WO2014185116A1 - Evaporator and refrigerator using same - Google Patents

Evaporator and refrigerator using same Download PDF

Info

Publication number
WO2014185116A1
WO2014185116A1 PCT/JP2014/054753 JP2014054753W WO2014185116A1 WO 2014185116 A1 WO2014185116 A1 WO 2014185116A1 JP 2014054753 W JP2014054753 W JP 2014054753W WO 2014185116 A1 WO2014185116 A1 WO 2014185116A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
compressor
overload
stage
refrigerator
Prior art date
Application number
PCT/JP2014/054753
Other languages
French (fr)
Japanese (ja)
Inventor
徹 川浪
中井 克也
卓也 河野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014185116A1 publication Critical patent/WO2014185116A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigerator having a rapid cooling mode for rapidly cooling a storage room.
  • Patent Document 1 A conventional refrigerator is disclosed in Patent Document 1.
  • This refrigerator includes a refrigerator compartment and a freezer compartment, and an evaporator is connected to a compressor that operates a refrigeration cycle. Cold air generated by heat exchange with the evaporator is sent to the refrigerator compartment and the freezer compartment by driving the blower fan, and the refrigerator compartment and the freezer compartment are cooled.
  • the blower fan is stopped or decelerated.
  • the blower fan is driven at the original rotational speed to send out cool air.
  • JP 2006-214614 A (Pages 9 to 11, FIG. 4)
  • An object of the present invention is to provide a refrigerator that can be quickly cooled during pull-down operation to improve convenience.
  • the present invention provides a compressor that operates a refrigeration cycle, an evaporator that is connected to the compressor and cools a first storage chamber, and a heat load of the evaporator includes a plurality of heat load stages.
  • a thermal load variable section that is variable to the compressor and an overload detection section that detects an overload of the compressor, and the thermal load variable when the non-overload state of the compressor continues for a predetermined non-overload time.
  • a non-overload transition operation in which the thermal load of the evaporator is shifted to a higher thermal load stage by the unit, and the thermal load variable unit further reduces the thermal load of the evaporator when the overload of the compressor is detected.
  • a quenching mode having an overload transition operation for shifting to a low heat load stage is provided.
  • the present invention is characterized in that in the refrigerator configured as described above, the heat load of the evaporator is varied so that the ambient temperature of the evaporator is lower than the predetermined temperature in the predetermined heat load stage.
  • the non-overload transition operation is performed when the ambient temperature of the evaporator continues for a low temperature time shorter than the non-overload time and becomes lower than a predetermined temperature. It is characterized by that.
  • the present invention is characterized in that in the refrigerator having the above-described configuration, a fan that sends out the cold air heat-exchanged with the evaporator to the first storage chamber is provided, and the thermal load variable unit varies the driving state of the fan. .
  • a second storage chamber that is cooled by the evaporator and maintained at a higher temperature than the first storage chamber, and a cold air passage between the evaporator and the second storage chamber are provided.
  • a damper that opens and closes, and the thermal load variable section varies the open / close state of the damper.
  • the overload detection unit may detect the driving current of the compressor, the shell temperature of the compressor, or the pressure on the refrigerant inflow side of the compressor, and detect the overload. When the detected value of the section becomes larger than a predetermined value, it is determined that the compressor is overloaded.
  • a cooling capacity stage in which the cooling speed of the evaporator is varied by setting a set number of rotations of the compressor in a plurality of stages, and the non-overload transition operation is performed in the cooling mode. It includes an operation for shifting the capacity stage to a higher cooling capacity stage, and the overload transition operation includes an operation for shifting the cooling capacity stage to a lower cooling capacity stage.
  • an overload detection unit that detects an overload of the compressor and a thermal load variable unit that varies the thermal load of the evaporator are provided.
  • a non-overload transition operation that shifts the heat load of the evaporator to a higher heat load stage when the non-overload state of the compressor continues for a predetermined time in the rapid cooling mode, and An overload transfer operation is performed to shift the heat load of the evaporator to a lower heat load stage.
  • FIG. which shows the structure of the refrigerator of embodiment of this invention.
  • the flowchart which shows the operation
  • the flowchart which shows the operation
  • the flowchart which shows the operation
  • the time chart which shows an example of operation
  • FIG. 1 is a side sectional view showing the refrigerator of the first embodiment.
  • the refrigerator 1 is provided with a refrigerator compartment 3, a freezer compartment 4, and a vegetable compartment 5 in order from above the heat insulating box 2.
  • the refrigerator compartment 3 stores the stored items in a refrigerator
  • the freezer compartment 4 stores the stored items in a frozen state.
  • the vegetable room 5 is maintained at a higher temperature than the refrigerated room 3 and refrigerates stored items such as vegetables.
  • the refrigerator compartment 3 is opened and closed by a rotating door 3a pivoted at one end.
  • the freezer compartment 4 and the vegetable compartment 5 are opened and closed by drawer type doors 4a and 5a formed integrally with a storage case (not shown), respectively.
  • Cold air passages 7 and 8 communicating with a damper 15 are provided on the back of the freezer compartment 4 and the refrigerator compartment 3.
  • the cold air passages 7 and 8 are provided with a freezer compartment fan 12 and a refrigerator compartment fan 13 for circulating cold air, respectively.
  • Below the freezer compartment fan 12, an evaporator 11 for generating cold air is disposed.
  • a defrost heater 16 that performs defrosting of the evaporator 11 is disposed below the evaporator 11.
  • the upper surface of the defrost heater 16 is covered with a heater cover 16a.
  • the heater cover 16a prevents the defrost heater 16 from being broken due to the defrost water dripping onto the defrost heater 16.
  • the cold air passage 7 has an outlet 7 a for discharging cold air to the freezer compartment 4 and an outlet 7 b for discharging cold air from the freezer compartment 4.
  • a discharge port 8 a for discharging cold air to the refrigerator compartment 3 is opened.
  • a communication path (not shown) that connects the refrigerator compartment 3 and the vegetable compartment 5 is provided.
  • the vegetable compartment 5 has an outlet 7c through which cold air flows out.
  • a machine room 6 is provided behind the vegetable room 5, and a compressor 10 that operates a refrigeration cycle is installed in the machine room 6.
  • the refrigerant flows through a refrigerant pipe (not shown) by driving the compressor 10, and the evaporator 11 connected to the compressor 10 through the refrigerant pipe is maintained at a low temperature.
  • the freezer compartment fan 12 When the freezer compartment fan 12 is driven, the cold air exchanged with the evaporator 11 flows through the cold air passage 7. Further, when the damper 15 is opened, cold air flows through the cold air passage 8. The cold air flowing through the cold air passage 7 and the cold air passage 8 is discharged into the freezer compartment 4 and the refrigerator compartment 3 through the discharge ports 7a and 8a, respectively.
  • the cold air discharged from the discharge port 7a flows through the freezer compartment 4 to cool the stored material, and returns to the cold air passage 7 through the outlet 7b.
  • the cold air discharged from the discharge port 8a flows through the refrigerator compartment 3 to cool the stored items, and flows into the vegetable compartment 5 through the communication path (not shown).
  • the cold air that has flowed into the vegetable compartment 5 flows through the vegetable compartment 5 to cool the stored items, and returns to the cold air passage 7 through the outlet 7c.
  • FIG. 2 is a block diagram showing the configuration of the refrigerator 1.
  • the refrigerator 1 includes a control unit 20 that controls each unit.
  • the control unit 20 includes a compressor 10, a freezer compartment fan 12, a refrigerator compartment fan 13, a damper 15, a defrost heater 16, an operation unit 21, an evaporator temperature sensor 22, a refrigerator compartment temperature sensor 23, a freezer compartment temperature sensor 24, and an outside.
  • the temperature sensor 25 and the current detection unit 26 are connected.
  • the rotation speed of the compressor 10 is variably controlled by the control unit 20.
  • the operation unit 21 is provided on the door 3a of the refrigerating room 3, and performs temperature setting of the refrigerating room 3.
  • the set temperature of the refrigerator compartment 3 is set to, for example, “strong”, “medium”, and “weak” by the notch.
  • the evaporator temperature sensor 22 is installed in the vicinity of the evaporator 11 and detects the ambient temperature of the evaporator 11.
  • the refrigerator compartment temperature sensor 23 detects the temperature inside the refrigerator compartment 3.
  • the freezer temperature sensor 24 detects the temperature in the freezer compartment 4.
  • the outside air temperature sensor 25 is installed on the upper surface of the heat insulating box 2 and detects the outside air temperature.
  • the current detector 26 detects the drive current of the compressor 10. When the drive current of the compressor 10 becomes higher than a predetermined value, the compressor 10 is determined to be in an overload state. Therefore, the current detection unit 26 constitutes an overload detection unit that detects an overload state of the compressor 10. An overload detection unit that detects the shell temperature of the compressor 10 and the pressure on the refrigerant inflow side is provided, and when the detection result of the overload detection unit becomes higher than a predetermined value, it is determined that the compressor 10 is overloaded. Also good.
  • FIG. 3 is a flowchart showing the operation when the refrigerator 1 is turned on.
  • step # 11 it is determined in step # 11 whether the ambient temperature of the evaporator 11 detected by the evaporator temperature sensor 22 is 0 ° C. or higher.
  • the process proceeds to step # 14.
  • step # 12 it is determined in step # 12 whether the outside air temperature detected by the outside air temperature sensor 25 is 35 ° C. or higher. If the outside air temperature is not 35 ° C. or higher, the process proceeds to step # 14. When the outside air temperature is 35 ° C. or higher, a rapid cooling mode to be described later is performed in step # 13. Rapid cooling (pull-down operation) immediately after power-on is performed in the rapid cooling mode. When the rapid cooling mode ends, the process proceeds to step # 14. In step # 14, the normal mode is performed.
  • Table 1 shows the operating state of each part in the normal mode and the rapid cooling mode.
  • the compressor 10, the refrigerator compartment fan 13, the refrigerator compartment fan 12, and the damper 15 are controlled according to the room temperature of the refrigerator compartment 3 and the freezer compartment 4.
  • the compressor 10 and the freezer compartment fan 12 are driven. Moreover, if the refrigerator compartment 3 exceeds upper limit temperature by the detection of the refrigerator compartment temperature sensor 23, the damper 15 will be opened and the compressor 10 and the refrigerator compartment fan 13 will be driven.
  • the compressor 10 is variable between 1600 rpm and 4200 rpm depending on the temperature of the refrigerator compartment 3 or the freezer compartment 4.
  • the freezer compartment fan 12 rotates at a predetermined rotational speed (for example, 2000 rpm).
  • the refrigerator compartment fan 13 rotates at a predetermined rotational speed.
  • the damper 15 is closed and the refrigerator compartment fan 13 is stopped. Further, when the freezer compartment 4 is lowered to the lower limit temperature, the compressor 10 and the freezer compartment fan 12 are stopped.
  • the upper limit temperature and the lower limit temperature of the refrigerator compartment 3 are determined based on the set temperature set by the notch of the operation unit 21.
  • the first to fifth stages form a plurality of heat load stages with different heat loads on the evaporator 11.
  • the fifth to eighth stages form a plurality of cooling capacity stages with different set rotational speeds N0 of the compressor 10.
  • the set rotational speed N0 of the compressor 10 is the same or higher at a stage one stage higher than the stage where the evaporator 11 has a low thermal load.
  • the heat load on the evaporator 11 is varied by opening / closing the damper 15 and the rotational speed of the freezer compartment fan 12. Therefore, the damper 15 and the freezer compartment fan 12 constitute a heat load variable unit that varies the heat load on the evaporator 11.
  • the damper 15 is closed, the refrigerator compartment fan 13 and the freezer compartment fan 12 are stopped, and the set rotational speed N0 of the compressor 10 is set to 1600 rpm.
  • the damper 15 is closed, the refrigerator compartment fan 13 is stopped, and the set rotational speed N0 of the compressor 10 is set to 2000 rpm.
  • the freezer compartment fan 12 is switched between a stopped state and a low speed rotation (for example, 1000 rpm) according to the ambient temperature of the evaporator 11 by a switching process (see FIG. 6) described later. Since the second stage has a period during which the freezer compartment fan 12 rotates at a low speed, the heat load of the evaporator 11 is higher than that of the first stage.
  • the refrigerator compartment fan 13 is stopped and the freezer compartment fan 12 is rotated at a low speed, and the set rotational speed N0 of the compressor 10 is set to 2000 rpm.
  • the open / close state of the damper 15 is switched according to the ambient temperature of the evaporator 11 by a switching process (see FIG. 6) described later. Since the third stage has a period in which the freezer compartment fan 12 always rotates at a low speed and opens the damper 15, the heat load of the evaporator 11 is higher than that of the second stage.
  • the refrigerator compartment fan 13 is stopped and the set rotational speed N0 of the compressor 10 is set to 2000 rpm.
  • the freezer compartment fan 12 is switched between a low-speed rotation and a high-speed rotation (for example, 2000 rpm) according to the ambient temperature of the evaporator 11 by a switching process described later (see FIG. 6).
  • the damper 15 is opened and closed according to the temperature of the refrigerator compartment 3 corresponding to the “weak” notch, regardless of the setting notch of the operation unit 21. Since the fourth stage has a period in which the damper 15 is opened and closed according to the temperature of the refrigerator compartment 3 and the freezer compartment fan 12 rotates at a high speed, the thermal load of the evaporator 11 is higher than that of the third stage.
  • the refrigerator compartment fan 13 is stopped and the freezer compartment fan 12 rotates at a high speed.
  • the damper 15 is opened and closed according to the temperature of the refrigerator compartment 3 corresponding to the “weak” notch, regardless of the setting notch of the operation unit 21.
  • the set rotational speed N0 of the compressor 10 is set to 2600 rpm, 3200 rpm, 3900 rpm, and 4200 rpm for the fifth to eighth stages, respectively.
  • the freezer compartment fan 12 since the freezer compartment fan 12 always rotates at a high speed, the heat load on the evaporator 11 is higher than that in the fourth stage.
  • FIG. 4 is a flowchart showing the operation in the rapid cooling mode.
  • 1 is assigned to the counter i indicating each stage in step # 21.
  • step # 22 the driving condition of the first stage indicated by the counter i is set based on Table 1 described above, and the operation of the first stage is started.
  • step # 23 it is determined whether or not the freezer compartment 4 detected by the freezer temperature sensor 24 has become equal to or lower than a predetermined temperature ( ⁇ 13 ° C. in the present embodiment).
  • a predetermined temperature ⁇ 13 ° C. in the present embodiment.
  • step # 24 it is determined in step # 24 whether or not 6 hours have elapsed since the start of the rapid cooling mode. When 6 hours have elapsed from the start of the rapid cooling mode, the rapid cooling mode is terminated and the process returns to the flowchart of FIG.
