WO2014185006A1 - Lithium-ion-secondary-battery positive electrode and lithium-ion secondary battery - Google Patents

Lithium-ion-secondary-battery positive electrode and lithium-ion secondary battery Download PDF

Info

Publication number
WO2014185006A1
WO2014185006A1 PCT/JP2014/002096 JP2014002096W WO2014185006A1 WO 2014185006 A1 WO2014185006 A1 WO 2014185006A1 JP 2014002096 W JP2014002096 W JP 2014002096W WO 2014185006 A1 WO2014185006 A1 WO 2014185006A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
lithium ion
electrode active
ion secondary
Prior art date
Application number
PCT/JP2014/002096
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 江口
仁 愛清
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014185006A1 publication Critical patent/WO2014185006A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • lithium ion secondary batteries using lithium cobaltate (LiCoO 2 ) as a positive electrode material and a carbon-based material as a negative electrode material have been commercialized as high-capacity secondary batteries.
  • LiCoO 2 lithium cobaltate
  • lithium ion secondary batteries can be used even in high temperature, high voltage use environments. In this specification, use at a voltage of 4.3 V or more is defined as high voltage use. However, when driven at high temperature and high voltage, the lithium ion secondary battery has a problem that the cycle characteristics are extremely deteriorated.
  • the electrolytic decomposition occurs in the vicinity of the positive electrode during charging, and metal components such as the positive electrode active material are eluted by the acid generated by the oxidative decomposition. It is considered to be.
  • the metal component is eluted from the positive electrode active material, the capacity of the positive electrode decreases and the cycle characteristics deteriorate.
  • decomposition products of the electrolyte solution or elution products of the metal components which are generated by oxidative decomposition of the electrolyte solution or elution of the metal component, move from the positive electrode side to the negative electrode side and are reductively decomposed on the negative electrode surface. As a result, the decomposed matter is deposited on the surface of the negative electrode active material, and the deposit inhibits the insertion of lithium into the negative electrode active material, resulting in deterioration of cycle characteristics.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-53207 describes that on the positive electrode active material layer is formed a covering layer containing filler particles composed of inorganic particles containing magnesia and a binder. .
  • the covering layer provided on the positive electrode active material layer physically traps the decomposition product of the electrolytic solution and the elution product of the metal component.
  • Patent Document 1 describes that the lithium ion secondary battery is excellent in cycle characteristics and storage characteristics under high temperature and high voltage use environment by having this covering layer.
  • Patent Document 1 does not describe how much the charge and discharge capacity is reduced by the formation of the covering layer. Moreover, it is described in patent document 1 that magnesia which comprises a coating layer reacts with water, and becomes alkaline, and it is estimated that magnesia which is a structural component of a coating layer is eluted. That is, it is assumed that the covering layer is gradually destroyed as the cycle is repeated. Therefore, it is required to protect the positive electrode active material layer with a stable material even in a high temperature, high voltage operating environment.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 6-168739
  • a positive electrode on the side facing the negative electrode is a film selected from an insulator, a semiconductor, and a composite of an insulator and a semiconductor capable of transmitting ions involved in the cell reaction.
  • a surface-coated secondary battery is described.
  • Patent Document 2 describes that by covering the positive electrode surface with the above-mentioned film, a short circuit inside the battery can be suppressed, and the cycle life of the battery can be extended.
  • Patent Document 2 discloses that a nitride film is formed by sputtering on the surface of a positive electrode.
  • Patent Document 2 since the protective film made of nitride is formed by sputtering, the protective film described in Patent Document 2 is a dense film without voids. Therefore, in the lithium battery having a protective film made of nitride described in Patent Document 2, it is presumed that the protective film becomes a resistance and the charge and discharge capacity is reduced as compared with a lithium battery having no protective film. Patent Document 2 does not describe how much the charge and discharge capacity is reduced by the formation of the protective film. Patent Document 2 does not describe use at high temperature and high voltage.
  • JP 2008-53207 A Japanese Patent Application Laid-Open No. 6-168739
  • the present inventors examined the material of the coating layer that is advantageous for obtaining a lithium ion secondary battery having excellent cycle characteristics and excellent charge and discharge capacity in a high temperature, high voltage use environment.
  • the present invention has been made in view of such circumstances, and a positive electrode for lithium ion secondary battery having excellent cycle characteristics and excellent charge and discharge capacity under high temperature and high voltage use environment, and lithium ion
  • the purpose is to provide a secondary battery.
  • a lithium ion secondary battery by arranging a coating layer having an insulating inorganic powder and a binder for a coating layer and having a void on the surface of a positive electrode active material layer. It has been found that it can exhibit excellent cycle characteristics and charge / discharge capacity even in a high temperature, high voltage use environment.
  • the positive electrode for a lithium ion secondary battery of the present invention comprises a current collector, a positive electrode active material layer disposed on the surface of the current collector and containing a positive electrode active material and a binder, and a surface of the positive electrode active material layer.
  • the coating layer is characterized in that the coating layer has an insulating inorganic powder and a binder for a coating layer, and the coating layer has a void.
  • the aperture ratio of the surface of a coating layer is 5% or more and 50% or less.
  • the thickness of the covering layer is preferably 1 ⁇ m or more and 20% or less of the thickness of the positive electrode active material layer.
  • the average particle size D 50 of the inorganic powder is 100nm or more 1 ⁇ m or less.
  • the inorganic powder is preferably made of at least one selected from boron nitride, aluminum nitride and silicon nitride.
  • the lithium ion secondary battery of the present invention is characterized by including the above-described positive electrode for a lithium ion secondary battery, a negative electrode, and a non-aqueous electrolytic solution.
  • the positive electrode for a lithium ion secondary battery of the present invention has a covering layer disposed on at least a part of the surface of the positive electrode active material layer.
  • This coating layer has an insulating inorganic powder and a coating layer binder. And a coating layer has a void.
  • the lithium ion secondary battery of the present invention exhibits excellent cycle characteristics and charge / discharge capacity even in a high temperature, high voltage use environment.
  • the positive electrode for a lithium ion secondary battery of the present invention comprises a current collector, a positive electrode active material layer disposed on the surface of the current collector, and a covering layer disposed on at least a portion of the surface of the positive electrode active material layer; Have.
  • the current collector refers to a chemically inactive electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery.
  • metal materials such as stainless steel, titanium, nickel, aluminum, copper, or electroconductive resin can be mentioned, for example.
  • the current collector can take the form of a foil, a sheet, a film or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used.
  • the thickness of the current collector is preferably 10 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and a binder.
  • the positive electrode active material layer may further contain a conductive aid, if necessary.
  • positive electrode active materials include lithium-containing compounds or other metal compounds.
  • LiMO 2 is at least one selected from Ni, Co and Mn
  • D is at least one selected from Al, Mg, Ti, Sn, Zn,
  • lithium-containing oxide for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2, LiCoO 2, LiNi 0.8 Co 0.2 O 2, LiCoMnO 2 and the like.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable as the lithium-containing oxide from the viewpoint of thermal stability.
  • the positive electrode active material is preferably in the form of powder having an average particle diameter D 50 of 1 ⁇ m to 20 ⁇ m.
  • the average particle diameter D 50 of the positive electrode active material is small, when the positive electrode active material of the same mass is used, the number of positive electrode active materials increases, and the surface area of the entire positive electrode active material becomes large. An increase in the surface area of the positive electrode active material results in an increase in the reaction area between the positive electrode active material and the electrolytic solution, which accelerates the decomposition of the electrolytic solution and may deteriorate the cycle characteristics of the lithium ion secondary battery.
  • the average particle size D 50 of the positive electrode active material is not preferred is that too small an average particle diameter D 50 of the positive electrode active material is preferably at least 1 [mu] m.
  • the average particle diameter D 50 of the positive electrode active material becomes large 20 ⁇ m greater than the resistance of the lithium ion secondary battery, there is a concern that the output characteristics of the lithium ion secondary battery decreases.
  • the average particle diameter D 50 of the positive electrode active material can be measured by particle size distribution measurement method.
  • the binder plays a role of securing the positive electrode active material and the conductive auxiliary agent to the current collector.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene, polyethylene and polyvinyl acetate resins, imide resins such as polyimide and polyamideimide, and alkoxy Examples thereof include silyl group-containing resins and rubbers such as styrene butadiene rubber (SBR).
  • SBR styrene butadiene rubber
  • the conductive aid is added to the positive electrode active material layer as needed to enhance the conductivity of the electrode.
  • a conductive support agent carbon black which is carbonaceous fine particles, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), and vapor grown carbon fiber (VGCF) can be mentioned. These conductive aids can be used alone or in combination of two or more.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
  • a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder, and, if necessary, a conductive auxiliary is prepared, and this composition A suitable solvent may be added to form a paste, which may be applied to the surface of the current collector and then dried. If necessary, the current collector provided with the positive electrode active material layer may be compressed to increase the electrode density.
  • composition for forming a positive electrode active material layer As a method of applying the composition for forming a positive electrode active material layer, conventionally known methods such as roll coating method, dip coating method, doctor blade method, spray coating method and curtain coating method may be used.
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • the covering layer is disposed on at least a part of the surface of the positive electrode active material layer. Since at least a part of the surface of the positive electrode active material layer is covered by the covering layer, the positive electrode active material is not likely to be in direct contact with the electrolytic solution. Therefore, the decomposition reaction of the electrolytic solution by the positive electrode active material is suppressed. Therefore, deterioration of the cycle characteristics can be suppressed.
  • the covering layer has an air gap.
  • the coating layer has an insulating inorganic powder and a coating layer binder.
  • the inorganic powder is disposed with gaps in some places, and the binder for the coating layer is disposed between the inorganic powders and between the inorganic powder and the positive electrode active material layer.
  • the voids are formed between the inorganic powders, between the inorganic powder and the coating layer binder, or between the inorganic powder and the positive electrode active material layer. Because of the air gaps in the cover layer, lithium ions easily pass through the cover layer to reach the positive electrode active material layer. That is, the coating layer is unlikely to be resistant to lithium ion conduction, and even if the coating layer is disposed on the surface of the positive electrode active material layer, the charge / discharge capacity of the positive electrode is unlikely to be reduced.
  • the coating layer has a complex surface formed of an inorganic powder and thus has a large surface area. Therefore, the coating layer is likely to physically trap the elution product of the metal component eluted from the positive electrode active material and the decomposition product of the electrolytic solution. Since the elution product of the metal component and the decomposition product of the electrolytic solution can be physically trapped on the surface of the positive electrode, deposition of the decomposition product and the like on the surface of the negative electrode active material can be suppressed. As a result, deterioration of the cycle characteristics of the lithium ion secondary battery can be suppressed.
  • the binder for the coating layer binds the inorganic powders together and the inorganic powder and the positive electrode active material layer. Therefore, the coating layer is difficult to peel off from the positive electrode active material layer. Therefore, even if the cycle is repeated, the effect of the coating layer is likely to be sustained.
  • the binder for the coating layer may be contained in the coating layer in an amount of 3% by mass to 50% by mass with respect to the inorganic powder.
  • the binder for the coating layer is contained in the coating layer in an amount of more than 50% by mass with respect to the inorganic powder, the protective effect of the inorganic powder on the positive electrode active material layer is reduced, and voids are hardly formed.
  • the binder for the coating layer is contained in the coating layer in an amount of less than 3% by mass with respect to the inorganic powder, it is difficult to obtain the binding effect of the binder for the coating layer.
  • the voids may be anywhere in the coating layer.
  • the voids may be located not only on the surface of the covering layer but also on the inside of the covering layer.
  • One void may be in communication with another void.
  • the aperture ratio can be determined by dividing the area of the opening by the area of the entire covering layer. At this time, the area of the entire covering layer includes the area of the opening.
  • the aperture ratio of the surface of a coating layer is 5% or more and 50% or less.
  • the aperture ratio is 5% or more, the lithium ion permeability of the coating layer is good. If the aperture ratio is 50% or less, direct contact of the electrolytic solution with the positive electrode active material can be reduced, so that decomposition of the electrolytic solution by the positive electrode active material can be favorably suppressed.
  • the thickness of the coating layer is substantially the average particle diameter D 50 of the inorganic powder equal to or greater than. If a coating layer having a thickness at which the inorganic powder is at least one layer is disposed on the surface of the positive electrode active material layer, the positive electrode active material layer is well protected by the coating layer.
  • the thickness of the covering layer is preferably 1 ⁇ m or more and 20% or less of the thickness of the positive electrode active material layer.
  • the thickness of the covering layer is 1 ⁇ m or more, the cycle characteristics of the lithium ion secondary battery can be further improved even in a high temperature, high voltage use environment. If the thickness of the covering layer is 20% or less of the thickness of the positive electrode active material layer, the volume of the positive electrode active material layer, that is, the amount of the positive electrode active material is satisfactorily secured in the battery, and the charge and discharge capacity of the lithium ion secondary battery Can reduce the
