WO2014186949A1 - 自适应调制编码获取方法及装置 - Google Patents

自适应调制编码获取方法及装置 Download PDF

Info

Publication number
WO2014186949A1
WO2014186949A1 PCT/CN2013/075979 CN2013075979W WO2014186949A1 WO 2014186949 A1 WO2014186949 A1 WO 2014186949A1 CN 2013075979 W CN2013075979 W CN 2013075979W WO 2014186949 A1 WO2014186949 A1 WO 2014186949A1
Authority
WO
WIPO (PCT)
Prior art keywords
sinr
value
error
prediction
reference signal
Prior art date
Application number
PCT/CN2013/075979
Other languages
English (en)
French (fr)
Inventor
秦一平
唐志华
黄永华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/075979 priority Critical patent/WO2014186949A1/zh
Priority to CN201380000829.5A priority patent/CN103609051B/zh
Publication of WO2014186949A1 publication Critical patent/WO2014186949A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to an adaptive modulation and coding acquisition method and apparatus. Background technique
  • the transmitting end uses a high-order modulation and coding method and a low-redundant error correcting code to communicate with the receiving end, if the channel condition between the transmitting end and the receiving end is good, the communication process is in progress. A high throughput rate can be obtained; if the channel conditions between the sender and the receiver are poor, reliable communication cannot be achieved between the two.
  • the transmitting end uses a low-order modulation and coding method and a highly redundant error correcting code to communicate, even if the channel conditions between the transmitting end and the receiving end are poor, reliable communication between the two can be achieved; When the channel conditions between the transmitting end and the receiving end are good, the throughput of communication between the two cannot be achieved at a relatively high level, thereby causing waste of communication resources.
  • the fading of the channel in the wireless communication system is time-varying, so the Adaptive Modulation and Coding (AMC) technique can be used to adaptively adjust the modulation used by the transmitting end according to the state of the channel between the transmitting end and the receiving end.
  • AMC Adaptive Modulation and Coding
  • the coding method is adjusted to get the best throughput.
  • the base station measures the uplink signal to interference plus noise ratio (SINR) in the process of communicating with the terminal, and obtains the historical data of the measured uplink SINR and the SINR filtered value.
  • SINR signal to interference plus noise ratio
  • the filtered smoothing value of the uplink SINR is further queried according to the filtering smoothing value of the uplink SINR and the correspondence between the uplink SINR and the uplink modulation and coding scheme, and the Modulation and Coding Scheme (MCS) to be used for the uplink is queried.
  • SINR signal to interference plus noise ratio
  • a base station block rate (BLER) permission range is also set in the base station.
  • the base station determines whether the value of the uplink BLER is within the range of the BLER permitted range. If yes, there is no need to adjust the uplink MCS; if not, the uplink MCS needs to be increased or decreased according to the adjustment policy.
  • the BLER license range is a relatively fixed range of values and does not necessarily apply to a variety of different application scenarios. Due to the time-varying nature of the wireless communication system, there are many application scenarios, and the corresponding BLER permission range cannot be set for all application scenarios. Therefore, the current AMC technology still has insufficient adaptive performance in the face of different application scenarios. . SUMMARY OF THE INVENTION Embodiments of the present invention provide an adaptive modulation and coding acquisition method and apparatus, which are used to solve the shortcomings of the current AMC technology in terms of adaptive performance.
  • a first aspect of the embodiments of the present invention provides a method for acquiring an adaptive modulation code, including:
  • the receiving end obtains a measurement error for measuring the SINR of the reference signal according to the signal to interference plus noise ratio SINR measurement value of the reference signal and the cyclic redundancy check result of the service signal; the receiving end is configured according to the SINR measurement value. And predicting an SINR prediction value when the transmitting end sends the reference signal, and obtaining a prediction error of the SINR prediction value;
  • the receiving end queries the modulation coding mode MCS that the transmitting end needs to adopt according to the sum of the SINR prediction value and the measurement error, and the prediction error.
  • the receiving end is configured according to a signal and interference plus noise ratio SINR measurement value of the reference signal and a cyclic redundancy check of the service signal.
  • obtaining measurement errors for measuring the SINR of the reference signal includes:
  • the receiving end processes the SINR measurement value of the reference signal by using a signal to noise ratio SNR-block error rate BLER decoding curve function, and obtains the reference signal according to the cyclic redundancy check result of the service signal.
  • the SINR is measured for measurement errors.
  • the receiving end according to the SINR measurement value, and the predicted SINR prediction value when the transmitting end sends the reference signal, Obtaining the prediction error of the SINR prediction value includes:
  • the receiving end according to the sum of the SINR prediction value and the measurement error, and the prediction error, querying the modulation coding mode MCS that the transmitting end needs to adopt includes: The receiving end queries the MCS that the transmitting end needs to adopt according to the sum of the SINR prediction value and the measurement error, and the mean or variance of the prediction error.
  • a second aspect of the embodiments of the present invention provides a receiving end, including:
  • a first processing unit configured to obtain, according to a signal to interference plus noise ratio SINR measurement value of the reference signal and a cyclic redundancy check result of the service signal, a measurement error of measuring the SINR of the reference signal;
  • a second processing unit configured to obtain, according to the SINR measurement value and a predicted SINR predicted value when the transmitting end sends the reference signal, a prediction error of the SINR predicted value
  • a query unit configured to query, according to the sum of the SINR prediction value and the measurement error, and the prediction error, a modulation coding mode MCS that is required to be used by the sending end.
  • the first processing unit is further configured to:
  • the second processing unit is further configured to:
  • the query unit is further configured to:
  • the MCS To be used by the sending end.
  • the receiving end obtains a measurement error of measuring the SINR of the reference signal according to the SINR measurement value of the reference signal and the cyclic redundancy check result of the service signal, according to the SINR