  • step # 25 it is determined whether or not the defrosting operation by the defrosting heater 16 has been started.
  • the rapid cooling mode is terminated and the process returns to the flowchart of FIG.
  • the process proceeds to step # 26.
  • step # 26 it is determined whether the counter i is 8 which is the maximum value of the stage. When the counter i is 8, the process proceeds to step # 30, and when the counter i is 7 or less, the process proceeds to step # 27.
  • step # 27 it is determined whether or not the non-overload state of the compressor 10 detected by the current detector 26 has continued for a predetermined non-overload time (10 minutes in the present embodiment). When the non-overload state of the compressor 10 continues for 10 minutes or more, the process proceeds to step # 29. When the non-overload state of the compressor 10 has not continued for 10 minutes or more, the process proceeds to step # 28.
  • step # 28 the ambient temperature of the evaporator 11 detected by the evaporator temperature sensor 22 continues for a predetermined low temperature time (2 minutes in the present embodiment) or more and lower than the predetermined temperature ( ⁇ 5 ° C. in the present embodiment). It is determined whether or not.
  • the low temperature time is set to be shorter than the non-overload time.
  • the process proceeds to step # 29.
  • the ambient temperature of the evaporator 11 is higher than ⁇ 5 ° C. or when ⁇ 5 ° C. or lower is shorter than 2 minutes, the process proceeds to step # 30.
  • step # 29 the counter i is incremented, and in step # 22, the stage driving condition corresponding to the counter i is set and the operation of the stage is performed. Accordingly, a non-overload transition operation for shifting to a heat load stage in which the evaporator 11 has a high heat load or a cooling capacity stage in which the compressor 10 has a high set rotational speed N0 is performed according to the determinations in steps # 27 and # 28.
  • step # 30 it is determined whether or not the counter i is 1, which is the minimum value of the stage.
  • the process proceeds to step # 23, and when the counter i is 2 or more, the process proceeds to step # 31.
  • step # 31 it is determined whether or not the overload state of the compressor 10 detected by the current detection unit 26 has continued for a predetermined overload time (2 minutes in the present embodiment). When the overload state of the compressor 10 continues for 2 minutes or more, the process proceeds to step # 32. When the overload state of the compressor 10 does not continue for 2 minutes or more, the process proceeds to step # 23.
  • step # 32 stage discrimination processing is performed.
  • FIG. 5 shows the operation of the stage discrimination process.
  • step # 41 the value of the counter i is determined, and the process branches according to the counter i. If it is determined in step # 41 that the counter i is 8, the process proceeds to step # 42.
  • step # 42 it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 3900 rpm which is the set rotational speed N0 of the seventh stage. When the actual rotational speed Nc of the compressor 10 is lower than 3900 rpm, the process proceeds to step # 43. When the actual rotational speed Nc of the compressor 10 is 3900 rpm or more, 7 is substituted into the counter i in step # 47, and the process returns to step # 22 in FIG.
  • step # 43 it is determined whether or not the actual rotation speed Nc of the compressor 10 is equal to or higher than 3200 rpm which is the set rotation speed N0 of the sixth stage. When the actual rotational speed Nc of the compressor 10 is lower than 3200 rpm, the process proceeds to step # 44. When the actual rotational speed Nc of the compressor 10 is 3200 rpm or more, 6 is substituted into the counter i in step # 48, and the process returns to step # 22 in FIG.
  • step # 44 it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 2600 rpm which is the set rotational speed N0 of the fifth stage. When the actual rotational speed Nc of the compressor 10 is lower than 2600 rpm, the process proceeds to step # 45. When the actual rotational speed Nc of the compressor 10 is 2600 rpm or more, 5 is assigned to the counter i in step # 49, and the process returns to step # 22 in FIG.
  • step # 45 it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 2000 rpm, which is the set rotational speed N0 of the fourth stage. When the actual rotational speed Nc of the compressor 10 is lower than 2000 rpm, the process proceeds to step # 46. When the actual rotational speed Nc of the compressor 10 is 2000 rpm or more, 4 is assigned to the counter i in step # 50, and the process returns to step # 22 in FIG.
  • step # 46 it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 1600 rpm which is the set rotational speed N0 of the first stage. When the actual rotation speed Nc of the compressor 10 is lower than 1600 rpm, the process proceeds to step # 52. When the actual rotational speed Nc of the compressor 10 is 1600 rpm or more, 3 is assigned to the counter i in step # 51, and the process returns to step # 22 in FIG.
  • step # 52 1 is assigned to the counter i, and the process returns to step # 22 in FIG. If the counter i is 3 in step # 41, the process proceeds to step # 53, 2 is substituted into the counter i, and the process returns to step # 22 in FIG.
  • step # 22 of FIG. 4 the stage driving condition corresponding to the counter i is set and the stage is operated, and steps # 22 to # 32 are repeated. Therefore, the process proceeds to the stage determination process according to the determination in step # 31, and the overload transition operation is performed to shift to the heat load stage where the heat load of the evaporator 11 is low or the cooling capacity stage where the set rotation speed N0 of the compressor 10 is low. .
  • the stage determination process shifts to a stage having a set rotational speed N0 lower than the actual rotational speed Nc when the overload of the compressor 10 is detected.
  • the compressor 10 may not reach the set rotational speed N0 in an overload state. For this reason, it can transfer to the stage of the setting rotation speed N0 lower than the actual rotation speed Nc at the time of detection of overload, and can escape the overload state of the compressor 10 rapidly.
  • the overload transition operation may be performed immediately.
  • the overload time is set to a time shorter than the time during which the compressor 10 can be continuously operated in an overload state.
  • the compressor 10 when the compressor 10 detects an abnormal overload state that causes damage, the compressor 10 is stopped and restarted from step # 21 after a predetermined time (for example, 6 minutes) has elapsed.
  • a predetermined time for example, 6 minutes
  • the rotation speed of the compressor 10 is abnormally decreased, the drive current of the compressor 10 is abnormally increased, the shell temperature of the compressor 10 is abnormally increased, and the element temperature of the drive circuit that drives the compressor 10 is abnormal.
  • a predetermined time for example, 6 minutes
  • FIG. 6 shows the operation of switching processing for switching the operation state of the freezer compartment fan 12 or the damper 15 according to the ambient temperature of the evaporator 11 in the second, third, and fourth stages, respectively. Note that the control of FIG. 6 is performed in parallel with the operation flow of FIGS. In step # 61, the value of the counter i is determined, and the process branches according to the counter i.
  • step # 62 the freezer compartment fan 12 is stopped. If it is determined in step # 61 that the counter i is the third stage of 3, the process proceeds to step # 63 and the damper 15 is closed. If it is determined in step # 61 that the counter i is the fourth stage of 4, the process proceeds to step # 64, and the freezer compartment fan 12 rotates at a low speed.
  • step # 65 the process waits until a predetermined time (60 seconds in this embodiment) elapses after the execution of steps # 62 to # 64.
  • a predetermined time 60 seconds in this embodiment
  • the value of counter i is determined in step # 66, and the process branches according to counter i.
  • step # 66 If it is determined in step # 66 that the counter i is 2, the process proceeds to step # 67 and the freezer compartment fan 12 rotates at a low speed. If the counter i is 3 in step # 66, the process proceeds to step # 68 and the damper 15 is opened. If the counter i is 4 in step # 66, the process proceeds to step # 69, and the freezer compartment fan 12 rotates at high speed.
  • step # 70 the process waits until a predetermined time (in this embodiment, 10 seconds) elapses after the execution of steps # 67 to # 69.
  • a predetermined time in this embodiment, 10 seconds
  • steps # 67 to # 69 the process proceeds to step # 71.
  • Step # 71 the process waits until the ambient temperature of the evaporator 11 becomes equal to or higher than a predetermined temperature ( ⁇ 5 ° C. in the present embodiment).
  • a predetermined temperature ⁇ 5 ° C. in the present embodiment.
  • the process proceeds to step # 61. Steps # 61 to # 71 are repeated.
  • the freezer compartment fan 12 rotates at a low speed while the ambient temperature of the evaporator 11 is lower than ⁇ 5 ° C., and when it reaches ⁇ 5 ° C. or higher, the freezer compartment fan 12 is temporarily stopped.
  • the damper 15 is opened while the ambient temperature of the evaporator 11 is lower than ⁇ 5 ° C., and the damper 15 is once closed when the temperature becomes ⁇ 5 ° C. or higher.
  • the freezer compartment fan 12 rotates at a high speed while the ambient temperature of the evaporator 11 is lower than ⁇ 5 ° C., and once it reaches ⁇ 5 ° C. or higher, the freezer compartment fan 12 once rotates at a low speed.
  • the heat load variable parts such as the freezer compartment fan 12 and the damper 15 are controlled so as to temporarily reduce the heat load of the evaporator 11.
  • the number of overload transfer operations can be reduced, and the rapid cooling mode stage can be quickly advanced to the upper level. That is, the refrigerator 1 can be rapidly and rapidly cooled.
  • FIG. 7 shows an example of a time chart of each part in the rapid cooling mode. 7, (a) is an open / closed state of the damper 15, (b) is a driving state of the freezer compartment fan 12, (c) is an overload detection state of the compressor 10, (d) is each stage, and (e) is a state.
  • the temperature of each part is shown. 7E, R is the temperature of the refrigerator compartment 3 detected by the refrigerator compartment temperature sensor 23, F is the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 24, and E1 is the evaporator temperature sensor 22. It is the detected ambient temperature of the evaporator 11. Moreover, E2 of the figure has shown the surface temperature of the evaporator 11 for reference.
  • the first stage operation is performed. Thereby, the compressor 10 is driven in a state where the freezer compartment fan 12 is stopped and the damper 15 is closed, and the ambient temperature E1 of the evaporator 11 is lowered. At this time, the compressor 10 is temporarily overloaded, but the overload transition operation is not performed because the overloaded state is shorter than 2 minutes.
  • the second stage is shifted to by the non-overload transition operation.
  • the freezer compartment fan 12 is repeatedly stopped and rotated at a low speed according to the ambient temperature E1 of the evaporator 11 by the switching process (see FIG. 6).
  • the third stage is shifted to by the non-overload transition operation.
  • the compressor 10 is temporarily overloaded, but the overload transition operation is not performed because the overloaded state is shorter than 2 minutes.
  • the fifth stage is shifted to by the non-overload transition operation. Thereby, the freezer compartment fan 12 rotates at high speed.
  • the current detection unit 26 (overload detection unit) that detects an overload of the compressor 10, the damper 15 that changes the thermal load of the evaporator 11, and the freezer compartment fan 12 (thermal load variable unit) Is provided. And a non-overload transition operation for shifting the heat load of the evaporator 11 to a higher stage (heat load stage) when the non-overload state of the compressor 10 continues for a non-overload time in the rapid cooling mode; The overload transfer operation for transferring the thermal load of the evaporator 11 to a lower stage when the 10 overload state is reached is repeated.
  • the stage gradually shifts to a stage with a high heat load of the evaporator 11. For this reason, even if the temperature of the evaporator 11 is high at the time of pull-down operation etc., the freezer compartment 4 can be cooled rapidly. Further, when the compressor 10 is overloaded, the thermal load of the evaporator 11 can be reduced by the overload transition operation, and the compressor 10 can be protected. Therefore, the convenience of the refrigerator 1 can be improved.
  • the freezer compartment fan 12 is driven and controlled so that the ambient temperature of the evaporator 11 is lower than a predetermined temperature in the second stage and the fourth stage.
  • the damper 15 is opened and closed so that the ambient temperature of the evaporator 11 is lower than a predetermined temperature.
  • the thermal load of the evaporator 11 is finely varied while monitoring the ambient temperature of the evaporator 11 in each stage.
  • the non-overload transition operation is performed.
  • the ambient temperature of the evaporator 11 is continuously low, it is determined that the load on the compressor 10 is still light. For this reason, even if it is a case where low temperature time shorter than non-overload time passes, non-overload transfer operation
  • variable heat load variable section that varies the heat load of the evaporator 11 can be realized by varying the driving state by deceleration and acceleration including stopping of the freezer compartment fan 12.
  • the damper 15 for opening and closing the cool air passages 7 and 8 between the refrigerator compartment 3 and the evaporator 11 having a temperature higher than that of the freezer compartment 4 easily realizes a heat load variable section that changes the heat load of the evaporator 11. be able to.
  • an overload detection unit that detects an overload of the compressor 10 by detecting the driving current of the compressor 10, the shell temperature of the compressor 10, or the pressure on the refrigerant inflow side of the compressor 10. it can.
  • the fifth to eighth stages form different cooling capacity stages with the set rotation speed N0 of the compressor 10. Then, the non-overload transition operation shifts to a stage having a high set rotational speed N0 (that is, a stage having a high cooling capacity), and the overload transition operation lowers the actual rotational speed Nc when the overload of the compressor 10 is detected.
  • the stage shifts to a stage having a set rotational speed N0 (ie, a stage having a low cooling capacity). Thereby, the overload state of the compressor 10 can be quickly escaped.
  • an opening / closing member formed by a damper or the like is disposed at one or both of the discharge port 7 a and the outlet 7 b provided on the back surface of the freezer compartment 4.
  • an opening / closing member formed by a damper or the like is disposed at the outlet 7 c provided in the vegetable compartment 5.
  • Other parts are the same as those in the first embodiment.
  • a stage in which each of the opening / closing members is closed can be provided as a stage further before the first stage in the first embodiment.
  • this stage since only the cold air passage 7 becomes a heat load, it is possible to eliminate the possibility that the refrigerator having a large volume of the freezer compartment 4 cannot proceed from the first stage to the stage having a high heat load.
  • an open / close member made of a damper or the like may be provided in the communication path that connects the refrigerator compartment 3 and the vegetable compartment 5.
  • the refrigerator 1 of 3rd Embodiment is demonstrated.
  • the damper 15 is switched between the open state and the closed state in the rapid cooling mode, and the rotation speed of the freezer compartment fan 12 is switched between the low speed rotation and the high speed rotation.
  • the opening angle of the damper 15 is varied during the rapid cooling mode, and the rotation speed of the freezer compartment fan 12 is switched to more stages than the first and second embodiments at each stage.
  • the rapid cooling mode is performed at the time of pull-down immediately after the refrigerator 1 is turned on.
  • rapid cooling such as the end of the defrosting operation or storage of high temperature storage is required.
  • the rapid cooling mode may be performed.
  • the present invention can be used for a refrigerator having a rapid cooling mode for rapidly cooling the storage room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

