WO2014185818A1 - Эллипсометр - Google Patents

Эллипсометр Download PDF

Info

Publication number
WO2014185818A1
WO2014185818A1 PCT/RU2014/000319 RU2014000319W WO2014185818A1 WO 2014185818 A1 WO2014185818 A1 WO 2014185818A1 RU 2014000319 W RU2014000319 W RU 2014000319W WO 2014185818 A1 WO2014185818 A1 WO 2014185818A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
ellipsometer
sample
analyzer
plane
Prior art date
Application number
PCT/RU2014/000319
Other languages
English (en)
French (fr)
Inventor
Алексей Сергеевич ГУРЕВИЧ
Original Assignee
Gurevich Aleksei Sergeevich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gurevich Aleksei Sergeevich filed Critical Gurevich Aleksei Sergeevich
Publication of WO2014185818A1 publication Critical patent/WO2014185818A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0641Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the invention relates to means for optical experimental investigation of the properties of solids, solid structures and interphase boundaries and can be used to measure with high accuracy the thickness and optical constant of thin films, optical constant massive samples of solids, as well as research properties surface.
  • Ellipsometry is an optical experimental method for studying the properties of solids, solid state structures, and interphase boundaries. It allows one to measure with high accuracy the thicknesses and optical constants of thin films, the optical constants of massive samples of solids, and to investigate surface properties.
  • the essence of the ellipsometric method is to study the change in the state of polarization of light as a result of its reflection from the object under study or when passing through it. The method was widely used in the 70s of the last century in connection with the advent of relatively inexpensive computing equipment necessary for processing measurement results, see R. Azzam, N. Bashar. "Ellipsometry and polarized light.” M., Mir, 1981, 584 pp.
  • Ellipsometry has two features that make it extremely attractive for solving a number of research and technological problems. First, during the measurement process, practically no effect on the system under study occurs (with the correct choice of the beam intensity and spectral range). This makes it possible to use ellipsometry for solving non-destructive testing problems. Secondly, ellipsometry is extremely sensitive to the state of the surface, structure and properties of samples with thin films, as well as to processes occurring at the interface of two phases. Ellipsometric measurements can be carried out in a wide range of temperatures and pressures, and the aggressiveness of the environment is also not an obstacle.
  • ellipsometry is used in various fields of science - physics, chemistry, materials science, as well as in semiconductor technologies, in the manufacture of optical and electronic systems, in the processing of metals, in the medical industry.
  • two main blocks can be distinguished.
  • the first of them - the polarizer arm (PP) - forms a beam of light with a given state of polarization, spectral composition, geometric parameters (diameter, divergence) and direction.
  • the analyzer arm PA
  • PA the polarization state of light reflected from a sample is measured. Knowing how the polarization of light changed under reflection at a given angle of incidence allows one to obtain such information about the sample under study as optical constants, film thicknesses, material composition, porosity, etc.
  • the angle of incidence of light on the sample changes by rotating PP and PA relative to the axis of the ellipsometer with the sample position unchanged;
  • the angle of incidence of light on the sample is changed by rotating the PA and the sample relative to the axis of the ellipsometer with the PP fixed.
  • a known ellipsometer containing optically coupled arm of a polarizer made as a part of an illuminator and a polarizer, and an arm of an analyzer between which a test sample is placed, the arm of an analyzer being made in the form of optically coupled composite light beam splitter that splits the light reflected from the sample under study a beam of four orthogonally polarized light components, a photographic recorder for receiving polarized light radiation components and generating signals for calculating electronic lipsometric parameters of the test sample, characterized in that said composite light beam splitter is made by a single measuring channel, combining the functions of the phase and amplitude measuring channels, providing equal transmittances of polarized light components, see patent RU 2351917.
  • the achievement of the technical result is based on the reduction of optical elements in the design, introducing an error in the measurements.
  • the invention solves the problem of providing an increase in the speed of mapping of studied images of large sizes and a quick change in the angle of incidence of light on the surface of the sample
  • An ellipsometer including a polarizer arm forming a light beam of a given state of polarization and direction, and an analyzer arm in which the polarization state of an incoming light beam reflected from a test specimen is measured is characterized in that the test specimen is fixed, while the ellipsometer equipped with a system for scanning its light beam, made in the form of a set of mirrors mounted with the possibility of movement and / or rotation to ensure the fall of light beam to the necessary place on the surface of the sample at the required angle and the light beam reflected from the sample to be incident on the analyzer arm.
  • the invention is characterized by the presence of a number of optional features that describe particular cases of its implementation, namely:
  • the arm of the polarizer and the arm of the analyzer can be fixed motionless
  • the arm of the polarizer and the arm of the analyzer can be strengthened with the possibility of movement.
  • the technical result achieved using the essential features of the invention consists in the fact that during the operation of the ellipsometer, a change in the place of incidence of the light beam on the test sample and a change in the angle of incidence is achieved by moving and / or rotating light mirrors of the light beam scanning system, and massive PP and PA or large-sized test sample.
  • the invention is illustrated by the drawing, which shows the optical diagram of the claimed ellipsometer.
  • the ellipsometer includes the shoulder of the PP polarizer, the shoulder of the PA analyzer and the scanning system of its light beam, made in the form of four mirrors.
  • the optical axis of the PP along with the mirrors H1 and V2 lie in the same plane parallel to the plane of the surface of the sample.
  • the mirrors V1 and H2 and the optical axis of the PA are higher and lie in another plane, also parallel to the plane of the surface of the sample.
  • the optical axes of PP and PA are parallel. All 4 mirrors H1, V1, V2 and H2 lie in one vertical plane perpendicular to the plane of the surface of the sample.
  • the arm of the PP polarizer and the arm of the PA analyzer are fixed motionless or with the possibility of movement.
  • the claimed ellipsometer works as follows.
  • PP, PA and the test sample in the general case are fixed and do not change their position.
  • the angle of incidence of light on the sample and the place of incidence of the light beam on the sample under study is determined by the beam scanning system of the ellipsometer containing four mirrors H1, V1, V2, and H2.
  • PP forms a light beam with a given state of polarization and directs it to the H1 mirror.
  • the light beam rotates in a plane parallel to the surface of the sample and hits the mirror V2, which it down onto the sample at a given angle of incidence ⁇ .
  • the light beam hits the mirror V1, which directs it to the mirror H2.
  • the beam After reflection from H2, the beam enters the PA, where its polarization state is measured.
  • the effect of the image on the polarization of the reflected light beam is determined based on the state of polarization of the light emerging from the PP, the state of polarization of the light trapped in the PA, and the known effect on the polarization of the mirrors H1, V1, V2 and H2.
  • the influence of the mirrors of the scanning system on the state of polarization of the reflected beam is previously measured in a separate experiment.
  • the shift of the region of incidence of the beam onto the sample along the X axis at a constant angle of incidence ⁇ is achieved by parallel displacement of the mirrors V1 and V2 along the X axis without rotation.
  • the shift of the region of incidence of the beam onto the sample along the Y axis at a constant angle of incidence ⁇ is carried out by simultaneous parallel displacement of all four mirrors H1, V1, V2 and H2 along the Y axis without rotation.
  • the angle of incidence of light ⁇ can be changed as follows. To increase the angle of incidence, the mirrors V1 and V2 are displaced along the X axis from each other together with the simultaneous rotation of the mirror V1 in the counterclockwise direction (angle cpi) and the mirror V2 in the clockwise direction (angle cg). To reduce the angle of incidence, the mirrors V1 and V2 are shifted along the X axis to each other together with the simultaneous rotation of the mirror V1 in the clockwise direction and the mirror V2 in the counterclockwise direction. In the study of large-sized samples, errors arise due to the large path of the light beam from PP to PA. The claimed device allows you to compensate for these errors. To this end, the SP and PA move along their optical axes and minimize the distance from the SP to the first mirror of the scanning system H1 along the path of the light beam, as well as from the mirror H2 to the PA.
  • the main advantages of the claimed device compared to the existing ones are the ability to quickly change the angle of incidence of the light beam on the sample ⁇ , as well as the ability to quickly move the studied area on the surface of large-sized samples with linear dimensions of the order of a meter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Эллипсометр относится к средствам для оптического экспериментального исследования свойств твердых тел, твердотельных структур и межфазных границ и может быть использован для измерений с высокой точностью толщины и оптических постоянных тонких пленок, оптических постоянных массивных образцов твердых тел, а также исследований свойств поверхности. Эллипсометр включает плечо поляризатора ПП, плечо анализатора ПА и систему развертки его светового луча, выполненную в виде четырех зеркал. Оптическая ось ПП вместе с зеркалами Н1 и V2 лежат в одной плоскости, параллельной плоскости поверхности образца. Зеркала V1 и Н2 и оптическая ось ПА находятся выше и лежат в другой плоскости, так же параллельной плоскости поверхности образца. Оптические оси ПП и ПА параллельны. Все 4 зеркала Н1, V1, V2 и Н2 лежат в одной вертикальной плоскости, перпендикулярной плоскости поверхности образца. Плечо поляризатора ПП и плечо анализатора ПА укреплены неподвижно либо с возможностью перемещения вдоль направления своих оптических осей. Основными достоинствами заявленного устройства сравнению с существующими являются возможность быстрой смены угла падения светового луча на образец В, а также возможность быстрого перемещения исследуемой области по поверхности крупногабаритных образцов с линейными размерами порядка метра.

