WO2014185506A1 - 電子機器、制御プログラム、制御方法及びシステム - Google Patents

電子機器、制御プログラム、制御方法及びシステム Download PDF

Info

Publication number
WO2014185506A1
WO2014185506A1 PCT/JP2014/063033 JP2014063033W WO2014185506A1 WO 2014185506 A1 WO2014185506 A1 WO 2014185506A1 JP 2014063033 W JP2014063033 W JP 2014063033W WO 2014185506 A1 WO2014185506 A1 WO 2014185506A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
acceleration
steps
detected
control unit
Prior art date
Application number
PCT/JP2014/063033
Other languages
English (en)
French (fr)
Inventor
茂輝 田辺
英樹 森田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013105442A external-priority patent/JP5800855B2/ja
Priority claimed from JP2013129858A external-priority patent/JP6312990B2/ja
Priority claimed from JP2013135051A external-priority patent/JP5774060B2/ja
Priority claimed from JP2013135052A external-priority patent/JP6353198B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14798593.1A priority Critical patent/EP2997898B1/en
Priority to US14/891,672 priority patent/US10130843B2/en
Publication of WO2014185506A1 publication Critical patent/WO2014185506A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/74Atmospheric pressure

Definitions

  • the present invention relates to an electronic device and system having an acceleration sensor, and a control program and control method thereof.
  • Some pedometers calculate calorie consumption (see, for example, Patent Document 1).
  • Some portable devices are equipped with an atmospheric pressure sensor.
  • a portable device including an atmospheric pressure sensor is described in Patent Document 2, for example.
  • an atmospheric pressure sensor is used for measuring atmospheric pressure.
  • Some electronic devices have a function of counting the number of steps based on a value detected by an acceleration sensor (see, for example, Patent Document 3).
  • An electronic apparatus includes an acceleration sensor that detects acceleration, an atmospheric pressure sensor that detects atmospheric pressure, and a control unit that determines start and end of movement based on the acceleration, and the control unit Determines the amount of activity based on the acceleration and the difference value of the atmospheric pressure at the start of the movement and at the end of the movement.
  • the electronic device when the control unit determines that the bicycle is moved by acceleration, the electronic device is not based on the atmospheric pressure when the type of the bicycle is set to be electric assist. Then, the amount of activity is obtained.
  • An electronic apparatus includes a control unit that determines whether a change in an atmospheric pressure signal detected by an atmospheric pressure sensor is an altitude change or an atmospheric pressure change based on an acceleration signal detected by an acceleration sensor. .
  • the control program for an electronic device determines whether the change in the atmospheric pressure signal detected by the atmospheric pressure sensor is an altitude change or an atmospheric pressure change based on the acceleration signal detected by the acceleration sensor.
  • the electronic apparatus control method determines whether the change in the atmospheric pressure signal detected by the atmospheric pressure sensor is an altitude change or an atmospheric pressure change based on the acceleration signal detected by the acceleration sensor.
  • An electronic apparatus includes an atmospheric pressure sensor unit, an acceleration detection unit, and a control unit.
  • the atmospheric pressure sensor unit detects atmospheric pressure.
  • the acceleration detection unit detects acceleration.
  • the control unit determines a stationary state or a moving state type based on the acceleration detected by the acceleration detection unit, and determines a physical activity amount based on the determination result and the atmospheric pressure detected by the atmospheric pressure sensor unit. calculate.
  • the control unit changes a cycle in which the atmospheric pressure sensor unit detects atmospheric pressure based on the determined type of movement state.
  • An electronic apparatus includes an atmospheric pressure sensor unit, an acceleration detection unit, and a control unit.
  • the atmospheric pressure sensor unit detects atmospheric pressure.
  • the acceleration detection unit detects acceleration.
  • the control unit counts the number of steps based on the acceleration detected by the acceleration detection unit.
  • the control unit relaxes the condition for counting the number of steps when it is determined that the variation in the pressure detected by the pressure sensor unit with respect to the counted number of steps is larger than a predetermined value.
  • An electronic apparatus includes an atmospheric pressure sensor unit, an acceleration detection unit, a control unit, and a storage unit.
  • the atmospheric pressure sensor unit detects atmospheric pressure.
  • the acceleration detection unit detects acceleration.
  • the control unit counts the number of steps based on the acceleration detected by the acceleration detection unit. When there is a period during which the number of steps cannot be counted based on the acceleration detected by the acceleration detection unit, the control unit stores the period in the storage unit based on the atmospheric pressure detected by the atmospheric pressure sensor unit along with the period. The number of steps in a period during which the number of steps taken cannot be counted is estimated, and the estimated number of steps is added to the count value of the number of steps.
  • a system includes an atmospheric pressure sensor unit, an acceleration detection unit, and a control unit.
  • the atmospheric pressure sensor unit detects atmospheric pressure.
  • the acceleration detection unit detects acceleration.
  • the control unit counts the number of steps based on the acceleration detected by the acceleration detection unit.
  • the control unit relaxes the condition for counting the number of steps when it is determined that the variation in pressure relative to the number of steps is larger than a predetermined value based on the pressure detected by the pressure sensor unit.
  • An electronic apparatus includes an atmospheric pressure sensor unit, an acceleration detection unit, and a control unit.
  • the atmospheric pressure sensor unit detects atmospheric pressure.
  • the acceleration detection unit detects acceleration.
  • the control unit counts the number of steps based on the acceleration detected by the acceleration detection unit. When there is a period during which the number of steps cannot be counted based on the acceleration detected by the acceleration detection unit, the control unit is stored in the storage unit based on the atmospheric pressure detected by the atmospheric pressure sensor unit together with the period. The number of steps in a period in which the number of steps being counted cannot be counted is estimated, and the estimated number of steps is added to the count value of the number of steps.
  • the amount of activity or the number of steps can be calculated based on the acceleration and the atmospheric pressure.
  • FIG. 1 is a block diagram illustrating a configuration of the electronic apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing an operation flow of the electronic apparatus.
  • FIG. 3 is a block diagram illustrating a configuration of the electronic device according to the second embodiment.
  • FIG. 4 is a diagram schematically showing the detection result of the acceleration sensor.
  • FIG. 5A is a diagram schematically illustrating the detection result of the atmospheric pressure sensor.
  • FIG. 5B is a diagram schematically illustrating the detection result of the atmospheric pressure sensor.
  • FIG. 5C is a diagram schematically illustrating the detection result of the atmospheric pressure sensor.
  • FIG. 6 is a flowchart for explaining an operation flow of the electronic device.
  • FIG. 7 is a block diagram illustrating a configuration of an electronic device according to the third embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of an electronic device according to the fourth embodiment.
  • FIG. 9 is a diagram illustrating the acceleration detected by the acceleration sensor when moving on a road having a gradient greater than or equal to a predetermined value, and the first threshold value.
  • FIG. 10 is a diagram illustrating the acceleration detected by the acceleration sensor when moving on a road having a gradient greater than or equal to a predetermined value, and the second threshold value.
  • the electronic device (portable electronic device) 1a includes a display unit 11, an operation unit 12, an atmospheric pressure sensor 17, an acceleration sensor 16, a storage unit 18, and a control unit 19, as shown in FIG.
  • the display unit 11 includes a display device such as a liquid crystal display (Liquid Crystal Display) or an organic EL panel (Organic Electro-Luminescence panel).
  • the display unit 11 displays characters, images, symbols, graphics, and the like.
  • the operation unit 12 includes a plurality of buttons and is operated by the user.
  • the operation unit 12 may be configured with a single button.
  • the atmospheric pressure sensor 17 detects atmospheric pressure (atmospheric pressure). Since there is a certain relationship between the altitude from the ground and the atmospheric pressure, the control unit 19 described later can calculate (determine) the altitude from the atmospheric pressure detected by the atmospheric pressure sensor 17.
  • the acceleration sensor 16 detects the direction and magnitude of acceleration acting on the electronic device 1 a and outputs the detection result to the control unit 19.
  • the acceleration sensor 16 is a 3G (three-dimensional) type that detects acceleration in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the acceleration sensor 16 shall be comprised by a piezoresistive type and an electrostatic capacitance type, for example, it is not restricted to this.
  • the acceleration sensor 16 is a piezoelectric element (piezoelectric type), a thermal detection type MEMS (Micro Electro Mechanical Systems) type, a servo type in which a moving coil is moved back by a feedback current, or strain caused by acceleration is strain gauged. It may be configured by a strain gauge type or the like that is measured by
  • the storage unit 18 is used, for example, for arithmetic processing by the control unit 19 and is configured by a memory or the like.
  • storage part 18 memorize
  • the storage unit 18 stores Mets according to the gradient (altitude difference).
  • the storage unit 18 stores, for example, a table (calculation formula) that increases the Mets as the climb gradient increases. Further, the storage unit 18 stores, for example, a table (calculation formula) that reduces the Mets when the descending gradient increases.
  • the storage unit 18 is used to determine that the user of the mobile electronic device 1a has started moving, and to determine that the user of the mobile electronic device 1a has finished moving.
  • An acceleration pattern (movement end acceleration pattern), an acceleration pattern (moving acceleration pattern) used to determine that the user of the mobile electronic device 1a is moving, and the like are stored.
  • the control unit 19 controls the entire portable electronic device 1a and is configured using a central processing unit (CPU) or the like.
  • the control unit 19 determines the start and end of movement based on the acceleration.
  • the control part 19 calculates
  • the control unit 19 calculates a difference value (atmospheric pressure difference) between the start and end of movement from the atmospheric pressure detected by the atmospheric pressure sensor 17. For example, assuming that the atmospheric pressure difference is an altitude difference of 10 [m (meter)] per 1 [hPa (hectopascal)], the control unit 19 determines the altitude at the start and end of movement from the calculated atmospheric pressure difference. Calculate the difference.
  • a difference value atmospheric pressure difference
  • the control unit 19 determines from the acceleration detected by the acceleration sensor 16 whether or not the mobile electronic device 1a has started moving and whether or not the movement has ended.
  • the control unit 19 compares the acceleration detected by the acceleration sensor 16 with the acceleration pattern stored in the storage unit 18.
  • the control unit 19 compares the acceleration detected by the acceleration sensor 16 with the movement start acceleration pattern, and if they match or if the error is within a predetermined range, the user of the mobile electronic device 1a moves. Is determined to have started.
  • the control unit 19 determines that the user of the portable electronic device 1a has started to move, the control unit 19 detects the atmospheric pressure by the atmospheric pressure sensor 17 at the start of the movement, and stores it in the storage unit 18 as the atmospheric pressure at the start of the movement. .
  • the control unit 19 After determining that the user of the mobile electronic device 1a has started to move, the control unit 19 compares the acceleration detected by the acceleration sensor 16 with the acceleration pattern during movement, and when the two match or the error is predetermined. If it is within the range, it is determined that the user of the mobile electronic device 1a is moving, and if it does not match or if the error exceeds a predetermined range, the user of the mobile electronic device 1a moves Is determined to have ended.
  • the atmospheric pressure sensor 17 detects the atmospheric pressure at the end of the movement, and stores it in the storage unit 18 as the atmospheric pressure at the end of the movement. .
  • the process starts when the state of the portable electronic device 1 a is in a stopped state, for example, when the user holding the portable electronic device 1 a is stopped.
  • step ST1 the control unit 19 determines whether or not the mobile electronic device 1a has started to move. If it determines with the control part 19 having started the movement of the portable electronic device 1a, it will detect atmospheric
  • step ST3 the control unit 19 determines whether or not the mobile electronic device 1a has finished moving. If the control part 19 determines with the portable electronic device 1a having complete
  • step ST5 the control part 19 calculates
  • the differential value of the atmospheric pressure is used to specify the mets stored in the storage unit 18.
  • the acceleration detected by the acceleration sensor 16 is used to determine the number of steps, the walking distance, the type of moving state, and the like when determining the amount of activity. Examples of the movement state include walking, running, and bicycle movement.
  • the control unit 19 determines that the movement state of the portable electronic device 1a is bicycle movement based on the acceleration detected by the acceleration sensor 16, the type of the bicycle is set to be electric assist (user setting). If so, determine the amount of activity, not based on atmospheric pressure. Because, when traveling on a road with a height difference with a bicycle with an electric assist, Mets, which is a parameter for determining the amount of activity, is compared to when traveling with a normal bicycle (bicycle without an electric assist) Because they are different.
  • the amount of activity may be calculated using these mets.
  • the portable electronic device 1b is demonstrated as an example of an electronic device (mobile electronic device).
  • the mobile electronic device 1b is, for example, a mobile phone.
  • the portable electronic device 1b includes a display unit 11, an operation unit 12, a receiver 13, a microphone 14, a communication unit 15, an acceleration sensor 16, an atmospheric pressure sensor 17, and a storage unit 18. And a control unit 19.
  • the display unit 11 is a part for displaying information.
  • the display unit 11 is configured by a display device. Examples of the display device include a liquid crystal display (Liquid Crystal Display), an organic EL panel (Organic Electro-Luminescence panel), and the like.
  • the display unit 11 displays characters, images, symbols, graphics, or the like.
  • the operation unit 12 is a part that receives an operation from a user.
  • the portable electronic device 1b of this embodiment includes various operation buttons, switches, or a touch screen as the operation unit 12.
  • a touch screen is provided as the operation unit 12, a touch screen display integrated with the display unit 11 may be provided.
  • the receiver 13 converts the sound signal transmitted from the control unit 19 into sound and outputs the sound.
  • the communication unit 15 includes an antenna and an RF circuit unit.
  • the communication unit 15 performs communication by a communication method corresponding to each of a plurality of wireless communication standards.
  • the communication unit 15 enables communication using cellular phone communication standards such as 2G, 3G, and 4G, or a wireless LAN system.
  • the communication unit 15 enables communication by a wireless communication system compliant with IEEE 802.11, which is a wireless LAN system, for example, a WiFi (registered trademark) wireless communication system.
  • the communication unit 15 may perform communication using a WiMAX (registered trademark) wireless communication system.
  • a plurality of antennas and RF circuit units are provided corresponding to a plurality of communication methods. In this embodiment, the communication unit 15 will be described assuming that communication is performed using WiFi.
  • the acceleration sensor 16 detects the direction and magnitude of acceleration acting on the portable electronic device 1b, and outputs the detection result to the control unit 19 as an acceleration signal.
  • the control unit 19 receives the acceleration signal output from the acceleration sensor 16.
  • the acceleration sensor 16 is a 3G (three-dimensional) type that detects acceleration in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the acceleration sensor 16 shall be comprised by a piezoresistive type and an electrostatic capacitance type, for example, it is not restricted to this.
  • the acceleration sensor 16 is a piezoelectric element (piezoelectric type), a thermal detection type MEMS (Micro Electro Mechanical Systems) type, a servo type in which a moving coil is moved back by a feedback current, or strain caused by acceleration is strain gauged. It may be configured by a strain gauge type or the like that is measured by
  • the atmospheric pressure sensor 17 detects the magnitude of the external atmospheric pressure acting on the portable electronic device 1b, and outputs the detection result to the control unit 19 as an atmospheric pressure signal.
  • the control unit 19 receives the atmospheric pressure signal output from the atmospheric pressure sensor 17.
  • the storage unit 18 is used, for example, for arithmetic processing by the control unit 19 and is configured by a memory or the like.
  • the storage unit 18 stores one or a plurality of applications that operate inside the portable electronic device 1b.
  • the storage unit 18 may also serve as a removable external memory.
  • the control unit 19 controls the entire portable electronic device 1b, and is configured using a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), or the like.
  • a CPU Central Processing Unit
  • MPU Micro-Processing Unit
  • the control unit 19 includes an X-axis direction acceleration signal (A in FIG. 4), a Y-axis direction acceleration signal (B in FIG. 4), and a Z-axis direction acceleration signal ( C) in FIG. 4 and a vector value (D in FIG. 4) obtained by combining the acceleration signals in the three-axis directions are transmitted as the detection result of the acceleration sensor 16.
  • the control unit 19 logs the combined vector value.
  • the control unit 19 analyzes the logged data and determines the acceleration state of the portable electronic device 1b.
  • the logged composite vector is stored in the storage unit 18.
  • the control unit 19 uses an acceleration pattern to determine the acceleration state of the portable electronic device 1b.
  • the acceleration pattern is stored in advance in the storage unit 18, for example.
  • the acceleration pattern is associated with each stop state of the user and each of a plurality of movement states.
  • the acceleration pattern is a pattern obtained by measuring and extracting in advance what kind of acceleration pattern is characteristically detected by the acceleration sensor 16 in the stopped state and the plurality of moving states.
  • this acceleration pattern when the user of the portable electronic device 1b is in a stopped state, when the user of the portable electronic device 1b is in an accelerated state moving by walking, the user of the portable electronic device 1b is on a bicycle.