The invention is provided with: a compressor (10) for operating a refrigeration cycle; an evaporator (11) for cooling a first storage chamber (4), the evaporator (11) being connected to the compressor (10); a heat load varying unit for varying the heat load of the evaporator (11) in a plurality of heat load levels; and an overload detection unit (26) for detecting an overload in the compressor (10), the invention being further provided with a rapid cooling mode having a non-overload shifting action in which the heat load of the evaporator (11) is shifted to a higher heat load level by the heat load varying unit when a non-overload state of the compressor (10) continues for a designated non-overload time interval, and an overload shifting action in which the heat load of the evaporator (11) is shifted to a lower heat load level by the heat load varying unit when an overload in the compressor (10) is detected.

Description

蒸発器及びそれを用いた冷蔵庫Evaporator and refrigerator using the same
 本発明は、貯蔵室を急速冷却する急冷モードを備えた冷蔵庫に関する。 The present invention relates to a refrigerator having a rapid cooling mode for rapidly cooling a storage room.
 従来の冷蔵庫は特許文献1に開示されている。この冷蔵庫は冷蔵室及び冷凍室を備え、冷凍サイクルを運転する圧縮機に蒸発器が接続される。蒸発器との熱交換により生成された冷気が送風ファンの駆動によって冷蔵室及び冷凍室内に送出され、冷蔵室及び冷凍室が冷却される。 A conventional refrigerator is disclosed in Patent Document 1. This refrigerator includes a refrigerator compartment and a freezer compartment, and an evaporator is connected to a compressor that operates a refrigeration cycle. Cold air generated by heat exchange with the evaporator is sent to the refrigerator compartment and the freezer compartment by driving the blower fan, and the refrigerator compartment and the freezer compartment are cooled.
 この時、蒸発器の温度及び冷凍室の温度が所定温度を超えると蒸発器の熱負荷が大きいと判断し、送風ファンを停止または減速する。蒸発器の熱負荷が低減されると送風ファンが元の回転数で駆動して冷気を送出する。これにより、冷却効率の悪化を防止して冷蔵庫の省電力化を図ることができる。 At this time, if the temperature of the evaporator and the temperature of the freezer compartment exceed a predetermined temperature, it is determined that the heat load of the evaporator is large, and the blower fan is stopped or decelerated. When the heat load on the evaporator is reduced, the blower fan is driven at the original rotational speed to send out cool air. Thereby, deterioration of cooling efficiency can be prevented and power saving of the refrigerator can be achieved.
特開2006-214614号公報(第9頁~第11頁、第4図)JP 2006-214614 A (Pages 9 to 11, FIG. 4)
 しかしながら、上記従来の冷蔵庫によると、電源投入直後のプルダウン運転等の貯蔵室が高温の状態で急速冷却が必要な際に、貯蔵室が高温であるために蒸発器の温度が上昇すると送風ファンが停止または減速されてしまう。これにより、貯蔵室の冷却が迅速に進行しないため、冷蔵庫の利便性が悪い問題があった。 However, according to the conventional refrigerator, when the storage room for pull-down operation or the like immediately after turning on the power is in a high temperature state and rapid cooling is required, if the temperature of the evaporator rises due to the high temperature of the storage room, the blower fan Stop or slow down. Thereby, since the cooling of the storage room does not proceed quickly, there is a problem that the convenience of the refrigerator is poor.
 本発明は、プルダウン運転時等に迅速に冷却して利便性を向上できる冷蔵庫を提供することを目的とする。 An object of the present invention is to provide a refrigerator that can be quickly cooled during pull-down operation to improve convenience.
 上記目的を達成するために本発明は、冷凍サイクルを運転する圧縮機と、前記圧縮機に接続して第1貯蔵室を冷却する蒸発器と、前記蒸発器の熱負荷を複数の熱負荷段階に可変する熱負荷可変部と、前記圧縮機の過負荷を検出する過負荷検出部とを備え、前記圧縮機の非過負荷状態が所定の非過負荷時間だけ継続した際に前記熱負荷可変部によって前記蒸発器の熱負荷をより高い前記熱負荷段階へ移行させる非過負荷移行動作と、前記圧縮機の過負荷を検出した際に前記熱負荷可変部によって前記蒸発器の熱負荷をより低い前記熱負荷段階へ移行させる過負荷移行動作とを有する急冷モードを設けたことを特徴としている。 To achieve the above object, the present invention provides a compressor that operates a refrigeration cycle, an evaporator that is connected to the compressor and cools a first storage chamber, and a heat load of the evaporator includes a plurality of heat load stages. A thermal load variable section that is variable to the compressor and an overload detection section that detects an overload of the compressor, and the thermal load variable when the non-overload state of the compressor continues for a predetermined non-overload time. A non-overload transition operation in which the thermal load of the evaporator is shifted to a higher thermal load stage by the unit, and the thermal load variable unit further reduces the thermal load of the evaporator when the overload of the compressor is detected. A quenching mode having an overload transition operation for shifting to a low heat load stage is provided.
 また本発明は、上記構成の冷蔵庫において、所定の前記熱負荷段階で前記蒸発器の周辺温度が所定温度よりも低温となるように前記蒸発器の熱負荷が可変されることを特徴としている。 Further, the present invention is characterized in that in the refrigerator configured as described above, the heat load of the evaporator is varied so that the ambient temperature of the evaporator is lower than the predetermined temperature in the predetermined heat load stage.
 また本発明は、上記構成の冷蔵庫において、前記蒸発器の周辺温度が前記非過負荷時間よりも短い低温時間だけ継続して所定温度よりも低温となった際に前記非過負荷移行動作を行うことを特徴としている。 In the refrigerator configured as described above, the non-overload transition operation is performed when the ambient temperature of the evaporator continues for a low temperature time shorter than the non-overload time and becomes lower than a predetermined temperature. It is characterized by that.
 また本発明は、上記構成の冷蔵庫において、前記蒸発器と熱交換した冷気を第1貯蔵室に送出するファンを備え、前記熱負荷可変部が前記ファンの駆動状態を可変することを特徴としている。 Further, the present invention is characterized in that in the refrigerator having the above-described configuration, a fan that sends out the cold air heat-exchanged with the evaporator to the first storage chamber is provided, and the thermal load variable unit varies the driving state of the fan. .
 また本発明は、上記構成の冷蔵庫において、前記蒸発器により冷却されて第1貯蔵室よりも高温に維持される第2貯蔵室と、前記蒸発器と第2貯蔵室との間の冷気通路を開閉するダンパとを備え、前記熱負荷可変部が前記ダンパの開閉状態を可変することを特徴としている。 According to the present invention, in the refrigerator configured as described above, a second storage chamber that is cooled by the evaporator and maintained at a higher temperature than the first storage chamber, and a cold air passage between the evaporator and the second storage chamber are provided. A damper that opens and closes, and the thermal load variable section varies the open / close state of the damper.
 また本発明は、上記構成の冷蔵庫において、前記過負荷検出部が、前記圧縮機の駆動電流、前記圧縮機のシェル温度、または前記圧縮機の冷媒流入側の圧力を検出し、前記過負荷検出部の検出値が所定値よりも大きくなった際に前記圧縮機の過負荷状態と判断することを特徴としている。 In the refrigerator configured as described above, the overload detection unit may detect the driving current of the compressor, the shell temperature of the compressor, or the pressure on the refrigerant inflow side of the compressor, and detect the overload. When the detected value of the section becomes larger than a predetermined value, it is determined that the compressor is overloaded.
 また本発明は、上記構成の冷蔵庫において、前記圧縮機の設定回転数を複数の段階に設定して前記蒸発器の冷却能力を可変する冷却能力段階を設け、前記非過負荷移行動作は前記冷却能力段階をより高い冷却能力段階に移行させる動作を含み、前記過負荷移行動作は前記冷却能力段階をより低い冷却能力段階に移行させる動作を含むことを特徴としている。 According to the present invention, in the refrigerator configured as described above, a cooling capacity stage is provided in which the cooling speed of the evaporator is varied by setting a set number of rotations of the compressor in a plurality of stages, and the non-overload transition operation is performed in the cooling mode. It includes an operation for shifting the capacity stage to a higher cooling capacity stage, and the overload transition operation includes an operation for shifting the cooling capacity stage to a lower cooling capacity stage.
 本発明によると、圧縮機の過負荷を検出する過負荷検出部と、蒸発器の熱負荷を可変する熱負荷可変部とが設けられる。そして、急冷モード時に圧縮機の非過負荷状態が所定時間継続した際に蒸発器の熱負荷をより高い熱負荷段階へ移行させる非過負荷移行動作と、圧縮機が過負荷状態になった際に蒸発器の熱負荷をより低い熱負荷段階へ移行させる過負荷移行動作とが行われる。これにより、蒸発器の温度が高温であっても迅速に貯蔵室を冷却することができる。また、圧縮機の過負荷時には過負荷移行動作により蒸発器の熱負荷を低減し、圧縮機を保護することができる。従って、冷蔵庫の利便性を向上することができる。 According to the present invention, an overload detection unit that detects an overload of the compressor and a thermal load variable unit that varies the thermal load of the evaporator are provided. When the compressor is in an overload state, a non-overload transition operation that shifts the heat load of the evaporator to a higher heat load stage when the non-overload state of the compressor continues for a predetermined time in the rapid cooling mode, and An overload transfer operation is performed to shift the heat load of the evaporator to a lower heat load stage. Thereby, even if the temperature of an evaporator is high temperature, a storage chamber can be cooled rapidly. Further, when the compressor is overloaded, the thermal load of the evaporator can be reduced by the overload transition operation, and the compressor can be protected. Therefore, the convenience of the refrigerator can be improved.
本発明の実施形態の冷蔵庫を示す側面断面図Side surface sectional drawing which shows the refrigerator of embodiment of this invention 本発明の実施形態の冷蔵庫の構成を示すブロック図The block diagram which shows the structure of the refrigerator of embodiment of this invention. 本発明の実施形態の冷蔵庫の電源投入時の動作を示すフローチャートThe flowchart which shows the operation | movement at the time of power activation of the refrigerator of embodiment of this invention. 本発明の実施形態の冷蔵庫の急冷モードの動作を示すフローチャートThe flowchart which shows operation | movement of the rapid cooling mode of the refrigerator of embodiment of this invention. 本発明の実施形態の冷蔵庫のステージ判別処理の動作を示すフローチャートThe flowchart which shows the operation | movement of the stage discrimination | determination process of the refrigerator of embodiment of this invention. 本発明の実施形態の冷蔵庫の切替処理の動作を示すフローチャートThe flowchart which shows the operation | movement of the switching process of the refrigerator of embodiment of this invention. 本発明の実施形態の冷蔵庫の急冷モードの動作の一例を示すタイムチャートThe time chart which shows an example of operation | movement of the rapid cooling mode of the refrigerator of embodiment of this invention
 <第1実施形態>
 以下に図面を参照して本発明の実施形態を説明する。図1は第1実施形態の冷蔵庫を示す側面断面図である。冷蔵庫1は断熱箱体2の上方から順に冷蔵室3、冷凍室4、野菜室5が設けられる。冷蔵室3は貯蔵物を冷蔵保存し、冷凍室4は貯蔵物を冷凍保存する。野菜室5は冷蔵室3よりも高温に維持され、野菜等の貯蔵物を冷蔵保存する。
<First Embodiment>
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing the refrigerator of the first embodiment. The refrigerator 1 is provided with a refrigerator compartment 3, a freezer compartment 4, and a vegetable compartment 5 in order from above the heat insulating box 2. The refrigerator compartment 3 stores the stored items in a refrigerator, and the freezer compartment 4 stores the stored items in a frozen state. The vegetable room 5 is maintained at a higher temperature than the refrigerated room 3 and refrigerates stored items such as vegetables.
 冷蔵室3は一端を枢支される回動式の扉3aによって開閉される。冷凍室4及び野菜室5はそれぞれ収納ケース(不図示)と一体に形成される引出式の扉4a、5aによって開閉される。 The refrigerator compartment 3 is opened and closed by a rotating door 3a pivoted at one end. The freezer compartment 4 and the vegetable compartment 5 are opened and closed by drawer type doors 4a and 5a formed integrally with a storage case (not shown), respectively.
 冷凍室4及び冷蔵室3の背面にはダンパ15を介して連通する冷気通路7、8が設けられる。冷気通路7、8にはそれぞれ冷気を流通させる冷凍室ファン12及び冷蔵室ファン13が配される。冷凍室ファン12の下方には冷気を生成する蒸発器11が配される。蒸発器11の下方には蒸発器11の除霜を行う除霜ヒータ16が配される。除霜ヒータ16の上面はヒータカバー16aにより覆われる。ヒータカバー16aによって除霜水が除霜ヒータ16上に滴下することによる除霜ヒータ16の故障を防止する。 Cold air passages 7 and 8 communicating with a damper 15 are provided on the back of the freezer compartment 4 and the refrigerator compartment 3. The cold air passages 7 and 8 are provided with a freezer compartment fan 12 and a refrigerator compartment fan 13 for circulating cold air, respectively. Below the freezer compartment fan 12, an evaporator 11 for generating cold air is disposed. A defrost heater 16 that performs defrosting of the evaporator 11 is disposed below the evaporator 11. The upper surface of the defrost heater 16 is covered with a heater cover 16a. The heater cover 16a prevents the defrost heater 16 from being broken due to the defrost water dripping onto the defrost heater 16.
 冷気通路7は冷凍室4に冷気を吐出する吐出口7a及び冷凍室4から冷気が流出する流出口7bが開口する。冷気通路8には冷蔵室3に冷気を吐出する吐出口8aが開口する。また、冷蔵室3と野菜室5とを連通させる連通路(不図示)が設けられる。野菜室5には冷気が流出する流出口7cが開口する。 The cold air passage 7 has an outlet 7 a for discharging cold air to the freezer compartment 4 and an outlet 7 b for discharging cold air from the freezer compartment 4. In the cold air passage 8, a discharge port 8 a for discharging cold air to the refrigerator compartment 3 is opened. In addition, a communication path (not shown) that connects the refrigerator compartment 3 and the vegetable compartment 5 is provided. The vegetable compartment 5 has an outlet 7c through which cold air flows out.
 野菜室5の後方には機械室6が設けられ、機械室6内には冷凍サイクルを運転する圧縮機10が設置される。圧縮機10の駆動によって冷媒管(不図示)内を冷媒が流通し、冷媒管を介して圧縮機10に接続される蒸発器11が低温に維持される。 A machine room 6 is provided behind the vegetable room 5, and a compressor 10 that operates a refrigeration cycle is installed in the machine room 6. The refrigerant flows through a refrigerant pipe (not shown) by driving the compressor 10, and the evaporator 11 connected to the compressor 10 through the refrigerant pipe is maintained at a low temperature.
 冷凍室ファン12を駆動すると蒸発器11と熱交換した冷気が冷気通路7内を流通する。また、ダンパ15を開くと冷気通路8に冷気が流通する。冷気通路7及び冷気通路8を流通する冷気はそれぞれ吐出口7a、8aを介して冷凍室4及び冷蔵室3に吐出される。 When the freezer compartment fan 12 is driven, the cold air exchanged with the evaporator 11 flows through the cold air passage 7. Further, when the damper 15 is opened, cold air flows through the cold air passage 8. The cold air flowing through the cold air passage 7 and the cold air passage 8 is discharged into the freezer compartment 4 and the refrigerator compartment 3 through the discharge ports 7a and 8a, respectively.
 吐出口7aから吐出された冷気は冷凍室4内を流通して貯蔵物を冷却し、流出口7bを介して冷気通路7に戻る。吐出口8aから吐出された冷気は冷蔵室3内を流通して貯蔵物を冷却し、連通路(不図示)を介して野菜室5に流入する。野菜室5に流入した冷気は野菜室5内を流通して貯蔵物を冷却し、流出口7cを介して冷気通路7に戻る。 The cold air discharged from the discharge port 7a flows through the freezer compartment 4 to cool the stored material, and returns to the cold air passage 7 through the outlet 7b. The cold air discharged from the discharge port 8a flows through the refrigerator compartment 3 to cool the stored items, and flows into the vegetable compartment 5 through the communication path (not shown). The cold air that has flowed into the vegetable compartment 5 flows through the vegetable compartment 5 to cool the stored items, and returns to the cold air passage 7 through the outlet 7c.
