WO2014185340A1 - Brake device - Google Patents

Brake device Download PDF

Info

Publication number
WO2014185340A1
WO2014185340A1 PCT/JP2014/062421 JP2014062421W WO2014185340A1 WO 2014185340 A1 WO2014185340 A1 WO 2014185340A1 JP 2014062421 W JP2014062421 W JP 2014062421W WO 2014185340 A1 WO2014185340 A1 WO 2014185340A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
brake
brake pedal
stroke
rod
Prior art date
Application number
PCT/JP2014/062421
Other languages
French (fr)
Japanese (ja)
Inventor
将之 斉藤
美通 高野
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201480020636.0A priority Critical patent/CN105102282B/en
Publication of WO2014185340A1 publication Critical patent/WO2014185340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/18Connection thereof to initiating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/06Disposition of pedal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G7/00Manually-actuated control mechanisms provided with one single controlling member co-operating with one single controlled member; Details thereof
    • G05G7/02Manually-actuated control mechanisms provided with one single controlling member co-operating with one single controlled member; Details thereof characterised by special provisions for conveying or converting motion, or for acting at a distance
    • G05G7/04Manually-actuated control mechanisms provided with one single controlling member co-operating with one single controlled member; Details thereof characterised by special provisions for conveying or converting motion, or for acting at a distance altering the ratio of motion or force between controlling member and controlled member as a function of the position of the controlling member
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • G05G1/44Controlling members actuated by foot pivoting

