音空间传输衰减曲线上找出相应的空间传输距 离 d; 对所有获取的空间传输距离 d进行预设的数据处理最终得到所述主测方 设备与被测方之间的距离; 所述 S'(d, ASPL,a)曲线簇为声音响度 a的声音空间传输衰减曲线簇, 其横 轴为声音空间传输距离 d,纵轴为声音信号的声压差值 ASPL,所述 S'(d,ASPL,a) 曲线簇由不同的响度衰减至响度 a的声音空间传输衰减曲线 S'(d, ASPL)聚合而 成。
4. 如权利要求 2所述的测距方法, 其中, 所述主测方设备测量接收到的声音信号 的声压 SPL的步骤包括:
所述主测方设备将所述被测方设备播放的响度确定的声音信号转换为电信 号的电平值;
根据所述电平值获取所述主测方设备接收到的声音信号的声压 SPL。
5. 如权利要求 1所述的测距方法, 其中, 所述主测方设备接收用于测距的声音信 号的步骤包括:
所述主测方设备确定能量最大的回声路径, 接收该回声路径上的主测方的 回声信号;
所述主测方设备根据接收到的声音信号得出所述声音信号的空间传输距离 的步骤包括:
所述主测方设备获取接收到所述回声信号的时间参数;
所述主测方设备检测声音传输的环境参数, 根据所述环境参数匹配出声音 传播速度;
所述主测方设备根据所述时间参数和所述声音传播速度计算出所述声音信 号的空间传输距离。
6. 一种测距设备, 所述测距设备作为主测方设备, 其包括: 接收模块和处理模块;
所述接收模块设置为接收用于测距的声音信号;
所述处理模块设置为根据所述接收模块接收到的声音信号得出所述声音信 号的空间传输距离, 所述声音信号的空间传输距离为主测方设备与被测方之间 的距离。
7. 如权利要求 6所述的测距设备, 其中, 所述处理模块包括: 参数获取模块、 声 压测量模块和测距模块;
所述用于测距的声音信号包括: 被测方设备播放的响度确定的声音信号; 所述声压测量模块设置为测量接收到的声音信号的声压 SPL; 所述参数获取模块设置为获取被测方设备播放声音信号的响度参数;
所述测距模块设置为获取被测方设备播放声音信号的响度参数, 根据所述 响度参数在 S(d, SPL)曲线簇中找出对应的 S(d, SPL)曲线, 其中 d为空间传输 距离, 以及根据所述声压 SPL在该曲线上匹配出对应的所述声音信号的空间传 输距离;
所述 S(d, SPL)曲线为声音信号的空间传输衰减特性曲线, 该曲线的横轴 为空间传输距离 d, 纵轴为主测方设备收到的声音信号的声压 SPL, 所述 S(d, SPL)曲线簇由多种声音响度的 S(d, SPL)曲线聚合而成。 如权利要求 6所述的测距设备, 其中, 所述用于测距的声音信号包括: 被测方 用户多次发出的声音信号;
所述处理模块包括: 声压测量模块和测距模块;
所述声压测量模块设置为多次测量接收到的声音信号的声压 SPL, 并获取 声音信号的声压差值 ASPL;
所述测距模块设置为根据所述声压差值 ASPL在所有声音响度对应的 S'(d, ASPL,a)曲线簇中找出所述 ASPL对应的声音空间传输衰减曲线 S'(d, ASPL); 然后根据所述声压差值 ASPL在所述 ASPL对应的声音空间传输衰减曲线上找 出相应的空间传输距离 d; 对所有获取的空间传输距离 d进行预设的数据处理 最终得到所述主测方设备与被测方之间的距离;
所述 S'(d, ASPL,a)曲线簇为声音响度 a的声音空间传输衰减曲线簇, 其横 轴为声音空间传输距离 d,纵轴为声音信号的声压差值 ASPL,所述 S'(d,ASPL,a) 曲线簇由不同的响度衰减至响度 a的声音空间传输衰减曲线 S'(d, ASPL)聚合而 成。 如权利要求 7所述的测距设备, 其中, 所述声压测量模块设置为将所述被测方 设备播放的响度确定的声音信号转换为电信号的电平值; 根据所述电平值获取 所述主测方设备接收到的声音信号的声压 SPL。 如权利要求 6所述的测距设备, 其中, 所述接收模块包括: 回路确定模块; 所 述处理模块包括: 时间获取模块、 传输速度匹配模块以及计算模块;
所述回声确定模块设置为确定能量最大的回声路径, 并接收该回声路径上 的主测方的回声信号;
所述时间获取模块设置为获取接收到所述回声信号的时间参数; 所述传输速度匹配模块设置为检测声音传输的环境参数, 根据所述环境参 数匹配出声音传播速度;
所述计算模块设置为根据所述时间参数和所述声音传播速度计算出所述声 音信号的空间传输距离。
PCT/CN2014/078689 2013-10-12 2014-05-28 一种测距方法及设备 WO2014187382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310476499.9 2013-10-12
CN201310476499.9A CN104569956B (zh) 2013-10-12 2013-10-12 一种测距方法及设备