Description

Эллипсометр
Область техники
Изобретение относится к средствам для оптического экспериментального ис- следования свойств твердых тел, твердотельных структур и межфазных границ и может быть использована для измерений с высокой точностью толщины и оптиче- ских постоянных тонких пленок, оптических постоянных массивных образцов твер- дых тел, а также исследований свойств поверхности.
Предшествующий уровень техники
Эллипсометрией называют оптический экспериментальный метод исследова- ния свойств твердых тел, твердотельных структур и межфазных границ. Она по- зволяет с высокой точностью измерять толщины и оптические постоянные тонких пленок, оптические постоянные массивных образцов твердых тел, исследовать свойства поверхности. Сущность эллипсометрического метода состоит в исследо- вании изменения состояния поляризации света в результате его отражения от изучаемого объекта или при прохождении через него. Широкое распространение метод получил в 70-х годах прошлого века в связи с появлением сравнительно недорогой вычислительной техники, необходимой для обработки результатов из- мерений, см. Р. Аззам, Н. Башара. «Эллипсометрия и поляризованный свет». М., Мир, 1981 , 584 стр.
Эллипсометрия имеет две особенности, которые делают ее крайне привлека- тельной для решения ряда исследовательских и технологических задач. Во- первых, в процессе измерений практически не происходит влияния на исследуе- мую систему (при правильном выборе интенсивности пучка и спектрального диа- пазона). Это делает возможным применение эллипсометрии для решения задач неразрушающего контроля. Во-вторых, эллипсометрия крайне чувствительна к состоянию поверхности, структуре и свойствам образцов с тонкими пленками, а так же к процессам, протекающим на границе двух фаз. Эллипсометрические из- мерения могут проводиться в широком интервале температур и давлений, причем агрессивность окружающей среды так же не является помехой. Благодаря указан- ным особенностям, эллипсометрия находит применение в самых различных об- ластях науки - физике, химии, материаловедении, а так же в полупроводниковых технологиях, при изготовлении оптических и электронных систем, при обработке металлов, в медицинской промышленности. В любом эллипсометре можно выделить два основных блока. Первый из них - плечо поляризатора (ПП) - формирует пучок света с заданными состоянием поля- ризации, спектральным составом, геометрическими параметрами (диаметр, рас- ходимость) и направлением. После отражения от исследуемого образца под за- данным углом Θ, свет попадает во второй блок, который называют плечом анали- затора (ПА). В ПА измеряется состояние поляризации отраженного от образца света. Знание того, как изменилась поляризация света при отражении под задан- ным углом падения, позволяет получить такую информацию об исследуемом об- разце как: оптические постоянные, толщины пленок, состав материалов, порис- тость и т.д.
В настоящее время промышленностью выпускаются эллипсометры с оптиче- скими схемами двух видов:
- по схеме с горизонтальным расположением поверхности исследуемого образца. В таком приборе угол падения света на образец меняется путем вращения ПП и ПА относительно оси эллипсометра при неизменном положении образца;
- по схеме с вертикальным расположением поверхности исследуемого образца. В таких приборах угол падения света на образец меняется путем вращения ПА и образца относительно оси эллипсометра при неизменном положении ПП.
Для обеих схем в случае, когда необходимо изменить положение освещае- мой лучом эллипсометра области образец смещается в горизонтальной или в вертикальной плоскостях.