Definitions

  • the present invention relates to a brake device mounted on a vehicle.
  • a brake device including a booster that generates an auxiliary force for reducing the brake operation force by using an energy source different from the driver's brake operation force.
  • the booster included in the brake device described in Patent Document 1 pressurizes the hydraulic fluid by advancing the pressurizing piston with a force generated by an electric motor or a force generated by gas pressure.
  • An object of the present invention is to provide a brake device capable of suppressing energy consumption.
  • the brake device of the present invention is preferably provided with a link type booster in which the operation amount of the output member is small relative to the operation amount of the brake operation member.
  • FIG. 3 is a side view of FIG. 2. It is the schematic diagram which looked at the brake pedal, link type booster, and rod in the initial state of Example 1 from the side. It is the fragmentary sectional view which looked at the stroke control part of Example 1 from the vehicle up-and-down direction.
  • 1 is an overall perspective view of a hydraulic control unit according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the action
  • FIG. It is a schematic diagram which shows the action
  • FIG. It is a schematic diagram which shows the action
  • FIG. It is a schematic diagram which shows the action
  • FIG. It is a schematic diagram which shows the action
  • FIG. It is a schematic diagram which shows the action
  • FIG. It is a schematic diagram which shows the action
  • the brake device according to the first embodiment (hereinafter, referred to as device 1) is a hydraulic brake device that is applied to a vehicle brake system and generates a braking force by applying brake fluid pressure to each wheel of the vehicle.
  • the vehicle is, for example, an electric vehicle such as a hybrid vehicle provided with an electric motor (generator) in addition to an engine as a prime mover for driving wheels, or an electric vehicle provided with only an electric motor (generator).
  • the non-electric vehicle which uses only an engine as a drive source may be sufficient.
  • the device 1 includes a unit on the brake pedal side and a hydraulic pressure control unit 6.
  • FIG. 1 is an overall perspective view of a unit on a brake pedal side.
  • This unit includes a brake pedal 2, a link booster 3, a push rod 4, and a master cylinder 5.
  • the x-axis is provided in the axial direction of the master cylinder 5 and the side on which the master cylinder 5 is installed with respect to the brake pedal 2 (the piston of the master cylinder 5 strokes in response to the depression of the brake pedal 2).
  • Direction is positive.
  • the brake pedal 2 is a brake operation member that receives an input of a driver's brake operation, and is provided at a pedal arm 20 that extends in the vertical direction of the vehicle while being convexly curved toward the x-axis positive direction side, and at the lower end of the pedal arm 20.
  • the brake pedal 2 is swingably supported with respect to a bracket 7 fixedly installed on the vehicle body side.
  • the bracket 7 is fastened and fixed with bolts to the x-axis negative direction side of the bottom of the mounting wall member 70 while a part thereof is housed in the bottomed dish-shaped mounting wall member 70.
  • the mounting wall member 70 is provided at the lower part of the dash panel, which is a partition member on the vehicle body side that partitions the engine room (or motor room in which the power unit is installed; hereinafter simply referred to as the engine room) and the vehicle compartment. It is fixed so as to face the room and constitutes a part of the dash panel. Thereby, the bracket 7 is fixed so as to protrude toward the vehicle compartment side (x-axis negative direction side).
  • the bracket 7 is formed in a U shape having a lower opening when viewed from the x-axis direction side by combining the first member 7a and the second member 7b.
  • a pedal rotation shaft 91 is installed so as to extend in the left-right direction.
  • the pedal rotation shaft 91 is fixed to the bracket 7.
  • the brake pedal 2 is a so-called suspension type, and the upper end portion of the pedal arm 20 is rotatably connected to the pedal rotation shaft 91.
  • the brake pedal 2 is supported by the bracket 7 so as to be rotatable about the pedal rotation shaft 91.
  • the pedal pad 21 at the lower end of the brake pedal 2 is depressed by the driver and receives an operating force (pedal pedaling force or pedaling force)
  • the brake pedal 2 moves forward (in the positive x-axis direction) about the pedal rotation shaft 91.
  • a cylindrical rotating member 91 a is installed on the pedal rotation shaft 91 so as to be rotatable with respect to the pedal rotation shaft 91 so as to surround the outer periphery thereof.
  • the upper end portion of the brake pedal 2 is fixed to the rotating member 91 a so as to be rotatable with respect to the pedal rotating shaft 91.
  • the upper end side of the plate-like arm member 22 is fixed to the same rotating member 91a adjacent to the upper end portion of the brake pedal 2 in the left-right direction.
  • the brake pedal 2 and the arm member 22 rotate at the same rotation phase (rotation angle) around the pedal rotation shaft 91. In this sense, the brake pedal 2 and the arm member 22 can be regarded as an integral member.
  • the link type booster 3 is a link mechanism that makes the change rate of the axial movement amount (rod stroke S R ) of the push rod 4 with respect to the rotational movement amount (pedal stroke S P ) of the brake pedal 2 variable.
  • the link type booster 3 includes a plurality of plate-like links, and includes a first link 31 that is a rod shape in a side view (viewed from the left-right direction) and a second link 32 that is a triangle shape in a side view. Yes.
  • the first link 31 has one end side (x-axis negative direction side) rotatably connected to the brake pedal 2 and the other end side (x-axis positive direction side) rotatably connected to the second link 32. Has been.
  • one end side (x-axis negative direction side) of the first link 31 is rotatably connected to the lower end side of the arm member 22 via a pin 92 as a shaft member extending in the left-right direction.
  • the other end side (x-axis negative direction side) of the first link 31 is rotatably connected to one end side (x-axis negative direction side) of the second link 32 via a pin 93 extending in the left-right direction.
  • the second link 32 is swingably connected to the bracket 7, and one end side (x-axis negative direction side) is rotatable with respect to the other end side (x-axis positive direction side) of the first link 31.
  • the other end side (x-axis positive direction side) is connected to the push rod 4 so as to be rotatable.
  • the bracket 7 (between the first member 7a and the second member 7b) has a second link rotation shaft 94 in the left-right direction on the x-axis positive direction side and below the pedal rotation shaft 91. It is installed so that it may extend.
  • the upper end side (first corner) of the second link 32 is rotatably connected to the second link rotating shaft 94.
  • the second link 32 is supported by the bracket 7 so as to be rotatable about the second link rotation shaft 94.
  • the lower end side of the second link 32 and the x-axis negative direction side (second corner) are connected to the other end side (x-axis positive direction side) of the first link 31 via a pin 93 extending in the left-right direction. It is connected rotatably.
  • the lower end side of the second link 32 and the x-axis positive direction side (third corner) are connected to the clevis 40 fixed to the x-axis negative direction end of the push rod 4 via a pin 95 extending in the left-right direction. It is connected rotatably.
  • a push rod (hereinafter referred to as a rod) 4 is applied to the master cylinder 5 by using a driver's operation force (amplified by the link booster 3) input to the brake pedal 2 as thrust in the x-axis direction (rod thrust). It is an operating force transmission member that transmits, and operates in the x-axis direction in conjunction with the brake pedal 2 (link booster 3).
  • the rod 4 serves as an output member of the link type booster 3 and receives an input from the second link 32 (rotational force about the second link rotating shaft 94) via the clevis 40, so that the brake pedal 2 is depressed. Strokes in the positive x-axis direction according to The rod 4 is also an input member (input rod) of the master cylinder 5, and its x-axis positive direction end is connected to the piston of the master cylinder 5.
  • the master cylinder 5 is connected to the link booster 3 via the rod 4.
  • the master cylinder 5 is integrally provided with a reservoir tank (hereinafter referred to as a reservoir) 5a which is a brake fluid source for storing brake fluid, and the master cylinder 5 is supplied with brake fluid from the reservoir 5a.
  • the master cylinder 5 is connected to a wheel cylinder (caliper) of each wheel of the vehicle via an oil passage (brake pipe) (not shown).
  • the master cylinder 5 is a first brake fluid pressure generation source that generates fluid pressure (master cylinder fluid pressure) in response to an operation (brake operation) of the brake pedal 2 by the driver.
  • the master cylinder hydraulic pressure is supplied to the wheel cylinder via the oil passage, and generates a wheel cylinder hydraulic pressure (brake hydraulic pressure).
  • the master cylinder 5 is a so-called tandem type, and includes a bottomed cylindrical cylinder 50 closed on the x-axis positive direction side and two pistons slidably inserted on the inner peripheral surface of the cylinder 50. Inside the cylinder 50, a hydraulic chamber of the primary P system and a hydraulic chamber of the secondary S system are defined by these pistons. Each fluid pressure chamber communicates with a discharge port (supply port) 51 and a replenishment port 52, respectively.
  • the discharge port 51 is connected to the hydraulic pressure control unit 6 and is provided so as to communicate with the wheel cylinder.
  • the replenishment port 52 is connected to and communicates with the reservoir 5a.
  • the cylinder 50 is fastened and fixed with bolts to the x-axis positive direction side of the bottom of the mounting wall member 70.
  • the mounting wall member 70 is fixed to the dash panel so that the mounting side (x-axis positive direction side) of the master cylinder 5 faces the engine room. Thereby, the master cylinder 5 is fixed so as to protrude to the engine room side (x-axis positive direction side).
  • the x-axis positive direction end of the rod 4 penetrating the mounting wall member 70 is rotatably connected to the x-axis negative direction end of the P system piston.
  • the rod 4 is inserted from the opening of the cylinder 50 on the x-axis negative direction side.
  • the x-axis positive direction end of the rod 4 is formed in a convex spherical shape, and is fitted and installed in a receiving portion formed in a concave spherical shape on the x-axis negative direction side of the P-system piston. It is provided so as to be rotatable with respect to the piston.
  • the piston of the S system is a free piston, and is installed on the x axis positive direction side of the piston of the P system.
  • a P system hydraulic chamber is defined between the pistons, and an S system hydraulic chamber is defined between the S system piston and the bottom of the cylinder 50.
  • each hydraulic pressure master cylinder hydraulic pressure
  • a coil spring serving as a reaction force applying means for applying an appropriate reaction force to the brake pedal 2 as well as a return spring for the piston is installed in a compressed state.
  • FIG. 4 is a schematic view of the brake pedal 2, the link booster 3, and the rod 4 in an initial state where the driver does not perform a brake operation, as viewed from the side.
  • the distance from the force point of the brake pedal 2 (pedal pad 21) to the fulcrum, that is, the pivot center of the brake pedal 2 relative to the bracket 7 (pedal rotating shaft 91) is a (> 0).
  • each dimension (geometry) is set to be as follows.
  • a virtual perpendicular line passing through the rotation center 96 of the rod 4 with respect to the piston of the master cylinder 5 (the x-axis positive direction end of the rod 4 fitted to the receiving portion of the P system piston on the x-axis negative direction side) is L1. .
  • the distance from the swing center of the brake pedal 2 (pedal rotation shaft 91) to the perpendicular L1 is 5a / 8.
  • the distance from the rotation center (pin 95) of the second link 32 to the rod 4 to the perpendicular L1 is 5a / 17.
  • the distance from the rotation center (pin 95) of the second link 32 relative to the rod 4 to the swing center (link rotation shaft 94) of the second link 32 is a / 8.
  • the distance from the swing center of the brake pedal 2 (pedal rotation shaft 91) to the rotation center (pin 92) on the one end side (x-axis negative direction side) of the first link 31 with respect to the arm member 22 (brake pedal 2) is 10a / 43.
  • an imaginary horizontal line passing through the swing center of the brake pedal 2 (pedal rotating shaft 91) is L2.
  • the distance from the rotation center 96 of the rod 4 to the piston of the master cylinder 5 to the horizontal line L2 is 5a / 14.
  • the distance from the swing center (link rotation shaft 94) of the second link 32 to the horizontal line L2 is 5a / 21.
  • a half line passing through the force point (pedal pad 21) of the brake pedal 2 starting from the swing center of the brake pedal 2 (pedal rotating shaft 91) is defined as L3.
  • a half line passing through the rotation center (pin 92) on the one end side (x-axis negative direction side) of the first link 31 starting from the swing center (pedal rotation shaft 91) is defined as L4.
  • the angle formed by the half line L3 and the half line L4 with the rocking center (pedal rotation shaft 91) as a vertex is 30.5 degrees.
  • a virtual horizontal line passing through the swing center (link rotation shaft 94) of the second link 32 is denoted by L5.
  • a half line passing through the rotation center (pin 93) of the second link 32 with respect to the other end side (x-axis positive direction side) of the first link 31 starting from the swing center (link rotation shaft 94) is defined as L6.
  • the angle formed by the horizontal line L5 and the half line L6 with the swing center (link rotation shaft 94) as a vertex is 25 degrees.
  • the link type booster 3 includes a stroke restricting portion 8 that restricts movement of the brake pedal 2 in the rotational direction (in other words, operation of the links 31, 32, etc.) when the pedal stroke SP reaches a predetermined amount.
  • the stroke restricting portion 8 is fixed to the vehicle body side and disposed below the links 31, 32 and the like.
  • FIG. 5 is a partial cross-sectional view of the stroke restricting portion 8 as seen from the vertical direction of the vehicle, and shows a cross section in which the contact member 80 and the like are cut along a plane including the central axis of each shaft 81 and the like.
  • the stroke restricting portion 8 includes a contact member 80, a first support shaft 81, a second support shaft 82, a third support shaft 83, a first holding member 84, a second holding member 85, and a first elasticity.
  • a stroke restricting mechanism including a member 86, a second elastic member 87, and a third elastic member 88.
  • the contact member 80 is a substantially rectangular plate member, and is disposed so as to extend in the left-right direction.
  • the surface on the negative side of the x-axis faces the pedal arm 21 (curved portion) of the brake pedal 2 in the x-axis direction.
  • the contact member 80 is formed with a pair of left and right through holes 800a and 800b.
  • the member or configuration provided on one side of the left and right is attached with a suffix a
  • the member or configuration provided on the other side of the left and right is attached with a suffix b to distinguish them.
  • the first support shaft 81 is a shaft member that is fastened and fixed to the mounting wall member 70 with bolts, and is provided in a pair of left and right.
  • the first support shaft 81 protrudes from the bottom of the mounting wall member 70 to the x-axis negative direction side and is installed to extend in the x-axis direction.
  • a flange portion (nut or the like) 810 is fixed to the x-axis negative direction end of the first support shaft 81.
  • a spring retainer (such as a nut) 700 is fixed to the positive end of the first support shaft 81 in the x-axis direction.
  • the contact holes 80a and 800b of the contact member 80 are fitted into the first support shafts 81a and 81b, so that the contact member 80 is supported by the first support shaft 81.
  • the contact member 80 is provided to be movable in the x-axis direction with respect to the first support shaft 81. The movement of the contact member 80 in the negative x-axis direction is restricted when the contact member 80 (the portion around the through hole 800) contacts the flange portion 810.
  • the first holding member 84 is a substantially rectangular parallelepiped plate member that holds or supports the elastic members 86 to 88, and is arranged to extend in the left-right direction.
  • the first holding member 84 is formed with a pair of left and right through holes 840a and 840b.
  • the first holding member 84 is supported by the first support shaft 81 by fitting the through holes 840a and 840b of the first holding member 84 to the first support shafts 81a and 81b, respectively.
  • the first holding member 84 is provided between the contact member 80 and the mounting wall member 70 so as to be movable in the x-axis direction with respect to the first support shaft 81.
  • the x-axis negative direction end of the first elastic member 86 is installed on the surface of the first holding member 84 on the x-axis positive direction side.
  • the x-axis positive direction ends of the second elastic member 87 and the third elastic member 88 are installed on the surface of the first holding member 84 on the x-axis negative direction side.
  • the second holding member 85 is a substantially rectangular parallelepiped plate member that holds the second elastic member 87, and is arranged to extend in the left-right direction.
  • the second holding member 85 has a pair of left and right through holes 850a and 850b.
  • the second holding member 85 is supported by the first support shaft 81 by fitting the through holes 850a and 850b of the second holding member 85 to the first support shafts 81a and 81b, respectively.
  • the second holding member 85 is provided between the contact member 80 and the first holding member 84 so as to be movable in the x-axis direction with respect to the first support shaft 81.
  • the x-axis negative direction end of the second elastic member 87 is installed on the surface of the second holding member 85 on the x-axis positive direction side.
  • a second support shaft 82 and a third support shaft 83 are installed on the holding members 84 and 85 in a loosely fitted state.
  • the first holding member 84 is formed with a pair of left and right through holes 843a and 843b so as to be sandwiched between the through holes 840a and 840b, and a through hole 844 is formed so as to be sandwiched between the through holes 843a and 843b.
  • the second holding member 85 is formed with a pair of left and right through holes 853a and 853b so as to be sandwiched between the through holes 850a and 850b.
  • a through hole 854 is formed so as to be sandwiched between the through holes 853a and 853b.
  • a flange portion 820 having a diameter larger than that of the through hole 853 is provided at the end in the negative x-axis direction of the second support shaft 82.
  • a flange portion 830 having a diameter larger than that of the through hole 854 is provided at the x-axis negative direction end of the third support shaft 83.
  • the flange portions 820 and 830 are positioned on the x-axis negative direction side of the second holding member 85, and the x-axis positive direction side of each support shaft 82 and 83 passes through the through-holes 853 and 854 and the x-axis of the second holding member 85. Projects in the positive direction.
  • the x axis positive direction ends of the support shafts 82 and 83 pass through the through holes 843 and 844 of the first holding member 84 and project to the x axis positive direction side of the first holding member 84.
  • Flange portions (nuts or the like) 821, 831 having a larger diameter than the through holes 843, 844 are fixed to the protruding portions.
  • the holding members 84 and 85 are provided between the flange portions 820, 830, 821, and 831 so as to be movable in the x-axis direction with respect to the support shafts 82 and 83.
  • the first elastic member 86 is a compression spring, specifically a coil spring, is installed so as to be wound around each first support shaft 81, and is supported by the first support shaft 81.
  • the x-axis positive direction end of the first elastic member 86 is held in contact with the spring retainer 700, and the x-axis negative direction end is held in contact with the first holding member 84.
  • the first elastic member 86 is held in a compressed state between the spring retainer 700 (mounting wall member 70) and the first holding member 84.
  • the second elastic member 87 is provided in a pair of left and right, and is disposed so as to be sandwiched between the first support shafts 81a and 81b.
  • the second elastic member 87 is an elastic body formed of resin or rubber, and is formed in a bellows shape.
  • the second elastic member 87 is held between the first holding member 84 and the second holding member 85.
  • the x-axis positive direction end of the second elastic member 87 is fitted and held in a recess 841 formed around the through hole 843 on the surface of the first holding member 84 on the x-axis negative direction side.
  • the x-axis negative direction end of the second elastic member 87 is fitted and held in a recess 851 formed around the through hole 853 on the surface of the second holding member 85 on the x-axis positive direction side.
  • a second support shaft 82 is inserted and installed so as to be slidable with respect to the second elastic member 87.
  • the second support shaft 82 supports the second elastic member 87 so that the second elastic member 87 does not fall out of the recesses 841 and 851, and guides the second elastic member 87 to compress and deform mainly in the x-axis direction. To do.
  • the third elastic member 88 is disposed so as to be sandwiched between the second elastic members 87a and 87b.
  • the third elastic member 88 is an elastic body formed of resin or rubber, and is formed in a cylindrical shape.
  • the elastic coefficient of the third elastic member 88 in the x-axis direction is set to be larger than the elastic coefficient of the second elastic member 87 in the x-axis direction.
  • the third elastic member 88 is provided less likely to compress and deform.
  • the x-axis positive direction end of the third elastic member 88 is fitted and held in a recess 842 formed around the through hole 844 in the surface of the first holding member 84 on the x-axis negative direction side.
  • a third support shaft 83 is inserted and installed so as to be slidable with respect to the third elastic member 88.
  • a predetermined x-axis direction A distance (gap) is provided.
  • the diameter of the recess 852 is larger than the diameter of the third elastic member 88.
  • the third support shaft 83 supports the third elastic member 88 so as not to drop out of the recess 842, and guides the third elastic member 88 so as to be mainly compressed and deformed in the x-axis direction when the third elastic member 88 is compressed.
  • FIG. 6 is an overall perspective view of the hydraulic pressure control unit 6.
  • the hydraulic pressure control unit 6 is a second brake hydraulic pressure generation source that receives supply of brake fluid from the master cylinder 5 (reservoir 5a) and can generate brake hydraulic pressure independently of the brake operation by the driver.
  • the hydraulic pressure control unit 6 is provided between the wheel cylinder provided on each wheel and the master cylinder 5, and can individually supply the master cylinder hydraulic pressure or the control hydraulic pressure to each wheel cylinder.
  • the hydraulic pressure control unit 6 includes a hydraulic pressure unit 6a and an electronic control unit ECU 6b that controls the operation of the hydraulic pressure unit 6a.
  • the hydraulic unit 6a and the ECU 6b are configured as an integral unit.
  • the hydraulic unit 6a is a hydraulic device (actuator) for generating a control hydraulic pressure, and includes a plurality of control valves that switch the communication state of a pump that is a hydraulic pressure generation source and an oil passage formed in the housing 60. Solenoid valve).
  • a motor 6c for driving the pump is integrally attached to the hydraulic unit 6a (housing 60). Since the specific hydraulic circuit configuration of the hydraulic unit 6a is the same as that of a known hydraulic unit, description thereof is omitted.
  • the hydraulic pressure unit 6a is provided with a hydraulic pressure sensor for detecting the hydraulic pressure (master cylinder hydraulic pressure or the like) at a predetermined portion of the oil passage, and the detected value is input to the ECU 6b.
  • the ECU 6b controls the hydraulic pressure of each wheel cylinder independently of the driver's brake operation (increasing, depressurizing, holding) by controlling the operation of each actuator of the hydraulic pressure unit 6a based on various input information. ) Is possible.
  • the hydraulic unit 6a is connected to a brake pedal side unit (see FIG. 1) via a brake pipe.
  • the x-axis direction of FIG. Arranged to coincide with the axial direction.
  • the housing 60 of the hydraulic unit 6a is fixedly installed on the vehicle body side (the floor of the engine room) via a damper 6d and a bracket 6e.
  • a master cylinder port 61 for the P system and the S system and four wheel cylinder ports 62 are provided as openings of oil passages formed in the housing 60.
  • the P-system master cylinder port 61P is connected to the P-system discharge port 51P of the master cylinder 5 via a brake pipe, and communicates with the P-system hydraulic chamber.
  • the S system master cylinder port 61S is connected to the S system discharge port 51S of the master cylinder 5 via another brake pipe, and communicates with the S system hydraulic chamber.
  • Each wheel cylinder port 62 is connected to each wheel cylinder via a brake pipe.
  • the hydraulic control unit 6 includes an anti-lock brake control (ABS) that reduces the tendency of the wheels to lock, and a brake control (vehicle behavior control such as VDC and ESC) that suppresses the side slip of the vehicle and stabilizes the vehicle behavior. Is provided to be executable. If a lock tendency of any wheel is detected in a state where the brake operation is performed, the ECU 6b executes anti-lock brake control. Specifically, the hydraulic pressure unit 6a is driven to reduce the wheel cylinder hydraulic pressure of the wheel so that the slip ratio of the wheel falls within a predetermined range (for example, the pressure reduction / holding of the wheel). ⁇ Repeat pressure increase).
  • a predetermined range for example, the pressure reduction / holding of the wheel.
  • the ECU 6b executes vehicle behavior control. Specifically, based on the detected vehicle behavior state quantity (lateral acceleration or the like), the hydraulic pressure unit 6a is driven to control the wheel cylinder hydraulic pressure of each wheel so as to realize a desired vehicle behavior.
  • the details of the vehicle behavior control are well known, and the description is omitted.
  • the hydraulic pressure control unit 6 may be provided so as to be able to execute only the anti-lock brake control, or can execute automatic brake control (such as inter-vehicle distance control or preceding vehicle follow-up control) other than the above control. It may be provided and is not particularly limited.
  • each actuator of the hydraulic pressure control unit 6 In a state where each actuator of the hydraulic pressure control unit 6 is inactive, the hydraulic chamber of the master cylinder 5 and the wheel cylinder of each wheel are in communication. At this time, the wheel cylinder hydraulic pressure is generated by the master cylinder hydraulic pressure generated by using the operating force (depressing force) of the brake pedal 2 by the driver (hereinafter referred to as a pedal brake).
  • Device 1 including the low pressure area in the initial stage of braking after That braking operation is started, the liquid pressure area at each stage of braking) the entire region of the pedal stroke S P, the non-energized state of the pump and solenoid valve, etc.
  • the pedal force brake is realized by disabling the hydraulic pressure control unit 6.
  • brake fluid is supplied from each hydraulic chamber of each system of the master cylinder 5 (via an oil passage in the hydraulic unit 6a) toward each wheel cylinder (pressure increase) Time). That is, the master cylinder hydraulic pressure generated according to the depression operation of the brake pedal 2 is supplied to the wheel cylinder as it is.
  • the brake pedal 2 is depressed, the brake fluid is returned from each wheel cylinder (via the oil passage in the hydraulic unit 6a) toward the master cylinder 5 (when pressure is reduced).
  • the link-type booster 3 predetermined braking characteristics, namely the amount of the brake operation by the driver (pedal stroke S P) and the brake operating force (depression force) F P and the brake fluid pressure P (vehicle deceleration G) It is set to realize the ideal relationship characteristics between.
  • a brake device hereinafter referred to as a link-type booster 3 that includes a normal-size engine negative-pressure booster that boosts a brake operation force by using a negative pressure generated by a vehicle engine.
  • the brake characteristic realized when the engine negative pressure booster is operated is the ideal relational characteristic.
  • (Link type booster operation) 7 to 9 show the operation of the link type booster 3 by the same schematic diagram as FIG.
  • the dashed line indicates the position of each member in the initial state the depression amount S P output brake pedal 2 is zero (initial position).
  • the force point (pedal pad 21) and the action point (pin 92) of the brake pedal 2 rotate around the fulcrum (pedal rotating shaft 91) in the counterclockwise direction in the figure.
  • the rotational force at the operating point (pin 92) is transmitted to the second link (pin 93) via the first link 31, and the second link is counterclockwise around the fulcrum (second link rotating shaft 94).
  • the entire region the brake pedal 2 is swingable (entire region of the pedal stroke S P), each pedal stroke S P, x-axis direction movement amount from the initial position of the rod 4 (rod stroke S R), the brake
  • the amount of depression of the pedal 2 that is, the amount of movement (the pedal stroke S P ) from the initial position of the force point (pedal pad 21) of the brake pedal 2 is set.
  • rod stroke S R is set to be smaller than the movement amount from the initial position of the point of application of the brake pedal 2 (pin 92) .
  • FIG. 10 shows the initial position of each member.
  • a line segment connecting the pedal rotation shaft 91 and the pin 92 is L7
  • a line segment connecting the pin 92 and the pin 93 is L8,
  • a line segment connecting the pedal rotation shaft 91 and the pin 93 is L9.
  • FIG. 11 shows the position of each member in a state where the brake pedal 2 starts to contact the contact member 80 of the stroke restricting portion 8. That is, the contact member 80 is provided so as to be able to contact the brake pedal 2.
  • Brake pedal 2 is depressed, the pedal stroke S P becomes a predetermined amount S P 2, as shown in FIG.
  • the brake pedal 2 is brought into contact with the surface of the x-axis negative direction side of the contact member 80.
  • the contact member 80 forms a contact portion.
  • further stroke of the brake pedal 2 is suppressed to some extent. That is, since the brake pedal 2 makes a further stroke, an extra force is required for moving the abutting member 80 in the positive x-axis direction while compressing and deforming the elastic members 86 to 88. In this sense, the contact member 80 regulates the stroke of the brake pedal 2.
  • FIG. 12 shows the position of each member in a state where the elastic members 86 and 87 of the stroke restricting portion 8 are being compressed.
  • the 1st elastic member 86 is a spring part comprised from the coil spring
  • the 2nd elastic member 87 is a buffer member arrange
  • the reaction force acting only on the brake pedal 2 min the compression deformation (the pedal reaction force) is increased, to attenuate the pedaling force F P.
  • the pedal reaction force is increased.
  • the 1st elastic member 86 and the 2nd elastic member 87 comprise the damper.
  • FIG. 13 shows the position of each member in a state where the elastic members 86 to 88 of the stroke restricting portion 8 are maximally compressed.
  • This pedal stroke S P (maximum pedal stroke after regulation) is defined as S P 3 (> S P 30).
  • the third elastic member 88, the pedal stroke S P constitutes a stopper for stopping the stroke of the brake pedal 2 by S P 30 or more (S P 3 below).
  • the third elastic member 88 may be held by the second holding member 85 (recessed portion 852) instead of the first holding member 84 (recessed portion 842) or fitted and held in either of the recessed portions 842 and 852. Instead, it may be supported only by the third support shaft 83.
  • FIG. 15 is a schematic view of the link-type booster 3 and the rod 4 of Comparative Example 2 without a stroke restricting portion 8 from the side, when the pedal stroke S P exceeds the singularity
  • movement of a link type booster is shown.
  • S to P reaches the S P 3 is greater than S P 5 is at an angle to the line segment L7, L8 forms increases toward 180 degrees.
  • the pin 93 rotates counterclockwise around the fulcrum (second link rotation shaft 94) so that the line segment L9 becomes longer.
  • the rod 4 moves to the x-axis positive direction side (FIGS. 10 to 13).
  • S P reaches S P 5
  • the angle formed by the line segments L7 and L8 becomes 180 degrees
  • the pin 92 is positioned on the line segment L9, and the line segments L7 and L8 coincide with the line segment L9 (singular posture).
  • the length of the line segment L9 is the maximum (sum of the lengths of the line segments L7 and L8).
  • FIG. 14 shows a state in which the pedal stroke S P has increased beyond S P 5 and the rod 4 is moving backward.
  • the curve shown in FIG. 16 shows the change characteristic of the rod stroke S R with respect to the pedal stroke S P of the device 1.
  • the link type booster 3 makes the ratio S P / S R of both variable.
  • the link booster 3 includes a first link 31 and a second link 32. Therefore, for example, the ratio S P / S R can be changed continuously or smoothly as compared with the case where only one link member is provided between the brake pedal 2 and the rod 4.
  • S P is zero
  • S R is also zero.
  • S P increases from zero, S R also increases from zero.
  • variation [Delta] S R of S R for the same change amount [Delta] S P of S P is, so as to vary with the desired properties, the link mechanism is arranged.
  • the operation amount of the brake pedal 2 is required to move the rod 4 by the same amount, so as to vary with the desired characteristics depending on the magnitude of the pedal stroke S P, the link-type booster 3
  • the position of the support shaft 94 and the like, and the shapes and lengths of the links 31 and 32 are adjusted.
  • the two curves shown in FIG. 17 are (1) the ratio S P / S R , and (2) the ratio F R / F P of the rod thrust F R to the pedaling force F P (when considering the reaction force due to the hydraulic pressure), It shows characteristic changes to S P output, respectively.
  • the curve shown in FIG. 18 shows the characteristic (hydraulic rigidity) of the relationship between the amount Q of brake fluid supplied from the master cylinder 5 toward the wheel cylinder and the hydraulic pressure P of the master cylinder 5 or the wheel cylinder.
  • the ratio S P / S R is a lever ratio R (S) as a stroke ratio of the link type booster 3 and is variable. Plotting the ratio S P / S R of S P in any S P against S R in FIG. 16, the curve indicated by R (S) in FIG. 17.
  • R (S) corresponds to an integral of ⁇ S P / ⁇ S R , and gradually increases from a predetermined value (greater than zero) as S P increases from zero.
  • Curve showing the change of S R for S P output 16 is a convex curve on the right-up and. Therefore, as shown in FIG. 17, the ratio S P / S R increases gradually until at least S P becomes S P 5.
  • Curve showing the change in the S P / S R for S P is a gentle upward curves and convex downward.
  • the ratio F R / F P is a lever ratio R (F) as a boost ratio of the link type booster 3 and is variable. Unless the reaction force due to the hydraulic pressure P acting on the rod 4 is taken into account, the ratio F R / F P is inversely proportional to ⁇ S R / ⁇ S P. Therefore, the ratio F R / F P, S P approaches the S P 5 ( ⁇ S R / ⁇ S P approaches substantially zero) as large, should significantly increase the S P is in the vicinity of S P 5 . However, when S P (S R ) increases and the hydraulic pressure P rises to some extent, the reaction force due to the hydraulic pressure P acting on the rod 4 increases. That is, the liquid amount Q increases in proportion to the increase in S R.
  • the hydraulic rigidity of the present embodiment is such that the rate of increase of the hydraulic pressure P with respect to the increase of the hydraulic quantity Q is small in the range from zero to the predetermined quantity Q1, and Q is Q1. If it exceeds, the increase rate of P with respect to the increase of Q becomes a characteristic.
  • S R has a exceeds a predetermined amount (S P exceeds the predetermined amount S P 1)
  • Q to Rutoki exceeds Q1
  • the increase rate of the reaction force due to the hydraulic pressure P with respect to the increase is increased.
  • the increase in the ratio F R / F P is suppressed and S P is increased to some extent.
  • S P is a predetermined amount S P 4 (S P Until 3 ⁇ S P 4 ⁇ S P 5), it goes upward and becomes S-shaped.
  • the device 1 uses the link type booster 3 to determine whether or not the driver Auxiliary force is generated to reduce brake operation force.
  • This link type booster 3 is a mechanical booster. That is, the brake operation force is mechanically boosted exclusively using the driver's brake operation force. In other words, it is driven using an energy source different from the driver's brake operation force, such as a booster that generates hydraulic pressure using an electric motor or an accumulator, or a master back that uses negative pressure of the engine, It is not a booster that generates auxiliary power.
  • the device 1 does not operate a booster of a type that generates an auxiliary force using an energy source different from the driver's brake operation force during normal braking (when the driver operates the brake). Therefore, compared with the structure which generate
  • the device 1 can use a variable link type booster to improve the fuel efficiency while satisfying at least the brake performance required in the normal range, and downsize the brake system. Also, it can be cost-effective.
  • the device 1 includes a hydraulic pressure control unit 6 in addition to the link booster 3.
  • the hydraulic pressure control unit 6 is capable of executing ABS control (or vehicle behavior control), and a unit that is already provided in many brake devices can be used. While during normal braking to ensure the braking force necessary to assist the pressing force F P by the link-type booster 3, ABS control (or the vehicle behavior control) braking force necessary to operate the fluid pressure control unit 6 at the time of intervention Can be obtained. Therefore, while satisfying the brake performance generally required for a vehicle, the number of parts can be reduced and the cost can be reduced, and a simple brake system can be realized. In other words, the entire apparatus 1 viewed as a system composed of the brake pedal unit and the fluid pressure control unit 6 can be simplified, and the mountability on the vehicle can be improved. Furthermore, the vehicle can be reduced in size and weight, and thereby the energy efficiency of the vehicle can be improved.
  • the hydraulic control unit 6 as an energy source to compensate for the shortage of the brake operation force.
  • the required brake fluid pressure is realized by operating the fluid pressure control unit 6 in addition to the link booster 3.
  • the hydraulic pressure control unit 6 is frequently actuated (pumped up)
  • the above effect of suppressing energy consumption may be diminished.
  • the durability of the pump may be reduced, and the silence (sound vibration performance) of the brake device may be reduced.
  • the device 1 uses only the pedal brake (link booster 3) during normal braking and does not use the hydraulic pressure control unit 6. Therefore, it is possible to avoid the problems as described above and to obtain effects such as improving energy efficiency to the maximum.
  • the device 1 uses a mechanical link type booster as the booster, even if the power supply system fails, the driver 1 can achieve the minimum vehicle deceleration by the brake operation force. Is possible. Therefore, it is excellent in fail-safe property.
  • the device 1 is suitable for small cars and light cars (hereinafter referred to as small cars). That is, in small cars, the capacity of the wheel cylinder (caliper) is small, and the master cylinder (piston) only needs to have a small diameter, so the force (lever ratio R) that boosts the driver's brake operation force must be so large. And not. Moreover, since the mass of a small car etc. is small, the braking force required in order to generate the same deceleration G may be small. Therefore, in a small car or the like, at least in the normal range, the brake characteristic (SFG characteristic) similar to that of the conventional brake apparatus (Comparative Example 1) can be sufficiently realized by using only the link type booster 3.
  • small cars the capacity of the wheel cylinder (caliper) is small, and the master cylinder (piston) only needs to have a small diameter, so the force (lever ratio R) that boosts the driver's brake operation force must be so large. And not. Moreover, since the mass of a small car etc.
  • the application target of the device 1 is not limited to a small car or the like.
  • the link type booster 3 has less movement amount (rod stroke S R ) of the rod 4 in the x-axis direction than the depression amount (pedal stroke S P ) of the brake pedal 2 in the entire operation region.
  • the stroke ratio S P / S R that is, the lever ratio R (S) becomes larger than 1, so that the operating force (stepping force F P ) of the brake pedal 2 is amplified and transmitted to the rod 4 by the lever principle.
  • the rod thrust F R is greater than the pedal force F P, exerts force multiplying function, conveyed amplifies the pedal force F P (booster) the piston of the master cylinder 5, A high brake fluid pressure P can be obtained.
  • pressing force F P is amplified. Furthermore, in the entire region of the pedal stroke S P, i.e.
  • the brake characteristic showing the relationship between the pedal stroke S P and pressing force F P and the hydraulic pressure P (deceleration G)
  • various requirements exist.
  • the above requirement can be satisfied by adjusting the link characteristics of the link booster 3.
  • the following is the basic idea (request or response).
  • (A) In the initial stage of the brake operation, a large amount of brake fluid Q is supplied to the wheel cylinder (caliper), thereby improving the responsiveness of the braking force (hydraulic pressure P) to the brake operation.
  • the brake operation feeling In a frequently operated brake operation region (normal operation region), the brake operation feeling (pedal) can be achieved by bringing the brake device (Comparative Example 1) having an engine negative pressure booster closer to the brake characteristic (SFG characteristic). (Feeling) is reduced.
  • the present embodiment has a liquid pressure rigidity of the characteristics shown in FIG. 18
  • the difference between the ratio S P / S R and the ratio F R / F P is set so as to increase gradually as S P increases until S P becomes S P 4”. It is synonymous with. Therefore, since the difference is set to gradually increase as described above, it is possible to obtain effects such as an improvement in the response of the braking force, as described above.
  • FIG. 19 is a curve representing the F-S characteristics showing the relationship between the pressing force F P and the pedal stroke S P
  • FIG. 20 represents the F-G characteristics showing the relationship between the pressing force F P and the vehicle deceleration G It is a curve.
  • G is calculated assuming a mini vehicle, a small electric vehicle, and the like.
  • the solid line indicates the characteristics of this example, and the alternate long and short dash line indicates the characteristics of Comparative Example 1 (when the engine negative pressure booster is operated).
  • the shaded area is a regular area with relatively high frequency (for example, accounting for approximately 80% of the predetermined total number of brakes), and is a relatively low G brake operation area at the initial stage of brake operation. If it has a liquid pressure rigidity of the characteristics shown in FIG.
  • S P is by adjusting the link characteristics (boosting characteristic) so that it can supply liquid amount Q1 to reach S P 1 from the master cylinder 5, to realize the P1 or more S P 1. Further, as shown in FIG. 19, so as to adjust the link characteristics such that F P 1 or more in S P 1, as shown in FIG. 20, the in F P 1 G1 (P1 considerably) higher link Adjust the characteristics.
  • Comparative Example 1 to operate the engine vacuum booster for example, relates to F-S characteristics, and F-G characteristics, FIG. 19, as shown in dashed line in FIG. 20, immediately after the brake pedal depression, predetermined F P from zero while in a range of less than a value Fj not occur S P and G, and F P is equal to or greater than Fj, it increased to once a predetermined amount each generated S P and G, there is a characteristic (jump-characteristic) that.
  • the brake characteristics (SFG) simulating the characteristics of Comparative Example 1 jump-in characteristics, etc.
  • the required brake characteristics can be satisfied by adjusting the link characteristics of the link type booster 3.
  • the brake characteristics can be simulated according to the type of vehicle mounted.
  • the mountability of the device 1 can be improved by adapting to the difference in the vehicle type only by changing the design of the link type booster 3 alone.
  • the link-type booster 3 configuration (link characteristics), if you try to what can be obtained predetermined boost performance constraints conditions when the vehicle mounting, preferred in some areas of the pedal stroke S P although it is possible to obtain the braking characteristics may not be exhibited favorable brake characteristics across the S P.
  • the brake characteristic is set to be F P 1 or more and P 1 or more in S P 1 as described above
  • the characteristic of the lever ratio R (F) that can achieve this requirement is as shown in FIG. It may be limited to the characteristic having S P 5, R (F) 5).
  • positioning are restrict
  • the space that can be mounted is narrow (the space for the driver's feet for installing the brake pedal 2 and the link type booster device 3 is limited), so the above limitation is large.
  • the link type booster 3 in the region of the pedal stroke S P on the left side (smaller) than the singular point S P 5.
  • the maximum pedal stroke (on the link mechanism) that can be performed by the brake operation is on the right side of the singular point S P 5 (due to the attachment of the device 1 to the vehicle, S P May not be allowed to exceed S P 5).
  • the lever ratio R (F) may increase excessively in the latter half of the brake operation, or the hydraulic pressure P may decrease due to the reverse movement of the rod 4.
  • FIG. 21 to FIG. 23 show the results of the test or analysis of the brake characteristics.
  • FIG. 21 shows the FS characteristic.
  • Figure 22 shows the relationship between pressing force F P and the hydraulic pressure P (F-P characteristics).
  • Figure 23 shows the relationship between the pedal stroke S P and the hydraulic pressure P (S-P characteristic).
  • the characteristic when the stroke restricting portion 8 is not provided is shown by a two-dot chain line (Comparative Example 2), and the characteristic of the present embodiment provided with the stroke restricting portion 8 is indicated by a solid line.
  • the arrows in the figure indicate when the brake operation is depressed and when it is depressed.
  • the reaction force (the pedal reaction force) can not be obtained appropriately acting due to the reaction force acting on the rod 4 by the hydraulic P to the brake pedal 2, pressing force F P is too light (brake pedal 2 is rapidly Feels lighter). Therefore, the pedal feeling may be deteriorated.
  • the maximum pedal stroke (on the link mechanism) is larger than the pedal stroke S P 5 at which the lever ratio R (F) becomes the peak value R (F) 5, the pedal stroke S P exceeds S P 5.
  • the rod 4 moves backward.
  • omission of hydraulic P will down (deceleration G despite depressing the brake pedal 2 May occur).
  • the link-type booster 3 of the present embodiment (the second half depression of the brake pedal 2) braking late and S P is S P 2 or the stroke restricting portion 8 for regulating the stroke of the brake pedal 2 Prepare.
  • the stroke restricting portion 8 includes a first elastic member 86 and a second elastic member 87 as dampers.
  • Elastic members 86 and 87, to increase the pedal reaction force at S P is S P 2 or more (less than S P 30), (used for increasing the S P) effective reducing pedaling force F P (damping) Let Therefore, as shown by the solid line in FIG.
  • ⁇ S P is suppressed from being excessive with respect to ⁇ F P in the late stage of the brake operation. Further, as shown in solid line in FIG. 22, [Delta] P relative to [Delta] F P that becomes excessive is suppressed. Therefore, an appropriate pedal reaction force can be obtained and deterioration of the pedal feeling can be suppressed.
  • the brake pedal 2 is brought into contact with the contact member 80 at S P 2 (F P 2) which is larger than S P 1 (F P 1) and before the lever ratio R (F) starts to increase excessively.
  • the elastic members 86 and 87 are set to contact each other and start to function as a damper.
  • the elastic members 86 and 87 are compressed and deformed from S P 2 (F P 2) to S P 30 (F P 30).
  • the elastic members 86 and 87 also have a function of absorbing an impact when the brake pedal 2 comes into contact with the contact member 80.
  • the first elastic member 86 as a spring portion
  • the second elastic member 87 as the buffer member in series with the first elastic member 86 as the spring portion
  • the brake characteristics can be adjusted effectively. Therefore, deterioration of the pedal feeling can be more effectively suppressed.
  • the third elastic member 88 is arranged in parallel to the second elastic member 87, it effectively functions as a stopper for stopping the stroke of the brake pedal 2 as compared with the case where the third elastic member 88 is arranged in series. be able to. Further, since the third elastic member 88 is provided so as to be able to be compressed and deformed to some extent, it is possible to mitigate an impact when stopping the stroke of the brake pedal 2.
  • the stroke restricting unit 8 constitutes a brake operating force adjusting unit that adjusts the operating force (depressing force F P ) of the brake pedal 2 when the pedal stroke SP is equal to or greater than the predetermined amount S P 2.
  • Stroke restricting portion 8 in accordance with the link characteristics of the link-type booster 3 (to complement this) by adjusting the depression force F P, is set to arbitrarily set the brake characteristics.
  • A1 a brake pedal 2 supported swingably with respect to the bracket 7; A rod 4 connected in an axial direction in conjunction with the brake pedal 2 and rotatably connected to a piston for generating hydraulic pressure in the master cylinder 5 for generating hydraulic pressure in the wheel cylinder; A link type booster 3 that connects between the brake pedal 2 and the rod 4 and amplifies the operating force (stepping force F P ) of the brake pedal 2 and transmits it to the rod 4 is provided.
  • the link type booster 3 is A first link 31 having one end side rotatably connected to the brake pedal 2;
  • the second link 32 is connected to the bracket 7 so as to be swingable, and has one end connected to the other end of the first link 31 so as to be rotatable and the other end connected to the rod 4 so as to be rotatable.
  • the axial stroke amount (rod stroke S R ) of the rod 4 with respect to the stroke amount of the brake pedal 2 (pedal stroke S P ) is set to be small. Therefore, energy consumption can be suppressed while realizing the boost function.
  • (B1) a brake pedal 2 supported swingably with respect to the bracket 7;
  • a rod 4 that is pivotally connected to a piston of the master cylinder 5 to generate a hydraulic pressure of the master cylinder 5 that generates a hydraulic pressure of the wheel cylinder by stroking in the axial direction in conjunction with the brake pedal 2;
  • the first link 31 whose one end side is connected to the brake pedal 2 so as to be rotatable, the one end side is connected to the other end side of the first link 31 so as to be rotatable, and the other end side is rotatable relative to the rod 4.
  • the second link 32 is connected and swingably connected to the bracket 7, and the axial direction of the rod 4 with respect to the stroke change amount ⁇ S P of the brake pedal 2 in the later stage from the initial stroke of the brake pedal 2.
  • a link type booster 3 which is set so that the stroke change amount ⁇ S R is reduced, amplifies the operating force (stepping force F P ) of the brake pedal 2 and transmits it to the rod 4;
  • a hydraulic pressure control unit 6 is provided between the master cylinder 5 and the wheel cylinder and controls the hydraulic pressure of the wheel cylinder. Therefore, energy consumption can be suppressed while realizing the boost function.
  • a simple brake system can be realized while satisfying the brake performance generally required for a vehicle.
  • (C1) a brake pedal 2 that is swingably supported with respect to the bracket 7;
  • a rod 4 that is pivotally connected to a piston for generating hydraulic pressure in a master cylinder 5 that generates axial pressure in association with the brake pedal 2 and that generates hydraulic pressure in a wheel cylinder;
  • a first link 31 whose one end is pivotally connected to the brake pedal 2, one end is pivotally connected to the other end of the first link 31, and the other end is swingable relative to the rod 4.
  • a second link 32 that is connected and swingably connected to the bracket 7, and the stroke amount of the rod 4 until the stroke amount of the brake pedal 2 (pedal stroke S P ) reaches a predetermined amount S P 4.
  • a link type booster 3 that amplifies the operating force of the brake pedal 2 and transmits it to the rod 4 is provided. Therefore, energy consumption can be suppressed while realizing the boost function. In addition, it is possible to improve the brake characteristics such as improving the response of braking.
  • the rigidity of an abutting part can be made low and this can be reduced in size.
  • the force that the elastic members 86 to 88 should attenuate by compression is also a small force before the boosting by the link booster. Therefore, the durability of the elastic members 86 to 88 can be improved, and the elastic members 86 to 88 can be downsized. Therefore, the stroke restricting portion can be reduced in size, and the entire apparatus can be reduced in size.
  • a brake device comprising a hydraulic pressure control unit capable of executing anti-lock brake control between the master cylinder and the wheel cylinder connected to the master cylinder via an oil passage. Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
  • a brake device comprising a hydraulic pressure control unit capable of executing anti-lock brake control and vehicle behavior control between the master cylinder and the wheel cylinder connected to the master cylinder via an oil passage . Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
  • the link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal reaches a predetermined amount. Therefore, the brake characteristics can be adjusted by complementing the link characteristics of the link type booster.
  • the said stroke control part is provided with the contact part which can contact
  • a brake device comprising a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
  • the damper includes a spring portion and a buffer member arranged in series with the spring portion. Therefore, deterioration of the pedal feeling can be suppressed.
  • the stroke restricting portion includes a stopper that stops the stroke of the brake pedal when the stroke amount of the brake pedal is equal to or greater than the predetermined amount. Therefore, deterioration of the pedal feeling can be suppressed.
  • the brake device according to claim 2 In the brake device according to claim 2, The brake device according to claim 1, wherein the hydraulic pressure control unit includes an anti-lock brake control unit that reduces the hydraulic pressure of the wheel cylinder. Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
  • the link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal reaches the predetermined amount. Therefore, the brake characteristics can be adjusted by complementing the link characteristics of the link type booster.
  • the stroke restricting portion is A contact portion with which the brake pedal contacts;
  • a brake device comprising: a damper that absorbs an impact when the brake pedal comes into contact with the contact portion. Therefore, the durability of the contact portion can be improved and the stroke restricting portion can be reduced in size. Moreover, deterioration of the pedal feeling can be suppressed.
  • the damper includes a spring portion and a buffer member arranged in series with the spring portion. Therefore, deterioration of the pedal feeling can be suppressed.
  • the link type booster has a distance from the force point of the brake pedal to the swing center with respect to the bracket as a.
  • a distance from the swing center of the brake pedal to a perpendicular passing through the rotation center of the rod with respect to the piston is 5a / 8;
  • a distance from the rotation center of the second link to the rod to the perpendicular is 5a / 17;
  • the distance from the rotation center of the second link with respect to the rod to the swing center of the second link with respect to the bracket is a / 8
  • the distance from the swing center of the second link to the rotation center of the second link with respect to the other end of the first link is a / 6
  • the distance from the pivot center of the brake pedal to the pivot center on the one end side of the first link with respect to the brake pedal is 10a / 43,
  • a distance from the rotation center of the rod relative to the piston to a horizontal line passing through the swing center of the brake pedal is 5a / 14
  • a brake device comprising a hydraulic pressure control unit that is provided between the master cylinder and the wheel cylinder and controls the hydraulic pressure of the wheel cylinder. Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
  • the link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal is equal to or greater than a second predetermined amount. Therefore, the brake characteristics can be adjusted by complementing the link characteristics of the link type booster.
  • the stroke restricting portion is A contact portion with which the brake pedal contacts;
  • a brake device comprising: a damper that absorbs an impact when the brake pedal comes into contact with the contact portion. Therefore, the durability of the contact portion can be improved and the stroke restricting portion can be reduced in size. Moreover, deterioration of the pedal feeling can be suppressed.
  • the damper includes a spring portion and a buffer member arranged in series with the spring portion. Therefore, deterioration of the pedal feeling can be suppressed.
  • the link type booster has a distance from the force point of the brake pedal to the swing center with respect to the bracket as a.
  • a distance from the swing center of the brake pedal to a perpendicular passing through the rotation center of the rod with respect to the piston is 5a / 8;
  • a distance from the rotation center of the second link to the rod to the perpendicular is 5a / 17;
  • the distance from the rotation center of the second link with respect to the rod to the swing center of the second link with respect to the bracket is a / 8
  • the distance from the swing center of the second link to the rotation center of the second link with respect to the other end of the first link is a / 6,
  • the distance from the pivot center of the brake pedal to the pivot center on the one end side of the first link with respect to the brake pedal is 10a / 43,
  • a distance from the rotation center of the rod relative to the piston to a horizontal line passing through the swing center of the brake pedal is 5a / 14

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Braking Elements And Transmission Devices (AREA)

Abstract

Provided is a brake device that makes it possible to minimize energy consumption. The brake device is provided with a link-type servo device (3) that connects a brake pedal (2) and a rod (4) and that amplifies the operating force (stepping force (Fp)) of the brake pedal (2) and transmits the result to the rod (4). The link-type servo device (3) is set so that the axial-direction stroke amount (rod stroke (Sr)) of the rod (4) decreases with respect to the stroke amount (pedal stroke (Sp)) of the brake pedal (2).

