WO2014182566A2 - Système de conservation pour substances nutritives - Google Patents

Système de conservation pour substances nutritives Download PDF

Info

Publication number
WO2014182566A2
WO2014182566A2 PCT/US2014/036570 US2014036570W WO2014182566A2 WO 2014182566 A2 WO2014182566 A2 WO 2014182566A2 US 2014036570 W US2014036570 W US 2014036570W WO 2014182566 A2 WO2014182566 A2 WO 2014182566A2
Authority
WO
WIPO (PCT)
Prior art keywords
nutritional
nutritional substance
information
substance
organoleptic
Prior art date
Application number
PCT/US2014/036570
Other languages
English (en)
Other versions
WO2014182566A3 (fr
Inventor
Eugenio MINVIELLE
Original Assignee
Minvielle Eugenio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/888,353 external-priority patent/US20130269454A1/en
Application filed by Minvielle Eugenio filed Critical Minvielle Eugenio
Publication of WO2014182566A2 publication Critical patent/WO2014182566A2/fr
Publication of WO2014182566A3 publication Critical patent/WO2014182566A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • the present inventions relate to collection, transmission, creation and use of information regarding the preservation of nutritional substances.
  • Nutritional substances are traditionally grown (plants), raised (animals) or synthesized (synthetic compounds). Additionally, nutritional substances can be found in a wild, non-cultivated form, which can be caught or collected. While the collectors and creators of nutritional substances generally obtain and/or generate information about the source, history, caloric content and/or nutritional content of their products, they generally do not pass such information along to the users of their products. One reason is the nutritional substance industries have tended to act like "silo" industries. Each group in the food and beverage industry: growers, packagers, processors, distributors, retailers, and preparers work separately, and either shares no information, or very little information, between themselves.
  • Caloric content refers to the energy in nutritional substances, commonly measured in calories.
  • the caloric content could be represented as sugars and/or carbohydrates in the nutritional substances.
  • the nutritional content, also referred to herein as nutritional value, of foods and beverages, as used herein refers to the non-caloric content of these nutritional substances which are beneficial to the organisms which consume these nutritional substances.
  • the nutritional content of a nutritional substance could include vitamins, minerals, proteins, and other non-caloric components which are necessary, or at least beneficial, to the organism consuming the nutritional substances.
  • An interactive system and data base including user-friendly dynamic nutritional substance labeling allowing consumers, and any other member or other member of the nutritional substance supply system, to access creation and origin information for nutritional substances as well as information regarding changes in nutritional, organoleptic, or aesthetic values of nutritional substances, at any moment during the life-cycle of the nutritional substance up to the moment of consumption, would offer great value to the nutritional substance supply system.
  • This ⁇ information could be used, not only by the consumer in selecting particular nutritional substances to consume, but could be used by the other food and beverage industry silos, including creation, preservation, transformation, and conditioning, to make decisions on how to create, handle and process nutritional substances. Additionally, those who sell nutritional substances to consumers, such as restaurants and grocery stores, could communicate perceived qualitative values of the nutritional substance in their efforts to market and position their nutritional substance products. Further, a determinant of price of the nutritional substance could be particular nutritional, organoleptic, or aesthetic values, and if changes to those values, also referred to herein as ⁇ , are perceived as desirable. For example, if a desirable value has been maintained, improved, or minimally degraded, it could be marketed as a premium product.
  • the grower of sweet corn generally only provides basic information as the variety and grade of its corn to the packager, who preserves and ships the corn to a producer for use in a ready-to-eat dinner.
  • the packager may only tell the producer that the corn has been frozen as loose kernels of sweet corn.
  • the producer may only provide the consumer with rudimentary instructions how to cook or reheat the ready-to-eat dinner in a microwave oven, toaster oven or conventional oven, and only tell the consumer that the dinner contains whole kernel corn among the various items in the dinner.
  • the consumer of the dinner will likely not express opinions on the quality of the dinner, unless it was an especially bad experience, where the consumer might contact the producer's customer support program to complain.
  • organic foods Organic foods.
  • Customers are also asking for more information about the nutritional substances they consume, such as specific characteristics' relating not only to nutritional content, but to allergens or digestive intolerances.