  • the measured value and the predicted SINR predicted value when the transmitting end sends the reference signal obtains a prediction error of the SINR predicted value, and further queries the MCS to be used by the transmitting end according to the sum of the SINR predicted value and the measured error, and the prediction error; Since the receiving end selects the MCS for the transmitting end, when predicting the SINR when transmitting the reference signal to the transmitting end, not only the prediction error but also the measurement error when the receiving end receives the service signal is considered, and the prediction error is Measurement error can reflect the receiving end The change of the channel condition between the sender and the sender, and the ability of the receiver to perceive the channel quality.
  • FIG. 1 is a flowchart of an adaptive modulation and coding acquisition method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another adaptive modulation and coding acquisition method according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another receiving end according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention have improved the current AMC technology.
  • Embodiments of the present invention can be applied to various types of communication systems such as a Long Time Evolution (LTE) system and a Universal Mobile Telecommunications System (UMTS).
  • LTE Long Time Evolution
  • UMTS Universal Mobile Telecommunications System
  • the embodiments of the present invention can be applied to multiple application scenarios consisting of a transmitting end and a receiving end.
  • the following is specifically described in a wireless communication scenario consisting of a terminal and a base station.
  • the terminal is a transmitting end
  • the base station is a receiving end
  • the methods described in the embodiments of the present invention can be used in both the uplink transmission and the downlink transmission.
  • FIG. 1 is a flowchart of an adaptive modulation and coding acquisition method according to an embodiment of the present invention, as shown in the following figure.
  • the method includes:
  • the receiving end obtains a measurement error for measuring the SINR of the reference signal according to the signal of the reference signal and the interference plus noise ratio SINR measurement value and the cyclic redundancy check result of the service signal.
  • the base station can receive the reference signal of the known sequence from the terminal, and the service signal carrying the actual service data.
  • the base station measures the signal to interference and noise ratio (SINR) of the received reference signal to obtain a SINR measurement value of the reference signal.
  • SINR signal to interference and noise ratio
  • the base station demodulates and decodes the received service signal to obtain a Cyclic Redundancy Check (CRC) result of the service signal. If the base station decodes the service signal correctly, the CRC of the service signal is equal to 0; if the base station decodes the service signal incorrectly, Then the CRC of the traffic signal is equal to one.
  • CRC Cyclic Redundancy Check
  • the base station uses the cyclic redundancy check result of the service signal to calibrate the SINR measurement value of the reference signal to obtain a measurement error for measuring the SINR of the reference signal.
  • the receiving end obtains a prediction error of the SINR prediction value according to the SINR measurement value and a predicted SINR prediction value when the predicted transmitting end sends the reference signal.
  • the base station can predict, according to the calculated SINR measurement value, the magnitude of the SINR when the terminal sends the reference signal, that is, the SINR prediction value. Further, the base station can calculate a prediction error for predicting the SINR when the terminal transmits the reference signal based on the calculated SINR measurement value and the previously obtained SINR prediction value at the corresponding reception time.
  • the receiving end queries, according to the sum of the SINR prediction value and the measurement error, and the prediction error, a modulation coding mode MCS that needs to be adopted by the sending end.
  • the two-dimensional mapping table of the MCS is pre-stored in the base station, and the base station can uniquely locate the corresponding MCS from two dimensions according to the query condition.
  • the base station calculates the sum of the SINR prediction value, the prediction error, and the measurement error of the base station measuring the SINR of the reference signal when the terminal transmits the reference signal, and uses the sum of the SINR prediction value and the measurement error as a dimension, and uses the prediction error as a In another dimension, the MCS that is queried is used as the MCS that the terminal needs to adopt.
  • steps 101-103 may be a cyclic process, and the base station selects and/or adjusts the terminal by using the MCS periodically or irregularly by the foregoing method.
  • the base station informs the terminal of the queried MCS, so that the terminal uses the modulation and coding mode represented by the MCS to perform uplink data transmission.
  • the throughput between the two can be maximized when a suitable MCS is selected. Since the influence of the channel condition is taken into account by the process of calibrating the SINR prediction value by using the prediction error and the measurement error, the terminal adopts the MCS selected by the base station after the calibration of the prediction error and the measurement error, and enables the base station and the terminal. It has a good throughput rate during communication.
  • the receiving end obtains a measurement error for measuring the SINR of the reference signal according to the SINR measurement value of the reference signal and the cyclic redundancy check result of the service signal, according to the SINR measurement value.
  • the sum of the predicted value and the measured error, and the prediction error, the MCS to be used by the transmitting end is queried; because the receiving end selects the MCS for the transmitting end, when predicting the SINR when transmitting the reference signal to the transmitting end, not only the prediction is considered
  • the error also takes into account the measurement error of the receiving end when receiving the service signal.
  • the prediction error and the measurement error can reflect the change of the channel condition between the receiving end and the transmitting end, and the ability of the receiving end to perceive the channel quality. For different application scenarios, the receiving end can select a better MCS for the transmitting end to improve the throughput of communication between the two, and effectively improve the adaptive performance of the AMC technology.
  • FIG. 2 is a flowchart of another method for acquiring adaptive modulation and coding according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • the receiving end processes the SINR measurement value of the reference signal by using a Signal to Noise Ratio (SNR)-BLER decoding curve function, and obtains a pair according to the cyclic redundancy check result of the service signal.
  • the SINR of the reference signal is a measurement error of the measurement.
  • the measurement error for measuring the SINR of the nth reference signal is the SINR measurement value of the nth reference signal