Description

ブレーキ装置Brake device
 本発明は、車両に搭載されるブレーキ装置に関する。 The present invention relates to a brake device mounted on a vehicle.
 従来、運転者のブレーキ操作力とは別のエネルギ源を用いて、ブレーキ操作力を低減するための補助力を発生する倍力装置を備えたブレーキ装置が知られている。例えば特許文献1に記載のブレーキ装置が備える倍力装置は、電動モータが発生させる力または気体圧によって発生する力によって加圧ピストンを前進させることで、作動液を加圧する。 Conventionally, a brake device including a booster that generates an auxiliary force for reducing the brake operation force by using an energy source different from the driver's brake operation force is known. For example, the booster included in the brake device described in Patent Document 1 pressurizes the hydraulic fluid by advancing the pressurizing piston with a force generated by an electric motor or a force generated by gas pressure.
特開2012-192850号公報JP 2012-192850 A
 しかし、従来の技術では、運転者のブレーキ操作力とは別のエネルギ源を用いて補助力を発生する構成であるため、消費エネルギが増大するおそれがある。本発明の目的とするところは、消費エネルギを抑制することができるブレーキ装置を提供することにある。 However, since the conventional technology is configured to generate the auxiliary force using an energy source different from the driver's brake operation force, the energy consumption may increase. An object of the present invention is to provide a brake device capable of suppressing energy consumption.
 上記目的を達成するため、本発明のブレーキ装置は、好ましくは、ブレーキ操作部材の操作量に対する出力部材の作動量が少ないリンク式倍力装置を備えた。 In order to achieve the above object, the brake device of the present invention is preferably provided with a link type booster in which the operation amount of the output member is small relative to the operation amount of the brake operation member.
 よって、消費エネルギを抑制することができる。 Therefore, energy consumption can be suppressed.
実施例1のブレーキ装置のブレーキペダル側ユニットの全体斜視図である。It is a whole perspective view of the brake pedal side unit of the brake device of Example 1. 図1のブラケットの第2部材を取り外した状態の全体斜視図である。It is the whole perspective view in the state where the 2nd member of the bracket of Drawing 1 was removed. 図2の側面図である。FIG. 3 is a side view of FIG. 2. 実施例1の初期状態におけるブレーキペダルとリンク式倍力装置とロッドを側面から見た模式図である。It is the schematic diagram which looked at the brake pedal, link type booster, and rod in the initial state of Example 1 from the side. 実施例1のストローク規制部を車両上下方向からみた部分断面図である。It is the fragmentary sectional view which looked at the stroke control part of Example 1 from the vehicle up-and-down direction. 実施例1の液圧制御ユニットの全体斜視図である。1 is an overall perspective view of a hydraulic control unit according to Embodiment 1. FIG. 実施例1のリンク式倍力装置の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the link type booster of Example 1. FIG. 実施例1のリンク式倍力装置の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the link type booster of Example 1. FIG. 実施例1のリンク式倍力装置の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the link type booster of Example 1. FIG. 実施例1のストローク規制部の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the stroke control part of Example 1. FIG. 実施例1のストローク規制部の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the stroke control part of Example 1. FIG. 実施例1のストローク規制部の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the stroke control part of Example 1. FIG. 実施例1のストローク規制部の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the stroke control part of Example 1. FIG. ストローク規制部を備えない比較例のリンク式倍力装置の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the link type booster of the comparative example which is not provided with a stroke control part. ストローク規制部を備えない比較例のリンク式倍力装置の作動を示す模式図である。It is a schematic diagram which shows the action | operation of the link type booster of the comparative example which is not provided with a stroke control part. 実施例1のペダルストロークSPに対するロッドストロークSRの変化の特性を示す。It shows the characteristic of change of the rod stroke S R with respect to the pedal stroke S P output Example 1. 実施例1のペダルストロークSPに対する比率SP/SR及び比率FR/FPの変化の特性を示す。The characteristics of the change of the ratio S P / S R and the ratio F R / F P with respect to the pedal stroke S P of Example 1 are shown. 実施例1のブレーキ液量Qと液圧Pとの関係の特性を示すThe characteristic of the relationship between the brake fluid quantity Q and hydraulic pressure P of Example 1 is shown. 実施例1の踏力FPとペダルストロークSPとの関係の特性を示す。It shows the characteristics of the relationship between the pressing force F P and the pedal stroke S P output Example 1. 実施例1の踏力FPと車両減速度Gとの関係の特性を示す。It shows the characteristics of the relationship between the pressing force F P and the vehicle deceleration G of Example 1. 実施例1の踏力FPとペダルストロークSPとの関係の特性を示す。It shows the characteristics of the relationship between the pressing force F P and the pedal stroke S P output Example 1. 実施例1の踏力FPと液圧Pとの関係の特性を示す。It shows the characteristics of the relationship between the pressing force F P and the hydraulic pressure P in the first embodiment. 実施例1のペダルストロークSPと液圧Pとの関係の特性を示す。It shows the characteristics of the relationship between the pedal stroke S P and the hydraulic pressure P in the first embodiment.
 以下、本発明のブレーキ装置を実現する形態を、図面に基づき説明する。 Hereinafter, modes for realizing the brake device of the present invention will be described with reference to the drawings.
 [実施例1]
 実施例1のブレーキ装置(以下、装置1という。)は、車両のブレーキシステムに適用され、車両の各車輪にブレーキ液圧を付与して制動力を発生させる液圧式ブレーキ装置である。上記車両は、例えば、車輪を駆動する原動機としてエンジンのほか電動式のモータ(ジェネレータ)を備えたハイブリッド車や、電動式のモータ(ジェネレータ)のみを備えた電気自動車等の電動車両である。なお、エンジンのみを駆動源とする非電動車両であってもよい。装置1は、ブレーキペダル側のユニットと液圧制御ユニット6とを備えている。図1は、ブレーキペダル側のユニットの全体斜視図である。このユニットは、ブレーキペダル2と、リンク式倍力装置3と、プッシュロッド4と、マスタシリンダ5とを備えている。以下、説明のため、マスタシリンダ5の軸方向にx軸を設け、ブレーキペダル2に対してマスタシリンダ5が設置されている側(ブレーキペダル2の踏込みに応じてマスタシリンダ5のピストンがストロークする方向)を正とする。
[Example 1]
The brake device according to the first embodiment (hereinafter, referred to as device 1) is a hydraulic brake device that is applied to a vehicle brake system and generates a braking force by applying brake fluid pressure to each wheel of the vehicle. The vehicle is, for example, an electric vehicle such as a hybrid vehicle provided with an electric motor (generator) in addition to an engine as a prime mover for driving wheels, or an electric vehicle provided with only an electric motor (generator). In addition, the non-electric vehicle which uses only an engine as a drive source may be sufficient. The device 1 includes a unit on the brake pedal side and a hydraulic pressure control unit 6. FIG. 1 is an overall perspective view of a unit on a brake pedal side. This unit includes a brake pedal 2, a link booster 3, a push rod 4, and a master cylinder 5. Hereinafter, for the sake of explanation, the x-axis is provided in the axial direction of the master cylinder 5 and the side on which the master cylinder 5 is installed with respect to the brake pedal 2 (the piston of the master cylinder 5 strokes in response to the depression of the brake pedal 2). Direction) is positive.
 ブレーキペダル2は、運転者のブレーキ操作の入力を受けるブレーキ操作部材であり、x軸正方向側に凸に湾曲しつつ車両の上下方向に延びるペダルアーム20と、ペダルアーム20の下端に設けられたペダルパッド21とを有している。ブレーキペダル2は、車体側に固定設置されたブラケット7に対し揺動自在に支持されている。ブラケット7は、有底皿状の取付壁部材70にその一部が収容されつつ、取付壁部材70の底部のx軸負方向側にボルトで締結固定される。取付壁部材70は、エンジンルーム(ないしパワーユニットが設置されるモータルーム。以下、単にエンジンルームという)と車室とを仕切る車体側の隔壁部材であるダッシュパネルの下部に、ブラケット7の取付け側が車室内に面するように固定され、ダッシュパネルの一部を構成する。これにより、ブラケット7が車室側(x軸負方向側)に突出するように固定される。ブラケット7は、第1部材7aと第2部材7bを組み合わせることで、x軸方向側から見て下側が開口するコの字状に形成されている。車両の左右方向(以下、単に左右方向という。)で対向する第1部材7aと第2部材7bとの間には、ペダル回転軸91が左右方向に延びるように設置されている。ペダル回転軸91はブラケット7に対して固定されている。 The brake pedal 2 is a brake operation member that receives an input of a driver's brake operation, and is provided at a pedal arm 20 that extends in the vertical direction of the vehicle while being convexly curved toward the x-axis positive direction side, and at the lower end of the pedal arm 20. Pedal pad 21. The brake pedal 2 is swingably supported with respect to a bracket 7 fixedly installed on the vehicle body side. The bracket 7 is fastened and fixed with bolts to the x-axis negative direction side of the bottom of the mounting wall member 70 while a part thereof is housed in the bottomed dish-shaped mounting wall member 70. The mounting wall member 70 is provided at the lower part of the dash panel, which is a partition member on the vehicle body side that partitions the engine room (or motor room in which the power unit is installed; hereinafter simply referred to as the engine room) and the vehicle compartment. It is fixed so as to face the room and constitutes a part of the dash panel. Thereby, the bracket 7 is fixed so as to protrude toward the vehicle compartment side (x-axis negative direction side). The bracket 7 is formed in a U shape having a lower opening when viewed from the x-axis direction side by combining the first member 7a and the second member 7b. Between the first member 7a and the second member 7b facing each other in the left-right direction of the vehicle (hereinafter simply referred to as the left-right direction), a pedal rotation shaft 91 is installed so as to extend in the left-right direction. The pedal rotation shaft 91 is fixed to the bracket 7.
 ブレーキペダル2は、所謂吊下げ型であり、ペダルアーム20の上端部はペダル回転軸91に対し回転可能に連結されている。これにより、ブレーキペダル2がペダル回転軸91を中心として回転自在にブラケット7に支持されている。ブレーキペダル2の下端部のペダルパッド21が運転者により踏み込まれて操作力(ペダル踏力ないし踏力)を受けると、ブレーキペダル2がペダル回転軸91を中心として車両の前方(x軸正方向)に回動する。ペダル回転軸91には、その外周を取り囲むように、筒状の回転部材91aが、ペダル回転軸91に対して回転可能に設置されている。ブレーキペダル2の上端部は、回転部材91aに固定されることで、ペダル回転軸91に対して回転可能に設けられている。同じ回転部材91aには、ブレーキペダル2の上端部に対し左右方向で隣接して、板状のアーム部材22の上端側が固定されている。ブレーキペダル2とアーム部材22は、ペダル回転軸91を中心として互いに同じ回転位相(回転角)で回転する。この意味で、ブレーキペダル2とアーム部材22とは一体の部材とみなすことができる。 The brake pedal 2 is a so-called suspension type, and the upper end portion of the pedal arm 20 is rotatably connected to the pedal rotation shaft 91. Thus, the brake pedal 2 is supported by the bracket 7 so as to be rotatable about the pedal rotation shaft 91. When the pedal pad 21 at the lower end of the brake pedal 2 is depressed by the driver and receives an operating force (pedal pedaling force or pedaling force), the brake pedal 2 moves forward (in the positive x-axis direction) about the pedal rotation shaft 91. Rotate. A cylindrical rotating member 91 a is installed on the pedal rotation shaft 91 so as to be rotatable with respect to the pedal rotation shaft 91 so as to surround the outer periphery thereof. The upper end portion of the brake pedal 2 is fixed to the rotating member 91 a so as to be rotatable with respect to the pedal rotating shaft 91. The upper end side of the plate-like arm member 22 is fixed to the same rotating member 91a adjacent to the upper end portion of the brake pedal 2 in the left-right direction. The brake pedal 2 and the arm member 22 rotate at the same rotation phase (rotation angle) around the pedal rotation shaft 91. In this sense, the brake pedal 2 and the arm member 22 can be regarded as an integral member.
 図2は、ブラケット7の第2部材7bを取り外した状態のブレーキペダル側のユニットの全体斜視図であり、図3は、上記状態の上記ユニットの側面図である。リンク式倍力装置3は、ブレーキペダル2とプッシュロッド4との間を接続し、運転者によるブレーキペダル2の操作力を増幅してプッシュロッド4へ伝達するリンク式の倍力装置である。装置1は、リンク式倍力装置3により、運転者のブレーキ操作力では不足する液圧制動力を発生してブレーキ操作を補助する倍力機能を発揮する。すなわち、装置1は、車両のエンジンが発生する吸気圧(負圧)や電動モータ等の、運転者のブレーキ操作力とは別のエネルギ源を用いてブレーキペダルの操作力を倍力ないし増幅するブースタを備えていない。その代わりにブレーキペダル2の操作に応じてリンク式倍力装置3を作動させることで、ブレーキ操作力を補助可能に設けられている。 FIG. 2 is an overall perspective view of the unit on the brake pedal side with the second member 7b of the bracket 7 removed, and FIG. 3 is a side view of the unit in the above state. The link type booster 3 is a link type booster that connects between the brake pedal 2 and the push rod 4, amplifies the operating force of the brake pedal 2 by the driver, and transmits it to the push rod 4. The device 1 exerts a boost function that assists the brake operation by generating a hydraulic braking force that is insufficient for the driver's brake operation force by the link type booster 3. That is, the device 1 boosts or amplifies the brake pedal operation force using an energy source other than the driver's brake operation force, such as an intake pressure (negative pressure) generated by the vehicle engine or an electric motor. Does not have a booster. Instead, by operating the link booster 3 according to the operation of the brake pedal 2, the brake operating force is provided so as to be assisted.
 リンク式倍力装置3は、ブレーキペダル2の回転方向移動量(ペダルストロークSP)に対するプッシュロッド4の軸方向移動量(ロッドストロークSR)の変化割合を可変にするリンク機構である。リンク式倍力装置3は、板状のリンクを複数有しており、側面視で(左右方向から見て)棒状の第1リンク31と、側面視で三角状の第2リンク32を備えている。第1リンク31は、一端側(x軸負方向側)がブレーキペダル2に対し回動可能に接続され、他端側(x軸正方向側)が第2リンク32に対し回動可能に接続されている。具体的には、第1リンク31の一端側(x軸負方向側)は、左右方向に延びる軸部材としてのピン92を介して、アーム部材22の下端側に回転可能に連結されている。第1リンク31の他端側(x軸負方向側)は、左右方向に延びるピン93を介して、第2リンク32の一端側(x軸負方向側)に回転可能に連結されている。 The link type booster 3 is a link mechanism that makes the change rate of the axial movement amount (rod stroke S R ) of the push rod 4 with respect to the rotational movement amount (pedal stroke S P ) of the brake pedal 2 variable. The link type booster 3 includes a plurality of plate-like links, and includes a first link 31 that is a rod shape in a side view (viewed from the left-right direction) and a second link 32 that is a triangle shape in a side view. Yes. The first link 31 has one end side (x-axis negative direction side) rotatably connected to the brake pedal 2 and the other end side (x-axis positive direction side) rotatably connected to the second link 32. Has been. Specifically, one end side (x-axis negative direction side) of the first link 31 is rotatably connected to the lower end side of the arm member 22 via a pin 92 as a shaft member extending in the left-right direction. The other end side (x-axis negative direction side) of the first link 31 is rotatably connected to one end side (x-axis negative direction side) of the second link 32 via a pin 93 extending in the left-right direction.
 第2リンク32は、ブラケット7に対し揺動自在に接続されるとともに、一端側(x軸負方向側)が第1リンク31の他端側(x軸正方向側)に対し回動可能に接続され、他端側(x軸正方向側)がプッシュロッド4に対し回動可能に接続されている。具体的には、ブラケット7(第1部材7aと第2部材7bの間)には、ペダル回転軸91よりもx軸正方向側であって下側に、第2リンク回転軸94が左右方向に延びるように設置されている。第2リンク32の上端側(第1の角部)は、第2リンク回転軸94に回転可能に連結されている。これにより、第2リンク32が第2リンク回転軸94を中心として回転自在にブラケット7に支持されている。第2リンク32の下端側であってx軸負方向側(第2の角部)は、左右方向に延びるピン93を介して、第1リンク31の他端側(x軸正方向側)に回転可能に連結されている。第2リンク32の下端側であってx軸正方向側(第3の角部)は、左右方向に延びるピン95を介して、プッシュロッド4のx軸負方向端に固定されたクレビス40に回転可能に連結されている。 The second link 32 is swingably connected to the bracket 7, and one end side (x-axis negative direction side) is rotatable with respect to the other end side (x-axis positive direction side) of the first link 31. The other end side (x-axis positive direction side) is connected to the push rod 4 so as to be rotatable. Specifically, the bracket 7 (between the first member 7a and the second member 7b) has a second link rotation shaft 94 in the left-right direction on the x-axis positive direction side and below the pedal rotation shaft 91. It is installed so that it may extend. The upper end side (first corner) of the second link 32 is rotatably connected to the second link rotating shaft 94. Thus, the second link 32 is supported by the bracket 7 so as to be rotatable about the second link rotation shaft 94. The lower end side of the second link 32 and the x-axis negative direction side (second corner) are connected to the other end side (x-axis positive direction side) of the first link 31 via a pin 93 extending in the left-right direction. It is connected rotatably. The lower end side of the second link 32 and the x-axis positive direction side (third corner) are connected to the clevis 40 fixed to the x-axis negative direction end of the push rod 4 via a pin 95 extending in the left-right direction. It is connected rotatably.
 プッシュロッド(以下、ロッドという)4は、ブレーキペダル2に入力された(リンク式倍力装置3により増幅された)運転者の操作力をx軸方向の推力(ロッド推力)としてマスタシリンダ5に伝達する操作力伝達部材であり、ブレーキペダル2(リンク式倍力装置3)に連動してx軸方向に作動する。ロッド4は、リンク式倍力装置3の出力部材として、第2リンク32からの入力(第2リンク回転軸94を中心とする回転力)をクレビス40を介して受け、ブレーキペダル2の踏込み操作に応じてx軸正方向にストロークする。ロッド4はマスタシリンダ5の入力部材(入力ロッド)でもあり、そのx軸正方向端はマスタシリンダ5のピストンに接続されている。 A push rod (hereinafter referred to as a rod) 4 is applied to the master cylinder 5 by using a driver's operation force (amplified by the link booster 3) input to the brake pedal 2 as thrust in the x-axis direction (rod thrust). It is an operating force transmission member that transmits, and operates in the x-axis direction in conjunction with the brake pedal 2 (link booster 3). The rod 4 serves as an output member of the link type booster 3 and receives an input from the second link 32 (rotational force about the second link rotating shaft 94) via the clevis 40, so that the brake pedal 2 is depressed. Strokes in the positive x-axis direction according to The rod 4 is also an input member (input rod) of the master cylinder 5, and its x-axis positive direction end is connected to the piston of the master cylinder 5.
 マスタシリンダ5は、ロッド4を介してリンク式倍力装置3に接続されている。マスタシリンダ5には、ブレーキ液を貯留するブレーキ液源であるリザーバタンク(以下、リザーバという)5aが一体に設けられており、マスタシリンダ5はリザーバ5aからブレーキ液を補給される。マスタシリンダ5は、図外の油路(ブレーキ配管)を介して、車両の各車輪のホイルシリンダ(キャリパ)に接続している。マスタシリンダ5は、運転者によるブレーキペダル2の操作(ブレーキ操作)に応じて液圧(マスタシリンダ液圧)を発生する第1のブレーキ液圧発生源である。マスタシリンダ液圧は上記油路を介してホイルシリンダへ供給され、ホイルシリンダ液圧(ブレーキ液圧)を発生させる。マスタシリンダ5は、所謂タンデム型であり、x軸正方向側が閉塞した有底筒状のシリンダ50と、シリンダ50の内周面に摺動可能に挿入された2つのピストンとを備える。シリンダ50の内部にはこれらのピストンによりプライマリP系統の液圧室とセカンダリS系統の液圧室が画成されている。各液圧室は、それぞれ吐出ポート(供給ポート)51及び補給ポート52に連通する。吐出ポート51は、液圧制御ユニット6に接続しており、ホイルシリンダと連通可能に設けられている。補給ポート52は、リザーバ5aに接続してこれと連通する。 The master cylinder 5 is connected to the link booster 3 via the rod 4. The master cylinder 5 is integrally provided with a reservoir tank (hereinafter referred to as a reservoir) 5a which is a brake fluid source for storing brake fluid, and the master cylinder 5 is supplied with brake fluid from the reservoir 5a. The master cylinder 5 is connected to a wheel cylinder (caliper) of each wheel of the vehicle via an oil passage (brake pipe) (not shown). The master cylinder 5 is a first brake fluid pressure generation source that generates fluid pressure (master cylinder fluid pressure) in response to an operation (brake operation) of the brake pedal 2 by the driver. The master cylinder hydraulic pressure is supplied to the wheel cylinder via the oil passage, and generates a wheel cylinder hydraulic pressure (brake hydraulic pressure). The master cylinder 5 is a so-called tandem type, and includes a bottomed cylindrical cylinder 50 closed on the x-axis positive direction side and two pistons slidably inserted on the inner peripheral surface of the cylinder 50. Inside the cylinder 50, a hydraulic chamber of the primary P system and a hydraulic chamber of the secondary S system are defined by these pistons. Each fluid pressure chamber communicates with a discharge port (supply port) 51 and a replenishment port 52, respectively. The discharge port 51 is connected to the hydraulic pressure control unit 6 and is provided so as to communicate with the wheel cylinder. The replenishment port 52 is connected to and communicates with the reservoir 5a.
 シリンダ50は、取付壁部材70の底部のx軸正方向側にボルトで締結固定される。取付壁部材70は、マスタシリンダ5の取付け側(x軸正方向側)がエンジンルーム内に面するようにダッシュパネルに固定される。これにより、マスタシリンダ5がエンジンルーム側(x軸正方向側)に突出するように固定される。P系統のピストンのx軸負方向端には、取付壁部材70を貫通するロッド4のx軸正方向端が回動可能に接続されている。ロッド4は、シリンダ50のx軸負方向側の開口部から挿入される。ロッド4のx軸正方向端は、凸球面状に形成されており、P系統のピストンのx軸負方向側に凹球面状に形成された受け部に嵌合設置されることで、P系統のピストンに対して回転可能に設けられている。S系統のピストンは、フリーピストンであり、P系統のピストンのx軸正方向側に設置される。両ピストンの間にP系統の液圧室が画成され、S系統のピストンとシリンダ50の底部との間にS系統の液圧室が画成されている。運転者のブレーキ操作によって、ロッド4のx軸正方向の推力がP系統のピストンに伝達される。P系統のピストンがx軸正方向側にストロークすると、各液圧室の容積が縮小する。これにより、各液圧室から吐出ポート51を介してホイルシリンダに向けてブレーキ液が供給される。また、各液圧室内に液圧(マスタシリンダ液圧)が発生する。なお、両液圧室には略同じ液圧が発生する。各液室内には、ピストンの戻しばねであると共に、ブレーキペダル2に対して適当な反力を付与する反力付与手段としてのコイルスプリングが押し縮められた状態で設置されている。 The cylinder 50 is fastened and fixed with bolts to the x-axis positive direction side of the bottom of the mounting wall member 70. The mounting wall member 70 is fixed to the dash panel so that the mounting side (x-axis positive direction side) of the master cylinder 5 faces the engine room. Thereby, the master cylinder 5 is fixed so as to protrude to the engine room side (x-axis positive direction side). The x-axis positive direction end of the rod 4 penetrating the mounting wall member 70 is rotatably connected to the x-axis negative direction end of the P system piston. The rod 4 is inserted from the opening of the cylinder 50 on the x-axis negative direction side. The x-axis positive direction end of the rod 4 is formed in a convex spherical shape, and is fitted and installed in a receiving portion formed in a concave spherical shape on the x-axis negative direction side of the P-system piston. It is provided so as to be rotatable with respect to the piston. The piston of the S system is a free piston, and is installed on the x axis positive direction side of the piston of the P system. A P system hydraulic chamber is defined between the pistons, and an S system hydraulic chamber is defined between the S system piston and the bottom of the cylinder 50. The thrust of the rod 4 in the x-axis positive direction is transmitted to the piston of the P system by the driver's brake operation. When the P system piston strokes in the positive direction of the x-axis, the volume of each hydraulic chamber is reduced. As a result, brake fluid is supplied from each hydraulic pressure chamber to the wheel cylinder via the discharge port 51. Further, a hydraulic pressure (master cylinder hydraulic pressure) is generated in each hydraulic pressure chamber. Note that substantially the same hydraulic pressure is generated in both hydraulic pressure chambers. In each liquid chamber, a coil spring serving as a reaction force applying means for applying an appropriate reaction force to the brake pedal 2 as well as a return spring for the piston is installed in a compressed state.
 図4は、運転者によるブレーキ操作がされていない初期状態におけるブレーキペダル2とリンク式倍力装置3とロッド4を側面から見た模式図である。この初期状態において、ブレーキペダル2の力点(ペダルパッド21)から支点すなわちブラケット7に対するブレーキペダル2の揺動中心(ペダル回転軸91)までの距離をa(>0)とする。この側面視で、各寸法(ジオメトリ)は以下となるように設定されている。マスタシリンダ5のピストンに対するロッド4の回動中心96(P系統のピストンのx軸負方向側の受け部に嵌合するロッド4のx軸正方向端)を通る仮想的な垂線をL1とする。ブレーキペダル2の揺動中心(ペダル回転軸91)から垂線L1までの距離は5a/8である。ロッド4に対する第2リンク32の回動中心(ピン95)から垂線L1までの距離は5a/17である。ロッド4に対する第2リンク32の回動中心(ピン95)から、第2リンク32の揺動中心(リンク回転軸94)までの距離はa/8である。ブラケット7に対する第2リンク32の揺動中心(リンク回転軸94)から、第1リンク31の他端側(x軸正方向側)に対する第2リンク32の回動中心(ピン93)までの距離はa/6である。ブレーキペダル2の揺動中心(ペダル回転軸91)から、アーム部材22(ブレーキペダル2)に対する第1リンク31の一端側(x軸負方向側)の回動中心(ピン92)までの距離は10a/43である。 FIG. 4 is a schematic view of the brake pedal 2, the link booster 3, and the rod 4 in an initial state where the driver does not perform a brake operation, as viewed from the side. In this initial state, the distance from the force point of the brake pedal 2 (pedal pad 21) to the fulcrum, that is, the pivot center of the brake pedal 2 relative to the bracket 7 (pedal rotating shaft 91) is a (> 0). In this side view, each dimension (geometry) is set to be as follows. A virtual perpendicular line passing through the rotation center 96 of the rod 4 with respect to the piston of the master cylinder 5 (the x-axis positive direction end of the rod 4 fitted to the receiving portion of the P system piston on the x-axis negative direction side) is L1. . The distance from the swing center of the brake pedal 2 (pedal rotation shaft 91) to the perpendicular L1 is 5a / 8. The distance from the rotation center (pin 95) of the second link 32 to the rod 4 to the perpendicular L1 is 5a / 17. The distance from the rotation center (pin 95) of the second link 32 relative to the rod 4 to the swing center (link rotation shaft 94) of the second link 32 is a / 8. The distance from the swing center (link rotation shaft 94) of the second link 32 with respect to the bracket 7 to the rotation center (pin 93) of the second link 32 with respect to the other end side (x-axis positive direction side) of the first link 31. Is a / 6. The distance from the swing center of the brake pedal 2 (pedal rotation shaft 91) to the rotation center (pin 92) on the one end side (x-axis negative direction side) of the first link 31 with respect to the arm member 22 (brake pedal 2) is 10a / 43.
 ブレーキペダル2の揺動中心(ペダル回転軸91)を通る仮想的な水平線をL2とする。マスタシリンダ5のピストンに対するロッド4の回動中心96から、水平線L2までの距離は5a/14である。第2リンク32の揺動中心(リンク回転軸94)から水平線L2までの距離は5a/21である。ブレーキペダル2の揺動中心(ペダル回転軸91)を始点として、ブレーキペダル2の力点(ペダルパッド21)を通る半直線をL3とする。また、上記揺動中心(ペダル回転軸91)を始点として、第1リンク31の一端側(x軸負方向側)の回動中心(ピン92)を通る半直線をL4とする。上記揺動中心(ペダル回転軸91)を頂点として半直線L3と半直線L4とがなす角度は30.5度である。第2リンク32の揺動中心(リンク回転軸94)を通る仮想的な水平線をL5とする。上記揺動中心(リンク回転軸94)を始点として、第1リンク31の他端側(x軸正方向側)に対する第2リンク32の回動中心(ピン93)を通る半直線をL6とする。上記揺動中心(リンク回転軸94)を頂点として水平線L5と半直線L6とがなす角度は25度である。 Suppose that an imaginary horizontal line passing through the swing center of the brake pedal 2 (pedal rotating shaft 91) is L2. The distance from the rotation center 96 of the rod 4 to the piston of the master cylinder 5 to the horizontal line L2 is 5a / 14. The distance from the swing center (link rotation shaft 94) of the second link 32 to the horizontal line L2 is 5a / 21. A half line passing through the force point (pedal pad 21) of the brake pedal 2 starting from the swing center of the brake pedal 2 (pedal rotating shaft 91) is defined as L3. A half line passing through the rotation center (pin 92) on the one end side (x-axis negative direction side) of the first link 31 starting from the swing center (pedal rotation shaft 91) is defined as L4. The angle formed by the half line L3 and the half line L4 with the rocking center (pedal rotation shaft 91) as a vertex is 30.5 degrees. A virtual horizontal line passing through the swing center (link rotation shaft 94) of the second link 32 is denoted by L5. A half line passing through the rotation center (pin 93) of the second link 32 with respect to the other end side (x-axis positive direction side) of the first link 31 starting from the swing center (link rotation shaft 94) is defined as L6. . The angle formed by the horizontal line L5 and the half line L6 with the swing center (link rotation shaft 94) as a vertex is 25 degrees.
 リンク式倍力装置3は、ペダルストロークSPが所定量になるとブレーキペダル2の回転方向移動(言い換えるとリンク31,32等の作動)を規制するストローク規制部8を備えている。図1~図3に示すように、ストローク規制部8は、車体側に固定されると共に、リンク31,32等よりも下側に配置されている。図5は、ストローク規制部8を車両の上下方向からみた部分断面図であり、各軸81等の中心軸を含む平面で当接部材80等を切った断面を示す。ストローク規制部8は、当接部材80と、第1支持軸81と、第2支持軸82と、第3支持軸83と、第1保持部材84と、第2保持部材85と、第1弾性部材86と、第2弾性部材87と、第3弾性部材88とを備えたストローク規制機構である。当接部材80は、略長方形の板部材であり、左右方向に延びるように配置され、そのx軸負方向側の面がブレーキペダル2のペダルアーム21(の湾曲部分)にx軸方向で対向するように設置される。当接部材80には、左右一対の貫通孔800a,800bが形成されている。ここで、左右の一方側に設けられた部材ないし構成に添字aを付し、左右の他方側に設けられた部材ないし構成に添字bを付すことで、両者を区別する。 The link type booster 3 includes a stroke restricting portion 8 that restricts movement of the brake pedal 2 in the rotational direction (in other words, operation of the links 31, 32, etc.) when the pedal stroke SP reaches a predetermined amount. As shown in FIGS. 1 to 3, the stroke restricting portion 8 is fixed to the vehicle body side and disposed below the links 31, 32 and the like. FIG. 5 is a partial cross-sectional view of the stroke restricting portion 8 as seen from the vertical direction of the vehicle, and shows a cross section in which the contact member 80 and the like are cut along a plane including the central axis of each shaft 81 and the like. The stroke restricting portion 8 includes a contact member 80, a first support shaft 81, a second support shaft 82, a third support shaft 83, a first holding member 84, a second holding member 85, and a first elasticity. A stroke restricting mechanism including a member 86, a second elastic member 87, and a third elastic member 88. The contact member 80 is a substantially rectangular plate member, and is disposed so as to extend in the left-right direction. The surface on the negative side of the x-axis faces the pedal arm 21 (curved portion) of the brake pedal 2 in the x-axis direction. To be installed. The contact member 80 is formed with a pair of left and right through holes 800a and 800b. Here, the member or configuration provided on one side of the left and right is attached with a suffix a, and the member or configuration provided on the other side of the left and right is attached with a suffix b to distinguish them.
 第1支持軸81は、取付壁部材70にボルトで締結固定される軸部材であり、左右一対設けられている。第1支持軸81は、取付壁部材70の底部からx軸負方向側に突出し、x軸方向に延びるように設置されている。第1支持軸81のx軸負方向端にはフランジ部(ナット等)810が固定されている。第1支持軸81のx軸正方向端にはスプリングリテーナ(ナット等)700が固定されている。各第1支持軸81a,81bに当接部材80の貫通孔800a,800bがそれぞれ嵌合することで、当接部材80が第1支持軸81に支持される。当接部材80は、第1支持軸81に対してx軸方向に移動可能に設けられている。当接部材80のx軸負方向側への移動は、当接部材80(の貫通孔800の周りの部分)がフランジ部810に当接することで規制される。 The first support shaft 81 is a shaft member that is fastened and fixed to the mounting wall member 70 with bolts, and is provided in a pair of left and right. The first support shaft 81 protrudes from the bottom of the mounting wall member 70 to the x-axis negative direction side and is installed to extend in the x-axis direction. A flange portion (nut or the like) 810 is fixed to the x-axis negative direction end of the first support shaft 81. A spring retainer (such as a nut) 700 is fixed to the positive end of the first support shaft 81 in the x-axis direction. The contact holes 80a and 800b of the contact member 80 are fitted into the first support shafts 81a and 81b, so that the contact member 80 is supported by the first support shaft 81. The contact member 80 is provided to be movable in the x-axis direction with respect to the first support shaft 81. The movement of the contact member 80 in the negative x-axis direction is restricted when the contact member 80 (the portion around the through hole 800) contacts the flange portion 810.