  • nutritional substances which contain lactose, gluten, nuts, dyes, etc. need to be avoided by certain consumers.
  • the producer of the ready-to-eat dinner in the prior example, has very little information to share other than possibly the source of the elements of the ready-to-eat dinner and its processing steps in preparing the dinner.
  • the producer of the ready-to-eat dinner does not know the nutritional content and organoleptic state and aesthetic condition of the product after it has been reheated or cooked by the consumer, cannot predict changes to these properties, ⁇ , and cannot inform a consumer of this information to enable the consumer to better meet their needs.
  • the consumer may want to know what proportion of desired organoleptic properties or values, desired nutritional content or values, or desired aesthetic properties or values of the corn in the ready-to-eat dinner remain after cooking or reheating, and the change in the desired nutritional content or values, the desired organoleptic properties or values, or the desired aesthetic properties or values, ⁇ , (usually a degradation, but could be a maintenance or even improvement).
  • the caloric and nutritional content information for a prepared food that is provided to the consumer is often minimal.
  • the consumer may not receive any information about the source of the sugar, which can come from a variety of plants, such as sugarcane, beets, or corn, which will affect its nutritional content.
  • some nutritional information that is provided to consumers is so detailed, the consumer can do little with it.
  • this list of ingredients is from a nutritional label on a consumer product: Vitamins - A 355 IU 7%, E 0.8mg 4%, K 0.5 meg, 1%, Thiamin 0.6mg 43%, Riboflavin 0.3mg 20%, Niacin 6.0 mg 30%, B6 1.0 mg 52%, Foliate 31.5 meg 8%, Pantothenic 7%; Minerals Calcium 11.6 1%, Iron 4.5mg 25%, Phosphorus 349mg 35%, Potassium 476 mg 14%, Sodium 58.1 mg 2%, Zinc 3.7 mg 24%, Copper 0.5 mg 26%, Manganese 0.8 mg 40%, Selenium 25.7 meg 37%; Carbohydrate 123g, Dietary fiber 12.1 g, Saturated fat 7.9g, Monosaturated Fat 2,lg, Polysaturated Fat 3.6g, Omega 3 fatty acids 108g, Omega 6 fatty acids 3481, Ash 2.0 g and Water 17.2g.
  • each silo in the food and beverage industry already creates and tracks some information, including caloric and nutritional information, about their product internally.
  • the farmer who grew the corn knows the variety of the seed, condition of the soil, the source of the water, the fertilizers and pesticides used, and can measure the caloric and nutritional content at creation.
  • the packager of the corn knows when it was picked, how it was transported to the packaging plant, how the corn was preserved and packaged before being sent to the ready-to-eat dinner producer, when it was delivered to the producer, and what degradation to caloric and nutritional content has occurred.
  • the producer knows the source of each element of the ready-to-eat dinner, how it was processed, including the recipe followed, and how it was preserved and packaged for the consumer.
  • the quality of the nutritional substances could be preserved and improved. Consumers could be better informed about nutritional substances they select and consume, including the state, and changes in the state, ⁇ , of the nutritional substance throughout its lifecycle from creation up to the moment of consumption. The efficiency and cost effectiveness of nutritional substances could also be improved. Feedback within the entire chain from creator to consumer could provide a closed-loop system that could improve quality (taste, appearance, and caloric and nutritional content), efficiency, value and profit. For example, in the milk supply chain, at least 10% of the milk produced is wasted due to safety margins included in product expiration dates.
  • Current packaging materials for nutritional substances include plastics, paper, cardboard, glass, and synthetic materials.
  • the packaging material is chosen by the producer to best preserve the quality of the nutritional substance until used by the customer.
  • the packaging may include some information regarding type of nutritional substance, identity of the producer, and the country of origin.
  • Such packaging generally does not transmit source information of the nutritional substance, such as creation information, current or historic information as to the external conditions of the packaged nutritional substance, or current or historic information as to the internal conditions of the packaged nutritional substance.
  • Nutritional substance collectors and/or producers such as growers (plants), ranchers
  • a further object of the present invention is to provide packaging which dynamically interacts with the nutritional substance to maintain and/or improve and/or minimize degradation of the nutritional substance being preserved, in order to maintain, improve, or minimize degradation of a nutritional, organoleptic, and/or aesthetic value, or otherwise favorably influence a ⁇ related to the nutritional substance.