  • ⁇ ditch ⁇ i is the measurement error for measuring the SINR of the n-1th reference signal
  • f » For the SNR-BLER decoding curve function, the initial value ⁇ of the measurement error.
  • Zero, 0?C Intel is the cyclic redundancy check result of the nth service signal
  • / is the filter coefficient change length when predicting the SINR prediction value of the reference signal transmitted by the transmitting end.
  • the receiving end obtains an average or variance of the prediction error of the SINR according to the SINR measurement value and a predicted SINR prediction value when the predicted transmitting end sends the reference signal.
  • the base station may use the following method to predict a predicted value of the SINR when the transmitting end sends the reference signal.
  • the prediction is achieved by using a Least mean square (LMS) adaptive filtering algorithm.
  • LMS Least mean square
  • the other is to implement prediction using an alpha (alpha) filter.
  • the base station can also obtain SINR prediction values by using other forms of filters in the prior art.
  • the variance of the smoothed prediction error of the nth reference signal is o or, the mean value of the prediction error of the nth reference signal is ⁇ ,
  • the method for calculating the mean or the variance of the prediction error by the base station according to the SINR measurement value and the SINR prediction value may be implemented in a similar manner to the prior art, and will not be further described herein.
  • the receiving end queries, according to the sum of the SINR prediction value and the measurement error, and the mean or variance of the prediction error, a modulation coding mode MCS that needs to be adopted by the sending end.
  • the base station can use the two values to find the corresponding information by querying the MCS mapping table in an offline manner. MCS.
  • the method described in the embodiments of the present invention can also be applied to the Physical Uplink Shared Channel (PUSCH) of LTE, multi-user multiple input multiple output.
  • PUSCH Physical Uplink Shared Channel
  • Multi-User Multiple Input Multiple Output, MU-MIMO Multi-User Multiple Input Multiple Output, MU-MIMO
  • the base station and each terminal can implement adaptive modulation and coding by using the method described in the embodiments of the present invention.
  • the method for the cyclic redundancy check result of the service signal obtained by the base station may be calculated by itself, or may be calculated by the terminal, and the terminal calculates the cycle.
  • the redundancy check result is sent to the base station;
  • the method for the base station to obtain the SINR measurement value of the reference signal may be calculated by itself, or the terminal may send the difference between the SINR measurement value of the current reference signal and the SINR measurement value of the previous reference signal to the terminal.
  • the base station calculates, by the base station, the SINR measurement value of the current reference signal according to the difference and the SINR measurement value of the known previous reference signal.
  • FIG. 3 is a schematic structural diagram of a receiving end according to an embodiment of the present invention, as shown in FIG.
  • the receiving end includes:
  • the first processing unit 11 is configured to obtain a measurement error for measuring the SINR of the reference signal according to the signal to interference plus noise ratio SINR measurement value of the reference signal and the cyclic redundancy check result of the service signal;
  • a second processing unit 12 configured to obtain a prediction error of the SINR prediction value according to the SINR measurement value and a predicted SINR prediction value when the transmitting end sends the reference signal
  • the query unit 13 is configured to The sum of the SINR prediction value and the measurement error, and the prediction error, query the modulation coding mode MCS that the transmitting end needs to adopt.
  • first processing unit 11 is further configured to:
  • the second processing unit 12 is further configured to:
  • the query unit 13 is further configured to:
  • the MCS To be used by the sending end.
  • FIG. 4 is a schematic structural diagram of another receiving end according to an embodiment of the present invention. As shown in FIG. 4, the receiving end includes:
  • the processor 21, the memory 22, the bus 23, and the communication interface 24 are connected by a bus 23 and communicate with each other.
  • the processor 21 may be a single core or multi-core central processing unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement the embodiments of the present invention. Circuit.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 22 can be a high speed RAM memory or a nonvolatile memory.
  • non-volatile memory such as at least one disk storage.
  • the memory 22 is used to store the program 221.
  • the program 221 may include program code, where the program code includes computer operation instructions.
  • the processor 21 runs the program 221 to execute:
  • the SINR measurement and the cycle of the traffic signal Obtaining a measurement error of the SINR of the reference signal according to the redundancy check result; and obtaining the prediction of the SINR prediction value according to the SINR measurement value and the predicted SINR prediction value when the transmitting end sends the reference signal error;
  • the method for implementing the adaptive modulation and coding of the receiving end provided in the embodiments of the present invention may be referred to the operation steps described in the foregoing method embodiments, and details are not described herein again.
  • the receiving end provided by the embodiments of the present invention obtains a measurement error for measuring the SINR of the reference signal according to the SINR measurement value of the reference signal and the cyclic redundancy check result of the service signal, and sends the measurement error according to the SINR measurement value and the predicted transmitting end.
  • the SINR prediction value of the reference signal obtains the prediction error of the SINR prediction value, and further queries the MCS to be used by the transmitting end according to the sum of the SINR prediction value and the measurement error, and the prediction error;
  • MCS when predicting the SINR when transmitting the reference signal to the transmitting end, not only the prediction error is considered, but also the measurement error of the receiving end when receiving the traffic signal, and the prediction error and the measurement error can reflect the receiving end and The change of the channel condition between the senders and the ability of the receiver to perceive the channel quality. Therefore, when facing different application scenarios, the receiver can select a better MCS for the sender to improve communication between the two.
  • the throughput rate is effectively improved to the adaptive performance of the AMC technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供一种自适应调制编码获取方法及装置,其中自适应调制编码获取方法包括接收端根据参考信号的SINR测量值和业务信号的循环冗余校验结果,获得对参考信号的SINR进行测量的测量误差;接收端根据SINR测量值以及预测的发送端发送参考信号时的SINR预测值,获得SINR预测值的预测误差;接收端根据SINR预测值与测量误差之和,以及预测误差,査询发送端需要采用的调制编码方式MCS;由于接收端在为发送端选择MCS时,在对发送端发送参考信号的SINR进行预测时,考虑到了接收端在接收到业务信号时的测量误差,接收端与发送端之间信道情况的变化,使得接收端能够为发送端选择较优的MCS,有效地提高到了AMC技术的自适应性能。