  • the vehicle is in an accelerated state where the user is on board and moving, or where the user of the portable electronic device 1b is in an accelerated state where the user is moving on a vehicle such as an automobile or train.
  • an acceleration pattern is stored in advance in the storage unit 18 for each stop state and a plurality of movement states.
  • the acceleration pattern is stored so as to correspond to the logged data of the combined vector value described above.
  • the control unit 19 determines the acceleration state of the portable electronic device 1b by comparing the logged data of the combined vector value with the acceleration pattern.
  • control unit 19 may determine that the vehicle is in the stopped state when the acceleration detected by the acceleration sensor 16 is less than a predetermined value instead of the acceleration pattern in the stopped state. Instead of the acceleration pattern in the stopped state, the control unit 19 may determine that the logged data of the combined vector value does not match any of the plurality of moving states as the stopped state.
  • Processing of the detection result of the atmospheric pressure sensor 17 by the control unit 19 will be described below. Processing of the detection result of the atmospheric pressure sensor 17 by the control unit 19 is realized by the control unit 19 executing a control program.
  • the control unit 19 implements the following control method by executing the control program.
  • the atmospheric pressure signal is transmitted to the control unit 19 as the detection result of the atmospheric pressure sensor 17.
  • the control unit 19 logs the atmospheric pressure signal.
  • the control unit 19 analyzes the change in the atmospheric pressure signal and determines the change in the altitude of the portable electronic device 1b.
  • the logged barometric pressure signal is stored in the storage unit 18.
  • the control unit 19 can process a change in the atmospheric pressure signal output from the atmospheric pressure sensor 17 as an atmospheric pressure change accompanying an altitude change. For example, the control unit 19 determines that a change in atmospheric pressure of 1 [hPa (hectopascal)] corresponds to an altitude change of 10 [m (meter)].
  • the control unit 19 uses the value of the atmospheric pressure signal when the determination is changed from the determination that the change in the atmospheric pressure signal is a change in atmospheric pressure to the determination that the change is due to a change in altitude.
  • the control unit 19 processes the difference from the value of the reference atmospheric pressure signal as an atmospheric pressure change accompanying an altitude change. In other words, the control unit 19 converts the difference from the value of the reference atmospheric pressure signal into an altitude change.
  • the control unit 19 can flexibly cope with a change in atmospheric pressure by changing the value of the reference atmospheric pressure signal when processing the change in the atmospheric pressure signal as an altitude change.
  • the control unit 19 converts the change in the atmospheric pressure signal into the altitude change, the converted altitude change is sequentially added as a difference with respect to the current height.
  • the control unit 19 processes the height to which the altitude change is added as the current height.
  • the control unit 19 can flexibly cope with a change in altitude even by moving up and down by sequentially adding the converted altitude changes as a difference with respect to the current height.
  • the control unit 19 stores the change in altitude in the storage unit 18 as a height difference log.
  • the height difference log stored in the storage unit 18 is started from a new reference height for each unit period.
  • the unit period include a period of 12 hours, a day, and a week. This unit period is preferably combined with a unit for displaying the difference log as a series of data.
  • the control unit 19 determines whether the change in the atmospheric pressure signal is a change in atmospheric pressure due to a change in altitude or a change in atmospheric pressure.
  • FIG. 5A to FIG. 5C are diagrams schematically showing the detection results of the atmospheric pressure sensor.
  • FIG. 5A illustrates changes with time of the atmospheric pressure detected by the atmospheric pressure sensor 17.
  • time is taken on the horizontal axis and atmospheric pressure is taken on the vertical axis.
  • second (sec) was adopted as the time
  • hectopascal (hPa) was adopted as the atmospheric pressure signal.
  • FIG. 5B shows an altitude change when the control unit 19 changes the atmospheric pressure change with time as shown in FIG. 5A to the atmospheric pressure change accompanying the altitude change.
  • time is taken on the horizontal axis and altitude is taken on the vertical axis.
  • seconds (sec) were adopted as time
  • meters (m) were adopted as altitude.
  • FIG. 5C shows a change in altitude when the change with time of the atmospheric pressure shown in FIG. 5A is changed by the control unit 19 to a change in atmospheric pressure accompanying a change in atmospheric pressure.
  • time is plotted on the horizontal axis and altitude is plotted on the vertical axis, as in FIG. 5B. Again, seconds (sec) were used as time and meters (m) were used as altitude.
  • a change with time of the atmospheric pressure detected by the atmospheric pressure sensor 17 is a change in atmospheric pressure associated with a change in altitude or a change in atmospheric pressure associated with a change in atmospheric pressure.
  • the control unit 19 refers to the acceleration state when analyzing the change in the atmospheric pressure signal. In other words, the control unit 19 analyzes the change in the atmospheric pressure signal based on the acceleration signal detected by the acceleration sensor 16. The control unit 19 determines whether the change in the atmospheric pressure signal is an altitude change or an atmospheric pressure change based on the acceleration signal detected by the acceleration sensor 16.
  • the control unit 19 determines that the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 is a change in atmospheric pressure.
  • the control unit 19 determines that the portable electronic device 1b is in the moving state based on the acceleration state, the control unit 19 determines that the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 is a change accompanying the altitude change.
  • the portable electronic device 1 b of the present embodiment can preferably determine whether or not it is a change in the atmospheric pressure signal accompanying movement.
  • the control unit 19 changes the acquisition cycle in which the atmospheric pressure sensor 17 acquires the atmospheric pressure signal based on the acceleration state.
  • the control unit 19 changes the acquisition cycle in which the atmospheric pressure sensor 17 acquires the atmospheric pressure signal according to the determined movement state.
  • the control part 19 shortens the acquisition period when the atmospheric
  • the control unit 19 shortens the acquisition cycle when it is determined that the bicycle is moving as compared to the acquisition cycle when it is determined that the vehicle is running based on the acceleration state. For example, the control unit 19 determines the acquisition cycle when it is determined that the vehicle is moving on a vehicle such as an automobile or a train, compared to the acquisition cycle when it is determined that the bicycle is moving based on the acceleration state. shorten. The control unit 19 lengthens the acquisition cycle when it is determined that the vehicle is in the stopped state, compared to the acquisition cycle when it is determined that the vehicle is in the moving state based on the acceleration state.
  • the control unit 19 may adopt a configuration in which the atmospheric pressure sensor 17 does not acquire an atmospheric pressure signal when it is determined that the vehicle is stopped based on the acceleration state.
  • a configuration in which the atmospheric pressure sensor 17 does not acquire an atmospheric pressure signal a configuration in which a trigger signal serving as a trigger for acquiring an atmospheric pressure signal is not input to the atmospheric pressure sensor 17 and a configuration in which power is not supplied to the atmospheric pressure sensor 17 can be employed.
  • control unit 19 adopts a configuration in which the acquisition cycle in which the atmospheric pressure sensor 17 acquires the atmospheric pressure signal is changed based on the acceleration state.
  • the configuration is not limited to this configuration.
  • the control unit 19 may change the output cycle in which the atmospheric pressure sensor 17 outputs the atmospheric pressure signal based on the acceleration state.
  • a configuration in which the output cycle is changed a configuration in which the output cycle is changed according to the moving state that has been determined may be adopted.
  • the control unit 19 adopts a configuration in which the output cycle is changed the output cycle may be longer than the case where it is determined that the output cycle is the moving state when it is determined that the output cycle is stopped.
  • the control unit 19 adopts a configuration in which the output cycle is changed the control unit 19 adopts a configuration in which the atmospheric pressure sensor 17 does not output an atmospheric pressure signal when it is determined that the stop state is based on the acceleration state. Also good.
  • a configuration in which the atmospheric pressure sensor 17 does not output an atmospheric pressure signal a configuration in which a trigger signal that triggers the atmospheric pressure sensor 17 to output an atmospheric pressure signal or a configuration in which no power is supplied to the atmospheric pressure sensor 17 can be employed.
  • the control unit 19 may change the reception cycle for receiving the input of the atmospheric pressure signal output from the atmospheric pressure sensor 17 based on the acceleration state.
  • a configuration in which the reception cycle is changed a configuration in which the reception cycle is changed according to the moving state that is determined may be adopted.
  • the reception cycle may be longer than when it is determined that the reception cycle is in the moving state when it is determined that the reception cycle is in the stopped state.
  • the control unit 19 adopts a configuration in which the reception cycle is changed the control unit 19 adopts a configuration that does not receive the atmospheric pressure signal output from the atmospheric pressure sensor 17 when it is determined that the stop state is based on the acceleration state. May be.
  • the control unit 19 may change the determination cycle for determining the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 based on the acceleration state.
  • a configuration in which the adopted cycle is changed according to the moving state that is determined may be adopted.
  • the determination cycle may be longer than that in the case where the determination unit determines that the determination state is the stop state.
  • the control unit 19 does not determine a change in the atmospheric pressure signal output from the atmospheric pressure sensor 17 when determining that the control unit 19 is in a stopped state based on the acceleration state. May be adopted.
  • the portable electronic device 1b By adopting a configuration in which the control unit 19 changes any of the acquisition period, the output period, the reception period, and the determination period, the portable electronic device 1b suitably determines whether the change in the atmospheric pressure signal is an altitude change. However, the altitude change can be determined with a preferable period. By adopting a configuration in which the control unit 19 changes any of the acquisition period, the output period, the reception period, and the determination period, the portable electronic device 1b can reduce the power consumption.
  • Acceleration signal is transmitted to the control unit 19 as a detection result of the acceleration sensor 16.
  • the control unit 19 logs the acceleration signal.
  • the logged acceleration signal is stored in the storage unit 18.
  • the control unit 19 analyzes the change in the acceleration signal and determines the vibration amplitude of the acceleration signal.
  • the peak-peak value in unit time is adopted as the vibration amplitude of the acceleration signal. Examples of the unit time include a period of several seconds.
  • the control unit 19 can flexibly cope with a change in the DC component of acceleration by adopting a peak-peak value as the vibration amplitude of the acceleration signal.
  • the control unit 19 changes the period for determining that the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 is an altitude change based on the vibration amplitude of the acceleration signal detected by the acceleration sensor 16.
  • the control unit 19 determines that the vibration amplitude of the acceleration signal detected by the acceleration sensor 16 is larger than the first value, the change in the atmospheric pressure signal detected during the first period until the first time elapses is high. It is determined that it is a change.
  • the control unit 19 detects a relatively large change in the acceleration signal that occurs with the start of movement of the user, the control unit 19 processes the change in the atmospheric pressure signal for a predetermined period from the detection of the change in the acceleration signal as an altitude change. .
  • the control unit 19 determines that the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 is an altitude change. . While determining that the acceleration signal has a vibration amplitude larger than the second value, the control unit 19 determines that the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 is an altitude change. This second value is smaller than the first value.
  • the control unit 19 processes the change in the atmospheric pressure signal when the change in the acceleration signal is detected as an altitude change.
  • the control unit 19 of the present embodiment processes the change in the atmospheric pressure signal after determining that the change in the atmospheric pressure signal is an atmospheric pressure change accompanying an altitude change as an atmospheric pressure change accompanying the altitude change.
  • the portable electronic device 1b is controlled by adopting a configuration in which a change in the signal obtained after the control unit 19 determines that the change in the atmospheric pressure signal is an atmospheric pressure change accompanying an altitude change is processed as an atmospheric pressure change accompanying the altitude change. Can be simplified. When the control is simplified, the portable electronic device 1b can realize the function with a simple configuration.
  • the operation flow of the portable electronic device 1b will be described with reference to the flowchart shown in FIG. In the following embodiments, it is assumed that the acceleration state is determined in real time.
  • the portable electronic device 1b is not limited to this embodiment, and the acceleration state may be determined every predetermined time.
  • step ST101 the control unit 19 determines whether the acceleration state is a moving state based on the detection result detected by the acceleration sensor 16. When this determination is YES, the control unit 19 moves the process to step ST105. If this determination is NO, the controller 19 moves the process to step ST102. In step ST101, the control unit 19 determines whether the acceleration state is the stopped state or the moving state based on the acceleration signal detected by the acceleration sensor 16, and changes the step of moving the process.
  • step ST102 the control unit 19 determines whether or not the amplitude of the acceleration signal detected by the acceleration sensor 16 is larger than the second value. When this determination is YES, the control unit 19 moves the process to step ST105. If this determination is NO, the control unit 19 moves the process to step ST103.
  • step ST103 the control unit 19 determines whether or not the amplitude of the acceleration signal detected by the acceleration sensor 16 has become larger than the first value in the first period. When this determination is YES, the control unit 19 moves the process to step ST105. If this determination is NO, the controller 19 moves the process to step ST104. In step ST103, the control unit 19 determines whether it is the first period in which the first time elapses from when it is determined that the amplitude of the acceleration signal is greater than the first value, and moves the process. change.
  • step ST104 the control unit 19 processes a change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 as a change in atmospheric pressure.
  • the control unit 19 completes the process according to this control flow.
  • step ST104 the control unit 19 stores the value of the atmospheric pressure signal detected by the atmospheric pressure sensor 17 in the storage unit 18 as the current atmospheric pressure.
  • the value stored in the storage unit 18 as the current atmospheric pressure is a reference for processing the change in the atmospheric pressure signal as the change accompanying the altitude change.
  • step ST105 the control unit 19 processes the change in the atmospheric pressure signal detected by the atmospheric pressure sensor 17 as a change accompanying an altitude change.
  • the control unit 19 completes the process according to this control flow.
  • the control unit 19 of this embodiment determines whether the change in the atmospheric pressure signal is a change in atmospheric pressure or a change in atmospheric pressure accompanying a change in altitude by repeating this control flow.
  • the control unit 19 can reflect the change in the atmospheric pressure signal as an altitude change by repeating this control flow.
  • This control flow may include at least one of steps ST101 to ST103, and two or less steps may be omitted.
  • step ST101, step ST102, and step ST103 were sequentially processed.
  • the control unit 19 may execute the steps ST101 to ST103 at the same time, and if any one is determined as YES, the control unit 19 may be configured to process the change in the atmospheric pressure signal as a change accompanying the altitude change.
  • the portable electronic device 1b measures the position of the portable electronic device 1b using GPS (Global Positioning System), and the portable electronic device 1b stops from the amount of displacement per unit time (predetermined time) of the portable electronic device 1b. It may be determined whether the state is a state or a plurality of moving states.
  • GPS Global Positioning System
  • the control unit 19 employs a configuration in which the change in the atmospheric pressure signal after determining that the change in the atmospheric pressure signal is an atmospheric pressure change accompanying the altitude change is processed as an atmospheric pressure change accompanying the altitude change. It is not limited to this.
  • the control unit 19 may adopt a configuration in which a change in the atmospheric pressure signal is processed based on a change in the atmospheric pressure signal when it is determined that the change in the atmospheric pressure signal is a change in atmospheric pressure accompanying an altitude change.
  • the portable electronic device 1b can reflect the change in altitude more accurately by adopting a configuration in which the change in the atmospheric pressure signal when the control unit 19 determines is processed as a change in atmospheric pressure accompanying the change in altitude.
  • the portable electronic device 1b may employ a configuration in which data logged in the storage unit 18 is processed so as to be processed as a change in atmospheric pressure accompanying a change in altitude from a change in atmospheric pressure signal determined by the control unit 19.
  • a configuration including a buffer that temporarily stores the change may be adopted.
  • FIG. 7 is a block diagram illustrating a configuration of an electronic device 1c according to the third embodiment.
  • the electronic device 1c is, for example, a mobile phone, a tablet computer, a pedometer, or a portable game machine.
  • the electronic device 1 c includes an atmospheric pressure sensor 17, an acceleration sensor 16, and a control unit 19.
  • the atmospheric pressure sensor 17 detects atmospheric pressure.
  • the electronic device 1c can detect an altitude or a change in altitude by measuring the atmospheric pressure by the atmospheric pressure sensor 17.
  • the acceleration sensor 16 detects acceleration.