 第1保持部材84は、各弾性部材86~88を保持ないし支持する略直方体の板部材であり、左右方向に延びるように配置される。第1保持部材84には、左右一対の貫通孔840a,840bが形成されている。各第1支持軸81a,81bに第1保持部材84の貫通孔840a,840bがそれぞれ嵌合することで、第1保持部材84が第1支持軸81に支持される。第1保持部材84は、当接部材80と取付壁部材70との間で、第1支持軸81に対してx軸方向に移動可能に設けられている。第1保持部材84のx軸正方向側の面には、第1弾性部材86のx軸負方向端が設置される。第1保持部材84のx軸負方向側の面には、第2弾性部材87と第3弾性部材88のx軸正方向端が設置される。第2保持部材85は、第2弾性部材87を保持する略直方体の板部材であり、左右方向に延びるように配置される。第2保持部材85には、左右一対の貫通孔850a,850bが形成されている。各第1支持軸81a,81bに第2保持部材85の貫通孔850a,850bがそれぞれ嵌合することで、第2保持部材85が第1支持軸81に支持される。第2保持部材85は、当接部材80と第1保持部材84との間で、第1支持軸81に対してx軸方向に移動可能に設けられている。第2保持部材85のx軸正方向側の面には、第2弾性部材87のx軸負方向端が設置される。 The first holding member 84 is a substantially rectangular parallelepiped plate member that holds or supports the elastic members 86 to 88, and is arranged to extend in the left-right direction. The first holding member 84 is formed with a pair of left and right through holes 840a and 840b. The first holding member 84 is supported by the first support shaft 81 by fitting the through holes 840a and 840b of the first holding member 84 to the first support shafts 81a and 81b, respectively. The first holding member 84 is provided between the contact member 80 and the mounting wall member 70 so as to be movable in the x-axis direction with respect to the first support shaft 81. The x-axis negative direction end of the first elastic member 86 is installed on the surface of the first holding member 84 on the x-axis positive direction side. The x-axis positive direction ends of the second elastic member 87 and the third elastic member 88 are installed on the surface of the first holding member 84 on the x-axis negative direction side. The second holding member 85 is a substantially rectangular parallelepiped plate member that holds the second elastic member 87, and is arranged to extend in the left-right direction. The second holding member 85 has a pair of left and right through holes 850a and 850b. The second holding member 85 is supported by the first support shaft 81 by fitting the through holes 850a and 850b of the second holding member 85 to the first support shafts 81a and 81b, respectively. The second holding member 85 is provided between the contact member 80 and the first holding member 84 so as to be movable in the x-axis direction with respect to the first support shaft 81. The x-axis negative direction end of the second elastic member 87 is installed on the surface of the second holding member 85 on the x-axis positive direction side.
 各保持部材84,85には、第2支持軸82と第3支持軸83が遊嵌状態で設置される。第1保持部材84には、貫通孔840a,840bに挟まれるように左右一対の貫通孔843a,843bが形成され、貫通孔843a,843bに挟まれるように貫通孔844が形成されている。第2保持部材85には、貫通孔850a,850bに挟まれるように左右一対の貫通孔853a,853bが形成され、
貫通孔853a,853bに挟まれるように貫通孔854が形成されている。第2支持軸82のx軸負方向端には貫通孔853よりも大径のフランジ部820が設けられている。第3支持軸83のx軸負方向端には貫通孔854よりも大径のフランジ部830が設けられている。フランジ部820,830が第2保持部材85のx軸負方向側に位置し、各支持軸82,83のx軸正方向側が貫通孔853,854を貫通して第2保持部材85のx軸正方向側に突出する。各支持軸82,83のx軸正方向端は第1保持部材84の貫通孔843,844を貫通して第1保持部材84のx軸正方向側に突出する。この突出部には貫通孔843,844よりも大径のフランジ部(ナット等)821,831が固定されている。各保持部材84,85は、フランジ部820,830,821,831の間で、各支持軸82,83に対してx軸方向に移動可能に設けられている。
A second support shaft 82 and a third support shaft 83 are installed on the holding members 84 and 85 in a loosely fitted state. The first holding member 84 is formed with a pair of left and right through holes 843a and 843b so as to be sandwiched between the through holes 840a and 840b, and a through hole 844 is formed so as to be sandwiched between the through holes 843a and 843b. The second holding member 85 is formed with a pair of left and right through holes 853a and 853b so as to be sandwiched between the through holes 850a and 850b.
A through hole 854 is formed so as to be sandwiched between the through holes 853a and 853b. A flange portion 820 having a diameter larger than that of the through hole 853 is provided at the end in the negative x-axis direction of the second support shaft 82. A flange portion 830 having a diameter larger than that of the through hole 854 is provided at the x-axis negative direction end of the third support shaft 83. The flange portions 820 and 830 are positioned on the x-axis negative direction side of the second holding member 85, and the x-axis positive direction side of each support shaft 82 and 83 passes through the through-holes 853 and 854 and the x-axis of the second holding member 85. Projects in the positive direction. The x axis positive direction ends of the support shafts 82 and 83 pass through the through holes 843 and 844 of the first holding member 84 and project to the x axis positive direction side of the first holding member 84. Flange portions (nuts or the like) 821, 831 having a larger diameter than the through holes 843, 844 are fixed to the protruding portions. The holding members 84 and 85 are provided between the flange portions 820, 830, 821, and 831 so as to be movable in the x-axis direction with respect to the support shafts 82 and 83.
 第1弾性部材86は、圧縮ばね、具体的にはコイルスプリングであり、各第1支持軸81の周りに巻回されるように設置され、第1支持軸81により支持される。第1弾性部材86のx軸正方向端はスプリングリテーナ700に当接して保持されると共に、x軸負方向端は第1保持部材84に当接して保持される。第1弾性部材86は、スプリングリテーナ700(取付壁部材70)と第1保持部材84との間で圧縮された状態で保持される。 The first elastic member 86 is a compression spring, specifically a coil spring, is installed so as to be wound around each first support shaft 81, and is supported by the first support shaft 81. The x-axis positive direction end of the first elastic member 86 is held in contact with the spring retainer 700, and the x-axis negative direction end is held in contact with the first holding member 84. The first elastic member 86 is held in a compressed state between the spring retainer 700 (mounting wall member 70) and the first holding member 84.
 第2弾性部材87は、左右一対設けられ、第1支持軸81a,81bに挟まれるように配置されている。第2弾性部材87は、樹脂ないしゴムにより形成された弾性体であり、蛇腹状に成形されている。第2弾性部材87は、第1保持部材84と第2保持部材85の間に保持される。第2弾性部材87のx軸正方向端は、第1保持部材84のx軸負方向側の面における貫通孔843の周りに形成された凹部841に嵌合して保持される。第2弾性部材87のx軸負方向端は第2保持部材85のx軸正方向側の面における貫通孔853の周りに形成された凹部851に嵌合して保持される。第2弾性部材87の内周側には、第2支持軸82が、第2弾性部材87に対して摺動可能に挿入設置されている。第2支持軸82は、第2弾性部材87が凹部841,851から脱落しないように第2弾性部材87を支持すると共に、第2弾性部材87が主にx軸方向に圧縮変形するようにガイドする。 The second elastic member 87 is provided in a pair of left and right, and is disposed so as to be sandwiched between the first support shafts 81a and 81b. The second elastic member 87 is an elastic body formed of resin or rubber, and is formed in a bellows shape. The second elastic member 87 is held between the first holding member 84 and the second holding member 85. The x-axis positive direction end of the second elastic member 87 is fitted and held in a recess 841 formed around the through hole 843 on the surface of the first holding member 84 on the x-axis negative direction side. The x-axis negative direction end of the second elastic member 87 is fitted and held in a recess 851 formed around the through hole 853 on the surface of the second holding member 85 on the x-axis positive direction side. On the inner peripheral side of the second elastic member 87, a second support shaft 82 is inserted and installed so as to be slidable with respect to the second elastic member 87. The second support shaft 82 supports the second elastic member 87 so that the second elastic member 87 does not fall out of the recesses 841 and 851, and guides the second elastic member 87 to compress and deform mainly in the x-axis direction. To do.
 第3弾性部材88は、第2弾性部材87a,87bに挟まれるように配置されている。第3弾性部材88は、樹脂ないしゴムにより形成された弾性体であり、円柱状に成形されている。第3弾性部材88のx軸方向の弾性係数は、第2弾性部材87のx軸方向の弾性係数よりも大きく設定されており、同じx軸方向の力に対して、第2弾性部材87よりも第3弾性部材88のほうが圧縮変形しにくく設けられている。第3弾性部材88のx軸正方向端は、第1保持部材84のx軸負方向側の面における貫通孔844の周りに形成された凹部842に嵌合して保持される。第3弾性部材88の内周側には、第3支持軸83が、第3弾性部材88に対して摺動可能に挿入設置されている。第3弾性部材88のx軸負方向端と第2保持部材85のx軸正方向側の面における貫通孔854の周りに形成された凹部852の底面との間には、所定のx軸方向距離(間隙)が設けられている。凹部852の径は第3弾性部材88の径よりも大きく設けられている。第3支持軸83は、第3弾性部材88が凹部842から脱落しないように支持すると共に、第3弾性部材88が圧縮される際、主にx軸方向に圧縮変形するようにガイドする。 The third elastic member 88 is disposed so as to be sandwiched between the second elastic members 87a and 87b. The third elastic member 88 is an elastic body formed of resin or rubber, and is formed in a cylindrical shape. The elastic coefficient of the third elastic member 88 in the x-axis direction is set to be larger than the elastic coefficient of the second elastic member 87 in the x-axis direction. Also, the third elastic member 88 is provided less likely to compress and deform. The x-axis positive direction end of the third elastic member 88 is fitted and held in a recess 842 formed around the through hole 844 in the surface of the first holding member 84 on the x-axis negative direction side. On the inner peripheral side of the third elastic member 88, a third support shaft 83 is inserted and installed so as to be slidable with respect to the third elastic member 88. Between the x-axis negative direction end of the third elastic member 88 and the bottom surface of the recess 852 formed around the through hole 854 in the surface on the x-axis positive direction side of the second holding member 85, a predetermined x-axis direction A distance (gap) is provided. The diameter of the recess 852 is larger than the diameter of the third elastic member 88. The third support shaft 83 supports the third elastic member 88 so as not to drop out of the recess 842, and guides the third elastic member 88 so as to be mainly compressed and deformed in the x-axis direction when the third elastic member 88 is compressed.
 図6は、液圧制御ユニット6の全体斜視図である。液圧制御ユニット6は、マスタシリンダ5(リザーバ5a)からブレーキ液の供給を受け、運転者によるブレーキ操作とは独立にブレーキ液圧を発生可能な第2のブレーキ液圧発生源である。液圧制御ユニット6は、各車輪に設けられたホイルシリンダとマスタシリンダ5との間に設けられており、各ホイルシリンダにマスタシリンダ液圧又は制御液圧を個別に供給可能である。液圧制御ユニット6は、液圧ユニット6aと、液圧ユニット6aの作動を制御する電子制御ユニットECU6bとを備えている。液圧ユニット6aとECU6bは一体のユニットとして構成されている。液圧ユニット6aは、制御液圧を発生するための液圧機器(アクチュエータ)として、液圧発生源であるポンプや、ハウジング60内に形成された油路の連通状態を切り換える複数の制御弁(電磁弁)を有している。液圧ユニット6a(ハウジング60)には、ポンプを駆動するモータ6cが一体に取付けられている。液圧ユニット6aの具体的な液圧回路構成については、周知の液圧ユニットと同様であるため、説明を省略する。液圧ユニット6aには、油路の所定部位の液圧(マスタシリンダ液圧等)を検出する液圧センサが設けられており、その検出値はECU6bに入力される。ECU6bは、入力される各種情報に基づき、液圧ユニット6aの各アクチュエータの作動を制御することで、運転者のブレーキ操作から独立して各ホイルシリンダの液圧を制御(増圧、減圧、保持)可能に設けられている。 FIG. 6 is an overall perspective view of the hydraulic pressure control unit 6. The hydraulic pressure control unit 6 is a second brake hydraulic pressure generation source that receives supply of brake fluid from the master cylinder 5 (reservoir 5a) and can generate brake hydraulic pressure independently of the brake operation by the driver. The hydraulic pressure control unit 6 is provided between the wheel cylinder provided on each wheel and the master cylinder 5, and can individually supply the master cylinder hydraulic pressure or the control hydraulic pressure to each wheel cylinder. The hydraulic pressure control unit 6 includes a hydraulic pressure unit 6a and an electronic control unit ECU 6b that controls the operation of the hydraulic pressure unit 6a. The hydraulic unit 6a and the ECU 6b are configured as an integral unit. The hydraulic unit 6a is a hydraulic device (actuator) for generating a control hydraulic pressure, and includes a plurality of control valves that switch the communication state of a pump that is a hydraulic pressure generation source and an oil passage formed in the housing 60. Solenoid valve). A motor 6c for driving the pump is integrally attached to the hydraulic unit 6a (housing 60). Since the specific hydraulic circuit configuration of the hydraulic unit 6a is the same as that of a known hydraulic unit, description thereof is omitted. The hydraulic pressure unit 6a is provided with a hydraulic pressure sensor for detecting the hydraulic pressure (master cylinder hydraulic pressure or the like) at a predetermined portion of the oil passage, and the detected value is input to the ECU 6b. The ECU 6b controls the hydraulic pressure of each wheel cylinder independently of the driver's brake operation (increasing, depressurizing, holding) by controlling the operation of each actuator of the hydraulic pressure unit 6a based on various input information. ) Is possible.
 液圧ユニット6aは、ブレーキ配管を介してブレーキペダル側のユニット(図1参照)に接続されており、例えば、ブレーキペダル側のユニットの下側に、図6のx軸方向が図1のx軸方向と一致するように配置される。これにより、装置1全体の鉛直方向(車両上下方向)での投影面積を少なくして、車両搭載性を向上できる。液圧ユニット6aのハウジング60はダンパ6d及びブラケット6eを介して車体側(エンジンルームの床)へ固定設置される。ハウジング60の上側には、ハウジング60内に形成された油路の開口部として、P系統及びS系統のマスタシリンダポート61と、4つのホイルシリンダポート62とが設けられている。P系統のマスタシリンダポート61Pは、ブレーキ配管を介して、マスタシリンダ5のP系統の吐出ポート51Pに接続され、P系統の液圧室に連通する。S系統のマスタシリンダポート61Sは、他のブレーキ配管を介して、マスタシリンダ5のS系統の吐出ポート51Sに接続され、S系統の液圧室に連通する。各ホイルシリンダポート62は、それぞれブレーキ配管を介して、各ホイルシリンダに接続されている。 The hydraulic unit 6a is connected to a brake pedal side unit (see FIG. 1) via a brake pipe. For example, the x-axis direction of FIG. Arranged to coincide with the axial direction. Thereby, the projection area in the vertical direction (vehicle up-down direction) of the whole apparatus 1 can be reduced, and vehicle mounting property can be improved. The housing 60 of the hydraulic unit 6a is fixedly installed on the vehicle body side (the floor of the engine room) via a damper 6d and a bracket 6e. On the upper side of the housing 60, a master cylinder port 61 for the P system and the S system and four wheel cylinder ports 62 are provided as openings of oil passages formed in the housing 60. The P-system master cylinder port 61P is connected to the P-system discharge port 51P of the master cylinder 5 via a brake pipe, and communicates with the P-system hydraulic chamber. The S system master cylinder port 61S is connected to the S system discharge port 51S of the master cylinder 5 via another brake pipe, and communicates with the S system hydraulic chamber. Each wheel cylinder port 62 is connected to each wheel cylinder via a brake pipe.
 液圧制御ユニット6は、車輪のロック傾向を緩和するアンチロックブレーキ制御(ABS)や、車両の横滑り等を抑制して車両挙動を安定化するためのブレーキ制御(VDCやESCといった車両挙動制御)を実行可能に設けられている。ブレーキ操作が行われた状態で、いずれかの車輪のロック傾向が検出されると、ECU6bは、アンチロックブレーキ制御を実行する。具体的には、液圧ユニット6aを駆動し、当該車輪のホイルシリンダ液圧を減圧することで、当該車輪のスリップ率が所定範囲内に収まるように制御する(例えば、当該車輪の減圧・保持・増圧を繰り返す)。アンチロックブレーキ制御の詳細は周知であるため、説明を省略する。ブレーキ操作が行われた状態又は行われない状態で、車両の横滑り等が検出されると、ECU6bは、車両挙動制御を実行する。具体的には、検出された車両挙動状態量(横加速度等)に基づき、所望の車両挙動を実現するよう、液圧ユニット6aを駆動して各車輪のホイルシリンダ液圧を制御する。車両挙動制御の詳細は周知であるため、説明を省略する。なお、液圧制御ユニット6は、アンチロックブレーキ制御のみを実行可能に設けられていることとしてもよいし、上記制御以外の自動ブレーキ制御(車間距離制御や先行車追従制御等)を実行可能に設けられていることとしてもよく、特に限定しない。 The hydraulic control unit 6 includes an anti-lock brake control (ABS) that reduces the tendency of the wheels to lock, and a brake control (vehicle behavior control such as VDC and ESC) that suppresses the side slip of the vehicle and stabilizes the vehicle behavior. Is provided to be executable. If a lock tendency of any wheel is detected in a state where the brake operation is performed, the ECU 6b executes anti-lock brake control. Specifically, the hydraulic pressure unit 6a is driven to reduce the wheel cylinder hydraulic pressure of the wheel so that the slip ratio of the wheel falls within a predetermined range (for example, the pressure reduction / holding of the wheel).・ Repeat pressure increase). The details of the antilock brake control are well known, and thus the description thereof is omitted. If a skid or the like of the vehicle is detected in a state where the brake operation is performed or not performed, the ECU 6b executes vehicle behavior control. Specifically, based on the detected vehicle behavior state quantity (lateral acceleration or the like), the hydraulic pressure unit 6a is driven to control the wheel cylinder hydraulic pressure of each wheel so as to realize a desired vehicle behavior. The details of the vehicle behavior control are well known, and the description is omitted. The hydraulic pressure control unit 6 may be provided so as to be able to execute only the anti-lock brake control, or can execute automatic brake control (such as inter-vehicle distance control or preceding vehicle follow-up control) other than the above control. It may be provided and is not particularly limited.
 液圧制御ユニット6の各アクチュエータが非作動である状態では、マスタシリンダ5の液圧室と各車輪のホイルシリンダとが連通した状態となる。このとき、運転者によるブレーキペダル2の操作力(踏力)を用いて発生させたマスタシリンダ液圧によってホイルシリンダ液圧を発生する(以下、踏力ブレーキという)。装置1は、ペダルストロークSPの全領域(すなわちブレーキ操作が開始された後の制動初期における低圧域を含め、制動の各段階における各液圧域)で、ポンプや電磁弁等を非通電状態とし、液圧制御ユニット6を非作動状態とすることで、踏力ブレーキを実現する。ブレーキペダル2の踏込み操作に応じて、マスタシリンダ5の各系統の液圧室から(液圧ユニット6a内の油路を経由して)各ホイルシリンダに向けてブレーキ液が供給される(増圧時)。すなわち、ブレーキペダル2の踏込み操作に応じて発生するマスタシリンダ液圧がそのままホイルシリンダに供給される。また、ブレーキペダル2が踏み戻されると、各ホイルシリンダから(液圧ユニット6a内の油路を経由して)マスタシリンダ5に向けてブレーキ液が戻される(減圧時)。その際、リンク式倍力装置3により、所定のブレーキ特性、すなわち運転者のブレーキ操作量(ペダルストロークSP)とブレーキ操作力(踏力)FPとブレーキ液圧P(車両減速度G)との間の理想の関係特性を実現するように設定している。本実施例では、例えば、車両のエンジンが発生する負圧を利用してブレーキ操作力を倍力する通常サイズのエンジン負圧ブースタを備え、かつリンク式倍力装置3を備えないブレーキ装置(以下、比較例1という)において、エンジン負圧ブースタの作動時に実現されるブレーキ特性を、上記理想の関係特性とする。 In a state where each actuator of the hydraulic pressure control unit 6 is inactive, the hydraulic chamber of the master cylinder 5 and the wheel cylinder of each wheel are in communication. At this time, the wheel cylinder hydraulic pressure is generated by the master cylinder hydraulic pressure generated by using the operating force (depressing force) of the brake pedal 2 by the driver (hereinafter referred to as a pedal brake). Device 1 (including the low pressure area in the initial stage of braking after That braking operation is started, the liquid pressure area at each stage of braking) the entire region of the pedal stroke S P, the non-energized state of the pump and solenoid valve, etc. The pedal force brake is realized by disabling the hydraulic pressure control unit 6. In accordance with the depression operation of the brake pedal 2, brake fluid is supplied from each hydraulic chamber of each system of the master cylinder 5 (via an oil passage in the hydraulic unit 6a) toward each wheel cylinder (pressure increase) Time). That is, the master cylinder hydraulic pressure generated according to the depression operation of the brake pedal 2 is supplied to the wheel cylinder as it is. When the brake pedal 2 is depressed, the brake fluid is returned from each wheel cylinder (via the oil passage in the hydraulic unit 6a) toward the master cylinder 5 (when pressure is reduced). At that time, the link-type booster 3, predetermined braking characteristics, namely the amount of the brake operation by the driver (pedal stroke S P) and the brake operating force (depression force) F P and the brake fluid pressure P (vehicle deceleration G) It is set to realize the ideal relationship characteristics between. In the present embodiment, for example, a brake device (hereinafter referred to as a link-type booster 3) that includes a normal-size engine negative-pressure booster that boosts a brake operation force by using a negative pressure generated by a vehicle engine. In the comparative example 1), the brake characteristic realized when the engine negative pressure booster is operated is the ideal relational characteristic.
 [作用]
 次に、装置1の作用を説明する。
(リンク式倍力装置の作動)
 図7~図9は、図4と同様の模式図によりリンク式倍力装置3の作動を示したものである。一点鎖線により、ブレーキペダル2の踏込み量SPがゼロである初期状態における各部材の位置(初期位置)を示す。ブレーキペダル2が踏み込まれると、ブレーキペダル2の力点(ペダルパッド21)及び作用点(ピン92)が支点(ペダル回転軸91)の周りで図の反時計回り方向に回転する。作用点(ピン92)での回転力は、第1リンク31を介して第2リンク(ピン93)に伝えられ、第2リンクを支点(第2リンク回転軸94)の周りで反時計回り方向に回転させる。第2リンクの回転力は、ピン95を介してロッド4に伝えられ、ロッド4をx軸正方向に移動させる。このように、ブレーキペダル2の回転力(踏力)が、リンク式倍力装置3を介して、ロッド4をx軸正方向に移動させる直線方向の力に変換される。ここで、上記リンク機構の作用により、ペダルストロークSPに応じて、ペダルストロークSPとロッドストロークSRとの比SP/SRが可変となるように設けられている。また、ブレーキペダル2が揺動可能な全領域(ペダルストロークSPの全域)で、ペダルストロークSP毎に、ロッド4の初期位置からのx軸方向移動量(ロッドストロークSR)は、ブレーキペダル2の踏込み量、すなわちブレーキペダル2の力点(ペダルパッド21)の初期位置からの移動量(ペダルストロークSP)よりも少なくなるように設定されている。また、ペダルストロークSPの全域で、ペダルストロークSP毎に、ロッドストロークSRは、ブレーキペダル2の作用点(ピン92)の初期位置からの移動量よりも少なくなるように設定されている。
[Action]
Next, the operation of the device 1 will be described.
(Link type booster operation)
7 to 9 show the operation of the link type booster 3 by the same schematic diagram as FIG. The dashed line indicates the position of each member in the initial state the depression amount S P output brake pedal 2 is zero (initial position). When the brake pedal 2 is depressed, the force point (pedal pad 21) and the action point (pin 92) of the brake pedal 2 rotate around the fulcrum (pedal rotating shaft 91) in the counterclockwise direction in the figure. The rotational force at the operating point (pin 92) is transmitted to the second link (pin 93) via the first link 31, and the second link is counterclockwise around the fulcrum (second link rotating shaft 94). Rotate to The rotational force of the second link is transmitted to the rod 4 through the pin 95, and moves the rod 4 in the positive x-axis direction. In this way, the rotational force (depression force) of the brake pedal 2 is converted to a linear force that moves the rod 4 in the positive x-axis direction via the link booster 3. Here, by the action of the link mechanism, in accordance with the pedal stroke S P, the ratio S P / S R of the pedal stroke S P and the rod stroke S R is provided so as to be variable. Also, the entire region the brake pedal 2 is swingable (entire region of the pedal stroke S P), each pedal stroke S P, x-axis direction movement amount from the initial position of the rod 4 (rod stroke S R), the brake The amount of depression of the pedal 2, that is, the amount of movement (the pedal stroke S P ) from the initial position of the force point (pedal pad 21) of the brake pedal 2 is set. Further, across the pedal stroke S P, for each pedal stroke S P, rod stroke S R is set to be smaller than the movement amount from the initial position of the point of application of the brake pedal 2 (pin 92) .
 (ストローク規制部の作動)
 図10~図13は、ブレーキペダル2とリンク式倍力装置3とロッド4とストローク規制部8を側面から見た模式図である。図10は各部材の初期位置を示す。以下、ペダル回転軸91とピン92を結ぶ線分をL7とし、ピン92とピン93を結ぶ線分をL8とし、ペダル回転軸91とピン93を結ぶ線分をL9とする。図11は、ブレーキペダル2がストローク規制部8の当接部材80に当接し始めた状態における各部材の位置を示す。すなわち、当接部材80は、ブレーキペダル2に当接可能に設けられている。ブレーキペダル2が踏み込まれ、ペダルストロークSPが所定量SP2になると、図11に示すように、ブレーキペダル2が当接部材80のx軸負方向側の面に当接する。このように当接部材80は当接部を構成している。ブレーキペダル2が当接部材80に当接するようになると、ブレーキペダル2のそれ以上のストロークがある程度抑制される。すなわち、ブレーキペダル2がそれ以上ストロークするために、弾性部材86~88を圧縮変形させつつ当接部材80をx軸正方向側に押して移動させる分だけ、力が余計に必要となる。この意味で、当接部材80は、ブレーキペダル2のストロークを規制する。
(Activation of stroke restriction part)
10 to 13 are schematic views of the brake pedal 2, the link type booster 3, the rod 4, and the stroke restricting portion 8 as seen from the side. FIG. 10 shows the initial position of each member. Hereinafter, a line segment connecting the pedal rotation shaft 91 and the pin 92 is L7, a line segment connecting the pin 92 and the pin 93 is L8, and a line segment connecting the pedal rotation shaft 91 and the pin 93 is L9. FIG. 11 shows the position of each member in a state where the brake pedal 2 starts to contact the contact member 80 of the stroke restricting portion 8. That is, the contact member 80 is provided so as to be able to contact the brake pedal 2. Brake pedal 2 is depressed, the pedal stroke S P becomes a predetermined amount S P 2, as shown in FIG. 11, the brake pedal 2 is brought into contact with the surface of the x-axis negative direction side of the contact member 80. Thus, the contact member 80 forms a contact portion. When the brake pedal 2 comes into contact with the contact member 80, further stroke of the brake pedal 2 is suppressed to some extent. That is, since the brake pedal 2 makes a further stroke, an extra force is required for moving the abutting member 80 in the positive x-axis direction while compressing and deforming the elastic members 86 to 88. In this sense, the contact member 80 regulates the stroke of the brake pedal 2.
 図12は、ストローク規制部8の弾性部材86,87が圧縮される途中の状態における各部材の位置を示す。第1弾性部材86はコイルスプリングから構成されたばね部であり、第2弾性部材87は上記ばね部(第1弾性部材86)に直列に配置された緩衝部材である。図11の位置からブレーキペダル2がさらに踏み込まれると、ブレーキペダル2が当接部材80に当接した状態でS2以上ストロークしようとする。具体的には、当接部材80が第2保持部材85と共に第1支持軸81に対してx軸正方向側へ移動しようとする(図5参照)。よって、第2弾性部材87に対してx軸正方向側から推力が作用するため、第2弾性部材87が若干圧縮される。また、第2弾性部材87から第1保持部材84に作用する力により、第1保持部材84が第1支持軸81に対してx軸正方向側へ移動しようとする。よって、第1弾性部材86に対してx軸正方向側から推力が作用するため、第1弾性部材86が若干圧縮される。第1弾性部材86及び第2弾性部材87が圧縮変形することで、当接部材80にブレーキペダル2が当接したときの衝撃が吸収される。また、上記圧縮変形の分だけブレーキペダル2に作用する反力(ペダル反力)が増大し、踏力FPを減衰する。ペダルストロークSPの増大に応じて、第1弾性部材86及び第2弾性部材87の圧縮変形量が増大することにより、ペダル反力は増加する。このように、第1弾性部材86及び第2弾性部材87はダンパを構成している。 FIG. 12 shows the position of each member in a state where the elastic members 86 and 87 of the stroke restricting portion 8 are being compressed. The 1st elastic member 86 is a spring part comprised from the coil spring, and the 2nd elastic member 87 is a buffer member arrange | positioned in series with the said spring part (1st elastic member 86). When the brake pedal 2 is further depressed from the position shown in FIG. 11, the brake pedal 2 tries to make a stroke of S2 or more in a state where the brake pedal 2 is in contact with the contact member 80. Specifically, the contact member 80 tends to move in the positive x-axis direction with respect to the first support shaft 81 together with the second holding member 85 (see FIG. 5). Therefore, since a thrust acts on the second elastic member 87 from the x-axis positive direction side, the second elastic member 87 is slightly compressed. Further, due to the force acting on the first holding member 84 from the second elastic member 87, the first holding member 84 tends to move in the x-axis positive direction side with respect to the first support shaft 81. Therefore, a thrust acts on the first elastic member 86 from the positive side of the x-axis, so that the first elastic member 86 is slightly compressed. Since the first elastic member 86 and the second elastic member 87 are compressed and deformed, an impact when the brake pedal 2 comes into contact with the contact member 80 is absorbed. Further, the reaction force acting only on the brake pedal 2 min the compression deformation (the pedal reaction force) is increased, to attenuate the pedaling force F P. Depending on the increase of the pedal stroke S P, by the amount of compressive deformation of the first elastic member 86 and the second elastic member 87 is increased, the pedal reaction force is increased. Thus, the 1st elastic member 86 and the 2nd elastic member 87 comprise the damper.
 図13は、ストローク規制部8の弾性部材86~88が最大圧縮された状態における各部材の位置を示す。図12の位置からブレーキペダル2がさらに踏み込まれると、第2弾性部材87の圧縮量が増大して、第3弾性部材88と第2保持部材85の凹部852との間のx軸方向距離(間隙)がなくなる。このときのペダルストロークSPをSP30(>SP2)とする。上記間隙の大きさはS30とS2との差に相当する。以後、第3弾性部材88が圧縮されるようになるため、ペダル反力としては、第1弾性部材86及び第2弾性部材87の弾性力に加え、第3弾性部材88の圧縮による弾性力も加わる。このとき、第1弾性部材86のコイル巻線間の隙間が圧縮によってほとんどなくなり、第1弾性部材86がそれ以上x軸方向に変形できなくなる。第3弾性部材88がある程度圧縮されたペダルストロークSPでは、運転者の通常のブレーキ踏込み操作によってはブレーキペダル2のストロークが実質的に不可能なほど、ペダル反力が大きくなる。言い換えると、運転者がブレーキ踏込み操作において通常想定される最大の力を出しても、ブレーキペダル2がそれ以上ストロークできなくなる。このペダルストロークSP(規制後の最大ペダルストローク)をSP3(>SP30)とする。このように、第3弾性部材88は、ペダルストロークSPがSP30以上(SP3以下)でブレーキペダル2のストロークを止めるストッパを構成している。なお、第3弾性部材88は、第1保持部材84(凹部842)ではなく第2保持部材85(凹部852)に保持されることとしてもよいし、凹部842,852のどちらにも嵌合保持されずに第3支持軸83のみにより支持されることとしてもよい。 FIG. 13 shows the position of each member in a state where the elastic members 86 to 88 of the stroke restricting portion 8 are maximally compressed. When the brake pedal 2 is further depressed from the position of FIG. 12, the amount of compression of the second elastic member 87 increases, and the distance in the x-axis direction between the third elastic member 88 and the recess 852 of the second holding member 85 ( Gap) disappears. The pedal stroke S P at this time is set to S P 30 (> S P 2). The size of the gap corresponds to the difference between S30 and S2. Thereafter, since the third elastic member 88 is compressed, as a pedal reaction force, in addition to the elastic force of the first elastic member 86 and the second elastic member 87, the elastic force due to the compression of the third elastic member 88 is also applied. . At this time, the gap between the coil windings of the first elastic member 86 is almost eliminated by compression, and the first elastic member 86 cannot be further deformed in the x-axis direction. In the pedal stroke S P third elastic member 88 is somewhat compressed, the stroke of the brake pedal 2 by the usual brake pedal depression operation by the driver is more substantially impossible, the pedal reaction force is increased. In other words, even if the driver exerts the maximum force normally assumed in the brake depression operation, the brake pedal 2 can no longer stroke. This pedal stroke S P (maximum pedal stroke after regulation) is defined as S P 3 (> S P 30). Thus, the third elastic member 88, the pedal stroke S P constitutes a stopper for stopping the stroke of the brake pedal 2 by S P 30 or more (S P 3 below). The third elastic member 88 may be held by the second holding member 85 (recessed portion 852) instead of the first holding member 84 (recessed portion 842) or fitted and held in either of the recessed portions 842 and 852. Instead, it may be supported only by the third support shaft 83.
 図14、図15は、ストローク規制部8を備えない比較例2のリンク式倍力装置3とロッド4とを側面から見た模式図であり、ペダルストロークSPが特異点を越えたときのリンク式倍力装置の作動を示したものである。第1,第2リンク31,32から構成されるリンク機構の特性に由来して、ペダルストロークSPの後半領域で、SPの増大に対しロッドストロークSRが増大から減少へ切り替わる(ロッド4の軸方向の移動方向が反転し、ロッド4が逆進する)特異点が現れる。SPがSP3より大きいSP5に達するまでは、線分L7,L8がなす角度が180度に向けて増大する。これに応じて、線分L9が長くなるように、ピン93が支点(第2リンク回転軸94)の周りで反時計回り方向に回転する。ピン93が押し下げられるのに伴い、ロッド4はx軸正方向側へ移動する(図10~図13)。SPがSP5に達すると、線分L7,L8がなす角度が180度となり、ピン92は線分L9上に位置し、線分L7,L8は線分L9と一致する(特異姿勢)。線分L9の長さは最大(線分L7,L8の長さの和)となる。このとき第1リンク31(各ピン92,93)に作用するトルクは釣り合う。SPがSP5を越えて増大すると、線分L7,L8がなす角度が180度よりも小さくなる。これに応じて、線分L9が短くなるように、ピン93が支点(第2リンク回転軸94)の周りで時計回り方向に回転する。ピン93が引き上げられるのに伴い、ロッド4はx軸負方向側へ移動する(図14,図15)。このように、SPがSP5未満からSP5(特異点)を越えると、第2リンク32の回転方向が逆転し、ロッド4の移動方向もx軸正方向からx軸負方向へ逆転する。図14は、ペダルストロークSPがSP5を越えて増大し、ロッド4が逆進している状態を示す。図15は、リンク機構上でペダルストロークSPが取り得る最大量(リンク機構上の最大ペダルストローク)となった状態を示す。なお、一旦、ピン92が線分L9を跨いでロッド4が逆進し始めると、ブレーキペダル2から足を離しても、マスタシリンダ5からロッド4に作用する反力により、第2リンク32が時計回り方向の回転を続けるため、ブレーキペダル2が初期位置に戻らなくなる。 14, FIG. 15 is a schematic view of the link-type booster 3 and the rod 4 of Comparative Example 2 without a stroke restricting portion 8 from the side, when the pedal stroke S P exceeds the singularity The operation | movement of a link type booster is shown. First, derived from the properties of the constructed link mechanism of the second link 31 and 32, in the second half region of the pedal stroke S P, to increase the S P rod stroke S R is switched to decrease from increase (the rod 4 The moving direction in the axial direction is reversed, and the singular point where the rod 4 moves backward) appears. S to P reaches the S P 3 is greater than S P 5 is at an angle to the line segment L7, L8 forms increases toward 180 degrees. In response to this, the pin 93 rotates counterclockwise around the fulcrum (second link rotation shaft 94) so that the line segment L9 becomes longer. As the pin 93 is pushed down, the rod 4 moves to the x-axis positive direction side (FIGS. 10 to 13). When S P reaches S P 5, the angle formed by the line segments L7 and L8 becomes 180 degrees, the pin 92 is positioned on the line segment L9, and the line segments L7 and L8 coincide with the line segment L9 (singular posture). . The length of the line segment L9 is the maximum (sum of the lengths of the line segments L7 and L8). At this time, the torque acting on the first link 31 (the pins 92 and 93) is balanced. When S P increases beyond S P 5, the angle formed by the line segments L7 and L8 becomes smaller than 180 degrees. In response to this, the pin 93 rotates clockwise around the fulcrum (second link rotation shaft 94) so that the line segment L9 becomes shorter. As the pin 93 is pulled up, the rod 4 moves to the x-axis negative direction side (FIGS. 14 and 15). Thus, when the S P exceeds S P 5 (singular point) from less than S P 5, the rotational direction is reversed in the second link 32, the moving direction of the rod 4 from the x-axis positive direction x-axis negative direction Reverse. FIG. 14 shows a state in which the pedal stroke S P has increased beyond S P 5 and the rod 4 is moving backward. FIG. 15 shows a state where the maximum amount of pedal stroke SP that can be taken on the link mechanism (maximum pedal stroke on the link mechanism) is reached. Note that once the rod 92 starts to move backward with the pin 92 straddling the line segment L9, the second link 32 is caused by the reaction force acting on the rod 4 from the master cylinder 5 even if the foot is released from the brake pedal 2. Since the rotation in the clockwise direction is continued, the brake pedal 2 does not return to the initial position.