 図2は冷蔵庫1の構成を示すブロック図である。冷蔵庫1は各部を制御する制御部20を備えている。制御部20には圧縮機10、冷凍室ファン12、冷蔵室ファン13、ダンパ15、除霜ヒータ16、操作部21、蒸発器温度センサ22、冷蔵室温度センサ23、冷凍室温度センサ24、外気温センサ25、電流検知部26が接続される。 FIG. 2 is a block diagram showing the configuration of the refrigerator 1. The refrigerator 1 includes a control unit 20 that controls each unit. The control unit 20 includes a compressor 10, a freezer compartment fan 12, a refrigerator compartment fan 13, a damper 15, a defrost heater 16, an operation unit 21, an evaporator temperature sensor 22, a refrigerator compartment temperature sensor 23, a freezer compartment temperature sensor 24, and an outside. The temperature sensor 25 and the current detection unit 26 are connected.
 圧縮機10は制御部20により回転数が可変制御される。操作部21は冷蔵室3の扉3aに設けられ、冷蔵室3の温度設定等を行う。この時、冷蔵室3の設定温度はノッチにより例えば、「強」、「中」、「弱」に設定される。 The rotation speed of the compressor 10 is variably controlled by the control unit 20. The operation unit 21 is provided on the door 3a of the refrigerating room 3, and performs temperature setting of the refrigerating room 3. At this time, the set temperature of the refrigerator compartment 3 is set to, for example, “strong”, “medium”, and “weak” by the notch.
 蒸発器温度センサ22は蒸発器11の近傍に設置され、蒸発器11の周辺温度を検知する。冷蔵室温度センサ23は冷蔵室3の室内の温度を検知する。冷凍室温度センサ24は冷凍室4の室内の温度を検知する。外気温センサ25は断熱箱体2の上面等に設置され、外気温を検知する。 The evaporator temperature sensor 22 is installed in the vicinity of the evaporator 11 and detects the ambient temperature of the evaporator 11. The refrigerator compartment temperature sensor 23 detects the temperature inside the refrigerator compartment 3. The freezer temperature sensor 24 detects the temperature in the freezer compartment 4. The outside air temperature sensor 25 is installed on the upper surface of the heat insulating box 2 and detects the outside air temperature.
 電流検知部26は圧縮機10の駆動電流を検知する。圧縮機10の駆動電流が所定値よりも高くなると圧縮機10が過負荷状態と判断される。従って、電流検知部26は圧縮機10の過負荷状態を検出する過負荷検出部を構成する。圧縮機10のシェル温度や冷媒流入側の圧力を検知する過負荷検出部を設け、過負荷検出部の検知結果が所定値よりも高くなった際に圧縮機10の過負荷状態と判断してもよい。 The current detector 26 detects the drive current of the compressor 10. When the drive current of the compressor 10 becomes higher than a predetermined value, the compressor 10 is determined to be in an overload state. Therefore, the current detection unit 26 constitutes an overload detection unit that detects an overload state of the compressor 10. An overload detection unit that detects the shell temperature of the compressor 10 and the pressure on the refrigerant inflow side is provided, and when the detection result of the overload detection unit becomes higher than a predetermined value, it is determined that the compressor 10 is overloaded. Also good.
 図3は冷蔵庫1の電源投入時の動作を示すフローチャートである。冷蔵庫1の電源が投入されると、ステップ#11で蒸発器温度センサ22の検知による蒸発器11の周辺温度が0℃以上か否かが判断される。蒸発器11の周辺温度が0℃以上でない場合はステップ#14に移行する。 FIG. 3 is a flowchart showing the operation when the refrigerator 1 is turned on. When the power of the refrigerator 1 is turned on, it is determined in step # 11 whether the ambient temperature of the evaporator 11 detected by the evaporator temperature sensor 22 is 0 ° C. or higher. When the ambient temperature of the evaporator 11 is not 0 ° C. or higher, the process proceeds to step # 14.
 蒸発器11の周辺温度が0℃以上の場合はステップ#12で外気温センサ25の検知による外気温が35℃以上か否かが判断される。外気温が35℃以上でない場合はステップ#14に移行する。外気温が35℃以上の場合はステップ#13で後述する急冷モードが行われる。急冷モードによって電源投入直後の急速冷却(プルダウン運転)が行われる。急冷モードが終了するとステップ#14に移行する。ステップ#14では通常モードが行われる。 If the ambient temperature of the evaporator 11 is 0 ° C. or higher, it is determined in step # 12 whether the outside air temperature detected by the outside air temperature sensor 25 is 35 ° C. or higher. If the outside air temperature is not 35 ° C. or higher, the process proceeds to step # 14. When the outside air temperature is 35 ° C. or higher, a rapid cooling mode to be described later is performed in step # 13. Rapid cooling (pull-down operation) immediately after power-on is performed in the rapid cooling mode. When the rapid cooling mode ends, the process proceeds to step # 14. In step # 14, the normal mode is performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は通常モード及び急冷モードの各部の動作状態を示している。通常モードでは、冷蔵室3及び冷凍室4の室内温度に応じて圧縮機10、冷蔵室ファン13、冷凍室ファン12及びダンパ15が制御される。 Table 1 shows the operating state of each part in the normal mode and the rapid cooling mode. In the normal mode, the compressor 10, the refrigerator compartment fan 13, the refrigerator compartment fan 12, and the damper 15 are controlled according to the room temperature of the refrigerator compartment 3 and the freezer compartment 4.
 即ち、冷凍室温度センサ24の検知によって冷凍室4が上限温度を超えると、圧縮機10及び冷凍室ファン12が駆動される。また、冷蔵室温度センサ23の検知によって冷蔵室3が上限温度を超えると、ダンパ15を開いて圧縮機10及び冷蔵室ファン13が駆動される。 That is, when the freezer compartment 4 exceeds the upper limit temperature as detected by the freezer compartment temperature sensor 24, the compressor 10 and the freezer compartment fan 12 are driven. Moreover, if the refrigerator compartment 3 exceeds upper limit temperature by the detection of the refrigerator compartment temperature sensor 23, the damper 15 will be opened and the compressor 10 and the refrigerator compartment fan 13 will be driven.
 圧縮機10は冷蔵室3または冷凍室4の温度に応じて1600rpm~4200rpmの間で可変される。冷凍室ファン12は所定の回転数(例えば、2000rpm)で回転する。冷蔵室ファン13は所定の回転数で回転する。 The compressor 10 is variable between 1600 rpm and 4200 rpm depending on the temperature of the refrigerator compartment 3 or the freezer compartment 4. The freezer compartment fan 12 rotates at a predetermined rotational speed (for example, 2000 rpm). The refrigerator compartment fan 13 rotates at a predetermined rotational speed.
 冷蔵室3が下限温度まで降温されるとダンパ15が閉じられ、冷蔵室ファン13が停止される。また、冷凍室4が下限温度まで降温されると圧縮機10及び冷凍室ファン12が停止される。尚、冷蔵室3の上限温度及び下限温度は操作部21のノッチにより設定された設定温度に基づいて決められる。 When the refrigerator compartment 3 is lowered to the lower limit temperature, the damper 15 is closed and the refrigerator compartment fan 13 is stopped. Further, when the freezer compartment 4 is lowered to the lower limit temperature, the compressor 10 and the freezer compartment fan 12 are stopped. The upper limit temperature and the lower limit temperature of the refrigerator compartment 3 are determined based on the set temperature set by the notch of the operation unit 21.
 急冷モードでは圧縮機10の過負荷状態及び非過負荷状態に応じて可変される複数のステージが設けられる。第1~第5ステージは蒸発器11に対する熱負荷が異なる複数の熱負荷段階を形成する。第5~第8ステージは圧縮機10の設定回転数N0が異なる複数の冷却能力段階を形成する。尚、第1~第5ステージにおいて、蒸発器11の熱負荷の低いステージに対して1段階高いステージでは圧縮機10の設定回転数N0が同じまたは高くなっている。 In the rapid cooling mode, a plurality of stages that are variable according to the overload state and the non-overload state of the compressor 10 are provided. The first to fifth stages form a plurality of heat load stages with different heat loads on the evaporator 11. The fifth to eighth stages form a plurality of cooling capacity stages with different set rotational speeds N0 of the compressor 10. In the first to fifth stages, the set rotational speed N0 of the compressor 10 is the same or higher at a stage one stage higher than the stage where the evaporator 11 has a low thermal load.
 蒸発器11に対する熱負荷はダンパ15の開閉及び冷凍室ファン12の回転数により可変される。従って、ダンパ15及び冷凍室ファン12は蒸発器11に対する熱負荷を可変する熱負荷可変部を構成する。 The heat load on the evaporator 11 is varied by opening / closing the damper 15 and the rotational speed of the freezer compartment fan 12. Therefore, the damper 15 and the freezer compartment fan 12 constitute a heat load variable unit that varies the heat load on the evaporator 11.
 第1ステージではダンパ15を閉じて冷蔵室ファン13及び冷凍室ファン12が停止され、圧縮機10の設定回転数N0が1600rpmに設定される。 In the first stage, the damper 15 is closed, the refrigerator compartment fan 13 and the freezer compartment fan 12 are stopped, and the set rotational speed N0 of the compressor 10 is set to 1600 rpm.
 第2ステージではダンパ15を閉じて冷蔵室ファン13が停止され、圧縮機10の設定回転数N0が2000rpmに設定される。この時、冷凍室ファン12は後述する切替処理(図6参照)により、蒸発器11の周辺温度に応じて停止状態と低速回転(例えば、1000rpm)とに切り替えられる。第2ステージは冷凍室ファン12が低速回転する期間を有するので、第1ステージよりも蒸発器11の熱負荷が高くなっている。 In the second stage, the damper 15 is closed, the refrigerator compartment fan 13 is stopped, and the set rotational speed N0 of the compressor 10 is set to 2000 rpm. At this time, the freezer compartment fan 12 is switched between a stopped state and a low speed rotation (for example, 1000 rpm) according to the ambient temperature of the evaporator 11 by a switching process (see FIG. 6) described later. Since the second stage has a period during which the freezer compartment fan 12 rotates at a low speed, the heat load of the evaporator 11 is higher than that of the first stage.
 第3ステージでは冷蔵室ファン13を停止して冷凍室ファン12を低速回転し、圧縮機10の設定回転数N0が2000rpmに設定される。この時、ダンパ15は後述する切替処理(図6参照)により、蒸発器11の周辺温度に応じて開閉状態が切り替えられる。第3ステージは冷凍室ファン12が常時低速回転してダンパ15を開く期間を有するので、第2ステージよりも蒸発器11の熱負荷が高くなっている。 In the third stage, the refrigerator compartment fan 13 is stopped and the freezer compartment fan 12 is rotated at a low speed, and the set rotational speed N0 of the compressor 10 is set to 2000 rpm. At this time, the open / close state of the damper 15 is switched according to the ambient temperature of the evaporator 11 by a switching process (see FIG. 6) described later. Since the third stage has a period in which the freezer compartment fan 12 always rotates at a low speed and opens the damper 15, the heat load of the evaporator 11 is higher than that of the second stage.
 第4ステージでは冷蔵室ファン13を停止して圧縮機10の設定回転数N0が2000rpmに設定される。この時、冷凍室ファン12は後述する切替処理(図6参照)により、蒸発器11の周辺温度に応じて低速回転と高速回転(例えば、2000rpm)とに切り替えられる。また、ダンパ15は操作部21の設定ノッチに拘わらず、「弱」ノッチに対応した冷蔵室3の温度に応じて開閉される。第4ステージは冷蔵室3の温度に応じてダンパ15が開閉されるとともに冷凍室ファン12が高速回転する期間を有するので、第3ステージよりも蒸発器11の熱負荷が高くなっている。 In the fourth stage, the refrigerator compartment fan 13 is stopped and the set rotational speed N0 of the compressor 10 is set to 2000 rpm. At this time, the freezer compartment fan 12 is switched between a low-speed rotation and a high-speed rotation (for example, 2000 rpm) according to the ambient temperature of the evaporator 11 by a switching process described later (see FIG. 6). The damper 15 is opened and closed according to the temperature of the refrigerator compartment 3 corresponding to the “weak” notch, regardless of the setting notch of the operation unit 21. Since the fourth stage has a period in which the damper 15 is opened and closed according to the temperature of the refrigerator compartment 3 and the freezer compartment fan 12 rotates at a high speed, the thermal load of the evaporator 11 is higher than that of the third stage.
 第5ステージ~第8ステージでは冷蔵室ファン13を停止して冷凍室ファン12が高速回転する。ダンパ15は操作部21の設定ノッチに拘わらず、「弱」ノッチに対応した冷蔵室3の温度に応じて開閉される。また、圧縮機10の設定回転数N0は第5ステージ~第8ステージに対してそれぞれ、2600rpm、3200rpm、3900rpm、4200rpmに設定される。第5ステージ~第8ステージは冷凍室ファン12が常時高速回転するので、第4ステージよりも蒸発器11の熱負荷が高くなっている。 In the fifth stage to the eighth stage, the refrigerator compartment fan 13 is stopped and the freezer compartment fan 12 rotates at a high speed. The damper 15 is opened and closed according to the temperature of the refrigerator compartment 3 corresponding to the “weak” notch, regardless of the setting notch of the operation unit 21. Further, the set rotational speed N0 of the compressor 10 is set to 2600 rpm, 3200 rpm, 3900 rpm, and 4200 rpm for the fifth to eighth stages, respectively. In the fifth to eighth stages, since the freezer compartment fan 12 always rotates at a high speed, the heat load on the evaporator 11 is higher than that in the fourth stage.
 図4は急冷モードの動作を示すフローチャートである。急冷モードが開始されるとステップ#21で各ステージを示すカウンタiに1が代入される。ステップ#22では前述の表1に基づいてカウンタiで示される第1ステージの駆動条件が設定され、第1ステージの動作が開始される。 FIG. 4 is a flowchart showing the operation in the rapid cooling mode. When the rapid cooling mode is started, 1 is assigned to the counter i indicating each stage in step # 21. In step # 22, the driving condition of the first stage indicated by the counter i is set based on Table 1 described above, and the operation of the first stage is started.
 ステップ#23では冷凍室温度センサ24で検知した冷凍室4が所定温度(本実施形態では-13℃)以下になったか否かが判断される。冷凍室4の温度が-13℃以下になった場合は急冷モードを終了し、図3のフローチャートに戻る。 In step # 23, it is determined whether or not the freezer compartment 4 detected by the freezer temperature sensor 24 has become equal to or lower than a predetermined temperature (−13 ° C. in the present embodiment). When the temperature of the freezer compartment 4 becomes −13 ° C. or lower, the rapid cooling mode is terminated and the process returns to the flowchart of FIG.
 冷凍室4の温度が-13℃よりも高温の場合はステップ#24で急冷モードの開始から6時間が経過したか否かが判断される。急冷モードの開始から6時間が経過した場合は急冷モードを終了し、図3のフローチャートに戻る。 If the temperature of the freezer compartment 4 is higher than −13 ° C., it is determined in step # 24 whether or not 6 hours have elapsed since the start of the rapid cooling mode. When 6 hours have elapsed from the start of the rapid cooling mode, the rapid cooling mode is terminated and the process returns to the flowchart of FIG.
 急冷モードの開始から6時間が経過していない場合はステップ#25に移行し、除霜ヒータ16による除霜運転が開始されたか否かが判断される。除霜運転が開始された場合は急冷モードを終了し、図3のフローチャートに戻る。除霜運転が開始されていない場合はステップ#26に移行する。 When 6 hours have not elapsed since the start of the rapid cooling mode, the process proceeds to step # 25, and it is determined whether or not the defrosting operation by the defrosting heater 16 has been started. When the defrosting operation is started, the rapid cooling mode is terminated and the process returns to the flowchart of FIG. When the defrosting operation is not started, the process proceeds to step # 26.
 ステップ#26ではカウンタiがステージの最大値である8か否かが判断される。カウンタiが8の場合はステップ#30に移行し、カウンタiが7以下の場合はステップ#27に移行する。 In step # 26, it is determined whether the counter i is 8 which is the maximum value of the stage. When the counter i is 8, the process proceeds to step # 30, and when the counter i is 7 or less, the process proceeds to step # 27.
 ステップ#27では電流検知部26で検知される圧縮機10の非過負荷状態が所定の非過負荷時間(本実施形態では10分)以上継続したか否かが判断される。圧縮機10の非過負荷状態が10分以上継続した場合はステップ#29に移行する。圧縮機10の非過負荷状態が10分以上継続していない場合はステップ#28に移行する。 In step # 27, it is determined whether or not the non-overload state of the compressor 10 detected by the current detector 26 has continued for a predetermined non-overload time (10 minutes in the present embodiment). When the non-overload state of the compressor 10 continues for 10 minutes or more, the process proceeds to step # 29. When the non-overload state of the compressor 10 has not continued for 10 minutes or more, the process proceeds to step # 28.
 ステップ#28では蒸発器温度センサ22で検知した蒸発器11の周辺温度が所定の低温時間(本実施形態では2分)以上継続して所定温度(本実施形態では-5℃)よりも低温になったか否かが判断される。低温時間は非過負荷時間よりも短時間に設定される。蒸発器11の周辺温度が2分以上継続して-5℃以下となった場合はステップ#29に移行する。蒸発器11の周辺温度が-5℃よりも高温の場合または-5℃以下が2分よりも短い場合はステップ#30に移行する。 In step # 28, the ambient temperature of the evaporator 11 detected by the evaporator temperature sensor 22 continues for a predetermined low temperature time (2 minutes in the present embodiment) or more and lower than the predetermined temperature (−5 ° C. in the present embodiment). It is determined whether or not. The low temperature time is set to be shorter than the non-overload time. When the ambient temperature of the evaporator 11 continues for 2 minutes or more and becomes −5 ° C. or less, the process proceeds to step # 29. When the ambient temperature of the evaporator 11 is higher than −5 ° C. or when −5 ° C. or lower is shorter than 2 minutes, the process proceeds to step # 30.