  • the acceleration sensor 16 detects X-axis, Y-axis, and Z-axis accelerations.
  • the control unit 19 determines the type of the stationary state (stopped state) or the moving state based on the acceleration detected by the acceleration sensor 16.
  • the control unit 19 preferably determines the state of walking, the state of traveling, and the state of moving on a moving body as the type of movement state.
  • the control unit 19 detects the acceleration detected by the acceleration sensor 16.
  • the control unit 19 determines the acceleration in the X-axis direction (A in FIG. 4), the acceleration in the Y-axis direction (B in FIG. 4), the acceleration in the Z-axis direction (C in FIG. 4), and a vector value ( 4D is received from the acceleration sensor 16.
  • Examples of the case where the acceleration changes include the following. That is, when walking, getting on a vehicle, and operating the electronic device 1c. Therefore, for example, the control unit 19 determines which of the above cases is based on a vector value obtained by combining the accelerations.
  • the control part 19 sets the threshold value of an amplitude and the threshold value of a vibration period for each.
  • the control unit 19 determines the vehicle based on the acceleration in a short time, there is a possibility that the control unit 19 makes an erroneous determination due to temporary vibration of the electronic device 1c.
  • control part 19 acquires the acceleration of a predetermined period and satisfy
  • the control unit 19 determines that the vehicle is in a stationary state when there is no change or almost no change in acceleration.
  • the control unit 19 calculates the amount of physical activity based on the determination result and the atmospheric pressure detected by the atmospheric pressure sensor 17.
  • the amount of physical activity is, for example, the amount of exercise (Mets, exercise), energy consumption (cal), or the like.
  • the control unit 19 changes the metz according to the altitude change obtained based on the atmospheric pressure detected by the atmospheric pressure sensor 17.
  • the control unit 19 updates the mets every 10 steps, for example. That is, the control unit 19 acquires the altitude based on the detection result of the atmospheric pressure sensor 17 every 10 steps.
  • the control unit 19 calculates the slope of the road surface based on the person's stride and the change in altitude every 10 steps.
  • the stride of a person is registered in advance by the user, for example. Then, the control unit 19 changes the mets based on the calculated gradient.
  • the control unit 19 sets Mets to 6.5 when the gradient is 1 to 3%, sets Mets to 7.0 when the gradient is 3 to 6%, and sets the mets to -1 to -3%. Mets is set to 5.5, and Mets is set to 5.0 when the gradient is ⁇ 3 to ⁇ 6%. In addition, the Mets when running on the flat ground at 6.4 [km / h (km / h)] is 6.0.
  • the control unit 19 updates the mets every 10 steps, for example, when the type of movement state determined based on the detection result of the acceleration sensor 16 is human walking. That is, the control unit 19 acquires the altitude based on the detection result of the atmospheric pressure sensor 17 every 10 steps. And the control part 19 calculates the gradient of a road surface based on a person's step and the change of the altitude for every 10 steps. Here, the stride of a person is registered in advance by the user, for example. Then, the control unit 19 changes the mets based on the calculated gradient. In addition, when walking is completed before walking 10 steps, for example, when walking is completed after 7 steps, the gradient of the road surface is calculated based on the altitude change of 7 steps.
  • the control unit 19 updates the mets every 10 seconds when the type of movement state determined based on the detection result of the acceleration sensor 16 is riding on a bicycle. That is, the control unit 19 acquires the altitude based on the detection result of the atmospheric pressure sensor 17 every 10 seconds. Then, the control unit 19 calculates the road surface gradient based on the travel distance and the change in altitude every 10 seconds. Here, the travel distance is obtained based on, for example, a preset speed (8.9 [km / h] as an example) and time (10 seconds). Then, the control unit 19 changes the mets based on the calculated gradient.
  • the control unit 19 changes the period in which the atmospheric pressure sensor 17 detects the atmospheric pressure (hereinafter sometimes referred to as “detection period”) based on the determined type of movement state.
  • detection period the period in which the atmospheric pressure sensor 17 detects the atmospheric pressure.
  • the control unit 19 determines that a person is walking, for example, the control unit 19 sets the detection cycle of the atmospheric pressure sensor 17 to 1 second.
  • the control unit 19 determines that a person is running, for example, the control unit 19 sets the detection cycle of the atmospheric pressure sensor 17 to 0.5 seconds. If the control unit 19 determines that the bicycle is being ridden, for example, the control period of the atmospheric pressure sensor 17 is set to 0.1 second.
  • the atmospheric pressure sensor 17 detects atmospheric pressure, power is consumed.
  • the moving speed of the electronic device 1c since the change in altitude is less than that when the moving speed is high, the atmospheric pressure sensor 17 does not need to detect the atmospheric pressure frequently. Therefore, the atmospheric pressure sensor 17 suppresses power consumption by making the detection cycle longer when the moving speed is slow than when the moving speed is fast.
  • the electronic device 1c can perform the determination of the type of the stationary state or the moving state and, for example, the calculation of the energy consumption amount, and thus can have a plurality of functions. Since the electronic device 1c changes the detection cycle of the atmospheric pressure sensor 17 according to the type of moving state, it is possible to suppress power consumption.
  • control unit 19 When it is determined that the control unit 19 is in a stationary state, it is preferable to stop driving the atmospheric pressure sensor 17.
  • the control unit 19 stops driving the atmospheric pressure sensor 17 by not transmitting a signal for detecting the atmospheric pressure to the atmospheric pressure sensor 17.
  • the electronic device 1c can suppress power consumption by the atmospheric pressure sensor.
  • the control unit 19 When it is determined that the control unit 19 is in a stationary state, the control unit 19 preferably stops the operation of causing the atmospheric pressure sensor 17 to detect atmospheric pressure.
  • the control unit 19 When it is determined that the vehicle is stationary based on the detection result of the acceleration sensor 16, the altitude is unlikely to change. In the stationary state, there is little possibility that energy based on exercise will be consumed. For this reason, when it determines with it being a still state, the atmospheric
  • control unit 19 calculates the average moving speed after determining the type of moving state. Furthermore, it is preferable that the control part 19 changes the period in which the atmospheric
  • the control unit 19 can count the number of steps based on the detection result of the acceleration sensor 16. Then, the control unit 19 can obtain the average moving speed based on the counted number of steps, a predetermined stride, and the time during which the acceleration is detected by the acceleration sensor 16.
  • the control unit 19 changes the detection cycle of the atmospheric pressure sensor 17 based on the type of moving state and the average moving speed.
  • the electronic device 1c can suppress power consumption by lengthening the detection cycle of the atmospheric pressure sensor 17 as compared with the case where the moving speed is high.
  • the electronic device 1c can detect with high sensitivity (high accuracy) without lowering the sensitivity of the atmospheric pressure sensor 17.
  • FIG. 8 is a block diagram showing a configuration of an electronic apparatus 1d according to the fourth embodiment.
  • the electronic device 1d is, for example, a mobile phone, a tablet computer, a pedometer, or a portable game machine.
  • the electronic device 1d includes an atmospheric pressure sensor 17, an acceleration sensor 16, a storage unit 18, and a control unit 19.
  • the atmospheric pressure sensor 17 detects atmospheric pressure.
  • the electronic device 1d can detect an altitude or a change in altitude by measuring the atmospheric pressure by the atmospheric pressure sensor 17.
  • the acceleration sensor 16 detects acceleration.
  • the control unit 19 counts the number of steps based on the acceleration detected by the acceleration sensor 16. For example, the control unit 19 counts the number of steps based on the amplitude of the acceleration detected by the acceleration sensor 16. As a specific example, the difference between the maximum value and the minimum value in one cycle of acceleration is equal to or greater than a predetermined difference, and the maximum value (minimum value) in one cycle with acceleration and the maximum in the next cycle When the time difference from the value (minimum value) is equal to or smaller than the predetermined time difference, and these conditions are satisfied for a predetermined period, the control unit 19 counts one period of acceleration as one step. .
  • the control unit 19 relaxes the condition for counting the number of steps when it is determined that the pressure fluctuation with respect to the number of steps is larger than a predetermined value based on the pressure detected by the pressure sensor 17.
  • the variation in atmospheric pressure with respect to the number of steps changes according to the slope of the walking road.
  • the condition for counting the number of steps can be relaxed. For example, the control unit 19 determines whether or not the vehicle is moving on a road having a predetermined gradient or more based on a change in atmospheric pressure detected by the atmospheric pressure sensor 17 and a time during which the atmospheric pressure changes.
  • the acceleration (maximum amplitude and minimum amplitude and the interval between the maximum amplitude (minimum value)) detected by the acceleration sensor is less than when walking on flat ground. It tends to be stable. This is because the posture and stride of a person climbing a slope or a mountain path are not uniform as compared with walking on a flat ground. Thus, even when climbing a hill or mountain road, if the number of steps is counted under the same condition (setting) as when walking on a flat ground, the number of steps may not be counted.
  • the control unit 19 when climbing a hill or a mountain road (when it is determined that the road is moving on a slope with a predetermined slope or more), the control unit 19 walks on a flat ground (moves on a road with a slope higher than a predetermined slope).
  • the condition for counting the number of steps is relaxed compared to the case where it is determined that the number of steps has not been made (normal time). That is, the control unit 19 relaxes the condition so that the number of steps is counted even when climbing a hill or a mountain road.
  • the conditions that the control unit 19 relaxes include a condition for counting the number of steps and a condition for starting counting the number of steps.
  • the conditions for counting the number of steps during normal times are as follows, for example, in order to prevent erroneous detection. That is, the threshold value in the acceleration cycle is 1 [Hz (Hertz)]. The threshold value of the acceleration amplitude is 1000 ⁇ 100 [mg (milligram)]. The condition of walking continuously is 10 steps.
  • the conditions for counting the number of steps after relaxing the conditions are, for example, as follows. That is, the threshold value in the acceleration cycle is 0.5 [Hz]. The threshold value of the acceleration amplitude is 1000 ⁇ 50 [mg]. The condition of walking continuously is 5 steps.
  • the electronic device 1d appropriately changes the condition for counting the number of steps according to the state of the walking road surface, so that the walking state can be detected more accurately.
  • the control unit 19 determines that the vehicle is not moving on a road having a gradient greater than or equal to a predetermined value based on the atmospheric pressure detected by the atmospheric pressure sensor 17, the control unit 19 sets the acceleration cycle detected by the acceleration sensor 16 to the first cycle. Set to cycle.
  • the amplitude of the acceleration detected based on the first period exceeds the first threshold and the number of times that the first threshold is continuously exceeded exceeds the first number Then, start counting the number of steps.
  • An example of the first period is 1 [Hz] described above.
  • An example of the first threshold is 1000 ⁇ 100 [mg] described above.
  • An example of the first number of times is the above-described 10 steps (10 times).
  • the control unit 19 When it is determined that the control unit 19 is moving on a road having a gradient greater than or equal to a predetermined level based on the atmospheric pressure detected by the atmospheric pressure sensor 17, the control unit 19 sets the first cycle to a shorter second cycle. .
  • the control unit 19 sets the first threshold value to a lower second threshold value, sets the first number to a smaller second number, and starts counting the number of steps.
  • An example of the second period is 0.5 [Hz] described above.
  • An example of the second threshold is 1000 ⁇ 50 [mg] described above.
  • An example of the second number of times is the above-mentioned 5 steps (5 times).
  • FIG. 9 is a diagram (a diagram illustrating a comparative example) showing an acceleration detected by the acceleration sensor 16 and a first threshold value when moving on a road having a gradient greater than or equal to a predetermined value.
  • FIG. 10 is a diagram (a diagram illustrating the present embodiment) showing the acceleration detected by the acceleration sensor 16 when moving along a road having a gradient greater than or equal to a predetermined value, and the second threshold value.
  • the first threshold value is applied even when moving on a road with a slope greater than or equal to a predetermined value, there are many cases where the acceleration does not exceed the first threshold value as indicated by a circle A in FIG. That is, the portion indicated by the circle A is not determined as walking. Therefore, in the case shown in FIG. 9, since there are many portions that are not determined to be walking, the step count is not started.
  • the acceleration does not exceed the second threshold value as shown by a circle B in FIG. Compared to a small number. Therefore, more walking can be detected in the case shown in FIG. In the case shown in FIG. 10, since the second number smaller than the first number is set, the step count can be started.
  • the electronic device 1d can change the conditions for counting the number of steps according to the state of the walking road surface, and thus can count the number of steps.
  • the first number of times may be added to the count value of the number of steps. preferable. That is, the control unit 19 detects that the amplitude of the acceleration detected based on the first period exceeds the first threshold, and the number of times that the first threshold is continuously exceeded exceeds the first number. In this case, the number of steps is not counted as the first step, but the first number is added, for example, the eleventh step. In this case, the first number of times is 10.
  • the second number of times may be added to the count value of the number of steps. preferable. That is, if the amplitude of the acceleration detected based on the second period exceeds the second threshold and the number of times that the second threshold is continuously exceeded exceeds the second number, the step count is counted. Is not the first step, but the second number of times is added, for example, the sixth step. In this case, the second number of times is five.
  • the electronic device 1d can make the counted number of steps coincide with the number of steps when a person actually walks.
  • the control unit 19 When there is a period during which the number of steps cannot be counted based on the acceleration detected by the acceleration sensor 16, the control unit 19 preferably stores the atmospheric pressure detected by the atmospheric pressure sensor 17 together with the period in the storage unit 18. . When it is determined that the control unit 19 has moved on a road having a gradient greater than or equal to a predetermined level based on the atmospheric pressure stored in the storage unit 18, the control unit 19 is in a period in which the number of steps stored in the storage unit 18 cannot be counted. Based on this, it is preferable to estimate the number of steps and add the estimated number of steps to the count value of the number of steps.
  • the conditions are fixed to the first period, the first threshold value, and the first number of times.
  • a person may walk on a flat ground, then climb a slope, and then walk on a flat ground again.
  • the acceleration detected by the acceleration sensor 16 when climbing the hill is not constant as compared to walking on flat ground.
  • the control unit 19 causes the storage unit 18 to store the acceleration and the atmospheric pressure during that period.
  • control part 19 reads the atmospheric
  • the acceleration is read from the storage unit 18, and based on the second period, the second threshold value, and the second number of times, The number of steps in the period stored in the storage unit 18 is counted.
  • the control unit 19 adds the number of steps already counted and the number of steps counted for the period stored in the storage unit 18.
  • the predetermined case is, for example, a case where an operation for finishing counting the number of steps is performed.
  • the electronic device 1d can count the number of steps.
  • the electronic device 1d may have the following form. That is, the electronic device 1 d includes an atmospheric pressure sensor 17, an acceleration sensor 16, a storage unit 18, and a control unit 19.
  • the atmospheric pressure sensor 17 detects atmospheric pressure.
  • the atmospheric pressure sensor 17 includes, for example, an atmospheric pressure sensor or a pressure sensor.
  • the electronic device 1d can detect an altitude or a change in altitude by measuring the atmospheric pressure by the atmospheric pressure sensor 17.
  • the acceleration sensor 16 detects acceleration.
  • the control unit 19 counts the number of steps based on the acceleration detected by the acceleration sensor 16. For example, the control unit 19 counts the number of steps based on the amplitude of the acceleration detected by the acceleration sensor 16. As a specific example, the difference between the maximum value and the minimum value in one cycle of acceleration is greater than or equal to a predetermined difference, and the time difference between the maximum value in one cycle with acceleration and the maximum value in the next cycle Or when the time difference between the minimum value of one cycle with acceleration and the minimum value of the next one cycle is less than or equal to a predetermined time difference, and these conditions continue for a predetermined cycle, etc. 19 counts one cycle of acceleration as one step.
  • the control unit 19 stores the atmospheric pressure detected by the atmospheric pressure sensor 17 in the storage unit 18 together with the period.
  • the control unit 19 is in a period in which the number of steps stored in the storage unit 18 cannot be counted. Based on this, the number of steps is estimated, and the estimated number of steps is added to the count value of the number of steps.
  • the control unit 19 sets all the same conditions (conditions for counting the number of steps) during walking, and the number of steps (first number of steps) based on the set conditions and the acceleration detected by the acceleration sensor 16. Count. Furthermore, when there is a period during which the number of steps is not counted, the control unit 19 stores the acceleration detected by the acceleration sensor 16 and the atmospheric pressure detected by the atmospheric pressure sensor 17 in the storage unit 18 in that period.
  • the control part 19 reads the atmospheric
  • the electronic device 1d can count the number of steps.
  • the electronic device 1d described above can more accurately detect the state of walking and count the number of steps. Thereby, the electronic device 1d can obtain calorie consumption based on the counted number of steps, for example. That is, the electronic device 1d can obtain an accurate calorie consumption.