 (倍力特性)
 図16に示す曲線は、装置1のペダルストロークSPに対するロッドストロークSRの変化の特性を示す。リンク式倍力装置3により、両者の比SP/SRを可変としている。リンク式倍力装置3は、第1リンク31と第2リンク32を備える。よって、例えばブレーキペダル2とロッド4との間に1つのリンク部材のみを備えたものに比べ、比SP/SRを連続的ないし滑らかに変化させることができる。SPがゼロのときは、SRもゼロである。SPがゼロから大きくなるにつれて、SRもゼロから大きくなる。SPの大小に応じて、SPの同じ変化量ΔSPに対するSRの変化量ΔSRが、所望の特性で変化するように、リンク機構が配列されている。言換えると、ロッド4を同じ量だけ移動させるために必要なブレーキペダル2の操作量が、ペダルストロークSPの大きさに応じて所望の特性で変化するように、リンク式倍力装置3の支軸94等の位置やリンク31,32の形状、長さ等が調整されている。ブレーキ踏込み操作の初期(SPが小さいとき)よりも後期(SPが大きいとき)の方が、SPの単位変化量ΔSPに対するSRの変化量ΔSR(=ΔSR/ΔSP)が少なくなるように設定されている。具体的には、SPがゼロからSP5未満では、SPが大きくなるにつれて、ΔSR/ΔSPが、(ゼロより大きい)所定値から徐々に小さくなる。ブレーキ踏込み操作の後期、SPがSP5近傍では、ΔSR/ΔSPが略ゼロとなる(SPの変化に対してSRが殆ど変化しない)。ただし、SPがSP5を越えて大きくなるにつれて、ΔSR/ΔSPがゼロより小さくなり、その絶対値が徐々に大きくなる。よって、SPに対するSRの変化を示す曲線は、右上がりかつ上に凸の曲線となる。
(Boost characteristics)
The curve shown in FIG. 16 shows the change characteristic of the rod stroke S R with respect to the pedal stroke S P of the device 1. The link type booster 3 makes the ratio S P / S R of both variable. The link booster 3 includes a first link 31 and a second link 32. Therefore, for example, the ratio S P / S R can be changed continuously or smoothly as compared with the case where only one link member is provided between the brake pedal 2 and the rod 4. When S P is zero, S R is also zero. As S P increases from zero, S R also increases from zero. Depending on the magnitude of S P, variation [Delta] S R of S R for the same change amount [Delta] S P of S P is, so as to vary with the desired properties, the link mechanism is arranged. In other words, the operation amount of the brake pedal 2 is required to move the rod 4 by the same amount, so as to vary with the desired characteristics depending on the magnitude of the pedal stroke S P, the link-type booster 3 The position of the support shaft 94 and the like, and the shapes and lengths of the links 31 and 32 are adjusted. The initial brake depression (time S P is small) late than towards the (S when P is greater) is the amount of change S R to a unit change amount [Delta] S P of S P ΔS R (= ΔS R / ΔS P) Is set to be less. Specifically, when S P is from zero to less than S P 5, ΔS R / ΔS P gradually decreases from a predetermined value (greater than zero) as S P increases. In the second half of the brake depression operation, when S P is in the vicinity of S P 5, ΔS R / ΔS P becomes substantially zero (S R hardly changes with respect to the change in S P ). However, as S P increases beyond S P 5, ΔS R / ΔS P becomes smaller than zero and its absolute value gradually increases. Therefore, the curve indicating the change of S R with respect to S P is a curve that rises to the right and is convex upward.
 図17に示す2曲線は、(1)比率SP/SR、及び(2)(液圧による反力を考慮したときの)踏力FPに対するロッド推力FRの比率FR/FP、のSPに対する変化の特性をそれぞれ示す。図18に示す曲線は、マスタシリンダ5からホイルシリンダへ向けて供給されるブレーキ液の量Qと、マスタシリンダ5ないしホイルシリンダの液圧Pとの関係(液圧剛性)の特性を示す。比SP/SRは、リンク式倍力装置3のストローク比としてのレバー比R(S)であり、可変である。図16におけるSRに対するSPの比SP/SRを任意のSPでプロットすると、図17のR(S)で示す曲線になる。R(S)は、ΔSP/ΔSRを積分したものに相当し、SPがゼロから大きくなるにつれて、(ゼロより大きい)所定値から徐々に大きくなる。図16のSPに対するSRの変化を示す曲線は、右上がりかつ上に凸の曲線である。よって、図17に示すように、比SP/SRは、少なくともSPがSP5になるまで漸増する。SPに対するSP/SRの変化を示す曲線は、右上がりかつ下に凸の緩やかな曲線となる。 The two curves shown in FIG. 17 are (1) the ratio S P / S R , and (2) the ratio F R / F P of the rod thrust F R to the pedaling force F P (when considering the reaction force due to the hydraulic pressure), It shows characteristic changes to S P output, respectively. The curve shown in FIG. 18 shows the characteristic (hydraulic rigidity) of the relationship between the amount Q of brake fluid supplied from the master cylinder 5 toward the wheel cylinder and the hydraulic pressure P of the master cylinder 5 or the wheel cylinder. The ratio S P / S R is a lever ratio R (S) as a stroke ratio of the link type booster 3 and is variable. Plotting the ratio S P / S R of S P in any S P against S R in FIG. 16, the curve indicated by R (S) in FIG. 17. R (S) corresponds to an integral of ΔS P / ΔS R , and gradually increases from a predetermined value (greater than zero) as S P increases from zero. Curve showing the change of S R for S P output 16 is a convex curve on the right-up and. Therefore, as shown in FIG. 17, the ratio S P / S R increases gradually until at least S P becomes S P 5. Curve showing the change in the S P / S R for S P is a gentle upward curves and convex downward.
 また、比FR/FPは、リンク式倍力装置3の倍力比としてのレバー比R(F)であり、可変である。ロッド4に作用する液圧Pによる反力を考慮に入れなければ、比FR/FPはΔSR/ΔSPに反比例する。このため、比FR/FPは、SPがSP5に近づく(ΔSR/ΔSPが略ゼロに近づく)ほど大きくなり、SPがSP5近傍になると著しく大きくなるはずである。しかし、SP(SR)が増大して液圧Pがある程度上昇すると、ロッド4に作用する液圧Pによる反力が増大する。すなわち、SRの増大に比例して液量Qは増加する。ここで、図18に示すように、本実施例の液圧剛性は、液量Qがゼロから所定量Q1までの範囲では液量Qの増加に対する液圧Pの上昇率は小さく、QがQ1を越えるとQの増加に対するPの上昇率が大きくなる特性となっている。よって、SRが所定量を越え(SPが所定量SP1を越え)るときにQがQ1を越えるとした場合、SPが所定量SP1を越えているとき、SPの増加に対する液圧Pによる反力の増大率が大きくなる。このような液圧剛性(液圧Pによる反力)の影響を考慮したとき、比FR/FPの増大は、SPがある程度増大すると抑制される。このため、(液圧Pによる反力を考慮したときの)比FR/FPのSPに対する変化を示す曲線は、図17に示すように、SPが所定量SP4(SP3<SP4<SP5)になるまで、右上がりかつS字状となる。 The ratio F R / F P is a lever ratio R (F) as a boost ratio of the link type booster 3 and is variable. Unless the reaction force due to the hydraulic pressure P acting on the rod 4 is taken into account, the ratio F R / F P is inversely proportional to ΔS R / ΔS P. Therefore, the ratio F R / F P, S P approaches the S P 5 (ΔS R / ΔS P approaches substantially zero) as large, should significantly increase the S P is in the vicinity of S P 5 . However, when S P (S R ) increases and the hydraulic pressure P rises to some extent, the reaction force due to the hydraulic pressure P acting on the rod 4 increases. That is, the liquid amount Q increases in proportion to the increase in S R. Here, as shown in FIG. 18, the hydraulic rigidity of the present embodiment is such that the rate of increase of the hydraulic pressure P with respect to the increase of the hydraulic quantity Q is small in the range from zero to the predetermined quantity Q1, and Q is Q1. If it exceeds, the increase rate of P with respect to the increase of Q becomes a characteristic. Thus, if S R has a exceeds a predetermined amount (S P exceeds the predetermined amount S P 1) Q to Rutoki exceeds Q1, when the S P exceeds the predetermined amount S P 1, of the S P The increase rate of the reaction force due to the hydraulic pressure P with respect to the increase is increased. When considering the impact of such liquid pressure rigidity (reaction force due to fluid pressure P), the increase in the ratio F R / F P, is suppressed and S P is increased to some extent. Therefore, the curve showing the change with respect to S P output ratio F R / F P (when considering the reaction force due to fluid pressure P), as shown in FIG. 17, S P is a predetermined amount S P 4 (S P Until 3 <S P 4 <S P 5), it goes upward and becomes S-shaped.
 この曲線R(F)の傾き(ΔSPに対する変化量)は、SPがゼロからSP4になるまでは、比SP/SRの変化を示す曲線R(S)の傾きよりも大きく、SPがSP4を越えて増大すると、曲線R(S)の傾きよりも小さくなる。よって、SPがSP4になるまで、比SP/SRと比FR/FPとの差分(曲線R(F),R(S)間の距離)がSPの増大に応じて漸増する特性となる。なお、SPがSP5より増大すると、ロッド4が逆進するようになるため、SPの増大に対してSRが減少するようになる(ΔSR/ΔSPが負となる)。よって、SPがSP5を越えた領域では、比FR/FPは減少する(曲線R(F)は右下がりとなる)。一方、SPがSP5より増大しても、比SP/SRは増加し続ける(曲線R(S)は右上がりとなる)。よって、SPがSP5より増大すると、比SP/SRと比FR/FPとの差分がSPの増大に応じて減少する特性となる。 The slope of the curve R (F) (amount of change with respect to [Delta] S P), the S P from zero until S P 4, greater than the slope of the curve R (S) indicating a change in the ratio S P / S R , S P increases beyond S P 4 and becomes smaller than the slope of the curve R (S). Therefore, the difference between the ratio S P / S R and the ratio F R / F P (the distance between the curves R (F) and R (S)) depends on the increase of S P until S P becomes S P 4. The characteristics gradually increase. When S P increases from S P 5, the rod 4 moves backward, so that S R decreases with respect to the increase of S P (ΔS R / ΔS P becomes negative). Therefore, in a region where S P exceeds the S P 5, the ratio F R / F P decreases (curve R (F) is the right edge). On the other hand, even if S P increases from S P 5, the ratio S P / S R continues to increase (curve R (S) rises to the right). Therefore, when S P increases from S P 5, the difference between the ratio S P / S R and the ratio F R / F P decreases as S P increases.
 (省エネ化、小型化、低コスト化)
 運転者のブレーキ操作に応じた液圧制動力を発生させる通常ブレーキ(踏力ブレーキ)時、装置1は、液圧制御ユニット6の作動の有無に関わらず、リンク式倍力装置3により、運転者のブレーキ操作力を低減するための補助力を発生する。このリンク式倍力装置3は、メカニカルな倍力装置である。すなわち、専ら運転者のブレーキ操作力を利用してメカ的にブレーキ操作力を倍力する。言い換えると、電動モータやアキュムレータを用いて液圧を発生する倍力装置や、エンジンの負圧を用いたマスターバック等の、運転者のブレーキ操作力とは別のエネルギ源を用いて駆動され、補助力を発生する倍力装置ではない。このように、装置1は、通常ブレーキ時(運転者のブレーキ操作時)、運転者のブレーキ操作力とは別のエネルギ源を用いて補助力を発生させるタイプの倍力装置を作動させない。よって、運転者のブレーキ操作力とは別のエネルギ源を用いて補助力を発生する構成に比べ、補助力を発生するための消費エネルギを抑制することができる。また、電動モータやエンジン負圧等を用いる倍力装置を省略することが可能であるため、倍力装置の大型化を抑制することができる。
(Energy saving, miniaturization, cost reduction)
During normal braking (stepping force braking) that generates a hydraulic braking force according to the driver's braking operation, the device 1 uses the link type booster 3 to determine whether or not the driver Auxiliary force is generated to reduce brake operation force. This link type booster 3 is a mechanical booster. That is, the brake operation force is mechanically boosted exclusively using the driver's brake operation force. In other words, it is driven using an energy source different from the driver's brake operation force, such as a booster that generates hydraulic pressure using an electric motor or an accumulator, or a master back that uses negative pressure of the engine, It is not a booster that generates auxiliary power. As described above, the device 1 does not operate a booster of a type that generates an auxiliary force using an energy source different from the driver's brake operation force during normal braking (when the driver operates the brake). Therefore, compared with the structure which generate | occur | produces auxiliary force using an energy source different from a driver | operator's brake operation force, the energy consumption for generating auxiliary force can be suppressed. Moreover, since it is possible to omit the booster using an electric motor, engine negative pressure, etc., the enlargement of a booster can be suppressed.
 言い換えると、昨今、車両の燃費向上の要求から、倍力装置がエンジン負圧を利用しなかったり、利用するとしても低負圧を用いるブレーキ装置が求められている。一方、電動モータやアキュムレータを用いて液圧を発生する倍力装置を備えた場合、ブレーキシステムが大型化・複雑化し、また部品点数が増加してコスト的に不利となると共に、車両への搭載性が悪化するおそれがある。さらには、車両が大型化したり重量が増大したりするため、車両のエネルギ効率が悪化するおそれがある。このように、燃費向上が可能であり、かつ小型・安価なブレーキシステムが求められている。これに対し、装置1は、倍力装置として可変リンク式のものを用いることで、少なくとも常用域で必要とされるブレーキ性能を満足しつつ、燃費向上が可能であり、かつブレーキシステムを小型化し、またコスト的に有利なものとすることができる。 In other words, recently, due to demands for improving the fuel efficiency of vehicles, there is a demand for a brake device that does not use engine negative pressure or uses low negative pressure even if it uses it. On the other hand, when a booster that generates hydraulic pressure using an electric motor or accumulator is provided, the brake system becomes larger and more complex, and the number of parts increases, which is disadvantageous in terms of cost and mounted on the vehicle. May deteriorate. Furthermore, since the vehicle becomes larger and the weight increases, the energy efficiency of the vehicle may be deteriorated. Thus, there is a demand for a compact and inexpensive brake system that can improve fuel consumption. On the other hand, the device 1 can use a variable link type booster to improve the fuel efficiency while satisfying at least the brake performance required in the normal range, and downsize the brake system. Also, it can be cost-effective.
 また、装置1は、リンク式倍力装置3に加え、液圧制御ユニット6を備える。液圧制御ユニット6はABS制御(又は車両挙動制御)を実行可能なものであり、従来から既に多くのブレーキ装置に備えられているユニットを利用できる。通常ブレーキ時にはリンク式倍力装置3により踏力FPを補助して必要な制動力を確保する一方、ABS制御(又は車両挙動制御)の介入時には液圧制御ユニット6を作動させて必要な制動力を得ることができる。よって、車両に一般に必要とされるブレーキ性能を満足しつつ、部品点数を減らしてコストを削減できると共に、簡易なブレーキシステムを実現できる。言い換えると、ブレーキペダル側のユニットと液圧制御ユニット6とから構成されるシステムとして見た装置1の全体を簡素化して、車両への搭載性を向上することができる。さらに、車両の小型化や軽量化が可能となり、これにより車両のエネルギ効率の向上を図ることができる。 The device 1 includes a hydraulic pressure control unit 6 in addition to the link booster 3. The hydraulic pressure control unit 6 is capable of executing ABS control (or vehicle behavior control), and a unit that is already provided in many brake devices can be used. While during normal braking to ensure the braking force necessary to assist the pressing force F P by the link-type booster 3, ABS control (or the vehicle behavior control) braking force necessary to operate the fluid pressure control unit 6 at the time of intervention Can be obtained. Therefore, while satisfying the brake performance generally required for a vehicle, the number of parts can be reduced and the cost can be reduced, and a simple brake system can be realized. In other words, the entire apparatus 1 viewed as a system composed of the brake pedal unit and the fluid pressure control unit 6 can be simplified, and the mountability on the vehicle can be improved. Furthermore, the vehicle can be reduced in size and weight, and thereby the energy efficiency of the vehicle can be improved.
 なお、ブレーキ操作力の不足を補うエネルギ源として液圧制御ユニット6を利用することも考えられる。例えば、所定のブレーキ操作領域では、リンク式倍力装置3に加え液圧制御ユニット6を作動させて要求ブレーキ液圧を実現する。しかし、液圧制御ユニット6の作動(ポンプアップ)が頻繁に行われると、消費エネルギを抑制するという上記効果が減殺されるおそれがある。また、ポンプの耐久性が低下するおそれがあると共に、ブレーキ装置の静粛性(音振性能)が低下するおそれがある。これに対し、装置1は、通常ブレーキ時には、踏力ブレーキ(リンク式倍力装置3)のみを用いており、液圧制御ユニット6を利用しない。よって、上記のような問題を回避し、エネルギ効率を最大限向上する等の効果を得ることができる。また、装置1は、倍力装置としてメカ的なリンク式倍力装置を用いるため、電源系が失陥した場合でも、運転者のブレーキ操作力により最低限必要な車両の減速度を実現することが可能である。よって、フェールセーフ性に優れる。 Note that it is also conceivable to use the hydraulic control unit 6 as an energy source to compensate for the shortage of the brake operation force. For example, in a predetermined brake operation region, the required brake fluid pressure is realized by operating the fluid pressure control unit 6 in addition to the link booster 3. However, if the hydraulic pressure control unit 6 is frequently actuated (pumped up), the above effect of suppressing energy consumption may be diminished. In addition, the durability of the pump may be reduced, and the silence (sound vibration performance) of the brake device may be reduced. On the other hand, the device 1 uses only the pedal brake (link booster 3) during normal braking and does not use the hydraulic pressure control unit 6. Therefore, it is possible to avoid the problems as described above and to obtain effects such as improving energy efficiency to the maximum. Further, since the device 1 uses a mechanical link type booster as the booster, even if the power supply system fails, the driver 1 can achieve the minimum vehicle deceleration by the brake operation force. Is possible. Therefore, it is excellent in fail-safe property.
 (リンク式倍力装置の作用)
 装置1は、小型車や軽自動車(以下、小型車等という)に好適である。すなわち、小型車等では、ホイルシリンダ(キャリパ)の容量が小さく、マスタシリンダ(のピストン)が小径で済むため、運転者のブレーキ操作力を倍力する力(レバー比R)もそれほど大きいものが必要とされない。また、小型車等はその質量が小さいため、同じ減速度Gを発生するために必要な制動力が小さくて済む。よって、小型車等にあっては、少なくとも常用域では、リンク式倍力装置3のみによって、従来のブレーキ装置(比較例1)と同様のブレーキ特性(S-F-G特性)を十分に実現可能であることを、本出願人は、解析の結果、見出した。なお、装置1の適用対象は小型車等に限られない。具体的には、リンク式倍力装置3は、その全作動領域で、ブレーキペダル2の踏込み量(ペダルストロークSP)よりもロッド4のx軸方向移動量(ロッドストロークSR)が少なくなるように設定されている。これにより、ストローク比SP/SRすなわちレバー比R(S)が1より大きくなるため、てこの原理により、ブレーキペダル2の操作力(踏力FP)を増幅してロッド4へ伝えることとなる。すなわち、ペダルストロークSPの全域で、ロッド推力FRが踏力FPよりも大きくなるため、倍力機能を発揮し、踏力FPを増幅(倍力)してマスタシリンダ5のピストンへ伝え、高いブレーキ液圧Pを得ることができる。
(Operation of link booster)
The device 1 is suitable for small cars and light cars (hereinafter referred to as small cars). That is, in small cars, the capacity of the wheel cylinder (caliper) is small, and the master cylinder (piston) only needs to have a small diameter, so the force (lever ratio R) that boosts the driver's brake operation force must be so large. And not. Moreover, since the mass of a small car etc. is small, the braking force required in order to generate the same deceleration G may be small. Therefore, in a small car or the like, at least in the normal range, the brake characteristic (SFG characteristic) similar to that of the conventional brake apparatus (Comparative Example 1) can be sufficiently realized by using only the link type booster 3. As a result of the analysis, the present applicant has found out. The application target of the device 1 is not limited to a small car or the like. Specifically, the link type booster 3 has less movement amount (rod stroke S R ) of the rod 4 in the x-axis direction than the depression amount (pedal stroke S P ) of the brake pedal 2 in the entire operation region. Is set to As a result, the stroke ratio S P / S R, that is, the lever ratio R (S) becomes larger than 1, so that the operating force (stepping force F P ) of the brake pedal 2 is amplified and transmitted to the rod 4 by the lever principle. Become. That is, in the entire region of the pedal stroke S P, the rod thrust F R is greater than the pedal force F P, exerts force multiplying function, conveyed amplifies the pedal force F P (booster) the piston of the master cylinder 5, A high brake fluid pressure P can be obtained.
 より具体的には、ブレーキペダル2の支点(ペダル回転軸91)から作用点(ピン92)までの距離と、支点(ペダル回転軸91)から力点(ペダルパッド21)までの距離との比(ペダル比)に応じて、踏力FPが増幅される。さらに、ペダルストロークSPの全域で、ロッド4のx軸方向移動量(初期状態からの移動量)すなわちロッドストロークSRは、ブレーキペダル2の作用点(ピン92)の移動量(初期状態からの移動量)よりも小さくなるように設定されている。よって、ペダルストロークSPの全域で、上記ペダル比に応じて増幅された踏力FP(ブレーキペダル2からピン92を介して第1リンク31へ入力される力)よりもロッド推力FRが大きくなる。このため、リンク式倍力装置3を備えない場合に比べ、ブレーキペダル2の操作力をより増幅(倍力)してマスタシリンダ5のピストンへ伝えることで、より高いブレーキ液圧Pを得ることができる。 More specifically, the ratio of the distance from the fulcrum (pedal rotary shaft 91) to the action point (pin 92) of the brake pedal 2 and the distance from the fulcrum (pedal rotary shaft 91) to the force point (pedal pad 21) ( depending on the pedal ratio), pressing force F P is amplified. Furthermore, in the entire region of the pedal stroke S P, i.e. rod stroke S R (amount of movement from the initial state) x-axis direction movement amount of the rod 4, the point of application of the brake pedal 2 amount of movement (the pin 92) (from the initial state Is set to be smaller than the movement amount of Thus, across the pedal stroke S P, large rod thrust F R than the pedal ratio amplified pressing force F P according to (the force to be input to the first link 31 through a pin 92 from the brake pedal 2) Become. For this reason, compared with the case where the link type booster 3 is not provided, a higher brake fluid pressure P can be obtained by amplifying (boosting) the operating force of the brake pedal 2 and transmitting it to the piston of the master cylinder 5. Can do.
 ここで、ペダルストロークSPと踏力FPと液圧P(減速度G)との間の関係を示すブレーキ特性について、種々の要求が存在する。リンク式倍力装置3のリンク特性を調整することにより、上記要求を満足させることができる。本実施例では、以下を基本的な思想(要求ないしそれへの対応)とする。
(ア)ブレーキ操作初期においては、ホイルシリンダ(キャリパ)へ多くのブレーキ液量Qを供給することで、ブレーキ操作に対する制動力(液圧P)の増大応答性を向上する。
(イ)頻度が高いブレーキ操作領域(常用域)では、エンジン負圧ブースタを有するブレーキ装置(比較例1)のブレーキ特性(S-F-G特性)に近づけることで、ブレーキ操作フィーリング(ペダルフィーリング)の低下を抑制する。
Here, the brake characteristic showing the relationship between the pedal stroke S P and pressing force F P and the hydraulic pressure P (deceleration G), various requirements exist. The above requirement can be satisfied by adjusting the link characteristics of the link booster 3. In the present embodiment, the following is the basic idea (request or response).
(A) In the initial stage of the brake operation, a large amount of brake fluid Q is supplied to the wheel cylinder (caliper), thereby improving the responsiveness of the braking force (hydraulic pressure P) to the brake operation.
(A) In a frequently operated brake operation region (normal operation region), the brake operation feeling (pedal) can be achieved by bringing the brake device (Comparative Example 1) having an engine negative pressure booster closer to the brake characteristic (SFG characteristic). (Feeling) is reduced.
 図16に示すように、ブレーキペダル2のストローク初期よりも後期の方がΔSR/ΔSPが少なくなるように設定されている。言い換えると、ストローク初期には、SPの変化量ΔSPに対するSRの変化量ΔSRが大きい(ロッド4がストロークしやすい)。このため、ブレーキ操作初期においては、比較的短いSPで、ホイルシリンダへより多くのブレーキ液量Qを供給することができる。よって、ブレーキ踏込み開始後の比較的早い時期に液量Q1以上を供給することが可能であり、図18に示す液圧剛性が低い(Qに対するPの上昇率が小さい)非線形領域である0~Q1(0~P1)の領域を早期に脱することができる。したがって、ブレーキ操作に対する制動力(液圧P)の増大応答性を向上することができる。なお、ブレーキペダル2のストローク後期には、ΔSPに対するΔSRが小さいため、ブレーキ操作後期における踏力FPの増幅率を大きくして制動力を確保しやすくすることができる。例えば、失陥時にも、運転者のブレーキ操作力により最低限必要な車両の減速度を実現することが可能である。ここで、「ブレーキペダル2のストローク初期よりも後期の方が、ΔSPに対するΔSRが少なくなるように設定されていること」は、図18に示すような液圧剛性の特性を有する本実施例にあっては、「SPがSP4になるまで、比SP/SRと比FR/FPとの差分がSPの増大に応じて漸増するよう設定されていること」と同義である。よって、上記差分が上記のように漸増するよう設定されていることにより、上記と同様、制動力の応答性向上等の作用効果を得ることができる。 As shown in FIG. 16, towards the later than the stroke initial brake pedal 2 is set to [Delta] S R / [Delta] S P is reduced. In other words, the stroke early, the variation [Delta] S R of S R with respect to the change amount [Delta] S P of S P is large (the rod 4 tends to stroke). Therefore, in the brake operation initial, relatively short S P, it is possible to supply more of the brake fluid amount Q to the wheel cylinders. Therefore, it is possible to supply the liquid amount Q1 or more at a relatively early time after the start of the brake depression, and the hydraulic pressure rigidity shown in FIG. 18 is low (the rate of increase of P with respect to Q is a non-linear region) from 0 to The region of Q1 (0 to P1) can be removed early. Accordingly, it is possible to improve the increase response of the braking force (hydraulic pressure P) with respect to the brake operation. In addition, since ΔS R with respect to ΔS P is small in the latter half of the stroke of the brake pedal 2, it is possible to increase the amplification factor of the pedaling force F P in the latter half of the brake operation and to easily secure the braking force. For example, even in the event of a failure, it is possible to realize the minimum necessary vehicle deceleration by the driver's brake operation force. Here, "who later than the stroke initial brake pedal 2, it is set to [Delta] S R is reduced with respect to [Delta] S P", the present embodiment has a liquid pressure rigidity of the characteristics shown in FIG. 18 In the example, “the difference between the ratio S P / S R and the ratio F R / F P is set so as to increase gradually as S P increases until S P becomes S P 4”. It is synonymous with. Therefore, since the difference is set to gradually increase as described above, it is possible to obtain effects such as an improvement in the response of the braking force, as described above.
 図19は、踏力FPとペダルストロークSPとの関係を示すF-S特性を表す曲線であり、図20は、踏力FPと車両減速度Gとの関係を示すF-G特性を表す曲線である。なお、Gは軽自動車や小型電気自動車等を想定して算出している。実線で本実施例の特性を示し、一点鎖線で比較例1(エンジン負圧ブースタを作動させた場合)の特性を示す。網掛け領域は、比較的頻度が高い(例えば所定のブレーキ総回数のうち略80%の回数を占める)常用域であり、ブレーキ操作初期の比較的低Gのブレーキ操作領域である。図18に示すような液圧剛性の特性を有する場合に、車両のブレーキ特性として、例えばペダルストロークSP1で踏力FP1以下かつ液圧P1以上となる特性とする要求があったとする。この場合、SPがSP1に達するまでに液量Q1をマスタシリンダ5から供給できるようにリンク特性(倍力特性)を調整することで、SP1でP1以上を実現する。また、図19に示すように、SP1でFP1以上となるようにリンク特性を調整し、図20に示すように、FP1でG1(P1に相当)以上となるようにリンク特性を調整する。 Figure 19 is a curve representing the F-S characteristics showing the relationship between the pressing force F P and the pedal stroke S P, FIG. 20 represents the F-G characteristics showing the relationship between the pressing force F P and the vehicle deceleration G It is a curve. Note that G is calculated assuming a mini vehicle, a small electric vehicle, and the like. The solid line indicates the characteristics of this example, and the alternate long and short dash line indicates the characteristics of Comparative Example 1 (when the engine negative pressure booster is operated). The shaded area is a regular area with relatively high frequency (for example, accounting for approximately 80% of the predetermined total number of brakes), and is a relatively low G brake operation area at the initial stage of brake operation. If it has a liquid pressure rigidity of the characteristics shown in FIG. 18, as a brake characteristic of the vehicle, and there is for example a request to the pedaling force F P 1 or less and a hydraulic P1 or characteristic in the pedal stroke S P 1. In this case, S P is by adjusting the link characteristics (boosting characteristic) so that it can supply liquid amount Q1 to reach S P 1 from the master cylinder 5, to realize the P1 or more S P 1. Further, as shown in FIG. 19, so as to adjust the link characteristics such that F P 1 or more in S P 1, as shown in FIG. 20, the in F P 1 G1 (P1 considerably) higher link Adjust the characteristics.
 ここで、エンジン負圧ブースタを作動させる比較例1では、例えばF-S特性及びF-G特性に関し、図19、図20の一点鎖線に示すように、ブレーキ踏込み直後、FPがゼロから所定値Fj未満の範囲ではSP及びGが発生しない一方、FPがFj以上になると、SP及びGが発生してそれぞれ一気に所定量まで増大する、という特性(ジャンプイン特性)がある。図19、図20の網掛け領域に示すように、リンク特性を調整することで、比較例1の特性(ジャンプイン特性等)を模擬するブレーキ特性(S-F-G)を常用域で実現し、これによりペダルフィーリングを向上することができる。例えば、図20において、FPがFjからFP1までの範囲で、FPに対するGの変化割合(傾き)を比較例1に近づける。なお、マスタシリンダ5の無効踏力(実際にSPないしGがゼロを越えて発生し始めるFPの大きさ)を調整することで、図19の網掛け領域におけるF-S特性を全体として比較例1に近づけたり、図20においてFPに対して実際に発生するGの大きさを比較例1に近づけたりすることとしてもよい。 Here, in Comparative Example 1 to operate the engine vacuum booster, for example, relates to F-S characteristics, and F-G characteristics, FIG. 19, as shown in dashed line in FIG. 20, immediately after the brake pedal depression, predetermined F P from zero while in a range of less than a value Fj not occur S P and G, and F P is equal to or greater than Fj, it increased to once a predetermined amount each generated S P and G, there is a characteristic (jump-characteristic) that. As shown in the shaded areas in FIGS. 19 and 20, by adjusting the link characteristics, the brake characteristics (SFG) simulating the characteristics of Comparative Example 1 (jump-in characteristics, etc.) are realized in the normal range. Thus, pedal feeling can be improved. For example, in FIG. 20, the range of F P from Fj to F P 1, close rate of change of G with respect to F P (slope) in Comparative Example 1. Incidentally, by adjusting the disabling depression force of the master cylinder 5 (actually S P to the size of the F P where G starts to occur beyond the zero), compared as a whole F-S characteristics in shaded region in FIG. 19 closer or example 1, actually the size of G may be or close to Comparative example 1 generated against F P in FIG. 20.
 一方、ブレーキ操作後期の高G領域では、人間は踏力FPで減速度G(液圧制動力)を制御する傾向があることから、ブレーキ特性のうちでもF-G特性を重視してリンク特性を調整することが好ましい。例えば、FPがFP2より大きい領域で、図19に示すF-S特性では比較例1に対して本実施例が乖離しているが、図20に示すF-G特性では比較例1に本実施例を近づけるように調整することが好ましい。言い換えると、比較例1に対して、F-G特性が近づいていれば、F-S特性が乖離していても、特に問題ない。リンク特性の調整のみによっては理想的なF-G特性が得られない場合には、例えば後述するストローク規制部8のダンパ機能により、F-G特性(F-P特性)を調整することができる(図22参照)。 On the other hand, in the high-G regions of the brake operation late humans since there is a tendency to control the deceleration G (hydraulic braking force) by pedaling force F P, the link characteristics with an emphasis on F-G characteristics Among braking characteristics It is preferable to adjust. For example, F P is in F P 2 greater area, although the F-S characteristic shown in FIG. 19 embodiment is deviated with respect to Comparative Example 1, comparison with F-G characteristics shown in FIG. 20 Example 1 It is preferable to adjust so that the present embodiment approaches. In other words, as long as the FG characteristic is close to that of Comparative Example 1, there is no particular problem even if the FS characteristic is deviated. If an ideal FG characteristic cannot be obtained only by adjusting the link characteristic, the FG characteristic (FP characteristic) can be adjusted, for example, by a damper function of the stroke restricting portion 8 described later. (See FIG. 22).
 以上のように、リンク式倍力装置3のリンク特性を調整することにより、要求されるブレーキ特性を満足させることができる。車両の諸元や踏力ブレーキの目標特性に基づきリンク特性を調整することで、搭載される車種に応じて、(エンジン負圧ブースタを備えた場合の)ブレーキ特性を模擬することができる。リンク式倍力装置3のみを設計変更するだけで車種違いに対応させるようにすることで、装置1の搭載性を向上することができる。 As described above, the required brake characteristics can be satisfied by adjusting the link characteristics of the link type booster 3. By adjusting the link characteristics based on the vehicle specifications and the target characteristics of the pedal force brake, the brake characteristics (when the engine negative pressure booster is provided) can be simulated according to the type of vehicle mounted. The mountability of the device 1 can be improved by adapting to the difference in the vehicle type only by changing the design of the link type booster 3 alone.
 (ストローク規制部の作用)
 リンク式倍力装置3の構成(リンク特性)を、車両搭載時の制約条件下で所定の倍力性能を得ることができるものにしようとした場合、ペダルストロークSPの一部の領域では好ましいブレーキ特性を得ることができるものの、SPの全域では好ましいブレーキ特性を発揮できないおそれがある。例えば、上記のようにSP1でFP1以上かつP1以上となるブレーキ特性にしようとすると、この要求を達成可能なレバー比R(F)の特性が図17に示すように特異点(SP5,R(F)5)をもった特性に制限される場合がある。また、装置1の車両搭載性を良くしようとすると、リンク機構の構成や形状、配置が制限される。特に、装置1を小型車等に搭載する場合、搭載可能なスペースが狭い(ブレーキペダル2やリンク式倍力装置3を設置するための運転者の足元のスペースが限られる)ため、上記制限が大きくなる。例えば、図17に示すレバー比R(F)の特性において特異点SP5よりも左側の(小さい)ペダルストロークSPの領域でリンク式倍力装置3を使いたいのに、リンク31,32の構成や配置等の制約に起因して、ブレーキ操作により可能な(リンク機構上の)最大ペダルストロークが上記特異点SP5よりも右側となる(車両への装置1の取り付け上、SPがSP5を越えないようにすることが困難である)場合がある。よって、例えばブレーキ操作初期のペダルストローク領域で好ましいブレーキ特性を得ようとした場合に、ブレーキ操作後期のペダルストローク領域では好ましい特性を得ることができないおそれがある。具体的には、ブレーキ操作後期にレバー比R(F)が過度に上昇したり、ロッド4の逆進により液圧Pが減少したりするおそれがある。
(Operation of stroke restricting part)