 ステップ#29ではカウンタiがインクリメントされ、ステップ#22でカウンタiに対応するステージの駆動条件を設定して該ステージの動作が行われる。従って、ステップ#27、#28の判断によって蒸発器11の熱負荷の高い熱負荷段階または圧縮機10の設定回転数N0の高い冷却能力段階に移行する非過負荷移行動作が行われる。 In step # 29, the counter i is incremented, and in step # 22, the stage driving condition corresponding to the counter i is set and the operation of the stage is performed. Accordingly, a non-overload transition operation for shifting to a heat load stage in which the evaporator 11 has a high heat load or a cooling capacity stage in which the compressor 10 has a high set rotational speed N0 is performed according to the determinations in steps # 27 and # 28.
 ステップ#30ではカウンタiがステージの最小値である1か否かが判断される。カウンタiが1の場合はステップ#23に移行し、カウンタiが2以上の場合はステップ#31に移行する。ステップ#31では電流検知部26で検知した圧縮機10の過負荷状態が所定の過負荷時間(本実施形態では2分)以上継続したか否かが判断される。圧縮機10の過負荷状態が2分以上継続した場合はステップ#32に移行する。圧縮機10の過負荷状態が2分以上継続していない場合はステップ#23に移行する。 In step # 30, it is determined whether or not the counter i is 1, which is the minimum value of the stage. When the counter i is 1, the process proceeds to step # 23, and when the counter i is 2 or more, the process proceeds to step # 31. In step # 31, it is determined whether or not the overload state of the compressor 10 detected by the current detection unit 26 has continued for a predetermined overload time (2 minutes in the present embodiment). When the overload state of the compressor 10 continues for 2 minutes or more, the process proceeds to step # 32. When the overload state of the compressor 10 does not continue for 2 minutes or more, the process proceeds to step # 23.
 ステップ#32ではステージ判別処理が行われる。図5はステージ判別処理の動作を示している。ステップ#41ではカウンタiの値が判別され、カウンタiに応じて分岐する。ステップ#41の判断でカウンタiが8の場合はステップ#42に移行する。ステップ#42では圧縮機10の実回転数Ncが第7ステージの設定回転数N0である3900rpm以上か否かが判断される。圧縮機10の実回転数Ncが3900rpmよりも低い場合はステップ#43に移行する。圧縮機10の実回転数Ncが3900rpm以上の場合はステップ#47でカウンタiに7が代入され、図4のステップ#22に戻る。 In step # 32, stage discrimination processing is performed. FIG. 5 shows the operation of the stage discrimination process. In step # 41, the value of the counter i is determined, and the process branches according to the counter i. If it is determined in step # 41 that the counter i is 8, the process proceeds to step # 42. In step # 42, it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 3900 rpm which is the set rotational speed N0 of the seventh stage. When the actual rotational speed Nc of the compressor 10 is lower than 3900 rpm, the process proceeds to step # 43. When the actual rotational speed Nc of the compressor 10 is 3900 rpm or more, 7 is substituted into the counter i in step # 47, and the process returns to step # 22 in FIG.
 ステップ#41の判断でカウンタiが7の場合はステップ#43に移行する。ステップ#43では圧縮機10の実回転数Ncが第6ステージの設定回転数N0である3200rpm以上か否かが判断される。圧縮機10の実回転数Ncが3200rpmよりも低い場合はステップ#44に移行する。圧縮機10の実回転数Ncが3200rpm以上の場合はステップ#48でカウンタiに6が代入され、図4のステップ#22に戻る。 If the counter i is 7 in step # 41, the process proceeds to step # 43. In step # 43, it is determined whether or not the actual rotation speed Nc of the compressor 10 is equal to or higher than 3200 rpm which is the set rotation speed N0 of the sixth stage. When the actual rotational speed Nc of the compressor 10 is lower than 3200 rpm, the process proceeds to step # 44. When the actual rotational speed Nc of the compressor 10 is 3200 rpm or more, 6 is substituted into the counter i in step # 48, and the process returns to step # 22 in FIG.
 ステップ#41の判断でカウンタiが6の場合はステップ#44に移行する。ステップ#44では圧縮機10の実回転数Ncが第5ステージの設定回転数N0である2600rpm以上か否かが判断される。圧縮機10の実回転数Ncが2600rpmよりも低い場合はステップ#45に移行する。圧縮機10の実回転数Ncが2600rpm以上の場合はステップ#49でカウンタiに5が代入され、図4のステップ#22に戻る。 If the counter i is 6 as determined in step # 41, the process proceeds to step # 44. In step # 44, it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 2600 rpm which is the set rotational speed N0 of the fifth stage. When the actual rotational speed Nc of the compressor 10 is lower than 2600 rpm, the process proceeds to step # 45. When the actual rotational speed Nc of the compressor 10 is 2600 rpm or more, 5 is assigned to the counter i in step # 49, and the process returns to step # 22 in FIG.
 ステップ#41の判断でカウンタiが5の場合はステップ#45に移行する。ステップ#45では圧縮機10の実回転数Ncが第4ステージの設定回転数N0である2000rpm以上か否かが判断される。圧縮機10の実回転数Ncが2000rpmよりも低い場合はステップ#46に移行する。圧縮機10の実回転数Ncが2000rpm以上の場合はステップ#50でカウンタiに4が代入され、図4のステップ#22に戻る。 If the counter i is 5 as determined in step # 41, the process proceeds to step # 45. In step # 45, it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 2000 rpm, which is the set rotational speed N0 of the fourth stage. When the actual rotational speed Nc of the compressor 10 is lower than 2000 rpm, the process proceeds to step # 46. When the actual rotational speed Nc of the compressor 10 is 2000 rpm or more, 4 is assigned to the counter i in step # 50, and the process returns to step # 22 in FIG.
 ステップ#41の判断でカウンタiが4の場合はステップ#46に移行する。ステップ#46では圧縮機10の実回転数Ncが第1ステージの設定回転数N0である1600rpm以上か否かが判断される。圧縮機10の実回転数Ncが1600rpmよりも低い場合はステップ#52に移行する。圧縮機10の実回転数Ncが1600rpm以上の場合はステップ#51でカウンタiに3が代入され、図4のステップ#22に戻る。 If the counter i is 4 as determined in step # 41, the process proceeds to step # 46. In step # 46, it is determined whether or not the actual rotational speed Nc of the compressor 10 is equal to or higher than 1600 rpm which is the set rotational speed N0 of the first stage. When the actual rotation speed Nc of the compressor 10 is lower than 1600 rpm, the process proceeds to step # 52. When the actual rotational speed Nc of the compressor 10 is 1600 rpm or more, 3 is assigned to the counter i in step # 51, and the process returns to step # 22 in FIG.
 ステップ#41の判断でカウンタiが2の場合はステップ#52に移行する。ステップ#52ではカウンタiに1を代入して図4のステップ#22に戻る。ステップ#41の判断でカウンタiが3の場合はステップ#53に移行し、カウンタiに2を代入して図4のステップ#22に戻る。 If the counter i is 2 in step # 41, the process proceeds to step # 52. In step # 52, 1 is assigned to the counter i, and the process returns to step # 22 in FIG. If the counter i is 3 in step # 41, the process proceeds to step # 53, 2 is substituted into the counter i, and the process returns to step # 22 in FIG.
 そして、図4のステップ#22でカウンタiに対応するステージの駆動条件を設定して該ステージの動作が行われ、ステップ#22~#32が繰り返される。従って、ステップ#31の判断によってステージ判別処理に移行し、蒸発器11の熱負荷の低い熱負荷段階または圧縮機10の設定回転数N0の低い冷却能力段階に移行する過負荷移行動作が行われる。 Then, in step # 22 of FIG. 4, the stage driving condition corresponding to the counter i is set and the stage is operated, and steps # 22 to # 32 are repeated. Therefore, the process proceeds to the stage determination process according to the determination in step # 31, and the overload transition operation is performed to shift to the heat load stage where the heat load of the evaporator 11 is low or the cooling capacity stage where the set rotation speed N0 of the compressor 10 is low. .
 この時、第5~第8ステージにおいてステージ判別処理によって圧縮機10の過負荷の検出時の実回転数Ncよりも低い設定回転数N0のステージに移行する。圧縮機10は過負荷状態では設定回転数N0に到達していない可能性がある。このため、過負荷の検出時の実回転数Ncよりも低い設定回転数N0のステージに移行し、圧縮機10の過負荷状態を速やかに脱出させることができる。 At this time, in the fifth to eighth stages, the stage determination process shifts to a stage having a set rotational speed N0 lower than the actual rotational speed Nc when the overload of the compressor 10 is detected. The compressor 10 may not reach the set rotational speed N0 in an overload state. For this reason, it can transfer to the stage of the setting rotation speed N0 lower than the actual rotation speed Nc at the time of detection of overload, and can escape the overload state of the compressor 10 rapidly.
 尚、ステップ#31で圧縮機10の過負荷状態を検出したときに直ちに過負荷移行動作を行ってもよい。しかし、所定の過負荷時間を設けることにより、一時的な圧縮機10の過負荷のために蒸発器11の熱負荷または冷却能力の低いステージに移行されることを防止できる。これにより、冷凍室4及び冷蔵室3を迅速に冷却することができる。過負荷時間は圧縮機10が過負荷状態で連続運転可能な時間よりも短い時間に設定される。 In addition, when the overload state of the compressor 10 is detected in step # 31, the overload transition operation may be performed immediately. However, by providing a predetermined overload time, it is possible to prevent the evaporator 11 from being shifted to a stage having a low thermal capacity or cooling capacity due to a temporary overload of the compressor 10. Thereby, the freezer compartment 4 and the refrigerator compartment 3 can be cooled rapidly. The overload time is set to a time shorter than the time during which the compressor 10 can be continuously operated in an overload state.
 また、図4のフローチャートにおいて、圧縮機10が損傷を招く異常な過負荷状態を検出した場合は、圧縮機10を停止して所定時間(例えば、6分)経過後にステップ#21から再開される。異常な過負荷状態として、圧縮機10の回転数の異常低下、圧縮機10の駆動電流の異常上昇、圧縮機10のシェル温度の異常上昇、圧縮機10を駆動する駆動回路の素子温度の異常上昇等が挙げられる。 Further, in the flowchart of FIG. 4, when the compressor 10 detects an abnormal overload state that causes damage, the compressor 10 is stopped and restarted from step # 21 after a predetermined time (for example, 6 minutes) has elapsed. . As an abnormal overload state, the rotation speed of the compressor 10 is abnormally decreased, the drive current of the compressor 10 is abnormally increased, the shell temperature of the compressor 10 is abnormally increased, and the element temperature of the drive circuit that drives the compressor 10 is abnormal. The rise etc. are mentioned.
 図6は第2、第3、第4ステージにおいてそれぞれ冷凍室ファン12またはダンパ15の動作状態を蒸発器11の周辺温度に応じて切り替える切替処理の動作を示している。尚、図6の制御は図4及び図5の動作フローと並行して行われる。ステップ#61ではカウンタiの値を判別し、カウンタiに応じて分岐する。 FIG. 6 shows the operation of switching processing for switching the operation state of the freezer compartment fan 12 or the damper 15 according to the ambient temperature of the evaporator 11 in the second, third, and fourth stages, respectively. Note that the control of FIG. 6 is performed in parallel with the operation flow of FIGS. In step # 61, the value of the counter i is determined, and the process branches according to the counter i.
 ステップ#61の判断でカウンタiが2の第2ステージの場合はステップ#62に移行し、冷凍室ファン12が停止される。ステップ#61の判断でカウンタiが3の第3ステージの場合はステップ#63に移行し、ダンパ15が閉じられる。ステップ#61の判断でカウンタiが4の第4ステージの場合はステップ#64に移行し、冷凍室ファン12が低速回転する。 If the counter i is in the second stage with the counter i being 2 as determined in step # 61, the process proceeds to step # 62 and the freezer compartment fan 12 is stopped. If it is determined in step # 61 that the counter i is the third stage of 3, the process proceeds to step # 63 and the damper 15 is closed. If it is determined in step # 61 that the counter i is the fourth stage of 4, the process proceeds to step # 64, and the freezer compartment fan 12 rotates at a low speed.
 ステップ#65ではステップ#62~#64の実行後に所定時間(本実施形態では60秒)が経過するまで待機する。ステップ#62~#64の実行後に60秒が経過すると、ステップ#66でカウンタiの値を判別してカウンタiに応じて分岐する。 In step # 65, the process waits until a predetermined time (60 seconds in this embodiment) elapses after the execution of steps # 62 to # 64. When 60 seconds elapse after execution of steps # 62 to # 64, the value of counter i is determined in step # 66, and the process branches according to counter i.
 ステップ#66の判断でカウンタiが2の場合はステップ#67に移行し、冷凍室ファン12が低速回転する。ステップ#66の判断でカウンタiが3の場合はステップ#68に移行し、ダンパ15が開かれる。ステップ#66の判断でカウンタiが4の場合はステップ#69に移行し、冷凍室ファン12が高速回転する。 If it is determined in step # 66 that the counter i is 2, the process proceeds to step # 67 and the freezer compartment fan 12 rotates at a low speed. If the counter i is 3 in step # 66, the process proceeds to step # 68 and the damper 15 is opened. If the counter i is 4 in step # 66, the process proceeds to step # 69, and the freezer compartment fan 12 rotates at high speed.
 ステップ#70ではステップ#67~#69の実行後に所定時間(本実施形態では10秒)が経過するまで待機する。ステップ#67~#69の実行後に10秒が経過するとステップ#71に移行する。ステップ#71では蒸発器11の周辺温度が所定温度(本実施形態では-5℃)以上になるまで待機する。蒸発器11の周辺温度が-5℃以上になると、ステップ#61に移行する。そして、ステップ#61~#71が繰り返される。 In step # 70, the process waits until a predetermined time (in this embodiment, 10 seconds) elapses after the execution of steps # 67 to # 69. When 10 seconds elapse after execution of steps # 67 to # 69, the process proceeds to step # 71. In Step # 71, the process waits until the ambient temperature of the evaporator 11 becomes equal to or higher than a predetermined temperature (−5 ° C. in the present embodiment). When the ambient temperature of the evaporator 11 is −5 ° C. or higher, the process proceeds to step # 61. Steps # 61 to # 71 are repeated.
 これにより、第2ステージでは蒸発器11の周辺温度が-5℃よりも低い状態で冷凍室ファン12が低速回転し、-5℃以上になると冷凍室ファン12が一旦停止される。第3ステージでは蒸発器11の周辺温度が-5℃よりも低い状態でダンパ15が開かれ、-5℃以上になるとダンパ15が一旦閉じられる。第4ステージでは蒸発器11の周辺温度が-5℃よりも低い状態で冷凍室ファン12が高速回転し、-5℃以上になると冷凍室ファン12が一旦低速回転となる。 As a result, in the second stage, the freezer compartment fan 12 rotates at a low speed while the ambient temperature of the evaporator 11 is lower than −5 ° C., and when it reaches −5 ° C. or higher, the freezer compartment fan 12 is temporarily stopped. In the third stage, the damper 15 is opened while the ambient temperature of the evaporator 11 is lower than −5 ° C., and the damper 15 is once closed when the temperature becomes −5 ° C. or higher. In the fourth stage, the freezer compartment fan 12 rotates at a high speed while the ambient temperature of the evaporator 11 is lower than −5 ° C., and once it reaches −5 ° C. or higher, the freezer compartment fan 12 once rotates at a low speed.
 このように、蒸発器11の周辺温度が所定の温度以上となった場合は、蒸発器11の熱負荷を一旦低くするように冷凍室ファン12やダンパ15等の熱負荷可変部を制御する。これにより、圧縮機10を過負荷状態にさせにくくできる。従って、過負荷移行動作の回数を減らして速やかに急冷モードのステージを上位に進めることができる。即ち、冷蔵庫1を迅速に急速冷却することができる。 Thus, when the ambient temperature of the evaporator 11 becomes equal to or higher than a predetermined temperature, the heat load variable parts such as the freezer compartment fan 12 and the damper 15 are controlled so as to temporarily reduce the heat load of the evaporator 11. Thereby, it can be made difficult to make the compressor 10 into an overload state. Therefore, the number of overload transfer operations can be reduced, and the rapid cooling mode stage can be quickly advanced to the upper level. That is, the refrigerator 1 can be rapidly and rapidly cooled.