Abstract

 電子機器(1a)は、加速度を検出する加速度センサ(16)と、気圧を検出する気圧センサ(17)と、制御部(19)とを備える。制御部(19)は、加速度センサ(16)が検出する加速度と気圧センサ(17)が検出する気圧とに基づいて活動量又は歩数を算出する。

Description

電子機器、制御プログラム、制御方法及びシステム
 本発明は、加速度センサを有する電子機器及びシステムと、その制御プログラム及び制御方法に関する。
 歩数計には、消費カロリを算出するものがある(例えば、特許文献1を参照)。
 携帯機器には、気圧センサを備えるものがある。気圧センサを備える携帯機器は、例えば、特許文献2に記載されている。この特許文献2に記載された携帯機器では、大気圧の測定に気圧センサが利用されている。
 電子機器には、加速度センサによって検出された値に基づいて、歩数をカウントする機能を有しているものがある(例えば、特許文献3を参照。)。
特開2001-29323号公報 特開2003-28967号公報 特開2004-120688号公報
 特許文献1及び3に記載されているように、消費カロリ又は歩数を算出する機能を有する電子機器が知られている。これらの電子機器には、改善の余地がある。
 実施形態の一つに係る電子機器は、加速度を検出する加速度センサと、気圧を検出する気圧センサと、前記加速度に基づき、移動の開始及び終了を判定する制御部と、を備え、前記制御部は、前記加速度と、前記移動の開始時及び前記移動の終了時の前記気圧の差分値と、に基づき活動量を求める。
 実施形態の一つに係る電子機器は、前記制御部は、加速度によって自転車移動であると判定した際に、自転車の種類を電動アシストであると設定している場合には、前記気圧に基づかずに、前記活動量を求める。
 実施形態の一つに係る電子機器は、気圧センサが検出する気圧信号の変化を、加速度センサが検出する加速度信号に基づいて、高度変化及び気圧変化のいずれであるかを判別する制御部を備える。
 実施形態の一つに係る電子機器の制御プログラムは、気圧センサが検出する気圧信号の変化を、加速度センサが検出する加速度信号に基づいて、高度変化及び気圧変化のいずれであるかを判別する。
 実施形態の一つに係る電子機器の制御方法は、気圧センサが検出する気圧信号の変化を、加速度センサが検出する加速度信号に基づいて、高度変化及び気圧変化のいずれであるかを判別する。
 実施形態の一つに係る電子機器は、気圧センサ部と、加速度検出部と、制御部と、を備える。前記気圧センサ部は、気圧を検出する。前記加速度検出部は、加速度を検出する。前記制御部は、前記加速度検出部により検出した加速度に基づいて、静止状態又は移動状態の種別を判定し、当該判定した結果と、前記気圧センサ部により検出した気圧に基づいて、身体活動量を算出する。前記制御部は、判定した移動状態の種別に基づいて、前記気圧センサ部が気圧を検出する周期を変更する。
 実施形態の一つに係る電子機器は、気圧センサ部と、加速度検出部と、制御部と、を備える。前記気圧センサ部は、気圧を検出する。前記加速度検出部は、加速度を検出する。前記制御部は、前記加速度検出部により検出された加速度に基づいて、歩数をカウントする。前記制御部は、前記気圧センサ部により検出された気圧の、カウントした歩数に対する変動が所定値よりも大きいと判定した場合には、前記歩数をカウントする条件を緩和する。
 実施形態の一つに係る電子機器は、気圧センサ部と、加速度検出部と、制御部と、記憶部と、を備える。前記気圧センサ部は、気圧を検出する。前記加速度検出部は、加速度を検出する。前記制御部は、前記加速度検出部により検出された加速度に基づいて、歩数をカウントする。前記制御部は、前記加速度検出部により検出された加速度に基づいて、歩数をカウントできない期間があった場合に、当該期間とともに前記気圧センサ部により検出された気圧に基づいて、前記記憶部に記憶されている歩数をカウントできない期間の歩数を推定し、推定した歩数を歩数のカウント値に加算する。
 実施形態の一つに係るシステムは、気圧センサ部と、加速度検出部と、制御部と、を備える。前記気圧センサ部は、気圧を検出する。前記加速度検出部は、加速度を検出する。前記制御部は、前記加速度検出部により検出された加速度に基づいて、歩数をカウントする。前記制御部は、前記気圧センサ部により検出された気圧に基づいて、歩数に対する気圧変動が所定値よりも大きいと判定した場合には、前記歩数をカウントする条件を緩和する。
 実施形態の一つに係る電子機器は、気圧センサ部と、加速度検出部と、制御部と、を備える。前記気圧センサ部は、気圧を検出する。前記加速度検出部は、加速度を検出する。前記制御部は、前記加速度検出部により検出された加速度に基づいて、歩数をカウントする。前記制御部は、前記加速度検出部により検出された加速度に基づいて歩数をカウントできない期間があった場合に、当該期間とともに前記気圧センサ部により検出された気圧に基づいて、記憶部に記憶されている歩数をカウントできない期間の歩数を推定し、推定した歩数を歩数のカウント値に加算する。
 実施形態の一つによれば、加速度と気圧とに基づいて活動量又は歩数を算出することができる。
図1は、第1実施形態に係る電子機器の構成を示すブロック図である。 図2は、電子機器の動作の流れを示すフローチャートである。 図3は、第2実施形態に係る電子機器の構成を示すブロック図である。 図4は、加速度センサの検出結果を模式的に示す図である。 図5Aは、気圧センサの検出結果を模式的に示す図である。 図5Bは、気圧センサの検出結果を模式的に示す図である。 図5Cは、気圧センサの検出結果を模式的に示す図である。 図6は、電子機器の動作の流れについての説明に供するフローチャートである。 図7は、第3実施形態に係る電子機器の構成を示すブロック図である。 図8は、第4実施形態に係る電子機器の構成を示すブロック図である。 図9は、所定以上の勾配のある道を移動する場合に加速度センサによって検出される加速度と、第1の閾値と、を示す図である。 図10は、所定以上の勾配のある道を移動する場合に加速度センサによって検出される加速度と、第2の閾値と、を示す図である。
(第1実施形態)
 本発明を実施するための第1実施形態を、図面を参照しつつ詳細に説明する。
 電子機器(携帯電子機器)1aは、図1に示すように、表示部11と、操作部12と、気圧センサ17と、加速度センサ16と、記憶部18と、制御部19とを備える。
 表示部11は、液晶ディスプレイ(Liquid Crystal Display)、又は有機ELパネル(Organic Electro-Luminescence panel)等の表示デバイスにより構成されている。表示部11には、文字、画像、記号又は図形等が表示される。
 操作部12は、複数のボタンから構成されており、ユーザによって操作される。なお、操作部12は、単一のボタンにより構成されていてもよい。
 気圧センサ17は、大気の圧力(気圧)を検出する。地上からの高度と気圧の間には一定の関係があるため、後述する制御部19は、気圧センサ17により検出された気圧から高度を算出する(求める)ことができる。
 加速度センサ16は、電子機器1aに働く加速度の方向及び大きさを検出し、検出結果を制御部19に出力する。加速度センサ16は、X軸方向、Y軸方向及びZ軸方向の加速度を検出する3G(3次元)タイプである。
 なお、加速度センサ16は、例えば、ピエゾ抵抗型、静電容量型により構成されるものとするが、これに限らない。例えば、加速度センサ16は、圧電素子(圧電式)、熱検知型によるMEMS(Micro Electro Mechanical Systems)式、可動コイルを動かしてフィードバック電流によってもとに戻すサーボ式、又は加速度によって生じる歪を歪ゲージによって測定する歪ゲージ式等により構成されてもよい。
 記憶部18は、例えば、制御部19による演算処理に利用され、メモリ等によって構成される。記憶部18は、活動量を算出するために用いられるメッツ(METs:Metabolic equivalents)を記憶する。メッツは、身体活動の強度を表す強さの単位であり、身体活動をした場合に安静状態の何倍の代謝をするのかを示すものである。メッツが大きくなるほど、運動強度の高い身体活動である。記憶部18は、勾配(高度差)に応じたメッツを記憶している。記憶部18は、例えば、登り勾配が大きくなれば、メッツが大きくなるようなテーブル(計算式)を記憶している。また、記憶部18は、例えば、下り勾配が大きくなれば、メッツが小さくなるようなテーブル(計算式)を記憶している。
 記憶部18は、携帯電子機器1aの利用者が移動を開始したと判定するために用いる加速度パターン(移動開始加速度パターン)、携帯電子機器1aの利用者が移動を終了したと判定するために用いる加速度パターン(移動終了加速度パターン)、携帯電子機器1aの利用者が移動中であると判定するために用いる加速度パターン(移動中加速度パターン)等を記憶する。
 制御部19は、携帯電子機器1aの全体を制御しており、中央処理装置(CPU)等を用いて構成される。制御部19は、加速度に基づき、移動の開始及び終了を判定する。制御部19は、加速度と、移動の開始時と終了時の気圧の差分値と、に基づき活動量を求める。
 第1実施形態において、制御部19は、気圧センサ17により検出される気圧から、移動の開始時と終了時の気圧の差分値(気圧差)を算出する。そして、例えば、気圧差が1[hPa(ヘクトパスカル)]あたり、10[m(メートル)]の高度差であるとして、制御部19は、算出した気圧差から、移動の開始時と終了時の高度差を算出する。
 制御部19は、加速度センサ16により検出される加速度から、携帯電子機器1aが移動を開始したか否か、及び移動を終了したか否か判定する。制御部19は、加速度センサ16により検出される加速度と、記憶部18に記憶されている加速度パターンとの比較を行う。制御部19は、加速度センサ16により検出される加速度と、移動開始加速度パターンとを比較して、一致した場合、又は誤差が所定の範囲内であった場合、携帯電子機器1aの利用者が移動を開始したと判定する。制御部19は、携帯電子機器1aの利用者が移動を開始したと判定すると、移動の開始時として、気圧センサ17により気圧を検出し、記憶部18に、移動の開始時の気圧として記憶する。
 制御部19は、携帯電子機器1aの利用者が移動を開始したと判定した後、加速度センサ16により検出される加速度と、移動中加速度パターンとを比較して、一致した場合、又は誤差が所定の範囲内であった場合、携帯電子機器1aの利用者が移動中であると判定し、一致しなかった場合、又は誤差が所定の範囲を超えた場合、携帯電子機器1aの利用者が移動を終了したと判定する。制御部19は、携帯電子機器1aの利用者が移動を終了したと判定すると、移動の終了時として、気圧センサ17により気圧を検出し、記憶部18に、移動の終了時の気圧として記憶する。
 なお、移動の開始と終了の判定は、上記実施例には限定されない。
 つぎに、携帯電子機器1aの動作の流れについて、図2に示すフローチャートを参照しながら説明する。図2に示すフローチャートでは、携帯電子機器1aの状態が停止状態、例えば、携帯電子機器1aを保持しているユーザが停止している状態で処理を開始する。
 ステップST1において、制御部19は、携帯電子機器1aが移動を開始したか否か判定する。制御部19は、携帯電子機器1aが移動を開始したと判定すると、ステップST2において、気圧を検出する。次に、ステップST3において、制御部19は、携帯電子機器1aが移動を終了したか否か判定する。制御部19は、携帯電子機器1aが移動を終了したと判定すると、ステップST4において、気圧を検出する。そして、ステップST5において、制御部19は、加速度と、移動の開始時と終了時の気圧の差分値と、に基づき活動量を求める。なお、図2の動作において加速度は、測定(検出)されているものとする。
 気圧の差分値は、記憶部18に記憶されているメッツを特定するために用いられる。加速度センサ16により検出される加速度は、活動量を求めるにあたり、歩数、歩行距離、及び移動状態の種別などを判定するために用いられる。移動状態の種別には、例えば、歩行、走行、及び自転車移動が含まれる。
 次に、制御部19は、加速度センサ16によって検出される加速度により、携帯電子機器1aの移動状態が自転車移動であると判定した際に、自転車の種類を電動アシストであると設定(ユーザ設定)している場合には、気圧に基づかずに、活動量を求める。なぜなら、電動アシスト付き自転車で高低差のある道を移動している場合は、活動量を求めるためのパラメータであるメッツが、通常の自転車(電動アシスト無しの自転車)で移動している場合と比べて異なるからである。電動アシスト付き自転車で坂道を登ったとしても、平坦な道を移動した場合の活動量と差が生じないので、自転車の種類を電動アシストであると設定(ユーザ設定)している場合には、気圧に基づかずに、活動量を求めると好適である。なお、電動アシスト付き自転車用のメッツが記憶されている場合には、このメッツを用いて活動量を求めてもよい。
(第2実施形態)
 本発明を実施するための第2実施形態を、図面を参照しつつ詳細に説明する。以下では、電子機器(携帯電子機器)の一例として、携帯電子機器1bについて説明する。携帯電子機器1bは、例えば、携帯電話機である。
 携帯電子機器1bは、図3に示すように、表示部11と、操作部12と、レシーバ13と、マイク14と、通信部15と、加速度センサ16と、気圧センサ17と、記憶部18と、制御部19とを備える。