The link-type booster 3 configuration (link characteristics), if you try to what can be obtained predetermined boost performance constraints conditions when the vehicle mounting, preferred in some areas of the pedal stroke S P although it is possible to obtain the braking characteristics may not be exhibited favorable brake characteristics across the S P. For example, when the brake characteristic is set to be F P 1 or more and P 1 or more in S P 1 as described above, the characteristic of the lever ratio R (F) that can achieve this requirement is as shown in FIG. It may be limited to the characteristic having S P 5, R (F) 5). Moreover, when it is going to improve the vehicle mounting property of the apparatus 1, the structure of a link mechanism, a shape, and arrangement | positioning are restrict | limited. In particular, when the device 1 is mounted on a small vehicle or the like, the space that can be mounted is narrow (the space for the driver's feet for installing the brake pedal 2 and the link type booster device 3 is limited), so the above limitation is large. Become. For example, in the characteristic of the lever ratio R (F) shown in FIG. 17, it is desired to use the link type booster 3 in the region of the pedal stroke S P on the left side (smaller) than the singular point S P 5. The maximum pedal stroke (on the link mechanism) that can be performed by the brake operation is on the right side of the singular point S P 5 (due to the attachment of the device 1 to the vehicle, S P May not be allowed to exceed S P 5). Therefore, for example, when it is attempted to obtain a preferable brake characteristic in the pedal stroke area in the early stage of the brake operation, there is a possibility that a preferable characteristic cannot be obtained in the pedal stroke area in the late stage of the brake operation. Specifically, the lever ratio R (F) may increase excessively in the latter half of the brake operation, or the hydraulic pressure P may decrease due to the reverse movement of the rod 4.
 図21~図23は、ブレーキ特性の試験ないし解析の結果を示す。図21はF-S特性を示す。図22は踏力FPと液圧Pとの関係(F-P特性)を示す。図23はペダルストロークSPと液圧Pとの関係(S-P特性)を示す。二点鎖線でストローク規制部8を備えない場合(比較例2)の特性を示し、実線でストローク規制部8を備えた本実施例の特性を示す。図の矢印はブレーキ操作の踏込み時と踏み戻し時をそれぞれ示す。ブレーキ操作後期(FP>FP2)に、レバー比R(F)が上がりすぎると、ペダルストロークSPの増加量ΔSPに対してロッドストロークSRの増加量ΔSRが過小となると共に、踏力FPの増加量ΔFPに対してロッド推力FRの増加量ΔFRが過大となる。よって、図21の二点鎖線に示すように、ΔFPに対してΔSPが過大となる。また、図22の二点鎖線に示すように、ΔFPに対して液圧Pの増加量ΔPが過大となる。このため、液圧Pによりロッド4に作用する反力に起因してブレーキペダル2に作用する反力(ペダル反力)が適度に得られず、踏力FPが軽すぎる(ブレーキペダル2が急激に軽くなった)ように感じられる。したがって、ペダルフィーリングが悪化するおそれがある。また、レバー比R(F)がピーク値R(F)5となるペダルストロークSP5よりも(リンク機構上の)最大ペダルストロークが大きいと、ペダルストロークSPがSP5を超えたときにロッド4が逆進してしまう。結果として、図23の二点鎖線に示すように、SPがSP5を越えた領域で、ブレーキペダル2を踏み込んでいるにも関わらず液圧Pが下がってしまう(減速度Gの抜けが発生するおそれがある)。 FIG. 21 to FIG. 23 show the results of the test or analysis of the brake characteristics. FIG. 21 shows the FS characteristic. Figure 22 shows the relationship between pressing force F P and the hydraulic pressure P (F-P characteristics). Figure 23 shows the relationship between the pedal stroke S P and the hydraulic pressure P (S-P characteristic). The characteristic when the stroke restricting portion 8 is not provided is shown by a two-dot chain line (Comparative Example 2), and the characteristic of the present embodiment provided with the stroke restricting portion 8 is indicated by a solid line. The arrows in the figure indicate when the brake operation is depressed and when it is depressed. The brake operation later (F P> F P 2) , the lever ratio R (F) is too high, with the increase amount [Delta] S R of the rod stroke S R relative increment [Delta] S P of the pedal stroke S P becomes excessively small , increase [Delta] F R of the rod thrust F R becomes excessive against the increase [Delta] F P of pedaling force F P. Therefore, as shown in two-dot chain line in FIG. 21, [Delta] S P becomes excessive relative to [Delta] F P. Further, as shown in two-dot chain line in FIG. 22, the increase ΔP fluid pressure P becomes excessively large relative to [Delta] F P. Therefore, the reaction force (the pedal reaction force) can not be obtained appropriately acting due to the reaction force acting on the rod 4 by the hydraulic P to the brake pedal 2, pressing force F P is too light (brake pedal 2 is rapidly Feels lighter). Therefore, the pedal feeling may be deteriorated. When the maximum pedal stroke (on the link mechanism) is larger than the pedal stroke S P 5 at which the lever ratio R (F) becomes the peak value R (F) 5, the pedal stroke S P exceeds S P 5. The rod 4 moves backward. As a result, as shown in two-dot chain line in FIG. 23, in the region where the S P exceeds the S P 5, omission of hydraulic P will down (deceleration G despite depressing the brake pedal 2 May occur).
 これに対し、本実施例のリンク式倍力装置3は、ブレーキ操作後期(ブレーキペダル2の踏込み後半)、SPがSP2以上になるとブレーキペダル2のストロークを規制するストローク規制部8を備える。これによりブレーキ特性を調整することで、上記不具合の発生を抑制することができる。ストローク規制部8はダンパとしての第1弾性部材86及び第2弾性部材87を備える。弾性部材86,87は、SPがSP2以上(SP30未満)でペダル反力を増大させることで、実効的な(SPの増大に用いられる)踏力FPを減少(減衰)させる。よって、図21の実線に示すように、ブレーキ操作後期に、ΔFPに対してΔSPが過大となることが抑制される。また、図22の実線に示すように、ΔFPに対してΔPが過大となることが抑制される。よって、適度なペダル反力を得て、ペダルフィーリングの悪化を抑制することができる。 In contrast, the link-type booster 3 of the present embodiment, (the second half depression of the brake pedal 2) braking late and S P is S P 2 or the stroke restricting portion 8 for regulating the stroke of the brake pedal 2 Prepare. Thereby, the occurrence of the above-described problem can be suppressed by adjusting the brake characteristics. The stroke restricting portion 8 includes a first elastic member 86 and a second elastic member 87 as dampers. Elastic members 86 and 87, to increase the pedal reaction force at S P is S P 2 or more (less than S P 30), (used for increasing the S P) effective reducing pedaling force F P (damping) Let Therefore, as shown by the solid line in FIG. 21, ΔS P is suppressed from being excessive with respect to ΔF P in the late stage of the brake operation. Further, as shown in solid line in FIG. 22, [Delta] P relative to [Delta] F P that becomes excessive is suppressed. Therefore, an appropriate pedal reaction force can be obtained and deterioration of the pedal feeling can be suppressed.
 具体的には、SP1(FP1)より大きく、かつレバー比R(F)が過度に増大し始める手前のSP2(FP2)で、ブレーキペダル2が当接部材80に当接して弾性部材86,87がダンパとして機能し始めるように設定する。SP2(FP2)からSP30(FP30)まで、弾性部材86,87が圧縮変形する。弾性部材86,87の特性を適宜変更することで、ブレーキ特性を任意に設定可能となる。なお、弾性部材86,87は、当接部材80にブレーキペダル2が当接したときの衝撃を吸収する機能も有している。特に、ばね部としての第1弾性部材86を備えることにより、上記当接時の衝撃を効果的に吸収し、ペダルフィーリングを向上することができる。また、ばね部としての第1弾性部材86に直列に、緩衝部材としての第2弾性部材87を配置することにより、ばね部(第1弾性部材86)のみでは不足しがちな減衰力を確保し、ブレーキ特性を効果的に調整することができる。よって、ペダルフィーリングの悪化をより効果的に抑制することができる。 Specifically, the brake pedal 2 is brought into contact with the contact member 80 at S P 2 (F P 2) which is larger than S P 1 (F P 1) and before the lever ratio R (F) starts to increase excessively. The elastic members 86 and 87 are set to contact each other and start to function as a damper. The elastic members 86 and 87 are compressed and deformed from S P 2 (F P 2) to S P 30 (F P 30). By appropriately changing the characteristics of the elastic members 86 and 87, the brake characteristics can be arbitrarily set. The elastic members 86 and 87 also have a function of absorbing an impact when the brake pedal 2 comes into contact with the contact member 80. In particular, by providing the first elastic member 86 as a spring portion, it is possible to effectively absorb the impact at the time of contact and improve pedal feeling. Further, by arranging the second elastic member 87 as the buffer member in series with the first elastic member 86 as the spring portion, a damping force that tends to be insufficient with only the spring portion (first elastic member 86) is secured. The brake characteristics can be adjusted effectively. Therefore, deterioration of the pedal feeling can be more effectively suppressed.
 また、SP(FP)がSP30(FP30)以上になると、SP3(FP3)に達するまで、緩衝部材としての第3弾性部材88が圧縮変形する。第3弾性部材88は、第2弾性部材87よりも圧縮変形しにくく(固く)設けられている。よって、図21に示すように、第3弾性部材88がある程度圧縮変形した状態では、ペダル反力が著しく大きくなって、ブレーキペダル2がそれ以上ストロークできなくなる(ストロークが狭い意味で規制される)。この規制後の最大ペダルストロークSP3は、図23に示すように、ロッド4が逆進する(レバー比R(F)がピーク値となる)SP5よりも小さく設定されている。これにより、ブレーキ操作後期に、SPがSP5を超えることを回避し、ブレーキペダル2を踏み込んでいるにも関わらず液圧Pが下がってしまう(減速度Gの抜けが発生する)事態を抑制することができる。よって、ペダルフィーリングの悪化を抑制することができる。第3弾性部材88は、第2弾性部材87に対して並列に配置されているため、直列に配置された場合に比べて効果的に、ブレーキペダル2のストロークを止めるストッパとしての機能を発揮することができる。また、第3弾性部材88はある程度圧縮変形可能に設けられているため、ブレーキペダル2のストロークを止める際の衝撃を緩和することができる。 Further, when S P (F P ) becomes equal to or higher than S P 30 (F P 30), the third elastic member 88 as the buffer member is compressed and deformed until it reaches S P 3 (F P 3). The third elastic member 88 is provided (harder) than the second elastic member 87 to be compressed and deformed. Therefore, as shown in FIG. 21, in a state where the third elastic member 88 is compressed and deformed to some extent, the pedal reaction force becomes remarkably large, and the brake pedal 2 cannot be stroked any more (the stroke is restricted in a narrow sense). . As shown in FIG. 23, the maximum pedal stroke S P 3 after the regulation is set smaller than S P 5 in which the rod 4 moves backward (the lever ratio R (F) has a peak value). Thus, in the late braking operation, avoids S P exceeds S P 5, the hydraulic pressure P will down (deceleration omission of G occurs) Despite depressing the brake pedal 2 situation Can be suppressed. Therefore, deterioration of the pedal feeling can be suppressed. Since the third elastic member 88 is arranged in parallel to the second elastic member 87, it effectively functions as a stopper for stopping the stroke of the brake pedal 2 as compared with the case where the third elastic member 88 is arranged in series. be able to. Further, since the third elastic member 88 is provided so as to be able to be compressed and deformed to some extent, it is possible to mitigate an impact when stopping the stroke of the brake pedal 2.
 以上のように、ストローク規制部8は、ペダルストロークSPが所定量SP2以上でブレーキペダル2の操作力(踏力FP)を調整するブレーキ操作力調整部を構成している。ストローク規制部8は、リンク式倍力装置3のリンク特性に合わせて(これを補完するように)踏力FPを調整することで、ブレーキ特性を任意に設定可能としている。 As described above, the stroke restricting unit 8 constitutes a brake operating force adjusting unit that adjusts the operating force (depressing force F P ) of the brake pedal 2 when the pedal stroke SP is equal to or greater than the predetermined amount S P 2. Stroke restricting portion 8, in accordance with the link characteristics of the link-type booster 3 (to complement this) by adjusting the depression force F P, is set to arbitrarily set the brake characteristics.
 [実施例1の効果]
 以下、実施例1のブレーキ装置1が奏する効果を列挙する。
 (A1)ブラケット7に対し揺動自在に支持されたブレーキペダル2と、
 ブレーキペダル2に連動し軸方向に作動するとともに、ホイルシリンダの液圧を発生するマスタシリンダ5の液圧を発生するためのピストンに対し回動可能に接続されたロッド4と、
 ブレーキペダル2とロッド4との間を接続し、ブレーキペダル2の操作力(踏力FP)を増幅してロッド4へ伝えるリンク式倍力装置3を備え、
 リンク式倍力装置3は、
 一端側がブレーキペダル2に対し回動可能に接続された第1リンク31と、
 ブラケット7に対し揺動自在に接続されるとともに、一端側が第1リンク31の他端側に対し回動可能に接続され、他端側がロッド4に対し回動可能に接続された第2リンク32とを備え、
 ブレーキペダル2のストローク量(ペダルストロークSP)に対するロッド4の軸方向ストローク量(ロッドストロークSR)が少なくなるように設定されている。
 よって、倍力機能を実現しつつ、消費エネルギを抑制することができる。
[Effect of Example 1]
Hereinafter, effects exhibited by the brake device 1 of the first embodiment will be listed.
(A1) a brake pedal 2 supported swingably with respect to the bracket 7;
A rod 4 connected in an axial direction in conjunction with the brake pedal 2 and rotatably connected to a piston for generating hydraulic pressure in the master cylinder 5 for generating hydraulic pressure in the wheel cylinder;
A link type booster 3 that connects between the brake pedal 2 and the rod 4 and amplifies the operating force (stepping force F P ) of the brake pedal 2 and transmits it to the rod 4 is provided.
The link type booster 3 is
A first link 31 having one end side rotatably connected to the brake pedal 2;
The second link 32 is connected to the bracket 7 so as to be swingable, and has one end connected to the other end of the first link 31 so as to be rotatable and the other end connected to the rod 4 so as to be rotatable. And
The axial stroke amount (rod stroke S R ) of the rod 4 with respect to the stroke amount of the brake pedal 2 (pedal stroke S P ) is set to be small.
Therefore, energy consumption can be suppressed while realizing the boost function.
 (B1)ブラケット7に対し揺動自在に支持されたブレーキペダル2と、
 ブレーキペダル2に連動し軸方向にストロークして、ホイルシリンダの液圧を発生するマスタシリンダ5の液圧を発生するためにマスタシリンダ5のピストンに対し回動可能に接続したロッド4と、
 一端側がブレーキペダル2に対し回動可能に接続された第1リンク31と、一端側が第1リンク31の他端側に対し回動可能に接続され、他端側がロッド4に対し回動可能に接続され、ブラケット7に対し揺動自在に接続された第2リンク32とを有し、ブレーキペダル2のストローク初期より後期の方がブレーキペダル2のストロークの変化量ΔSPに対するロッド4の軸方向ストロークの変化量ΔSRが少なくなるように設定され、ブレーキペダル2の操作力(踏力FP)を増幅してロッド4へ伝えるリンク式倍力装置3と、
 マスタシリンダ5とホイルシリンダとの間に設けられ、ホイルシリンダの液圧を制御する液圧制御ユニット6を備えた。
 よって、倍力機能を実現しつつ、消費エネルギを抑制することができる。また、制動の応答性を向上する等、ブレーキ特性を改善することができる。さらに、車両に一般に必要とされるブレーキ性能を満足しつつ、簡易なブレーキシステムを実現できる。
(B1) a brake pedal 2 supported swingably with respect to the bracket 7;
A rod 4 that is pivotally connected to a piston of the master cylinder 5 to generate a hydraulic pressure of the master cylinder 5 that generates a hydraulic pressure of the wheel cylinder by stroking in the axial direction in conjunction with the brake pedal 2;
The first link 31 whose one end side is connected to the brake pedal 2 so as to be rotatable, the one end side is connected to the other end side of the first link 31 so as to be rotatable, and the other end side is rotatable relative to the rod 4. The second link 32 is connected and swingably connected to the bracket 7, and the axial direction of the rod 4 with respect to the stroke change amount ΔS P of the brake pedal 2 in the later stage from the initial stroke of the brake pedal 2. A link type booster 3 which is set so that the stroke change amount ΔS R is reduced, amplifies the operating force (stepping force F P ) of the brake pedal 2 and transmits it to the rod 4;
A hydraulic pressure control unit 6 is provided between the master cylinder 5 and the wheel cylinder and controls the hydraulic pressure of the wheel cylinder.
Therefore, energy consumption can be suppressed while realizing the boost function. In addition, it is possible to improve the brake characteristics such as improving the response of braking. Furthermore, a simple brake system can be realized while satisfying the brake performance generally required for a vehicle.
 (C1)ブラケット7に対し揺動自在に支持されたブレーキペダル2と、
 ブレーキペダル2に連動し軸方向にストロークして、ホイルシリンダの液圧を発生するマスタシリンダ5の液圧を発生するためのピストンに対し回動可能に接続したロッド4と、
 一端側がブレーキペダル2に対し回動自在に接続された第1リンク31と、一端側が第1リンク31の他端側に対し回動可能に接続され、他端側がロッド4に対し揺動可能に接続され、ブラケット7に対し揺動自在に接続された第2リンク32とを有し、ブレーキペダル2のストローク量(ペダルストロークSP)が所定量SP4になるまで、ロッド4のストローク量に対するブレーキペダル2のストローク量の比率SP/SRと、ブレーキペダル2の操作力(踏力FP)に対するロッド4の推力の比率FR/FPとの差分が漸増するよう設定されて、ブレーキペダル2の操作力を増幅してロッド4へ伝えるリンク式倍力装置3とを備えた。
 よって、倍力機能を実現しつつ、消費エネルギを抑制することができる。また、制動の応答性を向上する等、ブレーキ特性を改善することができる。
(C1) a brake pedal 2 that is swingably supported with respect to the bracket 7;
A rod 4 that is pivotally connected to a piston for generating hydraulic pressure in a master cylinder 5 that generates axial pressure in association with the brake pedal 2 and that generates hydraulic pressure in a wheel cylinder;
A first link 31 whose one end is pivotally connected to the brake pedal 2, one end is pivotally connected to the other end of the first link 31, and the other end is swingable relative to the rod 4. A second link 32 that is connected and swingably connected to the bracket 7, and the stroke amount of the rod 4 until the stroke amount of the brake pedal 2 (pedal stroke S P ) reaches a predetermined amount S P 4. Is set so that the difference between the ratio S P / S R of the stroke amount of the brake pedal 2 with respect to the ratio F R / F P of the thrust force of the rod 4 to the operating force (stepping force F P ) of the brake pedal 2 increases gradually, A link type booster 3 that amplifies the operating force of the brake pedal 2 and transmits it to the rod 4 is provided.
Therefore, energy consumption can be suppressed while realizing the boost function. In addition, it is possible to improve the brake characteristics such as improving the response of braking.
 [他の実施例]
 以上、本発明を実現するための形態を、実施例に基づいて説明してきたが、本発明の具体的な構成はこれらの実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。例えば、ブレーキペダルやリンク式倍力装置やストローク規制部の具体的な構成は実施例のものに限られない。ストローク規制部の当接部がブレーキペダル以外の部材(リンク式倍力装置の各リンクやロッド等)に当接するように設けてもよい。実施例では、当接部がブレーキペダルに当接するようにしたことで、当接により当接部に作用する力が、リンク式倍力装置による倍力前の小さな力となる。
このため、当接部の耐久性を向上できると共に、当接部の剛性を低くしてこれを小型化することが可能となる。また、弾性部材86~88が圧縮により減衰すべき力も、リンク式倍力装置による倍力前の小さな力となる。このため、弾性部材86~88の耐久性を向上できると共に、弾性部材86~88を小型化することが可能となる。よって、ストローク規制部を小型化して、装置全体をコンパクト化することができる。
[Other embodiments]
As mentioned above, although the form for implement | achieving this invention has been demonstrated based on the Example, the concrete structure of this invention is not limited to these Examples, and is the range which does not deviate from the summary of invention. Design changes and the like are included in the present invention. For example, the specific configurations of the brake pedal, the link type booster, and the stroke restricting unit are not limited to those of the embodiment. You may provide so that the contact part of a stroke control part may contact members other than a brake pedal (each link, rod, etc. of a link type booster). In the embodiment, since the contact portion comes into contact with the brake pedal, the force acting on the contact portion by the contact becomes a small force before the boosting by the link type booster.
For this reason, while being able to improve the durability of an abutting part, the rigidity of an abutting part can be made low and this can be reduced in size. Further, the force that the elastic members 86 to 88 should attenuate by compression is also a small force before the boosting by the link booster. Therefore, the durability of the elastic members 86 to 88 can be improved, and the elastic members 86 to 88 can be downsized. Therefore, the stroke restricting portion can be reduced in size, and the entire apparatus can be reduced in size.
 以下に、実施例から把握される、特許請求の範囲に記載した以外の発明を列挙する。
 (A2)請求項1に記載のブレーキ装置において、
 前記マスタシリンダと、油路を介して前記マスタシリンダに接続する前記ホイルシリンダとの間に、アンチロックブレーキ制御を実行可能な液圧制御ユニットを備えたことを特徴とするブレーキ装置。
 よって、車両に一般に必要とされるブレーキ性能を満足しつつ、簡易なブレーキシステムを実現できる。
 (A3)請求項1に記載のブレーキ装置において、
 前記マスタシリンダと、油路を介して前記マスタシリンダに接続する前記ホイルシリンダとの間に、アンチロックブレーキ制御及び車両挙動制御を実行可能な液圧制御ユニットを備えたことを特徴とするブレーキ装置。
 よって、車両に一般に必要とされるブレーキ性能を満足しつつ、簡易なブレーキシステムを実現できる。
 (A4)請求項1に記載のブレーキ装置において、
 前記リンク式倍力装置は、前記ブレーキペダルのストローク量が所定量になると前記ブレーキペダルのストロークを規制するストローク規制部を備えたことを特徴とするブレーキ装置。
 よって、リンク式倍力装置のリンク特性を補完してブレーキ特性を調整することができる。
 (A5)上記(A4)に記載のブレーキ装置において、
 前記ストローク規制部は、前記ブレーキペダルに当接可能な当接部を備え、前記当接部で前記ブレーキペダルのストロークを規制することを特徴とするブレーキ装置。
 よって、当接部の耐久性を向上し、またストローク規制部を小型化することができる。
 (A6)上記(A5)に記載のブレーキ装置において、
 前記当接部に前記ブレーキペダルが当接したときの衝撃を吸収するダンパを備えたことを特徴とするブレーキ装置。
 よって、ペダルフィーリングの悪化を抑制することができる。
 (A7)上記(A6)に記載のブレーキ装置において、
 前記ダンパは、ばね部と、前記ばね部に直列に配置された緩衝部材とを備えたことを特徴とするブレーキ装置。
 よって、ペダルフィーリングの悪化を抑制することができる。
 (A8)上記(A6)に記載のブレーキ装置において、
 前記ストローク規制部は、前記ブレーキペダルのストローク量が前記所定量以上で前記ブレーキペダルのストロークを止めるストッパを備えたことを特徴とするブレーキ装置。
 よって、ペダルフィーリングの悪化を抑制することができる。
In the following, inventions other than those described in the scope of claims ascertained from the examples are listed.
(A2) In the brake device according to claim 1,
A brake device comprising a hydraulic pressure control unit capable of executing anti-lock brake control between the master cylinder and the wheel cylinder connected to the master cylinder via an oil passage.
Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
(A3) In the brake device according to claim 1,
Brake device comprising a hydraulic pressure control unit capable of executing anti-lock brake control and vehicle behavior control between the master cylinder and the wheel cylinder connected to the master cylinder via an oil passage .
Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
(A4) In the brake device according to claim 1,
The link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal reaches a predetermined amount.
Therefore, the brake characteristics can be adjusted by complementing the link characteristics of the link type booster.
(A5) In the brake device described in (A4) above,
The said stroke control part is provided with the contact part which can contact | abut to the said brake pedal, The brake device characterized by regulating the stroke of the said brake pedal by the said contact part.
Therefore, the durability of the contact portion can be improved and the stroke restricting portion can be reduced in size.
(A6) In the brake device according to (A5) above,
A brake device comprising a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
Therefore, deterioration of the pedal feeling can be suppressed.
(A7) In the brake device according to (A6) above,
The damper includes a spring portion and a buffer member arranged in series with the spring portion.
Therefore, deterioration of the pedal feeling can be suppressed.
(A8) In the brake device according to (A6) above,
The brake device according to claim 1, wherein the stroke restricting portion includes a stopper that stops the stroke of the brake pedal when the stroke amount of the brake pedal is equal to or greater than the predetermined amount.
Therefore, deterioration of the pedal feeling can be suppressed.
 (B2)請求項2に記載のブレーキ装置において、
 前記液圧制御ユニットは、前記ホイルシリンダの液圧を減圧するアンチロックブレーキ制御部を備えたことを特徴とするブレーキ装置。
 よって、車両に一般に必要とされるブレーキ性能を満足しつつ、簡易なブレーキシステムを実現できる。
 (B3)上記(B2)に記載のブレーキ装置において、
 前記リンク式倍力装置は、前記ブレーキペダルのストローク量が前記所定量になると前記ブレーキペダルのストロークを規制するストローク規制部を備えたことを特徴とするブレーキ装置。
 よって、リンク式倍力装置のリンク特性を補完してブレーキ特性を調整することができる。
 (B4)上記(B3)に記載のブレーキ装置において、
 前記ストローク規制部は、
 前記ブレーキペダルが当接する当接部と、
 前記当接部に前記ブレーキペダルが当接したときの衝撃を吸収するダンパとを備えたことを特徴とするブレーキ装置。
 よって、当接部の耐久性を向上し、またストローク規制部を小型化することができる。また、ペダルフィーリングの悪化を抑制することができる。
 (B5)上記(B4)に記載のブレーキ装置において、
 前記ダンパは、ばね部と、前記ばね部に直列に配置された緩衝部材とを備えたことを特徴とするブレーキ装置。
 よって、ペダルフィーリングの悪化を抑制することができる。
 (B6)請求項2に記載のブレーキ装置において、
 前記リンク式倍力装置は、運転者によるブレーキ操作がされていない初期状態において、前記ブレーキペダルの力点から前記ブラケットに対する揺動中心までの距離をaとしたときに、
 前記ブレーキペダルの前記揺動中心から前記ピストンに対する前記ロッドの回動中心を通る垂線までの距離が5a/8、
 前記ロッドに対する前記第2リンクの回動中心から前記垂線までの距離が5a/17、
 前記ロッドに対する前記第2リンクの回動中心から前記ブラケットに対する前記第2リンクの揺動中心までの距離がa/8、
 前記第2リンクの前記揺動中心から前記第1リンクの前記他端側に対する前記第2リンクの回動中心までの距離がa/6、
 前記ブレーキペダルの前記揺動中心から前記ブレーキペダルに対する前記第1リンクの前記一端側の回動中心までの距離が10a/43、
 前記ピストンに対する前記ロッドの回動中心から前記ブレーキペダルの前記揺動中心を通る水平線までの距離が5a/14、
 前記第2リンクの前記揺動中心から前記水平線までの距離が5a/21、
 前記ブレーキペダルの前記揺動中心を始点として前記ブレーキペダルの力点を通る半直線と前記第1リンクの前記一端側の回動中心を通る半直線とがなす角度が30.5度、
 前記第2リンクの前記揺動中心を通る水平線と、前記第2リンクの前記揺動中心を始点として前記第1リンクの前記他端側に対する前記第2リンクの回動中心を通る半直線とがなす角度が25度となるように設定されている
 ことを特徴とするブレーキ装置。
 このような具体的なジオメトリによって、上記(B1)のようなリンク特性(倍力特性)を得ることができる。
(B2) In the brake device according to claim 2,
The brake device according to claim 1, wherein the hydraulic pressure control unit includes an anti-lock brake control unit that reduces the hydraulic pressure of the wheel cylinder.
Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
(B3) In the brake device according to (B2) above,
The link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal reaches the predetermined amount.
Therefore, the brake characteristics can be adjusted by complementing the link characteristics of the link type booster.
(B4) In the brake device according to (B3) above,
The stroke restricting portion is
A contact portion with which the brake pedal contacts;
A brake device comprising: a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
Therefore, the durability of the contact portion can be improved and the stroke restricting portion can be reduced in size. Moreover, deterioration of the pedal feeling can be suppressed.
(B5) In the brake device according to (B4) above,
The damper includes a spring portion and a buffer member arranged in series with the spring portion.
Therefore, deterioration of the pedal feeling can be suppressed.
(B6) In the brake device according to claim 2,
In the initial state where the brake operation by the driver is not performed, the link type booster has a distance from the force point of the brake pedal to the swing center with respect to the bracket as a.
A distance from the swing center of the brake pedal to a perpendicular passing through the rotation center of the rod with respect to the piston is 5a / 8;
A distance from the rotation center of the second link to the rod to the perpendicular is 5a / 17;
The distance from the rotation center of the second link with respect to the rod to the swing center of the second link with respect to the bracket is a / 8,
The distance from the swing center of the second link to the rotation center of the second link with respect to the other end of the first link is a / 6,
The distance from the pivot center of the brake pedal to the pivot center on the one end side of the first link with respect to the brake pedal is 10a / 43,
A distance from the rotation center of the rod relative to the piston to a horizontal line passing through the swing center of the brake pedal is 5a / 14;
A distance from the swing center of the second link to the horizontal line is 5a / 21;
An angle formed by a half line passing through the force point of the brake pedal starting from the swing center of the brake pedal and a half line passing through the rotation center on the one end side of the first link is 30.5 degrees,
A horizontal line passing through the swing center of the second link and a half line passing through the rotation center of the second link with respect to the other end side of the first link starting from the swing center of the second link. The brake device is characterized in that the angle formed is set to 25 degrees.
With such a specific geometry, the link characteristic (boost characteristic) as in (B1) can be obtained.
 (C2)請求項3に記載のブレーキ装置において、
 前記マスタシリンダと前記ホイルシリンダとの間に設けられ、前記ホイルシリンダの液圧を制御する液圧制御ユニットを備えたことを特徴とするブレーキ装置。
 よって、車両に一般に必要とされるブレーキ性能を満足しつつ、簡易なブレーキシステムを実現できる。
 (C3)請求項3に記載のブレーキ装置において、
 前記リンク式倍力装置は、前記ブレーキペダルのストローク量が第2の所定量以上で前記ブレーキペダルのストロークを規制するストローク規制部を備えたことを特徴とするブレーキ装置。
 よって、リンク式倍力装置のリンク特性を補完してブレーキ特性を調整することができる。
 (C4)上記(C3)に記載のブレーキ装置において、
 前記ストローク規制部は、
 前記ブレーキペダルが当接する当接部と、
 前記当接部に前記ブレーキペダルが当接したときの衝撃を吸収するダンパとを備えたことを特徴とするブレーキ装置。
 よって、当接部の耐久性を向上し、またストローク規制部を小型化することができる。また、ペダルフィーリングの悪化を抑制することができる。
 (C5)上記(C4)に記載のブレーキ装置において、
 前記ダンパは、ばね部と、前記ばね部に直列に配置された緩衝部材とを備えたことを特徴とするブレーキ装置。
 よって、ペダルフィーリングの悪化を抑制することができる。
 (C6)請求項3に記載のブレーキ装置において、
 前記リンク式倍力装置は、運転者によるブレーキ操作がされていない初期状態において、前記ブレーキペダルの力点から前記ブラケットに対する揺動中心までの距離をaとしたときに、
 前記ブレーキペダルの前記揺動中心から前記ピストンに対する前記ロッドの回動中心を通る垂線までの距離が5a/8、
 前記ロッドに対する前記第2リンクの回動中心から前記垂線までの距離が5a/17、
 前記ロッドに対する前記第2リンクの回動中心から前記ブラケットに対する前記第2リンクの揺動中心までの距離がa/8、
 前記第2リンクの前記揺動中心から前記第1リンクの前記他端側に対する前記第2リンクの回動中心までの距離がa/6、
 前記ブレーキペダルの前記揺動中心から前記ブレーキペダルに対する前記第1リンクの前記一端側の回動中心までの距離が10a/43、
 前記ピストンに対する前記ロッドの回動中心から前記ブレーキペダルの前記揺動中心を通る水平線までの距離が5a/14、
 前記第2リンクの前記揺動中心から前記水平線までの距離が5a/21、
 前記ブレーキペダルの前記揺動中心を始点として前記ブレーキペダルの力点を通る半直線と前記第1リンクの前記一端側の回動中心を通る半直線とがなす角度が30.5度、
 前記第2リンクの前記揺動中心を通る水平線と、前記第2リンクの前記揺動中心を始点として前記第1リンクの前記他端側に対する前記第2リンクの回動中心を通る半直線とがなす角度が25度となるように設定されている
 ことを特徴とするブレーキ装置。
 このような具体的なジオメトリによって、上記(C1)のようなリンク特性(倍力特性)を得ることができる。
(C2) In the brake device according to claim 3,
A brake device comprising a hydraulic pressure control unit that is provided between the master cylinder and the wheel cylinder and controls the hydraulic pressure of the wheel cylinder.
Therefore, a simple brake system can be realized while satisfying brake performance generally required for a vehicle.
(C3) In the brake device according to claim 3,
The link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal is equal to or greater than a second predetermined amount.
Therefore, the brake characteristics can be adjusted by complementing the link characteristics of the link type booster.
(C4) In the brake device according to (C3) above,
The stroke restricting portion is
A contact portion with which the brake pedal contacts;
A brake device comprising: a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
Therefore, the durability of the contact portion can be improved and the stroke restricting portion can be reduced in size. Moreover, deterioration of the pedal feeling can be suppressed.
(C5) In the brake device according to (C4) above,
The damper includes a spring portion and a buffer member arranged in series with the spring portion.
Therefore, deterioration of the pedal feeling can be suppressed.
(C6) In the brake device according to claim 3,
In the initial state where the brake operation by the driver is not performed, the link type booster has a distance from the force point of the brake pedal to the swing center with respect to the bracket as a.
A distance from the swing center of the brake pedal to a perpendicular passing through the rotation center of the rod with respect to the piston is 5a / 8;
A distance from the rotation center of the second link to the rod to the perpendicular is 5a / 17;
The distance from the rotation center of the second link with respect to the rod to the swing center of the second link with respect to the bracket is a / 8,
The distance from the swing center of the second link to the rotation center of the second link with respect to the other end of the first link is a / 6,
The distance from the pivot center of the brake pedal to the pivot center on the one end side of the first link with respect to the brake pedal is 10a / 43,
A distance from the rotation center of the rod relative to the piston to a horizontal line passing through the swing center of the brake pedal is 5a / 14;
A distance from the swing center of the second link to the horizontal line is 5a / 21;
An angle formed by a half line passing through the force point of the brake pedal starting from the swing center of the brake pedal and a half line passing through the rotation center on the one end side of the first link is 30.5 degrees,
A horizontal line passing through the swing center of the second link and a half line passing through the rotation center of the second link with respect to the other end side of the first link starting from the swing center of the second link. The brake device is characterized in that the angle formed is set to 25 degrees.
With such a specific geometry, the link characteristic (boost characteristic) as in (C1) can be obtained.