  • the average particle diameter D 50 of the inorganic powder is preferably smaller than the average particle diameter D 50 of the positive electrode active material.
  • the coating layer containing an inorganic powder is better to cover the positive electrode active material layer along the irregularities on the surface of the positive electrode active material layer be able to. In this case, the surface of the positive electrode active material present on the surface of the positive electrode active material layer is easily covered with the covering layer containing the inorganic powder.
  • the inorganic powder preferably has an average particle diameter D 50 of 100 nm or more and 1 ⁇ m or less. When the average particle diameter D 50 of the inorganic powder is 100nm or 1 ⁇ m or less, the coating layer containing an inorganic powder is more likely to cover the surface of the positive electrode active material layer.
  • the inorganic powder is insulating, when the covering layer containing the inorganic powder is disposed on the surface of the positive electrode active material layer, short circuit between the positive electrode and the negative electrode can be suppressed.
  • nitrides, carbides, metal oxides can be used as the insulating inorganic powder.
  • the nitride include boron nitride, aluminum nitride, silicon nitride and carbon nitride.
  • carbides include silicon carbide and boron carbide.
  • the metal oxide include silica, alumina, magnesium oxide, zirconium oxide and hafnium oxide.
  • the inorganic powder is preferably a nitride.
  • nitrides are thermally stable up to about 1500.degree. Since 1500 ° C. is a temperature sufficiently higher than the thermal runaway range of the lithium ion secondary battery, the nitride can suppress the thermal runaway of the lithium ion secondary battery.
  • nitrides have high chemical stability and can be arranged without causing an extra side reaction accompanying the cell reaction.
  • the inorganic powder is preferably made of at least one selected from boron nitride, aluminum nitride and silicon nitride because of high chemical stability of the substance.
  • the covering layer is disposed on the surface of the positive electrode active material layer. It is desirable that the coating layer be disposed after the positive electrode active material layer is formed so that the coating layer and the positive electrode active material layer are not mixed.
  • the method of arranging the coating layer on the positive electrode active material layer is not particularly limited.
  • the coating layer can be disposed on the positive electrode active material layer by the following method.
  • the material of the coating layer is dissolved in an organic solvent or water to form a solution, and the solution is sprayed onto the coated surface of the positive electrode active material layer using a sprayer to volatilize and remove the organic solvent or water.
  • a sprayer to volatilize and remove the organic solvent or water.
  • the organic solvent in this case, ethanol, N-methyl-2-pyrrolidone (NMP), methanol, butanol, methyl isobutyl ketone (MIBK) and the like can be used.
  • Water is preferably one from which impurities such as distilled water or ion exchange water have been removed.
  • the material of the coating layer is dissolved in an organic solvent or water for viscosity adjustment to form a paste-like mixture, the paste-like mixture is applied on the positive electrode active material layer, and dried after application.
  • a covering layer can be arranged on the layer.
  • a coating method conventionally known methods such as roll coating method, dip coating method, doctor blade method, spray coating method and curtain coating method may be used.
  • an organic solvent for viscosity adjustment ethanol, NMP, methanol, butanol, MIBK and the like can be used.
  • Water is preferably one from which impurities such as distilled water or ion exchange water have been removed.
  • the adjustment of the opening ratio in the covering layer can be performed by adjusting the amount of the covering layer applied.
  • an inorganic binder containing an element such as silicon element, aluminum element or zirconium element, phenol resin, polyimide resin, epoxy resin or melamine resin can be used.
  • a binder for the coating layer a binder that can be dissolved in an organic solvent and that solidifies at room temperature if the organic solvent volatilizes.
  • the inorganic binder which can be solidified, for example at normal temperature is preferable to use, for example at normal temperature. Since the inorganic binder is chemically stable, the decomposition reaction involved in the battery reaction can be suppressed.
  • an inorganic binder containing zirconium element, particularly zirconium oxide can be preferably used as the inorganic binder.
  • FIG. 1 The schematic diagram explaining the positive electrode for lithium ion secondary batteries of this embodiment in FIG. 1 is shown.
  • a positive electrode active material 3 is bound by a binder 2 on a current collector 1.
  • the positive electrode active material layer 4 is composed of the positive electrode active material 3 and the binder 2.
  • the covering layer 5 is disposed on the positive electrode active material layer 4.
  • the inorganic powder 51 is disposed with a gap in some places, and the coating layer binder 52 is disposed between the inorganic powders 51 and between the inorganic powder 51 and the positive electrode active material layer 4 There is.
  • the inorganic powder 51 and the inorganic powder 51 and the positive electrode active material layer 4 are bound to each other by the coating layer binder 52.
  • the voids 6 are formed between the inorganic powders 51, between the inorganic powders 51 and the binder 52 for a covering layer, or between the inorganic powders 51 and the positive electrode active material layer 4.
  • the inorganic powder 51 is disposed along the irregularities of the surfaces of the positive electrode active material 3 and the binder 2.
  • the lithium ion secondary battery of the present invention is characterized by having the above-described positive electrode for a lithium ion secondary battery.
  • the lithium ion secondary battery which has the said positive electrode for lithium ion secondary batteries has the outstanding cycle performance also in the use environment of high temperature and a high voltage.
  • the lithium ion secondary battery of the present invention has, as a battery component, a negative electrode, a separator and an electrolytic solution in addition to the above-described positive electrode for lithium ion secondary battery.
  • the negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector.
  • the negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive auxiliary.
  • the current collector, the binder, and the conductive additive are the same as those described for the positive electrode.
  • Examples of the negative electrode active material include carbon-based materials capable of occluding and releasing lithium, compounds having an element capable of being alloyed with lithium, and compounds having an element capable of being alloyed with lithium, and polymer materials.
  • the carbon-based material examples include non-graphitizable carbon, artificial graphite, cokes, graphites, glassy carbons, an organic polymer compound fired body, carbon fiber, activated carbon or carbon blacks.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenol or furan at an appropriate temperature.
  • elements that can be alloyed with lithium for example, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge , Sn, Pb, Sb and Bi.
  • silicon (Si) or tin (Sn) is preferable as an element capable of being alloyed with lithium.
  • a compound having an element capable of alloying with lithium for example, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2) SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO and LiSnO.
  • the compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound.
  • a silicon compound SiO x (0.5 ⁇ x ⁇ 1.5) is preferable.
  • tin compounds include tin alloys (Cu--Sn alloy, Co--Sn alloy, etc.).
  • polymer material examples include polyacetylene and polypyrrole.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes.
  • a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic can be used.
  • the electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
  • cyclic esters examples include ethylene carbonate, propylene carbonate, butylene carbonate, gamma-butyrolactone, vinylene carbonate, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone and gamma-valerolactone.
  • chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester and acetic acid alkyl ester.
  • ethers for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be mentioned.
  • Examples of the electrolyte to be dissolved in the above electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • an electrolytic solution for example, 0.5 mol / l to 1.7 mol / l of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate There may be mentioned solutions dissolved at a certain concentration.
  • the lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery has excellent cycle performance, a vehicle equipped with the lithium ion secondary battery has high performance in terms of life and output.
  • Any vehicle may be used as long as it uses electric energy from batteries for all or part of the power source.
  • electric vehicles for example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, electric forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
  • This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to make a slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was placed on the current collector, and was applied to the current collector using a doctor blade so that the slurry became a film.
  • the resulting sheet was dried at 80 ° C. for 20 minutes to volatilize off the NMP.
  • the current collector and the coating on the current collector were firmly and closely bonded by a roll press machine.
  • the electrode density was adjusted to 3.2 g / cm 2 .
  • the assembly was heated in a vacuum oven at 120 ° C. for 6 hours.
  • the joined product after heating was cut into a predetermined shape (25 mm ⁇ 30 mm rectangular shape) to obtain a positive electrode A.
  • the thickness of the positive electrode A was about 50 ⁇ m.
  • the average particle diameter D 50 was prepared powder of boron nitride 500 nm. Tetrabutoxy zirconium was prepared as a coating layer binder. The boron nitride powder and tetrabutoxyzirconium were weighed and mixed so as to have a mass ratio of 3: 2. The mixture was dispersed in butanol. The mixture dispersed in butanol described above was sprayed onto the surface of the positive electrode A using the sprayer as the number of times of spraying was once. The spraying time for one spraying was 5 seconds per unit area in the spraying range.
  • a coating layer composed of a 1 ⁇ m thick boron nitride powder and a binder for coating layer was formed on the surface of the positive electrode A. Let this be the positive electrode B.
  • SEM scanning electron microscope
  • Positive electrode C A coating layer consisting of a 2 ⁇ m thick boron nitride powder and a coating layer binder was formed on the surface of the positive electrode A in the same manner as the positive electrode B except that the number of times of spraying was two. This is called positive electrode C. Specifically, the number of times of spraying is set to 2 times, after spraying once over the entire spraying range and then again performing the second spraying on the first spraying location as in the first spraying. The When the surface of the positive electrode C was observed with a scanning electron microscope (SEM), it could be confirmed that the coating layer was disposed to follow the surface of the positive electrode active material layer.
  • SEM scanning electron microscope
  • Patent electrode D A coating layer of 5 ⁇ m thick boron nitride powder and a binder for a coating layer was formed on the surface of the positive electrode A in the same manner as the positive electrode B except that the number of times of spraying was 5 times. This is referred to as a positive electrode D.
  • SEM scanning electron microscope
  • Example 1 A laminate type lithium ion secondary battery of Example 1 using the positive electrode B as a positive electrode was produced as follows.
  • the negative electrode was produced as follows. 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive additive, 1 part by mass of styrene-butadiene rubber (SBR) as a binder, and 1 part by mass of carboxymethylcellulose (CMC) were mixed to obtain a mixture . The mixture was dispersed in an appropriate amount of ion exchange water to prepare a slurry. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, which is a current collector for a negative electrode, using a doctor blade so as to form a film. The slurry-coated current collector was dried and pressed, and the assembly was heated at 120 ° C. for 6 hours in a vacuum dryer. The bonded article after heating was cut into a predetermined shape (25 mm ⁇ 30 mm rectangular shape) to obtain a negative electrode. The thickness of the negative electrode was about 45 ⁇ m.
  • EC ethylene carbonate
  • Example 2 A laminated lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that the positive electrode B in Example 1 was changed to the positive electrode C.
  • Example 3 A laminated lithium ion secondary battery of Example 3 was produced in the same manner as in Example 1 except that the positive electrode B in Example 1 was changed to the positive electrode D.
  • Comparative example 1 A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the positive electrode B in Example 1 was changed to the positive electrode A.
  • FIG. 2 shows the relationship between the cycle number and the discharge capacity (mAh / g) of the laminate type lithium ion secondary batteries of Example 1, Example 2, Example 3 and Comparative Example 1.
  • the first-order discharge capacity of the laminate-type lithium ion secondary batteries of Example 1, Example 2 and Example 3 is the same as or slightly higher than that of the laminate-type lithium ion secondary battery of Comparative Example 1 It was low. Specifically, when the initial discharge capacity of the laminate type lithium ion secondary battery of Comparative Example 1 is 191.5 mAh / g, the initial discharge capacity of the laminate type lithium ion secondary battery of Example 1 is 189. 4 mAh / g, initial discharge capacity of the laminate type lithium ion secondary battery of Example 2 is 187.9 mAh / g, and initial discharge capacity of the laminate type lithium ion secondary battery of Example 3 is 192.3 mAh / g there were.
  • the initial discharge capacity of the laminate type lithium ion secondary battery hardly changes. I understood it. There are voids in the covering layer. Therefore, even if the coating layer is disposed on the surface of the positive electrode active material layer, it is presumed that the coating layer does not have much resistance to lithium ion conduction. Further, from the results of the first discharge capacity of the laminate type lithium ion secondary batteries of Example 1, Example 2 and Example 3 in which the thickness of the cover layer is different, even if the thickness of the cover layer is thickened, the initial discharge capacity decreases. I found it difficult to do.
  • the discharge capacity of the laminate type lithium ion secondary battery of Example 1, Example 2 and Example 3 is almost equal to the discharge capacity of the laminate type lithium ion secondary battery of Comparative Example 1 up to 65 cycles. The From the 65th cycle onward, the discharge capacity of the laminate type lithium ion secondary batteries of Example 1, Example 2 and Example 3 became higher than the discharge capacity of the laminate type lithium ion secondary battery of Comparative Example 1.
  • the discharge capacity at 200th cycle of the laminate type lithium ion secondary battery of Comparative Example 1 is 95.9 mAh / g, compared with that of the laminate type lithium ion secondary battery of Example 1.
  • the discharge capacity of the 200th cycle is 117.6 mAh / g
  • the discharge capacity of the 200th cycle of the laminate type lithium ion secondary battery of Example 2 is 127.3 mAh / g
  • the discharge capacity at the 200th cycle was 130.2 mAh / g. That is, the discharge capacity at the 200th cycle increased in the order of Comparative Example 1 ⁇ Example 1 ⁇ Example 2 ⁇ Example 3>.
  • the lithium ion secondary battery is used at high temperature and high voltage It has been found that it has excellent cycle characteristics and charge / discharge capacity even under the environment.
  • 1 current collector
  • 2 binder
  • 3 positive electrode active material
  • 4 positive electrode active material layer
  • 5 coating layer
  • 51 inorganic powder
  • 52 binder for coating layer
  • 6 void.

Abstract

Provided are a lithium-ion-secondary-battery positive electrode which exhibits excellent cycle properties and excellent discharge capacity when used at a high temperature and high voltage, and a lithium-ion secondary battery. A lithium-ion-secondary-battery positive electrode having a current collector, a positive-electrode-active-material layer containing a positive electrode active material and an adhesive and positioned on the surface of the current collector, and a coating layer positioned on at least part of the surface of the positive-electrode-active-material layer, the lithium-ion-secondary-battery positive electrode being characterized in that the coating layer has an insulating inorganic powder and a binder for the coating layer, and in that the coating layer is porous.

Description

リチウムイオン二次電池用正極及びリチウムイオン二次電池Positive electrode for lithium ion secondary battery and lithium ion secondary battery
 本発明は、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関するものである。 The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.
 近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量でかつ高容量の二次電池が必要とされている。現在、高容量二次電池としては、正極材料としてコバルト酸リチウム(LiCoO)、負極材料として炭素系材料を用いたリチウムイオン二次電池が商品化されている。 2. Description of the Related Art In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the commercialization of electric vehicles, a small, lightweight, high-capacity secondary battery is required. At present, lithium ion secondary batteries using lithium cobaltate (LiCoO 2 ) as a positive electrode material and a carbon-based material as a negative electrode material have been commercialized as high-capacity secondary batteries.
 リチウムイオン二次電池は高温、高電圧使用環境下においても使用できることが要望されている。本明細書では4.3V以上の電圧で使用することを高電圧使用と定義する。しかし高温、高電圧で駆動された場合には、リチウムイオン二次電池はサイクル特性が極端に悪化するという問題があった。 It is required that lithium ion secondary batteries can be used even in high temperature, high voltage use environments. In this specification, use at a voltage of 4.3 V or more is defined as high voltage use. However, when driven at high temperature and high voltage, the lithium ion secondary battery has a problem that the cycle characteristics are extremely deteriorated.
 この原因として、リチウムイオン二次電池が高温、高電圧で駆動された場合、充電時に正極近傍で電解液の酸化分解が生じ、酸化分解により生じた酸などによって正極活物質などの金属成分が溶出することが考えられている。正極活物質から金属成分が溶出すると、正極の容量が下がりサイクル特性が悪化する。また電解液の酸化分解や金属成分の溶出によって生じた、電解液の分解物や金属成分の溶出物は、正極側から負極側に移動して、負極表面で還元分解される。その結果、分解物が負極活物質表面に堆積し、その堆積物により、負極活物質へのリチウムの挿入が阻害され、結果としてサイクル特性が悪化する。 As the cause of this, when the lithium ion secondary battery is driven at high temperature and high voltage, the electrolytic decomposition occurs in the vicinity of the positive electrode during charging, and metal components such as the positive electrode active material are eluted by the acid generated by the oxidative decomposition. It is considered to be. When the metal component is eluted from the positive electrode active material, the capacity of the positive electrode decreases and the cycle characteristics deteriorate. In addition, decomposition products of the electrolyte solution or elution products of the metal components, which are generated by oxidative decomposition of the electrolyte solution or elution of the metal component, move from the positive electrode side to the negative electrode side and are reductively decomposed on the negative electrode surface. As a result, the decomposed matter is deposited on the surface of the negative electrode active material, and the deposit inhibits the insertion of lithium into the negative electrode active material, resulting in deterioration of cycle characteristics.
 高温、高電圧の使用環境下においてサイクル特性を上げるために、様々な検討が行われている。 Various studies have been conducted to improve cycle characteristics under high temperature and high voltage use environments.
 例えば特許文献1(特開2008-53207号公報)には、正極活物質層の上にマグネシアを含む無機粒子からなるフィラー粒子とバインダーとが含まれた被覆層を形成することが記載されている。この技術では、正極活物質層の上に設けられた被覆層が電解液の分解物や金属成分の溶出物を物理的にトラップする。特許文献1には、この被覆層を有することで、リチウムイオン二次電池は高温、高電圧の使用環境下でのサイクル特性、保存特性に優れることが記載されている。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-53207) describes that on the positive electrode active material layer is formed a covering layer containing filler particles composed of inorganic particles containing magnesia and a binder. . In this technique, the covering layer provided on the positive electrode active material layer physically traps the decomposition product of the electrolytic solution and the elution product of the metal component. Patent Document 1 describes that the lithium ion secondary battery is excellent in cycle characteristics and storage characteristics under high temperature and high voltage use environment by having this covering layer.
 しかしながら、特許文献1には、被覆層が形成されることによって充放電容量がどの程度下がるかは記載されていない。また特許文献1には、被覆層を構成するマグネシアは水と反応してアルカリ性になると記載されており、被覆層の構成成分であるマグネシアは溶出すると推測される。つまり被覆層はサイクルを重ねると徐々に破壊されていくと推測される。従って高温、高電圧の使用環境下でも安定的な物質で正極活物質層を保護することが求められる。 However, Patent Document 1 does not describe how much the charge and discharge capacity is reduced by the formation of the covering layer. Moreover, it is described in patent document 1 that magnesia which comprises a coating layer reacts with water, and becomes alkaline, and it is estimated that magnesia which is a structural component of a coating layer is eluted. That is, it is assumed that the covering layer is gradually destroyed as the cycle is repeated. Therefore, it is required to protect the positive electrode active material layer with a stable material even in a high temperature, high voltage operating environment.
 また特許文献2(特開平6-168739号公報)には、電池反応に関与するイオンを透過できる絶縁体、半導体、絶縁体と半導体の複合体から選択される膜によって負極に対向する側の正極表面が被覆されている二次電池が記載されている。特許文献2には正極表面が上記膜で被覆されることにより電池内部の短絡を抑制でき、電池のサイクル寿命を延ばすことができると記載されている。特許文献2には正極表面に窒化物をスパッタリングして成膜することが開示されている。特許文献2に記載の技術ではスパッタリングにより窒化物よりなる保護膜を形成していることから、特許文献2に記載の保護膜は空隙のない緻密な膜である。そのため特許文献2に記載の窒化物からなる保護膜を有するリチウム電池は、保護膜がないリチウム電池に比べて保護膜が抵抗となって充放電容量が下がることが推測される。特許文献2には、保護膜が形成されることによって充放電容量がどの程度下がるかは記載されていない。また特許文献2には、高温、高電圧での使用については記載されていない。 Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 6-168739), a positive electrode on the side facing the negative electrode is a film selected from an insulator, a semiconductor, and a composite of an insulator and a semiconductor capable of transmitting ions involved in the cell reaction. A surface-coated secondary battery is described. Patent Document 2 describes that by covering the positive electrode surface with the above-mentioned film, a short circuit inside the battery can be suppressed, and the cycle life of the battery can be extended. Patent Document 2 discloses that a nitride film is formed by sputtering on the surface of a positive electrode. In the technique described in Patent Document 2, since the protective film made of nitride is formed by sputtering, the protective film described in Patent Document 2 is a dense film without voids. Therefore, in the lithium battery having a protective film made of nitride described in Patent Document 2, it is presumed that the protective film becomes a resistance and the charge and discharge capacity is reduced as compared with a lithium battery having no protective film. Patent Document 2 does not describe how much the charge and discharge capacity is reduced by the formation of the protective film. Patent Document 2 does not describe use at high temperature and high voltage.
特開2008-53207号公報JP 2008-53207 A 特開平6-168739号公報Japanese Patent Application Laid-Open No. 6-168739
 本発明者らは、高温、高電圧の使用環境下において優れたサイクル特性及び優れた充放電容量を有するリチウムイオン二次電池とするのに有利な被覆層の材料について検討した。 The present inventors examined the material of the coating layer that is advantageous for obtaining a lithium ion secondary battery having excellent cycle characteristics and excellent charge and discharge capacity in a high temperature, high voltage use environment.
 本発明は、このような事情に鑑みて為されたものであり、高温、高電圧の使用環境下において優れたサイクル特性及び優れた充放電容量を有するリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of such circumstances, and a positive electrode for lithium ion secondary battery having excellent cycle characteristics and excellent charge and discharge capacity under high temperature and high voltage use environment, and lithium ion The purpose is to provide a secondary battery.
 本発明者等が鋭意検討した結果、正極活物質層の表面に、絶縁性の無機粉末と被覆層用バインダーとを有し、かつ空隙を有する被覆層を配置することにより、リチウムイオン二次電池が高温、高電圧の使用環境下でも優れたサイクル特性及び充放電容量を発揮できることを見いだした。 As a result of intensive studies by the present inventors, it is possible to provide a lithium ion secondary battery by arranging a coating layer having an insulating inorganic powder and a binder for a coating layer and having a void on the surface of a positive electrode active material layer. It has been found that it can exhibit excellent cycle characteristics and charge / discharge capacity even in a high temperature, high voltage use environment.
 すなわち、本発明のリチウムイオン二次電池用正極は、集電体と、集電体の表面に配置され、正極活物質及び結着剤を含む正極活物質層と、正極活物質層の表面の少なくとも一部に配置される被覆層と、を有し、被覆層は絶縁性の無機粉末と被覆層用バインダーとを有し、被覆層は空隙を有することを特徴とする。 That is, the positive electrode for a lithium ion secondary battery of the present invention comprises a current collector, a positive electrode active material layer disposed on the surface of the current collector and containing a positive electrode active material and a binder, and a surface of the positive electrode active material layer. The coating layer is characterized in that the coating layer has an insulating inorganic powder and a binder for a coating layer, and the coating layer has a void.
 被覆層の表面を走査型電子顕微鏡(Scanning Electron Microscope)で観察した画像において、被覆層の表面の開口率が5%以上50%以下であることが好ましい。 In the image which observed the surface of the coating layer with the scanning electron microscope (Scanning Electron Microscope), it is preferable that the aperture ratio of the surface of a coating layer is 5% or more and 50% or less.
 被覆層の厚みは1μm以上で正極活物質層の厚みの20%以下であることが好ましい。 The thickness of the covering layer is preferably 1 μm or more and 20% or less of the thickness of the positive electrode active material layer.
 無機粉末の平均粒径D50は100nm以上1μm以下であることが好ましい。 It is preferable that the average particle size D 50 of the inorganic powder is 100nm or more 1μm or less.
 無機粉末は、窒化ホウ素、窒化アルミニウム及び窒化珪素から選ばれる少なくとも1つからなることが好ましい。 The inorganic powder is preferably made of at least one selected from boron nitride, aluminum nitride and silicon nitride.
 本発明のリチウムイオン二次電池は、上記リチウムイオン二次電池用正極と、負極と、非水電解液と、を有することを特徴とする。 The lithium ion secondary battery of the present invention is characterized by including the above-described positive electrode for a lithium ion secondary battery, a negative electrode, and a non-aqueous electrolytic solution.
 本発明のリチウムイオン二次電池用正極は、正極活物質層の表面の少なくとも一部に配置される被覆層を有する。この被覆層は、絶縁性の無機粉末と被覆層用バインダーとを有する。そして、被覆層は空隙を有する。 The positive electrode for a lithium ion secondary battery of the present invention has a covering layer disposed on at least a part of the surface of the positive electrode active material layer. This coating layer has an insulating inorganic powder and a coating layer binder. And a coating layer has a void.
 このような被覆層を有する正極を用いるため、本発明のリチウムイオン二次電池は高温、高電圧の使用環境下においても優れたサイクル特性及び充放電容量を発揮する。 Since the positive electrode having such a coating layer is used, the lithium ion secondary battery of the present invention exhibits excellent cycle characteristics and charge / discharge capacity even in a high temperature, high voltage use environment.
本実施形態のリチウムイオン二次電池用正極を説明する模式図である。It is a schematic diagram explaining the positive electrode for lithium ion secondary batteries of this embodiment. 実施例1、実施例2、実施例3及び比較例1のラミネート型リチウムイオン二次電池のサイクル試験結果を表すグラフである。It is a graph showing the cycle test result of the lamination type lithium ion secondary battery of Example 1, Example 2, Example 3 and Comparative Example 1.
 <リチウムイオン二次電池用正極>
 本発明のリチウムイオン二次電池用正極は、集電体と、集電体の表面に配置される正極活物質層と、正極活物質層の表面の少なくとも一部に配置される被覆層と、を有する。
<Positive electrode for lithium ion secondary battery>
The positive electrode for a lithium ion secondary battery of the present invention comprises a current collector, a positive electrode active material layer disposed on the surface of the current collector, and a covering layer disposed on at least a portion of the surface of the positive electrode active material layer; Have.
 集電体は、リチウムイオン二次電池の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体の材料として、例えばステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。また集電体は、箔、シート、フィルムなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。 The current collector refers to a chemically inactive electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery. As a material of a collector, metal materials, such as stainless steel, titanium, nickel, aluminum, copper, or electroconductive resin can be mentioned, for example. Also, the current collector can take the form of a foil, a sheet, a film or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used.
 集電体は、その厚みが10μm~100μmであることが好ましい。 The thickness of the current collector is preferably 10 μm to 100 μm.
 正極活物質層は、正極活物質と結着剤とを含む。正極活物質層は必要に応じて導電助剤をさらに含んでも良い。 The positive electrode active material layer contains a positive electrode active material and a binder. The positive electrode active material layer may further contain a conductive aid, if necessary.
 正極活物質としては、リチウム含有化合物あるいは他の金属化合物が挙げられる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式:LiCoNiMn(Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、-0.2≦x-(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物、一般式:LiMPOで示されるオリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:LiMPOFで示されるフッ化オリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:LiMSiOで示されるケイ酸塩系型リチウム複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)が挙げられる。また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、または硫化チタン若しくは硫化モリブデンなどの二硫化物が挙げられる。 Examples of positive electrode active materials include lithium-containing compounds or other metal compounds. As the lithium-containing compound, for example, lithium cobalt composite oxide having a layered structure, lithium nickel composite oxide having a layered structure, lithium manganese composite oxide having a spinel structure, a general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe and Na, p + q + r + s = 1, 0 <p <1, 0 ≦ q <1, 0 Lithium cobalt-containing composite metal oxide having a layered structure represented by ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) , An olivine-type lithium phosphate composite oxide represented by the general formula: LiMPO 4 (M is at least one of Mn, Fe, Co, and Ni), represented by the general formula: Li 2 MPO 4 F Fluorinated olivine type lithium phosphate complex oxide (M is at least one of Mn, Fe, Co and Ni), silicate type lithium complex oxide represented by the general formula: Li 2 MSiO 4 (M is Mn And at least one of Fe, Co and Ni). Moreover, as other metal compounds, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or disulfides such as titanium sulfide or molybdenum sulfide can be mentioned.