  • the packaging or label of a nutritional substance tracks creation and historical information of nutritional substance, including ⁇ information as well as current information about the state of a nutritional, organoleptic, and/or aesthetic value of the nutritional substance.
  • a further object of the present invention is to provide packaging which dynamically interacts with the nutritional substance to maintain and/or improve and/or minimize degradation of the nutritional substance being preserved, in order to maintain, improve, or minimize degradation of a nutritional, organoleptic, and/or aesthetic value, or otherwise favorably influence a ⁇ related to the nutritional substance, and transmits information regarding such dynamic interaction with the nutritional substance.
  • the preservation system also referred to herein as packaging, for a nutritional substance allows for the tracking of source information, information as to the history of the nutritional substance from the point it was packaged and/or current information on external influences on the packaged nutritional substance which may have caused changes in nutritional, organoleptic, and/or aesthetic values of the nutritional substance, herein collectively and individually referred to as ⁇ .
  • the current information on the external influences on the packaged nutritional substance is utilized to provide ⁇ values or resulting nutritional, organoleptic, and/or aesthetic values to users and/or consumers of the nutritional substance as well as all entities of the nutritional substance supply system, including those who transform and condition nutritional substances.
  • the packaging or labeling for the nutritional substance can provide information to any entity inside or outside of the nutritional substance supply system, but preferably the consumer, related to a ⁇ value or resulting nutritional, organoleptic, and/or aesthetic value of the nutritional substance.
  • the packaging of the nutritional substance can dynamically interact with the nutritional substance to maintain, improve, or minimize degradation of a nutritional, organoleptic, and/or aesthetic value, or otherwise favorably influence a ⁇ related to the nutritional substance.
  • the packaging for a nutritional substance allows for the tracking of source information, information as to the history of the nutritional substance from the point it was packaged and/or current information on external influences on the packaged nutritional substance which may have caused changes in nutritional, organoleptic, and/or aesthetic values of the nutritional substance, herein collectively and individually referred to as ⁇ . It is a further embodiment of the present invention that the current information on the external influences on the packaged nutritional substance is utilized to provide ⁇ values or resulting nutritional, organoleptic, and/or aesthetic values to entities outside of the nutritional substance supply system.
  • the packaging or labeling for the nutritional substance references information related to a ⁇ value or resulting nutritional, organoleptic, and/or aesthetic value of the nutritional substance by a unique identifier provided by the packaging or labeling.
  • the packaging of the nutritional substance can dynamically interact with the nutritional substance to maintain, improve, or minimize degradation of a nutritional, organoleptic, and/or aesthetic value, or otherwise favorably influence a ⁇ related to the nutritional substance and transmits information related to the interaction.
  • the packaging for a nutritional substance allows for the tracking of source information, information as to the history of the nutritional substance from the point it was packaged and/or current information on external influences on the packaged nutritional substance which may have caused changes in nutritional, organoleptic, and/or aesthetic values of the nutritional substance, herein collectively and individually referred to as ⁇ . It is a further embodiment of the present invention that the current information on the external influences on the packaged nutritional substance is referenced to a unique identifier provided with the packaging.
  • An embodiment of the present invention provides a system for the creation, collection, storage, transmission, and/or processing of information regarding dynamically labeled nutritional substances so as to improve, maintain, or minimize degradation of nutritional, organoleptic, and/or aesthetic value of the nutritional substances. Additionally, the present invention provides such information for use by the creators, preservers, transformers, conditioners, and consumers of nutritional substances. It is a preferred that this information is openly available and openly integrated at any point in time to all constituents in the nutritional substance supply system. It is preferred that dynamic labeling provided with the nutritional substances enables the integration and availability of the information and that this information becomes openly available and openly integrated as soon as it is created.
  • the nutritional information creation, preservation, and transmission system of the present invention should allow the nutritional substance supply system to improve its ability to minimize degradation of nutritional, organoleptic and/or aesthetic value of the nutritional substance, and/or inform the consumer, creator, packager, transformer, or conditioner about such degradation, or ⁇ . While the ultimate goal of the nutritional substance supply system is to minimize degradation of nutritional, organoleptic and/or aesthetic values, or as it relates to ⁇ , minimize the negative magnitude of ⁇ .