Известен эллипсометр, содержащий оптически связанные плечо поляризато- ра, выполненное в составе осветителя и поляризатора, и плечо анализатора, ме- жду которыми размещен исследуемый образец, причем плечо анализатора вы- полнено в виде оптически связанных композиционного расщепителя светового пучка, расщепляющего отраженный исследуемым образцом световой пучок на че- тыре ортогонально поляризованные световые компоненты, фоторегистратора для приема поляризованных световых компонент излучения и формирования сигналов для вычисления эллипсометрических параметров исследуемого образца, отли- чающийся тем, что указанный композиционный расщепитель светового пучка вы- полнен единым измерительным каналом, совмещающим функции фазового и ам- плитудного измерительных каналов, обеспечивающим равные коэффициенты пропускания поляризованных световых компонент, см патент RU 2351917. В данном техническом решении достижение технического результата базиру- ется на сокращении оптических элементов в конструкции, вносящих погрешность в измерения.
В последнее десятилетие характер развития полупроводниковых технологий указывает на необходимость совершенствования измерительных возможностей известных эллипсометров по двум направлениям.
Во-первых, исследуются и находят применение в новых приборах полупро- водниковые гетероструктуры с большим (10 и более) количеством слоев. Из-за значительного числа неизвестных параметров эллипсометрический анализ таких образцов будет эффективным только в случае проведения измерений при боль- шом наборе различных углов падения света на образец. Для всех вышеуказанных эллипсометров изменение угла падения Θ связано с прецизионным вращением достаточно массивных оптических блоков ПП и/или ПА относительно оси эллип- сометра. Отсюда следует, что характерное время смены угла падения должно быть порядка 10 секунд и не может быть уменьшено существенным образом в рамках разумной стоимости прибора из-за кинематики вращения плеч эллипсо- метра.
Во-вторых, наблюдаемое в последнее время стремительное развитие солнеч- ной фотовольтаики и технологий плоских телевизионных панелей ставит задачи быстрого картирования (измерения свойств в различных точках) образцов с раз- мерами порядка метра. Измерение в различных точках таких сравнительно боль- ших образцов требует прецизионного перемещения массивных ПП и ПА эллипсо- метра на расстояния порядка метра.
Изобретение решает задачу обеспечения увеличения скорости картирования исследуемых образов больших размеров и быстрого изменения угла падения све- та на поверхность исследуемого образца
Раскрытие изобретения
Эллипсометр, включающий плечо поляризатора, формирующее световой луч заданного состояния поляризации и направления, и плечо анализатора, в котором осуществляется измерение состояния поляризации входящего в него светового луча, отраженного от исследуемого образца, характеризуется тем, что исследуе- мый образец укреплен неподвижно, при этом эллипсометр снабжен системой раз- вертки его светового луча, выполненной в виде совокупности зеркал, установлен- ных с возможностью перемещения и/или вращения для обеспечения падения све- тового луча в необходимое место на поверхности образца под необходимым уг- лом и попадание отраженного от исследуемого образца светового луча в плечо анализатора.
Изобретение характеризуется наличием ряда факультативных признаков, описывающих частные случаи его реализации, а именно:
- плечо поляризатора и плечо анализатора могут быть укреплены неподвижно;
- плечо поляризатора и плечо анализатора могут быть укреплены с возможностью перемещения.
Технический результат, достигаемый при использовании существенных при- знаков изобретения заключается в том, что в процессе работы эллипсометра из- менение места падения светового луча на исследуемый образец и изменение угла падения достигается путем перемещения и/или вращения легких зеркал системы развертки светового луча, а не массивных ПП и ПА или крупногабаритного иссле- дуемого образца.