Claims (19)

  1.  ブラケットに対し揺動自在に支持されたブレーキペダルと、
     前記ブレーキペダルに連動し軸方向に作動するとともに、ホイルシリンダの液圧を発生するマスタシリンダの液圧を発生するためのピストンに対し回動可能に接続されたロッドと、
     前記ブレーキペダルと前記ロッドとの間を接続し、前記ブレーキペダルの操作力を増幅して前記ロッドへ伝えるリンク式倍力装置を備え、
     前記リンク式倍力装置は、一端側が前記ブレーキペダルに対し回動可能に接続された第1リンクと、
     前記ブラケットに対し揺動自在に接続されるとともに、一端側が前記第1リンクの他端側に対し回動可能に接続され、他端側が前記ロッドに対し回動可能に接続された第2リンクとを備え、
     前記ブレーキペダルのストローク量に対する前記ロッドの軸方向ストローク量が少なくなるように設定されていることを特徴とするブレーキ装置。
    A brake pedal supported swingably with respect to the bracket;
    A rod connected to the piston for generating the hydraulic pressure of the master cylinder for generating the hydraulic pressure of the wheel cylinder while being operated in the axial direction in conjunction with the brake pedal;
    A link type booster that connects between the brake pedal and the rod, amplifies the operating force of the brake pedal and transmits it to the rod;
    The link type booster has a first link whose one end is rotatably connected to the brake pedal;
    A second link that is swingably connected to the bracket, one end of which is pivotally connected to the other end of the first link, and the other end of which is pivotally connected to the rod; With
    The brake device is set so that an axial stroke amount of the rod with respect to a stroke amount of the brake pedal is reduced.
  2.  請求項1に記載のブレーキ装置において、
     前記マスタシリンダと、油路を介して前記マスタシリンダに接続する前記ホイルシリンダとの間に、アンチロックブレーキ制御を実行可能な液圧制御ユニットを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    A brake device comprising a hydraulic pressure control unit capable of executing anti-lock brake control between the master cylinder and the wheel cylinder connected to the master cylinder via an oil passage.
  3.  請求項1に記載のブレーキ装置において、
     前記マスタシリンダと、油路を介して前記マスタシリンダに接続する前記ホイルシリンダとの間に、アンチロックブレーキ制御及び車両挙動制御を実行可能な液圧制御ユニットを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    Brake device comprising a hydraulic pressure control unit capable of executing anti-lock brake control and vehicle behavior control between the master cylinder and the wheel cylinder connected to the master cylinder via an oil passage .
  4.  請求項1に記載のブレーキ装置において、
     前記リンク式倍力装置は、前記ブレーキペダルのストローク量が所定量になると前記ブレーキペダルのストロークを規制するストローク規制部を備えたことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal reaches a predetermined amount.
  5.  請求項4に記載のブレーキ装置において、
    前記ストローク規制部は、前記ブレーキペダルに当接可能な当接部を備え、前記当接部で前記ブレーキペダルのストロークを規制することを特徴とするブレーキ装置。
    The brake device according to claim 4,
    The said stroke control part is provided with the contact part which can contact | abut to the said brake pedal, The brake device characterized by regulating the stroke of the said brake pedal by the said contact part.
  6.  請求項5に記載のブレーキ装置において、
    前記当接部に前記ブレーキペダルが当接したときの衝撃を吸収するダンパを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 5,
    A brake device comprising a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
  7. 請求項6に記載のブレーキ装置において、
    前記ダンパは、ばね部と、前記ばね部に直列に配置された緩衝部材とを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 6,
    The damper includes a spring portion and a buffer member arranged in series with the spring portion.
  8.  ブラケットに対し揺動自在に支持されたブレーキペダルと、
     前記ブレーキペダルに連動し軸方向にストロークして、ホイルシリンダの液圧を発生するマスタシリンダの液圧を発生するために前記マスタシリンダのピストンに対し回動可能に接続したロッドと、
     一端側が前記ブレーキペダルに対し回動可能に接続された第1リンクと、一端側が前記第1リンクの他端側に対し回動可能に接続され、他端側が前記ロッドに対し回動可能に接続され、前記ブラケットに対し揺動自在に接続された第2リンクとを有し、前記ブレーキペダルのストローク初期より後期の方が前記ブレーキペダルのストロークの変化量に対する前記ロッドの軸方向ストロークの変化量が少なくなるように設定され、前記ブレーキペダルの操作力を増幅して前記ロッドへ伝えるリンク式倍力装置と、
     前記マスタシリンダと前記ホイルシリンダとの間に設けられ、前記ホイルシリンダの液圧を制御する液圧制御ユニットを備えたことを特徴とするブレーキ装置。
    A brake pedal supported swingably with respect to the bracket;
    A rod that is connected to the piston of the master cylinder so as to be rotatable in order to generate a hydraulic pressure of the master cylinder that generates a hydraulic pressure of the wheel cylinder by stroking in an axial direction in conjunction with the brake pedal;
    A first link whose one end is rotatably connected to the brake pedal, one end is rotatably connected to the other end of the first link, and the other end is rotatably connected to the rod. And a second link that is swingably connected to the bracket, and the amount of change in the axial stroke of the rod relative to the amount of change in the stroke of the brake pedal in the later stage from the initial stroke of the brake pedal A link-type booster that is set so as to reduce, and amplifies the operating force of the brake pedal and transmits it to the rod;
    A brake device comprising a hydraulic pressure control unit that is provided between the master cylinder and the wheel cylinder and controls the hydraulic pressure of the wheel cylinder.
  9. 請求項8に記載のブレーキ装置において、
     前記液圧制御ユニットは、前記ホイルシリンダの液圧を減圧するアンチロックブレーキ制御部を備えたことを特徴とするブレーキ装置。
    The brake device according to claim 8,
    The brake device according to claim 1, wherein the hydraulic pressure control unit includes an anti-lock brake control unit that reduces the hydraulic pressure of the wheel cylinder.
  10.  請求項9に記載のブレーキ装置において、
     前記リンク式倍力装置は、前記ブレーキペダルのストローク量が前記所定量になると前記ブレーキペダルのストロークを規制するストローク規制部を備えたことを特徴とするブレーキ装置。
    The brake device according to claim 9,
    The link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal reaches the predetermined amount.
  11.  請求項10に記載のブレーキ装置において、
     前記ストローク規制部は、前記ブレーキペダルが当接する当接部と、
     前記当接部に前記ブレーキペダルが当接したときの衝撃を吸収するダンパとを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 10, wherein
    The stroke restricting portion includes a contact portion with which the brake pedal contacts,
    A brake device comprising: a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
  12. 請求項11に記載のブレーキ装置において、
     前記ダンパは、ばね部と、前記ばね部に直列に配置された緩衝部材とを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 11,
    The damper includes a spring portion and a buffer member arranged in series with the spring portion.
  13.  請求項8に記載のブレーキ装置において、
     前記リンク式倍力装置は、運転者によるブレーキ操作がされていない初期状態において、前記ブレーキペダルの力点から前記ブラケットに対する揺動中心までの距離をaとしたときに、
     前記ブレーキペダルの前記揺動中心から前記ピストンに対する前記ロッドの回動中心を通る垂線までの距離が5a/8、
     前記ロッドに対する前記第2リンクの回動中心から前記垂線までの距離が5a/17、
     前記ロッドに対する前記第2リンクの回動中心から前記ブラケットに対する前記第2リンクの揺動中心までの距離がa/8、
     前記第2リンクの前記揺動中心から前記第1リンクの前記他端側に対する前記第2リンクの回動中心までの距離がa/6、
     前記ブレーキペダルの前記揺動中心から前記ブレーキペダルに対する前記第1リンクの前記一端側の回動中心までの距離が10a/43、
     前記ピストンに対する前記ロッドの回動中心から前記ブレーキペダルの前記揺動中心を通る水平線までの距離が5a/14、
     前記第2リンクの前記揺動中心から前記水平線までの距離が5a/21、
     前記ブレーキペダルの前記揺動中心を始点として前記ブレーキペダルの力点を通る半直線と前記第1リンクの前記一端側の回動中心を通る半直線とがなす角度が30.5度、
     前記第2リンクの前記揺動中心を通る水平線と、前記第2リンクの前記揺動中心を始点として前記第1リンクの前記他端側に対する前記第2リンクの回動中心を通る半直線とがなす角度が25度となるように設定されていることを特徴とするブレーキ装置。
    The brake device according to claim 8,
    In the initial state where the brake operation by the driver is not performed, the link type booster has a distance from the force point of the brake pedal to the swing center with respect to the bracket as a.
    A distance from the swing center of the brake pedal to a perpendicular passing through the rotation center of the rod with respect to the piston is 5a / 8;
    A distance from the rotation center of the second link to the rod to the perpendicular is 5a / 17;
    The distance from the rotation center of the second link with respect to the rod to the swing center of the second link with respect to the bracket is a / 8,
    The distance from the swing center of the second link to the rotation center of the second link with respect to the other end of the first link is a / 6,
    The distance from the pivot center of the brake pedal to the pivot center on the one end side of the first link with respect to the brake pedal is 10a / 43,
    A distance from the rotation center of the rod relative to the piston to a horizontal line passing through the swing center of the brake pedal is 5a / 14;
    A distance from the swing center of the second link to the horizontal line is 5a / 21;
    An angle formed by a half line passing through the force point of the brake pedal starting from the swing center of the brake pedal and a half line passing through the rotation center on the one end side of the first link is 30.5 degrees,
    A horizontal line passing through the swing center of the second link and a half line passing through the rotation center of the second link with respect to the other end side of the first link starting from the swing center of the second link. A brake device characterized in that an angle formed is set to 25 degrees.
  14.  ブラケットに対し揺動自在に支持されたブレーキペダルと、
     前記ブレーキペダルに連動し軸方向にストロークして、ホイルシリンダの液圧を発生するマスタシリンダの液圧を発生するためのピストンに対し回動可能に接続したロッドと、
     一端側が前記ブレーキペダルに対し回動自在に接続された第1リンクと、一端側が前記第1リンクの他端側に対し回動可能に接続され、他端側が前記ロッドに対し揺動可能に接続され、前記ブラケットに対し揺動自在に接続された第2リンクとを有し、前記ブレーキペダルのストローク量が所定量になるまで、前記ロッドのストローク量に対する前記ブレーキペダルのストローク量の比率と、前記ブレーキペダルの操作力に対する前記ロッドの推力の比率との差分が漸増するよう設定されて、前記ブレーキペダルの操作力を増幅して前記ロッドへ伝えるリンク式倍力装置とを備えたことを特徴とするブレーキ装置。
    A brake pedal supported swingably with respect to the bracket;
    A rod connected to the piston for generating a hydraulic pressure of the master cylinder that generates a hydraulic pressure of the wheel cylinder by being axially stroked in conjunction with the brake pedal;
    A first link whose one end is pivotally connected to the brake pedal, one end is pivotally connected to the other end of the first link, and the other end is pivotably connected to the rod. A second link that is swingably connected to the bracket, and a ratio of a stroke amount of the brake pedal to a stroke amount of the rod until the stroke amount of the brake pedal reaches a predetermined amount; A link-type booster that is set so as to gradually increase the difference between the ratio of the thrust of the rod to the operating force of the brake pedal, and that amplifies the operating force of the brake pedal and transmits it to the rod And brake device.
  15.  請求項14に記載のブレーキ装置において、
     前記マスタシリンダと前記ホイルシリンダとの間に設けられ、前記ホイルシリンダの液圧を制御する液圧制御ユニットを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 14,
    A brake device comprising a hydraulic pressure control unit that is provided between the master cylinder and the wheel cylinder and controls the hydraulic pressure of the wheel cylinder.
  16.  請求項14に記載のブレーキ装置において、
     前記リンク式倍力装置は、前記ブレーキペダルのストローク量が第2の所定量以上で前記ブレーキペダルのストロークを規制するストローク規制部を備えたことを特徴とするブレーキ装置。
    The brake device according to claim 14,
    The link type booster includes a stroke restricting portion that restricts a stroke of the brake pedal when a stroke amount of the brake pedal is equal to or greater than a second predetermined amount.
  17.  請求項16に記載のブレーキ装置において、
     前記ストローク規制部は、前記ブレーキペダルが当接する当接部と、
     前記当接部に前記ブレーキペダルが当接したときの衝撃を吸収するダンパとを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 16, wherein
    The stroke restricting portion includes a contact portion with which the brake pedal contacts,
    A brake device comprising: a damper that absorbs an impact when the brake pedal comes into contact with the contact portion.
  18. 請求項17に記載のブレーキ装置において、
     前記ダンパは、ばね部と、前記ばね部に直列に配置された緩衝部材とを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 17,
    The damper includes a spring portion and a buffer member arranged in series with the spring portion.
  19.  請求項14に記載のブレーキ装置において、
     前記リンク式倍力装置は、運転者によるブレーキ操作がされていない初期状態において、前記ブレーキペダルの力点から前記ブラケットに対する揺動中心までの距離をaとしたときに、
     前記ブレーキペダルの前記揺動中心から前記ピストンに対する前記ロッドの回動中心を通る垂線までの距離が5a/8、
     前記ロッドに対する前記第2リンクの回動中心から前記垂線までの距離が5a/17、
     前記ロッドに対する前記第2リンクの回動中心から前記ブラケットに対する前記第2リンクの揺動中心までの距離がa/8、
     前記第2リンクの前記揺動中心から前記第1リンクの前記他端側に対する前記第2リンクの回動中心までの距離がa/6、
     前記ブレーキペダルの前記揺動中心から前記ブレーキペダルに対する前記第1リンクの前記一端側の回動中心までの距離が10a/43、
     前記ピストンに対する前記ロッドの回動中心から前記ブレーキペダルの前記揺動中心を通る水平線までの距離が5a/14、
     前記第2リンクの前記揺動中心から前記水平線までの距離が5a/21、
     前記ブレーキペダルの前記揺動中心を始点として前記ブレーキペダルの力点を通る半直線と前記第1リンクの前記一端側の回動中心を通る半直線とがなす角度が30.5度、
     前記第2リンクの前記揺動中心を通る水平線と、前記第2リンクの前記揺動中心を始点として前記第1リンクの前記他端側に対する前記第2リンクの回動中心を通る半直線とがなす角度が25度となるように設定されていることを特徴とするブレーキ装置。
    The brake device according to claim 14,
    In the initial state where the brake operation by the driver is not performed, the link type booster has a distance from the force point of the brake pedal to the swing center with respect to the bracket as a.
    A distance from the swing center of the brake pedal to a perpendicular passing through the rotation center of the rod with respect to the piston is 5a / 8;
    A distance from the rotation center of the second link to the rod to the perpendicular is 5a / 17;
    The distance from the rotation center of the second link with respect to the rod to the swing center of the second link with respect to the bracket is a / 8,
    The distance from the swing center of the second link to the rotation center of the second link with respect to the other end of the first link is a / 6,
    The distance from the pivot center of the brake pedal to the pivot center on the one end side of the first link with respect to the brake pedal is 10a / 43,
    A distance from the rotation center of the rod relative to the piston to a horizontal line passing through the swing center of the brake pedal is 5a / 14;
    A distance from the swing center of the second link to the horizontal line is 5a / 21;
    An angle formed by a half line passing through the force point of the brake pedal starting from the swing center of the brake pedal and a half line passing through the rotation center on the one end side of the first link is 30.5 degrees,
    A horizontal line passing through the swing center of the second link and a half line passing through the rotation center of the second link with respect to the other end side of the first link starting from the swing center of the second link. A brake device characterized in that an angle formed is set to 25 degrees.
PCT/JP2014/062421 2013-05-16 2014-05-09 Brake device WO2014185340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480020636.0A CN105102282B (en) 2013-05-16 2014-05-09 Brake apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013103905A JP6150112B2 (en) 2013-05-16 2013-05-16 Brake device
JP2013-103905 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185340A1 true WO2014185340A1 (en) 2014-11-20