  • an interim goal should be providing consumers with significant information regarding any change, particularly degradation, of nutritional, organoleptic and/or aesthetic values of nutritional substances, and/or component nutritional substances thereof, consumers select and consumer, the ⁇ , such that desired information regarding specific residual nutritional, organoleptic, and/or aesthetic values can be ascertained using the ⁇ .
  • Entities within the nutritional substance supply system that provide such ⁇ information regarding nutritional substances, particularly regarding degradation, will be able to differentiate their products from those who obscure and/or hide such information. Additionally, such entities should be able to charge a premium for products which either maintain their nutritional, organoleptic, and/or aesthetic value, or supply more complete information about changes in their nutritional, organoleptic, and/or aesthetic value, the ⁇ .
  • Figure 1 shows a schematic functional block diagram of a nutritional substance supply relating to the present invention
  • Figure 2 shows a graph representing a value of a nutritional substance which changes according to a change of condition for the nutritional substance
  • Figure 3 shows a schematic functional block diagram of the preservation module 300 according to the present invention.
  • Figure 4 shows a schematic functional block diagram of the preservation module 300 according to an alternate embodiment of the present invention.
  • Figure 5 shows a schematic functional block diagram of the preservation module 300 according to an alternate embodiment of the present invention.
  • Figure 6 shows a schematic functional block diagram of the preservation module 300 according to an alternate embodiment of the present invention.
  • Figure 7 shows a schematic functional block diagram of the preservation module 300 according to an alternate embodiment of the present invention
  • Figure 8 shows a schematic functional block diagram of the preservation module 300 according to an alternate embodiment of the present invention
  • Figure 9 shows a schematic functional block diagram of the preservation module 300 according to an alternate embodiment of the present invention.
  • Figure 10 shows a schematic functional block diagram of the preservation module
  • Figure 11 shows a schematic functional block diagram of the preservation module
  • Figure 12 shows a schematic functional block diagram of the preservation module
  • Figure 13 shows a schematic functional block diagram of the preservation module
  • preservation systems may include, but are not limited to, any internal or external portion of a nutritional substance package, container, carton, bottle, carton, box, bag, vessel, cup, plate, wrapper, label, or any other apparatus used to preserve, store, transfer, present, or serve a nutritional substance.
  • An example of the present invention is provided of bottled wine interacting, or communicating, with a portion of its container.
  • a cork, a cap, a submerged coupon or indicator, or any part of the surface of the bottle can monitor one or more ⁇ and convey to a consumer the ⁇ , or a corresponding current state, of the wine at any moment the consumer wants to know, such as when he is deciding to purchase or open the container.
  • a milk carton containing milk could have a small area on its side with encapsulated gel in direct contact with the milk.
  • the bacteria will be able to penetrate the gel and the gel will gradually change color in response to the increasing bacteria content or concentration, indicating the increase in bacteria within the milk, and therefore a current state of the milk.
  • the gel may change from green, wherein green represents an acceptable bacteria level and associated shelf life, to yellow, wherein yellow represents a higher acceptable bacteria level and associated shorter shelf life, to red, wherein red represents the milk has an unacceptably high bacteria level and is not apt for drinking any more.
  • the gel may gradually change color in response to a reduction in pH, wherein changes in pH are surrogates for changes in bacteria levels. As the milk ages, its bacteria count naturally increases, reducing its pH. For example, the gel may change from green, wherein green represents a pH level corresponding to an acceptable bacteria level and associated shelf life, to yellow, wherein yellow represents a lower pH level and corresponding higher acceptable bacteria level and associated shorter shelf life, to red, wherein red represents a still lower pH and corresponding unacceptably high bacteria level and is not apt for drinking any more.
  • nutritional substances includes, but is not limited to, synthetic compounds such as medicaments, supplements, and other substances intended for consumption or introduction into a consumer.