 表示部11は、情報を表示する部位である。表示部11は、表示デバイスにより構成されている。表示デバイスとしては、液晶ディスプレイ(Liquid Crystal Display)、又は有機ELパネル(Organic Electro-Luminescence panel)等が挙げられる。表示部11には、文字、画像、記号、又は図形等が表示される。
 操作部12は、利用者からの操作を受け付ける部位である。本実施形態の携帯電子機器1bは、操作部12として、種々の操作ボタン、スイッチ、またはタッチスクリーンを備える。操作部12としてタッチスクリーンを備える場合、表示部11と一体となったタッチスクリーンディスプレイを備えてもよい。
 レシーバ13は、制御部19から送信される音声信号を音声に変換して出力する。
 通信部15は、アンテナと、RF回路部とを備える。通信部15は、複数の無線通信規格それぞれに対応した通信方式によって通信を行う。通信部15は、2G、3G、及び4G等のセルラーフォンの通信規格、又は無線LANシステムによる通信を可能とする。通信部15は、無線LANシステムである、IEEE802.11に準拠している無線通信システム、例えば、WiFi(登録商標)の無線通信システムによる通信を可能とする。なお、通信部15は、WiMAX(登録商標)の無線通信システムによる通信を行ってもよい。アンテナ及びRF回路部は、複数の通信方式それぞれに対応して複数設けられている。本実施形態では、通信部15は、WiFiにより通信を行うものとして説明を進める。
 加速度センサ16は、携帯電子機器1bに働く加速度の方向及び大きさを検出し、検出結果を制御部19に加速度信号として出力する。制御部19は、加速度センサ16が出力した加速度信号を受信する。本実施形態では、加速度センサ16として、X軸方向、Y軸方向及びZ軸方向の加速度を検出する3G(3次元)タイプを採用する。
 なお、加速度センサ16は、例えば、ピエゾ抵抗型、静電容量型により構成されるものとするが、これに限らない。例えば、加速度センサ16は、圧電素子(圧電式)、熱検知型によるMEMS(Micro Electro Mechanical Systems)式、可動コイルを動かしてフィードバック電流によってもとに戻すサーボ式、又は加速度によって生じる歪を歪ゲージによって測定する歪ゲージ式等により構成されてもよい。
 気圧センサ17は、携帯電子機器1bに働く外気圧の大きさを検出し、検出結果を制御部19に気圧信号として出力する。制御部19は、気圧センサ17が出力した気圧信号を受信する。
 記憶部18は、例えば、制御部19による演算処理に利用され、メモリ等によって構成される。記憶部18は、携帯電子機器1bの内部で動作するアプリケーションを1又は複数記憶する。なお、記憶部18は、着脱可能な外部メモリを兼ねていてもよい。
 制御部19は、携帯電子機器1bの全体を制御しており、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)等を用いて構成される。
 以下に、制御部19による加速度センサ16の検出結果の処理について説明する。
 制御部19には、図4に示すように、X軸方向の加速度信号(図4中のA)と、Y軸方向の加速度信号(図4中のB)と、Z軸方向の加速度信号(図4中のC)と、3軸方向の加速度信号を合成したベクトル値(図4中のD)とが加速度センサ16の検出結果として送信されてくる。制御部19は、合成ベクトル値をロギングする。制御部19は、ロギングしたデータを分析して、携帯電子機器1bの加速状態を判別する。ロギングした合成ベクトルは、記憶部18に記憶される。
 制御部19が、携帯電子機器1bの加速状態を判別するにあたり、加速度パターンを用いる。加速度パターンは、例えば、予め記憶部18に記憶されている。加速度パターンは、利用者の停止状態及び複数の移動状態毎に対応付けられている。加速度パターンには、停止状態及び複数の移動状態において、どのような加速度パターンが加速度センサ16により特徴的に検出されるのかを、予め計測し、抽出しておいたパターンである。この加速度パターンには、携帯電子機器1bの利用者が停止状態にある場合、携帯電子機器1bの利用者が歩行により移動している加速状態にある場合、携帯電子機器1bの利用者が自転車に乗車して移動している加速状態にある場合、または携帯電子機器1bの利用者が自動車及び電車などの乗り物で移動している加速状態にある場合等がある。
 本実施形態においては、例えば、停止状態及び複数の移動状態毎に加速度パターンが予め記憶部18に記憶されている。加速度パターンは、上述した合成ベクトル値のロギングしたデータに対応するように記憶される。制御部19は、上述した合成ベクトル値のロギングしたデータと、加速度パターンとを比較することにより、携帯電子機器1bの加速状態を判別する。
 なお、制御部19は、停止状態の加速度パターンに替えて、加速度センサ16によって検出された加速度が所定値未満である場合を停止状態にあると判別してもよい。制御部19は、停止状態の加速度パターンに替えて、上述の合成ベクトル値のロギングしたデータが複数の移動状態のいずれにも一致しない場合を停止状態にあると判別してもよい。
 以下に、制御部19による気圧センサ17の検出結果の処理について説明する。制御部19による気圧センサ17の検出結果の処理は、制御部19が制御プログラムを実行することによって実現される。制御部19は、制御プログラムを実行することによって、以下の制御方法を実現する。
 制御部19には、気圧センサ17の検出結果として気圧信号が送信されてくる。制御部19は、気圧信号をロギングする。制御部19は、気圧信号の変化を分析して、携帯電子機器1bの高度変化を判別する。ロギングした気圧信号は、記憶部18に記憶される。
 制御部19は、気圧センサ17が出力した気圧信号の変化を、高度変化に伴う気圧変化として処理することが可能である。例えば、1[hPa(ヘクトパスカル)]の気圧変化は、10[m(メートル)]の高度変化に相当するとして制御部19によって判断される。
 制御部19は、気圧信号の変化が、大気圧の変化であるとの判断から、高度変化に伴う変化であるとの判断に、判断を変更したときの気圧信号の値を基準とする。この基準となる気圧信号の値からの差分を、制御部19は、高度変化に伴う気圧変化として処理する。言い換えると、制御部19は、基準となる気圧信号の値からの差分を、高度変化に換算する。制御部19は、気圧信号の変化を高度変化として処理する際に基準となる気圧信号の値を変更することによって、大気圧の変化に柔軟に対応することができる。制御部19は、気圧信号の変化から高度変化に換算すると、換算した高度変化を現在の高さに対する差として順次加算する。換算した高度変化を現在の高さに対する差として順次加算すると、制御部19は、高度変化が加算された高さを現在の高さとして処理する。制御部19は、換算した高度変化を現在の高さに対する差として順次加算することで、アップダウンを伴う移動であっても高度の推移に柔軟に対応することができる。
 制御部19は、高度変化の推移を高低差ログとして記憶部18に記憶する。記憶部18に記憶された高低差ログは、単位期間ごとに新たな基準高さから開始される。携帯電子機器1bでは、単位期間ごとに新たな基準高さから高低差ログを開始することによって、高度変化のずれが累積されるのを低減することができる。この単位期間としては、12時間、1日、1週間などの期間が挙げられる。この単位期間は、高低差ログをひと続きのデータとして表示する単位と一緒にすることが好ましい。
 制御部19は、気圧センサ17の検出する気圧信号に変化があった場合に、気圧信号の変化が高度変化に伴う気圧変化及び大気圧の変化のいずれであるかを判別する。
 図5A~図5Cは、気圧センサの検出結果を模式的に示す図である。図5Aに、気圧センサ17が検出した気圧の経時に伴う変化を図示する。図5Aでは、時間を横軸にとり、気圧を縦軸にとる。ここでは、時間として秒(sec)を採用し、気圧信号としてヘクトパスカル(hPa)を採用した。図5Aに示した気圧の経時に伴う変化を、制御部19が高度変化に伴う気圧変化とした場合の高度変化を図5Bに図示する。図5Bでは、時間を横軸にとり、高度を縦軸にとる。ここでは、時間として秒(sec)を採用し、高度としてメートル(m)を採用した。図5Aに示した気圧の経時に伴う変化を、制御部19が大気圧の変化に伴う気圧変化とした場合の高度変化を図5Cに示す。図5Cでは、図5Bと同様に、時間を横軸にとり、高度を縦軸にとる。ここでも、時間として秒(sec)を採用し、高度としてメートル(m)を採用した。携帯電子機器1bでは、気圧センサ17が検出した気圧の経時に伴う変化を、高度変化に伴う気圧変化か、大気圧の変化に伴う気圧変化かを判断する。
 制御部19は、気圧信号の変化を分析するときに、加速状態を参照する。言い換えると、制御部19は、加速度センサ16が検出した加速度信号に基づいて、気圧信号の変化を分析する。制御部19は、加速度センサ16が検出した加速度信号に基づいて、気圧信号の変化が高度変化及び気圧変化のいずれであるかを判別する。
 制御部19は、加速状態に基づいて携帯電子機器1bが停止状態であると判別すると、気圧センサ17が検出した気圧信号の変化が大気圧の変化として判別する。制御部19は、加速状態に基づいて携帯電子機器1bが移動状態であると判別すると、気圧センサ17が検出した気圧信号の変化が高度変化に伴う変化として判別する。制御部19がかかる制御を採用することによって、本実施形態の携帯電子機器1bは、移動に伴う気圧信号の変化であるか否かを好適に判別することができる。
 制御部19は、加速状態に基づいて気圧センサ17が気圧信号を取得する取得周期を変更する。制御部19は、加速状態が移動状態であると判別すると、気圧センサ17が気圧信号を取得する取得周期を、判別した移動状態に応じて変更する。制御部19は、判別した移動状態の移動速度が早い状態であるほど、気圧センサ17が気圧信号を取得する取得周期を短くする。例えば、制御部19は、加速状態に基づいて歩いていると判断した場合の取得周期に比べて、走っていると判断した場合の取得周期を短くする。例えば、制御部19は、加速状態に基づいて走っていると判断した場合の取得周期に比べて、自転車に乗って移動していると判断した場合の取得周期を短くする。例えば、制御部19は、加速状態に基づいて自転車に乗って移動していると判断した場合の取得周期に比べて、自動車及び電車などの乗り物で移動していると判断した場合の取得周期を短くする。制御部19は、加速状態に基づいて移動状態であると判別した場合の取得周期に比べて、停止状態であると判別した場合の取得周期を長くする。制御部19は、加速状態に基づいて停止状態であると判断した場合に、気圧センサ17が気圧信号を取得しない構成を採用してもよい。気圧センサ17が気圧信号を取得しない構成としては、気圧センサ17に気圧信号を取得するトリガとなるトリガ信号を入力しない構成と、気圧センサ17へ電源供給しない構成とが採用可能である。
 上述の構成では、制御部19が加速状態に基づいて気圧センサ17が気圧信号を取得する取得周期を変更する構成を採用したが、かかる構成に限定されるものではない。
 制御部19は、加速状態に基づいて気圧センサ17が気圧信号を出力する出力周期を変更してもよい。制御部19が出力周期を変更する構成を採用する場合に、出力周期を判別した移動状態に応じて変更する構成を採用してもよい。制御部19が出力周期を変更する構成を採用する場合に、出力周期を停止状態であると判断した場合に移動状態であると判断した場合に比べて長くしてもよい。制御部19が出力周期を変更する構成を採用する場合に、制御部19は、加速状態に基づいて停止状態であると判断した場合に、気圧センサ17が気圧信号を出力しない構成を採用してもよい。気圧センサ17が気圧信号を出力しない構成としては、気圧センサ17に気圧信号を出力させるトリガとなるトリガ信号を入力しない構成と、気圧センサ17へ電源供給しない構成とが採用可能である。
 制御部19は、加速状態に基づいて気圧センサ17が出力した気圧信号の入力を受ける受信周期を変更してもよい。制御部19が受信周期を変更する構成を採用する場合に、受信周期を判別した移動状態に応じて変更する構成を採用してもよい。制御部19が受信周期を変更する構成を採用する場合に、受信周期を停止状態であると判断した場合に移動状態であると判断した場合に比べて長くしてもよい。制御部19が受信周期を変更する構成を採用する場合に、制御部19は、加速状態に基づいて停止状態であると判断した場合に、気圧センサ17が出力した気圧信号を受信しない構成を採用してもよい。
 制御部19は、加速状態に基づいて気圧センサ17が検出した気圧信号の変化を判断する判断周期を変更してもよい。制御部19が判断周期を変更する構成を採用する場合に、採用した周期を判別した移動状態に応じて変更する構成を採用してもよい。制御部19が判断周期を変更する構成を採用する場合に、判断周期を停止状態であると判断した場合に移動状態であると判断した場合に比べて長くしてもよい。制御部19が判断周期を変更する構成を採用する場合に、制御部19は、加速状態に基づいて停止状態であると判断した場合に、気圧センサ17が出力した気圧信号の変化を判断しない構成を採用してもよい。
 制御部19が取得周期、出力周期、受信周期、及び判断周期のいずれかを変更する構成を採用することによって、携帯電子機器1bは、気圧信号の変化が高度変化であるかを好適に判別しつつ、高度変化を好ましい周期で判断することができる。制御部19が取得周期、出力周期、受信周期、及び判断周期のいずれかを変更する構成を採用することによって、携帯電子機器1bは、消費する電力の低減を図ることが可能となる。