Лучший вариант использования изобретения
Сущность изобретения поясняется чертежом, где изображена оптическая схе- ма заявленного эллипсометра.
Эллипсометр включает плечо поляризатора ПП, плечо анализатора ПА и сис- тему развертки его светового луча, выполненную в виде четырех зеркал. Оптиче- екая ось ПП вместе с зеркалами Н1 и V2 лежат в одной плоскости, параллельной плоскости поверхности образца. Зеркала V1 и Н2 и оптическая ось ПА находятся выше и лежат в другой плоскости, так же параллельной плоскости поверхности образца. Оптические оси ПП и ПА параллельны. Все 4 зеркала Н1 , V1 , V2 и Н2 лежат в одной вертикальной плоскости, перпендикулярной плоскости поверхности образца. Плечо поляризатора ПП и плечо анализатора ПА укреплены неподвижно либо с возможностью перемещения.
Заявленный эллипсометр работает следующим образом.
В процессе работы прибора, ПП, ПА и исследуемый образец в общем случае зафиксированы и не меняют своего положения. Угол падения света на образец и место падения светового луча на исследуемый образец задается системой раз- вертки луча эллипсометра, содержащей четыре зеркала Н1, V1 , V2 и Н2. ПП фор- мирует луч света с заданными состоянием поляризации и направляет его на зер- кало Н1. При отражении от зеркала Н1 световой луч поворачивается в плоскости, параллельной поверхности образца, и попадает на зеркало V2, которое направля- ет его вниз на образец под заданным углом падения Θ. После отражения от ис- следуемого образца световой луч попадает на зеркало V1 , которое направляет его на зеркало Н2. После отражения от Н2 луч попадает в ПА, где измеряется его со- стояние поляризации. Влияние образа на поляризацию отраженного светового луча определяется исходя из состояния поляризации света, вышедшего из ПП, состояния поляризации света, попавшего в ПА и известного влияния на поляриза- цию зеркал Н1 , V1 , V2 и Н2. Влияние зеркал системы развертки на состояние по- ляризации отражаемого луча предварительно измеряется в отдельном экспери- менте.
Смещение области падения луча на образец вдоль оси X при неизменном угле падения Θ достигается параллельным смещением зеркал V1 и V2 вдоль оси X без их вращения. Смещение области падения луча на образец вдоль оси Y при неиз- менном угле падения Θ осуществляется одновременным параллельным смеще- нием всех четырех зеркал Н1 , V1 , V2 и Н2 вдоль оси Y без их вращения. Таким образом, проводя эллипсометрические измерения в различных точках поверхно- сти образца можно осуществлять картирование его свойств.
Для любой точки поверхности образца угол падения света Θ может быть изменен следующим образом. Для увеличения угла падения зеркала V1 и V2 смещаются вдоль оси X друг от друга вместе с одновременным вращением зеркала V1 в на- правлении против часовой стрелки (угол cpi) и зеркала V2 в направлении по часо- вой стрелке (угол срг). Для уменьшения угла падения зеркала V1 и V2 смещаются вдоль оси X друг к другу вместе с одновременным вращением зеркала V1 в на- правлении по часовой стрелки и зеркала V2 в направлении против часовой стрел- ки. При исследовании крупногабаритных образцов возникают погрешности, обу- словленные большим ходом светового луча от ПП до ПА. Заявленное устройство позволяет компенсировать эти погрешности. Для этого ПП и ПА перемещают вдоль своих оптических осей и минимизируют расстояние от ПП до первого по хо- ду светового луча зеркала Н1 системы развертки, а также от зеркала Н2 до ПА.
Основными достоинствами заявленного устройства по сравнению с сущест- вующими являются возможность быстрой смены угла падения светового луча на образец Θ, а также возможность быстрого перемещения исследуемой области по поверхности крупногабаритных образцов с линейными размерами порядка метра.