  • the present invention may include embodiments wherein a portion of the nutritional substance interacting or communicating with its container is segregated from a portion of the nutritional substance to be consumed. This would be of particular benefit for packaged goods including synthetic compounds such as medicaments, in which case it would be desirable to segregate the portion of medicament interacting or communicating with the container from the portion of the medicament for consumption. In this case, the portion of the medicament interacting or communicating with the container would serve as a parallel sample of the medicament provided for consumption.
  • ⁇ information regarding the medicament may be associated with a degradation of the medicament, a residual value of the medicament, an expiration date of the medicament, or utilized in any other way to ensure the medicament's safety and efficacy when a consumer uses it.
  • Other examples of the present invention could include, but are not limited to, containers like jars, glasses, or cups that could detect when there is an unhealthy level of toxins, antibiotics, fungus, bacteria, pesticides, or other undesirable components in tap water intended for consumption, or if the coffee poured into a cup has caffeine or not.
  • the principle at work is that of symbiosis, similar to that which occurs between a banana and its peel.
  • the banana peel has a natural evolution from green to black that conveys the level of maturity of the banana.
  • the peel reacts to the natural ⁇ that occurs during the banana's maturation process, wherein the ANs may include changes in acidity, sugar content, and bacteria level.
  • the ANs of the banana independently and collectively have an effect on the aesthetic values of the banana peel, which in turn conveys to the consumer when and how the banana may best be consumed.
  • a green peel indicates that the banana is not yet ripe and should not be eaten. Yellow indicates that it may be suitable for consumption, but will not be very sweet. Yellow with a few black spots indicates that it is suitable for consumption, and will be sweat. Usually black indicates that it is suitable for use in baked goods or to be fried. Very black indicates that it is no longer suitable for consumption.
  • the banana peel quickly turns black alerting the consumer. Therefore the consumer does not have to rely on a static expiration date to determine the banana's suitability for consumption.
  • the disparate processing devices are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet.
  • LAN Local Area Network
  • WAN Wide Area Network
  • program modules may be located in both local and remote memory storage devices.
  • aspects of the invention may be stored or distributed on tangible computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media.
  • computer implemented instructions, data structures, screen displays, and other data related to the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time.
  • the data may be provided on any analog or digital network (packet switched, circuit switched, or other scheme).
  • the interconnection between modules is the internet, allowing the modules (with, for example, WiFi capability) to access web content offered through various web servers.
  • the network may be any type of cellular, IP -based or converged telecommunications network, including but not limited to Global System for Mobile Communications (GSM), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDM), General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Advanced Mobile Phone System (AMPS), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS), Evolution-Data Optimized (EVDO), Long Term Evolution (LTE), Ultra Mobile Broadband (UMB), Voice over Internet Protocol (VoIP), Unlicensed Mobile Access (UMA), etc.
  • GSM Global System for Mobile Communications
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiple Access
  • GPRS General Packet Radio Service
  • modules in the systems can be understood to be integrated in some instances and in particular embodiments, only particular modules may be interconnected.
  • Figure 1 shows the components of a nutritional substance industry 10. It should be understood that this could be the food and beverage ecosystem for human consumption, but could also be the feed industry for animal consumption, such as the pet food industry.
  • a goal of the present invention for nutritional substance industry 10 is to create, preserve, transform and trace change in nutritional, organoleptic and/or aesthetic values of nutritional substances, collectively and individually also referred to herein as ⁇ , through their creation, preservation, transformation, conditioning and consumption. While the nutritional substance industry 10 can be composed of many companies or businesses, it can also be integrated into combinations of business serving many roles, or can be one business or even individual.
  • is a measure of the change in a value of a nutritional substance
  • knowledge of a prior value (or state) of a nutritional substance and the ⁇ value will provide knowledge of the changed value (or state) of a nutritional substance, and can further provide the ability to estimate a change in value (or state).
  • Module 200 is the creation module. This can be a system, organization, or individual which creates and/or originates nutritional substances. Examples of this module include a farm which grows produce; a ranch which raises beef; an aquaculture farm for growing shrimp; a factory that synthesizes nutritional compounds; a collector of wild truffles; or a deep sea crab trawler.
  • Preservation module 300 is a preservation system for preserving and protecting the nutritional substances created by creation module 200. Once the nutritional substance has been created, generally, it will need to be packaged in some manner for its transition to other modules in the nutritional substances industry 10. While preservation module 300 is shown in a particular position in the nutritional substance industry 10, following the creation module 200, it should be understood that the preservation module 300 actually can be placed anywhere nutritional substances need to be preserved during their transition from creation to consumption.
  • Transformation module 400 is a nutritional substance processing system, such as a manufacturer who processes raw materials such as grains into breakfast cereals. Transformation module 400 could also be a ready-to-eat dinner manufacturer who receives the components, or ingredients, also referred to herein as component nutritional substances, for a ready-to-eat dinner from preservation module 300 and prepares them into a frozen dinner. While transformation module 400 is depicted as one module, it will be understood that nutritional substances may be transformed by a number of transformation modules 400 on their path to consumption.
  • Conditioning module 500 is a consumer preparation system for preparing the nutritional substance immediately before consumption by the consumer.
  • Conditioning module 500 can be a microwave oven, a blender, a toaster, a convection oven, a cook, etc. It can also be systems used by commercial establishments to prepare nutritional substance for consumers such as a restaurant, an espresso maker, pizza oven, and other devices located at businesses which provide nutritional substances to consumers. Such nutritional substances could be for consumption at the business or for the consumer to take out from the business.
  • Conditioning module 500 can also be a combination of any of these devices used to prepare nutritional substances for consumption by consumers.
  • Consumer module 600 collects information from the living entity which consumes the nutritional substance which has passed through the various modules from creation to consumption.
  • the consumer can be a human being, but could also be an animal, such as pets, zoo animals and livestock, which are they themselves nutritional substances for other consumption chains. Consumers could also be plant life which consumes nutritional substances to grow.
  • Information module 100 receives and transmits information regarding dynamically labeled nutritional substances between each of the modules in the nutritional substance industry 10 including, the creation module 200, the preservation module 300, the transformation module 400, the conditioning module 500, and the consumer module 600.
  • the nutritional substance information module 100 can be an interconnecting information transmission system which allows the transmission of information between various modules.
  • the information module 100 collects, tracks, and organizes information regarding the dynamically-labeled nutritional substances from each stage of the production of the nutritional substances from creation to consumption and that the information regarding the dynamically-labeled nutritional substances is openly available and openly integrated at any point in time to all modules of the nutritional substance supply system, preferably as soon as it is created.
  • the integration and availability of the information is enabled by dynamic labeling provided with the nutritional substances, which includes a unique nutritional substance identifier, also referred to herein as a dynamic information identifier.
  • Information module 100 contains a database, also referred to herein as a dynamic nutritional value database, where the information regarding the dynamically labeled nutritional substance resides and can be referenced or located by the corresponding dynamic information identifier.
  • Information module 100 can be connected to the other modules by a variety of communication systems, such as paper, computer networks, the Internet and telecommunication systems, such as wireless telecommunication systems.
  • Figure 2 is a graph showing the function of how a nutritional, organoleptic, or aesthetic value of a nutritional substance varies over the change in a condition of the nutritional substance. Plotted on the vertical axis of this graph can be either the nutritional value, organoleptic value, or even the aesthetic value of a nutritional substance.
  • Plotted on the horizontal axis can be the change in condition of the nutritional substance, ⁇ , over a variable such as time, temperature, location, and/or exposure to environmental conditions (this is indicated as “ ⁇ : Change in nutritional, organoleptic, or aesthetic value” in Figure 2) Also shown in Figure 2 is the residual nutritional, organoleptic, or aesthetic value of the nutritional substance (indicated by "Residual nutritional, organoleptic, or aesthetic value").
  • This exposure to environmental conditions can include: exposure to air, including the air pressure and partial pressures of oxygen, carbon dioxide, water, or ozone; airborne chemicals, pollutants, allergens, dust, smoke, carcinogens, radioactive isotopes, or combustion byproducts; exposure to moisture; exposure to energy such as mechanical impact, mechanical vibration, irradiation, heat, or sunlight; or exposure to materials such as packaging.
  • the function plotted as nutritional substance A could show a ⁇ for milk, such as the degradation of a nutritional value of milk over time. Any point on this curve can be compared to another point to measure and/or describe the change in nutritional value, or the ⁇ of nutritional substance A.
  • the plot of the degradation in the same nutritional value of nutritional substance B, also milk, describes the change in nutritional value, or the ⁇ of nutritional substance B, a nutritional substance which starts out with a higher nutritional value than nutritional substance A, but degrades over time more quickly than nutritional substance A.
  • this ⁇ information regarding the nutritional substance degradation profile of each milk could be used by the consumer in the selection and/or consumption of the milk if nutritional substance A and nutritional substance B are provided with dynamic labeling, which would include a dynamic information identifier for each nutritional substance.
  • the consumer could retrieve desired ⁇ information, such as the nutritional substance degradation profile referenced to each of the milks, from a dynamic nutritional value database. If the consumer has this information at time zero when selecting a milk product for purchase, the consumer could consider when the consumer plans to consume the milk, whether that is on one occasion or multiple occasions.
  • the consumer should choose the milk represented by nutritional substance B because it has a higher nutritional value until it crosses the curve represented by nutritional substance A.
  • the consumer might choose to select the milk represented by the nutritional substance A, even though milk represented by nutritional substance A has a lower nutritional value than the milk represented by nutritional substance B at an earlier time.
  • This change to a desired nutritional value in a nutritional substance, ⁇ , over a change in a condition of the nutritional substance described in Figure 2 can be measured and controlled throughout nutritional substance supply system 10 in Figure 1.
  • This example demonstrates how dynamically generated information regarding a ⁇ of a dynamically labeled nutritional substance, in this case a change in nutritional value of milk, can be used to understand a rate at which that nutritional value changes or degrades; when that nutritional value expires; and a residual nutritional value of the nutritional substance over a change in a condition of the nutritional substance, in this example a change in time.
  • This ⁇ information could further be used to determine a best consumption date for nutritional substance A and B, which could be different from each other depending upon the dynamically generated information generated for each.
  • the function plotted as nutritional substance A could show a ⁇ for guacamole made by a first transformer, such as the degradation of an aesthetic value of guacamole over time, in this case a degradation of its green color. Any point on this curve can be compared to another point to measure and/or describe the change in aesthetic value, or the ⁇ of nutritional substance A.
  • the plot of the degradation in the same aesthetic value of nutritional substance B, a guacamole made by a second transformer describes the change in the same aesthetic value, or the ⁇ , of nutritional substance B.
  • Nutritional substance B starts out with a higher aesthetic value than nutritional substance A, but degrades over time more quickly than nutritional substance A, for instance because the transformer of nutritional substance B adds less lemon juice to their guacamole in order not to distract from the flavor of the avocado.
  • the information available is related to the interaction of the avocado and lemon juice in the respective manufacturer's guacamole, and can enable the consumer to make decisions related to the aesthetic value of the guacamole at a given point in time if nutritional substance A and nutritional substance B are provided with dynamic labeling, which would include a dynamic information identifier for each nutritional substance.
  • the consumer could retrieve desired ⁇ information, such as the aesthetic degradation profile referenced to each guacamole, from a dynamic nutritional value database. For example, if the consumer is purchasing the guacamole to consume at a time before the two curves intersect, and the decision is based on superior aesthetic value, the consumer will choose nutritional substance B. If the consumer is purchasing the guacamole to consume after the time the two curves intersect, and the decision is based on superior aesthetic value, the consumer will choose nutritional substance A, even though it has lower aesthetic value at the time of purchase.
  • desired ⁇ information such as the aesthetic degradation profile referenced to each guacamole
  • the lemon has been added to sliced apples to keep the sliced apples from turning black.
  • the function plotted as nutritional substance A could show a ⁇ for sliced apples transformed by a first transformer, such as the degradation of the aesthetic value of the sliced apples over time, in this case a degradation of its pale color. Any point on this curve can be compared to another point to measure and/or describe the change in aesthetic value, or the ⁇ of nutritional substance A.
  • the plot of the degradation in the same aesthetic value of nutritional substance B, sliced apples made by a slightly different process by a second transformer describes the same change in the aesthetic value, or the ⁇ , of nutritional substance B.
  • Nutritional substance B starts out with a higher aesthetic value than nutritional substance A, but degrades over time more quickly than nutritional substance A, for instance because the manufacturer of nutritional substance B adds less lemon juice to their sliced apples in order not to distract from the flavor of the apples.