 図7は急冷モード時の各部のタイムチャートの一例を示している。図7において、(a)はダンパ15の開閉状態、(b)は冷凍室ファン12の駆動状態、(c)は圧縮機10の過負荷検知状態、(d)は各ステージ、(e)は各部の温度を示している。また、図7の(e)において、Rは冷蔵室温度センサ23で検知した冷蔵室3の温度、Fは冷凍室温度センサ24で検知した冷凍室4の温度、E1は蒸発器温度センサ22で検知した蒸発器11の周辺温度である。また、同図のE2は参考のため、蒸発器11の表面温度を示している。 FIG. 7 shows an example of a time chart of each part in the rapid cooling mode. 7, (a) is an open / closed state of the damper 15, (b) is a driving state of the freezer compartment fan 12, (c) is an overload detection state of the compressor 10, (d) is each stage, and (e) is a state. The temperature of each part is shown. 7E, R is the temperature of the refrigerator compartment 3 detected by the refrigerator compartment temperature sensor 23, F is the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 24, and E1 is the evaporator temperature sensor 22. It is the detected ambient temperature of the evaporator 11. Moreover, E2 of the figure has shown the surface temperature of the evaporator 11 for reference.
 時間t0で急冷モードが開始されると、第1ステージの動作が行われる。これにより、冷凍室ファン12を停止してダンパ15を閉じた状態で圧縮機10が駆動され、蒸発器11の周辺温度E1が降温される。この時、圧縮機10が一時的に過負荷状態となっているが、過負荷状態が2分よりも短いため過負荷移行動作は行われない。 When the rapid cooling mode is started at time t0, the first stage operation is performed. Thereby, the compressor 10 is driven in a state where the freezer compartment fan 12 is stopped and the damper 15 is closed, and the ambient temperature E1 of the evaporator 11 is lowered. At this time, the compressor 10 is temporarily overloaded, but the overload transition operation is not performed because the overloaded state is shorter than 2 minutes.
 時間t1で第1ステージにおいて圧縮機10の非過負荷状態が10分継続すると、非過負荷移行動作により第2ステージに移行する。これにより、冷凍室ファン12は切替処理(図6参照)により蒸発器11の周辺温度E1に応じて停止と低速回転とが繰り返される。 When the non-overload state of the compressor 10 continues for 10 minutes in the first stage at time t1, the second stage is shifted to by the non-overload transition operation. Thus, the freezer compartment fan 12 is repeatedly stopped and rotated at a low speed according to the ambient temperature E1 of the evaporator 11 by the switching process (see FIG. 6).
 時間t2で第2ステージにおいて圧縮機10の非過負荷状態が10分(非過負荷時間)継続すると、非過負荷移行動作により第3ステージに移行する。これにより、冷凍室ファン12が低速回転し、ダンパ15が切替処理(図6参照)により蒸発器11の周辺温度E1に応じて開閉される。 When the non-overload state of the compressor 10 continues for 10 minutes (non-overload time) in the second stage at time t2, the state shifts to the third stage by the non-overload transition operation. Thereby, the freezer compartment fan 12 rotates at low speed, and the damper 15 is opened and closed according to the ambient temperature E1 of the evaporator 11 by the switching process (see FIG. 6).
 時間t3で第3ステージにおいて圧縮機10の過負荷状態が2分(過負荷時間)継続すると、過負荷移行動作が行われ、圧縮機10の実回転数Ncに基づいて第2ステージに移行する。 When the overload state of the compressor 10 continues in the third stage at time t3 for 2 minutes (overload time), an overload transition operation is performed, and the transition to the second stage is performed based on the actual rotational speed Nc of the compressor 10. .
 時間t4で第2ステージにおいて圧縮機10の非過負荷状態が10分継続すると、非過負荷移行動作により第3ステージに移行する。この時、圧縮機10が一時的に過負荷状態となっているが、過負荷状態が2分よりも短いため過負荷移行動作は行われない。 When the non-overload state of the compressor 10 continues for 10 minutes in the second stage at time t4, the third stage is shifted to by the non-overload transition operation. At this time, the compressor 10 is temporarily overloaded, but the overload transition operation is not performed because the overloaded state is shorter than 2 minutes.
 時間t5で第3ステージにおいて圧縮機10の非過負荷状態が10分継続すると、非過負荷移行動作により第4ステージに移行する。これにより、ダンパ15が開放され、冷凍室ファン12が切替処理(図6参照)により蒸発器11の周辺温度E1に応じて低速回転と高速回転とが繰り返される。 At time t5, when the non-overload state of the compressor 10 continues for 10 minutes in the third stage, the operation shifts to the fourth stage by the non-overload transfer operation. Thereby, the damper 15 is opened, and the freezer compartment fan 12 is repeatedly rotated at low speed and at high speed according to the ambient temperature E1 of the evaporator 11 by the switching process (see FIG. 6).
 時間t6で第4ステージにおいて圧縮機10の非過負荷状態が10分継続すると、非過負荷移行動作により第5ステージに移行する。これにより、冷凍室ファン12が高速回転する。 When the non-overload state of the compressor 10 continues for 10 minutes in the fourth stage at time t6, the fifth stage is shifted to by the non-overload transition operation. Thereby, the freezer compartment fan 12 rotates at high speed.
 その後、第5ステージにおいて圧縮機10の非過負荷状態が10分継続すると、第6ステージに移行する。同様に、圧縮機10の非過負荷状態によって第7、第8ステージに移行する。 Thereafter, when the non-overload state of the compressor 10 continues for 10 minutes in the fifth stage, the process proceeds to the sixth stage. Similarly, the seventh and eighth stages are shifted depending on the non-overload state of the compressor 10.
 本実施形態によると、圧縮機10の過負荷を検出する電流検知部26(過負荷検出部)と、蒸発器11の熱負荷を可変するダンパ15及び冷凍室ファン12(熱負荷可変部)とが設けられる。そして、急冷モード時に圧縮機10の非過負荷状態が非過負荷時間だけ継続した際に蒸発器11の熱負荷をより高いステージ(熱負荷段階)に移行させる非過負荷移行動作と、圧縮機10の過負荷状態になった際に蒸発器11の熱負荷をより低いステージに移行させる過負荷移行動作とが繰り返される。 According to this embodiment, the current detection unit 26 (overload detection unit) that detects an overload of the compressor 10, the damper 15 that changes the thermal load of the evaporator 11, and the freezer compartment fan 12 (thermal load variable unit) Is provided. And a non-overload transition operation for shifting the heat load of the evaporator 11 to a higher stage (heat load stage) when the non-overload state of the compressor 10 continues for a non-overload time in the rapid cooling mode; The overload transfer operation for transferring the thermal load of the evaporator 11 to a lower stage when the 10 overload state is reached is repeated.
 これにより、急冷モード時に圧縮機10の非過負荷状態が継続すると蒸発器11の熱負荷の高いステージに徐々に移行する。このため、プルダウン運転時等で蒸発器11の温度が高温であっても迅速に冷凍室4を冷却することができる。また、圧縮機10の過負荷時には過負荷移行動作により蒸発器11の熱負荷を低減し、圧縮機10を保護することができる。従って、冷蔵庫1の利便性を向上することができる。 Thereby, when the non-overload state of the compressor 10 continues in the rapid cooling mode, the stage gradually shifts to a stage with a high heat load of the evaporator 11. For this reason, even if the temperature of the evaporator 11 is high at the time of pull-down operation etc., the freezer compartment 4 can be cooled rapidly. Further, when the compressor 10 is overloaded, the thermal load of the evaporator 11 can be reduced by the overload transition operation, and the compressor 10 can be protected. Therefore, the convenience of the refrigerator 1 can be improved.
 また、第2ステージ及び第4ステージにおいて蒸発器11の周辺温度が所定温度よりも低温となるように冷凍室ファン12が駆動制御される。第3ステージにおいて蒸発器11の周辺温度が所定温度よりも低温となるようにダンパ15が開閉される。これにより、各ステージ内で蒸発器11の周辺温度を監視しながら蒸発器11の熱負荷が細かく可変される。 In addition, the freezer compartment fan 12 is driven and controlled so that the ambient temperature of the evaporator 11 is lower than a predetermined temperature in the second stage and the fourth stage. In the third stage, the damper 15 is opened and closed so that the ambient temperature of the evaporator 11 is lower than a predetermined temperature. Thereby, the thermal load of the evaporator 11 is finely varied while monitoring the ambient temperature of the evaporator 11 in each stage.
 このため、非過負荷移行動作により蒸発器11の熱負荷の高いステージに移行した直後に圧縮機10が長時間過負荷状態になることを抑制することができる。従って、非過負荷移行動作と過負荷移行動作とが頻繁に繰り返されて冷凍室4の冷却が進まないことを防止し、より迅速に冷凍室4を冷却することができる。 For this reason, it is possible to suppress the compressor 10 from being overloaded for a long time immediately after shifting to a stage with a high thermal load of the evaporator 11 by the non-overload transition operation. Therefore, the non-overload transition operation and the overload transition operation are frequently repeated to prevent the freezer compartment 4 from being cooled, and the freezer compartment 4 can be cooled more quickly.
 また、蒸発器11の周辺温度が非過負荷時間よりも短い低温時間だけ継続して所定温度よりも低温となった際に非過負荷移行動作を行う。蒸発器11の周辺温度が継続して低温の場合は圧縮機10の負荷がまだ軽い状態と判断される。このため、非過負荷時間よりも短い低温時間の経過の場合であっても非過負荷移行動作を行い、冷凍室4をより迅速に冷却することができる。 Also, when the ambient temperature of the evaporator 11 continues for a low temperature time shorter than the non-overload time and becomes lower than the predetermined temperature, the non-overload transition operation is performed. When the ambient temperature of the evaporator 11 is continuously low, it is determined that the load on the compressor 10 is still light. For this reason, even if it is a case where low temperature time shorter than non-overload time passes, non-overload transfer operation | movement can be performed and the freezer compartment 4 can be cooled more rapidly.
 また、冷凍室ファン12の停止を含む減速及び増速による駆動状態の可変により、蒸発器11の熱負荷を可変する熱負荷可変部を容易に実現することができる。 Also, a variable heat load variable section that varies the heat load of the evaporator 11 can be realized by varying the driving state by deceleration and acceleration including stopping of the freezer compartment fan 12.
 また、冷凍室4よりも高温の冷蔵室3と蒸発器11との間の冷気通路7、8を開閉するダンパ15により、蒸発器11の熱負荷を可変する熱負荷可変部を容易に実現することができる。 Further, the damper 15 for opening and closing the cool air passages 7 and 8 between the refrigerator compartment 3 and the evaporator 11 having a temperature higher than that of the freezer compartment 4 easily realizes a heat load variable section that changes the heat load of the evaporator 11. be able to.
 また、圧縮機10の駆動電流、圧縮機10のシェル温度、または圧縮機10の冷媒流入側の圧力の検出により、圧縮機10の過負荷を検出する過負荷検出部を容易に実現することができる。 Further, it is possible to easily realize an overload detection unit that detects an overload of the compressor 10 by detecting the driving current of the compressor 10, the shell temperature of the compressor 10, or the pressure on the refrigerant inflow side of the compressor 10. it can.
 また、第5~第8ステージが圧縮機10の設定回転数N0の異なる冷却能力段階を形成する。そして、非過負荷移行動作により設定回転数N0の高いステージ(即ち、冷却能力の高いステージ)に移行し、過負荷移行動作によって圧縮機10の過負荷の検出時の実回転数Ncよりも低い設定回転数N0のステージ(即ち、冷却能力の低いステージ)に移行する。これにより、圧縮機10の過負荷状態を速やかに脱出させることができる。 Also, the fifth to eighth stages form different cooling capacity stages with the set rotation speed N0 of the compressor 10. Then, the non-overload transition operation shifts to a stage having a high set rotational speed N0 (that is, a stage having a high cooling capacity), and the overload transition operation lowers the actual rotational speed Nc when the overload of the compressor 10 is detected. The stage shifts to a stage having a set rotational speed N0 (ie, a stage having a low cooling capacity). Thereby, the overload state of the compressor 10 can be quickly escaped.
 <第2実施形態>
 次に、第2実施形態の冷蔵庫1について説明する。本実施形態は冷凍室4の背面に設けられた吐出口7a及び流出口7bの一方または両方にダンパ等により形成される開閉部材が配される。また、野菜室5に設けられた流出口7cにダンパ等により形成される開閉部材が配される。その他の部分は第1実施形態と同様である。
Second Embodiment
Next, the refrigerator 1 of 2nd Embodiment is demonstrated. In the present embodiment, an opening / closing member formed by a damper or the like is disposed at one or both of the discharge port 7 a and the outlet 7 b provided on the back surface of the freezer compartment 4. In addition, an opening / closing member formed by a damper or the like is disposed at the outlet 7 c provided in the vegetable compartment 5. Other parts are the same as those in the first embodiment.
 各開閉部材を閉じることにより、冷凍室4や野菜室5と冷気通路7とが遮断される。冷凍室4の容積が大きい冷蔵庫1では、冷凍室ファン12を停止させてダンパ15を閉じても冷凍室4の熱負荷が大きいために圧縮機10が過負荷状態を持続してしまう可能性がある。 冷凍 By closing each open / close member, the freezer compartment 4 and the vegetable compartment 5 and the cold air passage 7 are blocked. In the refrigerator 1 having a large volume of the freezer compartment 4, even if the freezer compartment fan 12 is stopped and the damper 15 is closed, the compressor 10 may continue to be overloaded because the freezer compartment 4 has a large thermal load. is there.
 このような場合は、第1実施形態における第1ステージよりもさらに前のステージとして、上記の各開閉部材を閉じた状態のステージを設けることができる。このステージでは冷気通路7のみが熱負荷となるので、冷凍室4の容積が大きい冷蔵庫であっても第1ステージから熱負荷の高いステージに進めないといったおそれを解消できる。 In such a case, a stage in which each of the opening / closing members is closed can be provided as a stage further before the first stage in the first embodiment. In this stage, since only the cold air passage 7 becomes a heat load, it is possible to eliminate the possibility that the refrigerator having a large volume of the freezer compartment 4 cannot proceed from the first stage to the stage having a high heat load.
 同様に、冷蔵室3と野菜室5とを連通する連通路にダンパ等から成る開閉部材を設けてもよい。これにより、ダンパ15よりも下流の熱負荷を制御することができ、圧縮機10を過負荷状態にさせにくくできる。 Similarly, an open / close member made of a damper or the like may be provided in the communication path that connects the refrigerator compartment 3 and the vegetable compartment 5. Thereby, the thermal load downstream from the damper 15 can be controlled, and the compressor 10 can be hardly overloaded.
 <第3実施形態>
 次に、第3実施形態の冷蔵庫1について説明する。第1実施形態及び第2実施形態の冷蔵庫1は急冷モード時にダンパ15が開状態と閉状態とに切り替えられ、冷凍室ファン12の回転数が低速回転と高速回転とに切り替えられる。本実施形態は、急冷モード時にダンパ15の開角度が可変され、冷凍室ファン12の回転数が各ステージで第1、第2実施形態よりも多くの段階に切り替えられる。これらにより、蒸発器11の熱負荷をより細かく制御できる。従って、圧縮機10を過負荷状態にさせにくくしながら、より迅速に冷蔵庫1を急速冷却できる。
<Third Embodiment>
Next, the refrigerator 1 of 3rd Embodiment is demonstrated. In the refrigerator 1 of the first embodiment and the second embodiment, the damper 15 is switched between the open state and the closed state in the rapid cooling mode, and the rotation speed of the freezer compartment fan 12 is switched between the low speed rotation and the high speed rotation. In the present embodiment, the opening angle of the damper 15 is varied during the rapid cooling mode, and the rotation speed of the freezer compartment fan 12 is switched to more stages than the first and second embodiments at each stage. By these, the heat load of the evaporator 11 can be controlled more finely. Therefore, the refrigerator 1 can be rapidly cooled more quickly while making it difficult to place the compressor 10 in an overloaded state.
 尚、第1~第3実施形態において、冷蔵庫1の電源投入直後のプルダウン時に急冷モードを行っているが、除霜運転終了時や高温の貯蔵物の保管時等の急速冷却を必要とする際に急冷モードを行ってもよい。 In the first to third embodiments, the rapid cooling mode is performed at the time of pull-down immediately after the refrigerator 1 is turned on. However, when rapid cooling such as the end of the defrosting operation or storage of high temperature storage is required. The rapid cooling mode may be performed.
 本発明によると、貯蔵室を急速冷却する急冷モードを備えた冷蔵庫に利用することができる。 According to the present invention, it can be used for a refrigerator having a rapid cooling mode for rapidly cooling the storage room.
   1  冷蔵庫
   2  断熱箱体
   3  冷蔵室
   4  冷凍室
   5  野菜室
   6  機械室
   7、8 冷気通路
  10  圧縮機
  11  蒸発器
  12  冷凍室ファン
  13  冷蔵室ファン
  15  ダンパ
  16  除霜ヒータ
  20  制御部
  21  操作部
  22  蒸発器温度センサ
  23  冷蔵室温度センサ
  24  冷凍室温度センサ
  25  外気温センサ
  26  電流検知部
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Heat insulation box 3 Refrigeration room 4 Freezing room 5 Vegetable room 6 Machine room 7, 8 Cold passage 10 Compressor 11 Evaporator 12 Freezing room fan 13 Cold room fan 15 Damper 16 Defrost heater 20 Control part 21 Operation part 22 Evaporator temperature sensor 23 Refrigerating room temperature sensor 24 Freezer room temperature sensor 25 Outside air temperature sensor 26 Current detection unit