 また正極活物質は、化学式:LiMO(MはNi,Co及びMnから選択される少なくとも1つである)で表されるリチウム含有酸化物よりなることが好ましく、さらに一般式:LiCoNiMn(Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、-0.2≦x-(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物よりなることが好ましい。 The positive electrode active material is preferably made of a lithium-containing oxide represented by a chemical formula: LiMO 2 (M is at least one selected from Ni, Co and Mn), and more preferably a general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe, and Na, p + q + r + s = 1, 0 <p <1, 0 ≦ Lithium having a layered structure represented by q <1, 0 ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) It is preferable to consist of cobalt containing complex metal oxide.
 リチウム含有酸化物としては、例えば、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOが挙げられる。リチウム含有酸化物としては、中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3が熱安定性の点で好ましい。 As the lithium-containing oxide, for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2, LiCoO 2, LiNi 0.8 Co 0.2 O 2, LiCoMnO 2 and the like. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable as the lithium-containing oxide from the viewpoint of thermal stability.
 正極活物質はその平均粒径D50が1μm~20μmである粉末形状であることが好ましい。正極活物質の平均粒径D50が小さいと、同じ質量の正極活物質を使用した場合、正極活物質の個数が増え、正極活物質全体の表面積が大きくなる。正極活物質の表面積が増えることは正極活物質と電解液との反応面積が増えることになり、電解液の分解が促進され、リチウムイオン二次電池のサイクル特性が悪くなる懸念がある。従って正極活物質の平均粒径D50はあまり小さいことは好ましくなく、正極活物質の平均粒径D50は1μm以上が好ましい。正極活物質の平均粒径D50が20μmより大きいとリチウムイオン二次電池の抵抗が大きくなり、リチウムイオン二次電池の出力特性が下がる懸念がある。正極活物質の平均粒径D50は粒度分布測定法によって計測できる。 The positive electrode active material is preferably in the form of powder having an average particle diameter D 50 of 1 μm to 20 μm. When the average particle diameter D 50 of the positive electrode active material is small, when the positive electrode active material of the same mass is used, the number of positive electrode active materials increases, and the surface area of the entire positive electrode active material becomes large. An increase in the surface area of the positive electrode active material results in an increase in the reaction area between the positive electrode active material and the electrolytic solution, which accelerates the decomposition of the electrolytic solution and may deteriorate the cycle characteristics of the lithium ion secondary battery. Thus the average particle size D 50 of the positive electrode active material is not preferred is that too small an average particle diameter D 50 of the positive electrode active material is preferably at least 1 [mu] m. The average particle diameter D 50 of the positive electrode active material becomes large 20μm greater than the resistance of the lithium ion secondary battery, there is a concern that the output characteristics of the lithium ion secondary battery decreases. The average particle diameter D 50 of the positive electrode active material can be measured by particle size distribution measurement method.
 結着剤は、上記正極活物質及び導電助剤を集電体に繋ぎ止める役割を果たす。結着剤として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びフッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン及びポリ酢酸ビニル系樹脂等の熱可塑性樹脂、ポリイミド及びポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、並びにスチレンブタジエンゴム(SBR)等のゴムが挙げられる。 The binder plays a role of securing the positive electrode active material and the conductive auxiliary agent to the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene, polyethylene and polyvinyl acetate resins, imide resins such as polyimide and polyamideimide, and alkoxy Examples thereof include silyl group-containing resins and rubbers such as styrene butadiene rubber (SBR).
 導電助剤は、電極の導電性を高めるために必要に応じて正極活物質層に添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(VGCF)が挙げられる。これらの導電助剤を単独でまたは二種以上組み合わせて使用することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極に含有される活物質100質量部に対して、1質量部~30質量部程度とすることができる。 The conductive aid is added to the positive electrode active material layer as needed to enhance the conductivity of the electrode. As a conductive support agent, carbon black which is carbonaceous fine particles, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), and vapor grown carbon fiber (VGCF) can be mentioned. These conductive aids can be used alone or in combination of two or more. The amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
 正極活物質層を集電体の表面に配置するには、正極活物質及び結着剤、並びに必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥すればよい。なお、必要に応じて電極密度を高めるべく正極活物質層を配置された集電体を圧縮してもよい。 In order to dispose the positive electrode active material layer on the surface of the current collector, a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder, and, if necessary, a conductive auxiliary, is prepared, and this composition A suitable solvent may be added to form a paste, which may be applied to the surface of the current collector and then dried. If necessary, the current collector provided with the positive electrode active material layer may be compressed to increase the electrode density.
 正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。 As a method of applying the composition for forming a positive electrode active material layer, conventionally known methods such as roll coating method, dip coating method, doctor blade method, spray coating method and curtain coating method may be used.
 粘度調整のための溶剤としては、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。 As a solvent for viscosity adjustment, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK) and the like can be used.
 被覆層は正極活物質層の表面の少なくとも一部に配置される。正極活物質層の表面の少なくとも一部は被覆層によって被覆されるので、正極活物質は電解液と直接接触しにくい。そのため、正極活物質による電解液の分解反応が抑制される。そのためサイクル特性が悪化するのを抑制できる。 The covering layer is disposed on at least a part of the surface of the positive electrode active material layer. Since at least a part of the surface of the positive electrode active material layer is covered by the covering layer, the positive electrode active material is not likely to be in direct contact with the electrolytic solution. Therefore, the decomposition reaction of the electrolytic solution by the positive electrode active material is suppressed. Therefore, deterioration of the cycle characteristics can be suppressed.
 被覆層は空隙を有する。被覆層は絶縁性の無機粉末と被覆層用バインダーとを有する。被覆層において無機粉末はところどころ隙間をあけて配置されており、被覆層用バインダーは無機粉末同士の間及び無機粉末と正極活物質層との間に配置される。空隙は無機粉末同士の間、無機粉末と被覆層用バインダーとの間または無機粉末と正極活物質層との間に形成される。被覆層に空隙があるため、リチウムイオンは被覆層を容易に通過し正極活物質層へ到達する。つまり被覆層はリチウムイオンの伝導の抵抗になりにくく、被覆層が正極活物質層の表面に配置されていても正極の充放電容量は低下しにくい。 The covering layer has an air gap. The coating layer has an insulating inorganic powder and a coating layer binder. In the coating layer, the inorganic powder is disposed with gaps in some places, and the binder for the coating layer is disposed between the inorganic powders and between the inorganic powder and the positive electrode active material layer. The voids are formed between the inorganic powders, between the inorganic powder and the coating layer binder, or between the inorganic powder and the positive electrode active material layer. Because of the air gaps in the cover layer, lithium ions easily pass through the cover layer to reach the positive electrode active material layer. That is, the coating layer is unlikely to be resistant to lithium ion conduction, and even if the coating layer is disposed on the surface of the positive electrode active material layer, the charge / discharge capacity of the positive electrode is unlikely to be reduced.
 また被覆層は無機粉末で形成された複雑な形状をしているので表面積が大きい。そのため被覆層は正極活物質から溶出した金属成分の溶出物や電解液の分解物を物理的にトラップしやすい。金属成分の溶出物や電解液の分解物を正極表面で物理的にトラップできるので、負極活物質表面に分解物等が堆積するのを抑制できる。結果としてリチウムイオン二次電池のサイクル特性が悪化するのを抑制できる。 In addition, the coating layer has a complex surface formed of an inorganic powder and thus has a large surface area. Therefore, the coating layer is likely to physically trap the elution product of the metal component eluted from the positive electrode active material and the decomposition product of the electrolytic solution. Since the elution product of the metal component and the decomposition product of the electrolytic solution can be physically trapped on the surface of the positive electrode, deposition of the decomposition product and the like on the surface of the negative electrode active material can be suppressed. As a result, deterioration of the cycle characteristics of the lithium ion secondary battery can be suppressed.
 また被覆層用バインダーは無機粉末同士及び無機粉末と正極活物質層とを結着させている。そのため被覆層は正極活物質層から剥離しにくい。そのためサイクルを重ねても上記被覆層の効果が持続しやすい。 Further, the binder for the coating layer binds the inorganic powders together and the inorganic powder and the positive electrode active material layer. Therefore, the coating layer is difficult to peel off from the positive electrode active material layer. Therefore, even if the cycle is repeated, the effect of the coating layer is likely to be sustained.
 被覆層用バインダーは無機粉末に対して3質量%以上50質量%以下で被覆層に含まれればよい。被覆層用バインダーが無機粉末に対して50質量%より多く被覆層に含有されると、無機粉末による正極活物質層の保護効果が少なくなり、また空隙が形成されにくくなる。被覆層用バインダーが無機粉末に対して3質量%より少なく被覆層に含有されると、被覆層用バインダーの結着効果が得にくくなる。 The binder for the coating layer may be contained in the coating layer in an amount of 3% by mass to 50% by mass with respect to the inorganic powder. When the binder for the coating layer is contained in the coating layer in an amount of more than 50% by mass with respect to the inorganic powder, the protective effect of the inorganic powder on the positive electrode active material layer is reduced, and voids are hardly formed. When the binder for the coating layer is contained in the coating layer in an amount of less than 3% by mass with respect to the inorganic powder, it is difficult to obtain the binding effect of the binder for the coating layer.
 空隙は被覆層のどこにあってもよい。空隙は被覆層の表面だけでなく、被覆層の内部にあってもよい。また一つの空隙は他の空隙と連通していてもよい。 The voids may be anywhere in the coating layer. The voids may be located not only on the surface of the covering layer but also on the inside of the covering layer. One void may be in communication with another void.
 被覆層の表面を電子顕微鏡で観察すると、被覆層に開口部があることがわかる。この開口部は、被覆層に含まれる空隙を通じて表面から正極活物質層が観察されている箇所を指す。従ってこの開口部の面積を被覆層全体の面積で割ることによって、開口率を求めることができる。この時、被覆層全体の面積は開口部の面積を含む。 When the surface of the coating layer is observed with an electron microscope, it can be seen that there is an opening in the coating layer. The opening points to a point where the positive electrode active material layer is observed from the surface through the voids included in the covering layer. Therefore, the aperture ratio can be determined by dividing the area of the opening by the area of the entire covering layer. At this time, the area of the entire covering layer includes the area of the opening.
 被覆層の表面を走査型電子顕微鏡(Scanning Electron Microscope)で観察した画像において、被覆層の表面の開口率が5%以上50%以下であることが好ましい。開口率が5%以上であると被覆層のリチウムイオンの透過性が良好である。開口率が50%以下であれば、正極活物質に電解液が直接接触することを少なくでき、そのため正極活物質による電解液の分解を良好に抑制できる。 In the image which observed the surface of the coating layer with the scanning electron microscope (Scanning Electron Microscope), it is preferable that the aperture ratio of the surface of a coating layer is 5% or more and 50% or less. When the aperture ratio is 5% or more, the lithium ion permeability of the coating layer is good. If the aperture ratio is 50% or less, direct contact of the electrolytic solution with the positive electrode active material can be reduced, so that decomposition of the electrolytic solution by the positive electrode active material can be favorably suppressed.
 被覆層の厚みは、実質的に無機粉末の平均粒径D50と同等以上となる。正極活物質層の表面に無機粉末が少なくとも一層となる厚みを有する被覆層が配置されていれば、正極活物質層は被覆層によって良好に保護される。 The thickness of the coating layer is substantially the average particle diameter D 50 of the inorganic powder equal to or greater than. If a coating layer having a thickness at which the inorganic powder is at least one layer is disposed on the surface of the positive electrode active material layer, the positive electrode active material layer is well protected by the coating layer.
 また被覆層の厚みは1μm以上で正極活物質層の厚みの20%以下であることが好ましい。被覆層の厚みが1μm以上であれば、高温、高電圧の使用環境下でもリチウムイオン二次電池のサイクル特性をより向上することができる。被覆層の厚みが正極活物質層の厚みの20%以下であれば、電池内において正極活物質層の体積すなわち正極活物質の量を良好に確保して、リチウムイオン二次電池の充放電容量の低下を抑えることができる。 The thickness of the covering layer is preferably 1 μm or more and 20% or less of the thickness of the positive electrode active material layer. When the thickness of the covering layer is 1 μm or more, the cycle characteristics of the lithium ion secondary battery can be further improved even in a high temperature, high voltage use environment. If the thickness of the covering layer is 20% or less of the thickness of the positive electrode active material layer, the volume of the positive electrode active material layer, that is, the amount of the positive electrode active material is satisfactorily secured in the battery, and the charge and discharge capacity of the lithium ion secondary battery Can reduce the
 無機粉末の平均粒径D50は、正極活物質の平均粒径D50よりも小さいことが好ましい。無機粉末の平均粒径D50が正極活物質の平均粒径D50よりも小さいと、無機粉末を含む被覆層は正極活物質層の表面の凹凸に沿って正極活物質層を良好に被覆することができる。そうすると正極活物質層の表面に存在する正極活物質の表面を無機粉末を含む被覆層が被覆しやすい。正極活物質の表面の少なくとも一部が無機粉末を含む被覆層で被覆されれば、正極活物質の表面が電解液と直接接触することを抑制でき、電解液が正極活物質によって分解されるのを抑制できる。無機粉末は、平均粒径D50が100nm以上1μm以下であることが好ましい。無機粉末の平均粒径D50が100nm以上1μm以下であれば、無機粉末を含む被覆層が正極活物質層の表面をより被覆しやすい。 The average particle diameter D 50 of the inorganic powder is preferably smaller than the average particle diameter D 50 of the positive electrode active material. When the average particle diameter D 50 of the inorganic powder is smaller than the average particle diameter D 50 of the positive electrode active material, the coating layer containing an inorganic powder is better to cover the positive electrode active material layer along the irregularities on the surface of the positive electrode active material layer be able to. In this case, the surface of the positive electrode active material present on the surface of the positive electrode active material layer is easily covered with the covering layer containing the inorganic powder. If at least a part of the surface of the positive electrode active material is covered with the covering layer containing the inorganic powder, direct contact of the surface of the positive electrode active material with the electrolytic solution can be suppressed, and the electrolytic solution is decomposed by the positive electrode active material. Can be suppressed. The inorganic powder preferably has an average particle diameter D 50 of 100 nm or more and 1 μm or less. When the average particle diameter D 50 of the inorganic powder is 100nm or 1μm or less, the coating layer containing an inorganic powder is more likely to cover the surface of the positive electrode active material layer.
 無機粉末は絶縁性であるため、正極活物質層の表面に無機粉末を含む被覆層が配置されると正極と負極とが短絡するのを抑制できる。 Since the inorganic powder is insulating, when the covering layer containing the inorganic powder is disposed on the surface of the positive electrode active material layer, short circuit between the positive electrode and the negative electrode can be suppressed.
 絶縁性の無機粉末として、例えば、窒化物、炭化物、金属酸化物が使用できる。窒化物としては、窒化ホウ素、窒化アルミニウム、窒化珪素及び窒化炭素が例示できる。炭化物としては炭化珪素、炭化ホウ素が例示できる。金属酸化物としては、シリカ、アルミナ、酸化マグネシウム、酸化ジルコニウム、酸化ハフニウムが例示できる。 For example, nitrides, carbides, metal oxides can be used as the insulating inorganic powder. Examples of the nitride include boron nitride, aluminum nitride, silicon nitride and carbon nitride. Examples of carbides include silicon carbide and boron carbide. Examples of the metal oxide include silica, alumina, magnesium oxide, zirconium oxide and hafnium oxide.
 特に無機粉末は熱的に安定であるものが好ましい。その理由から、無機粉末は窒化物であることが好ましい。一般的に窒化物は1500℃程度まで熱的に安定である。1500℃はリチウムイオン二次電池の熱暴走範囲より十分に高い温度であるので、窒化物はリチウムイオン二次電池が熱暴走するのを抑制できる。 Particularly preferred inorganic powders are those which are thermally stable. For that reason, the inorganic powder is preferably a nitride. In general, nitrides are thermally stable up to about 1500.degree. Since 1500 ° C. is a temperature sufficiently higher than the thermal runaway range of the lithium ion secondary battery, the nitride can suppress the thermal runaway of the lithium ion secondary battery.
 また一般的に窒化物は化学的な安定性が高く、電池反応に伴う余分な副反応を起こすことなく配置することが可能である。その物質の化学的な安定性が高いため、無機粉末は、窒化ホウ素、窒化アルミニウム及び窒化珪素から選ばれる少なくとも1つからなることが好ましい。 In general, nitrides have high chemical stability and can be arranged without causing an extra side reaction accompanying the cell reaction. The inorganic powder is preferably made of at least one selected from boron nitride, aluminum nitride and silicon nitride because of high chemical stability of the substance.
 被覆層は正極活物質層の表面に配置される。被覆層と正極活物質層とが混合しないように被覆層は正極活物質層ができあがってから配置されることが望ましい。 The covering layer is disposed on the surface of the positive electrode active material layer. It is desirable that the coating layer be disposed after the positive electrode active material layer is formed so that the coating layer and the positive electrode active material layer are not mixed.
 この正極活物質層へ被覆層を配置する方法は、特に限定されない。例えば、以下の方法で正極活物質層へ被覆層を配置できる。被覆層の材料を有機溶媒もしくは水に溶かして溶液を作成し、噴霧器を用いて正極活物質層の塗布面に噴霧し、有機溶媒または水を揮発、除去することによって正極活物質層に被覆層を配置することができる。この場合の有機溶媒はエタノール、N-メチル-2-ピロリドン(NMP)、メタノール、ブタノール、メチルイソブチルケトン(MIBK)などが使用できる。水は蒸留水やイオン交換水など、不純物を取り除いたものが好ましい。 The method of arranging the coating layer on the positive electrode active material layer is not particularly limited. For example, the coating layer can be disposed on the positive electrode active material layer by the following method. The material of the coating layer is dissolved in an organic solvent or water to form a solution, and the solution is sprayed onto the coated surface of the positive electrode active material layer using a sprayer to volatilize and remove the organic solvent or water. Can be placed. As the organic solvent in this case, ethanol, N-methyl-2-pyrrolidone (NMP), methanol, butanol, methyl isobutyl ketone (MIBK) and the like can be used. Water is preferably one from which impurities such as distilled water or ion exchange water have been removed.
 また被覆層の材料を粘度調整のための有機溶媒もしくは水に溶かしてペースト状の混合物を作成し、そのペースト状の混合物を正極活物質層上に塗布し、塗布後に乾燥することによって正極活物質層に被覆層を配置することができる。塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。粘度調整のための有機溶媒としては、エタノール、NMP、メタノール、ブタノール、MIBKなどが使用可能である。水は蒸留水やイオン交換水など、不純物を取り除いたものが好ましい。 In addition, the material of the coating layer is dissolved in an organic solvent or water for viscosity adjustment to form a paste-like mixture, the paste-like mixture is applied on the positive electrode active material layer, and dried after application. A covering layer can be arranged on the layer. As a coating method, conventionally known methods such as roll coating method, dip coating method, doctor blade method, spray coating method and curtain coating method may be used. As an organic solvent for viscosity adjustment, ethanol, NMP, methanol, butanol, MIBK and the like can be used. Water is preferably one from which impurities such as distilled water or ion exchange water have been removed.
 上記した被覆層の配置方法において、被覆層における開口率の調整は、被覆層の塗布量を調整するによって行うことができる。被覆層の塗布量が多い方が開口率は小さくなる。 In the above-described method of arranging the covering layer, the adjustment of the opening ratio in the covering layer can be performed by adjusting the amount of the covering layer applied. The larger the coating amount of the coating layer, the smaller the aperture ratio.
 被覆層用バインダーとして、ケイ素元素、アルミニウム元素、ジルコニウム元素などの元素を含む無機バインダー、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂またはメラミン樹脂などが使用できる。 As the binder for the covering layer, an inorganic binder containing an element such as silicon element, aluminum element or zirconium element, phenol resin, polyimide resin, epoxy resin or melamine resin can be used.
 被覆層の配置を簡便にするために、被覆層用バインダーとして、有機溶媒に溶解でき、有機溶媒が揮発したら室温で固化するバインダーを用いることが好ましい。このようなバインダーを用いれば、被覆層を形成するために電極を加熱する必要がない。被覆層用バインダーとして、例えば常温で固化させることのできる無機バインダーを用いることが好ましい。無機バインダーは化学的に安定であるため、電池反応に伴う分解反応を抑制することができる。無機バインダーとしては、ジルコニウム元素、特に酸化ジルコニウムを含む無機バインダーを好ましく用いることができる。 In order to simplify the arrangement of the coating layer, it is preferable to use, as a binder for the coating layer, a binder that can be dissolved in an organic solvent and that solidifies at room temperature if the organic solvent volatilizes. When such a binder is used, it is not necessary to heat the electrode to form the coating layer. It is preferable to use the inorganic binder which can be solidified, for example at normal temperature as a binder for coating layers. Since the inorganic binder is chemically stable, the decomposition reaction involved in the battery reaction can be suppressed. As the inorganic binder, an inorganic binder containing zirconium element, particularly zirconium oxide can be preferably used.
 図1に本実施形態のリチウムイオン二次電池用正極を説明する模式図を示す。図1において、集電体1の上に正極活物質3が結着剤2によって結着されている。正極活物質層4は、正極活物質3と結着剤2とからなる。被覆層5は正極活物質層4の上に配置される。 The schematic diagram explaining the positive electrode for lithium ion secondary batteries of this embodiment in FIG. 1 is shown. In FIG. 1, a positive electrode active material 3 is bound by a binder 2 on a current collector 1. The positive electrode active material layer 4 is composed of the positive electrode active material 3 and the binder 2. The covering layer 5 is disposed on the positive electrode active material layer 4.
 図1の被覆層5において、無機粉末51はところどころに隙間を空けて配置され、被覆層用バインダー52は無機粉末51同士の間及び無機粉末51と正極活物質層4との間に配置されている。被覆層用バインダー52によって、無機粉末51同士また無機粉末51と正極活物質層4とが結着されている。図1にみられるように空隙6が無機粉末51同士の間、無機粉末51と被覆層用バインダー52との間または無機粉末51と正極活物質層4との間に形成される。また無機粉末51は正極活物質3及び結着剤2の表面の凹凸に沿って配置している。 In the covering layer 5 of FIG. 1, the inorganic powder 51 is disposed with a gap in some places, and the coating layer binder 52 is disposed between the inorganic powders 51 and between the inorganic powder 51 and the positive electrode active material layer 4 There is. The inorganic powder 51 and the inorganic powder 51 and the positive electrode active material layer 4 are bound to each other by the coating layer binder 52. As shown in FIG. 1, the voids 6 are formed between the inorganic powders 51, between the inorganic powders 51 and the binder 52 for a covering layer, or between the inorganic powders 51 and the positive electrode active material layer 4. In addition, the inorganic powder 51 is disposed along the irregularities of the surfaces of the positive electrode active material 3 and the binder 2.
 <リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、上記リチウムイオン二次電池用正極を有することを特徴とする。上記リチウムイオン二次電池用正極を有するリチウムイオン二次電池は、高温、高電圧の使用環境下でも優れたサイクル性能を有する。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is characterized by having the above-described positive electrode for a lithium ion secondary battery. The lithium ion secondary battery which has the said positive electrode for lithium ion secondary batteries has the outstanding cycle performance also in the use environment of high temperature and a high voltage.
 本発明のリチウムイオン二次電池は、電池構成要素として、上記したリチウムイオン二次電池用正極に加えて、負極、セパレータ、電解液を有する。 The lithium ion secondary battery of the present invention has, as a battery component, a negative electrode, a separator and an electrolytic solution in addition to the above-described positive electrode for lithium ion secondary battery.
 負極は、集電体と、集電体の表面に結着させた負極活物質層とを有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて導電助剤を含む。集電体、結着剤、導電助剤は正極で説明したものと同様である。 The negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector. The negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive auxiliary. The current collector, the binder, and the conductive additive are the same as those described for the positive electrode.
 負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物及び高分子材料などが挙げられる。 Examples of the negative electrode active material include carbon-based materials capable of occluding and releasing lithium, compounds having an element capable of being alloyed with lithium, and compounds having an element capable of being alloyed with lithium, and polymer materials.
 炭素系材料としては、例えば難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, cokes, graphites, glassy carbons, an organic polymer compound fired body, carbon fiber, activated carbon or carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenol or furan at an appropriate temperature.
 リチウムと合金化可能な元素としては、例えばNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb及びBiが挙げられる。中でも、リチウムと合金化可能な元素としては、珪素(Si)または錫(Sn)が好ましい。 As elements that can be alloyed with lithium, for example, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge , Sn, Pb, Sb and Bi. Among them, silicon (Si) or tin (Sn) is preferable as an element capable of being alloyed with lithium.
 リチウムと合金化可能な元素を有する化合物としては、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO及びLiSnOが挙げられる。リチウムと合金化可能な元素を有する化合物は珪素化合物又は錫化合物が好ましい。珪素化合物としては、SiO(0.5≦x≦1.5)が好ましい。錫化合物としては、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)が挙げられる。 As a compound having an element capable of alloying with lithium, for example, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2) SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO and LiSnO. The compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound. As a silicon compound, SiO x (0.5 ≦ x ≦ 1.5) is preferable. Examples of tin compounds include tin alloys (Cu--Sn alloy, Co--Sn alloy, etc.).
 高分子材料としては、ポリアセチレン、ポリピロールなどが挙げられる。 Examples of the polymer material include polyacetylene and polypyrrole.
 セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。 The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes. As the separator, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic can be used.
 電解液はリチウムイオン二次電池用に用いることのできる電解液が使用できる。電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。 As the electrolyte, an electrolyte that can be used for a lithium ion secondary battery can be used. The electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
 溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンが挙げられる。鎖状エステル類として、例えばジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが挙げられる。エーテル類として、例えばテトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンが挙げられる。 As the solvent, for example, cyclic esters, linear esters, ethers can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma-butyrolactone, vinylene carbonate, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone and gamma-valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester and acetic acid alkyl ester. As the ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be mentioned.
 また上記電解液に溶解させる電解質として、例えばLiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩が挙げられる。 Examples of the electrolyte to be dissolved in the above electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
 電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液が挙げられる。 As an electrolytic solution, for example, 0.5 mol / l to 1.7 mol / l of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate There may be mentioned solutions dissolved at a certain concentration.
 上記リチウムイオン二次電池は車両に搭載することができる。上記リチウムイオン二次電池は、優れたサイクル性能を有するため、そのリチウムイオン二次電池を搭載した車両は、寿命、出力の面で高性能となる。 The lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery has excellent cycle performance, a vehicle equipped with the lithium ion secondary battery has high performance in terms of life and output.
 車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 Any vehicle may be used as long as it uses electric energy from batteries for all or part of the power source. For example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, electric forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
 以上、本発明のリチウムイオン二次電池用正極及びリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of the positive electrode for lithium ion secondary batteries of this invention and lithium ion secondary battery were described, this invention is not limited to the said embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
 以下、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail by way of examples.
 <リチウムイオン二次電池用正極の作成>
(正極A)
 まず正極活物質として平均粒径D50が5μmのLiNi0.5Co0.2Mn0.3と導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(PVDF)とを、それぞれ94質量部、3質量部、3質量部として混合し混合物とした。この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、スラリーを作製した。
 集電体として厚み20μmのアルミニウム箔を準備した。集電体にスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように集電体に塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した。その後、ロ-ルプレス機により、集電体と集電体上の塗布物を強固に密着接合させた。この時電極密度は3.2g/cmとなるようにした。接合物を120℃で6時間、真空乾燥機で加熱した。加熱後の接合物を、所定の形状(25mm×30mmの矩形状)に切り取り、正極Aとした。正極Aの厚さは50μm程度であった。
<Preparation of positive electrode for lithium ion secondary battery>
(Positive electrode A)
First, as a positive electrode active material, LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter D 50 of 5 μm, acetylene black as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder, respectively 94 parts by mass, 3 parts by mass, and 3 parts by mass were mixed to obtain a mixture. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to make a slurry.
An aluminum foil having a thickness of 20 μm was prepared as a current collector. The slurry was placed on the current collector, and was applied to the current collector using a doctor blade so that the slurry became a film. The resulting sheet was dried at 80 ° C. for 20 minutes to volatilize off the NMP. After that, the current collector and the coating on the current collector were firmly and closely bonded by a roll press machine. At this time, the electrode density was adjusted to 3.2 g / cm 2 . The assembly was heated in a vacuum oven at 120 ° C. for 6 hours. The joined product after heating was cut into a predetermined shape (25 mm × 30 mm rectangular shape) to obtain a positive electrode A. The thickness of the positive electrode A was about 50 μm.
 (正極B) 
 絶縁性の無機粉末として、平均粒径D50が500nmの窒化ホウ素の粉末を準備した。被覆層用バインダーとしてテトラブトキシジルコニウムを準備した。窒化ホウ素粉末とテトラブトキシジルコニウムを質量比で3:2になるように秤量して混合して混合物とした。混合物をブタノールに分散した。噴霧器を用いて上記したブタノールに分散した混合物を正極Aの表面に噴霧回数を1回として噴霧した。噴霧回数1回の噴霧時間は噴霧範囲における単位面積当たり5秒とした。ブタノールを揮発、除去することにより正極Aの表面に厚み1μmの窒化ホウ素粉末と被覆層用バインダーとからなる被覆層を形成した。これを正極Bとする。正極Bの表面を走査型電子顕微鏡(SEM)で観察すると被覆層は正極活物質層の表面に追随するように配置されていることが確認できた。
(Positive electrode B)
As insulating inorganic powder, the average particle diameter D 50 was prepared powder of boron nitride 500 nm. Tetrabutoxy zirconium was prepared as a coating layer binder. The boron nitride powder and tetrabutoxyzirconium were weighed and mixed so as to have a mass ratio of 3: 2. The mixture was dispersed in butanol. The mixture dispersed in butanol described above was sprayed onto the surface of the positive electrode A using the sprayer as the number of times of spraying was once. The spraying time for one spraying was 5 seconds per unit area in the spraying range. By evaporating and removing butanol, a coating layer composed of a 1 μm thick boron nitride powder and a binder for coating layer was formed on the surface of the positive electrode A. Let this be the positive electrode B. When the surface of the positive electrode B was observed with a scanning electron microscope (SEM), it was confirmed that the coating layer was disposed to follow the surface of the positive electrode active material layer.
 (正極C)
 噴霧回数を2回とした以外は正極Bと同様にして正極Aの表面に厚み2μmの窒化ホウ素粉末と被覆層用バインダーとからなる被覆層を形成した。これを正極Cとする。噴霧回数を2回としたとは具体的には、噴霧範囲全体に1回噴霧した後で、2回目の噴霧を1回目の噴霧した箇所に1回目の噴霧と同様に再度行ったことで行った。正極Cの表面を走査型電子顕微鏡(SEM)で観察すると被覆層は正極活物質層の表面に追随するように配置されていることが確認できた。
(Positive electrode C)
A coating layer consisting of a 2 μm thick boron nitride powder and a coating layer binder was formed on the surface of the positive electrode A in the same manner as the positive electrode B except that the number of times of spraying was two. This is called positive electrode C. Specifically, the number of times of spraying is set to 2 times, after spraying once over the entire spraying range and then again performing the second spraying on the first spraying location as in the first spraying. The When the surface of the positive electrode C was observed with a scanning electron microscope (SEM), it could be confirmed that the coating layer was disposed to follow the surface of the positive electrode active material layer.
 (正極D)
 噴霧回数を5回とした以外は正極Bと同様にして正極Aの表面に厚み5μmの窒化ホウ素粉末と被覆層用バインダーとからなる被覆層を形成した。これを正極Dとする。正極Dの表面を走査型電子顕微鏡(SEM)で観察すると被覆層は正極活物質層の表面に追随するように配置されていることが確認できた。
(Positive electrode D)
A coating layer of 5 μm thick boron nitride powder and a binder for a coating layer was formed on the surface of the positive electrode A in the same manner as the positive electrode B except that the number of times of spraying was 5 times. This is referred to as a positive electrode D. When the surface of the positive electrode D was observed with a scanning electron microscope (SEM), it could be confirmed that the coating layer was disposed to follow the surface of the positive electrode active material layer.
 <被覆層の走査型電子顕微鏡(SEM)による画像観察>
 上記正極B、正極C、正極Dの各被覆層を走査型電子顕微鏡で観察し、被覆層の表面における開口率を計測した。SEMの焦点距離は、被膜層の厚みに応じて1μm~5μmの表面深さが観察可能なように設定した。開口部は、被覆層に含まれる空隙を通じて表面から正極活物質層が観察されている箇所を指す。開口率(%)=開口部の面積÷被覆層全体の面積×100で計算した。正極Bの被覆層の開口率は50%であり、正極Cの被覆層の開口率は25%であり、正極Dの被覆層の開口率は5%であった。
<Image observation of coating layer by scanning electron microscope (SEM)>
Each coating layer of the said positive electrode B, the positive electrode C, and the positive electrode D was observed with the scanning electron microscope, and the aperture ratio in the surface of a coating layer was measured. The focal length of the SEM was set such that a surface depth of 1 μm to 5 μm could be observed according to the thickness of the coating layer. The opening indicates a point where the positive electrode active material layer is observed from the surface through the voids included in the covering layer. The open area ratio (%) = area of opening / area of entire covering layer × 100. The opening ratio of the covering layer of the positive electrode B was 50%, the opening ratio of the covering layer of the positive electrode C was 25%, and the opening ratio of the covering layer of the positive electrode D was 5%.
 <ラミネート型リチウムイオン二次電池作製>
(実施例1)
 正極Bを正極として用いた実施例1のラミネート型リチウムイオン二次電池を次のようにして作製した。
<Production of laminate type lithium ion secondary battery>
Example 1
A laminate type lithium ion secondary battery of Example 1 using the positive electrode B as a positive electrode was produced as follows.
 負極は以下のように作製した。黒鉛粉末97質量部と、導電助剤としてアセチレンブラック1質量部と、結着剤として、スチレン-ブタジエンゴム(SBR)1質量部、カルボキシメチルセルロース(CMC)1質量部とを混合して混合物とした。この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布した。スラリーを塗布した集電体を乾燥後プレスし、接合物を120℃で6時間、真空乾燥機で加熱した。加熱後の接合物を所定の形状(25mm×30mmの矩形状)に切り取り、負極とした。負極の厚さは45μm程度であった。 The negative electrode was produced as follows. 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive additive, 1 part by mass of styrene-butadiene rubber (SBR) as a binder, and 1 part by mass of carboxymethylcellulose (CMC) were mixed to obtain a mixture . The mixture was dispersed in an appropriate amount of ion exchange water to prepare a slurry. This slurry was applied to a copper foil having a thickness of 20 μm, which is a current collector for a negative electrode, using a doctor blade so as to form a film. The slurry-coated current collector was dried and pressed, and the assembly was heated at 120 ° C. for 6 hours in a vacuum dryer. The bonded article after heating was cut into a predetermined shape (25 mm × 30 mm rectangular shape) to obtain a negative electrode. The thickness of the negative electrode was about 45 μm.
 正極B及び負極を用いて、ラミネート型リチウムイオン二次電池を作製した。詳しくは、正極B及び負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒にLiPF6を1mol/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。 A laminated lithium ion secondary battery was produced using the positive electrode B and the negative electrode. Specifically, a rectangular sheet (27 × 32 mm, 25 μm thickness) made of polypropylene resin as a separator is sandwiched between the positive electrode B and the negative electrode to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. A solution in which LiPF 6 was dissolved to 1 mol / l in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in EC: DEC = 3: 7 (volume ratio) was used as an electrolytic solution. Then, the remaining one side was sealed, and the four sides were airtightly sealed to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. The positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate-type lithium ion secondary battery of Example 1 was produced.
 (実施例2)
 実施例1における正極Bを正極Cに変更した以外は実施例1と同様にして実施例2のラミネート型リチウムイオン二次電池を作製した。
(Example 2)
A laminated lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that the positive electrode B in Example 1 was changed to the positive electrode C.
 (実施例3)
 実施例1における正極Bを正極Dに変更した以外は実施例1と同様にして実施例3のラミネート型リチウムイオン二次電池を作製した。
(Example 3)
A laminated lithium ion secondary battery of Example 3 was produced in the same manner as in Example 1 except that the positive electrode B in Example 1 was changed to the positive electrode D.
 (比較例1)
 実施例1における正極Bを正極Aに変更した以外は実施例1と同様にして比較例1のラミネート型リチウムイオン二次電池を作製した。
(Comparative example 1)
A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the positive electrode B in Example 1 was changed to the positive electrode A.
 <実施例1、実施例2、実施例3及び比較例1のラミネート型リチウムイオン二次電池のサイクル特性評価>
 実施例1、実施例2、実施例3及び比較例1のラミネート型リチウムイオン二次電池のサイクル特性を評価した。サイクル特性の評価としては、以下の条件で充放電を繰り返したサイクル試験を行い各サイクルの放電容量を測定した。充電の際は、60℃において1Cレート、電圧4.5VでCC充電(定電流充電)をした。放電の際は3.0V、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、200サイクルまでサイクル試験を行った。この際の放電容量は、正極活物質の質量あたりの放電容量を計算して用いた。従って放電容量の単位はmAh/gである。図2に実施例1、実施例2、実施例3及び比較例1のラミネート型リチウムイオン二次電池のサイクル数と放電容量(mAh/g)の関係を示す。
<Evaluation of cycle characteristics of laminated lithium ion secondary batteries of Example 1, Example 2, Example 3 and Comparative Example 1>
The cycle characteristics of the laminated lithium ion secondary batteries of Example 1, Example 2, Example 3 and Comparative Example 1 were evaluated. As evaluation of a cycle characteristic, the cycle test which repeated charging / discharging on condition of the following was performed, and the discharge capacity of each cycle was measured. During charging, CC charging (constant current charging) was performed at a temperature of 60 ° C. and a voltage of 4.5 V at a 1 C rate. At the time of discharge, CC discharge (constant current discharge) was performed at a rate of 3.0 V and 1 C. This charge and discharge was made into 1 cycle, and the cycle test was done to 200 cycles. The discharge capacity at this time was used by calculating the discharge capacity per mass of the positive electrode active material. Therefore, the unit of discharge capacity is mAh / g. FIG. 2 shows the relationship between the cycle number and the discharge capacity (mAh / g) of the laminate type lithium ion secondary batteries of Example 1, Example 2, Example 3 and Comparative Example 1.
 図2の結果をみると、初回の放電容量は、実施例1、実施例2及び実施例3のラミネート型リチウムイオン二次電池は、比較例1のラミネート型リチウムイオン二次電池と同等か若干低かった。具体的には、比較例1のラミネート型リチウムイオン二次電池の初回の放電容量が191.5mAh/gに対して、実施例1のラミネート型リチウムイオン二次電池の初回の放電容量が189.4mAh/g、実施例2のラミネート型リチウムイオン二次電池の初回の放電容量が187.9mAh/g、実施例3のラミネート型リチウムイオン二次電池の初回の放電容量が192.3mAh/gであった。 From the results of FIG. 2, the first-order discharge capacity of the laminate-type lithium ion secondary batteries of Example 1, Example 2 and Example 3 is the same as or slightly higher than that of the laminate-type lithium ion secondary battery of Comparative Example 1 It was low. Specifically, when the initial discharge capacity of the laminate type lithium ion secondary battery of Comparative Example 1 is 191.5 mAh / g, the initial discharge capacity of the laminate type lithium ion secondary battery of Example 1 is 189. 4 mAh / g, initial discharge capacity of the laminate type lithium ion secondary battery of Example 2 is 187.9 mAh / g, and initial discharge capacity of the laminate type lithium ion secondary battery of Example 3 is 192.3 mAh / g there were.
 このことから、窒化ホウ素粉末と被覆層用バインダーとからなる被覆層が正極活物質層の表面に配置される正極を用いても、ラミネート型リチウムイオン二次電池の初回の放電容量はほとんど変わらないことがわかった。被覆層には空隙が存在する。そのため被覆層が正極活物質層の表面に配置されていても、被覆層がリチウムイオンの伝導の抵抗にはあまりならなかったためと推察される。また被覆層の厚みが異なる実施例1、実施例2及び実施例3のラミネート型リチウムイオン二次電池の初回の放電容量の結果から、被覆層の厚みを厚くしても初回の放電容量が低下しにくいことがわかった。 From this, even when using the positive electrode in which the coating layer composed of the boron nitride powder and the binder for the coating layer is disposed on the surface of the positive electrode active material layer, the initial discharge capacity of the laminate type lithium ion secondary battery hardly changes. I understood it. There are voids in the covering layer. Therefore, even if the coating layer is disposed on the surface of the positive electrode active material layer, it is presumed that the coating layer does not have much resistance to lithium ion conduction. Further, from the results of the first discharge capacity of the laminate type lithium ion secondary batteries of Example 1, Example 2 and Example 3 in which the thickness of the cover layer is different, even if the thickness of the cover layer is thickened, the initial discharge capacity decreases. I found it difficult to do.
 そして、65サイクルまでは、実施例1、実施例2及び実施例3のラミネート型リチウムイオン二次電池の放電容量は、比較例1のラミネート型リチウムイオン二次電池の放電容量とほぼ同等であった。65サイクル目以降は、実施例1、実施例2及び実施例3のラミネート型リチウムイオン二次電池の放電容量は、比較例1のラミネート型リチウムイオン二次電池の放電容量より高くなった。 The discharge capacity of the laminate type lithium ion secondary battery of Example 1, Example 2 and Example 3 is almost equal to the discharge capacity of the laminate type lithium ion secondary battery of Comparative Example 1 up to 65 cycles. The From the 65th cycle onward, the discharge capacity of the laminate type lithium ion secondary batteries of Example 1, Example 2 and Example 3 became higher than the discharge capacity of the laminate type lithium ion secondary battery of Comparative Example 1.
 200サイクル目の放電容量を比較すると、比較例1のラミネート型リチウムイオン二次電池の200サイクル目の放電容量が95.9mAh/gに対して、実施例1のラミネート型リチウムイオン二次電池の200サイクル目の放電容量が117.6mAh/g、実施例2のラミネート型リチウムイオン二次電池の200サイクル目の放電容量が127.3mAh/g、実施例3のラミネート型リチウムイオン二次電池の200サイクル目の放電容量が130.2mAh/gとなった。つまり200サイクル目の放電容量は比較例1<実施例1<実施例2<実施例3の順に高くなった。このことから被覆層の厚みが厚い方が、サイクル特性が高いことがわかった。またこの結果から、60℃という高温において窒化ホウ素粉末と被覆層用バインダーとからなる被覆層が正極活物質層の表面に1μm以上形成されている正極を用いたラミネート型リチウムイオン二次電池は、被覆層が形成されていない正極を用いたラミネート型リチウムイオン二次電池に比べてサイクル特性が向上することがわかった。 Comparing the discharge capacity at the 200th cycle, the discharge capacity at 200th cycle of the laminate type lithium ion secondary battery of Comparative Example 1 is 95.9 mAh / g, compared with that of the laminate type lithium ion secondary battery of Example 1. The discharge capacity of the 200th cycle is 117.6 mAh / g, the discharge capacity of the 200th cycle of the laminate type lithium ion secondary battery of Example 2 is 127.3 mAh / g, and the laminate type lithium ion secondary battery of Example 3 The discharge capacity at the 200th cycle was 130.2 mAh / g. That is, the discharge capacity at the 200th cycle increased in the order of Comparative Example 1 <Example 1 <Example 2 <Example 3>. From this, it was found that when the thickness of the covering layer is larger, the cycle characteristics are higher. Further, from this result, a laminate type lithium ion secondary battery using a positive electrode in which a coating layer composed of boron nitride powder and a binder for coating layer is formed at 1 μm or more on the surface of the positive electrode active material layer at a high temperature of 60 ° C. It was found that the cycle characteristics were improved as compared with a laminate type lithium ion secondary battery using a positive electrode in which the covering layer was not formed.
 上記の結果より、絶縁性の無機粉末と被覆層用バインダーとを有し、かつ空隙を有する被覆層を正極活物質層の表面に有すると、リチウムイオン二次電池は、高温、高電圧の使用環境下においても優れたサイクル特性及び充放電容量を有することがわかった。 From the above results, when the coating layer having the insulating inorganic powder and the coating layer binder and having the void is provided on the surface of the positive electrode active material layer, the lithium ion secondary battery is used at high temperature and high voltage It has been found that it has excellent cycle characteristics and charge / discharge capacity even under the environment.
 1:集電体、2:結着剤、3:正極活物質、4:正極活物質層、5:被覆層、51:無機粉末、52:被覆層用バインダー、6:空隙。 1: current collector, 2: binder, 3: positive electrode active material, 4: positive electrode active material layer, 5: coating layer, 51: inorganic powder, 52: binder for coating layer, 6: void.