Description

自适应调制编码获取方法及装置
技术领域
本发明实施例涉及通信技术, 尤其涉及一种自适应调制编码获取方法及 装置。 背景技术
在无线通信系统中,发送端采用高阶的调制编码方式和低冗余的纠错 码与接收端进行通信的情况下, 若发送端与接收端之间的信道条件较好, 则通信过程中能够获得较高的吞吐率; 若发送端与接收端之间的信道条件 较差, 则两者之间无法实现可靠的通信。 发送端采用低阶的调制编码方式 和高冗余的纠错码进行通信的情况下, 即使发送端与接收端之间的信道条 件较差, 依然能够实现两者之间可靠的通信; 但是当发送端与接收端之间 的信道条件较好时, 则会使得两者之间进行通信的吞吐率无法达到较优的 水平, 从而造成对通信资源的浪费。
无线通信系统中信道的衰落具有时变性, 因此可以采用自适应调制编 码 (Adaptive Modulation and Coding, AMC ) 技术, 根据发送端与接收端 之间信道的状态, 自适应地对发送端所采用的调制编码方式进行调整, 以 尽量获得较优的吞吐率。
在目前的 AMC技术中, 基站在与终端进行通信的过程中测量上行的 信号与干扰加噪声比 (Signal to Interference and Noise Ratio, SINR) , 根 据测量的上行 SINR以及 SINR滤波值的历史数据, 获得上行 SINR的滤 波平滑值; 进而根据上行 SINR的滤波平滑值, 以及上行 SINR与上行调 制编码方式之间的对应关系, 査询出上行需要采用的调制编码方式 ( Modulation and Coding Scheme, MCS ) 。
此外, 基站中还设置有误块率(BLock Error Rate, BLER)许可范围。 基站在与终端进行通信的过程中, 判断上行 BLER的数值是否在该 BLER 许可范围的取值范围内。 若是, 则不需要对上行的 MCS进行调整; 若否, 则需要根据调整策略, 增大或减小上行的 MCS。 BLER许可范围是一个相对固定的取值范围, 并不一定适用于各种不 同的应用场景。 由于无线通信系统具有时变性, 应用场景较多, 无法针对 全部应用场景分别设置相应的 BLER许可范围,也就使得在面对不同的应 用场景时, 目前的 AMC技术在自适应性能方面仍存在不足。 发明内容 本发明实施例提供一种自适应调制编码获取方法及装置, 用于解决目 前的 AMC技术在自适应性能方面的不足。
本发明实施例的第一个方面是提供一种自适应调制编码获取方法, 包 括:
接收端根据参考信号的信号与干扰加噪声比 SINR测量值和业务信号 的循环冗余校验结果,获得对所述参考信号的 SINR进行测量的测量误差; 所述接收端根据所述 SINR测量值以及预测的发送端发送所述参考信 号时的 SINR预测值, 获得所述 SINR预测值的预测误差;
所述接收端根据所述 SINR预测值与所述测量误差之和, 以及所述预 测误差, 査询所述发送端需要采用的调制编码方式 MCS。
结合第一个方面提供的自适应调制编码获取方法, 在第一种可能的实 现方式中, 所述接收端根据参考信号的信号与干扰加噪声比 SINR测量值 和业务信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行测量 的测量误差包括:
所述接收端利用信噪比 SNR-误块率 BLER译码曲线函数对所述参考 信号的 SINR测量值进行处理,再根据所述业务信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行测量的测量误差。
结合第一个方面或第一种可能的实现方式, 在第二种可能的实现方式 中, 所述接收端根据所述 SINR测量值以及预测的发送端发送所述参考信 号时的 SINR预测值, 获得所述 SINR预测值的预测误差包括:
所述接收端根据所述 SINR测量值以及所述 SINR预测值, 获得所述 SINR预测值的预测误差的均值或方差;
相应地, 所述接收端根据所述 SINR预测值与所述测量误差之和, 以 及所述预测误差, 査询所述发送端需要采用的调制编码方式 MCS包括: 所述接收端根据所述 SINR预测值与所述测量误差之和, 以及所述预 测误差的均值或方差, 査询所述发送端需要采用的 MCS。
本发明实施例的第二个方面是提供一种接收端, 包括:
第一处理单元, 用于根据参考信号的信号与干扰加噪声比 SINR测量 值和业务信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行测 量的测量误差;
第二处理单元, 用于根据所述 SINR测量值以及预测的发送端发送所 述参考信号时的 SINR预测值, 获得所述 SINR预测值的预测误差;
査询单元, 用于根据所述 SINR预测值与所述测量误差之和, 以及所 述预测误差, 査询所述发送端需要采用的调制编码方式 MCS。
结合第二个方面提供的接收端, 在第一种可能的实现方式中, 所述第 一处理单元还用于:
利用信噪比 SNR-误块率 BLER译码曲线函数对所述参考信号的 SINR 测量值进行处理, 再根据所述业务信号的循环冗余校验结果, 获得对所述 参考信号的 SINR进行测量的测量误差。
结合第二个方面或第一种可能的实现方式, 在第二种可能的实现方式 中, 所述第二处理单元还用于:
根据所述 SINR测量值以及所述 SINR预测值,获得所述 SINR预测值 的预测误差的均值或方差;
相应地, 所述査询单元还用于:
根据所述 SINR预测值与所述测量误差之和, 以及所述预测误差的均 值或方差, 査询所述发送端需要采用的 MCS。