 制御部19には、加速度センサ16の検出結果として加速度信号が送信されてくる。制御部19は、加速度信号をロギングする。ロギングした加速度信号は、記憶部18に記憶される。制御部19は、加速度信号の変化を分析して、加速度信号の振動振幅を判別する。ここでは、加速度信号の振動振幅として、単位時間におけるピークピーク値を採用する。この単位時間としては、例えば、数秒程度の期間が挙げられる。制御部19は、加速度信号の振動振幅として、ピークピーク値を採用することによって、加速度の直流成分の変化に柔軟に対応することができる。
 制御部19は、加速度センサ16が検出した加速度信号の振動振幅に基づいて、気圧センサ17が検出した気圧信号の変化が高度変化であると判別する期間を変更する。制御部19は、加速度センサ16が検出した加速度信号の振動振幅が第1の値よりも大きいと判別すると、第1の時間が経過するまでの第1の期間に検出する気圧信号の変化が高度変化であると判別する。制御部19は、利用者の移動開始に伴って生じるような比較的大きな加速度信号の変化を検出すると、当該加速度信号の変化を検出したときから所定期間の気圧信号の変化を高度変化として処理する。
 制御部19は、加速度センサ16が検出している加速度信号の振動振幅が第2の値よりも大きいと判別すると、気圧センサ17が検出している気圧信号の変化を高度変化であると判別する。制御部19は、第2の値よりも振動振幅が大きい加速度信号であると判別しているあいだ、気圧センサ17が検出している気圧信号の変化を高度変化であると判別する。この第2の値は、第1の値に比べて小さい。制御部19は、利用者の移動に伴って継続的に生じるような加速度信号の変化を検出すると、当該加速度信号の変化を検出しているときの気圧信号の変化を高度変化として処理する。
 本実施形態の制御部19は、気圧信号の変化が高度変化に伴う気圧変化であると判断した後の気圧信号の変化を、高度変化に伴う気圧変化として処理する。携帯電子機器1bは、制御部19が気圧信号の変化が高度変化に伴う気圧変化であると判断した後に得た信号の変化を高度変化に伴う気圧変化として処理する構成を採用することによって、制御を簡素にすることができる。携帯電子機器1bは、制御が簡素になると、簡素な構成によって機能を実現することができる。
 携帯電子機器1bの動作の流れについて、図6に示すフローチャートを参照しながら説明する。なお、以下の実施例では、加速状態の判別をリアルタイムに行うものとして説明する。携帯電子機器1bは、この実施例に限らず、加速状態の判別を所定時間おきに行うようにしてもよい。
 ステップST101において、制御部19は、加速度センサ16の検出した検出結果に基づいて、加速状態が移動状態であるか否かを判別する。制御部19は、この判別がYESの場合、ステップST105に処理を移す。制御部19は、この判別がNOの場合、ステップST102に処理を移す。このステップST101において、制御部19は、加速度センサ16が検出した加速度信号に基づいて、停止状態及び移動状態のいずれの加速状態であるかを判別して、処理を移すステップを変更する。
 ステップST102において、制御部19は、加速度センサ16が検出した加速度信号の振幅が第2の値よりも大きいか否かを判別する。制御部19は、この判別がYESの場合、ステップST105に処理を移す。制御部19は、この判別がNOの場合、ステップST103に処理を移す。
 ステップST103において、制御部19は、加速度センサ16が検出した加速度信号の振幅が第1の期間に第1の値よりも大きくなった否かを判別する。制御部19は、この判別がYESの場合、ステップST105に処理を移す。制御部19は、この判別がNOの場合、ステップST104に処理を移す。このステップST103において、制御部19は、加速度信号の振幅が第1の値より大きいと判別したときから第1の時間が経過する第1の期間であるかを判別して、処理を移すステップを変更する。
 ステップST104において、制御部19は、気圧センサ17が検出した気圧信号の変化を大気圧の変化として処理する。ステップ104の処理が完了すると、制御部19は、この制御フローによる処理を完了させる。このステップST104において、制御部19は、気圧センサ17が検出した気圧信号の値を、現在の大気圧として記憶部18に記憶する。現在の大気圧として記憶部18に記憶された値は、気圧信号の変化を高度変化に伴う変化として処理する際の基準となる。
 ステップST105において、制御部19は、気圧センサ17が検出した気圧信号の変化を高度変化に伴う変化として処理する。ステップ105の処理が完了すると、制御部19は、この制御フローによる処理を完了させる。
 本実施形態の制御部19は、この制御フローを繰り返すことによって、気圧信号の変化が大気圧の変化であるか、高度変化に伴う気圧変化であるかを判別する。制御部19は、この制御フローを繰り返すことによって、気圧信号の変化を高度変化として反映させることが可能となる。
 この制御フローは、ステップST101~ST103のうち少なくとも1つを含んでいればよく、2つ以下のステップを省略してもよい。
 この制御フローでは、ステップST101、ステップST102、ステップST103を順次処理した。制御部19は、ステップST101~ST103を同時に実行し、いずれか一つでもYESと判定されれば、気圧信号の変化を高度変化に伴う変化として処理するように構成されていてもよい。
 以上、本発明の第2実施形態について説明したが、本発明は上述した実施形態に限るものではない。本発明による効果は、上述の実施形態に記載されたものに限定されるものではない。
 上述の実施形態では、加速度センサ16により検出された加速度に基づいて、携帯電子機器1bの加速状態が、停止状態及び複数の移動状態のいずれかであるか判別したが、これに限られない。例えば、携帯電子機器1bは、GPS(Global Positioning System)を用いて、携帯電子機器1bの位置を計測し、携帯電子機器1bの単位時間(所定時間)あたりの変位量から携帯電子機器1bが停止状態及び複数の移動状態のいずれかであるかを判別してもよい。
 上述の実施形態では、制御部19は、気圧信号の変化が高度変化に伴う気圧変化であると判断した後の気圧信号の変化を、高度変化に伴う気圧変化として処理する構成を採用したが、これに限られない。制御部19は、気圧信号の変化が高度変化に伴う気圧変化であると判断したときの気圧信号の変化から、高度変化に伴う気圧変化として処理する構成を採用してもよい。携帯電子機器1bは、制御部19が判断したときの気圧信号の変化から高度変化に伴う気圧変化として処理する構成を採用することによって、高度変化をより正確に反映させることができる。携帯電子機器1bは、制御部19が判断したときの気圧信号の変化から高度変化に伴う気圧変化として処理するべく、記憶部18にロギングしたデータを処理する構成を採用してもよく、気圧信号の変化を一時的に記憶するバッファを備える構成を採用してもよい。
(第3実施形態)
 以下に、本発明の電子機器(携帯電子機器)の第3実施形態について説明する。図7は、第3実施形態に係る電子機器1cの構成を示すブロック図である。
 電子機器1cは、例えば、携帯電話機、タブレット型のコンピュータ、歩数計又は携帯型のゲーム機等である。
 電子機器1cは、気圧センサ17と、加速度センサ16と、制御部19と、を備える。
 気圧センサ17は、気圧を検出する。電子機器1cは、気圧センサ17によって気圧が測定されることにより、高度又は高度変化を検出することができる。
 加速度センサ16は、加速度を検出する。加速度センサ16は、X軸、Y軸及びZ軸の加速度を検出する。
 制御部19は、加速度センサ16により検出した加速度に基づいて、静止状態(停止状態)又は移動状態の種別を判定する。制御部19は、移動状態の種別として、歩行をしている状態、走行をしている状態及び移動体に乗って移動している状態を判定することが好ましい。
 制御部19は、加速度センサ16によって検出された加速度を検出する。制御部19は、X軸方向の加速度(図4のA)、Y軸方向の加速度(図4のB)、Z軸方向の加速度(図4のC)、及び各加速度を合成したベクトル値(図4のD)を加速度センサ16から受信する。加速度が変化する場合としては、例えば、次の場合がある。すなわち、歩行をしている場合、乗り物に乗車している場合、及び電子機器1cが操作される場合等である。このため、制御部19は、例えば、各加速度を合成したベクトル値に基づいて、上記のいずれの場合であるかを判定する。例えば、人が歩行している場合、人が走っている(走行している)場合、自転車に乗車している場合、自動車に乗車している場合、電車(例えば、在来線)に乗車している場合、新幹線に乗車している場合、電子機器1cが操作される場合等のそれぞれの場合毎に、加速度の振幅(振動量)及び振動周期が異なる。よって、制御部19は、それぞれの場合を検出するために、それぞれ毎に振幅の閾値及び振動周期の閾値を設定する。制御部19は、短い時間の加速度に基づいて乗り物の判別を行うと、電子機器1cの一時的な振動等によって、誤判定を行う可能性がある。このため、制御部19は、所定の期間の加速度を取得して、その所定の期間において連続的に振幅及び振動周期の条件を満たせば、その条件に対応する乗り物等の種別に該当すると判断する。これにより、制御部19は、移動状態の種別を判定することができる。
 制御部19は、加速度の変化がない又は略ない場合には、静止状態にあると判定する。
 制御部19は、判定した結果と、気圧センサ17により検出した気圧に基づいて、身体活動量を算出する。身体活動量とは、例えば、運動量(メッツ、エクササイズ)、又はエネルギー消費量(cal)等のことである。例えば、エネルギー消費量は、メッツを利用して以下の式(1)により算出することができる。
エネルギー消費量(kcal)=1.05×メッツ×時間×体重(kg) …(1)
 制御部19は、気圧センサ17により検出された気圧に基づいて得られる高度変化に応じて、メッツを変更する。制御部19は、加速度センサ16の検出結果に基づいて判定した移動状態の種別が、人が走っている状態の場合には、例えば、10歩毎にメッツを更新する。すなわち、制御部19は、10歩毎に、気圧センサ17の検出結果に基づいて、高度を取得する。制御部19は、人の歩幅と、10歩毎の高度の変化とに基づいて、路面の勾配を算出する。ここで、人の歩幅は、例えば、ユーザによって予め登録されている。そして、制御部19は、算出された勾配に基づいて、メッツを変更する。例えば、制御部19は、勾配が1~3%の場合にメッツを6.5とし、勾配が3~6%の場合にメッツを7.0とし、勾配が-1~-3%の場合にメッツを5.5とし、勾配が-3~-6%の場合にメッツを5.0とする。なお、6.4[km/h(キロメートル毎時)]で平地を走る場合のメッツは6.0である。
 制御部19は、加速度センサ16の検出結果に基づいて判定した移動状態の種別が人の歩行である場合には、例えば、10歩毎にメッツを更新する。すなわち、制御部19は、10歩毎に、気圧センサ17の検出結果に基づいて高度を取得する。そして、制御部19は、人の歩幅と、10歩毎の高度の変化とに基づいて、路面の勾配を算出する。ここで、人の歩幅は、例えば、ユーザによって予め登録されている。そして、制御部19は、算出された勾配に基づいて、メッツを変更する。なお、10歩歩く前に歩行が終了した場合、例えば、7歩で歩行が終了した場合には、7歩分の高度変化に基づいて、路面の勾配を算出する。
 制御部19は、加速度センサ16の検出結果に基づいて判定した移動状態の種別が自転車への乗車である場合には、10秒毎にメッツを更新する。すなわち、制御部19は、10秒毎に、気圧センサ17の検出結果に基づいて、高度を取得する。そして、制御部19は、走行距離と、10秒毎の高度の変化とに基づいて、路面の勾配を算出する。ここで、走行距離は、例えば、予め設定された速度(一例として8.9[km/h])と、時間(10秒)とに基づいて、得られる。そして、制御部19は、算出された勾配に基づいて、メッツを変更する。
 制御部19は、判定した移動状態の種別に基づいて、気圧センサ17が気圧を検出する周期(以下、「検出周期」という場合がある。)を変更する。制御部19は、人が歩いていると判定した場合には、例えば、気圧センサ17の検出周期を1秒に設定する。制御部19は、人が走っていると判定した場合には、例えば、気圧センサ17の検出周期を0.5秒に設定する。制御部19は、自転車に乗っていると判定した場合には、例えば、気圧センサ17の検出周期を0.1秒に設定する。
 気圧センサ17が気圧を検出する場合には、電力を消費する。一方、電子機器1cの移動速度が遅い場合には、移動速度が速い場合に比べて高度の変化が少ないため、気圧センサ17は、頻繁に気圧を検出する必要がない。したがって、気圧センサ17は、移動速度が遅い場合には、移動速度が速い場合に比べて検出周期を長くすることにより、電力の消費を抑えるようにする。
 よって、電子機器1cは、静止状態又は移動状態の種別の判定と、例えば、エネルギー消費量の計算とを行うことができるので、複数の機能を備えることができる。電子機器1cは、移動状態の種別により気圧センサ17の検出周期を変更するので、消費電力を抑えることが可能になる。
 制御部19は、静止状態であると判定した場合、気圧センサ17の駆動を停止させることが好ましい。加速度センサ16の検出結果に基づいて静止状態と判定される場合には、高度が変化する可能性は少ない。静止状態の場合には、運動に基づくエネルギーが消費される可能性は少ない。このため、制御部19は、気圧センサ17に対して気圧を検出させるための信号を送信しないことにより、気圧センサ17の駆動を停止させる。