Claims

Формула изобретения
1. Эллипсометр, включающий плечо поляризатора, формирующее световой луч заданного состояния поляризации и направления, и плечо анализатора, в ко- тором осуществляется измерение состояния поляризации ёходящего в него сше-
5 тового луча, отраженного от исследуемого образца, отличающийся тем, что ис- следуемый образец укреплен неподвижно, при этом эллипсометр снабжен систе- мой развертки его светового луча, выполненной в виде совокупности зеркал, уста- новленных с возможностью перемещения и/или вращения для обеспечения паде- ния светового луча в необходимое место на поверхности образца под необходи-0 мым углом и попадание отраженного от исследуемого образца светового луча в плечо анализатора.
2. Эллипсометр по п.1 , отличающийся тем, что плечо поляризатора и плечо анализатора укреплены неподвижно.
3. Эллипсометр по п.1 , отличающийся тем, что плечо поляризатора и плечоS анализатора могут быть укреплены с возможностью перемещения
0
5
0
б
PCT/RU2014/000319 2013-05-13 2014-05-05 Эллипсометр WO2014185818A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013121273 2013-05-13
RU2013121273 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185818A1 true WO2014185818A1 (ru) 2014-11-20

Family

ID=51898671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000319 WO2014185818A1 (ru) 2013-05-13 2014-05-05 Эллипсометр

Country Status (1)

Country Link
WO (1) WO2014185818A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017385A (zh) * 2016-07-21 2016-10-12 中国电子科技集团公司第十三研究所 一种标称高度10μm-100μm台阶高度标准样块的制备方法
CN106052573A (zh) * 2016-07-26 2016-10-26 中国电子科技集团公司第十三研究所 校准椭偏仪的膜厚样片、检验样片及其检验方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1141297A1 (ru) * 1983-10-18 1985-02-23 Ленинградский Ордена Трудового Красного Знамени Институт Точной Механики И Оптики Эллипсометр
WO1994025823A1 (en) * 1993-04-26 1994-11-10 Materials Research Corporation Self aligning in-situ ellipsometer and method of using for process monitoring
EP0652415A1 (en) * 1993-11-09 1995-05-10 Nova Measuring Instruments Limited A device for measuring the thickness of thin films
US6704101B1 (en) * 2002-01-16 2004-03-09 Advanced Micro Devices, Inc. Scatterometry based measurements of a moving substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1141297A1 (ru) * 1983-10-18 1985-02-23 Ленинградский Ордена Трудового Красного Знамени Институт Точной Механики И Оптики Эллипсометр
WO1994025823A1 (en) * 1993-04-26 1994-11-10 Materials Research Corporation Self aligning in-situ ellipsometer and method of using for process monitoring
EP0652415A1 (en) * 1993-11-09 1995-05-10 Nova Measuring Instruments Limited A device for measuring the thickness of thin films
US6704101B1 (en) * 2002-01-16 2004-03-09 Advanced Micro Devices, Inc. Scatterometry based measurements of a moving substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017385A (zh) * 2016-07-21 2016-10-12 中国电子科技集团公司第十三研究所 一种标称高度10μm-100μm台阶高度标准样块的制备方法
CN106052573A (zh) * 2016-07-26 2016-10-26 中国电子科技集团公司第十三研究所 校准椭偏仪的膜厚样片、检验样片及其检验方法

Similar Documents

Publication Publication Date Title
US8437450B2 (en) Fast measurement of X-ray diffraction from tilted layers
US9255789B2 (en) Method for measuring thickness of object
KR101844627B1 (ko) 임계치수의 측정 방법
CN110411952B (zh) 多偏振通道面阵列探测的椭圆偏振光谱获取系统和方法
US10054423B2 (en) Optical method and system for critical dimensions and thickness characterization
CN113777049B (zh) 一种角分辨快照椭偏仪及其测量系统与方法
US11460415B2 (en) Optical phase measurement system and method
JP2008157638A (ja) 試料表面の欠陥検査装置及びその欠陥検出方法
CN1963464A (zh) 全内反射式椭偏成像装置和成像方法
Li et al. Characterization of curved surface layer by Mueller matrix ellipsometry
Duwe et al. Thin-film metrology of tilted and curved surfaces by imaging Mueller-matrix ellipsometry
US10001444B2 (en) Surface inspecting method
WO2014185818A1 (ru) Эллипсометр
KR20150031827A (ko) 면감지 타원 계측기
KR20170055661A (ko) 대면적 실시간 박막 측정 분광 영상 타원계측 장치
Kenaz et al. Mapping spectroscopic micro-ellipsometry with sub-5 microns lateral resolution and simultaneous broadband acquisition at multiple angles
Jin et al. Rotatable Offner imaging system for ellipsometric measurement
TW201638575A (zh) 寬波段消色差複合波片的定標方法
US7342661B2 (en) Method for noise improvement in ellipsometers
KR100951110B1 (ko) 라인스캔방식 고분해능 편광측정장치
RU134640U1 (ru) Эллипсометр
KR101936792B1 (ko) 간섭계와 타원계측기 기반의 박막 구조물 측정을 위한 광계측기
TWI413765B (zh) 物質特性量測方法與系統
US20040233436A1 (en) Self-calibrating beam profile ellipsometer
Kim et al. LASIE: large area spectroscopic imaging ellipsometry for characterizing multi-layered film structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798166

Country of ref document: EP

Kind code of ref document: A1