Claims (5)

  1.  冷凍サイクルを運転する圧縮機と、前記圧縮機に接続して第1貯蔵室を冷却する蒸発器と、前記蒸発器の熱負荷を複数の熱負荷段階に可変する熱負荷可変部と、前記圧縮機の過負荷を検出する過負荷検出部とを備え、前記圧縮機の非過負荷状態が所定の非過負荷時間だけ継続した際に前記熱負荷可変部によって前記蒸発器の熱負荷をより高い前記熱負荷段階へ移行させる非過負荷移行動作と、前記圧縮機の過負荷を検出した際に前記熱負荷可変部によって前記蒸発器の熱負荷をより低い前記熱負荷段階へ移行させる過負荷移行動作とを有する急冷モードを設けたことを特徴とする冷蔵庫。 A compressor that operates a refrigeration cycle; an evaporator that is connected to the compressor to cool the first storage chamber; a thermal load variable unit that varies a thermal load of the evaporator in a plurality of thermal load stages; and the compression An overload detection unit that detects an overload of the compressor, and when the non-overload state of the compressor continues for a predetermined non-overload time, the thermal load variable unit increases the thermal load of the evaporator Non-overload transition operation for transitioning to the thermal load stage, and overload transition for transitioning the thermal load of the evaporator to a lower thermal load stage by the thermal load variable unit when detecting an overload of the compressor A refrigerator provided with a quenching mode having an operation.
  2.  所定の前記熱負荷段階で前記蒸発器の周辺温度が所定温度よりも低温となるように前記蒸発器の熱負荷が可変されることを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the heat load of the evaporator is varied so that the ambient temperature of the evaporator is lower than the predetermined temperature in the predetermined heat load stage.
  3.  前記蒸発器の周辺温度が前記非過負荷時間よりも短い低温時間だけ継続して所定温度よりも低温となった際に前記非過負荷移行動作を行うことを特徴とする請求項1または請求項2に記載の冷蔵庫。 2. The non-overload transition operation is performed when the ambient temperature of the evaporator continues for a low temperature period shorter than the non-overload time and becomes lower than a predetermined temperature. 2. The refrigerator according to 2.
  4.  前記蒸発器と熱交換した冷気を第1貯蔵室に送出するファンを備え、前記熱負荷可変部が前記ファンの駆動状態を可変することを特徴とする請求項1~請求項3のいずれかに記載の冷蔵庫。 The fan according to any one of claims 1 to 3, further comprising a fan that sends cold air heat-exchanged with the evaporator to the first storage chamber, wherein the heat load variable unit varies a driving state of the fan. The refrigerator described.
  5.  前記蒸発器により冷却されて第1貯蔵室よりも高温に維持される第2貯蔵室と、前記蒸発器と第2貯蔵室との間の冷気通路を開閉するダンパとを備え、前記熱負荷可変部が前記ダンパの開閉状態を可変することを特徴とする請求項4に記載の冷蔵庫。 A second storage chamber that is cooled by the evaporator and maintained at a temperature higher than that of the first storage chamber; and a damper that opens and closes a cold air passage between the evaporator and the second storage chamber. The refrigerator according to claim 4, wherein the portion changes an open / close state of the damper.
PCT/JP2014/054753 2013-05-17 2014-02-26 Evaporator and refrigerator using same WO2014185116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-105349 2013-05-17
JP2013105349A JP6120367B2 (en) 2013-05-17 2013-05-17 refrigerator