 これにより、電子機器1cは、気圧センサによって電力が消費されることを抑制することができる。
 制御部19は、静止状態であると判定した場合、気圧センサ17に気圧を検出させる動作を停止することが好ましい。加速度センサ16の検出結果に基づいて静止状態と判定される場合には、高度が変化する可能性は少ない。静止状態の場合には、運動に基づくエネルギーが消費される可能性は少ない。このため、静止状態と判定した場合には、気圧センサ17は、気圧を検出する動作を停止する。
 制御部19は、移動状態の種別を判定した後、平均移動速度を算出することが好ましい。さらに、制御部19は、移動状態の種別と平均移動速度とに基づいて、気圧センサ17が気圧を検出する周期を変更することが好ましい。人が歩行している場合又は人が走っている場合には、制御部19は、加速度センサ16の検出結果に基づいて歩数をカウントすることができる。そして、制御部19は、カウントされた歩数と、予め定められた歩幅と、加速度センサ16によって加速度を検出している時間と、に基づいて、平均移動速度を求めることができる。電子機器1cの移動速度が遅い場合には、移動速度が速い場合に比べて高度の変化が少ないため、気圧センサ17は、頻繁に気圧を検出する必要がない。よって、制御部19は、移動状態の種別と平均移動速度とに基づいて、気圧センサ17の検出周期を変更する。
 これにより、電子機器1cは、移動速度が速い場合に比べて気圧センサ17の検出周期を長くすることにより、電力の消費を抑えることができる。電子機器1cは、気圧センサ17の感度を下げることなく、高感度(高精度)の検出が可能になる。
(第4実施形態)
 以下に、本発明の電子機器(携帯電子機器)の第4実施形態及びそれを含むシステムについて説明する。図8は、第4実施形態に係る電子機器1dの構成を示すブロック図である。
 電子機器1dは、例えば、携帯電話機、タブレット型のコンピュータ、歩数計又は携帯型のゲーム機等である。電子機器1dは、気圧センサ17と、加速度センサ16と、記憶部18と、制御部19と、を備える。
 気圧センサ17は、気圧を検出する。電子機器1dは、気圧センサ17によって気圧が測定されることにより、高度又は高度変化を検出することができる。
 加速度センサ16は、加速度を検出する。
 制御部19は、加速度センサ16により検出された加速度に基づいて、歩数をカウントする。制御部19は、例えば、加速度センサ16によって検出された加速度の振幅等に基づいて、歩数をカウントする。具体的な一例としては、加速度の一周期における最大値と最小値との差が所定の差以上であり、さらに、加速度のある一周期の最大値(最小値)と、次の一周期の最大値(最小値)との時間差が所定の時間差以下であり、これらの条件が所定の周期分連続する等の条件を満たす場合に、制御部19は、加速度の一周期分を1歩としてカウントする。
 制御部19は、気圧センサ17により検出された気圧に基づいて、歩数に対する気圧変動が所定値よりも大きいと判定した場合に、歩数をカウントする条件を緩和する。歩数に対する気圧変動は、歩行している道の勾配に応じて変化する。制御部19は、所定以上の勾配のある道を移動していると判定した場合には、歩数をカウントする条件を緩和することができる。制御部19は、例えば、気圧センサ17によって検出される気圧の変化と、その気圧が変化する時間とに基づいて、所定以上の勾配のある道を移動しているか否かを判定する。
 例えば、坂道又は山道を登る場合には、平地を歩く場合に比べて、加速度センサによって検出される加速度(振幅の最大値及び最小値、並びに、振幅の最大値(最小値)の間隔)が不安定になり易い。これは、坂道又は山道を登る人の姿勢及び歩幅が、平地を歩く場合に比べて、不均一になるためである。このように、坂道又は山道を登る場合でも、平地を歩く場合と同じ条件(設定)で歩数をカウントする場合には、歩数がカウントされない可能性がある。このため、制御部19は、坂道又は山道を登る場合(所定以上の勾配のある道を移動していると判定された場合)には、平地を歩く場合(所定以上の勾配のある道を移動していないと判定された場合(通常時))に比べて、歩数をカウントする条件を緩和する。すなわち、制御部19は、坂道又は山道を登っているときでも歩数がカウントされるように、条件を緩和する。制御部19が緩和する条件には、歩数をカウントする条件と、歩数のカウントを開始する条件とが含まれる。
 通常時の歩数をカウントする条件は、誤検出を防止するために、例えば、次のようになっている。すなわち、加速度の周期における閾値が1[Hz(ヘルツ)]である。加速度の振幅の閾値が1000±100[mg(ミリグラム)]である。連続して歩行した条件が10歩である。
 一方、条件を緩和した後の歩数をカウントする条件は、例えば、次の通りである。すなわち、加速度の周期における閾値が0.5[Hz]である。加速度の振幅の閾値が1000±50[mg]である。連続して歩行した条件が5歩である。
 これにより、電子機器1dは、歩行している路面の状態に応じて歩数をカウントする条件を適宜変更するので、歩行の状態をより正確に検出することができる。
 制御部19は、気圧センサ17により検出された気圧に基づいて、所定以上の勾配のある道を移動していないと判定した場合には、加速度センサ16により検出される加速度の周期を第1の周期に設定する。制御部19は、その第1の周期に基づいて検出された加速度の振幅が第1の閾値を超えており、その第1の閾値を連続的に超えた回数が第1の回数を超えた場合に、歩数のカウントを開始する。第1の周期の一例は、上述した1[Hz]である。第1の閾値の一例は、上述した1000±100[mg]である。第1の回数の一例は、上述した10歩(10回)である。
 制御部19は、気圧センサ17により検出された気圧に基づいて、所定以上の勾配のある道を移動していると判定した場合には、第1の周期をより短い第2の周期に設定する。制御部19は、第1の閾値をより低い第2の閾値に設定し、第1の回数をより少ない第2の回数に設定して、歩数のカウントを開始する。第2の周期の一例は、上述した0.5[Hz]である。第2の閾値の一例は、上述した1000±50[mg]である。第2の回数の一例は、上述した5歩(5回)である。
 図9は、所定以上の勾配のある道を移動する場合に加速度センサ16によって検出される加速度と、第1の閾値と、を示す図(比較例を示す図)である。図10は、所定以上の勾配のある道を移動する場合に加速度センサ16によって検出される加速度と、第2の閾値と、を示す図(本実施形態を示す図)である。
 所定以上の勾配のある道を移動する場合にも第1の閾値を適用すると、図9の円Aで示す部分のように、加速度が第1の閾値を超えない場合が多数ある。すなわち、円Aで示す部分では、歩行と判定されない。よって図9に示す場合では、歩行と判定されない部分が多数あるために、歩数のカウントが開始されない。
 これに対し、所定以上の勾配のある道を移動する場合に第2の閾値を適用すると、図10の円Bで示すように、加速度が第2の閾値を超えない場合が図9の場合に比べて少数になる。よって、図10に示す場合では、より多く歩行を検出することができる。図10に示す場合では、第1の回数よりも少ない第2の回数に設定されているため、歩数のカウントを開始することができる。
 これにより、電子機器1dは、歩行している路面の状態に応じて歩数をカウントする条件を適宜変更するので、歩数をカウントすることができる。
 制御部19は、気圧センサ17により検出された気圧に基づいて、所定以上の勾配のある道を移動していないと判定した場合には、第1の回数を歩数のカウント値に加算することが好ましい。すなわち、制御部19は、第1の周期に基づいて検出された加速度の振幅が第1の閾値を超えており、その第1の閾値を連続的に超えた回数が第1の回数を超えた場合、歩数のカウントを1歩目とするのではなく、第1の回数を加算した、例えば、11歩目とする。なお、この場合の第1の回数は、10回である。
 制御部19は、気圧センサ17により検出された気圧に基づいて、所定以上の勾配のある道を移動していると判定した場合には、第2の回数を歩数のカウント値に加算することが好ましい。すなわち、第2の周期に基づいて検出された加速度の振幅が第2の閾値を超えており、その第2の閾値を連続的に超えた回数が第2の回数を超えた場合、歩数のカウントを1歩目とするのではなく、第2の回数を加算した、例えば、6歩目とする。なお、この場合の第2の回数は、5回である。
 これにより、電子機器1dは、カウントされる歩数を実際に人が歩いたときの歩数に一致させることができる。
 制御部19は、加速度センサ16により検出された加速度に基づいて、歩数をカウントできない期間があった場合には、その期間とともに気圧センサ17により検出された気圧を記憶部18に保存することが好ましい。制御部19は、記憶部18に記憶されている気圧に基づいて、所定以上の勾配のある道を移動していたと判定した場合には、記憶部18に記憶されている歩数をカウントできない期間に基づいて、歩数を推定し、推定した歩数を歩数のカウント値に加算することが好ましい。
 この場合、条件は、第1の周期、第1の閾値及び第1の回数に固定されている。例えば、人は、平地を歩いた後、坂道を登り、その後、再度平地を歩く場合がある。この場合、坂道を登るときに加速度センサ16により検出される加速度は、平地を歩く場合に比べて一定ではなくなる。このため、第1の周期、第1の閾値及び第1の回数に設定されている場合には、坂道を登るときの歩数はカウントされない可能性がある。そこで、歩数をカウントしている場合に、歩数をカウントできない期間が存在すると、制御部19は、その期間の加速度と気圧とを記憶部18に記憶させる。
 そして、制御部19は、所定の場合に、記憶部18に記憶される気圧を読み出し、その気圧に基づいて、所定以上の勾配のある道を移動しているか否かを判定する。制御部19は、所定以上の勾配のある道を移動していると判定した場合には、記憶部18から加速度を読み出し、第2の周期、第2の閾値及び第2の回数に基づいて、記憶部18に記憶された期間の歩数をカウントする。制御部19は、既にカウントされた歩数と、記憶部18に記憶された期間についてカウントされた歩数とを加算する。ここで、所定の場合とは、例えば、歩数のカウントを終了させる操作が行われた場合等である。
 これにより、電子機器1dは、歩数をカウントすることができる。
 電子機器1dは、以下のような形態であってもよい。すなわち、電子機器1dは、気圧センサ17と、加速度センサ16と、記憶部18と、制御部19と、を備える。
 気圧センサ17は、気圧を検出する。気圧センサ17は、例えば、気圧センサ又は圧力センサを備える。電子機器1dは、気圧センサ17によって気圧が測定されることにより、高度又は高度変化を検出することができる。
 加速度センサ16は、加速度を検出する。
 制御部19は、加速度センサ16により検出された加速度に基づいて、歩数をカウントする。制御部19は、例えば、加速度センサ16によって検出された加速度の振幅等に基づいて、歩数をカウントする。具体的な一例としては、加速度の一周期における最大値と最小値との差が所定の差以上であり、さらに、加速度のある一周期の最大値と、次の一周期の最大値との時間差、又は加速度のある一周期の最小値と、次の一周期の最小値との時間差が所定の時間差以下であり、これらの条件が所定の周期分連続する等の条件を満たす場合に、制御部19は、加速度の一周期分を1歩としてカウントする。
 制御部19は、加速度センサ16により検出された加速度に基づいて、歩数をカウントできない期間があった場合には、その期間とともに気圧センサ17により検出された気圧を記憶部18に保存する。制御部19は、記憶部18に記憶されている気圧に基づいて、所定以上の勾配のある道を移動していたと判定した場合には、記憶部18に記憶されている歩数をカウントできない期間に基づいて、歩数を推定し、推定した歩数を歩数のカウント値に加算する。
 人が坂道を歩行する場合、道路の舗装環境又はユーザの疲労度等により、加速度センサ16によって検出される加速度が局所的な時間において乱れることがある。そこで、制御部19は、歩行中は、全て同一の条件(歩数をカウントする条件)に設定し、設定した条件と加速度センサ16によって検出された加速度とに基づいて、歩数(第1の歩数)をカウントする。さらに、制御部19は、歩数がカウントされない期間があった場合には、その期間における、加速度センサ16によって検出された加速度と、気圧センサ17によって検出された気圧とを記憶部18に記憶する。その後、制御部19は、記憶部18に記憶された気圧を読み出し、その気圧に基づいて、所定以上の勾配のある道を移動しているか否かを判定する。制御部19は、所定以上の勾配のある道を移動していると判定した場合には、歩数をカウントする条件を緩和するとともに、記憶部18に記憶された加速度を読み出し、緩和後の条件と読み出した加速度とに基づいて、記憶部18に記憶された期間の歩数(第2の歩数)をカウントする。制御部19は、第1の歩数と第2の歩数とを加算して、全期間の歩数を取得する。
 これにより、電子機器1dは、歩数をカウントすることができる。
 なお、上述した電子機器1dは、歩行の状態をより正確に検出して、歩数をカウントすることができる。これにより、電子機器1dは、例えば、カウントした歩数に基づいて、消費カロリ等を求めることができる。すなわち、電子機器1dは、正確な消費カロリを得ることができる。
 1a、1b、1c、1d 携帯電子機器
 11 表示部
 12 操作部
 13 レシーバ
 14 マイク
 15 通信部
 16 加速度センサ
 17 気圧センサ
 18 記憶部
 19 制御部

