WO2014184923A1 - Method for gasifying solid organic raw material and gasification device - Google Patents

Method for gasifying solid organic raw material and gasification device Download PDF

Info

Publication number
WO2014184923A1
WO2014184923A1 PCT/JP2013/063658 JP2013063658W WO2014184923A1 WO 2014184923 A1 WO2014184923 A1 WO 2014184923A1 JP 2013063658 W JP2013063658 W JP 2013063658W WO 2014184923 A1 WO2014184923 A1 WO 2014184923A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
solid organic
circular cavity
reactor
organic raw
Prior art date
Application number
PCT/JP2013/063658
Other languages
French (fr)
Japanese (ja)
Inventor
ペトロフ,スタニスラブ
Original Assignee
Global Energy Trade株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy Trade株式会社 filed Critical Global Energy Trade株式会社
Priority to JP2015516833A priority Critical patent/JP6041451B2/en
Priority to PCT/JP2013/063658 priority patent/WO2014184923A1/en
Publication of WO2014184923A1 publication Critical patent/WO2014184923A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/36Fixed grates
    • C10J3/38Fixed grates with stirring beams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma

Definitions

  • the present invention relates to a method for gasifying solid organic raw materials, and a gasifier for carrying out the method, and more specifically, an organic matter obtained in the form of solid matter such as various wastes, coal, wood, biomass and the like
  • the present invention relates to a method for obtaining a fuel gas by gasifying the solid organic raw material by pyrolysis with a raw material (solid organic raw material) containing components as an object to be treated, and an apparatus for obtaining the fuel gas.
  • coal As a method of using solid organic raw materials, for example, coal as fuel, there is a method of burning coal directly and taking out thermal energy, and once combusting coal and gasifying it, a flammable fuel gas is obtained. There is a method of extracting energy by burning a fuel gas.
  • coal is burned directly in the boiler and steam is generated by heat at the time of combustion, Power generation by rotating the steam turbine under the pressure of
  • coal is first pyrolyzed in the gasification furnace, and the gas turbine is rotated by the expansion power obtained when the fuel gas generated by the pyrolysis is burned in the gas turbine. Is done.
  • thermal power generation using coal has been described as an example, but to obtain a fuel gas by gasifying a solid organic raw material by thermal decomposition is a process such as electric power or heat by incineration of wastes It is a technology that is expected to be used in zero-emission waste incineration facilities etc. that obtain energy.
  • waste is introduced into a shaft furnace provided with a heating zone using two or three variable electrodes, and air and water vapor whose flow rate and ratio are optimized so as to minimize electric input energy It supplies to the heating zone in the said blast furnace.
  • the gasification rate, generated gas components, carbon removal from organic matter in the gasification process, vitrification of slag, etc. are influenced by the temperature of the heating zone, and the main factors for securing the temperature conditions required in the furnace
  • the most important energy source is plasma arc, but the in-furnace energy input by the plasma arc calculated from the data published for the existing equipment is 0.1 to 1.2 kWh / kg of raw material, and the latest commercialization plant (described later) Also in the garbage processing facility in Hokkaido Ukushiri described in Non-Patent Document 1), the value is about 0.3 kWh / kg of raw material.
  • Patent Document 2 A plasma pyrolysis and vitrification system has also been proposed (US Pat. No. 7,665,407-2): Patent Document 2).
  • the plasma torch circulates the exhaust gas in the main reactor in order to reduce the amount of volatile ash that comes out with the gas generated by plasma pyrolysis.
  • the particles of volatile ash melt and are adsorbed on the inner wall of the furnace by centrifugal force.
  • a plasma type gasification reactor has also been proposed (US Patent Application Publication No. 2010/099557 A1: Patent Document 3), in which a plasma is generated at the bottom of a solid organic raw material layer having a high calorific value, such as coke.
  • a reaction vessel having a side wall shaped upper lid which is extended as it goes to the top.
  • the present invention is characterized in three points relating to the shape of the reaction vessel, and the shapes of the product gas outlet pipe and the raw material feeding pipe.
  • the production cost and running cost of the gasifier are proportional to the output of the plasma generator installed in the gasifier, and a high power plasma generator is used.
  • the average efficiency of gasification by plasma in existing equipment (ratio of the amount of thermal energy of the generated synthesis gas to the total amount of energy held by the raw material and the energy used for the synthesis gas generation) is 42%
  • the average efficiency by general gasification outside plasma is about 72%, and there is still a large room for improvement.
  • the present invention was made to eliminate the drawbacks in the above-mentioned prior art, and on the premise of the above-mentioned average efficiency in gasification, by enabling the efficiency to be increased, the conventional process Advantages of gasification by plasma method by enabling realization of processing capacity equal to or higher than that of equipment, using a smaller-sized, low-power plasma generator compared to conventional processing equipment
  • the aim is to realize the reduction in size and weight of the entire device, and the control of manufacturing costs and running costs, while maintaining the capacity.
  • the gasification method of the solid organic material of the present invention is The granular solid organic raw material dried from one end (upper end) side in the cylindrical reactor 10 is introduced, and the reactor is moved from the one end (upper end) side to the other end (lower end) side in the reactor 10 Form a raw material column that moves in the axial direction of 10,
  • the high temperature steam jet generated by the electric arc plasma jet 30 is injected in the middle region (the first circular cavity 11) of the reaction furnace 10 to partially gasify the organic component in the solid organic raw material to make the fuel gas Generate,
  • the organic component remaining in the solid organic raw material is completely gasified,
  • the inside of the reaction furnace 10 is sucked (through the exhaust gas passage 21) at the other end (lower end) side, and the fuel gas generated from the solid organic raw material is taken out at a temperature of 850 ° C. or higher, for example 850 to 1000 ° C. (Claim 1).
  • the blowing of the oxidant be a mixture of fuel equivalent ratio of 0.7 to 3.0 (claim 2).
  • the steam jet is a jet of superheated steam at 2000 to 3500 ° C., and the tangential line in the circumferential direction of the inner wall of the reactor 10 through one or more electric arc plasma jets 30 Forming a circulating flow of the steam jet circulating in the reactor circumferentially by blowing the steam jet in the direction;
  • the inner wall of the reactor (the inner wall of the first circular cavity 11) in the portion where the circulating flow is formed is heated to 1000 to 1600 ° C. (claim 3).
  • the oxidizing agent is blown into the reaction furnace 10 while being heated to 200 to 600 ° C. (claim 4).
  • the oxidizing agent consumption rate ⁇ o in the oxidation is maintained in the range of 0.90 to 0.95 (claim 5).
  • the temperature of the solid organic raw material passed through the region (second circular cavity 12) is maintained in the range of 900 to 1100 ° C., and the oxidant consumption rate ⁇ o in gasification is in the range of 1.05 to 1.20 (claim 6).
  • the gasifier 1 for solid organic materials of the present invention A first circular cavity formed by expanding the inner diameter of the reaction furnace 10 in an intermediate region in the cylindrical reaction furnace 10 in which the raw material introduced from one end (upper end) is moved to the other end (lower end) side 11 and, A second circular cavity formed by expanding the inner diameter of the reactor at a position near the other end separated by a distance of 0.1 to 0.5 times the inner diameter of the reactor 10 with respect to the first circular cavity 11 Set 12 and A vapor plasma introduction passage 22 for introducing a high temperature water vapor jet jetted by an electric arc plasma jet 30 disposed outside the reaction furnace 10 is communicated with a space in the reaction furnace 10 in the first circular cavity 11,
  • the oxidant introducing passage 23 for introducing a heated oxidant is communicated with the space in the reactor 10 in the second circular cavity 12
  • An exhaust gas passage 21 for sucking the inside of the reaction furnace 10 is communicated with the inside of the reaction furnace 10 at the other end side (claim 8).
  • the vapor plasma introduction path 22 makes the circulating flow of the water vapor jet along the inner wall surface in the tangential direction in the circumferential direction of the inner wall of the first circular cavity 11 It arrange
  • the oxidizing agent introduction path 23 is a tangential direction in the circumferential direction of the inner wall of the second circular cavity 12, and a circulating flow in the same rotational direction as the circulating flow of the steam jet generated in the first circular cavity 11 It arranges so that it may arise (claim 10).
  • the above-mentioned exhaust gas passage 21 has a double pipe structure, and the inside of the reactor 10 is sucked through one passage (the inner passage 21a) of the exhaust gas passage 21, and the other passage (the outer The oxidant introducing passage 23 is communicated with an oxidant supply source (not shown) via the passage 21b) (claim 11).
  • the diameter of the second circular cavity 12 on the outlet (lower end) side is narrowed to a diameter 0.7 to 0.9 times the diameter on the inlet (upper end) side (claim 12).
  • a region (gasification promoting region 13) from the outlet of the second circular cavity 12 to the other end of the reaction furnace 10 is from the outlet of the second circular cavity 12 to the other end of the reaction furnace 10
  • the inner diameter is formed to be gradually enlarged toward the end (claim 13).
  • a portion of the organic component in the solid organic raw material is gasified by vapor plasma to generate a highly reactive fuel gas, and (2) By combining the circular cavity 12 with an oxidant (air, oxygen-rich air, or oxygen) and burning it, the heat of several times (about 2 to 5 times) the amount of energy by the steam plasma is generated, and these energies By performing the complete gasification of the organic components remaining in the solid organic raw material by the sum of the electric energy of the plasma and the heat energy obtained by burning the highly reactive fuel gas, Compared to the conventional plasma type gas generator, fuel gas can be generated efficiently even when using a small plasma generator.
  • an oxidant air, oxygen-rich air, or oxygen
  • the present invention it becomes possible to use a smaller plasma generator, so that the manufacturing cost and running cost of the gasifier can be reduced, and the entire gasifier can be compact and lightweight. It was possible to
  • FIG. 1 Front sectional drawing of the gasifier of this invention.
  • II-II sectional view taken on the line of FIG. Side surface principal part sectional drawing of the gasification apparatus of this invention.
  • IV-IV sectional view taken on the line of FIG. It is a correlation diagram of the temperature and the component of the fuel gas synthesized by the decomposition of the solid organic raw material, (A): air plasma 245 g, (B): air plasma 1200 g, (C): vapor plasma for decomposition per kg of raw material 64 g, (D) is an example using 314 g of vapor plasma.
  • the correlation figure of the temperature and the product component at the time of gasifying wood with vapor plasma The correlation diagram of the reaction gas temperature for every particle diameter of a raw material (wood), and the raw material particle surface temperature.
  • Reference numeral 1 in FIGS. 1 to 4 is a gasifier according to the present invention.
  • This gasifier 1 is a cylindrical reactor 10 made of a refractory material and surrounded by a heat insulating material 3;
  • an oxidant source (not shown) for introducing the oxidant.
  • a supply device 40 with a motor 41 is provided.
  • this supply device 40 granular solid organic raw materials such as waste, wood, charcoal, coal, etc. crushed in the reactor 10
  • a first circular cavity 11 formed by expanding the inner diameter of the reactor 10 is formed in an intermediate region of the reactor 10, and the inner diameter of the reactor 10 is set to 0 with respect to the first cylindrical cavity 11. 2.
  • a second circular cavity 12 is provided at the lower side by a distance of 2 to 0.5 times and similarly formed by expanding the inner diameter of the reaction furnace.
  • the second circular cavity 12 is formed in a shape of gradually narrowing the diameter at its bottom, and the outlet of the second circular cavity 12 which becomes the narrowest part has a diameter of 0. 0 to the diameter of the inlet of the second circular cavity 12. It is narrowed to 7 to 0.9 times the diameter.
  • the outlet of the second circular cavity 12 mentioned above is in communication with the gasification promoting region 13 which is formed to expand in diameter downward from the diameter of the outlet of the second circular cavity 12.
  • At least one electric arc plasma jet 30 is provided outside the reaction furnace 10 thus formed, and the vapor plasma generated by the electric arc plasma jet 30 is introduced via the vapor plasma introduction passage 22. It can be introduced into the first circular cavity 11 described above.
  • the vapor plasma introduction passage 22 is provided on the inner wall surface of the first circular space 11 so as to be able to introduce the vapor plasma in a tangential direction with respect to the circumferential direction of the inner wall surface.
  • the jet of superheated steam can be circulated in the first circular cavity 11 by introducing the vapor plasma into the first circular cavity 11 via 22.
  • a circular exchanger 9 is attached which heats the introduced water by heat exchange to generate steam so that steam can be supplied into the reactor 10, where it is generated here
  • steam is generated by mixing the treated steam with the plasma jet and the oxidant introduced into the second circular cavity 12 if necessary, or by using it as the steam introduced from the lower part of the gasification promoting region 13
  • the lower portion of the reactor is cooled by heat exchange, and a residual ash discharging device 50 equipped with a motor 51 for forcibly discharging residual ash is attached under the circular exchanger 9.
  • an exhaust gas passage 21 for discharging the generated gas (fuel gas) in the reaction furnace 10 is provided.
  • the exhaust gas passage 21 is constituted by a double pipe in the illustrated embodiment, and can suck and discharge the fuel gas generated in the reaction furnace 10 through the inner passage 21a, and the outer passage 21b. Can be used to introduce an oxidant (air, oxygen-enriched air, oxygen) into the second circular cavity 12.
  • an oxidant supply joint 21c is provided in the vicinity of the end opposite to the reaction channel 10 of the exhaust gas passage 21, and this joint 21c is illustrated
  • This joint 21c is illustrated
  • the oxidizing agent supplied from the oxidizing agent source not shown, is heated by heat exchange with the fuel gas passing through the inner passage 21a when passing through the outer passage 21b of the exhaust gas passage 21, and thus A heated oxidizer can be introduced into the second circular cavity 12.
  • the aforementioned oxidizing agent introducing passage 23 is opened in the inner wall surface of the second circular cavity 12 in a tangential direction with respect to the circumferential direction of the inner wall (see FIG. 2). By introducing it, a circulation flow of the oxidant having the same rotational direction as the circulation direction of the steam jet generated in the first circular cavity 11 described above is generated.
  • Gasification of a solid organic raw material is performed by the following method using the gasifier 1 of this invention comprised as mentioned above.
  • the supply device 40 quantitatively determines the raw material by the stirring blade 42 rotated by the motor 41 into the reaction furnace 10 Supply.
  • the residual ash of the solid organic raw material generated by thermal decomposition in the reaction furnace 10 is forcibly discharged to the outside by the residual ash discharging device 50 provided at the lower part of the reaction furnace 10.
  • the solid organic material introduced into the container is folded in a state where a gap is formed between the particles of the solid organic material by gravity, and passes through the inside of the reaction furnace 10 in the axial direction in a state similar to the porous body as a whole Form a raw material column.
  • the high temperature (2000-3500 ° C.) vapor plasma generated in the electric arc plasma jet 30 is introduced tangentially into the first circular cavity 11 through the vapor plasma introduction passage 22 and then the particles of the solid organic material are separated. Flow forward through the interstices to form a vortex-like flow circulating in the first circular cavity 11.
  • the inner wall surface of the first circular cavity 11 is heated to 1000 to 1600 ° C. by the swirling flow of the vapor plasma, and the solid organic substance in the first circular cavity 11 is directly heated by the vapor plasma and contacting with the red wall of the reactor. While a part (15 to 30% by mass) of the organic component in the raw material is gasified, it reacts with water vapor to generate a fuel gas by the reaction represented by the following general reaction formula.
  • the heating temperature for the raw material column is reduced and the gasification rate is also reduced because the heating temperature of the reactor wall is reduced.
  • the temperature of the superheated steam to be introduced is set to 3500 ° C. or higher, dissociative recombination occurs and the heat conduction of steam rapidly rises, so that the loss for cooling the electric arc plasma jet 30 and the steam plasma introduction path 22 rapidly Because of the increase, as described above, the temperature of the vapor plasma introduced into the first circular cavity 11 is set to 2000 to 3500.degree.
  • the heating temperature of the reactor wall is less than 1000 ° C, the reaction rate of the organic matter decreases and the conversion rate decreases, while if the reactor wall temperature exceeds 1600 ° C, serious problems regarding the life and durability of the reactor
  • the temperature of the vapor plasma introduced to the first circular cavity 11 is adjusted within the range of 2000 to 3500 ° C. mentioned above so that the heating temperature of the reactor wall is in the range of 1000 to 1600 ° C. .
  • the fuel gas generated in the first circular cavity 11 by this effect reacts at a temperature of about 1100 to 1200 ° C. It moves downward along the inner wall of the furnace 10 and is introduced into the second circular cavity 12 (see FIG. 1).
  • the inside of the second circular cavity 12 is generated in the second circular cavity 12 so that a swirling flow in the same circulation (rotation) direction as the circulation (rotation) direction of the steam jet generated in the first circular cavity 11 described above occurs.
  • An oxidant air, oxygen-enriched air, or oxygen
  • An oxidant is blown in a direction tangential to the circumferential direction of the wall through an oxidant introduction path indicated by reference numeral 23 (see FIG. 2).
  • This oxidizing agent is configured to be introduced into the above-described oxidizing agent introducing passage 23 through the outer flow passage 21b of the exhaust gas passage 21 configured as a double pipe through the joint 21c, and the exhaust gas passage In 21, the oxidizing agent heated to 200 to 600 ° C. by heat exchange with the fuel gas discharged through the inner passage 21 a of the exhaust gas passage 21, and thus the heated oxidant is introduced into the second circular cavity 12.
  • the fuel gas generated in the first circular cavity 11 and then introduced into the second circular cavity 12 exceeds the ignition temperature (more than 650 ° C.) even after merging with the jet of the oxidant.
  • the second circular cavity 12 a flame flow with a local temperature of 2227 ° C. or more is generated.
  • the heating temperature of the oxidizing agent is less than 200 ° C, the process of oxidation and gasification is hardly affected, and if it is heated to over 600 ° C, the heat of the fuel gas is removed by heat exchange and exhausted. After leaving the reactor after the temperature of the fuel gas falls below the allowable temperature of 850 ° C, there is a possibility that dioxins and furans may be generated by the combination of halogen and hydrocarbon, and the temperature of the oxidant to be introduced Was set to 200 to 600.degree.
  • the fuel equivalent ratio (mass of fuel gas / mass of oxidant) ⁇ f is set to 0.7 to 3.0, preferably 1.5 to 3.0. Combustion in the state of rich mixing. The general main reaction in oxidation is It becomes.
  • the entire raw column is heated to an average temperature of 1100 to 1600 ° C. under adiabatic filter combustion conditions, and then the second circular cavity It is introduced into the gasification promoting region 13 provided below 12.
  • the raw material from which excess oxidant and fuel gas combustion products not used for oxidation in the second circular cavity 12 fall The thermal decomposition of the main organic components remaining in the solid organic feedstock is performed, which is sprayed laterally to the columns.
  • the solid organic raw material heated in the second circular cavity 12 maintains the average temperature in the range of 900 to 11000 ° C., and the oxidant consumption rate ⁇ for the stoichiometry gasification in the range of 0.90 to 0.95 Do.
  • the temperature of the solid organic raw material is less than 900 ° C., the residual carbon content increases, and when it exceeds 1100 ° C., the melted lump of the solid organic raw material remains, and the incineration performance of the organic impurities is deteriorated.
  • the oxidant consumption rate ⁇ is less than 0.90, the power consumption for the thermal decomposition increases, and in the thermal decomposition stage, the incomplete combustion increases in the exhaust gas, while the oxidant consumption rate ⁇ is 0.95. If the temperature is exceeded, the temperature level of thermal decomposition may rise, and the grate provided at the bottom of the apparatus may burn.
  • superheated steam may be introduced together with the above-mentioned oxidizing agent which is air, oxygen-rich air, or oxygen.
  • the temperature at the thermal decomposition stage of the residual organic component in the gasification promoting region 13 is maintained in the range of 900 to 1100 ° C., and the oxidant consumption rate ⁇ is in the range of 1.05 to 1.20.
  • the oxygen consumption rate ⁇ is less than 1.05, the mass exchange with the residual carbon of the oxidant is deteriorated, and the incomplete combustion is increased. If the oxidant consumption rate ⁇ exceeds 1.20, this leads to an increase in energy consumption (fuel and power) for the process.
  • the reduction rate of the raw material column charged into the reactor 10 is proportional to the gasification rate, and the mass of the organic component of the gasified solid organic raw material is the separated amount of volatile components, the mass of the residual carbon gasified
  • the raw material column moves downward with continuous decrease due to the decrease of solid organic material and the discharge of residual ash, and the generated fuel gas is ventilated through the exhaust gas passage 21 When it passes through the exhaust gas passage 21, it is aspirated, and heat exchange with the oxidant is performed, and the air is exhausted to the outside at a temperature of 850 to 1000 ° C.
  • the average temperature range of the solid organic material in the second circular cavity 12 is 1100 to 1600 ° C., and the temperature range of the fuel gas at the outlet of the reactor is 850 to 1000 ° C.
  • the ratio between the amount of heat and the amount of chemical heat from combustion of the fuel gas produced thereby is determined.
  • a temperature zone is set along the moving direction of the raw material column (height direction of the reaction furnace), and the above-described process is performed in each temperature zone.
  • the average temperature inside is 100 to 250 ° C.
  • the solid organic raw material which is waste etc. is dried.
  • Part of the raw material is gasified by steam plasma at ⁇ 1300 ° C, and heat generation by oxidation (combustion) of part of the fuel gas occurs at an internal average temperature of 1100-1600 ° C in the second circular cavity 12 below it.
  • the gasification promoting region 13 below the second circular cavity 12 the residual organic component in the solid organic material is filtered and burned, and the inorganic component oxygen-free gasification produced by the decomposition of the solid organic material, synthesis gas production by reduction of the complete combustion products takes place, a predominantly CO + H 2 components.
  • the heat applied by the vapor plasma causes an endothermic reaction of the solid organic raw material, and a part of it is converted into fuel gas.
  • the chemical energy of the solid organic feedstock is not lost here, but is converted into the chemical energy of the fuel gas and the thermal energy.
  • the energy generated is approximately three times the input power energy, this energy is generated in the second circular cavity 12, and the solid organic raw material is heated to a temperature of 1100 to 1600 ° C. Used for complete gasification of raw materials.
  • the electric energy initially input to the electric arc plasma jet 30 and the power consumption during operation can be reduced to 3 to 5 times while maintaining the processing capacity of the solid organic raw material
  • the novel communication structure, the shape, the size, and the combination thereof of the respective parts constituting the gasification device 1 are important features, and as described above, in the gasification device 1 of the present application, a cylindrical reactor A first circular cavity 11 is provided in the middle part of 10, and below the first circular cavity 11, the second circular cavity 12 is separated by a distance 0.2 to 0.5 times the diameter of the reactor. The diameter of the bottom of the second circular cavity 12 is gradually reduced to make the diameter of the narrowest part (the outlet of the second circular cavity 12) 0.7 of the diameter of the upper end (the inlet of the second circular cavity 12). Further, the shape of the gasification promoting region 13 formed below the second circular cavity 12 is configured to expand in diameter further downward from the narrowest portion. doing.
  • the vapor plasma generated by the electric arc plasma jet 30 is introduced into the first circular cavity 11 in the tangential direction through the vapor plasma introduction passage 22 to generate a circulating flow of the water vapor jet, and the second circular shape
  • the oxidizing agent heated in the cavity 12 is introduced tangentially via the oxidizing agent introducing passage 23 in such a direction that a circulating flow in the same rotational direction as the circulating flow of the steam jet in the first circular cavity 11 is generated.
  • a portion of the granular solid organic raw material that is relatively incombustible mainly contains CO and H 2 in the first circular cavity 11. It becomes a reactive combustion gas, and then the entire solid organic raw material is vigorously heated by burning the fuel gas previously generated in the second circular cavity 12, whereby the organic components remaining in the solid organic raw material are gasified Be done.
  • partial gasification of organic components by vapor plasma and fuel obtained by this gasification are compared with the gasification rate of particulate solid organic raw materials in an acidic environment, that is, the gasification rate by combustion alone.
  • the gasification rate can be greatly improved by performing complete gasification of the organic component remaining in the solid organic raw material by the mixed process of gas combustion, and as a result, the chemical energy output of the solid organic raw material Power consumption of the electric arc plasma jet 30 can be reduced to three to five times.
  • the distance between the first circular cavity 11 that performs gasification with vapor plasma and the second circular cavity 12 that burns the generated fuel gas is selected in the range of 0.1 to 0.5 times the diameter of the reactor. The reason is that if the distance is less than 0.1 times, the steam jet flows into the second circular cavity 12 to suppress the combustion reaction, and if the distance is more than 0.5 times, (1) The fuel gas generated in the circular cavity 11 flows into the gaps between the particles of the solid organic raw material, and the fuel gas introduced into the second circular cavity 12 is reduced, and the calorific value is significantly reduced. .
  • the bottom diameter of the second circular cavity 12 is gradually narrowed, and the diameter of the outlet of the second circular cavity 12 which is the narrowest portion is 0.7 to 0.9 times the diameter of the inlet of the second circular cavity 12
  • the provision of the gasification promoting region 13 having a shape of expanding the diameter further downward from the outlet of the second circular cavity 12, the outlet passage of the second circular cavity 12 of the solid organic raw material is restricted.
  • the residence time of the solid organic raw material in the second circular cavity 12 is lengthened and the heating of the raw material is promoted, and the amount of solid organic raw material in the second circular cavity 12 is one.
  • the sludge is a furnace by expanding the tail of the gasification promoting region 13 Attach to the inner wall Thereby preventing the door.
  • the maximum heat output area of the reactor ie the diameter of the bottom outlet of the second circular cavity 12 is adapted to the mass loss rate of the solid organic feedstock, and if less than 0.7 with respect to the diameter of the inlet, the advancement of the feedstock (Falling) may be too late and thermal burnout may occur. On the other hand, if it exceeds 0.9 with respect to the diameter of the upper end portion, the advance of the raw material will be quick, and the unreacted raw material will flow into the gasification promoting region 13 in a state of being increased.
  • the lower heating value (LHV) of the combustion gas obtained by the method of the present invention is 12.09. It is MJ / kg, and the adiabatic combustion temperature is 1937 ° C.
  • the amount of oxidant consumption g (g / kg) used when thermally decomposing 1 kg of chicken manure is as follows.
  • the amount of reduction of the raw material column in the reactor substantially corresponds to 0.25, which is the consumption ratio of water and volatile components in the raw material due to evaporation.
  • the whole raw material column moves downward, and the solid organic raw material in the first circular cavity 11 approaches the second circular cavity 12 and the drying area is above the first circular cavity 11
  • the solid organic raw material present in is introduced into the first circular cavity 11.
  • the reactant vapor
  • the gasification product is discharged.
  • the composition of the gasification product can be determined, and in the first circular cavity 11, close to the stoichiometric ideal value Gasification can be performed.
  • FIG. 5 (A) to 5 (D) are graphs showing the temperature at the time of gasification of chicken manure with plasma and the component change of the synthesized fuel gas, and FIG. 5 (A) shows 245 g of air plasma.
  • Fig. 6 shows the power consumption (MJ / kg) required to process the raw material per unit mass (1 kg) in Examples 1 and 2 and Comparative Examples 1 and 2.
  • Fig. 7 further shows Examples 1 and 2 and The output energy (MJ / kg) of the fuel gas obtained from the raw material of unit mass (1 kg) in Comparative Examples 1 and 2 is shown.
  • the consumption of vapor plasma required for treatment of 1 kg of raw material in gasification varies depending on the material of the solid organic raw material which is the raw material, but 64 g / kg when the above mentioned chicken manure is treated (Example 1
  • the dry wood was treated at 326 g / kg, and the waste tire was treated at 1.2 kg / kg.
  • the generation of H 2 and CO peaks at about 1300 K (1026.84 ° C.), and then the generation of H 2 and CO hardly changes with the increase of temperature. It is advantageous to carry out heating under the condition that the heating temperature of the solid organic raw material becomes 1100 ° C. or higher, since such a temperature is 2000 ° C. in the tangential direction in the first circular cavity 11. This can be realized by blowing in steam superheated to -3500 ° C.
  • the flame propagation speed decreases as the content of carbon monoxide (CO) increases, and when the initial temperature rises, the propagation speed also increases, but in all cases, the fuel equivalence ratio ⁇ f is as high as about 2 Propagation velocity reaches a peak, and the fuel equivalence ratio ⁇ f is in the range of concentrated air-fuel ratio of 0.7 to 3.0, preferably 1.5 to 3.0, including before and after this value.
  • a high heat transfer rate can be obtained in any case (FIGS. 12A to 12C).
  • the fuel equivalent ratio was calculated by determining the amount of fuel gas generated in the first circular cavity 11 based on the stoichiometry of the solid organic raw material remaining without gasification in the first circular cavity 11.
  • the combustion temperature of the combustion products achieves the maximum value
  • the maximum combustion temperature of the combustion products when the biomass is processed is 1900 ° C.
  • the waste mixture model is The maximum combustion temperature of the combustion product when treated was 1700 ° C.
  • the carbon monoxide (CO) in the combustion product was less than 0.5%.
  • Test example 2 Plasma jet input -100kW. Processing capacity of waste (medical waste)-53 kg / h, water flow-27 kg / h. Plasma jet temperature-2800 ° C. Reactor internal temperature -1100 ° C. Product gas components,% by weight: ⁇ 2 - 65, ⁇ - 35 . Calorific value-11, 42 MJ / mn3. Generated gas output (1, 5 mn3 / kg)-80, 0 mn3. Heat quantity at the time of gas combustion-253 kW. Total amount of heat in the furnace 353 kW. Depending on the chemical energy of the raw material, the total amount of heat is 3, 53 times the input power. In the above, “mn3” is a cubic meter of gas at a temperature of 20 ° C.

Abstract

Provided is a method for gasifying solid organic raw material that uses a relatively inexpensive gasification device to gasify a solid organic raw material at a low running cost. A solid organic raw material that has been dried and crushed is inserted from the upper end of a cylindrical reaction furnace (10) that is provided with a first circular cavity (11) and a second circular cavity (12) that are formed by expanding the inner diameter of an intermediate area, steam plasma that is generated by an electric arc plasma jet (30) within the first circular cavity (11) is injected, an oxidizing agent such as air that has been heated to 200-600 °C is injected into the second circular cavity (12), and the interior of the lower end section of the reaction furnace (10) is subjected to suction via an exhaust gas passage (21). Part of the organic component of the solid organic raw material within the first circular cavity (11) is gasified by the introduction of steam plasma, introduced into the second circular cavity (12), and combusted by reaction with the oxidizing agent. The synergy of the heat generated during combustion and the heating caused by the plasma cause the remaining organic component within the raw material to gasify. As a result, efficient gasification is possible.

Description

固形有機原料のガス化方法及びガス化装置Method and apparatus for gasifying solid organic raw material
 本発明は,固形有機原料のガス化方法,及び前記方法を実施するためのガス化装置に関し,より詳細には,各種の廃棄物,石炭,木材,バイオマス等の固形物の状態で得られる有機成分を含んだ原料(固形有機原料)を被処理対象として,この固形有機原料を熱分解によりガス化して燃料ガスを得る方法,及び前記燃料ガスを得るための装置に関する。 The present invention relates to a method for gasifying solid organic raw materials, and a gasifier for carrying out the method, and more specifically, an organic matter obtained in the form of solid matter such as various wastes, coal, wood, biomass and the like The present invention relates to a method for obtaining a fuel gas by gasifying the solid organic raw material by pyrolysis with a raw material (solid organic raw material) containing components as an object to be treated, and an apparatus for obtaining the fuel gas.
 固形有機原料,一例として石炭を燃料として利用する方法としては,石炭を直接燃焼させて熱エネルギーを取り出す方法と,石炭を一旦熱分解してガス化することにより可燃性の燃料ガスを得,この燃料ガスを燃焼させることによりエネルギーを取り出す方法がある。 As a method of using solid organic raw materials, for example, coal as fuel, there is a method of burning coal directly and taking out thermal energy, and once combusting coal and gasifying it, a flammable fuel gas is obtained. There is a method of extracting energy by burning a fuel gas.
 一例として,このような石炭を火力発電の燃料として使用する場合を例に挙げて説明すると,前者の方法では,石炭をボイラ内で直接燃焼させて燃焼時の熱により水蒸気を発生させ,この水蒸気の圧力で蒸気タービンを回転させて発電を行う,旧来型の火力発電となる。 As an example, the case of using such coal as fuel for thermal power generation will be described by way of example. In the former method, coal is burned directly in the boiler and steam is generated by heat at the time of combustion, Power generation by rotating the steam turbine under the pressure of
 これに対し,後者の例では石炭を先ずガス化炉内で熱分解し,この熱分解よって発生させた燃料ガスをガスタービン内で燃焼させた際に得られる膨張力によってガスタービンを回して発電が行われる。 On the other hand, in the latter example, coal is first pyrolyzed in the gasification furnace, and the gas turbine is rotated by the expansion power obtained when the fuel gas generated by the pyrolysis is burned in the gas turbine. Is done.
 この場合,ガスタービンからの排気熱を更に利用して水蒸気を発生させ,この水蒸気によって蒸気タービンを回転させることで,ガスタービンからの排熱からも電力を回収する複合発電を行うことも可能で,より効率的なエネルギーの回収を行うことができるようになっている。 In this case, it is possible to perform combined power generation that recovers power also from exhaust heat from the gas turbine by generating steam using the exhaust heat from the gas turbine further and rotating the steam turbine with this steam. Therefore, more efficient energy recovery can be performed.
 なお,上記の例では一例として石炭を使用した火力発電を例に挙げて説明したが,熱分解によって固形有機原料をガス化して燃料ガスを得ることは,廃棄物の焼却によって電力や熱等のエネルギーを得る,ゼロエミッション型の廃棄物焼却施設等においても利用が期待されている技術である。 In the above example, thermal power generation using coal has been described as an example, but to obtain a fuel gas by gasifying a solid organic raw material by thermal decomposition is a process such as electric power or heat by incineration of wastes It is a technology that is expected to be used in zero-emission waste incineration facilities etc. that obtain energy.
 ここで,一般に固相の形態を取る廃棄物等の原料の燃焼は不安定であり,固形有機原料に直接点火した場合,反応領域におけるガス化工程に必要とされる温度に迄,温度を上昇させることが困難である。 Here, the combustion of raw materials such as wastes generally taking the form of solid phase is unstable, and when the solid organic raw material is directly ignited, the temperature rises to the temperature required for the gasification process in the reaction zone It is difficult to
 特に,水分を多く含む廃棄物の燃焼では,水分の蒸発によって熱が奪われるために,発熱量が低くなり,燃焼自体を継続させることが難しくなる。 In particular, in the case of combustion of waste containing a large amount of water, heat is taken away by evaporation of the water, so the calorific value becomes low and it becomes difficult to continue the combustion itself.
 また,固形廃棄物の直接焼却では,熱分解領域において有害性及び毒性成分を効率的に燃焼させる温度の達成が困難で,低い燃焼温度(一例として850℃以下)では,ダイオキシンやこれと類似の化学構造をもつ塩素化ベンゾフラン(以下,「フラン」と略称する。)を排出する可能性が高く,この点からも,固形有機原料を直接燃焼することなく,一旦,ガス化して利用することの有利性が指摘されている。 Also, in the direct incineration of solid waste, it is difficult to achieve the temperature to burn the harmful and toxic components efficiently in the thermal decomposition zone, and dioxins and similar at low burning temperature (as an example 850 ° C or less) There is a high possibility of discharging chlorinated benzofuran (hereinafter abbreviated as "furan") having a chemical structure, and from this point as well, it is possible to temporarily gasify and use the solid organic raw material without directly burning it. An advantage is pointed out.
 このような固形有機原料のガス化に関し,熱エネルギーの利用効率の最大化及び灰・スラグ残物量の最小化を目的とし,プラズマアークを利用して廃棄物の有機性燃料成分をガス化する方法とその装置は既に提案されている(米国特許第5,958,264号公報:特許文献1)。 A method of gasifying organic fuel components of wastes using plasma arc for the purpose of maximizing utilization efficiency of thermal energy and minimizing ash and slag residual amount for gasification of such solid organic raw materials And their devices have already been proposed (US Pat. No. 5,958,264: Patent Document 1).
 この発明では,2つまた3つの可変電極を使った加熱ゾーンを設けたシャフト炉内に廃棄物を投入し,電気入力エネルギーを最小化させるように流量及び比率が最適化された空気及び水蒸気を前記高炉内の加熱ゾーンに供給する。 In the present invention, waste is introduced into a shaft furnace provided with a heating zone using two or three variable electrodes, and air and water vapor whose flow rate and ratio are optimized so as to minimize electric input energy It supplies to the heating zone in the said blast furnace.
 ここでガス化工程におけるガス化速度,生成ガス成分,有機物からの炭素取除き,スラグのガラス化等は加熱ゾーンの温度によって左右され,炉内で必要とされる温度条件を確保する為の主要なエネルギー源はプラズマアークであるが,既存設備に関し公開されているデータより算出したプラズマアークによる炉内入力エネルギー分は0.1~1.2kWh/原料kgで,最新の商業化プラント(後掲の非特許文献1記載の北海道歌志内のゴミ処理施設)においても0.3kWh/原料kg程度である。 Here, the gasification rate, generated gas components, carbon removal from organic matter in the gasification process, vitrification of slag, etc. are influenced by the temperature of the heating zone, and the main factors for securing the temperature conditions required in the furnace The most important energy source is plasma arc, but the in-furnace energy input by the plasma arc calculated from the data published for the existing equipment is 0.1 to 1.2 kWh / kg of raw material, and the latest commercialization plant (described later) Also in the garbage processing facility in Hokkaido Ukushiri described in Non-Patent Document 1), the value is about 0.3 kWh / kg of raw material.
 プラズマ式熱分解・ガラス化システムも既に提案されている (米国特許第7,665,407 В2号公報:特許文献2)。この発明では,プラズマ熱分解で生成するガスと一緒に出てくる揮発性灰量を減少させるために,プラズマトーチが主反応器内の排ガスを循環させる。揮発性灰の粒子は溶融し,遠心力で炉内壁に吸着される。 A plasma pyrolysis and vitrification system has also been proposed (US Pat. No. 7,665,407-2): Patent Document 2). In this invention, the plasma torch circulates the exhaust gas in the main reactor in order to reduce the amount of volatile ash that comes out with the gas generated by plasma pyrolysis. The particles of volatile ash melt and are adsorbed on the inner wall of the furnace by centrifugal force.
 プラズマ式ガス化反応炉も既に提案されており(米国出願公開第2010/0199557 А1号公報:特許文献3),ここにおいて高発熱量の固形有機原料層,例えばコークスの位置する底部においてプラズマを発生させ,上部に行くに従い広がる側壁形状の上蓋のある反応容器が開示されている。この発明に於いては反応容器形状,そして生成ガス出口管及び原料投入管の形状に関する3点に特徴がある。 A plasma type gasification reactor has also been proposed (US Patent Application Publication No. 2010/099557 A1: Patent Document 3), in which a plasma is generated at the bottom of a solid organic raw material layer having a high calorific value, such as coke. There is disclosed a reaction vessel having a side wall shaped upper lid which is extended as it goes to the top. The present invention is characterized in three points relating to the shape of the reaction vessel, and the shapes of the product gas outlet pipe and the raw material feeding pipe.
米国特許第5,958,264号公報U.S. Patent No. 5,958,264 米国特許第7,665,407 В2号公報U.S. Patent No. 7,665,407 [2] 米国出願公開第2010/0199557А1号公報US Patent Application Publication No. 2010/099557 557 1
 以上で説明したように,固形有機原料をガス化して燃料ガスを得る方法及び装置は,従来より種々提案されているものの,このようなガス化方法及びガス化装置の工業的,商業的な利用は依然として進んでいない。 As described above, although various methods and devices for gasifying solid organic raw materials to obtain fuel gas have been proposed conventionally, industrial and commercial applications of such gasification methods and gasifiers Has not progressed yet.
 このような固形有機原料のガス化方法やガス化装置の工業的あるいは商業的な利用が進んでいない主な原因は,ガス化装置の製作費が高いこと,及びガス化装置のランニングコストが,得られた燃料ガスを利用して得られる電気エネルギーや熱エネルギーの販売益を上回ることにある〔参照:「Technical and economic analysis of Plasma-assisted Waste-to-Energy processes」Caroline Ducharme, Columbia University September 2010 (http://www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf#search='Technical+and+economic+analysis+of++Plasmaassisted+WastetoEnergy+processes+By+Caroline+Ducharme')〕。 The main reasons for the lack of progress in industrial or commercial use of such solid organic raw material gasification methods and gasifiers are the high cost of manufacturing the gasifier and the running cost of the gasifier, It is more than selling profit of electric energy and thermal energy obtained by using the obtained fuel gas [Reference: "Technical and economic analysis of Plasma-assisted Waste-to-Energy processes", Caroline Ducharme, Columbia University September 2010 (http://www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf#search='Technical+and+economic+analysis+of++Plasmaassisted+WastetoEnergy+processes+By+Caroline+Ducharme ') ].
 ここで,それぞれの国や地方の経済的な条件に拘わらず,ガス化装置の製作費及びランニングコストは,ガス化装置に装備するプラズマ発生装置の出力に比例し,高出力のプラズマ発生装置を装備する程,ガス化装置の製作費及びランニングコストは高くなり,また,ガス化装置自体も大型化する。 Here, regardless of the economic conditions of each country or region, the production cost and running cost of the gasifier are proportional to the output of the plasma generator installed in the gasifier, and a high power plasma generator is used. The more it is equipped, the higher the cost and cost of manufacturing the gasifier, and the gasifier itself becomes larger.
 従ってガス化装置全体の処理能力を低下させることなく,ガス化装置に装備するプラズマ発生装置として,より小型で低出力のものを使用することができれば,ガス化装置の製作費とランニングコストを減少させることができるだけでなく,ガス化装置全体の小型,軽量化をも実現することが可能となる。 Therefore, if a smaller, low-power plasma generator can be used as the plasma generator equipped in the gasifier without reducing the processing capacity of the entire gasifier, the manufacturing cost and running cost of the gasifier will be reduced. It is possible to realize not only the reduction but also the reduction in size and weight of the entire gasifier.
 なお,既存の装置におけるプラズマによるガス化の平均的な効率(原料の保有エネルギー量と合成ガス生成に使われたエネルギー量の総和に対する,生成された合成ガスの熱エネルギー量の比率)は42%程度であり,また,プラズマ以外での一般的なガス化による平均的な効率は72%程度であり,未だ改善の余地は大きい。 The average efficiency of gasification by plasma in existing equipment (ratio of the amount of thermal energy of the generated synthesis gas to the total amount of energy held by the raw material and the energy used for the synthesis gas generation) is 42% The average efficiency by general gasification outside plasma is about 72%, and there is still a large room for improvement.
 そこで本発明は,上記従来技術における欠点を解消するために成されたものであり,ガス化における上記平均的な効率を前提とし,この効率を高めることができるようにすることで,従来の処理装置と同等以上の処理能力の実現を,従来の処理装置に比較してより小型,低出力のブラズマ発生装置を使用して行うことができるようにすることで,プラズマ方式によるガス化のメリットと能力を維持しながら,装置全体の小型軽量化,製作費やランニングコストの抑制を実現することを目的とする。 Therefore, the present invention was made to eliminate the drawbacks in the above-mentioned prior art, and on the premise of the above-mentioned average efficiency in gasification, by enabling the efficiency to be increased, the conventional process Advantages of gasification by plasma method by enabling realization of processing capacity equal to or higher than that of equipment, using a smaller-sized, low-power plasma generator compared to conventional processing equipment The aim is to realize the reduction in size and weight of the entire device, and the control of manufacturing costs and running costs, while maintaining the capacity.
 以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするために記載したものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。 Hereinafter, means for solving the problems will be described together with reference numerals used in the mode for carrying out the invention. This code is described to clarify the correspondence between the description of the claims and the description of the mode for carrying out the invention, and, needless to say, is limited to the interpretation of the technical scope of the present invention. It is not used.
 上記目的を達成するために,本発明の固形有機原料のガス化方法は,
 円筒形の反応炉10内の一端(上端)側より乾燥した粒状の固形有機原料を導入し,前記反応炉10内に前記一端(上端)側から他端(下端)側に向かって前記反応炉10の軸線方向に移動する原料柱を形成し,
 前記反応炉10の中間領域(第1円形空洞11)において電気アークプラズマジェット30で発生した高温度の水蒸気噴流を噴射して前記固体有機原料中の有機成分を一部ガス化させて燃料ガスを発生させ,
 前記燃料ガスを発生させた領域(第1円形空洞11)に対し前記他端(下端)寄りの領域(第2円形空洞12)において反応炉10内に酸化剤(空気,富酸素空気,又は酸素)を吹き込んで,前記燃料ガスを燃焼させ,前記酸化剤の供給を行った領域(第2円形空洞12)の内部平均温度を1100~1600℃に加熱して,この酸化剤の導入を行った領域(第2円形空洞12)と該領域に対し前記他端(下端)寄りにある領域(ガス化促進領域13)において前記固形有機原料中に残留する有機分を完全にガス化し,
 前記他端(下端)側において前記反応炉10内を(排出ガス通路21を介して)吸引し,固形有機原料より生成した燃料ガスを850℃以上,一例として850~1000℃の温度で取り出すことを特徴とする(請求項1)。
In order to achieve the above object, the gasification method of the solid organic material of the present invention is
The granular solid organic raw material dried from one end (upper end) side in the cylindrical reactor 10 is introduced, and the reactor is moved from the one end (upper end) side to the other end (lower end) side in the reactor 10 Form a raw material column that moves in the axial direction of 10,
The high temperature steam jet generated by the electric arc plasma jet 30 is injected in the middle region (the first circular cavity 11) of the reaction furnace 10 to partially gasify the organic component in the solid organic raw material to make the fuel gas Generate,
An oxidant (air, oxygen-enriched air, or oxygen) in the reactor 10 in the region (second circular cavity 12) near the other end (lower end) with respect to the region (first circular cavity 11) in which the fuel gas is generated B) to burn the fuel gas and heat the internal average temperature of the region (the second circular cavity 12) supplied with the oxidant to 1100 to 1600 ° C. to introduce the oxidant. In the region (second circular cavity 12) and the region (gasification promoting region 13) closer to the other end (lower end) with respect to the region, the organic component remaining in the solid organic raw material is completely gasified,
The inside of the reaction furnace 10 is sucked (through the exhaust gas passage 21) at the other end (lower end) side, and the fuel gas generated from the solid organic raw material is taken out at a temperature of 850 ° C. or higher, for example 850 to 1000 ° C. (Claim 1).
 上記固形有機原料のガス化において,前記酸化剤の吹き込みを,燃料当量比が0.7~3.0の混合気とすることが好適である(請求項2)。 In the gasification of the solid organic material, it is preferable that the blowing of the oxidant be a mixture of fuel equivalent ratio of 0.7 to 3.0 (claim 2).
 上記固形有機原料のガス化において,前記水蒸気噴流が,2000~3500℃の過熱水蒸気の噴流であり,1機またそれ以上の前記電気アークプラズマジェット30を通じて前記反応炉10の内壁の周方向における接線方向に前記水蒸気噴流を吹き込むことにより反応炉内を周方向に循環する前記水蒸気噴流の循環流を形成し,
 前記循環流が形成された部分における反応炉内壁(第1円形空洞11の内壁)を1000~1600℃まで加熱する(請求項3)。
In the gasification of the solid organic raw material, the steam jet is a jet of superheated steam at 2000 to 3500 ° C., and the tangential line in the circumferential direction of the inner wall of the reactor 10 through one or more electric arc plasma jets 30 Forming a circulating flow of the steam jet circulating in the reactor circumferentially by blowing the steam jet in the direction;
The inner wall of the reactor (the inner wall of the first circular cavity 11) in the portion where the circulating flow is formed is heated to 1000 to 1600 ° C. (claim 3).
 更に,前記酸化剤は,200~600℃に加熱した状態で前記反応炉10内に吹き込む(請求項4)。 Furthermore, the oxidizing agent is blown into the reaction furnace 10 while being heated to 200 to 600 ° C. (claim 4).
 前記酸化剤の供給を行った領域(第2円形空洞12)を通過した固形有機原料の温度(ガス化促進領域13における固形有機原料の温度)を900~1100℃の範囲に維持すると共に,ガス化における酸化剤消費率αoを0.90~0.95の範囲に維持するようにする(請求項5)。 Maintain the temperature of the solid organic material (the temperature of the solid organic material in the gasification promoting region 13) which has passed through the region (the second circular cavity 12) to which the oxidizing agent has been supplied in the range of 900 to 1100 ° C. The oxidizing agent consumption rate αo in the oxidation is maintained in the range of 0.90 to 0.95 (claim 5).
 又は,前記酸化剤の供給を行った領域(第2円形空洞12)において前記酸化剤に過熱水蒸気を混合して導入する場合,該領域(第2円形空洞12)を通過した固形有機原料の温度(ガス化促進領域13における固形有機原料の温度)を900~1100℃の範囲に維持し,ガス化における酸化剤消費率αoを1.05~1.20の範囲とする(請求項6)。 Alternatively, when superheated steam is mixed and introduced into the oxidizing agent in the region (second circular cavity 12) to which the oxidizing agent is supplied, the temperature of the solid organic raw material passed through the region (second circular cavity 12) (The temperature of the solid organic raw material in the gasification promoting region 13) is maintained in the range of 900 to 1100 ° C., and the oxidant consumption rate αo in gasification is in the range of 1.05 to 1.20 (claim 6).
 前記酸化剤の供給を行う領域(第2円形空洞12)において,該領域を通過する前記原料柱の移動速度を減速させる(請求項7)。 In the region (second circular cavity 12) for supplying the oxidizing agent, the moving speed of the raw material column passing through the region is reduced (claim 7).
 また,本発明の固形有機原料のガス化装置1は,
 一端(上端)より投入された原料を他端(下端)側に移動させつつ処理する円筒形の反応炉10内の中間領域に,該反応炉10の内径を拡張して形成した第1円形空洞11と,
 前記第1円形空洞11に対し前記反応炉10の内径の0.1~0.5倍の距離を隔てた前記他端寄りの位置で前記反応炉の内径を拡張して形成した第2円形空洞12を設け,
 前記反応炉10外に配置された電気アークプラズマジェット30が噴射した高温の水蒸気噴流を導入する蒸気プラズマ導入路22を前記第1円形空洞11において前記反応炉10内の空間に連通し,
 加熱された酸化剤を導入する酸化剤導入路23を前記第2円形空洞12において前記反応炉10内の空間に連通すると共に,
 前記反応炉10内を吸引する排出ガス通路21を,前記他端側において前記反応炉10内に連通したことを特徴とする(請求項8)。
Moreover, the gasifier 1 for solid organic materials of the present invention
A first circular cavity formed by expanding the inner diameter of the reaction furnace 10 in an intermediate region in the cylindrical reaction furnace 10 in which the raw material introduced from one end (upper end) is moved to the other end (lower end) side 11 and,
A second circular cavity formed by expanding the inner diameter of the reactor at a position near the other end separated by a distance of 0.1 to 0.5 times the inner diameter of the reactor 10 with respect to the first circular cavity 11 Set 12 and
A vapor plasma introduction passage 22 for introducing a high temperature water vapor jet jetted by an electric arc plasma jet 30 disposed outside the reaction furnace 10 is communicated with a space in the reaction furnace 10 in the first circular cavity 11,
The oxidant introducing passage 23 for introducing a heated oxidant is communicated with the space in the reactor 10 in the second circular cavity 12,
An exhaust gas passage 21 for sucking the inside of the reaction furnace 10 is communicated with the inside of the reaction furnace 10 at the other end side (claim 8).
 上記構成の固形有機原料のガス化装置1において,前記蒸気プラズマ導入路22は,これを前記第1円形空洞11の内壁の周方向における接線方向に,内壁面に沿った水蒸気噴流の循環流を生じるように配置する(請求項9)。 In the gasifier 1 for the solid organic raw material having the above configuration, the vapor plasma introduction path 22 makes the circulating flow of the water vapor jet along the inner wall surface in the tangential direction in the circumferential direction of the inner wall of the first circular cavity 11 It arrange | positions so that it may arise (Claim 9).
 また,前記酸化剤導入路23を,前記第2円形空洞12の内壁の周方向における接線方向であって,前記第1円形空洞11で生じた水蒸気噴流の循環流と同一回転方向の循環流が生じるように配置する(請求項10)。 Further, the oxidizing agent introduction path 23 is a tangential direction in the circumferential direction of the inner wall of the second circular cavity 12, and a circulating flow in the same rotational direction as the circulating flow of the steam jet generated in the first circular cavity 11 It arranges so that it may arise (claim 10).
 更に,前述の排出ガス通路21は,これを二重管構造とし,該排出ガス通路21の一方の通路(内側通路21a)を介して前記反応炉10内を吸引すると共に,他方の通路(外側通路21b)を介して前記酸化剤導入路23を酸化剤供給源(図示せず)に連通する(請求項11)。 Further, the above-mentioned exhaust gas passage 21 has a double pipe structure, and the inside of the reactor 10 is sucked through one passage (the inner passage 21a) of the exhaust gas passage 21, and the other passage (the outer The oxidant introducing passage 23 is communicated with an oxidant supply source (not shown) via the passage 21b) (claim 11).
 なお,前記第2円形空洞12は,その出口(下端)側の直径を,入口(上端)側の直径の0.7~0.9倍の直径に狭めた形状とする(請求項12)。 The diameter of the second circular cavity 12 on the outlet (lower end) side is narrowed to a diameter 0.7 to 0.9 times the diameter on the inlet (upper end) side (claim 12).
 また,前記第2円形空洞12の出口から,前記反応炉10の前記他端に至る領域(ガス化促進領域13)を,前記第2円形空洞12の出口から前記反応炉10の前記他端に向かって徐々に内径を拡大する形状に形成する(請求項13)。 Further, a region (gasification promoting region 13) from the outlet of the second circular cavity 12 to the other end of the reaction furnace 10 is from the outlet of the second circular cavity 12 to the other end of the reaction furnace 10 The inner diameter is formed to be gradually enlarged toward the end (claim 13).
 以上で説明した本発明の構成により,本発明の固体有機原料のガス化方法及びガス化装置1によれば,以下の顕著な効果を得ることができた。 According to the configuration of the present invention described above, according to the method of gasifying a solid organic raw material and the gasifier 1 of the present invention, the following remarkable effects can be obtained.
 反応炉10の中間領域に設けられた第1円形空洞11において蒸気プラズマにより固形有機原料中の有機成分の一部をガス化して,高反応性の燃料ガスを生成すると共に,この燃料ガスを第2円形空洞12において酸化剤(空気,富酸素空気,又は酸素)と合流させて燃焼させることで,蒸気プラズマによるエネルギー量の数倍(約2~5倍)の熱量を発生させ,これらのエネルギーの総和(プラズマの電気エネルギーと,高反応性の燃料ガスを燃焼させることにより得られる熱エネルギーの総和)によって,固体有機原料中に残留している有機成分の完全なガス化を行うことで,従来のプラズマ型のガス発生装置に比較して,小型のプラズマ発生装置を使用した場合であっても,効率的に燃料ガスを発生させることができた。 In the first circular cavity 11 provided in the middle region of the reactor 10, a portion of the organic component in the solid organic raw material is gasified by vapor plasma to generate a highly reactive fuel gas, and (2) By combining the circular cavity 12 with an oxidant (air, oxygen-rich air, or oxygen) and burning it, the heat of several times (about 2 to 5 times) the amount of energy by the steam plasma is generated, and these energies By performing the complete gasification of the organic components remaining in the solid organic raw material by the sum of the electric energy of the plasma and the heat energy obtained by burning the highly reactive fuel gas, Compared to the conventional plasma type gas generator, fuel gas can be generated efficiently even when using a small plasma generator.
 このように,本発明では,より小型のプラズマ発生装置を使用することが可能となった結果,ガス化装置の製造費,ランニングコストを低く抑えることができると共に,ガス化装置全体を小型,軽量化することができた。 As described above, according to the present invention, it becomes possible to use a smaller plasma generator, so that the manufacturing cost and running cost of the gasifier can be reduced, and the entire gasifier can be compact and lightweight. It was possible to
 また,ガス化装置の製造費及びランニングコストを低く抑えることで,ガス化で得た燃料ガスによって得られる電力や熱等の販売益が相対的に高まり,その結果,工業的,あるいは商業的なベースに乗り得る,固体有機原料のガス化方法及びガス化装置を提供することができた。 In addition, by keeping the manufacturing cost and running cost of the gasifier low, the sales profit of power and heat obtained by the fuel gas obtained by gasification is relatively increased, and as a result, it is industrial or commercial It is possible to provide a gasification method and a gasification apparatus for solid organic raw material that can ride on the base.
本発明のガス化装置の正面断面図。Front sectional drawing of the gasifier of this invention. 図1のII―II線断面図。II-II sectional view taken on the line of FIG. 本発明のガス化装置の側面要部断面図。Side surface principal part sectional drawing of the gasification apparatus of this invention. 図3のIV-IV線断面図。IV-IV sectional view taken on the line of FIG. 固形有機原料の分解により合成された燃料ガスの温度と成分の相関図であり,原料1kgあたりの分解に,(A)は空気プラズマ245g,(B)は空気プラズマ1200g,(C)は蒸気プラズマ64g,(D)は蒸気プラズマ314gを使用した例。It is a correlation diagram of the temperature and the component of the fuel gas synthesized by the decomposition of the solid organic raw material, (A): air plasma 245 g, (B): air plasma 1200 g, (C): vapor plasma for decomposition per kg of raw material 64 g, (D) is an example using 314 g of vapor plasma. 単位質量(1kg)あたりの原料に対する電力消費量を示したグラフ。The graph which showed the power consumption with respect to the raw material per unit mass (1 kg). 単位質量(1kg)の原料から得られる燃料ガスの出力エネルギーを示したグラフ。The graph which showed the output energy of the fuel gas obtained from the raw material of unit mass (1 kg). 蒸気プラズマで木材をガス化した際の温度と生成物成分の相関図。The correlation figure of the temperature and the product component at the time of gasifying wood with vapor plasma. 原料(木材)の粒子径毎の反応ガス温度と原料粒子表面温度の相関図。The correlation diagram of the reaction gas temperature for every particle diameter of a raw material (wood), and the raw material particle surface temperature. 原料(木材)の粒子径毎の反応ガス温度とガス化率の相関図。The correlation diagram of the reaction gas temperature and the gasification rate for every particle size of a raw material (wood). 燃料ガス燃焼時における成分及び温度変化を示したグラフ。The graph which showed the component and temperature change at the time of fuel gas combustion. 燃料ガスの燃焼時における燃料当量比と火炎伝播速度の相関図であり,燃料ガスとして,(A)は5%CO+95%H2,(B)は50%CO+50%H2,(B)は75%CO+25%H2を使用した例。It is a correlation diagram of the fuel equivalence ratio and the flame propagation velocity at the time of combustion of fuel gas, and as fuel gas, (A) is 5% CO + 95% H 2 , (B) is 50% CO + 50% H 2 , (B) is 75 example using% CO + 25% H 2.
 次に,本発明の実施形態につき添付図面を参照しながら以下説明する。 Next, embodiments of the present invention will be described below with reference to the attached drawings.
〔ガス化装置の構成〕
 図1~4中の符合1は,本発明のガス化装置であり,このガス化装置1は,断熱材3によって囲まれた,耐火材料から成る円筒形の反応炉10と,前記反応炉10内に固形有機原料を投入する供給装置40,前記反応炉10内に蒸気プラズマを導入するプラズマジェット30(図3,4参照),及び,前記反応炉10内に空気,富酸素空気,あるいは酸素等の酸化剤を導入する,図示せざる酸化剤供給源を備えている。
[Configuration of gasifier]
Reference numeral 1 in FIGS. 1 to 4 is a gasifier according to the present invention. This gasifier 1 is a cylindrical reactor 10 made of a refractory material and surrounded by a heat insulating material 3; A supply device 40 for charging solid organic raw material inside, a plasma jet 30 for introducing vapor plasma into the reactor 10 (see FIGS. 3 and 4), and air, oxygen-rich air or oxygen in the reactor 10 And an oxidant source (not shown) for introducing the oxidant.
 前述の反応炉10上には,電動機41付きの供給装置40が設けられており,この供給装置40により,反応炉10内に破砕した廃棄物,木材,木炭,石炭等の粒状の固形有機原料が,電動機41によって回転する攪拌羽根42によって定量ずつ供給できるようになっている。 On the above-mentioned reactor 10, a supply device 40 with a motor 41 is provided. With this supply device 40, granular solid organic raw materials such as waste, wood, charcoal, coal, etc. crushed in the reactor 10 However, it is possible to supply a fixed amount each by the stirring blade 42 rotated by the motor 41.
 この反応炉10の中間領域には,反応炉10の内径を拡張して形成された第1円形空洞11が形成されていると共に,この第1円筒空洞11に対し,反応炉10の内径を0.2~0.5倍した距離を介した下方に,同様に反応炉10の内径を拡張して形成された第2円形空洞12が設けられている。 A first circular cavity 11 formed by expanding the inner diameter of the reactor 10 is formed in an intermediate region of the reactor 10, and the inner diameter of the reactor 10 is set to 0 with respect to the first cylindrical cavity 11. 2. A second circular cavity 12 is provided at the lower side by a distance of 2 to 0.5 times and similarly formed by expanding the inner diameter of the reaction furnace.
 この第2円形空洞12は,その底部において徐々に直径を狭める形状に形成されており,最狭部となる第2円形空洞12の出口は,第2円形空洞12の入口の直径に対し0.7~0.9倍の直径にまで狭められている。 The second circular cavity 12 is formed in a shape of gradually narrowing the diameter at its bottom, and the outlet of the second circular cavity 12 which becomes the narrowest part has a diameter of 0. 0 to the diameter of the inlet of the second circular cavity 12. It is narrowed to 7 to 0.9 times the diameter.
 そして,前述の第2円形空洞12の出口は,第2円形空洞12の出口の直径から下方に向かって直径を拡大する形状に形成されたガス化促進領域13に連通されている。 The outlet of the second circular cavity 12 mentioned above is in communication with the gasification promoting region 13 which is formed to expand in diameter downward from the diameter of the outlet of the second circular cavity 12.
 このように形成された反応炉10の外部には,少なくとも1機の電気アークプラズマジェット30が設けられており,この電気アークプラズマジェット30で発生した蒸気プラズマを,蒸気プラズマ導入路22を介して前述した第1円形空洞11内に導入することができるようになっている。 At least one electric arc plasma jet 30 is provided outside the reaction furnace 10 thus formed, and the vapor plasma generated by the electric arc plasma jet 30 is introduced via the vapor plasma introduction passage 22. It can be introduced into the first circular cavity 11 described above.
 この蒸気プラズマ導入路22は,前述の第1円形空間11の内壁面において,該内壁面の円周方向に対する接線方向に蒸気プラズマを導入することができるように設けられており,蒸気プラズマ導入路22を介して第1円形空洞11内に蒸気プラズマを導入することで,過熱水蒸気の噴流を第1円形空洞11内で循環させることができるようになっている。 The vapor plasma introduction passage 22 is provided on the inner wall surface of the first circular space 11 so as to be able to introduce the vapor plasma in a tangential direction with respect to the circumferential direction of the inner wall surface. The jet of superheated steam can be circulated in the first circular cavity 11 by introducing the vapor plasma into the first circular cavity 11 via 22.
 反応炉10の底部には,反応炉10内に水蒸気を供給することができるよう,導入された水を熱交換によって加熱して水蒸気を発生させる円形交換器9が取り付けられており,ここで発生させた水蒸気をプラズマジェットや,必要に応じて第2円形空洞12に導入される酸化剤に混入し,あるいは,ガス化促進領域13の下部より流入させる蒸気として使用することで,水蒸気発生の際の熱交換により反応炉下部の冷却が図られていると共に,この円形交換器9の下に,残灰を強制排出するための電動機51を備えた残灰排出装置50を取り付けている。 At the bottom of the reactor 10, a circular exchanger 9 is attached which heats the introduced water by heat exchange to generate steam so that steam can be supplied into the reactor 10, where it is generated here When steam is generated by mixing the treated steam with the plasma jet and the oxidant introduced into the second circular cavity 12 if necessary, or by using it as the steam introduced from the lower part of the gasification promoting region 13 The lower portion of the reactor is cooled by heat exchange, and a residual ash discharging device 50 equipped with a motor 51 for forcibly discharging residual ash is attached under the circular exchanger 9.
 反応炉10内の下部付近には,反応炉10内の生成ガス(燃料ガス)を排出するための排出ガス通路21が設けられている。この排出ガス通路21は,図示の実施形態において二重管によって構成されており,内側通路21aを介して反応炉10内で生成した燃料ガスを吸引して排出することができる他,外側通路21bを介して第2円形空洞12に対し酸化剤(空気,富酸素空気,酸素)を導入するために使用できるようになっている。 Near the lower part in the reaction furnace 10, an exhaust gas passage 21 for discharging the generated gas (fuel gas) in the reaction furnace 10 is provided. The exhaust gas passage 21 is constituted by a double pipe in the illustrated embodiment, and can suck and discharge the fuel gas generated in the reaction furnace 10 through the inner passage 21a, and the outer passage 21b. Can be used to introduce an oxidant (air, oxygen-enriched air, oxygen) into the second circular cavity 12.
 このような酸化剤の導入を可能とするために,排出ガス通路21の反応路10とは反対側の端部付近に酸化剤供給用の継手21cが設けられており,この継手21cに図示せざる酸化剤供給源からの配管等を接続可能にしていると共に,反応炉10寄りの位置において,外側通路21bに第2円形空洞12に酸化剤を導入する酸化剤導入路23を連通することで,図示せざる酸化剤供給源より供給された酸化剤は,排出ガス通路21の外側通路21bを通過する際に,内側通路21aを通過する燃料ガスとの熱交換によって加熱され,このようにして加熱された酸化剤を第2円形空洞12内に導入することができるようになっている。 In order to make it possible to introduce such an oxidizing agent, an oxidant supply joint 21c is provided in the vicinity of the end opposite to the reaction channel 10 of the exhaust gas passage 21, and this joint 21c is illustrated By making it possible to connect piping etc. from a different oxidizing agent supply source, and by communicating the oxidizing agent introducing passage 23 for introducing the oxidizing agent into the second circular cavity 12 in the outer passage 21b at a position close to the reactor 10 The oxidizing agent supplied from the oxidizing agent source, not shown, is heated by heat exchange with the fuel gas passing through the inner passage 21a when passing through the outer passage 21b of the exhaust gas passage 21, and thus A heated oxidizer can be introduced into the second circular cavity 12.
 前述の酸化剤導入路23は,第2円形空洞12の内壁面において,該内壁の周方向に対する接線方向に開口されており(図2参照),この酸化剤導入路23を介して酸化剤を導入することで,前述した第1円形空洞11内で生じる水蒸気噴流の循環方向と同一の回転方向を成す酸化剤の循環流が生じるように構成されている。 The aforementioned oxidizing agent introducing passage 23 is opened in the inner wall surface of the second circular cavity 12 in a tangential direction with respect to the circumferential direction of the inner wall (see FIG. 2). By introducing it, a circulation flow of the oxidant having the same rotational direction as the circulation direction of the steam jet generated in the first circular cavity 11 described above is generated.
〔ガス化方法〕
 以上のように構成された本発明のガス化装置1を使用して,下記の方法で固形有機原料のガス化が行われる。
[Gasification method]
Gasification of a solid organic raw material is performed by the following method using the gasifier 1 of this invention comprised as mentioned above.
 含有水分量を15~20%にまで乾燥し,破砕した固体有機原料を供給装置40に投入すると,供給装置40は,電動機41によって回転される攪拌羽根42によって原料を定量ずつ反応炉10内に供給する。 When the water content is dried to 15 to 20% and the crushed solid organic raw material is put into the supply device 40, the supply device 40 quantitatively determines the raw material by the stirring blade 42 rotated by the motor 41 into the reaction furnace 10 Supply.
 反応炉10内で熱分解されて生じた固形有機原料の残灰は,反応炉10の下部に設けられた残灰排出装置50によって機外に強制的に排出されることから,反応炉10内に投入された固形有機原料は,重力によって固形有機原料の粒子同士に隙間が形成された状態で折り重なって,全体として多孔質体に類似した状態で,反応炉10内を軸線方向に通過する,原料柱を形成する。 The residual ash of the solid organic raw material generated by thermal decomposition in the reaction furnace 10 is forcibly discharged to the outside by the residual ash discharging device 50 provided at the lower part of the reaction furnace 10. The solid organic material introduced into the container is folded in a state where a gap is formed between the particles of the solid organic material by gravity, and passes through the inside of the reaction furnace 10 in the axial direction in a state similar to the porous body as a whole Form a raw material column.
 電気アークプラズマジェット30において発生した高温度(2000~3500℃)の蒸気プラズマは,蒸気プラズマ導入路22を介して第1円形空洞11内に接線方向に導入された後,固形有機原料の粒子間の隙間を介して前方へ流れて,第1円形空洞11内を循環する渦状の流れを形成する。 The high temperature (2000-3500 ° C.) vapor plasma generated in the electric arc plasma jet 30 is introduced tangentially into the first circular cavity 11 through the vapor plasma introduction passage 22 and then the particles of the solid organic material are separated. Flow forward through the interstices to form a vortex-like flow circulating in the first circular cavity 11.
 この蒸気プラズマの渦流によって,第1円形空洞11の内壁面は1000~1600℃に加熱され,蒸気プラズマによる直接の過熱と,反応炉の赤熱壁との接触によって第1円形空洞11内の固形有機原料中の有機成分の一部(15~30質量%)がガス化すると共に,水蒸気と反応して下記の総括反応式で示される反応によって燃料ガスが生成される。
Figure JPOXMLDOC01-appb-C000001
The inner wall surface of the first circular cavity 11 is heated to 1000 to 1600 ° C. by the swirling flow of the vapor plasma, and the solid organic substance in the first circular cavity 11 is directly heated by the vapor plasma and contacting with the red wall of the reactor. While a part (15 to 30% by mass) of the organic component in the raw material is gasified, it reacts with water vapor to generate a fuel gas by the reaction represented by the following general reaction formula.
Figure JPOXMLDOC01-appb-C000001
 2000℃以下の蒸気プラズマを反応炉10内に噴射する場合,反応炉壁の過熱温度が低下すると共に原料柱に対する加熱量も減少するためガス化速度も低下する一方,第1円形空洞11内に導入する過熱蒸気の温度を3500℃以上とする場合,解離再結合が起こり水蒸気の熱伝導が急激に上昇することで,電気アークプラズマジェット30及び蒸気プラズマ導入路22の冷却にかかるロスが急速に増加することから,前述したように第1円形空洞11内に導入する蒸気プラズマの温度は2000~3500℃とする。 In the case where steam plasma of 2000 ° C. or less is injected into the reactor 10, the heating temperature for the raw material column is reduced and the gasification rate is also reduced because the heating temperature of the reactor wall is reduced. When the temperature of the superheated steam to be introduced is set to 3500 ° C. or higher, dissociative recombination occurs and the heat conduction of steam rapidly rises, so that the loss for cooling the electric arc plasma jet 30 and the steam plasma introduction path 22 rapidly Because of the increase, as described above, the temperature of the vapor plasma introduced into the first circular cavity 11 is set to 2000 to 3500.degree.
 また,反応炉壁の加熱温度が1000℃未満では有機物の反応速度が低下して変換率が低下する一方,反応炉壁温度が1600℃を越えると,反応炉の寿命や耐久性に関して深刻な問題が生じ得ることから,反応炉壁の加熱温度が1000~1600℃の範囲となるよう,第1円形空洞11に対し導入する蒸気プラズマの温度を,前述した2000~3500℃の範囲内で調整する。 Also, if the heating temperature of the reactor wall is less than 1000 ° C, the reaction rate of the organic matter decreases and the conversion rate decreases, while if the reactor wall temperature exceeds 1600 ° C, serious problems regarding the life and durability of the reactor The temperature of the vapor plasma introduced to the first circular cavity 11 is adjusted within the range of 2000 to 3500 ° C. mentioned above so that the heating temperature of the reactor wall is in the range of 1000 to 1600 ° C. .
 反応炉10内の空間は,排出ガス通路21を介して機外より吸引されていることから,この影響によって第1円形空洞11において生成された燃料ガスは,1100~1200℃程度の温度で反応炉10の内壁に沿って下方へ移動し,第2円形空洞12(図1参照)内に導入される。 Since the space in the reactor 10 is sucked from the outside via the exhaust gas passage 21, the fuel gas generated in the first circular cavity 11 by this effect reacts at a temperature of about 1100 to 1200 ° C. It moves downward along the inner wall of the furnace 10 and is introduced into the second circular cavity 12 (see FIG. 1).
 この第2円形空洞12には,前述した第1円形空洞11で発生させた水蒸気噴流の循環(回転)方向と同一の循環(回転)方向の渦流が生じるように,第2円形空洞12の内壁面の円周方向に対する接線方向に,符合23(図2参照)で示す酸化剤導入路を介して酸化剤(空気,富酸素空気,又は酸素)が吹き込まれる。 The inside of the second circular cavity 12 is generated in the second circular cavity 12 so that a swirling flow in the same circulation (rotation) direction as the circulation (rotation) direction of the steam jet generated in the first circular cavity 11 described above occurs. An oxidant (air, oxygen-enriched air, or oxygen) is blown in a direction tangential to the circumferential direction of the wall through an oxidant introduction path indicated by reference numeral 23 (see FIG. 2).
 この酸化剤は,継手21cを介して二重管として構成された排出ガス通路21の外側流路21bを介して前述の酸化剤導入路23に導入されるように構成されており,排出ガス通路21において,排出ガス通路21の内側通路21aを通って排出される燃料ガスとの熱交換によって200~600℃に加熱され,このようにして加熱された酸化剤を第2円形空洞12内に導入することで,第1円形空洞11内で発生し,その後,第2円形空洞12内に導入された燃料ガスは,酸化剤の噴流と合流後においても点火温度(650℃以上)を越えており,酸化剤と激しく反応して燃焼し,これにより第2円形空洞12内において局部温度2227℃以上の火炎流が発生する。 This oxidizing agent is configured to be introduced into the above-described oxidizing agent introducing passage 23 through the outer flow passage 21b of the exhaust gas passage 21 configured as a double pipe through the joint 21c, and the exhaust gas passage In 21, the oxidizing agent heated to 200 to 600 ° C. by heat exchange with the fuel gas discharged through the inner passage 21 a of the exhaust gas passage 21, and thus the heated oxidant is introduced into the second circular cavity 12. The fuel gas generated in the first circular cavity 11 and then introduced into the second circular cavity 12 exceeds the ignition temperature (more than 650 ° C.) even after merging with the jet of the oxidant. In the second circular cavity 12, a flame flow with a local temperature of 2227 ° C. or more is generated.
 酸化剤の加熱温度が200℃未満の場合では酸化及びガス化のプロセスに殆ど影響を及ぼさず,600℃を越えるように加熱する場合,熱交換によって燃料ガスの熱を過剰に奪い,排出される燃料ガスの温度が許容温度である850℃よりも低下して,反応炉を出た後,ハロゲンと炭化水素との結合により,ダイオキシンやフランを発生させる可能性があり,導入する酸化剤の温度は200~600℃とした。 If the heating temperature of the oxidizing agent is less than 200 ° C, the process of oxidation and gasification is hardly affected, and if it is heated to over 600 ° C, the heat of the fuel gas is removed by heat exchange and exhausted. After leaving the reactor after the temperature of the fuel gas falls below the allowable temperature of 850 ° C, there is a possibility that dioxins and furans may be generated by the combination of halogen and hydrocarbon, and the temperature of the oxidant to be introduced Was set to 200 to 600.degree.
 この燃料ガスの燃焼による出力の最高値を達成するには,燃料当量比(燃料ガスの質量/酸化剤の質量)αfを0.7~3.0,好ましくは1.5~3.0とする濃混合の状態で燃焼を行う。酸化における総括主反応は,
Figure JPOXMLDOC01-appb-C000002
となる。
In order to achieve the maximum value of the output by combustion of this fuel gas, the fuel equivalent ratio (mass of fuel gas / mass of oxidant) α f is set to 0.7 to 3.0, preferably 1.5 to 3.0. Combustion in the state of rich mixing. The general main reaction in oxidation is
Figure JPOXMLDOC01-appb-C000002
It becomes.
 このようにして燃料ガスを燃焼させることで,反応炉の第2円形空洞12の周辺に存在する原料柱の部分には酸化領域が発生し,第2円形空洞12の内部平均温度は1100~1600℃に達する。 By burning the fuel gas in this manner, an oxidation region is generated in the portion of the raw material column existing around the second circular cavity 12 of the reactor, and the internal average temperature of the second circular cavity 12 is 1100 to 1600. Reaching ° C.
 このようにして,第2円形空洞12で発生した熱の影響で,原料柱全体が,断熱された濾過燃焼条件の下で1100~1600℃の平均温度にまで加熱された後,第2円形空洞12の下方に設けられたガス化促進領域13に導入される。 Thus, under the influence of the heat generated in the second circular cavity 12, the entire raw column is heated to an average temperature of 1100 to 1600 ° C. under adiabatic filter combustion conditions, and then the second circular cavity It is introduced into the gasification promoting region 13 provided below 12.
 反応炉内の第2円形空洞12の下方に位置するガス化促進領域13において,第2円形空洞12で酸化に使用されなかった過剰の酸化剤と燃料ガスの燃焼生成物とが,落下する原料柱に対し横方向に吹き付けられ,固形有機原料中に残留している主要な有機成分の熱分解が行われる。 In the gasification promoting region 13 located below the second circular cavity 12 in the reactor, the raw material from which excess oxidant and fuel gas combustion products not used for oxidation in the second circular cavity 12 fall The thermal decomposition of the main organic components remaining in the solid organic feedstock is performed, which is sprayed laterally to the columns.
 第2円形空洞12内で加熱された固形有機原料は,平均温度を900~11000℃の範囲で,化学量論のガス化に対する酸化剤消費率αを0.90~0.95の範囲に維持する。 The solid organic raw material heated in the second circular cavity 12 maintains the average temperature in the range of 900 to 11000 ° C., and the oxidant consumption rate α for the stoichiometry gasification in the range of 0.90 to 0.95 Do.
 固形有機原料の温度が900℃未満の場合,残留炭分が増加し,1100℃を越える場合では,固形有機原料の溶けた塊が残留し,有機性不純物の焼却性能が悪化する。 When the temperature of the solid organic raw material is less than 900 ° C., the residual carbon content increases, and when it exceeds 1100 ° C., the melted lump of the solid organic raw material remains, and the incineration performance of the organic impurities is deteriorated.
 また,酸化剤消費率αが0.90未満の場合,熱分解にかかる消費電力が増加し,熱分解段階では,排ガスにおいて不完全燃焼が増加する一方,酸化剤消費率αが0.95を越えると,熱分解の温度レベルが上昇し,装置の底部に設けた火格子が燃えるおそれがある。 In addition, when the oxidant consumption rate α is less than 0.90, the power consumption for the thermal decomposition increases, and in the thermal decomposition stage, the incomplete combustion increases in the exhaust gas, while the oxidant consumption rate α is 0.95. If the temperature is exceeded, the temperature level of thermal decomposition may rise, and the grate provided at the bottom of the apparatus may burn.
 なお,第2円形空洞12に対し導入する酸化剤としては,前述の空気,富酸素空気,酸素である酸化剤と共に,過熱水蒸気を導入するものとしても良い。この場合,ガス化促進領域13内における残留有機成分の熱分解段階における温度を,900~1100℃の範囲で,酸化剤消費率αを1.05~1.20の範囲に維持する。 As the oxidizing agent introduced to the second circular cavity 12, superheated steam may be introduced together with the above-mentioned oxidizing agent which is air, oxygen-rich air, or oxygen. In this case, the temperature at the thermal decomposition stage of the residual organic component in the gasification promoting region 13 is maintained in the range of 900 to 1100 ° C., and the oxidant consumption rate α is in the range of 1.05 to 1.20.
 900℃以下の場合,スラグにおける未燃焼が増加し,1100℃以上の場合,灰分の溶解及び格子の汚染が起こす。 Below 900 ° C, unburned slag increases, and above 1100 ° C ash dissolution and lattice contamination occur.
 酸素消費率αが1.05未満の場合,酸化剤の残留炭素との質量交換が悪化し,不完全燃焼が増加する。酸化剤消費率αが1.20を越える場合,プロセスにかかるエネルギー消費(燃料と電力)の増大に繋がる。 When the oxygen consumption rate α is less than 1.05, the mass exchange with the residual carbon of the oxidant is deteriorated, and the incomplete combustion is increased. If the oxidant consumption rate α exceeds 1.20, this leads to an increase in energy consumption (fuel and power) for the process.
 反応炉10内に投入された原料柱の減少速度はガス化速度に比例し,ガス化された固形有機原料の有機分の質量は,揮発性成分の分離量,残留炭素がガス化された質量に等しく,固形有機原料の減少と残灰の排出に伴って原料柱が下方に移動して連続的な処理が行われると共に,生成された燃料ガスは,排出ガス通路21を介して通風機により吸引されて,排出ガス通路21を通過する際に酸化剤との熱交換が行われて850~1000℃の温度で機外に排出される。 The reduction rate of the raw material column charged into the reactor 10 is proportional to the gasification rate, and the mass of the organic component of the gasified solid organic raw material is the separated amount of volatile components, the mass of the residual carbon gasified The raw material column moves downward with continuous decrease due to the decrease of solid organic material and the discharge of residual ash, and the generated fuel gas is ventilated through the exhaust gas passage 21 When it passes through the exhaust gas passage 21, it is aspirated, and heat exchange with the oxidant is performed, and the air is exhausted to the outside at a temperature of 850 to 1000 ° C.
 第2円形空洞12における固形有機原料の平均温度範囲が1100~1600℃,反応炉の出口における燃料ガスの温度範囲が850~1000℃の範囲となるよう,プラズマにより生成した過熱蒸気により供給される熱量とこれにより生成された燃料ガスの燃焼による化学的熱量との比率を決定する。 It is supplied by superheated steam generated by plasma so that the average temperature range of the solid organic material in the second circular cavity 12 is 1100 to 1600 ° C., and the temperature range of the fuel gas at the outlet of the reactor is 850 to 1000 ° C. The ratio between the amount of heat and the amount of chemical heat from combustion of the fuel gas produced thereby is determined.
 なお,本発明のガス化装置1では,原料柱の移動方向(反応炉の高さ方向)に沿って温度ゾーンが設定されることとなり,各温度ゾーンにおいて,前述したプロセスが行われる。 In the gasifier 1 of the present invention, a temperature zone is set along the moving direction of the raw material column (height direction of the reaction furnace), and the above-described process is performed in each temperature zone.
 反応炉の上部(第1円形空洞11よりも上方)では,内部の平均温度が100~250℃となり廃棄物等である固形有機原料の乾燥が行われ,第1円形空洞11では内部平均温度1000~1300℃にて原料の一部が蒸気プラズマによりガス化され,その下部の第2円形空洞12では1100~1600℃の内部平均温度にて燃料ガスの一部の酸化(燃焼)による発熱が行われ,第2円形空洞12からその下方にあるガス化促進領域13において,固形有機原料中の残留有機分を濾過燃焼させると共に,固形有機原料の分解により生じた無機分の無酸素ガス化及び,完全燃焼生成物の還元による合成ガス生成が行われ,主にCO+Hの成分となる。 In the upper part of the reactor (above the first circular cavity 11), the average temperature inside is 100 to 250 ° C., and the solid organic raw material which is waste etc. is dried. Part of the raw material is gasified by steam plasma at ~ 1300 ° C, and heat generation by oxidation (combustion) of part of the fuel gas occurs at an internal average temperature of 1100-1600 ° C in the second circular cavity 12 below it. And in the gasification promoting region 13 below the second circular cavity 12, the residual organic component in the solid organic material is filtered and burned, and the inorganic component oxygen-free gasification produced by the decomposition of the solid organic material, synthesis gas production by reduction of the complete combustion products takes place, a predominantly CO + H 2 components.
 第1円形空洞11において,蒸気プラズマによって加えられた熱により,固形有機原料は吸熱反応を起こし,その一部が燃料ガスへと変換される。固形有機原料の化学的エネルギーはここでロスするものではなく,燃料ガスの化学的エネルギーと熱エネルギーに変換される。 In the first circular cavity 11, the heat applied by the vapor plasma causes an endothermic reaction of the solid organic raw material, and a part of it is converted into fuel gas. The chemical energy of the solid organic feedstock is not lost here, but is converted into the chemical energy of the fuel gas and the thermal energy.
 原料がバイオマスの場合,生成されるエネルギーは入力電力エネルギーのおよそ3倍となり,このエネルギーは第2円形空洞12において生成され,固形有機原料の全体を1100~1600℃に加熱することで,固形有機原料の完全なガス化に使用される。 When the raw material is biomass, the energy generated is approximately three times the input power energy, this energy is generated in the second circular cavity 12, and the solid organic raw material is heated to a temperature of 1100 to 1600 ° C. Used for complete gasification of raw materials.
 本発明のガス化方法によれば,固形有機原料の処理能力を維持しつつ,電気アークプラズマジェット30に対して初期入力される電気エネルギー,及び稼働中の消費電力を3~5分の1に迄減少させることができ,既存の工業プロセス(先に非特許文献1として紹介した北海道歌志内の処理施設)を基に比較すると,本発明のガス化装置1では,非特許文献1の処理装置において300kWのプラズマジェットを4機使用していたのに対し,同様の処理能力を,75kWのプラズマジェット4機の設計に変更することができ,プラズマジェットの小型化に伴い,ガス化装置の製作費を低減出来ると共に,使用電力が4分の1(75kW/300kW=1/4)程度に減少できることで,ランニングコストの削減に繋がり,商業ベースで考えた場合の大きな利点と成る。 According to the gasification method of the present invention, the electric energy initially input to the electric arc plasma jet 30 and the power consumption during operation can be reduced to 3 to 5 times while maintaining the processing capacity of the solid organic raw material As compared with the existing industrial process (the treatment facility in Hokkaido Uzushi, previously introduced as non-patent document 1), the gasification apparatus 1 of the present invention can be reduced in the treatment apparatus of non-patent document 1 by The same processing capacity can be changed to the design of four 75 kW plasma jets, while four 300 kW plasma jets were used, and with the miniaturization of plasma jets, the cost of producing a gasification system Power consumption can be reduced to a quarter (75kW / 300kW = 1/4), which leads to a reduction in running costs, which is a large case for commercial use. Made with an advantage.
 本発明において,ガス化装置1を構成する各部の新規な連通構造,形状,サイズ及びこれらの組み合わせは重要な特徴であり,既に説明したように本願のガス化装置1では,円筒状の反応炉10の中間部分に設けた第1円形空洞11が構成され,この第1円形空洞11の下方に,反応炉の直径の0.2~0.5倍の距離を隔てて,第2円形空洞12を構成したこと,第2円形空洞12底部の直径を徐々に減じて最狭部(第2円形空洞12の出口)の直径を上端部(第2円形空洞12の入口)の直径の0.7~0.9倍の直径に狭めたこと,さらに,第2円形空洞12の下方に形成したガス化促進領域13の形状を,前記最狭部から更に下方に向かって直径を拡大する形状に構成している。 In the present invention, the novel communication structure, the shape, the size, and the combination thereof of the respective parts constituting the gasification device 1 are important features, and as described above, in the gasification device 1 of the present application, a cylindrical reactor A first circular cavity 11 is provided in the middle part of 10, and below the first circular cavity 11, the second circular cavity 12 is separated by a distance 0.2 to 0.5 times the diameter of the reactor. The diameter of the bottom of the second circular cavity 12 is gradually reduced to make the diameter of the narrowest part (the outlet of the second circular cavity 12) 0.7 of the diameter of the upper end (the inlet of the second circular cavity 12). Further, the shape of the gasification promoting region 13 formed below the second circular cavity 12 is configured to expand in diameter further downward from the narrowest portion. doing.
 また,電気アークプラズマジェット30で発生した蒸気プラズマを,前記第1円形空洞11内に蒸気プラズマ導入路22を介して接線方向に導入して水蒸気噴流の循環流を発生させ,また,第2円形空洞12内に加熱した酸化剤を,第1円形空洞11における水蒸気噴流の循環流と同一の回転方向の循環流が生じる向きで,酸化剤導入路23を介して接線方向に導入する。 Further, the vapor plasma generated by the electric arc plasma jet 30 is introduced into the first circular cavity 11 in the tangential direction through the vapor plasma introduction passage 22 to generate a circulating flow of the water vapor jet, and the second circular shape The oxidizing agent heated in the cavity 12 is introduced tangentially via the oxidizing agent introducing passage 23 in such a direction that a circulating flow in the same rotational direction as the circulating flow of the steam jet in the first circular cavity 11 is generated.
 このように各部を構成することにより,本発明のガス化装置1では,比較的燃え難い,粒状の固形有機原料の一部が,第1円形空洞11において主にCOとHを含有する高反応性の燃焼ガスとなり,その後,第2円形空洞12において,先に生じた燃料ガスが燃焼することにより,固形有機原料全体が激しく加熱され,これにより固形有機原料に残留する有機成分がガス化される。 By configuring each part in this manner, in the gasifier 1 of the present invention, a portion of the granular solid organic raw material that is relatively incombustible, mainly contains CO and H 2 in the first circular cavity 11. It becomes a reactive combustion gas, and then the entire solid organic raw material is vigorously heated by burning the fuel gas previously generated in the second circular cavity 12, whereby the organic components remaining in the solid organic raw material are gasified Be done.
 酸性環境において粒状の固形有機原料がガス化する速度,すなわち,燃焼のみでガス化する速度に比べ,本発明では,蒸気プラズマによる有機成分の一部ガス化と,このガス化により得られた燃料ガスの燃焼という混合プロセスによって,固体有機原料中に残留する有機分の完全なガス化を行うことから,ガス化速度を大幅に向上させることができ,その結果,固形有機原料の化学的エネルギー出力の効率上昇により,電気アークプラズマジェット30の消費電力を3~5分の1にまで低減することができる。 In the present invention, partial gasification of organic components by vapor plasma and fuel obtained by this gasification are compared with the gasification rate of particulate solid organic raw materials in an acidic environment, that is, the gasification rate by combustion alone. The gasification rate can be greatly improved by performing complete gasification of the organic component remaining in the solid organic raw material by the mixed process of gas combustion, and as a result, the chemical energy output of the solid organic raw material Power consumption of the electric arc plasma jet 30 can be reduced to three to five times.
 蒸気プラズマによるガス化を行う第1円形空洞11と,生成された燃料ガスの燃焼を行う第2円形空洞12間の距離を,反応炉の直径の0.1~0.5倍の範囲に選定する理由は,0.1倍未満の距離で設ける場合,水蒸気噴流が第2円形空洞12に迄流れ込み,燃焼反応を抑制させるためであり,また,0.5倍を越える距離で設ける場合,第1円形空洞11で発生した燃料ガスが固形有機原料の粒子間の隙間に流れ込んでしまい,第2円形空洞12に導入される燃料ガスが減少して発熱量が大幅に低下してしまうためである。 The distance between the first circular cavity 11 that performs gasification with vapor plasma and the second circular cavity 12 that burns the generated fuel gas is selected in the range of 0.1 to 0.5 times the diameter of the reactor The reason is that if the distance is less than 0.1 times, the steam jet flows into the second circular cavity 12 to suppress the combustion reaction, and if the distance is more than 0.5 times, (1) The fuel gas generated in the circular cavity 11 flows into the gaps between the particles of the solid organic raw material, and the fuel gas introduced into the second circular cavity 12 is reduced, and the calorific value is significantly reduced. .
 また,第2円形空洞12の底部直径を徐々に狭め,最狭部である第2円形空洞12の出口の直径を,第2円形空洞12の入口の直径に対し0.7~0.9倍の範囲に迄狭めたこと,この第2円形空洞12の出口から更に下向きに直径を拡げる形状のガス化促進領域13を設けたことにより,固形有機原料の第2円形空洞12の出口通過が規制されることにより,最も熱出力が高い,第2円形空洞12内における固形有機原料の滞留時間が長くなり,原料の加熱が促進されると共に,第2円形空洞12において固形有機原料の量が一部ガス化する事により少なくなる事と,その下部にあるガス化促進領域13において,壁面温度がスラジ溶解温度より高くなることから,ガス化促進領域13の裾を広げることで,スラジが炉の内壁に付着することを防止している。 In addition, the bottom diameter of the second circular cavity 12 is gradually narrowed, and the diameter of the outlet of the second circular cavity 12 which is the narrowest portion is 0.7 to 0.9 times the diameter of the inlet of the second circular cavity 12 And the provision of the gasification promoting region 13 having a shape of expanding the diameter further downward from the outlet of the second circular cavity 12, the outlet passage of the second circular cavity 12 of the solid organic raw material is restricted. As a result, the residence time of the solid organic raw material in the second circular cavity 12 is lengthened and the heating of the raw material is promoted, and the amount of solid organic raw material in the second circular cavity 12 is one. Since the wall temperature becomes higher than the slug melting temperature in the gasification promoting region 13 below the partial gasification and the gasification promoting region 13 in the lower part of the furnace, the sludge is a furnace by expanding the tail of the gasification promoting region 13 Attach to the inner wall Thereby preventing the door.
 また,過熱水蒸気の噴流,及び酸化剤の導入により発生する火炎流の噴流方向と原料の移動方向とが相互に直交方向の循環流を形成することにより,原料柱を取り囲むようにその外周側からの加熱が行われることで,原料柱内に熱を閉じ込めた断熱状態で効率的に濾過燃焼を行うことができる。 Also, from the outer peripheral side to surround the raw material column by forming a circulating flow in which the jet flow direction of the superheated steam and the jet flow direction of the flame flow generated by the introduction of the oxidizing agent and the moving direction of the raw material mutually cross By performing the heating, it is possible to efficiently perform the filtration combustion in an adiabatic state in which the heat is confined in the raw material column.
 反応炉の最大熱出力領域,すなわち第2円形空洞12の底部出口の直径は,固形有機原料の質量減少速度に適合させたもので,入口の直径に対し0.7未満の場合,原料の進み(落下)が遅くなりすぎて熱焼損発生の可能性がある。一方,上端部の直径に対し0.9を越える場合,原料の進みが早くなり,未反応の原料分が増加した状態でガス化促進領域13内に流れてしまうことになる。 The maximum heat output area of the reactor, ie the diameter of the bottom outlet of the second circular cavity 12 is adapted to the mass loss rate of the solid organic feedstock, and if less than 0.7 with respect to the diameter of the inlet, the advancement of the feedstock (Falling) may be too late and thermal burnout may occur. On the other hand, if it exceeds 0.9 with respect to the diameter of the upper end portion, the advance of the raw material will be quick, and the unreacted raw material will flow into the gasification promoting region 13 in a state of being increased.
〔蒸気プラズマと他の方法によるガス化の比較〕
 固形有機原料である鶏糞を本発明の方法によりガス化した。処理前の鶏糞の成分を表1に,ガス化により得られた燃料ガスの成分を表2にそれぞれ示す。
[Comparison of vapor plasma and gasification by other methods]
Chicken manure, a solid organic material, was gasified by the method of the present invention. Table 1 shows the components of chicken feces before treatment, and Table 2 shows the components of fuel gas obtained by gasification.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の方法により得られた燃焼ガスの低位発熱量(LHV)は12.09
MJ/kgであり,断熱燃焼温度は1937℃であった。
The lower heating value (LHV) of the combustion gas obtained by the method of the present invention is 12.09.
It is MJ / kg, and the adiabatic combustion temperature is 1937 ° C.
 鶏糞を原料とした場合,鶏糞1kg当たりを熱分解する際に使用される酸化剤消費量g(g/kg)は,それぞれ下記の通りとなる。 When chicken manure is used as a raw material, the amount of oxidant consumption g (g / kg) used when thermally decomposing 1 kg of chicken manure is as follows.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表3の結果から,蒸気プラズマ式のガス化では,空気プラズマ式のガス化に比較して酸化剤(酸素)の消費量が大幅に少なくなっており,このことから,過熱蒸気が酸化剤としての機能を有していることが判る。 From the results in Table 3 above, in the vapor plasma type gasification, the consumption of the oxidant (oxygen) is significantly reduced compared to the air plasma type gasification. It can be seen that it has the function of
 すなわち,反応炉の第1円形空洞11において原料層に蒸気プラズマを与えることで,原料が加熱され,次第に水分や揮発分が固相からガス状に変換,つまり蒸発する。それと同時に,下記の主反応により,ガス状の揮発性分のホモジニアス変換が行われる。
Figure JPOXMLDOC01-appb-C000006
That is, by applying vapor plasma to the raw material layer in the first circular cavity 11 of the reactor, the raw material is heated, and water and volatile components are gradually converted from the solid phase into a gaseous state, that is, evaporated. At the same time, homogeneous conversion of gaseous volatile components is performed by the following main reaction.
Figure JPOXMLDOC01-appb-C000006
 反応炉内における原料柱の減少量は,原料中の水分及び揮発性成分の蒸発による消費比率である0.25に略対応する。原料柱が消費されるに従って,原料柱全体が下方に移動して,第1円形空洞11内にあった固形有機原料が第2円形空洞12に近づき,第1円形空洞11の上方にある乾燥領域にあった固形有機原料が第1円形空洞11に導入される。 The amount of reduction of the raw material column in the reactor substantially corresponds to 0.25, which is the consumption ratio of water and volatile components in the raw material due to evaporation. As the raw material column is consumed, the whole raw material column moves downward, and the solid organic raw material in the first circular cavity 11 approaches the second circular cavity 12 and the drying area is above the first circular cavity 11 The solid organic raw material present in is introduced into the first circular cavity 11.
 次に,残留炭素と水蒸気のヘテロジニアス反応が,下記の主反応により,行われる。
Figure JPOXMLDOC01-appb-C000007
Next, the heterogeneous reaction of residual carbon and water vapor is carried out by the following main reaction.
Figure JPOXMLDOC01-appb-C000007
 拡散動力学的モードにおいて,ヘテロジニアス反応が行われるため,蒸気の乱流・渦流により,反応剤(蒸気)は残留炭素に送られ,ガス化生成物が排出される。 In the diffusion kinetic mode, since the heterogeneous reaction is performed, the reactant (vapor) is sent to the residual carbon by the turbulent flow and swirling of the vapor, and the gasification product is discharged.
 第1円形空洞11内の原料柱の外層部分における水素(H)及び酸化炭素(CO)の濃度プロファイルを調査することにより,それらの濃度と固相における炭素の質量濃度変化との間に相互関係があるという重要な事実が判明した。すなわち,本発明の方法において,水素及び酸化炭素の質量濃度変化の主な要因が,固形有機原料に含まれる炭素が蒸気化したものであることが判る。 By examining the concentration profiles of hydrogen (H 2 ) and carbon monoxide (CO) in the outer layer part of the raw material column in the first circular cavity 11, the mutual between their concentration and mass concentration change of carbon in solid phase The important fact that it is related was found. That is, it can be seen that, in the method of the present invention, the main cause of the change in mass concentration of hydrogen and carbon monoxide is that carbon contained in the solid organic raw material is vaporized.
 従って,炭素原子のモル流束に対する水蒸気のモル流束比率を調整することにより,ガス化生成物の成分を決定することができ,第1円形空洞11において,化学量論的な理想値に近いガス化を行うことができる。 Therefore, by adjusting the molar flux ratio of water vapor to the molar flux of carbon atoms, the composition of the gasification product can be determined, and in the first circular cavity 11, close to the stoichiometric ideal value Gasification can be performed.
 図5(A)~(D)は,プラズマにより鶏糞のガス化を行った際の温度と,合成された燃料ガスの成分変化を示したグラフであり,図5(A)は空気プラズマ245gを使用した例(比較例1),図5(B)は空気プラズマを1200g使用した例(比較例2),(C)は蒸気プラズマを64g使用した例(実施例1),(D)は蒸気プラズマ314gを使用した例(実施例2)をそれぞれ示す。 5 (A) to 5 (D) are graphs showing the temperature at the time of gasification of chicken manure with plasma and the component change of the synthesized fuel gas, and FIG. 5 (A) shows 245 g of air plasma. The example used (Comparative Example 1), FIG. 5 (B) is an example using 1200 g of air plasma (Comparative Example 2), and (C) is an example using 64 g of steam plasma (Example 1), (D) is a steam The example (Example 2) which used plasma 314g is each shown.
 図6は,実施例1,2及び比較例1,2において単位質量(1kg)あたりの原料の処理に必要な電力消費量(MJ/kg)を,更に,図7は実施例1,2及び比較例1,2において単位質量(1kg)の原料から得られる燃料ガスの出力エネルギー(MJ/kg)を示す。 Fig. 6 shows the power consumption (MJ / kg) required to process the raw material per unit mass (1 kg) in Examples 1 and 2 and Comparative Examples 1 and 2. Fig. 7 further shows Examples 1 and 2 and The output energy (MJ / kg) of the fuel gas obtained from the raw material of unit mass (1 kg) in Comparative Examples 1 and 2 is shown.
 図5(A)~(D)の結果から,蒸気プラズマを使用した本発明のガス化方法では,空気プラズマを使用した場合に比較して,より少量のプラズマによって同等成分の燃料ガスが得られることが確認できた。 From the results of FIGS. 5 (A) to 5 (D), according to the gasification method of the present invention using a vapor plasma, a smaller amount of plasma can be used to obtain a fuel gas of the same component as compared to the case using an air plasma. That was confirmed.
 なお,ガス化において原料1kgあたりの処理に必要な蒸気プラズマの消費量は,原料である固形有機原料の材質によっても異なるが,前掲の鶏糞を処理対象とした場合で64g/kg(実施例1),乾燥木材を処理対象とした場合で326g/kg,廃タイヤを処理対象とした場合で1.2kg/kgであった。 The consumption of vapor plasma required for treatment of 1 kg of raw material in gasification varies depending on the material of the solid organic raw material which is the raw material, but 64 g / kg when the above mentioned chicken manure is treated (Example 1 The dry wood was treated at 326 g / kg, and the waste tire was treated at 1.2 kg / kg.
 また,図6及び図7より,蒸気プラズマを使用した本発明のガス化では,空気プラズマを使用した場合に比較してより少ない電力消費量によって,より出力エネルギーの高い燃料ガスが得られることが確認されており,蒸気プラズマを使用してガス化を行う場合には,空気プラズマを使用してガス化を行う場合に比較して,最大で約3倍の効率の向上が得られることが確認された(図6の実施例2と比較例2の比較)。 Also, according to FIG. 6 and FIG. 7, in the gasification of the present invention using steam plasma, it is possible to obtain fuel gas with higher output energy with less power consumption compared to using air plasma. It has been confirmed that when gasification is performed using vapor plasma, it is confirmed that an improvement in efficiency of about 3 times at maximum can be obtained as compared to the case where gasification is performed using air plasma (Comparison of Example 2 and Comparative Example 2 in FIG. 6).
 なお,破砕した木材を原料とした蒸気プラズマによるガス化において,処理温度の変化によって生成されるガスの成分にどのような相違が生じるかを測定した結果を,図8に示す。 In addition, in the gasification by the vapor plasma which used the crushed wood as a raw material, the result of having measured what kind of difference arises in the component of the gas produced | generated by the change of process temperature is shown in FIG.
 図8に示す結果より,約1300K(1026.84℃)を越えたあたりでH,COの発生量がピークを迎え,その後,H,COの発生量は温度の上昇によって殆ど変化せずに一定値を維持することから,固形有機原料の加熱温度が1100℃以上となるような条件で加熱を行うことが有利であり,このような温度は第1円形空洞11内の接線方向に2000~3500℃に過熱された水蒸気を吹き込むことにより実現することができる。 According to the results shown in FIG. 8, the generation of H 2 and CO peaks at about 1300 K (1026.84 ° C.), and then the generation of H 2 and CO hardly changes with the increase of temperature. It is advantageous to carry out heating under the condition that the heating temperature of the solid organic raw material becomes 1100 ° C. or higher, since such a temperature is 2000 ° C. in the tangential direction in the first circular cavity 11. This can be realized by blowing in steam superheated to -3500 ° C.
 〔粒径の影響〕
 反応ガスの温度変化に対する粒径別の木材粒子の表面温度の変化を図9に,反応ガスの温度変化に対する粒径別のガス化率の変化を図10にそれぞれ示す。
[Influence of particle size]
The change in surface temperature of wood particles by particle size with respect to the temperature change of the reaction gas is shown in FIG. 9, and the change in gasification rate by particle size with respect to the temperature change in the reaction gas is shown in FIG.
 図9及び図10より明らかなように,反応ガス(過熱蒸気)の温度が同じであっても,処理対象とした木材の粒径が小さくなる程,木材の表面温度が上昇すると共に,ガス化率が上昇することが判り,粒径の減少に伴う原料の表面積の拡大に伴い,過熱蒸気によるガス化の促進を図ることができることが判る。 As apparent from FIGS. 9 and 10, even if the temperature of the reaction gas (superheated steam) is the same, the surface temperature of the wood rises and the gasification becomes more pronounced as the particle size of the wood to be treated becomes smaller. It can be seen that the rate increases, and it can be seen that the gasification by the superheated steam can be promoted as the surface area of the raw material increases with the decrease of the particle size.
 原料である固体有機原料の粒子面において,発生するガス成分中における酸化炭素(CO)及び水素(H)の発生率を向上させるためには,反応炉壁から粒子面に向けた熱流を増やす必要があり,放射による熱流は表面積に比例するので,壁の温度上昇のみならず,固形有機原料の粒子径の減少に伴う表面積の増大によってもこれを達成することができ(図9,10参照),破砕した状態の固形有機原料を処理対象とすることの有利性が裏付けられる。 In order to improve the generation rate of carbon monoxide (CO) and hydrogen (H 2 ) in the gas component generated from the particle surface of the solid organic raw material which is the raw material, increase the heat flow from the reactor wall toward the particle surface Needed, because the heat flow due to radiation is proportional to the surface area, this can be achieved not only by the temperature rise of the wall, but also by the increase of the surface area with the decrease of the particle size of the solid organic raw material (see FIGS. The advantage of using solid organic raw materials in the crushed state as a processing target is supported.
〔燃焼時における酸化剤との混合比(燃料当量比)〕
 燃料ガスの燃焼時における燃焼速度,発熱速度(図11参照),及び火炎伝播速度〔図12(A)~(C)参照〕は十分早いので,第2円形空洞12において,燃料ガスの燃焼による熱出力が,原料を遅滞なく加熱する。
[Mixing ratio with oxidant at the time of combustion (fuel equivalent ratio)]
Since the combustion rate, heat generation rate (see FIG. 11), and flame propagation rate (see FIGS. 12A to 12C) at the time of combustion of the fuel gas are sufficiently fast, in the second circular cavity 12, by the combustion of the fuel gas The heat output heats the raw materials without delay.
 図12(A)~(C)は,反応炉内に近い条件において,酸化炭素(CO)と水素(H)の配合が異なる3つの試料に対し燃料当量比(燃料ガスの質量/酸化剤の質量)の変化に伴う火炎速度の変化を測定した結果である。 12 (A) to 12 (C) show fuel equivalent ratios (mass of fuel gas / oxidant) for three samples different in the composition of carbon monoxide (CO) and hydrogen (H 2 ) under conditions close to the inside of the reactor. It is the result of measuring the change of the flame speed accompanying the change of the mass of.
 火炎伝播速度は酸化炭素(CO)の含有率が増加するに従い低下し,初期温度が上昇すれば,伝播速度も増加するが,いずれの例においても,燃料当量比αfが約2程度の高濃度のガスにおいて伝播速度はピークに達しており,この数値の前後を含めた,燃料当量比αfが0.7~3.0,好ましくは1.5~3.0の濃混合気の範囲であれば,いずれも高い熱伝播率を得られることが判る〔図12(A)~(C)〕。 The flame propagation speed decreases as the content of carbon monoxide (CO) increases, and when the initial temperature rises, the propagation speed also increases, but in all cases, the fuel equivalence ratio α f is as high as about 2 Propagation velocity reaches a peak, and the fuel equivalence ratio α f is in the range of concentrated air-fuel ratio of 0.7 to 3.0, preferably 1.5 to 3.0, including before and after this value. For example, it can be seen that a high heat transfer rate can be obtained in any case (FIGS. 12A to 12C).
 なお,燃料当量比は,第1円形空洞11においてガス化せずに残った固形有機原料の化学量論に基づき第1円形空洞11における燃料ガスの発生量を求めることにより算出した。 The fuel equivalent ratio was calculated by determining the amount of fuel gas generated in the first circular cavity 11 based on the stoichiometry of the solid organic raw material remaining without gasification in the first circular cavity 11.
〔効果確認試験〕
 試験例1
 実験装置を使用して,下記の表4に示す条件にて本発明の方法による固形有機原料のガス化を行った。このガス化によって生成された燃料ガスの成分を表5にそれぞれ示す。
[Effect confirmation test]
Test Example 1
Using the experimental apparatus, the gasification of the solid organic raw material according to the method of the present invention was performed under the conditions shown in Table 4 below. The components of the fuel gas produced by this gasification are shown in Table 5, respectively.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記試験例では,燃料当量比を1としたときに燃焼生成物の燃焼温度が最高値を達成し,バイオマスを処理した場合の燃焼生成物の最高燃焼温度は1900℃,廃棄物の混合モデルを処理した場合の燃焼生成物の最高燃焼温度は1700℃となった。尚,燃焼生成物中の酸化炭素(CO)は0.5%以下となった。 In the above test example, when the fuel equivalence ratio is 1, the combustion temperature of the combustion products achieves the maximum value, and the maximum combustion temperature of the combustion products when the biomass is processed is 1900 ° C., and the waste mixture model is The maximum combustion temperature of the combustion product when treated was 1700 ° C. The carbon monoxide (CO) in the combustion product was less than 0.5%.
 バイオマスをガス化した試験例では,発熱量11.03MJ/m3の燃料ガスが,12.5リットル/分で出力された。この燃料ガスの空気中における燃焼時の熱出力は2.3kWであった。 In the test example in which biomass was gasified, a fuel gas with a calorific value of 11.03 MJ / m 3 was output at 12.5 liters / minute. The heat output at the time of combustion of this fuel gas in air was 2.3 kW.
 すなわち,前述したバイオマスのガス化では,消費電力0.55kWに対し,生成ガスの燃焼により発生する化学的エネルギーは2.3kWとなる。従って,反応炉に入力した総合熱容量は,「0.55+2.3=2.85kW」であり,入力熱量(0.55kW)に対する増加は,「2.85/0.55≒
5.2倍」となり,高効率でのガス化を行うことができた。
That is, in the gasification of biomass described above, the chemical energy generated by the combustion of the produced gas is 2.3 kW while the power consumption is 0.55 kW. Therefore, the total heat capacity input to the reactor is “0.55 + 2.3 = 2.85 kW”, and the increase relative to the input heat quantity (0.55 kW) is “2.85 / 0.555
The gasification could be performed with high efficiency.
 混合モデルをガス化した試験例では,発熱量8.17MJ/m3の燃料ガスが,10.0リットル/分で出力された。この燃料ガスの空気中における燃焼時の熱出力は1.36kWであった。 In the test example in which the mixture model was gasified, a fuel gas with a calorific value of 8.17 MJ / m 3 was output at 10.0 liters / minute. The heat output at the time of combustion of this fuel gas in air was 1.36 kW.
 すなわち,前述した混合モデルのガス化では,消費電力0.55kWに対し,生成ガス燃焼により発生する化学的エネルギーは1.36kWとなる。従って,反応炉に入力した総合熱容量は「0.55+1.36=1.91kW」であり,入力(0.55kW)に対する増加分は,「1.91/0.55≒3.47倍」となり,いずれの原料を使用した場合においても,高効率でガス化を行うことができた。 That is, in the gasification of the mixed model described above, the chemical energy generated by the generated gas combustion is 1.36 kW while the power consumption is 0.55 kW. Therefore, the total heat capacity input to the reactor is “0.55 + 1.36 = 1.91 kW”, and the increase with respect to the input (0.55 kW) is “1.91 / 0.55 ≒ 3.47 times”. Even when using any of the raw materials, gasification could be performed with high efficiency.
 試験例2
 プラズマジェット入力-100kW。ごみ(医療廃棄物)の処理能力-53kg/h,水流量-27kg/h。プラズマ噴流温度-2800℃。反応炉内温度 -1100℃。生成ガス成分,% 重量:Н2- 65, СО- 35。発熱量 - 11,42 MJ/mn3。生成ガス出力 (1,5 mn3/kg) - 80,0 mn3。ガス燃焼時の熱量- 253 kW。炉内総合熱量353 kW。原料の化学的エネルギーにより,総合熱量は入力電力の3,53倍となる。なお,上記において「mn3」は,気温20℃における気体の立方メートルである。
Test example 2
Plasma jet input -100kW. Processing capacity of waste (medical waste)-53 kg / h, water flow-27 kg / h. Plasma jet temperature-2800 ° C. Reactor internal temperature -1100 ° C. Product gas components,% by weight: Н 2 - 65, СО- 35 . Calorific value-11, 42 MJ / mn3. Generated gas output (1, 5 mn3 / kg)-80, 0 mn3. Heat quantity at the time of gas combustion-253 kW. Total amount of heat in the furnace 353 kW. Depending on the chemical energy of the raw material, the total amount of heat is 3, 53 times the input power. In the above, “mn3” is a cubic meter of gas at a temperature of 20 ° C.
1 ガス化装置
3 断熱材
9 円形交換器
10 反応炉
11 第1円形空洞(ゾーン1)
12 第2円形空洞(ゾーン2)
13 ガス化促進領域(ゾーン3)
21 排出ガス通路
21a 内側通路
21b 外側通路
21c 継手
22 蒸気プラズマ導入路
23 酸化剤導入路
30 電気アークプラズマジェット
40 供給装置
41 電動機
42 攪拌羽根
50 残灰排出装置
51 電動機
 
 
1 gasification device 3 heat insulating material 9 circular exchanger 10 reaction furnace 11 first circular cavity (zone 1)
12 Second circular cavity (zone 2)
13 Gasification promotion area (zone 3)
21 Exhaust gas passage 21a Inner passage 21b Outer passage 21c Joint 22 Steam plasma introduction passage 23 Oxidizing agent introduction passage 30 Electric arc plasma jet 40 Supply device 41 Motor 42 Stirring blade 50 Residual ash discharge device 51 Electric motor

Claims (13)

  1.  円筒形の反応炉内の一端側より乾燥した粒状の固形有機原料を導入し,前記反応炉内に前記一端側から他端側に向かって前記反応炉の軸線方向に移動する原料柱を形成し,
     前記反応炉の中間領域において電気アークプラズマジェットで発生した高温度の水蒸気噴流を噴射して前記固体有機原料中の有機成分を一部ガス化させて燃料ガスを発生させ,
     前記燃料ガスを発生させた領域に対し前記他端寄りの領域において反応炉内に酸化剤を吹き込んで,前記燃料ガスを燃焼させ,前記酸化剤の供給を行った領域において原料柱を加熱して,この酸化剤の導入を行った領域と該領域に対し前記他端寄りにある領域において前記固形有機原料中に残留する有機分を完全にガス化し,
     前記他端側において前記反応炉10内を吸引し,固形有機原料より生成した燃料ガスを850℃以上の温度で取り出すことを特徴とする,固形有機原料のガス化方法。
    A granular solid organic raw material dried from one end side in a cylindrical reaction furnace is introduced, and a raw material column moving in the axial direction of the reaction furnace from the one end side to the other end side is formed in the reaction furnace ,
    In the middle region of the reactor, a high temperature steam jet generated by an electric arc plasma jet is injected to partially gasify the organic component in the solid organic raw material to generate a fuel gas,
    An oxidant is blown into the reaction furnace in a region near the other end with respect to the region where the fuel gas is generated to burn the fuel gas, and the raw material column is heated in the region where the oxidant is supplied. Completely gasify the organic component remaining in the solid organic material in the region where the oxidizing agent is introduced and the region closer to the other end with respect to the region,
    A method of gasifying a solid organic material, comprising: drawing the inside of the reaction furnace at the other end side and taking out a fuel gas generated from a solid organic material at a temperature of 850 ° C. or higher.
  2.  前記酸化剤の吹き込みを,燃料当量比が0.7~3.0の混合気となるように行うことを特徴とする請求項1記載の固形有機原料のガス化方法。 The method for gasifying a solid organic raw material according to claim 1, wherein the blowing of the oxidizing agent is performed so that the fuel equivalent ratio becomes a mixture of 0.7 to 3.0.
  3.  前記水蒸気噴流が,2000~3500℃の過熱水蒸気の噴流であり,1機またそれ以上の前記電気アークプラズマジェットを通じて前記反応炉の内壁の周方向における接線方向に前記水蒸気噴流を吹き込むことにより反応炉内を周方向に循環する前記水蒸気噴流の循環流を形成し,
     前記循環流が形成された部分における反応炉内壁を1000~1600℃まで加熱することを特徴とする請求項1又は2記載の固形有機原料のガス化方法。
    The steam jet is a jet of superheated steam at 2000 to 3500 ° C., and the steam jet is blown in a tangential direction in the circumferential direction of the inner wall of the reactor through one or more electric arc plasma jets. Forming a circulating flow of the steam jet circulating in the circumferential direction,
    The method for gasifying a solid organic raw material according to claim 1 or 2, wherein the inner wall of the reactor in the portion where the circulating flow is formed is heated to 1000 to 1600 ° C.
  4.  前記酸化剤を,200~600℃に加熱した状態で前記反応炉内に吹き込むことを特徴とする請求項1~3いずれか1項記載の固形有機原料のガス化方法。 The method for gasifying a solid organic raw material according to any one of claims 1 to 3, wherein the oxidizing agent is blown into the reaction furnace while being heated to 200 to 600 属 C.
  5.  前記酸化剤の供給を行った領域を通過した固形有機原料の温度を900~1100℃の範囲に維持すると共に,ガス化における酸化剤消費率を0.90~0.95の範囲に維持することを特徴とする請求項1~4いずれか1項記載の固形有機原料のガス化方法。 Maintain the temperature of the solid organic raw material passed through the region where the oxidizing agent is supplied in the range of 900 to 1100 ° C., and maintain the oxidizing agent consumption rate in the gasification in the range of 0.90 to 0.95 The method for gasifying a solid organic raw material according to any one of claims 1 to 4, characterized in that
  6.  前記酸化剤の供給を行った領域において前記酸化剤に過熱水蒸気を混合して導入し,該領域を通過した固形有機原料の温度を900~1100℃の範囲に維持し,ガス化における酸化剤消費率を1.05~1.20の範囲とすることを特徴とする請求項1~4いずれか1項記載の固形有機原料のガス化方法。 Superheated steam is mixed and introduced into the oxidizing agent in the region where the oxidizing agent is supplied, the temperature of the solid organic raw material passed through the region is maintained in the range of 900 to 1100 ° C., and the oxidizing agent consumption in gasification The method for gasifying a solid organic raw material according to any one of claims 1 to 4, wherein the rate is in the range of 1.05 to 1.20.
  7.  前記酸化剤の供給を行う領域において,該領域を通過する前記原料柱の移動速度を減速させることを特徴とする請求項1~6いずれか1項記載の固形有機原料のガス化方法。 The method for gasifying a solid organic raw material according to any one of claims 1 to 6, wherein the moving speed of the raw material column passing through the area is decreased in the area where the oxidizing agent is supplied.
  8.  一端より投入された原料を他端側に移動させつつ処理する円筒形の反応炉内の中間領域に,該反応炉の内径を拡張して形成した第1円形空洞と,
     前記第1円形空洞に対し前記反応炉の内径の0.1~0.5倍の距離を隔てた前記他端寄りの位置で前記反応炉の内径を拡張して形成した第2円形空洞を設け,
     前記反応炉外に配置された電気アークプラズマジェットが噴射した高温の水蒸気噴流を導入する蒸気プラズマ導入路を前記第1円形空洞において前記反応炉内の空間に連通し,
     加熱された酸化剤を導入する酸化剤導入路を前記第2円形空洞において前記反応炉内の空間に連通すると共に,
     前記反応炉内を吸引する排出ガス通路を,前記他端側において前記反応炉内に連通したことを特徴とする固形有機原料のガス化装置。
    A first circular cavity formed by expanding the inner diameter of the reaction furnace in an intermediate region in a cylindrical reaction furnace in which a raw material introduced from one end is moved to the other end and processed,
    A second circular cavity is formed by expanding the inner diameter of the reactor at a position near the other end separated by a distance of 0.1 to 0.5 times the inner diameter of the reactor with respect to the first circular cavity. ,
    A vapor plasma introduction passage for introducing a high temperature steam jet jetted by an electric arc plasma jet disposed outside the reactor is communicated with the space in the reactor at the first circular cavity,
    The oxidant introducing passage for introducing the heated oxidant is communicated with the space in the reactor in the second circular cavity, and
    An apparatus for gasifying a solid organic raw material, wherein an exhaust gas passage for drawing the inside of the reaction furnace is communicated with the inside of the reaction furnace at the other end side.
  9.  前記蒸気プラズマ導入路を前記第1円形空洞の内壁の周方向における接線方向に,内壁面に沿った水蒸気噴流の循環流を生じるように配置したことを特徴とする請求項8記載の固形有機原料のガス化装置。 9. The solid organic raw material according to claim 8, wherein the vapor plasma introduction path is arranged in a tangential direction in a circumferential direction of the inner wall of the first circular cavity so as to generate a circulating flow of water vapor jet along the inner wall surface. Gasifier.
  10.  前記酸化剤導入路を,前記第2円形空洞の内壁の周方向における接線方向であって,前記第1円形空洞で生じた水蒸気噴流の循環流と同一回転方向の循環流が生じるように配置することを特徴とする請求項9記載の固形有機原料のガス化装置。 The oxidant introduction path is disposed tangentially in the circumferential direction of the inner wall of the second circular cavity so as to produce a circulating flow in the same rotational direction as the circulating flow of the steam jet generated in the first circular cavity The gasifier of the solid organic material according to claim 9, characterized in that.
  11.  前記排出ガス通路を二重管構造とし,該排出ガス通路の一方の通路を介して前記反応炉内を吸引すると共に,他方の通路を介して前記酸化剤導入路を酸化剤供給源に連通することを特徴とする請求項8~10いずれか1項記載の固形有機原料のガス化装置。 The exhaust gas passage has a double pipe structure, and the inside of the reaction furnace is sucked through one of the exhaust gas passages, and the oxidant introduction passage is communicated with the oxidant supply source through the other passage. A gasifier for a solid organic material according to any one of claims 8 to 10, characterized in that
  12.  前記第2円形空洞の出口側の直径を,入口側の直径の0.7~0.9倍の直径に狭めた形状としたことを特徴とする請求項8~11いずれか1項記載の固形有機原料のガス化方法。 The solid according to any one of claims 8 to 11, wherein the diameter of the outlet side of the second circular cavity is narrowed to a diameter 0.7 to 0.9 times the diameter of the inlet side. Gasification method of organic raw materials.
  13.  前記第2円形空洞の出口から,前記反応炉の前記他端に至る領域を,前記第2円形空洞の出口から前記反応炉の前記他端に向かって徐々に内径を拡大する形状に形成したことを特徴とする請求項8~12いずれか1項記載の固形有機原料のガス化装置。
     
    A region from the outlet of the second circular cavity to the other end of the reactor is formed in such a shape that the inner diameter is gradually expanded from the outlet of the second circular cavity toward the other end of the reactor A gasifier for a solid organic raw material according to any one of claims 8 to 12, characterized in that
PCT/JP2013/063658 2013-05-16 2013-05-16 Method for gasifying solid organic raw material and gasification device WO2014184923A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015516833A JP6041451B2 (en) 2013-05-16 2013-05-16 Gasification method and gasification apparatus for solid organic raw material
PCT/JP2013/063658 WO2014184923A1 (en) 2013-05-16 2013-05-16 Method for gasifying solid organic raw material and gasification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063658 WO2014184923A1 (en) 2013-05-16 2013-05-16 Method for gasifying solid organic raw material and gasification device

Publications (1)

Publication Number Publication Date
WO2014184923A1 true WO2014184923A1 (en) 2014-11-20

Family

ID=51897929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063658 WO2014184923A1 (en) 2013-05-16 2013-05-16 Method for gasifying solid organic raw material and gasification device

Country Status (2)

Country Link
JP (1) JP6041451B2 (en)
WO (1) WO2014184923A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112103A (en) * 2015-08-18 2015-12-02 王晓峰 Small-grain-diameter lignite gasification device based on vacuum thermal decomposition and gasification method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614788A (en) * 1984-06-14 1986-01-10 エスケ−エフ ステイ−ル エンジニアリング アクテイエボラ−グ Carbon gasification
JP2009511691A (en) * 2005-10-14 2009-03-19 コミッサリア タ レネルジー アトミーク Equipment for gasifying biomass and organic waste at high temperatures by supplying power from outside to produce high-quality synthesis gas
JP2009536979A (en) * 2006-05-12 2009-10-22 インエンテック エルエルシー Combined gasification and vitrification system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614788A (en) * 1984-06-14 1986-01-10 エスケ−エフ ステイ−ル エンジニアリング アクテイエボラ−グ Carbon gasification
JP2009511691A (en) * 2005-10-14 2009-03-19 コミッサリア タ レネルジー アトミーク Equipment for gasifying biomass and organic waste at high temperatures by supplying power from outside to produce high-quality synthesis gas
JP2009536979A (en) * 2006-05-12 2009-10-22 インエンテック エルエルシー Combined gasification and vitrification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112103A (en) * 2015-08-18 2015-12-02 王晓峰 Small-grain-diameter lignite gasification device based on vacuum thermal decomposition and gasification method thereof
CN105112103B (en) * 2015-08-18 2017-06-16 王晓峰 Small particle brown coal hydrogasification device and its gasification process based on vacuum thermal decomposition

Also Published As

Publication number Publication date
JP6041451B2 (en) 2016-12-07
JPWO2014184923A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5890440B2 (en) Waste treatment method and apparatus
JP5631313B2 (en) Thermal reactor
JP2012531296A (en) Waste management system
JP2009300006A (en) Thermal recycling method and system by converting waste tire into fuel
WO2008050727A1 (en) Biomass gasification apparatus
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
CN104479743B (en) A kind of rubbish plasma gasification stove with vapor as gasifying medium
US20240117965A1 (en) Burner tube
CN102746902B (en) Gasification method of organic wastes and special gasification furnace
JP5940756B1 (en) Biomass gasifier
JP2006152193A (en) Method and device for gasification treatment
JP2004051718A (en) Biomass gasification method
WO2014184923A1 (en) Method for gasifying solid organic raw material and gasification device
JP2001241624A (en) Waste-incinerating plant
CN206280975U (en) Heat accumulating type spiral pyrolysis installation
CN106642136B (en) Heat accumulating type spiral pyrolysis installation and its application
JP2008215661A (en) Combustion furnace, waste gasification system and combustible gas treatment method
CN201180123Y (en) Semiwater gas generating stove for solid biomass
RU2301374C1 (en) Method and device for preparing fuel for combustion
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JP5945929B2 (en) Waste gasification and melting equipment
JP2004182903A (en) Method and apparatus for gasifying biomass
JP2005241054A (en) Waste material melting method using powder biomass
WO2013068052A1 (en) Method and system for producing a producer gas
KR101997506B1 (en) Cyclone Gasifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884929

Country of ref document: EP

Kind code of ref document: A1