Publications (1)

Publication Number Publication Date
WO2014185116A1 true WO2014185116A1 (en) 2014-11-20

Family

ID=51898103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054753 WO2014185116A1 (en) 2013-05-17 2014-02-26 Evaporator and refrigerator using same

Country Status (2)

Country Link
JP (1) JP6120367B2 (en)
WO (1) WO2014185116A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027193A (en) * 2015-09-11 2018-05-11 松下知识产权经营株式会社 Freezer
CN108351143A (en) * 2015-11-04 2018-07-31 株式会社电装 Storage device
CN112611119A (en) * 2020-12-21 2021-04-06 青岛海信日立空调系统有限公司 Water chilling unit and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038249B1 (en) * 2015-07-31 2016-12-07 三菱電機エンジニアリング株式会社 Storage and electronic refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273070A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Method of controlling refrigerator
JPH10185398A (en) * 1996-12-27 1998-07-14 Daewoo Electron Co Ltd Fan motor controlling method and refrigerator utilizing this method
JPH1183274A (en) * 1997-09-16 1999-03-26 Sharp Corp Freezer/refrigerator
JP2006214614A (en) * 2005-02-01 2006-08-17 Sharp Corp Refrigerator and its control method
JP2006266536A (en) * 2005-03-22 2006-10-05 Hoshizaki Electric Co Ltd Freezing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065151B2 (en) * 1985-03-18 1994-01-19 松下冷機株式会社 refrigerator
JPH1038440A (en) * 1996-07-26 1998-02-13 Matsushita Refrig Co Ltd Controller for refrigerator
KR100775894B1 (en) * 2003-10-20 2007-11-13 호시자키 덴키 가부시키가이샤 Cooling storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273070A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Method of controlling refrigerator
JPH10185398A (en) * 1996-12-27 1998-07-14 Daewoo Electron Co Ltd Fan motor controlling method and refrigerator utilizing this method
JPH1183274A (en) * 1997-09-16 1999-03-26 Sharp Corp Freezer/refrigerator
JP2006214614A (en) * 2005-02-01 2006-08-17 Sharp Corp Refrigerator and its control method
JP2006266536A (en) * 2005-03-22 2006-10-05 Hoshizaki Electric Co Ltd Freezing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027193A (en) * 2015-09-11 2018-05-11 松下知识产权经营株式会社 Freezer
EP3348940A4 (en) * 2015-09-11 2018-12-12 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
CN108351143A (en) * 2015-11-04 2018-07-31 株式会社电装 Storage device
CN108351143B (en) * 2015-11-04 2020-03-10 株式会社电装 Storage device
CN112611119A (en) * 2020-12-21 2021-04-06 青岛海信日立空调系统有限公司 Water chilling unit and control method

Also Published As

Publication number Publication date
JP2014228149A (en) 2014-12-08
JP6120367B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6074596B2 (en) refrigerator
JP5826317B2 (en) refrigerator
WO2005038365A1 (en) Cooling storage
JP6120367B2 (en) refrigerator
JP5832705B1 (en) refrigerator
JP4564947B2 (en) refrigerator
JPH10318645A (en) Refrigerator
JP5856435B2 (en) refrigerator
JP2010071480A (en) Refrigerator
JP5884010B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP2005076922A (en) Refrigerator
JP5862867B2 (en) refrigerator
JP5927409B2 (en) refrigerator
JP2011080731A (en) Refrigerator
JP2013053801A (en) Refrigerator
JP2012078077A (en) Refrigerating device
JP6017886B2 (en) refrigerator
JP2009014320A (en) Refrigerator
JP6888981B2 (en) Freezer refrigerator
JP6166771B2 (en) refrigerator
JP2000111231A (en) Freezer-refrigerator
JP2002206840A (en) Refrigerator
US20240044568A1 (en) Refrigerator and control method thereof
WO2023125655A1 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797814

Country of ref document: EP

Kind code of ref document: A1