Claims (28)

  1.  加速度を検出する加速度センサ、
     気圧を検出する気圧センサ、及び、
     前記加速度センサが検出する加速度と前記気圧センサが検出する気圧とに基づいて活動量又は歩数を算出する制御部、
     を備えた電子機器。
  2.  加速度センサにより加速度を検出するステップ、
     気圧センサにより気圧を検出するステップ、及び、
     検出された加速度と検出された気圧とに基づいて活動量又は歩数を算出するステップ、
     を含む制御方法。
  3.  加速度センサにより加速度を検出するステップ、
     気圧センサにより気圧を検出するステップ、及び、
     検出された加速度と検出された気圧とに基づいて活動量又は歩数を算出するステップ、
     を電子機器に実行させる制御プログラム。
  4.  前記制御部は、前記加速度と、前記移動の開始時及び前記移動の終了時の前記気圧の差分値と、に基づき前記活動量を求める
     請求項1に記載の電子機器。
  5.  前記制御部は、加速度によって自転車移動であると判定した際に、自転車の種類を電動アシストであると設定している場合には、前記気圧に基づかずに、前記活動量を求める請求項4に記載の電子機器。
  6.  前記制御部は、前記気圧センサが検出する気圧信号の変化を、前記加速度センサが検出する加速度信号に基づいて、高度変化及び気圧変化のいずれであるかを判別する請求項1に記載の電子機器。
  7.  前記制御部は、
      加速度センサが検出した加速度信号に基づいて、加速状態を判別し、
      判別した前記加速状態に基づいて、前記気圧信号の変化を高度変化及び気圧変化のいずれであるかを判別する、
     請求項6に記載の電子機器。
  8.  前記制御部は、前記加速度センサが検出した加速度信号の振幅に基づいて、前記気圧センサが検出した前記気圧信号の変化が高度変化であると判別する期間を変更する、
     請求項6に記載の電子機器。
  9.  前記制御部は、
      前記加速度センサが第1の値よりも大きい振幅の加速度信号を検出したと判別すると、
      前記気圧センサが第1の期間に検出する前記気圧信号の変化が高度変化であると判別する、
     請求項6に記載の電子機器。
  10.  前記制御部は、
      前記加速度センサが第2の値よりも大きい振幅の加速度信号を検出中であると判別すると、
      前記気圧センサが検出している前記気圧信号の変化が高度変化であると判別する、
     請求項6に記載の電子機器。
  11.  前記制御部は、
      前記加速度センサが、第1の値よりも大きい振幅の加速度信号を検出したと判別すると、前記気圧センサが第1の期間に検出する前記気圧信号の変化が高度変化であると判別し、
      前記加速度センサが第2の値よりも大きい振幅の加速度信号を検出中であると判別すると、前記気圧センサが検出している前記気圧信号の変化が高度変化であると判別し、
     前記第1の値は、第2の値に比べて大きい、
     請求項6に記載の電子機器。
  12.  前記算出するステップは、前記気圧センサが検出する気圧信号の変化を、前記加速度センサが検出する加速度信号に基づいて、高度変化及び気圧変化のいずれであるかを判別するステップを含む、請求項3に記載の制御プログラム。
  13.  前記算出するステップは、前記気圧センサが検出する気圧信号の変化を、前記加速度センサが検出する加速度信号に基づいて、高度変化及び気圧変化のいずれであるかを判別するステップを含む、請求項2に記載の制御方法。
  14.  前記制御部は、
      前記加速度センサにより検出した加速度に基づいて、静止状態又は移動状態の種別を判定し、
      当該判定した結果と、前記気圧センサにより検出した気圧に基づいて、前記活動量を算出し、
      判定した移動状態の種別に基づいて、前記気圧センサが気圧を検出する周期を変更する請求項1に記載の電子機器。
  15.  前記制御部は、前記静止状態であると判定した場合、前記気圧センサの駆動を停止させる請求項14に記載の電子機器。
  16.  前記制御部は、前記静止状態であると判定した場合、前記気圧センサに気圧を検出させる動作を停止する請求項14に記載の電子機器。
  17.  前記制御部は、
      前記移動状態の種別を判定した後、平均移動速度を算出し、
      当該移動状態の種別と、当該平均移動速度とに基づいて、前記気圧センサが気圧を検出する周期を変更する請求項14に記載の電子機器。
  18.  前記制御部は、前記移動状態の種別として、歩行をしている状態、走行をしている状態及び移動体に乗って移動している状態を判定する請求項14に記載の電子機器。
  19.  前記制御部は、
      前記加速度センサにより検出された加速度に基づいて、前記歩数をカウントし、
      前記気圧センサにより検出された気圧の、カウントした歩数に対する変動が所定値よりも大きいと判定した場合には、前記歩数をカウントする条件を緩和する、請求項1に記載の電子機器。
  20.  前記制御部は、
      前記気圧センサにより検出された気圧の、前記カウントした歩数に対する変動が所定値よりも大きいと判定した場合に、歩数に対する気圧変動が所定値以下であると判定した場合に比べて、前記歩数をカウントする条件を緩和する、請求項19に記載の電子機器。
  21.  前記制御部は、前記気圧センサにより検出された気圧に基づいて、所定以上の勾配のある道を移動していると判定した場合に、前記歩数をカウントする条件を緩和する、請求項19に記載の電子機器。
  22.  前記制御部は、前記気圧センサにより検出された気圧の、歩数に対する変動が所定値よりも大きいと判定した場合に、前記歩数のカウントを開始する条件を緩和する、請求項19に記載の電子機器。
  23.  前記制御部は、
      前記気圧センサにより検出された気圧の、歩数に対する変動が所定値以下であると判定した場合には、前記加速度センサにより検出される加速度の周期を第1の周期に設定し、
      当該第1の周期に基づいて検出された加速度の振幅が第1の閾値を連続的に超えた回数が第1の回数を超えた場合に、歩数のカウントを開始し、
     前記制御部は、
      前記気圧センサにより検出された気圧の、歩数に対する変動が所定値よりも大きいと判定した場合には、前記加速度センサにより検出される加速度の周期を前記第1の周期より短い第2の周期に設定し、
      前記第2の周期に基づいて検出された加速度の振幅が、前記第1の閾値より小さい第2の閾値を連続的に超えた回数が、前記第1の回数より少ない第2の回数を超えた場合に、歩数のカウントを開始する、請求項19に記載の電子機器。
  24.  前記制御部は、
      第1の回数を超えた場合に前記歩数のカウントを開始すると、前記第1の回数を歩数のカウント値に加算し、
      第2の回数を超えた場合に前記歩数のカウントを開始すると、前記第2の回数を歩数のカウント値に加算する、請求項23に記載の電子機器。
  25.  記憶部を備え、
     前記制御部は、
      前記加速度センサにより検出された加速度に基づいて、歩数をカウントできない期間があった場合には、当該期間とともに前記気圧センサにより検出された気圧を前記記憶部に保存し、
      前記記憶部に記憶されている気圧に基づいて、前記記憶部に記憶されている歩数をカウントできない期間の歩数を推定し、
      推定した歩数を歩数のカウント値に加算する、請求項19に記載の電子機器。
  26.  記憶部をさらに備え、
     前記制御部は、
      前記加速度センサにより検出された加速度に基づいて、前記歩数をカウントできない期間があった場合に、当該期間とともに前記気圧センサにより検出された気圧に基づいて、前記記憶部に記憶されている歩数をカウントできない期間の歩数を推定し、
      推定した歩数を歩数のカウント値に加算する、請求項1に記載の電子機器。
  27.  気圧を検出する気圧センサ、
     加速度を検出する加速度センサ、及び、
     前記加速度センサにより検出された加速度に基づいて、歩数をカウントする制御部、を含み、
     前記制御部は、前記気圧センサにより検出された気圧に基づいて、歩数に対する気圧変動が所定値よりも大きいと判定した場合には、前記歩数をカウントする条件を緩和する、システム。
  28.  前記制御部は、
      前記加速度センサにより検出された加速度に基づいて前記歩数をカウントできない期間があった場合に、当該期間とともに前記気圧センサにより検出された気圧に基づいて、記憶部に記憶されている歩数をカウントできない期間の歩数を推定し、
      推定した歩数を歩数のカウント値に加算する、請求項1に記載の電子機器。
PCT/JP2014/063033 2013-05-17 2014-05-16 電子機器、制御プログラム、制御方法及びシステム WO2014185506A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14798593.1A EP2997898B1 (en) 2013-05-17 2014-05-16 Electronic device, control program, control method, and system
US14/891,672 US10130843B2 (en) 2013-05-17 2014-05-16 Electronic device, control program, control method, and system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-105442 2013-05-17
JP2013105442A JP5800855B2 (ja) 2013-05-17 2013-05-17 携帯電子機器
JP2013-129858 2013-06-20
JP2013129858A JP6312990B2 (ja) 2013-06-20 2013-06-20 携帯機器、並びに携帯機器の制御プログラム及び制御方法
JP2013-135052 2013-06-27
JP2013-135051 2013-06-27
JP2013135051A JP5774060B2 (ja) 2013-06-27 2013-06-27 電子機器及びシステム
JP2013135052A JP6353198B2 (ja) 2013-06-27 2013-06-27 電子機器

Publications (1)

Publication Number Publication Date
WO2014185506A1 true WO2014185506A1 (ja) 2014-11-20

Family

ID=51898481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063033 WO2014185506A1 (ja) 2013-05-17 2014-05-16 電子機器、制御プログラム、制御方法及びシステム

Country Status (3)

Country Link
US (1) US10130843B2 (ja)
EP (1) EP2997898B1 (ja)
WO (1) WO2014185506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017104227A1 (ja) * 2015-12-18 2018-10-04 ソニー株式会社 情報処理装置、情報処理方法およびプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10539429B1 (en) 2014-11-03 2020-01-21 Savvysherpa, Llc Accelerometer-based systems and methods and quantifying steps
JP6724349B2 (ja) * 2015-11-30 2020-07-15 カシオ計算機株式会社 自律移動装置、自律移動方法及びプログラム
JP2017129441A (ja) 2016-01-20 2017-07-27 セイコーエプソン株式会社 電子機器、高度算出プログラム、および高度算出方法
JP6904352B2 (ja) * 2016-07-28 2021-07-14 ソニーグループ株式会社 コンテンツ出力システム、端末装置、コンテンツ出力方法、およびプログラム
US10189425B2 (en) * 2017-05-02 2019-01-29 Agero, Inc. Using data collected by a personal electronic device to identify a vehicle
US10464598B2 (en) * 2017-07-18 2019-11-05 GM Global Technology Operations LLC Overload and overspeed detection of electric power steering systems
US10462608B1 (en) 2017-07-31 2019-10-29 Agero, Inc. Estimating orientation of a mobile device with respect to a vehicle using global displacement information and local motion information
US11688520B2 (en) * 2018-06-29 2023-06-27 PEAR Sports LLC System and method for estimating calorie burn for workouts
US20210393166A1 (en) * 2020-06-23 2021-12-23 Apple Inc. Monitoring user health using gait analysis

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029323A (ja) 1999-07-21 2001-02-06 Yamasa Tokei Keiki Kk 歩数計
JP2003028967A (ja) 2001-07-17 2003-01-29 Sharp Corp 気象情報収集用の情報端末および気象情報システム
JP2004120688A (ja) 2002-09-30 2004-04-15 Mitsumi Electric Co Ltd 歩数計機能付き携帯電話機
JP2008524589A (ja) * 2004-12-17 2008-07-10 ナイキ インコーポレーティッド 運動履行のマルチセンサ監視方法
JP2008220517A (ja) * 2007-03-09 2008-09-25 Npo Jukunen Taiiku Daigaku Research Center 消費カロリー算出方法および携帯用消費カロリー測定装置
JP2010240158A (ja) * 2009-04-06 2010-10-28 Seiko Epson Corp エネルギー消費量計算機
JP2011030643A (ja) * 2009-07-30 2011-02-17 Npo Jukunen Taiiku Daigaku Research Center 移動形態判別方法および移動形態判別装置、ならびに消費カロリー算出方法
JP2011215130A (ja) * 2010-03-15 2011-10-27 Seiko Instruments Inc 高度計
US20120316822A1 (en) * 2009-12-04 2012-12-13 Frank Barth Movement monitor and use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3810669B2 (ja) 2001-11-19 2006-08-16 セイコーインスツル株式会社 移動検出型高度計
JP2009200586A (ja) 2008-02-19 2009-09-03 Panasonic Corp 携帯端末装置及び携帯端末装置の使用制限方法
KR101136357B1 (ko) * 2011-08-19 2012-04-18 주식회사 휘트닷라이프 칼로리 소모량 측정장치 및 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029323A (ja) 1999-07-21 2001-02-06 Yamasa Tokei Keiki Kk 歩数計
JP2003028967A (ja) 2001-07-17 2003-01-29 Sharp Corp 気象情報収集用の情報端末および気象情報システム
JP2004120688A (ja) 2002-09-30 2004-04-15 Mitsumi Electric Co Ltd 歩数計機能付き携帯電話機
JP2008524589A (ja) * 2004-12-17 2008-07-10 ナイキ インコーポレーティッド 運動履行のマルチセンサ監視方法
JP2008220517A (ja) * 2007-03-09 2008-09-25 Npo Jukunen Taiiku Daigaku Research Center 消費カロリー算出方法および携帯用消費カロリー測定装置
JP2010240158A (ja) * 2009-04-06 2010-10-28 Seiko Epson Corp エネルギー消費量計算機
JP2011030643A (ja) * 2009-07-30 2011-02-17 Npo Jukunen Taiiku Daigaku Research Center 移動形態判別方法および移動形態判別装置、ならびに消費カロリー算出方法
US20120316822A1 (en) * 2009-12-04 2012-12-13 Frank Barth Movement monitor and use
JP2011215130A (ja) * 2010-03-15 2011-10-27 Seiko Instruments Inc 高度計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2997898A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017104227A1 (ja) * 2015-12-18 2018-10-04 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
US11029743B2 (en) 2015-12-18 2021-06-08 Sony Corporation Information processing device and information processing method

Also Published As

Publication number Publication date
US20160101319A1 (en) 2016-04-14
EP2997898A4 (en) 2017-01-11
EP2997898A1 (en) 2016-03-23
US10130843B2 (en) 2018-11-20
EP2997898B1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2014185506A1 (ja) 電子機器、制御プログラム、制御方法及びシステム
JP6223356B2 (ja) デバイスを制御する方法及びそれを実施するデバイス
US8913134B2 (en) Initializing an inertial sensor using soft constraints and penalty functions
KR102275380B1 (ko) 워킹 또는 죠깅 등의 트레이닝을 지원하기 위한 장치 및 시스템
US10504381B2 (en) On-running landing position evaluation method, on-running landing position evaluation apparatus, detection method, detection apparatus, running motion evaluation method, and running motion evaluation apparatus
KR20080095165A (ko) 체동 검출 장치, 체동 검출 방법 및 체동 검출 프로그램
CN111024126B (zh) 一种行人导航定位中的自适应零速修正方法
JP5176145B2 (ja) 方位検出方法及び装置、並びに移動履歴算出方法及び装置
US20210093917A1 (en) Detecting outdoor walking workouts on a wearable device
JP2016116743A (ja) 運動支援装置、運動支援方法及びプログラム
US20180111021A1 (en) Exercise analysis device, exercise analysis system, and exercise analysis method
JP6312990B2 (ja) 携帯機器、並びに携帯機器の制御プログラム及び制御方法
Zhou et al. An improved dead reckoning algorithm for indoor positioning based on inertial sensors
JP6452933B2 (ja) 電子機器
WO2015182304A1 (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
JP5972019B2 (ja) 電子機器
CN108663044B (zh) 一种定位方法及装置
KR101312143B1 (ko) 자전거의 주행상황인식 시스템
JP5565736B2 (ja) 計算装置、計算装置の制御方法、制御プログラム、及び記録媒体
JP5176047B2 (ja) 歩数計
JP5800855B2 (ja) 携帯電子機器
JP6623642B2 (ja) 測位装置、および測位装置の測位方法
JP2014169931A (ja) 電子機器
JP6353198B2 (ja) 電子機器
US8645059B2 (en) Method of generating graphical data and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14891672

Country of ref document: US

Ref document number: 2014798593

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE