WO2014184399A1 - Lente de contacto blanda correctora-estabilizadora de la miopía - Google Patents

Lente de contacto blanda correctora-estabilizadora de la miopía Download PDF

Info

Publication number
WO2014184399A1
WO2014184399A1 PCT/ES2013/070307 ES2013070307W WO2014184399A1 WO 2014184399 A1 WO2014184399 A1 WO 2014184399A1 ES 2013070307 W ES2013070307 W ES 2013070307W WO 2014184399 A1 WO2014184399 A1 WO 2014184399A1
Authority
WO
WIPO (PCT)
Prior art keywords
curvature
peripheral
myopia
contact lens
radius
Prior art date
Application number
PCT/ES2013/070307
Other languages
English (en)
French (fr)
Inventor
Mariano Magro De Mingo
Adolfo GARCÍA DE TIEDRA
Álvaro GARCÍA DE TIEDRA
Original Assignee
Tiedra Farmacéutica, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiedra Farmacéutica, S.L. filed Critical Tiedra Farmacéutica, S.L.
Priority to PCT/ES2013/070307 priority Critical patent/WO2014184399A1/es
Publication of WO2014184399A1 publication Critical patent/WO2014184399A1/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/047Contact lens fitting; Contact lenses for orthokeratology; Contact lenses for specially shaped corneae
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • the present invention is framed in the area of contactology, and refers to soft contact lenses to simultaneously correct and stabilize the progression of myopia.
  • Myopia is considered a multifactorial condition, with numerous risk factors being noted, including genetic predisposition, age (appears mainly in children between 6-12 years, but also in adolescents and young adults), race (higher prevalence in Asians, Hispanics and Caucasians than in negroid), sex (more frequent in women) (Hyman et al. 2005) and educational and professional factors, mainly the high visual stress derived from the intensive and systematic use of near vision (Ting et al. 2004).
  • REPLACEMENT SHEET (Rule 26) more frequent case), or because the refractive power of the eye, basically the refractive power of the cornea and lens, is too high compared to the axial length of the eye (refractive myopia).
  • the appearance and progression of myopia in children and young adults occurs as
  • the emmetropization process that takes place during growth is regulated by visual feedback mechanisms, so that the quality of the image formed in the retina, that is, the retinal blur, It constitutes a critical signal in the modulation of the speed and magnitude of the axial elongation of the eye, which acts as an adaptive response aimed at eliminating refractive error and returning the eye to the state of emetropia (Smith et al 2010).
  • the retinal blur would explain the development of myopia related to excessive work in near vision (eg reading, writing, etc.): the prolonged accommodation effort to keep the focus close would eventually result in a delay
  • the treatment of myopia has focused on the correction of refractive error at the level of the central retina (on-axis rays).
  • the quality of the peripheral image that is, the existence of blurring in the peripheral field of the retina (ophthalmic rays), which determines the so-called relative peripheral refractive error (RPRE)
  • RPRE relative peripheral refractive error
  • the myopic eye In contrast to what happens in emmetropic individuals, the myopic eye generally presents a hyperopic retinal blur (Seidemann et al. 2002; Mutti et al. 2007), which acts positively stimulating axial elongation and hence the progression of myopia.
  • This peripheral refractive pattern can in turn be modified by inducing an optical blur (Smith et al. 2010b). Therefore, the control of the appearance and / or progression of myopia would require the correction of the hyperopic RPRE, so that the visual image of the peripheral field is placed in front of the
  • REPLACEMENT SHEET (Rule 26) peripheral retina, with the aim of generating a negative stimulus or visual feedback contrary to the axial elongation of the eye, thus preventing the progression of the disease.
  • Various technologies including methods, devices and lenses based on these concepts have been proposed by Smith et al. WO 2005/055891 Al, Holden et al. WO 2007/146673 A2, Lindacher & Ye WO 2008/045847 A2, and Choo et al. WO 2008/014544 Al.
  • the present invention relates to soft contact lenses, with both optically and functionally active faces, the front face being of conventional geometry and the rear face of reverse geometry, so that, when inserting the lens into the eye, correct the central refractive error and provide a clear visual image from far and near, and at the same time, through the remodeling of the cornea, correct the peripheral refractive error so that the visual image of the peripheral field is placed in front of, or coinciding with, the peripheral retina, and stabilize the progression of myopia, all with a high degree of tolerability and comfort.
  • Fig. 1 illustrates the profile of a personification contact lens of the invention showing the main elements of the front face and the rear face.
  • Fig. 2 illustrates a front image of the same personification contact lens of the invention showing the different zones and the tear accumulation rings.
  • Fig. 3a and 3b diagrammatically illustrate the position in relation to the retina of the central visual image and the peripheral visual image in an uncorrected myopic eye (3a), and after inserting into this eye the personification contact lens of the invention (3b).
  • Fig. 4a and 4b illustrate a detail of the profile of the rear surface of the lens
  • the contact lens object of the invention is designed to, when adapted in the eye, simultaneously and independently exercise at least two actions or functions: 1) a corrective or compensatory action, intended to correct the refractive error, with the objective to provide the user immediately with a clear vision from far and near, and 2) a stabilizing or controlling action of the progression of myopia, aimed at modifying the course of the disease in the medium-long term, with the aim of slow down, stop or even reverse or prevent the progression of myopia, and all this with a high degree of tolerability and eye comfort, derived from the use of "soft" materials (hydrogel, silicone hydrogel), which do not allow to reach the constituent materials of rigid lenses ,. This is achieved through a design with both sides, anterior and posterior, optical and
  • REPLACEMENT SHEET "stabilization of the progression of myopia” or “control of the progression of myopia” are used interchangeably, and include (but not limited to) the prevention or delay of the onset of myopia, the stabilization or slowdown of progression of myopia, or reversal of myopia.
  • stabilization of the progression of myopia or “control of the progression of myopia” are used interchangeably, and include (but not limited to) the prevention or delay of the onset of myopia, the stabilization or slowdown of progression of myopia, or reversal of myopia.
  • the term “comprises” (and its grammatical variants) referring to the lens is used in this application as equivalent to the term “includes”, and should not be understood as exclusion or absence of other elements or features.
  • the anterior surface of the lens A is of conventional geometry, and has at least one central optical zone 10, which in combination with the facing part of the rear face 20 provides a negative spherical dioptric power equal to the refractive error of the user, so that with the lens adapted in the LC eye (Fig. 3b), the resulting central visual image IC * is placed in the central retina R, CC (Fig 3), providing clear vision, both in distance vision and near vision, with or without accommodation.
  • Said central optical zone 10 has a diameter similar or 1 mm larger than the diameter of the pupil of the user's eye, with a range between 3 mm and 10 mm inclusive, the most common being 6 mm.
  • the spherical dioptric power of the lens can vary between +5 D and -20 D, both inclusive.
  • the central optical zone can be designed with spherical, aspherical, toric curvature, or any combination of these, or several of these, being able be equally monofocal, bifocal or multifocal, so that the lens also corrects the possible error derived from them.
  • the refractive error is previously determined using usual refractive methods and equipment, well known to the optometrist and ophthalmologist.
  • the stabilizing function of the myopia progression of the lens object of the invention is achieved in turn by an internal or posterior surface of the P lens, of multiple inverse geometry, following a typical orthokeratology pattern, well defined in the current state of technique
  • the posterior surface proposed in the present invention acts by exerting a controlled pressure on the corneal epithelium, shaping the anterior surface of the cornea (the posterior surface of the cornea does not suffer significant alterations), a phenomenon well known as corneal reshaping, producing its flattening and thinning central, as well as its paracentral thickening and increased peripheral inclination under controlled and predictable conditions.
  • the different forms of the invention for this posterior surface P include a central integral optical zone or curve (generally circular, although it may have other shapes) 20, with at least a certain or variable radius of curvature gradually decreasing towards the periphery, greater than the corneal radius of the eye in which the lens will be adapted, and at least one annular curve or zone 22 connected and concentrically located around said central curve, defined at least in part by a second radius of curvature, the axes of which are not coaxial said central and annular curves, all allowing the formation of a reservoir of annular tear fluid between both curves by inserting the contact lens in the eye 40, specifically designed to modify or reshape the shape of the user's corneal surface C * ( Fig.
  • the peripheral refractive error is previously determined using usual refractive methods and equipment, well known to the optometrist and ophthalmologist, for a predetermined reference angle with respect to the central axis, preferably between 20 ° and 45 °, and usually between 25 ° and 35 °.
  • the shape of the uncorrected cornea C and corrected C * is determined by corneal topography, a technique also widely known by the aforementioned health professionals.
  • the rear surface P comprises several successive curves or annular zones located concentrically to the first annular zone and linking thereto, as well as successively with each other, formed by pairs of curves with different radius of curvature, with a non-coaxial axis of curvature with respect to the axis of curvature of the central zone and / or the axis of curvature of the first annular zone, the axes of the curves forming said pairs not being coaxial, and a radius of curvature greater than that of the central zone and that of the first annular zone, as well as greater than that of the curves of the previous annular zone, so that said pairs of curves are arranged at an angle to each other creating respective cavities, such that when inserting the lens in the eye define one or more additional tear accumulation rings 42.
  • Such radii of curvature are characterized in that, by inserting the lens into the eye, it modifies or reshapes the shape of the corneal surface in a certain degree and shape, flattening it by the apex and increasing its inclination at the peripheral level, correcting the hyperopic relative peripheral refractive error typical of the myopic eye transforming it into myopic blur, so that the visual image of the peripheral field is placed in front of , or coinciding with, the peripheral retina.
  • the lens modifies or reshapes the shape of the corneal surface in a certain degree and shape, flattening it by the apex and increasing its inclination at the peripheral level, correcting the hyperopic relative peripheral refractive error typical of the myopic eye transforming it into myopic blur, so that the visual image of the peripheral field is placed in front of , or coinciding with, the peripheral retina.
  • said rear surface of the lens shows a pentacurve geometry, also referred to as a double alignment band, which includes a circular central optical zone 20, a first annular zone 22, and four reverse bands 24 and 26, 28 and 30, whose radii may vary in the range of 3mm - 10mm, both inclusive.
  • This profile allows to obtain a better parallelism of the posterior surface with the cornea, as well as generate at least two tear rings, 40 and 42.
  • the peripheral area of the optical zone separated from the corneal apex forms a first tear accumulation ring.
  • the second curve 22, linked to the optical zone 20, has a smaller radius than this, with a width between 0.3 mm and 1.2 mm.
  • the third curve 24, corresponding to the first curve of a second tear ring 42, has a radius greater than the second curve, its width being between 0.20 mm and 1.30 mm.
  • the fifth curve 28, corresponding to the first curve of a third tear ring (not shown in Fig. 2), has a radius greater than that of the fourth curve, its width being between 0.20 mm and 1.30 mm
  • the sixth curve 30, has a radius greater than the fourth curve, separating from it, which allows the edge to be lifted to the periphery, which allows tear circulation and lens movement, avoiding its adherence to the cornea, and facilitating the extraction.
  • this last curve can be straight, and have infinite radius.
  • the four bands described mold the cornea by flattening it by the apex and increasing its inclination at the peripheral level, producing the necessary refractive change to achieve the myopic blur in the peripheral retina, an effect that is controlled with an adequate selection of the radius of curvature of the (s) ) band (s) facing the cornea region corresponding to the required peripheral field angle.
  • the total outer diameter of the personification lens of the invention 50 generally varies in the range between 9 mm and 16 mm, with 14 mm being more common.
  • the lens has a variable lateral thickness, since the anterior surface does not have to coincide or be parallel with the different curves of the posterior face, said thickness varying between 0.05 mm and 1 mm, the most usual range being 0.1 mm - 0.5 mm
  • the embodiment of the invention can also be carried out with a lens of similar characteristics to those described in the preceding paragraphs, in which the radius of curvature of the first annular area of the posterior face 22 is higher than the radius of curvature of the
  • REPLACEMENT SHEET (Rule 26) central area of the lens, and may also be greater or less than the radius of curvature of the corresponding portion of the cornea to which it opposes.
  • a lens of similar characteristics to that described in the preceding paragraphs which includes in addition to the central optical zone 10, a 12, or several annular peripheral zone (s).
  • optically active (s) located concentrically and adjacent to the central optical zone, and mostly outside the diameter of the pupil of the eye, formed by the combination of the corresponding peripheral areas of the anterior and posterior surfaces, with internal and posterior radii of 4 mm and 8 mm respectively, with a dioptric refractive power such that when the lens is inserted into the eye, the refractive power or powers resulting from both faces considered together and the corneal molding performed by the rear surface of the lens allow correction of the refractive error Hyperopic relative peripheral of the myopic eye transforming it into myopic, so that the visual image of the peripheral field is placed in front of, or coinciding with, the peripheral retina.
  • the central area of the anterior surface 10 and / or the posterior surface 20 may have spherical, spherical, toric curvature, or any combination thereof, or several of these, whether monofocal , bifocal or multifocal.
  • the annular zone (s) 24, 26, 28 and 30 and / or the peripheral optical zone (s) existing in the anterior face 12 and / or in the Posterior face may have spherical, toric curvature, or any combination thereof, or several of these, whether monofocal, bifocal or multifocal.
  • the contact lens can be manufactured using a turning and subsequent polishing process, using standard lathes that allow the creation of lenses with different radii of curvature, from the known discs or studs as the starting material.
  • any of those used in the manufacture of soft contact lenses such as hydrophilic hydrogel polymers or, preferably, due to their greater transmissibility, hydrogel silicone can be used.
  • the lens object of the present invention is not a lens for orthokeratology.
  • one of the findings on which the present invention is based is that, although it is known that unlike rigid RPG materials, soft materials (classical hydrophilic or hydrogel silicone) do not allow sufficient exercise
  • REPLACEMENT SHEET (Rule 26) pressure at a localized point to achieve rapid and intense molding of the cornea characteristic of nocturnal orthokeratology (given the extensive experience of using it, the absence of soft contact lenses for CRT is highly demonstrative of the existence of this technical limitation) resolved in practice), however, it is possible to achieve, by a soft lens with inverse multi-band geometry, a corneal molding effect size sufficient to correct the hyperopic relative peripheral refractive error (RPRE) of the myopic eye by transforming it into myopic, so that the visual image of the peripheral field is placed in front of, or coinciding with, the peripheral retina, generating a visual stimulus or feedback contrary to the axial elongation of the eye, and therefore to the progression of myopia.
  • RPRE hyperopic relative peripheral refractive error
  • the embodiment of the invention has the advantage that the correction of the central vision is carried out in the central optical zone of the lens by means of the curvature of the anterior surface of the lens, approximately within the limits of the pupillary diameter, while blurring Peripheral myopic is achieved through controlled corneal molding performed by the posterior face (or with said corneal modeling plus one or several annular optical zone (s) outside the central field).
  • the adaptation of the lens allows the central refractive error and the RPRE to be corrected simultaneously and largely independently, avoiding significant loss of image quality due to overlapping effects.
  • the contact lenses object of the present invention can be used not only for the treatment (correction and progression control) of myopia, but also for the prevention of the appearance of the disease, allowing a personalized approach of the user.
  • a contact lens with neutral or slightly positive dioptric power and with individualized posterior geometry designed to achieve a molding can be used to eliminate RPRE, to avoid or delay the onset of myopia.
  • REPLACEMENT SHEET (Rule 26) Collins M, Buehren T, Camey L, Davis B, Iskander DR, Franklin R, Voetz S. WO
  • Dewoolfson BH Devore DP. Composition for Stabilizing Corneal Tissue During or After Orthokeratology Lens Wear. US 2005231682 Al, 10-20-2005.
  • Hiraoka T Matsumoto Y, Okamoto F, Yamaguchi T, Hirohara Y, Mihashi T, Oshika T.
  • REPLACEMENT SHEET (Rule 26) Homer DG, Soni PS, Vyas N, Himebaugh NL. Longitudinal Changes in Corneal Asphericity in Myopia. Optom Vis Sci 2000; 77: 198-203. Hung GK, Ciuffreda KJ. Incremental Retinal-defocus Theory of Myopia Development- Schematic Analysis and Computer Simulation. Comput Biol Med 2007; 37 (7): 930-946.
  • Hyman L Gwiazda J, Hussein M, Norton TT, Wang Y, Marsh-Tootle W, Everett; for the COMET Study Group. Relationship of Age, Sex, and Ethnicity With Myopia Progression and Axial Elongation in the Correction of Myopia Evaluation Trial. Arch Ophthalmol 2005; 123: 977-987.
  • Oguri A Contact Lens for Orthokeratology. JP 2007195818 A, 09-08-2007.
  • REPLACEMENT SHEET (Rule 26) Owens H, Garner LF, Craig JP, Gamble G. Posterior Corneal Changes with Orthokeratology. Optom Vis Sci 2004; 81: 421-426.

Abstract

La presente invención se refiere a lentes de contacto blandas, con ambas caras óptica y funcionalmente activas, siendo la cara anterior de geometría convencional y la cara posterior de geometría inversa, para, al insertar la lente en el ojo, corregir el error refractivo central y proporcionar una imagen visual nítida de lejos y de cerca, y a la vez, a través del moldeado de la córnea, corregir el error refractivo periférico de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica, para estabilizar la progresión de la miopía, todo ello con un elevado grado de tolerabilidad y confortabilidad.

Description

LENTE DE CONTACTO BLANDA
CORRECTORA-ESTABILIZADORA DE LA MIOPÍA
SECTOR DE LA TÉCNICA
La presente invención se enmarca en el área de la contactología, y se refiere a lentes de contacto blandas para simultáneamente corregir y estabilizar la progresión de la miopía.
ESTADO DE LA TÉCNICA La miopía es una enfermedad de elevada prevalencia, que afecta aproximadamente al 42% de la población adulta, de incidencia creciente (Vitale et al. 2009). Se trata de una enfermedad progresiva e irreversible, asociada a un mayor riesgo de complicaciones oculares serias, tales como desprendimiento de retina, glaucoma y catarata, constituyendo además una de las principales causas de pérdida de visión en los países desarrollados.
La miopía se considera una afección de carácter multifactorial, habiéndose señalado numerosos factores de riesgo, entre los que destacan la predisposición genética, edad (aparece principalmente en niños entre 6-12 años, aunque también en adolescentes y adultos jóvenes), raza (mayor prevalencia en asiáticos, hispánicos y caucásicos que en negroide), sexo (más frecuente en mujeres) (Hyman et al. 2005) y factores educacionales y profesionales, principalmente el elevado estrés visual derivado del uso intensivo y sistemático de la visión de cerca (Ting et al. 2004).
Aunque los mecanismos que explican la aparición y progresión de la miopía siguen siendo no bien conocidos, en los últimos años se ha producido importantes avances en el conocimiento y comprensión de la fisiopatología de la enfermedad. De manera muy simplificada, en el ojo miope los rayos on axis se enfocan por delante de la retina, dando lugar a visión borrosa, bien porque el ojo es excesivamente alargado, de forma que la distancia entre la superficie de la cornea y la retina es demasiado elevada en relación al poder refractivo del ojo {miopía axial,
1
HOJA DE REEMPLAZO (Regla 26) caso más frecuente), o bien porque el poder refractivo del ojo, básicamente el poder refractivo de la córnea y del cristalino, es demasiado elevado comparado con la longitud axial del ojo (miopía refractiva). La aparición y progresión de miopía en niños y adultos jóvenes se produce como
consecuencia de un aumento de la profundidad de la cámara vitrea (distancia entre la superficie posterior del cristalino y la retina) y de la elongación axial del globo ocular (Adams 1987; Grosvenor & Scott 1993; Goss & Wickham 1995; Mutti et al. 2007). Investigaciones llevadas a cabo en una amplia variedad de vertebrados muestran que el proceso de emetropización que tiene lugar durante el crecimiento está regulado por mecanismos de retroalimentación visual, de forma que la calidad de la imagen formada en la retina, esto es, el desenfoque retiniano, constituye una señal crítica en la modulación de la velocidad y magnitud de la elongación axial del ojo, que actúa como respuesta adaptativa destinada a eliminar el error refractivo y tornar al ojo al estado de emetropía (Smith et al 2010). El desenfoque retiniano explicaría el desarrollo de miopía relacionado con el trabajo excesivo en visión próxima (ej. lectura, escritura, etc): el esfuerzo de acomodación prolongado para mantener el enfoque de cerca, resultaría finalmente en un retraso
acomodativo y desenfoque retinal hiperópico, favoreciendo la progresión de la miopía (Hung & Ciuffreda 2007).
Tr adicionalmente, el tratamiento de la miopía se ha centrado en la corrección del error refractivo a nivel de retina central (rayos on axis). Sin embargo, estudios recientes muestran que la calidad de la imagen periférica, esto es, la existencia de desenfoque en el campo periférico de la retina (rayos offaxis), que determina el denominado error refractivo periférico relativo (RPRE), constituye en realidad el factor primordial en la activación de los procesos de elongación axial del ojo y la progresión de la miopía (Smith et al. 2009). A diferencia de lo que ocurre en individuos emétropes, el ojo miope presenta generalmente un desenfoque retiniano hiperópico (Seidemann et al. 2002; Mutti et al. 2007)), que actúa estimulando positivamente la elongación axial y por ende la progresión de la miopía. Este patrón refractivo periférico puede a su vez modificarse induciendo un desenfoque óptico (Smith et al. 2010b). Por tanto, el control de la aparición y/o progresión de la miopía requeriría la corrección del RPRE hiperópico, de forma que la imagen visual del campo periférico se sitúe delante de la
2
HOJA DE REEMPLAZO (Regla 26) retina periférica, con el objetivo de generar un estímulo negativo o retroalimentación visual contraria a la elongación axial del ojo, previniendo así la progresión de la enfermedad. Diversas tecnologías incluyendo métodos, aparatos y lentes basados en estos conceptos, han sido propuestas por Smith et al. WO 2005/055891 Al, Holden et al. WO 2007/146673 A2, Lindacher & Ye WO 2008/045847 A2, y Choo et al. WO 2008/014544 Al.
Las estrategias comúnmente utilizadas para intentar controlar la progresión de la miopía, incluyen terapia farmacológica mediante la aplicación de colirios bloqueantes β-adrenérgicos (Timolol, Labetalol) o antagonistas muscarínicos (Atropina o Pirenzepina), gafas bifocales y multifocales, y lentes de contacto (Saw et al. 2002), y dentro de éstas últimas, lentes rígidas permeables al gas convencionales (RPG) y lentes rígidas para ortoqueratología (éstas últimas denominadas también Terapia Refractiva Corneal, del inglés Corneal Refractive Therapy, CRT). No obstante, la relación beneficio/riesgo de estas intervenciones aún en la actualidad no parece concluyente.
En relación a las lentes de contacto, los resultados obtenidos son contradictorios en lentes rígidas RPG (Katz et al. 2003; Walline et al. 2004), siendo más robustos y prometedores en lentes de ortoqueratología, las cuales ha mostrado capacidad para invertir el patrón refractivo periférico hiperópico a miópico (Charman et al. 2006, Queirós et al. 2010; Queirós et al. 2010b; Mathur & Atchison 2009), así como una ralentización significativa de la elongación axial del ojo y del aumento de profundidad de la cámara vitrea en comparación con el uso de gafas (Cho et al. 2005) y de lentes de contacto blandas (Walline et al. 2009). No obstante, estas lentes presentan notables y conocidos inconvenientes que limitan su uso en la práctica, tales como su menor tolerabilidad y comodidad para el usuario derivadas de su carácter rígido, que en individuos sensibles resulta en la ausencia de adherencia al tratamiento, así como una incidencia no despreciable de complicaciones serias (queratitis bacteriana).
OBJETO DE LA INVENCIÓN: PROBLEMA TÉCNICO - SOLUCIÓN PROPUESTA
Por su elevada excelente tolerabilidad y confortabilidad, las lentes de contacto blandas representan en la actualidad más del 75% de las adaptaciones a usuarios a nivel global. A pesar de ello, hasta la fecha, la experiencia clínica existente con lentes de contacto blandas en
3
HOJA DE REEMPLAZO (Regla 26) el control de la progresión de la miopía arroja resultados desalentadores. Estudios aleatorizados llevados a cabo con lentes hidrofílicas de hidrogel de baja permeabilidad (bajo Dk) muestran de forma consistente ausencia de efecto sobre la control de la enfermedad (Horner et al. 1999; Walline et al. 2008), y un menor control de la miopía en comparación con lentes rígidas RPG (W alline et al. 2004), gafas (Marsh-Tootle et al. 2009) u ortoqueratología (Walline et al. 2010), existiendo además estudios que sugieren incluso una acción en sentido contrario, de ligera aceleración de la progresión de la enfermedad, asociada al uso a largo plazo de estas lentes, con respecto a la utilización de gafas (Marsh-Tootle et al. 2009), fenómeno conocido en el ámbito anglosajón como "myopic crew", atribuido a las condiciones de hipoxia derivadas del uso de estas lentes. El comportamiento observado con lentes blandas de silicona hidrogel de elevada permeabilidad (Dk>100) en estudios controlados muestra un grado significativamente mayor de control de la miopía con respecto a las lentes
convencionales de hidrogel (Dumbleton et al. 1999; Jalbert et al. 2004), si bien los resultados no son concluyentes (Santodomingo-Rubido et al. 2005). Se han realizado intentos con lentes blandas de silicona hidrogel convencionales invertidas (Caroline at al. WO 2005/022242 Al), aunque la relevancia práctica de este tipo de intervención es incierta. Por todo ello, sería necesario disponer de nuevas lentes de contacto blandas más efectivas y mejor toleradas que permitan controlar adecuadamente la progresión de la miopía con el elevado grado de tolerabilidad y confortabilidad asociado a este tipo de lentes de contacto.
La presente invención se refiere a lentes de contacto blandas, con ambas caras óptica y funcionalmente activas, siendo la cara anterior de geometría convencional y la cara posterior de geometría inversa, para, al insertar la lente en el ojo, corregir el error refractivo central y proporcionar una imagen visual nítida de lejos y de cerca, y a la vez, a través del remodelado de la córnea, corregir el error refractivo periférico de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica, y estabilizar la progresión de la miopía, todo ello con un elevado grado de tolerabilidad y confortabilidad.
BREVE DESCRIPCIÓN DE LAS FIGURAS
4
HOJA DE REEMPLAZO (Regla 26) En los dibujos y figuras que se acompañan se ilustra, a modo de ejemplo no limitativo, una realización ejemplificativa de la presente invención. En dichos dibujos, los mismos números de referencia indican elementos idénticos o similares. La Fig. 1 ilustra el perfil de una lente de contacto personificación de la invención mostrando los principales elementos de la cara anterior y de la cara posterior.
La fig. 2 ilustra una imagen frontal de la misma lente de contacto personificación de la invención mostrando las diferentes zonas y los anillos de acúmulos de lágrima.
Las Fig. 3a y 3b ilustran diagramáticamente la posición en relación a la retina de la imagen visual central y de la imagen visual periférica en un ojo miope no corregido (3a), y tras insertar en este ojo la lente de contacto personificación de la invención (3b). Las Fig. 4a y 4b ilustran un detalle del perfil de la superficie posterior de la lente
personificación de la invención tal como es mostrado por el torno.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La lente de contacto objeto de la invención está diseñada para, al ser adaptada en el ojo, ejercer de forma simultánea e independiente al menos dos acciones o funciones: 1) una acción correctora o compensatoria, destinada a corregir el error refractivo, con el objetivo de proporcionar al usuario con carácter inmediato una visión nítida de lejos y de cerca, y 2) una acción estabilizadora o de control de la progresión de la miopía, destinada a modificar el curso de la enfermedad a medio-largo plazo, con el objetivo de ralentizar, detener o incluso revertir o prevenir la progresión de la miopía, y todo ello con un elevado grado de tolerabilidad y confortabilidad ocular, derivado del uso de materiales "blandos" (hidrogel, silicona hidrogel), que no permiten alcanzar los materiales constitutivos de lentes rígidas,. Ello se consigue mediante un diseño con ambas caras, anterior y posterior, óptica y
funcionalmente activas, cada una de ellas con una geometría diferente. A efectos de esta solicitud, los pares de términos "cara" y "superficie", "externa" y "anterior", e "interna" y "posterior" referidos a la lente se utilizarán de forma indistinta. Asimismo, las expresiones
5
HOJA DE REEMPLAZO (Regla 26) "estabilización de la progresión de la miopía" o "control de la progresión de la miopía" se utilizan de forma indistinta, e incluyen (aunque sin limitarse a) la prevención o retraso de la aparición de la miopía, la estabilización o ralentización de la progresión de la miopía, o la reversión de la miopía. Igualmente, el término "comprende" (y sus variantes gramaticales) referido a la lente se utiliza en esta solicitud como equivalente al término "incluye", y no debe ser entendido como exclusión o ausencia de otros elementos o características.
En la lente personificación de la invención (Fig. 1 y Fig. 2), la superficie anterior de la lente A es de geometría convencional, y posee al menos una zona óptica central 10, que en combinación con la parte enfrentada de la cara posterior 20 proporciona una potencia dióptrica esférica negativa igual al error de refracción del usuario, de forma que con la lente adaptada en el ojo LC (Fig. 3b), la imagen visual central resultante IC* se sitúe en la retina central R, CC (Fig. 3), proporcionando una visión nítida, tanto en visión de lejos como en visión de cerca, con o sin acomodación. Dicha zona óptica central 10 posee un diámetro similar o 1 mm mayor al diámetro de la pupila del ojo del usuario, con un rango entre 3 mm y 10 mm ambos inclusive, siendo el más habitual 6 mm. El poder dióptrico esférico de la lente puede variar entre +5 D y -20 D, ambos inclusive. Dependiendo del patrón refractivo del ojo, esto es, existencia de defectos o aberraciones adicionales (ej. existencia de astigmatismo), la zona óptica central puede diseñarse con curvatura esférica, asférica, tórica, o cualquier combinación de éstas, o varias de éstas, pudiendo ser igualmente monofocal, bifocal o multifocal, de forma que la lente corrija también el posible error derivado de aquellos. El error refractivo se determina previamente usando métodos y equipos de refracción usuales, bien conocidos por el optometrista y el oftalmólogo. La función estabilizadora de la progresión de la miopía de la lente objeto de la invención se consigue a su vez mediante una superficie interna o posterior de la lente P, de geometría inversa múltiple, siguiendo un patrón típico de ortoqueratología, bien definido en el estado actual de la técnica. La superficie posterior propuesta en la presente invención actúa ejerciendo una presión controlada sobre el epitelio corneal, moldeando la superficie anterior de la cornea (la superficie posterior de la cornea no sufre alteraciones significativas), fenómeno bien conocido como corneal reshaping, produciendo su aplanamiento y adelgazamiento central, así como su engrosamiento paracentral y aumento de inclinación periférico en condiciones controladas y predecibles.
6
HOJA DE REEMPLAZO (Regla 26) Las diferentes formas de la invención para esta superficie posterior P incluyen una curva o zona óptica integral central (generalmente circular, aunque puede tener otras formas) 20, con al menos un radio de curvatura determinado o bien variable disminuyendo gradualmente hacia la periferia, mayor que el radio corneal del ojo en el que se adaptará la lente, y al menos una curva o zona anular 22 conectada y situada concéntricamente alrededor a dicha curva central, definida al menos en parte por un segundo radio de curvatura, no siendo coaxiales los ejes de dichas curvas central y anular, permitiendo todo ello la formación de un reservorio de fluido lagrimal anular entre ambas curvas al insertar la lente de contacto en el ojo 40, diseñada expresamente para conseguir modificar o remodelar la forma de la superficie corneal del usuario C* (Fig. 3b), aumentando su inclinación a nivel periférico, corrigiendo el error refractivo periférico relativo hiperópico propio del ojo miope transformándolo en desenfoque miópico, de forma que la imagen visual del campo periférico IP* (Fig. 3b) se sitúe delante de, o coincidiendo con, la retina periférica R (Fig. 3b). El error refractivo periférico se determina previamente usando métodos y equipos de refracción usuales, bien conocidos por el optometrista y el oftalmólogo, para un ángulo de referencia prefijado con respecto al eje central, preferiblemente entre 20° y 45°, y usualmente entre 25° y 35°. La forma de la cornea sin corregir C y corregida C* se determina mediante topografía corneal, técnica asimismo ampliamente conocida por los citados profesionales sanitarios. En la presente realización preferida de la invención, la superficie posterior P comprende varias curvas o zonas anulares sucesivas situadas concéntricamente a la primera zona anular y que enlazan con ésta, así como sucesivamente entre sí, formadas por pares de curvas con diferente radio de curvatura, con eje de curvatura no coaxial con respecto al eje de curvatura de la zona central y/o al eje de curvatura de la primera zona anular, no siendo tampoco coaxiales los ejes de las curvas que forman dichos pares, y un radio de curvatura mayor que el de la zona central y el de la zona primera anular, así como mayor que el de las curvas de la zona anular previa, de forma que dichos pares de curvas se disponen formando un ángulo entre sí creando respectivas cavidades, tales que al insertar la lente en el ojo definen uno o más anillos de acumulo de lágrima adicionales 42. Dichos radios de curvatura se caracterizan porque, al insertar la lente en el ojo, modifica o remodela la forma de la superficie corneal en grado y forma determinados, aplanándola por el apex y aumentando su inclinación a nivel periférico, corrigiendo el error refractivo periférico relativo hiperópico propio del ojo miope transformándolo en desenfoque miópico, de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica. En el ejemplo no limitativo