Publications (1)

Publication Number Publication Date
WO2014187382A1 true WO2014187382A1 (zh) 2014-11-27

Family

ID=51932932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078689 WO2014187382A1 (zh) 2013-10-12 2014-05-28 一种测距方法及设备

Country Status (2)

Country Link
CN (1) CN104569956B (zh)
WO (1) WO2014187382A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730515A (zh) * 2015-03-26 2015-06-24 北京交通大学 利用声音信号测量列车距离的装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896356B (zh) * 2016-08-17 2019-11-19 阿里巴巴集团控股有限公司 确定距离变化的方法、位置提示方法及其装置和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996045A (zh) * 2006-12-29 2007-07-11 武汉理工大学 一种超声波定位传感器
CN102139164A (zh) * 2011-01-28 2011-08-03 深圳市格兰之特科技有限公司 一种自动规避障碍物的飞行装置与方法
CN103176166A (zh) * 2013-03-14 2013-06-26 东南大学 一种用于水声被动定位的信号到达时延差跟踪算法
CN103229071A (zh) * 2010-11-16 2013-07-31 高通股份有限公司 用于基于超声反射信号的对象位置估计的系统和方法
CN103257347A (zh) * 2012-02-17 2013-08-21 中国人民解放军海军装备研究院舰艇作战系统论证研究所 一种实际使用环境下的声纳作用距离指标的获取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649389A (en) * 1987-06-30 1989-01-12 Kubota Ltd Ultrasonic distance measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996045A (zh) * 2006-12-29 2007-07-11 武汉理工大学 一种超声波定位传感器
CN103229071A (zh) * 2010-11-16 2013-07-31 高通股份有限公司 用于基于超声反射信号的对象位置估计的系统和方法
CN102139164A (zh) * 2011-01-28 2011-08-03 深圳市格兰之特科技有限公司 一种自动规避障碍物的飞行装置与方法
CN103257347A (zh) * 2012-02-17 2013-08-21 中国人民解放军海军装备研究院舰艇作战系统论证研究所 一种实际使用环境下的声纳作用距离指标的获取方法
CN103176166A (zh) * 2013-03-14 2013-06-26 东南大学 一种用于水声被动定位的信号到达时延差跟踪算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, XIANGJUN: "New Energy-based Location Method in Acoustic Emission Test", CHINA MEASUREMENT & TEST, vol. 37, no. 1, 31 January 2011 (2011-01-31), pages 18 - 20 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730515A (zh) * 2015-03-26 2015-06-24 北京交通大学 利用声音信号测量列车距离的装置

Also Published As

Publication number Publication date
CN104569956B (zh) 2018-05-04
CN104569956A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
US8731206B1 (en) Measuring sound quality using relative comparison
JP6335985B2 (ja) マルチセンサ音源定位
US10334357B2 (en) Machine learning based sound field analysis
RU2570359C2 (ru) Прием звука посредством выделения геометрической информации из оценок направления его поступления
JP2012502596A5 (zh)
RU2012146419A (ru) Устройство и способ акустических измерений множества громкоговорителей и системы направленных микрофонов
Fletcher et al. The frequency—Sensitivity of normal ears
US10932079B2 (en) Acoustical listening area mapping and frequency correction
US20080002833A1 (en) Volume estimation by diffuse field acoustic modeling
CN104869519B (zh) 一种测试麦克风本底噪声的方法和系统
KR101853568B1 (ko) 스마트단말 및 이를 이용한 사운드 최적화 방법
WO2014187382A1 (zh) 一种测距方法及设备
CN103544945A (zh) 便携式压电陶瓷乐器识音系统
CN104248439A (zh) 鼓膜声压检测方法和系统
CN1294556C (zh) 用于声频变换器的语音匹配系统及其方法
US10490205B1 (en) Location based storage and upload of acoustic environment related information
EP2812724A1 (en) Estimating distances between devices
Delabie et al. Techtile: A flexible testbed for distributed acoustic indoor positioning and sensing
JP4960838B2 (ja) 距離測定装置、距離測定方法、距離測定プログラム、および記録媒体
Herrera et al. Ping-pong: Using smartphones to measure distances and relative positions
CN205491155U (zh) 一种麦克风测试装置
WO2023051622A1 (zh) 提升远场语音交互性能的方法和远场语音交互系统
Ţopa et al. Comparison of different experimental methods for the assessment of the room’s acoustics
CN107172568B (zh) 一种立体声声场校准设备及校准方法
CN112995882B (zh) 一种智能设备音频开环测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800343

Country of ref document: EP

Kind code of ref document: A1