本发明各实施例提供的自适应调制编码获取方法及装置, 接收端根据 参考信号的 SINR测量值和业务信号的循环冗余校验结果, 获得对参考信 号的 SINR进行测量的测量误差, 根据 SINR测量值以及预测的发送端发 送所述参考信号时的 SINR预测值, 获得 SINR预测值的预测误差, 进而 根据 SINR预测值与测量误差之和, 以及预测误差, 査询发送端需要采用 的 MCS; 由于接收端在为发送端选择 MCS时, 在对发送端发送参考信号 时的 SINR进行预测时, 不仅考虑到了预测误差, 还考虑到了接收端在接 收到业务信号时的测量误差, 通过预测误差和测量误差能够反映出接收端 与发送端之间信道情况的变化, 以及接收端感知信道质量的能力, 从而在 面对不同的应用场景时,接收端均能够为发送端选择较优的 MCS , 以提高 两者之间进行通信的吞吐率, 有效地提高到了 AMC技术的自适应性能。 附图说明 图 1为本发明实施例提供的自适应调制编码获取方法的流程图; 图 2为本发明实施例提供的另一自适应调制编码获取方法的流程图; 图 3为本发明实施例提供的接收端的结构示意图;
图 4为本发明实施例提供的另一接收端的结构示意图。 具体实施方式
为了弥补目前的 AMC技术在自适应性能方面的不足, 本发明各实施 例对目前的 AMC技术进行了改进。 本发明各实施例可以应用在长期演进 ( Long Time Evolution, LTE ) 系统以及通用移动通信系统 (Universal Mobile Telecommunications System, UMTS ) 等多种类型的通信系统中。
本发明各实施例可以应用在由发送端和接收端组成的多种应用场景 中, 以下具体以由终端和基站组成的无线通信场景进行说明。 其中, 终端 为发送端, 基站为接收端, 并且在上行传输和下行传输过程中均可以采用 本发明各实施例中所述的方法。
图 1为本发明实施例提供的自适应调制编码获取方法的流程图, 如图
1所示, 该方法包括:
101、接收端根据参考信号的信号与干扰加噪声比 SINR测量值和业务 信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行测量的测量 误差。
具体的, 基站能够从终端接收到已知序列的参考信号, 以及携带实际 业务数据的业务信号。 基站对接收到的参考信号的信号与干扰加噪声比 ( Signal to Interference and Noise Ratio, SINR) 进行测量, 获得参考信号 的 SINR测量值。 基站对接收到的业务信号进行解调和译码, 获得业务信 号的循环冗余校验 (Cyclic Redundancy Check, CRC ) 结果。 若基站对业 务信号译码正确,则业务信号的 CRC等于 0;若基站对业务信号译码错误, 则业务信号的 CRC等于 1。
进而基站利用业务信号的循环冗余校验结果, 对参考信号的 SINR测 量值进行校准, 获得对参考信号的 SINR进行测量的测量误差。
102、接收端根据所述 SINR测量值以及预测的发送端发送所述参考信 号时的 SINR预测值, 获得所述 SINR预测值的预测误差。
具体的, 基站根据计算出的 SINR测量值能够预测终端发送该参考信 号时的 SINR的大小, 即 SINR预测值。 进而, 基站在对应的接收时刻根 据计算出的 SINR测量值和之前得到的 SINR预测值, 能够计算出对终端 发送该参考信号时的 SINR进行预测的预测误差。
103、接收端根据所述 SINR预测值与所述测量误差之和, 以及所述预 测误差, 査询所述发送端需要采用的调制编码方式 MCS。
具体的, 基站中预先存储有 MCS的二维映射表, 基站可以根据査询 条件从两个维度唯一定位出对应的 MCS。
基站在计算出终端发送该参考信号时的 SINR预测值、 预测误差以及 基站对该参考信号的 SINR进行测量的测量误差之和, 利用 SINR预测值 与测量误差之和作为一个维度, 利用预测误差作为另外一个维度, 将査询 出的 MCS作为终端需要采用的 MCS。
其中, 歩骤 101-103所示的歩骤可以为循环的过程, 基站通过上述方 法定期或不定期地对终端需要采用 MCS进行选择和 /或调整。
进而, 基站将査询出的 MCS告知终端, 以使终端采用该 MCS所代表 的调制编码方式进行上行数据的传输。针对基站与终端之间不同的信道条 件, 在选择了合适的 MCS的情况下, 能够使得两者之间的吞吐率最大化。 由于利用预测误差和测量误差对 SINR预测值进行校准的过程, 将信道条 件的影响考虑在其中了, 因此终端采用基站经过预测误差和测量误差的校 准之后为其选择的 MCS ,能够使得基站与终端在通信过程中具有较优的吞 吐率。
本发明各实施例提供的自适应调制编码获取方法, 接收端根据参考信 号的 SINR测量值和业务信号的循环冗余校验结果, 获得对参考信号的 SINR进行测量的测量误差,根据 SINR测量值以及预测的发送端发送所述 参考信号时的 SINR预测值,获得 SINR预测值的预测误差,进而根据 SINR 预测值与测量误差之和, 以及预测误差, 査询发送端需要采用的 MCS; 由 于接收端在为发送端选择 MCS时, 在对发送端发送参考信号时的 SINR 进行预测时, 不仅考虑到了预测误差, 还考虑到了接收端在接收到业务信 号时的测量误差, 通过预测误差和测量误差能够反映出接收端与发送端之 间信道情况的变化, 以及接收端感知信道质量的能力, 从而在面对不同的 应用场景时,接收端均能够为发送端选择较优的 MCS , 以提高两者之间进 行通信的吞吐率, 有效地提高到了 AMC技术的自适应性能。
图 2为本发明实施例提供的另一自适应调制编码获取方法的流程图, 如图 2所示, 该方法包括:
201、 接收端利用信噪比 ( Signal to Noise Ratio, SNR) -BLER译码曲 线函数对所述参考信号的 SINR测量值进行处理, 再根据所述业务信号的 循环冗余校验结果, 获得对所述参考信号的 SINR进行测量的测量误差。
具体的, 可以参见歩骤 101中所述的实现方式。
在此基础上, 一种可选的计算测量误差的方法为, 所述测量误差 Δ„ = (γ(η) + A„_, ) - CRCn \ μ + Αη_, ; 其中, Δ„为对第 η个参考信号的 SINR进 行测量的测量误差, 为所述第 n个参考信号的 SINR测量值, Δ„— i为对 第 n-1个参考信号的 SINR进行测量的测量误差, f»为 SNR-BLER译码 曲线函数, 测量误差的初始值 Δ。为零, 0?C„为第 n个业务信号的循环冗余 校验结果, /为预测发送端发送参考信号的 SINR预测值时的滤波器系数 变化歩长。
202、接收端根据所述 SINR测量值以及预测的发送端发送所述参考信 号时的 SINR预测值, 获得所述 SINR的预测误差的均值或方差。
具体的, 基站可以利用如下方法预测发送端发送该参考信号时的 SINR预测值。
—种为采用最小方差 (Least mean square , LMS ) 自适应滤波算法实 现预测。
第 n个参考信号的在发送端被发送时的 SINR预测值 为,
f(") = W„Tr(")。 其中, 滤波器系数 W"为, W„ = (wC(" _ l),''',w(" _ _ l))Tκ 是滤波器阶数,
Figure imgf000008_0001
μ 是滤波器系数变化歩长, ρ是预测歩长。进而,基站得到的预测误差 为, e n) = γ{η + ρ)- γ{η)。
另一种为采用阿尔法 (alpha) 滤波器实现预测。
第 n个参考信号的在发送端被发送时的 SINR预测值 为,
f(") = (l-«。X" -l) 其中, 《。是滤波系数。
此外, 基站还可以采用现有技术中的其他形式的滤波器获得 SINR预 测值。
基站对第 η个参考信号的预测误差 为, ^W= W- ?^ - 。第 n个 参考信号的平滑的预测误差的方差 为,
Figure imgf000009_0001
o 或者, 第 n个参考信号的预测误差的均值^^为,
Figure imgf000009_0002
其中, 是滤波系数。
基站根据 SINR测量值和 SINR预测值, 计算出预测误差的均值或方 差的方法, 可以采用与现有技术中类似的实现方式, 此次不再赘述。
203、接收端根据所述 SINR预测值与所述测量误差之和, 以及所述预 测误差的均值或方差, 査询所述发送端需要采用的调制编码方式 MCS。
具体的, 可以参见歩骤 103中所述的实现方式。 SINR预测值与测量 误差之和为 ? («)+ Δ„, 预测误差的均值或方差为^ , 基站利用这两个的数 值可以通过离线的方式,通过査询 MCS的映射表格,査找到对应的 MCS。
本发明各实施例所述的方法也可以应用在 LTE的物理上行共享信道 ( Physical Uplink Shared Channel, PUSCH) 多用户多输入多输出
( Multi-User Multiple Input Multiple Output, MU-MIMO) 的应用场景中。
当基站与各终端分别完成配对之后, 基站与各终端之间均可以采用本 发明各实施例中所述的方法实现自适应调制编码。
此外, 在本发明各实施例所提供的方法的基础上, 基站获得的业务信 号的循环冗余校验结果的方法可以是自行计算, 也可以由终端进行计算, 并有终端将计算出的循环冗余校验结果发送给基站; 基站获得参考信号的 SINR测量值的方法可以是自行计算, 也可以由终端将当前参考信号的 SINR测量值与前一个参考信号的 SINR测量值的差值发送给基站,由基站 根据该差值以及已知的前一个参考信号的 SINR测量值计算出当前参考信 号的 SINR测量值。
图 3为本发明实施例提供的接收端的结构示意图, 如图 3所示, 该接 收端包括:
第一处理单元 11, 用于根据参考信号的信号与干扰加噪声比 SINR测 量值和业务信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行 测量的测量误差;
第二处理单元 12, 用于根据所述 SINR测量值以及预测的发送端发送 所述参考信号时的 SINR预测值, 获得所述 SINR预测值的预测误差; 査询单元 13, 用于根据所述 SINR预测值与所述测量误差之和, 以及 所述预测误差, 査询所述发送端需要采用的调制编码方式 MCS。
进一歩地, 所述第一处理单元 11还用于:
利用信噪比 SNR-误块率 BLER译码曲线函数对所述参考信号的 SINR 测量值进行处理, 再根据所述业务信号的循环冗余校验结果, 获得对所述 参考信号的 SINR进行测量的测量误差。
进一歩地, 所述第二处理单元 12还用于:
根据所述 SINR测量值以及所述 SINR预测值,获得所述 SINR预测值 的预测误差的均值或方差;
相应地, 所述査询单元 13还用于:
根据所述 SINR预测值与所述测量误差之和, 以及所述预测误差的均 值或方差, 査询所述发送端需要采用的 MCS。
图 4为本发明实施例提供的另一接收端的结构示意图, 如图 4所示, 该接收端包括:
处理器 21、 存储器 22、 总线 23和通信接口 24。 处理器 21、 存储器 22和通信接口 24之间通过总线 23连接并完成相互间的通信。
处理器 21可能为单核或多核中央处理单元 (Central Processing Unit, CPU) , 或者为特定集成电路 (Application Specific Integrated Circuit, ASIC ) , 或者为被配置成实施本发明实施例的一个或多个集成电路。
存储器 22可以为高速 RAM存储器, 也可以为非易失性存储器
(non- volatile memory) , 例如至少一个磁盘存储器。
存储器 22用于存放程序 221。具体的,程序 221中可以包括程序代码, 所述程序代码包括计算机操作指令。
处理器 21运行程序 221, 以执行:
根据参考信号的信号与干扰加噪声比 SINR测量值和业务信号的循环 冗余校验结果, 获得对所述参考信号的 SINR进行测量的测量误差; 根据所述 SINR测量值以及预测的发送端发送所述参考信号时的 SINR预测值, 获得所述 SINR预测值的预测误差;
根据所述 SINR预测值与所述测量误差之和, 以及所述预测误差, 査 询所述发送端需要采用的调制编码方式 MCS。
具体的, 本发明各实施例中提供的接收端实现自适应调制编码的方 法, 可以参见上述对应的方法实施例中所述的操作歩骤, 此处不再赘述。
本发明各实施例提供的接收端, 根据参考信号的 SINR测量值和业务 信号的循环冗余校验结果,获得对参考信号的 SINR进行测量的测量误差, 根据 SINR测量值以及预测的发送端发送所述参考信号时的 SINR预测值, 获得 SINR预测值的预测误差, 进而根据 SINR预测值与测量误差之和, 以及预测误差,査询发送端需要采用的 MCS; 由于接收端在为发送端选择 MCS时, 在对发送端发送参考信号时的 SINR进行预测时, 不仅考虑到了 预测误差, 还考虑到了接收端在接收到业务信号时的测量误差, 通过预测 误差和测量误差能够反映出接收端与发送端之间信道情况的变化, 以及接 收端感知信道质量的能力, 从而在面对不同的应用场景时, 接收端均能够 为发送端选择较优的 MCS , 以提高两者之间进行通信的吞吐率,有效地提 高到了 AMC技术的自适应性能。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种自适应调制编码获取方法, 其特征在于, 包括:
接收端根据参考信号的信号与干扰加噪声比 SINR测量值和业务信号 的循环冗余校验结果,获得对所述参考信号的 SINR进行测量的测量误差; 所述接收端根据所述 SINR测量值以及预测的发送端发送所述参考信 号时的 SINR预测值, 获得所述 SINR预测值的预测误差;
所述接收端根据所述 SINR预测值与所述测量误差之和, 以及所述预 测误差, 査询所述发送端需要采用的调制编码方式 MCS。
2、 根据权利要求 1所述的自适应调制编码获取方法, 其特征在于, 所述接收端根据参考信号的信号与干扰加噪声比 SINR测量值和业务信号 的循环冗余校验结果, 获得对所述参考信号的 SINR进行测量的测量误差 包括:
所述接收端利用信噪比 SNR-误块率 BLER译码曲线函数对所述参考 信号的 SINR测量值进行处理,再根据所述业务信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行测量的测量误差。
3、 根据权利要求 1或 2所述的自适应调制编码获取方法, 其特征在 于, 所述接收端根据所述 SINR测量值以及预测的发送端发送所述参考信 号时的 SINR预测值, 获得所述 SINR预测值的预测误差包括:
所述接收端根据所述 SINR测量值以及所述 SINR预测值, 获得所述 SINR预测值的预测误差的均值或方差;
相应地, 所述接收端根据所述 SINR预测值与所述测量误差之和, 以 及所述预测误差, 査询所述发送端需要采用的调制编码方式 MCS包括: 所述接收端根据所述 SINR预测值与所述测量误差之和, 以及所述预 测误差的均值或方差, 査询所述发送端需要采用的 MCS。
4、 一种接收端, 其特征在于, 包括:
第一处理单元, 用于根据参考信号的信号与干扰加噪声比 SINR测量 值和业务信号的循环冗余校验结果, 获得对所述参考信号的 SINR进行测 量的测量误差;
第二处理单元, 用于根据所述 SINR测量值以及预测的发送端发送所 述参考信号时的 SINR预测值, 获得所述 SINR预测值的预测误差; 査询单元, 用于根据所述 SINR预测值与所述测量误差之和, 以及所 述预测误差, 査询所述发送端需要采用的调制编码方式 MCS。
5、 根据权利要求 4所述的接收端, 其特征在于, 所述第一处理单元 还用于:
利用信噪比 SNR-误块率 BLER译码曲线函数对所述参考信号的 SINR 测量值进行处理, 再根据所述业务信号的循环冗余校验结果, 获得对所述 参考信号的 SINR进行测量的测量误差。
6、 根据权利要求 4或 5所述的接收端, 其特征在于, 所述第二处理 单元还用于:
根据所述 SINR测量值以及所述 SINR预测值,获得所述 SINR预测值 的预测误差的均值或方差;
相应地, 所述査询单元还用于:
根据所述 SINR预测值与所述测量误差之和, 以及所述预测误差的均 值或方差, 査询所述发送端需要采用的 MCS。
PCT/CN2013/075979 2013-05-21 2013-05-21 自适应调制编码获取方法及装置 WO2014186949A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/075979 WO2014186949A1 (zh) 2013-05-21 2013-05-21 自适应调制编码获取方法及装置
CN201380000829.5A CN103609051B (zh) 2013-05-21 2013-05-21 自适应调制编码获取方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075979 WO2014186949A1 (zh) 2013-05-21 2013-05-21 自适应调制编码获取方法及装置