HOJA DE REEMPLAZO (Regla 26) escogido para ilustrar la invención, dicha superficie posterior de la lente muestra una geometría pentacurva, también denominada de doble banda de alineamiento, que incluye una zona óptica central circular 20, una primera zona anular 22, y cuatro bandas inversas 24 y 26, 28 y 30, cuyos radios pueden variar en el rango de 3mm - 10 mm, ambos inclusive. Este perfil permite obtener un mejor paralelismo de la superficie posterior con la cornea, así como generar al menos dos anillos de lágrima, 40 y 42. El área periférica de la zona óptica separada del ápex corneal forma un primer anillo de acumulo de lágrima. La segunda curva 22, enlazada con la zona óptica 20, presenta un radio menor que ésta, con una anchura entre 0,3 mm y 1,2 mm. La tercera curva 24, correspondiente a la primera curva de un segundo anillo lagrimal 42, presenta un radio mayor que la segunda curva, estando su anchura comprendida entre 0,20 mm y 1,30 mm. La cuarta curva 26, correspondiente a la segunda curva (curva de cierre) del segundo anillo de acumulo lagrimal, estando su anchura comprendida entre 0,30 mm y 1,4 mm. La quinta curva 28, correspondiente a la primera curva de un tercer anillo lagrimal (no mostrado en la Fig. 2), presenta un radio mayor que la que la cuarta curva, estando su anchura comprendida entre 0,20 mm y 1,30 mm, y la sexta curva 30, presenta un radio mayor que la cuarta curva, separándose de ésta, lo que posibilita el levantamiento de borde a la periferia, que permite la circulación de la lágrima y el movimiento de la lente, evitando la adherencia de ésta a la cornea, y facilitando la extracción. Como variante, esta última curva puede ser recta, y tener radio infinito. Las cuatro bandas descritas moldean la cornea aplanándola por el apex y aumentando su inclinación a nivel periférico, produciendo el cambio refractivo necesario para conseguir el desenfoque miópico en la retina periférica, efecto que se controla con una adecuada selección del radio de curvatura de la(s) banda(s) enfrentada(s) a la región de la cornea correspondiente al ángulo de campo periférico requerido.
El diámetro exterior total de la lente personificación de la invención 50 varía generalmente en el rango comprendido entre 9 mm y 16 mm, siendo más común 14 mm. La lente tiene un espesor lateral variable, puesto que la superficie anterior no tiene porqué coincidir ni ser paralela con las diferentes curvas de la cara posterior, variando dicho espesor entre 0,05 mm y 1 mm, siendo el rango más habitual 0, 1 mm - 0,5 mm.
La personificación de la invención puede realizarse también con una lente de características similares a las descritas en los párrafos precedentes, en la que el radio de curvatura de la primera zona anular de la cara posterior 22 es más elevado que el radio de curvatura de la
8
HOJA DE REEMPLAZO (Regla 26) zona central de la lente, pudiendo ser además mayor o menor que el radio de curvatura de la porción correspondiente de la cornea a la que se opone.
Otra posible realización de la invención, se refiere a una lente de características similares a la descrita en los párrafos anteriores, que incluye además de la zona óptica central 10, una 12, o varias zona(s) periférica(s) anular(es) ópticamente activa(s), situada concéntricamente y adyacente a la zona óptica central, y mayoritariamente fuera del diámetro de la pupila del ojo, formada por la combinación de las correspondientes zonas periféricas de las superficies anterior y posterior, con radios interior y posterior de 4 mm y 8 mm respectivamente, con un poder refractivo dióptrico tal que al insertar la lente en el ojo, el poder o poderes refractivos resultantes de ambas caras conjuntamente consideradas y del moldeado corneal realizado por la superficie posterior de la lente posibiliten la corrección del error refractivo periférico relativo hiperópico del ojo miope transformándolo en miópico, de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica.
En los ejemplos no limitativos de la invención descritos, la zona central de la superficie anterior 10 y/o de la superficie posterior 20 pueden poseen curvatura esférica, esférica, tórica, o cualquier combinación de éstas, o bien varias de éstas, ya sea monofocal, bifocal o multifocal. Igualmente la(s) zona(s) anular(es) 24, 26, 28 y 30 y/o la(s) zona(s) óptica(s) periférica(s) existentes en la cara anterior 12 y/o en la cara posterior pueden poseer curvatura esférica, tórica, o cualquier combinación de éstas, o bien varias de éstas, ya sea monofocal, bifocal o multifocal.
La lente de contacto puede fabricarse mediante proceso de torneado y posterior pulido, utilizando tornos estándar que permitan elaborar lentes con diferentes radios de curvatura, a partir de los conocidos discos o tacos como material de partida. Como material puede utilizarse cualquiera de los utilizados en la elaboración de lentes de contacto blandas, tales como polímeros hidrofílicos de hidrogel o, preferiblemente, por su mayor transmisibilidad, silicona hidrogel.
Es importante destacar que la lente objeto de la presente invención no es una lente para ortoqueratología. De hecho, una de las apreciaciones en las que se fundamenta la presente invención es que, si bien es conocido que a diferencia de los materiales rígidos RPG, los materiales blandos, (hidrofílicos clásicos o de silicona hidrogel) no permiten ejercer suficiente
9
HOJA DE REEMPLAZO (Regla 26) presión en un punto localizado para lograr el moldeo rápido e intenso de la cornea propio de la ortoqueratología nocturna (dada la dilatada experiencia de uso de ésta, la ausencia de lentes de contacto blandas para CRT es altamente demostrativa de la existencia de esta limitación técnica no resuelta en la práctica), sí es posible conseguir en cambio, mediante una lente blanda de geometría inversa de múltiples bandas, un tamaño de efecto de moldeado corneal suficiente para corregir el error refractivo periférico relativo (RPRE) hiperópico del ojo miope transformándolo en miópico, de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica, generando un estímulo o retroalimentación visual contrario a la elongación axial del ojo, y por tanto a la progresión de la miopía. Este descubrimiento permite resolver otro problema diferente, no resuelto por el estado actual de la técnica, y que es el objeto de la presente invención: el desarrollo y obtención de lentes de contacto blandas para el control de la progresión de la miopía con elevada confortabilidad. Para ello, el perfil arriba descrito enfrentado a la cornea se combina con una superficie anterior ópticamente activa (ausente en las lentes de ortoqueratología, cuya superficie anterior actúa de curva base, generalmente con potencia + 0,5D), consiguiéndose una lente con poder correctivo y a la vez estabilizador del curso de la miopía, ausente en el estado actual de la técnica, dotada de una elevada tolerabilidad y confortabilidad (superior a la de las lentes rígidas), susceptible de uso diurno compatible con las actividades cotidianas, y por tanto con unimpacto menor en la calidad de vida del usuario que las lentes de ortoqueratología.
La realización de la invención tiene la ventaja de que la corrección de la visión central se efectúa en la zona óptica central de la lente mediante la curvatura de la superficie anterior de la lente, aproximadamente dentro de los límites del diámetro pupilar, mientras que el desenfoque miópico periférico se consigue a través de moldeado corneal controlado realizado por la cara posterior (o bien con dicho modelado corneal más una o varia zona(s) ópticas anular(es) fuera del campo central). De esta forma, la adaptación de la lente permite corregir de forma simultánea y en buena medida independiente el error refractivo central y el RPRE, evitando pérdidas significativas de calidad de la imagen por solapamiento de efectos.
Dependiendo del tamaño de la pupila y del ángulo de campo periférico necesario, alguna región de la cornea después de moldeada puede estar involucrada en el enfoque de rayos centrales y periféricos, cuestión que puede minimizarse seleccionando inicialmente como ángulo de campo el correspondiente a la proyección del borde pupilar en la cornea moldeada, en general comprendido entre 20°-40°. Con esta configuración, el solapamiento de rayos centrales y campo periférico es sólo del 50%, evitándose la degradación de la imagen.
10
HOJA DE REEMPLAZO (Regla 26) Por su excelente confortabilidad y tolerabilidad derivada de su carácter "blando", las lentes de contacto objeto de la presente invención pueden utilizarse no sólo para el tratamiento (corrección y control de la progresión) de la miopía, sino también para la prevención de la aparición de la enfermedad, posibilitando un abordaje personalizado del usuario. Así, por ejemplo, en el caso de un niño emétrope con factores de riesgo (ej. predisposición genética por ambos padres miopes), puede utilizarse una lente de contacto con potencia dióptrica neutra o ligeramente positiva y con geometría posterior individualizada diseñada para conseguir un moldeado que elimine el RPRE, para evitar o retrasar la aparición de la miopía.
REFERENCIAS
Adams AJ. Axial Length Elongation, Not Central Curvature, as a Basis of Adult Onset Myopia. Am J Optom Physiol Opt 1987; 64: 150-152.
Aller TA. Myopia Progression Control Using Bifocal Contact Lenses. US 2003/0058407 Al, 27-03-2003. Blacker A, Mitchell GL, Bullimore MA, Long B, Barr JT, Dillehay SM, Bergenske P,
Donshik P, Secor G, Yoakum J, Chalmers RL, Myopia Progression During Three Years of Soft Contact Lens Wear. Optom Vis Sci 2009; 86: 1150-1153.
Bum TS. Orthokeratology Contact Lens with Penetration Hole. WO 2006/078089 Al, 27-07- 2006. arolme ri, Beigenske PD, Choo ID, et al. Soft Lens Orthokeratology. WO 2005/022242 AL 10-03-2005. Charroan WN, Momitford J, Atchison DA, Markwell EL. Peripheral Refraction in
Orthokeratology Paüents. Optom Vis Sci 2006; 83: 641-648.
Choo JD, Ho A, Meyers WE, Conrad F, Holden BA. Corneal and Epithelial Remodelling. WO 2008/014544 Al, 07-02-2008.
11
HOJA DE REEMPLAZO (Regla 26) Collins M, Buehren T, Camey L, Davis B, Iskander DR, Franklin R, Voetz S. WO
2006/086839 Al, 24-08-2006.
Cotie RL, Herzberg CM. Corneal-Scleral Orthokeratology Contact Lens. US 2006/0152673 Al, 13-07-2006.
Davies LN, Mallen EAH. Influence of Acommodation and Refractive Status on the Peripheral Refractive Profile. Br J Ophthalmol 2009; 93: 1186-1190.
Dewoolfson BH, Devore DP. Composition for Stabilizing Corneal Tissue During or After Orthokeratology Lens Wear. US 2005231682 Al, 20-10-2005.
Efron S, Efron N, Morgan P. Optical and Visual Performance of Aspheric Soft Contact Lenses. Optom Vis Sci 2008; 85: 201-210.
Goss DA, Wickham MG. Retinal-image Mediated Ocular Growth as a Mechanism for Juvenile Onset Myopia and for Emmetropization. A Literature Review. Doc Ophthalmol 1995; 90(4): 341-375.
Grosvenor T, Scott R. Three year Changes in Refraction and Its Components in Youth-Onset and Early Adult-Onset Myopia. Optom Vis Sci 1993; 70: 677-683.
Harris D. Enzyme-Orthokeratology. US 5626865 A, 06-05-1997.
Hiraoka T, Matsumoto Y, Okamoto F, Yamaguchi T, Hirohara Y, Mihashi T, Oshika T.
Corneal Higher-Order Aberrations Induced by Overnight Orthokeratology. Am J Ophthalmol 2005; 139: 429-436.
Holden BA, Ho A, Sankaridurg PR, Aller TA, Smith EL. Means for Controlling the
Progression of Myopia. WO 2007/146673 A2, 21-12-2007.
Horner DG, Soni PS, Salmón TO et al. Myopia Progression in Adolescente Wearers of Soft Contact Lenses and Spectacles. Optom Vis Sci 1 99; 76: 474-479.
12
HOJA DE REEMPLAZO (Regla 26) Homer DG, Soni PS, Vyas N, Himebaugh NL. Longitudinal Changes in Corneal Asphericity in Myopia. Optom Vis Sci 2000; 77: 198-203. Hung GK, Ciuffreda KJ. Incremental Retinal-defocus Theory of Myopia Development- Schematic Analysis and Computer Simulation. Comput Biol Med 2007; 37(7): 930-946.
Hyman L, Gwiazda J, Hussein M, Norton TT, Wang Y, Marsh-Tootle W, Everett; for the COMET Study Group. Relationship of Age, Sex, and Ethnicity With Myopia Progression and Axial Elongation in the Correction of Myopia Evaluation Trial. Arch Ophthalmol 2005; 123: 977-987.
Jalbert I, Stretton S, Naduvilath T, Holden B, Keay L, Swwney D. Changes in Myopia with Low-Dk Hydrogel and High-Dk Silicone Hydrogel Extended Wear. Optom Vis Sci 2004; 81: 591-596.
Jones- Jordán LA, Walline JJ, Mutti DO, Rah MJ, Nichols KK, Nichols JJ, Zadnik K. Gas Permeable nd Soft Contact Lens Wear in Children. Joslin CE, Wu SM, McMahon TT, Shahidi M. Higher-Order Wavefront Aberrations in Corneal Refractive Therapy. Optom Vis Sci 2003; 80: 805-811.
Kamaki Y, Endo K. Multi-Reverse Zone Ortho-K Lens. JP 2008112121, 15-05-2008. Karageozian H. Use of Corneal Hardening Agents in Enzyme Orthokeratology. WO 9945869, 16-09-1999.
Katz J, Schein OD, Levy B, Cruiscullo T, Saw SM, Rajan U, Chan TK, Khoo CY, Chew SJ. A Rajodomizéd Tiial of Rigid Gas Permeable Contact Lenses to Reduce Progression of Cbildrrn's Myopia. Am J Ophthalmol 2003; 136: 82-90.
Lindacher JM, Ye M. A Lens Having an Optically Controlled Peripheral Portion and Method for Designing and Manufacturing the Lens. WO 2008/045847 A2, 17-04-2008.
13
HOJA DE REEMPLAZO (Regla 26) Lipson MJ, Sugar A, Musch DC. Overnight Corneal Reshaping versus Soft Disposable Contact Lenses: Vision-Related Quality-Of-Life Differences From a Randomized Clinical Trial. Optom Vis Sci 2005; 82: 886-891.
Long B, Bergenske P, Chalmers RL
Marsh-Tootle WL, Dong LM, Hyman L, Gwiazda J, Weise KK, Dias L, Fern KD. The Comet Group. Myopia Progression in Children Wearing Spectacles vs. Switching to Contact Lenses. Optom Vis Sci 2009; 86:741-747.
Mathur A, Atchison DA. Effect of Orthokeratology on Peripheral Aberrations of the Eye. Optom Vis Sci 2009; 86: E476-E484.
Mathur A, Atchison DA, Charman WN. Myopia and Peripheral Ocular Aberratipns. Journal of Vision 9(10): 15, 1-12.
Meyers WE. Contact Lens and Method of Manufacture. WO 02/29446 A2, 11-04-2002.
Meyers WE, Legerton JA. Contact Lens and Methods of Manufacture. US 2006146279 Al, 06-07-2006.
Miyamura K, Sugimoto K, Sawano T. Contact lens. JP 2002350787 A, 04-12-2002.
Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K, for the CLÉERE Study Group. Refractive. Error, Axial Length, and Relative Peripheral Refractive Error Before and After the Onset of Myopia.
Invest Ophthalmol Vis Sci 2007; 48: 2510-2519.
Nichols JJ, Marsich MM, Nguyen M, Barr JT, Bullimore MA. Overnight Orthokeratology. Optom Vis Sci 2000; 77: 252-259.
Oguri A. Contact Lens for Orthokeratology. JP 2007195818 A, 09-08-2007.
14
HOJA DE REEMPLAZO (Regla 26) Owens H, Garner LF, Craig JP, Gamble G. Posterior Corneal Changes with Orthokeratology. Optom Vis Sci 2004; 81:421-426.
Pauné J. Lentilla terapéutica. ES 1058102 U, 01-11-2004.
Phillips JR. Contact lens and Method of Preventing or Slowing Myopia Progression. EP 1967892 Al, 10-09-2008.
Queirós A, González-Meijome JM, Jorge J, Villa-Collar C, Gutiérrez AR. Peripheral Refraction in Myopic Patients After Orthokeratology. Optom Vis Sci 2010; 87: 323-329.
Queirós A, González-Meijome JM, Villa-Collar C, Gutiérrez AR, Jorge J. Local Steepning in Peripheral Corneal Curvatura After Corneal Refractive Therapy and LASIK. Optom Vis Sci 2010; 87: 1-8.
Russell TR. Orthokeratology Contact Lens and Method Therefor. US 5963297, 05-10-1999.
Santodomingo-Rubido J, Gilmartin B, Wolffsohn J. Refractive and Biometric Changes With Silicone Hydrogel Contact Lenses. Optom Vis Sci 2005; 82: 481-489.
3. Saw SM, Gazzard G, Eong KGA, Tan DTH. Myopia: Attempts to Arrest Progression. Br J Ophthalmol 2002; 86: 1306-1311.
Smith EL, Gmeman P, Ho A, Holden BA. Methods and Apparatuses for Altering Relative Curvatura of Field and Positions of Peripheral, Off-Axis Focal Positions. WO 2005/055891 Al, 23-06-2005.
Smith EL 3rrt, Huang J, Hung LF, Blasdel TL, Humbird TL, Bockhorst KH. Hemiretinal Form Deprivation: Evidence for Local Control of Eye Growth and Refractive Development in Infant Monkeys. Ophthalmol Vis Sci 2010;
Smith EL 3rd, Hüng LF, Huang J, BlasdeÍ TL, Humbird TL, Bockhorst KH. Optical Defocus Inflüencés Refractive Dévélopment in Monkeys via Local, Regionally Selective Mechanisms. Invest Ophthalmol Vis Sci 2010 (Epub ahead of print).
15
HOJA DE REEMPLAZO (Regla 26) Smith EL 3r , Hung LF, Huang J. Relative Peripheral Hyperopic Defocus Alters Central Refractive Development in Infant Monkeys. Vision Research 2009; 49(19): 2386-2392.
Sorbara L, Fonn D, Simpson T, Kort R. Reduction of Myopia from Corneal Refractive Therapy. Optom Vis Sci 2005; 82: 512-518.
Sridharan R, Swarbrick H. Corneal Response to Short-Term Orthokeratology Lens Wear. Optom Vis Sci 2003; 80: 200-206.
Stanton K. Contact Lens Used in Orthokeratology. US 2008/0024717 Al, 31-01-2008.
Stoyan N. Corneal Contact Lens and Method for Treating Myopia, US 4952045, 28-08-1990.
Stoyan N. Method for Trating Myopia with an Aspheric Corneal Contact Lens. US 5428412, 27-06-1995.
Stoyan N. Fenestrated Contact Lens for Treating Myopia. US 6010219, 04-01-2000.
Subramaniam SV, Bennett ES, Lakshminarayanan V, Morgan BW. Gas Permeable (GP) Versus Non-GP Lens Wearers: Accuracy of Orthokeratology in Myopia Reduction. Optom Vis Sci 2007; 84: 417-421.
Tahhan N, Du Toit R, Papas E, Chung H, La Hood D, Holden B. Corñparison of Reverse- Geometry Lens Designs for Overnight Orthokeratology. Optom Vis Sci 2003; 80: 796-804.
Thorn F, Gwiazda J, Held R. Myopia Progression Is Specified by a Double Exponential Growth Function. Optom Vis Sci 2005; 82: E286.
Ting PW, Lam CS, Edwards MH et al. Prevalence of myopia in a group of Hong Kong microscopists. Optom Vis Sci 2004; 81: 88-93.
Villa-Collar C, González-Meijome JM. Ortoqueratología Nocturna. Colegio Nacional de Ópticos Optometristas de España, Madrid 2007. ISBN: 84-934806-6-5.
16
HOJA DE REEMPLAZO (Regla 26) Vítale S, Sperduto RD, Ferris FC 3rd. Increased prevalence of myopia in the U.S. between 1971-1972 and 1999-2004; Arch Ophthalmol 2009; 127: 1632-1639. Walline JJ, Jones LA, Sinnott LT. Corneal Reshaping and Myopia Progression. Br J
Ophthalm 2009; 93(9): 1181-1985.
Walline JJ, Jones LA, Mutti DO, Zadnik K. A Randomized Trial of the Effects of Rigid Contact Lenscs on Myopia Progression. Arch Ophthalmol 2004; 122: 1760-1766.
Walline JJ, Rah MJ, Jones LA. The Children's Overnight Orthokeratology Investigation (COOKI) Pilot Study. Optom Vis Sci 2004; 81: 407-413.
Walline JJ, Jones LA, Sinnott L, Manny RE, Gaume A, Rah MJ, Chitkara M, Lyons S, on behalf of the ACHffiVE Study Group, investigative Ophthalmol Visual Sci 2008; 49: 4702- 4706.
Yee JW. Traitement de la Myopie. Reversing Nearsightedness. CA 2393274 Al, 22-01-2004.
17
HOJA DE REEMPLAZO (Regla 26)

Claims

REIVINDICACIONES
1. Lente de contacto blanda para la corrección y a la vez la estabilización de la
progresión de la miopía, caracterizada por disponer de las dos superficies (anterior y posterior) óptica y funcionalmente activas, comprendiendo:
a. Una superficie externa o anterior, diseñada para corregir el defecto de refracción, con una o varias zonas ópticas de curvatura esférica, asférica, tórica, o cualquier combinación de éstas, o varias de éstas, ya sea monofocal, bifocal o multifocal, con un poder refractivo igual al error de refracción del usuario, de forma que con la lente adaptada en el ojo la imagen visual central resultante se sitúe en la retina central, proporcionando una visión nítida, tanto en visión de lejos como en visión de cerca, con y sin acomodación.
b. Una superficie interna o posterior, que incluye una curva o zona óptica integral central (generalmente circular), con al menos un radio de curvatura determinado, o bien variable disminuyendo gradualmente hacia la periferia, mayor que el radio corneal, y al menos una curva o zona anular conectada y situada concéntricamente alrededor a dicha curva central, definida al menos en parte por un segundo radio de curvatura, no siendo coaxiales los ejes de dichas curvas central y anular, caracterizándose dichos radios de curvatura porque, al insertar la lente en el ojo, modifica o remodela la forma de la superficie corneal en grado y forma tales que corrige el error refractivo periférico relativo hiperópico propio del ojo miope transformándolo en miópico, de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica.
2. Lente de contacto de acuerdo con la reivindicación 1 , caracterizada porque la cara posterior comprende varias curvas o zonas anulares sucesivas situadas
concéntricamente a la primera zona anular y que enlazan con ésta, así como sucesivamente entre sí, formadas por pares de curvas con diferente radio de curvatura, con eje de curvatura no coaxial con respecto al eje de curvatura de la zona central y/o
18
HOJA DE REEMPLAZO (Regla 26) al eje de curvatura de la primera zona anular, no siendo tampoco coaxiales los ejes de las curvas que forman dichos pares, y un radio de curvatura mayor que el de la zona central y el de la zona primera anular, pudiendo ser además mayor o menor que el radio de curvatura de la porción correspondiente de la cornea a la que se opone, de forma que dichos pares de curvas se disponen formando un ángulo entre sí creando respectivas cavidades, tales que al insertar la lente en el ojo definen uno o más anillos de acumulo de lágrima adicionales, caracterizándose dichos radios de curvatura porque, al insertar la lente en el ojo, modifica o remodela la forma de la superficie corneal en grado y forma tales que corrige el error refractivo periférico relativo hiperópico del ojo miope transformándolo en miópico, de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica.
3. Lente de contacto de acuerdo con la reivindicación 1 ó la reivindicación 2, que incluye además una o varias zonas ópticas periféricas anulares, de mayor o menor poder refractivo que la zona central, formada por la combinación de las correspondientes zonas periféricas de las superficies anterior y posterior, con un poder refractivo o gradación de poderes refractivos tal que al insertar la lente en el ojo, el poder o conjunto de poderes refractivos periféricos resultantes de ambas caras conjuntamente consideradas y del moldeado corneal realizado por la superficie posterior de la lente posibiliten la corrección del error refractivo periférico relativo hiperópico propio del ojo miope transformándolo en miópico, de forma que la imagen visual del campo periférico se sitúe delante de, o coincidiendo con, la retina periférica.
4. Lente de contacto de acuerdo con la reivindicación 1, ó 2, ó 3, para la corrección y a la vez el control de la progresión de la miopía, donde el control de la progresión de la miopía incluye (aunque sin limitarse a) la prevención o retraso de la aparición de la miopía, y/o la estabilización o ralentización de la progresión de la miopía, y/o la reversión de la miopía.
5. Lente de contacto de acuerdo con la reivindicación 4, donde el radio de curvatura de la primera zona anular de la cara posterior es más elevado que el radio de curvatura de la zona central de la lente, pudiendo ser además mayor o menor que el radio de curvatura de la porción correspondiente de la cornea a la que se opone.
19
HOJA DE REEMPLAZO (Regla 26)
6. Lente de contacto de acuerdo con la reivindicación 4, donde el radio de curvatura de la primera zona anular de la cara posterior es menor que el radio de curvatura de la zona central, pudiendo ser además mayor o menor que el radio de curvatura de la porción correspondiente de la cornea a la que se opone.
7. Lente de contacto de acuerdo con la reivindicación 5 ó 6, donde la zona central de ia superficie anterior y/o de la superficie posterior poseen curvatura esférica, esférica, tórica, o cualquier combinación de éstas, o bien varias de éstas, ya sea monofocal, bifocal o multifocal.
8. Lente de contacto de acuerdo con la reivindicación 5 ó 6, donde la(s) zona(s) ópticas periférica(s) anulares y/o la(s) zona(s) anulares (s) existentes en, y/o formadas por, la cara anterior y/o la cara posterior posee(n) curvatura esférica, tórica, o cualquier combinación de éstas, o bien varias de éstas, ya sea monofocal, bifocal o multifocal.
9. Lente de contacto de acuerdo con la reivindicación 8, donde además la zona central de la cara anterior y de la cara posterior posee curvatura esférica, esférica, tórica, o cualquier combinación de éstas, o bien varias de éstas, ya sea monofocal, bifocal o multifocal.
10. Lente de contacto de acuerdo con la reivindicación 6, ó 7 ó 8, donde el grosor de la zona central, y/o de la(s) zona(s) anula(es) y/o de la zona periférica de la lente son distintos.
11. Lente de contacto de acuerdo con la reivindicación 9, con una potencia dióptrica
comprendida en el rango +5D y -20D, ambos inclusive, y/o donde el diámetro de la lente se encuentra dentro del rango comprendido entre 9 mm y 16 mm, ambos inclusive.
12. Lente de contacto de acuerdo con la reivindicación 10, elabarodas con materiales considerados "blandos", tales como (aunque sin limitarse a) hidrogel, glicerol o silicona hidrogel, y que puede utilizarse para uso diurno, nocturno o extendido.
20
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2013/070307 2013-05-15 2013-05-15 Lente de contacto blanda correctora-estabilizadora de la miopía WO2014184399A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070307 WO2014184399A1 (es) 2013-05-15 2013-05-15 Lente de contacto blanda correctora-estabilizadora de la miopía

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070307 WO2014184399A1 (es) 2013-05-15 2013-05-15 Lente de contacto blanda correctora-estabilizadora de la miopía

Publications (1)

Publication Number Publication Date
WO2014184399A1 true WO2014184399A1 (es) 2014-11-20

Family

ID=51897795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070307 WO2014184399A1 (es) 2013-05-15 2013-05-15 Lente de contacto blanda correctora-estabilizadora de la miopía

Country Status (1)

Country Link
WO (1) WO2014184399A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010219A (en) * 1996-06-28 2000-01-04 Contex, Inc. Fenestrated contact lens for treating myopia
US20070115431A1 (en) * 2003-11-19 2007-05-24 Smith Earl L Iii Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
US20070296916A1 (en) * 2006-06-08 2007-12-27 Holden Brien A Means for controlling the progression of myopia
US20090257026A1 (en) * 2005-10-12 2009-10-15 Carl Zeiss Vision Australia Holdings Limited Ophthalmic Lens Element for Myopia Correction
US20100036489A1 (en) * 2008-08-11 2010-02-11 Joseph Michael Lindacher Lens design and method for preventing or slowing the progression of myopia
WO2012034265A1 (en) * 2010-09-13 2012-03-22 The Hong Kong Polytechnic University Method and system for retarding progression of myopia
US8201941B2 (en) * 2006-07-31 2012-06-19 The Institute For Eye Research Corneal and epithelial remodelling
WO2013010255A1 (en) * 2011-07-15 2013-01-24 Rmt Robotics Limited Apparatus, system, and method for layer picking and order fulfillment for items stored in a warehouse
WO2013015743A1 (en) * 2011-07-27 2013-01-31 National University Of Singapore Optical lens for slowing myopia progression

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010219A (en) * 1996-06-28 2000-01-04 Contex, Inc. Fenestrated contact lens for treating myopia
US20070115431A1 (en) * 2003-11-19 2007-05-24 Smith Earl L Iii Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
US20090257026A1 (en) * 2005-10-12 2009-10-15 Carl Zeiss Vision Australia Holdings Limited Ophthalmic Lens Element for Myopia Correction
US20070296916A1 (en) * 2006-06-08 2007-12-27 Holden Brien A Means for controlling the progression of myopia
US8201941B2 (en) * 2006-07-31 2012-06-19 The Institute For Eye Research Corneal and epithelial remodelling
US20100036489A1 (en) * 2008-08-11 2010-02-11 Joseph Michael Lindacher Lens design and method for preventing or slowing the progression of myopia
WO2012034265A1 (en) * 2010-09-13 2012-03-22 The Hong Kong Polytechnic University Method and system for retarding progression of myopia
WO2013010255A1 (en) * 2011-07-15 2013-01-24 Rmt Robotics Limited Apparatus, system, and method for layer picking and order fulfillment for items stored in a warehouse
WO2013015743A1 (en) * 2011-07-27 2013-01-31 National University Of Singapore Optical lens for slowing myopia progression

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466507B2 (en) 2012-04-05 2019-11-05 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10209535B2 (en) 2012-04-05 2019-02-19 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US11809024B2 (en) 2012-04-05 2023-11-07 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US11644688B2 (en) 2012-04-05 2023-05-09 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10948743B2 (en) 2012-04-05 2021-03-16 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10203522B2 (en) 2012-04-05 2019-02-12 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10838235B2 (en) 2012-04-05 2020-11-17 Brien Holden Vision Institute Limited Lenses, devices, and methods for ocular refractive error
US9535263B2 (en) 2012-04-05 2017-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9575334B2 (en) 2012-04-05 2017-02-21 Brien Holden Vision Institute Lenses, devices and methods of ocular refractive error
US11320672B2 (en) 2012-10-07 2022-05-03 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US10534198B2 (en) 2012-10-17 2020-01-14 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9759930B2 (en) 2012-10-17 2017-09-12 Brien Holden Vision Institute Lenses, devices, systems and methods for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11333903B2 (en) 2012-10-17 2022-05-17 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10520754B2 (en) 2012-10-17 2019-12-31 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error

Similar Documents

Publication Publication Date Title
TWI828696B (zh) 包含用於預防及/或減緩近視加深之微透鏡的眼用鏡片
TWI688797B (zh) 用於預防及/或減緩近視加深之包含非同軸微透鏡的隱形眼鏡
TWI665489B (zh) 為防止及/或減緩近視加深之與瞳孔大小無關的鏡片設計
TWI587035B (zh) 用於預防及/或減緩近視加深之非對稱鏡片的設計及方法
CA2807846C (en) Multi-axis lens design for astigmatism
JP6570805B2 (ja) 乱視矯正用のソフトコンタクトレンズにおける剛性が増加した中央光学部
ES2688453T3 (es) Lentes de contacto para ojos miopes y métodos para tratar la miopía
JP6474542B2 (ja) フィット特性が改善されたコンタクトレンズ
TW201533498A (zh) 具有改善透氧度的隱形眼鏡
BRPI0712009A2 (pt) implante de córnea e processo para corrigir problemas de visão do olho humano
JP6388771B2 (ja) 周縁高弾性率ゾーンを有するコンタクトレンズ
TWI696011B (zh) 用於非旋轉對稱之眼睛像差的舒適最佳化隱形眼鏡系統
JP2017083840A (ja) 摩擦安定化したコンタクトレンズ
WO2016046439A1 (es) Lente intraocular multifocal con profundidad de campo extendida
ES2421464B1 (es) Lente de contacto blanda correctora-estabilizadora de la miopia
WO2014184399A1 (es) Lente de contacto blanda correctora-estabilizadora de la miopía
TWI497152B (zh) 具有混合定向特徵之隱形眼鏡
ES2755817T3 (es) Lente progresiva para gafas, método de fabricación de una lente progresiva para gafas y método de diseño de una lente progresiva para gafas
KR101578327B1 (ko) 노안용 콘택트렌즈
JP2022167769A (ja) 近視制御のためのコンタクトレンズ
RU2780271C1 (ru) Ортокератологическая линза для замедления развития близорукости
CA3151874C (en) Glasses for retarding myopia progression
ES1286400U (es) Lente de contacto de doble geometria asimetrica directa, torica-inversa
WO2016076743A1 (ru) Контактная линза для коррекции зрения (варианты)
ES2619577A1 (es) Lente oftálmica y conjunto de lentes oftálmicas para la corrección de la presbicia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884588

Country of ref document: EP

Kind code of ref document: A1