Claims (6)

  1.  集電体と、
     該集電体の表面に配置され、正極活物質及び結着剤を含む正極活物質層と、
     該正極活物質層の表面の少なくとも一部に配置される被覆層と、
     を有し、
     該被覆層は、絶縁性の無機粉末と、被覆層用バインダーと、を有し、
     該被覆層は空隙を有することを特徴とするリチウムイオン二次電池用正極。
    Current collector,
    A positive electrode active material layer disposed on the surface of the current collector and containing a positive electrode active material and a binder;
    A covering layer disposed on at least a part of the surface of the positive electrode active material layer;
    Have
    The coating layer comprises an insulating inorganic powder and a coating layer binder,
    The covering layer has a void, and the positive electrode for a lithium ion secondary battery.
  2.  前記被覆層の表面を走査型電子顕微鏡(Scanning Electron Microscope)で観察した画像において、前記被覆層の表面の開口率が5%以上50%以下である請求項1に記載のリチウムイオン二次電池用正極。 2. The lithium ion secondary battery according to claim 1, wherein an aperture ratio of the surface of the coating layer is 5% or more and 50% or less in an image obtained by observing the surface of the coating layer with a scanning electron microscope. Positive electrode.
  3.  前記被覆層の厚みは1μm以上で前記正極活物質層の厚みの20%以下である請求項1または2に記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to claim 1, wherein a thickness of the covering layer is 1 μm or more and 20% or less of a thickness of the positive electrode active material layer.
  4.  前記無機粉末の平均粒径D50は100nm以上1μm以下である請求項1~3のいずれか一項に記載のリチウムイオン二次電池用正極。 The inorganic powder having an average particle diameter D 50 is the positive electrode for a lithium ion secondary battery according to any one of claims 1 to 3 is 100nm or more 1μm following.
  5.  前記無機粉末は、窒化ホウ素、窒化アルミニウム及び窒化珪素から選ばれる少なくとも1つからなる請求項1~4のいずれか一項に記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the inorganic powder is at least one selected from boron nitride, aluminum nitride and silicon nitride.
  6.  請求項1~5のいずれか一項に記載のリチウムイオン二次電池用正極と、
     負極と、
     非水電解液と、
     を有するリチウムイオン二次電池。
    A positive electrode for a lithium ion secondary battery according to any one of claims 1 to 5,
    A negative electrode,
    Non-aqueous electrolyte,
    Having a lithium ion secondary battery.
PCT/JP2014/002096 2013-05-13 2014-04-14 Lithium-ion-secondary-battery positive electrode and lithium-ion secondary battery WO2014185006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013101143A JP5610031B1 (en) 2013-05-13 2013-05-13 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2013-101143 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185006A1 true WO2014185006A1 (en) 2014-11-20

Family

ID=51897999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002096 WO2014185006A1 (en) 2013-05-13 2014-04-14 Lithium-ion-secondary-battery positive electrode and lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP5610031B1 (en)
WO (1) WO2014185006A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742346A (en) * 2018-12-26 2019-05-10 格林美(无锡)能源材料有限公司 Si/Al coats nickel cobalt manganese anode material for lithium-ion batteries and preparation method thereof altogether
US11374225B2 (en) 2017-10-06 2022-06-28 Gs Yuasa International Ltd. Electrode plate, energy storage device, and method for manufacturing electrode plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP2006048942A (en) * 2004-07-30 2006-02-16 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for battery
WO2007108425A1 (en) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP2006048942A (en) * 2004-07-30 2006-02-16 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for battery
WO2007108425A1 (en) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374225B2 (en) 2017-10-06 2022-06-28 Gs Yuasa International Ltd. Electrode plate, energy storage device, and method for manufacturing electrode plate
CN109742346A (en) * 2018-12-26 2019-05-10 格林美(无锡)能源材料有限公司 Si/Al coats nickel cobalt manganese anode material for lithium-ion batteries and preparation method thereof altogether

Also Published As

Publication number Publication date
JP5610031B1 (en) 2014-10-22
JP2014222572A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
US8486566B2 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
KR101511822B1 (en) Negative active material for lithium battery and battery comprising the same
JP6807010B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery and manufacturing method thereof
JP2015011922A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6136809B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5534377B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
JP5643996B1 (en) Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer
JP5482858B2 (en) Lithium ion secondary battery
JP2014149989A (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2014082084A (en) Lithium ion secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6016029B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014185006A1 (en) Lithium-ion-secondary-battery positive electrode and lithium-ion secondary battery
JP6011634B2 (en) Nonaqueous electrolyte secondary battery
JP6056685B2 (en) Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5862490B2 (en) Lithium ion secondary battery
JP6460381B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP5999430B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
JP5673751B2 (en) Lithium ion secondary battery
JP6048312B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5857943B2 (en) Nonaqueous electrolyte secondary battery
JP6124076B2 (en) Method for forming protective layer on aluminum foil, current collector for lithium ion secondary battery, and lithium ion secondary battery
JP2010199006A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798653

Country of ref document: EP

Kind code of ref document: A1