Publications (1)

Publication Number Publication Date
WO2014186949A1 true WO2014186949A1 (zh) 2014-11-27

Family

ID=50126077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075979 WO2014186949A1 (zh) 2013-05-21 2013-05-21 自适应调制编码获取方法及装置

Country Status (2)

Country Link
CN (1) CN103609051B (zh)
WO (1) WO2014186949A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119128A1 (zh) * 2015-01-27 2016-08-04 华为技术有限公司 调制编码方式的选择方法及基站
CN105846959B (zh) * 2016-04-18 2019-01-11 中国电子科技集团公司第二十研究所 基于信道质量预测的卫星自适应编码调制方法
EP3557793B1 (en) 2017-01-25 2020-12-02 Huawei Technologies Co., Ltd. Outer loop link adaptation adjustment method and apparatus
CN108667564B (zh) * 2018-03-22 2021-04-30 西安电子科技大学 一种在线学习的自适应链路mcs切换控制方法
CN110224788B (zh) * 2019-05-27 2021-12-07 中国联合网络通信集团有限公司 一种数据传输的方法及装置
CN115118379A (zh) * 2021-03-19 2022-09-27 中兴通讯股份有限公司 模型训练方法、信道调整方法、电子设备、可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466297A (zh) * 2002-06-13 2004-01-07 华为技术有限公司 一种自适应调制与编码方法
CN1667986A (zh) * 2004-03-08 2005-09-14 信息技术实验室 自适应调制解调控制装置和方法
US20070206695A1 (en) * 2005-01-12 2007-09-06 Huanchun Ye Selecting MCS in a MIMO system
CN101277171A (zh) * 2007-03-30 2008-10-01 北京三星通信技术研究有限公司 多天线通信系统信号速率控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161956B2 (en) * 2001-12-28 2007-01-09 Lucent Technologies Inc. Adapative quality control loop for link rate adaptation in data packet communications
CN101651533B (zh) * 2009-08-27 2012-10-03 华为技术有限公司 一种调制编码方式的选择方法和装置
CN102281119A (zh) * 2010-06-12 2011-12-14 中兴通讯股份有限公司 一种上行链路自适应编码调制方法及实现该方法的基站
CN102761387B (zh) * 2011-04-26 2015-06-03 中兴通讯股份有限公司 自适应调制与编码方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466297A (zh) * 2002-06-13 2004-01-07 华为技术有限公司 一种自适应调制与编码方法
CN1667986A (zh) * 2004-03-08 2005-09-14 信息技术实验室 自适应调制解调控制装置和方法
US20070206695A1 (en) * 2005-01-12 2007-09-06 Huanchun Ye Selecting MCS in a MIMO system
CN101277171A (zh) * 2007-03-30 2008-10-01 北京三星通信技术研究有限公司 多天线通信系统信号速率控制方法

Also Published As

Publication number Publication date
CN103609051A (zh) 2014-02-26
CN103609051B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2014186949A1 (zh) 自适应调制编码获取方法及装置
EP2220791B1 (en) Apparatus and method for reporting channel quality indicator in wireless communication system
KR102173084B1 (ko) 무선 통신 시스템에서 데이터 패킷 송수신 방법 및 장치
US10218477B2 (en) Method for determining channel quality and apparatus thereof
JP4793762B2 (ja) プログラム、tbs決定方法、及びtbs決定装置
EP2779503B1 (en) Unicast communication method, device and system
EP3304939A1 (en) Optimized mcs selection for machine type communication
WO2012010000A1 (zh) 混合自动重传请求处理方法及装置
US10673558B2 (en) Configuring transmission parameters in a cellular system
WO2017193936A1 (en) Decoding procedures in systems with codeblock segmentation
WO2011144038A1 (zh) 一种预编码信息的发送和接收方法及装置
WO2013104207A1 (zh) 一种cqi确定方法及装置
CN103873217A (zh) 信道质量指示的校正方法及装置、用户设备
WO2012159298A1 (zh) 一种实现上行数据发送的方法和装置
US9078191B2 (en) Controlling allocation of a portion of a shared channel to use for control information
WO2011124037A1 (zh) 一种信道质量指示信息的反馈方法及装置
JP5820069B2 (ja) 無線局、無線通信システム、及び方法
CN108242974B (zh) 基于误码率动态调整cqi的方法、装置及移动终端
KR101828447B1 (ko) 네트워크장치 및 네트워크장치의 동작 방법
CN108631926B (zh) 一种通信的方法和通信设备
WO2014094293A1 (zh) 信道质量指示值的获取方法及装置
US20150327277A1 (en) Method, network node, and computer program for determining rank
US9681449B2 (en) Method and apparatus for power control in wireless communication network
JP5864184B2 (ja) 通信システム
WO2023199090A1 (en) Discontinuous transmission detection for harq feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885244

Country of ref document: EP

Kind code of ref document: A1