Family

ID=51898318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062421 WO2014185340A1 (en) 2013-05-16 2014-05-09 Brake device

Country Status (3)

Country Link
JP (1) JP6150112B2 (en)
CN (1) CN105102282B (en)
WO (1) WO2014185340A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112617A (en) * 1995-10-13 1997-05-02 Mitsubishi Motors Corp Damper rubber
JPH10305753A (en) * 1997-05-06 1998-11-17 Honda Motor Co Ltd Pedal device for vehicle
JPH10305782A (en) * 1996-10-18 1998-11-17 Hyundai Motor Co Ltd Hood over slam bumper shock absorber for automobile
JP2005511384A (en) * 2001-12-05 2005-04-28 ダイムラークライスラー・アクチェンゲゼルシャフト An electrohydraulic braking system with a pedal stroke simulator comprising a spring-loaded cylinder and a mechanically coupled pressure piston
JP2006151167A (en) * 2004-11-29 2006-06-15 Nissan Motor Co Ltd Brake pedal device for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059180B2 (en) * 2010-09-15 2012-10-24 本田技研工業株式会社 Operation pedal assembly
CN201800697U (en) * 2010-09-19 2011-04-20 芜湖佳景科技有限公司 Pedal structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112617A (en) * 1995-10-13 1997-05-02 Mitsubishi Motors Corp Damper rubber
JPH10305782A (en) * 1996-10-18 1998-11-17 Hyundai Motor Co Ltd Hood over slam bumper shock absorber for automobile
JPH10305753A (en) * 1997-05-06 1998-11-17 Honda Motor Co Ltd Pedal device for vehicle
JP2005511384A (en) * 2001-12-05 2005-04-28 ダイムラークライスラー・アクチェンゲゼルシャフト An electrohydraulic braking system with a pedal stroke simulator comprising a spring-loaded cylinder and a mechanically coupled pressure piston
JP2006151167A (en) * 2004-11-29 2006-06-15 Nissan Motor Co Ltd Brake pedal device for vehicle

Also Published As

Publication number Publication date
CN105102282A (en) 2015-11-25
CN105102282B (en) 2017-10-24
JP2014223847A (en) 2014-12-04
JP6150112B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6060057B2 (en) Brake device
US9428168B2 (en) Brake device
JP2014223848A (en) Brake apparatus
JP5066004B2 (en) Brake system
JP5126238B2 (en) Braking operation device
CN102442288B (en) Brakes and the method for operation brake system of car for automobile
JP6063824B2 (en) Brake control device
US9527486B2 (en) Brake device
US8210621B2 (en) Vehicle brake device
JP6361046B2 (en) Brake device and brake system
WO2016035742A1 (en) Braking system
JP5691428B2 (en) Electric brake control system
JP6138869B2 (en) Brake system and method of operating a vehicle brake system
CN109562748B (en) Vehicle brake device
KR20170103893A (en) Brake device
JP4760653B2 (en) Vehicle braking device
JP6150112B2 (en) Brake device
WO2010055842A1 (en) Braking device
JP5474132B2 (en) Brake system
JP6205629B2 (en) Brake device
KR102483015B1 (en) Braking apparatus and braking control method of vehicle
JP6197734B2 (en) Brake device
JP2017056893A (en) Brake device and brake system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020636.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798561

Country of ref document: EP

Kind code of ref document: A1