  • the information available is related to the interaction of the apples and lemon juice in the respective transformer's sliced apples, and can enable the consumer to make decisions related to the aesthetic value of the sliced apples at a given point in time if nutritional substance A and nutritional substance B are provided with dynamic labeling, which would include a dynamic information identifier for each nutritional substance.
  • the consumer could retrieve desired ⁇ information, such as the aesthetic degradation profile referenced to the sliced apples of each transformer, from a dynamic nutritional value database. For example, if the consumer is purchasing the sliced apples to consume before the time the two curves intersect, and the decision is based on superior aesthetic value, the consumer will choose nutritional substance B. If the consumer is purchasing the sliced apples to consume after the time the two curves intersect, and the decision is based on superior aesthetic value, the consumer will choose nutritional substance A, even though it has lower aesthetic value at the time of purchase.
  • desired ⁇ information such as the aesthetic degradation profile referenced to the sliced apples of each transformer
  • Creation module 200 can dynamically encode nutritional substances, as part of the nutritional substance dynamic labeling, to enable the tracking of changes in nutritional, organoleptic, and/or aesthetic value of the nutritional substance, or ⁇ .
  • This dynamic encoding also referred to herein as a dynamic information identifier, can replace and/or complement existing nutritional substance marking systems such as barcodes, labels, and/or ink markings.
  • This dynamic encoding, or dynamic information identifier can be used to make nutritional substance information from creation module 200 available to information module 100 for use by preservation module 300, transformation module 400, conditioning module 500, and/or consumption module 600, which includes the ultimate consumer of the nutritional substance.
  • a key resource also available through module 100 is recipe information regarding meals that may utilize the nutritional substances as components.
  • the ⁇ information combined with recipe information from module 100 will not only be of great benefit to the consumer in understanding and accomplishing the nutritional, organoleptic, and aesthetic values desired, it will even help dispel misunderstandings that consumers may have about particular nutritional, organoleptic, and aesthetic values of nutritional substances or the combination or nutritional substances.
  • One method of providing dynamically labeled nutritional substances with a dynamic information identifier by creation module 200, or any other module in nutritional supply system 10, could include an electronic tagging system, such as the tagging system manufactured by Kovio of San Jose, California, USA.
  • Such thin film chips can be used not only for tracking nutritional substances, but can include components to measure attributes of nutritional substances, and record and transmit such information. Such information may be readable by a reader including a satellite-based system.
  • Such a satellite-based nutritional substance information tracking system could comprise a network of satellites with coverage of some or all the surface of the earth, so as to allow the dynamic nutritional value database of information module 100 real time, or near real time updates about a ⁇ of a particular nutritional substance.
  • this information is openly available and openly integrated at any point in time to all constituents in the nutritional substance supply system. It is also preferred that this information becomes openly available and openly integrated as soon as it becomes available.
  • Preservation module 300 includes packers and shippers of nutritional substances.
  • the tracking of changes in nutritional, organoleptic, and/or aesthetic values, or a ⁇ , during the preservation period within preservation module 300 allows for dynamic expiration dates for nutritional substances.
  • expiration dates for dairy products are currently based generally only on time using assumptions regarding minimal conditions at which dairy products are maintained. This extrapolated expiration date is based on a worst-case scenario for when the product becomes unsafe to consume during the preservation period. In reality, the degradation of dairy products may be significantly less than this worst-case.
  • an actual expiration date referred to herein as a dynamic expiration date
  • a dynamic expiration date can be determined dynamically, and could be significantly later in time than an extrapolated expiration date. This would allow the nutritional substance supply system to dispose of fewer products due to expiration dates. This ability to dynamically generate expiration dates for nutritional substances is of particular significance when nutritional substances contain few or no preservatives. Such products are highly valued throughout nutritional substance supply system 10, including consumers who are willing to pay a premium for nutritional substances with few or no preservatives. Consumers of nutritional substances provided with dynamic labeling comprising dynamic information identifiers according to the present invention could readily access information regarding dynamic expiration dates for the nutritional substances.
  • a dynamic expiration date (i.e., as a numerical date) but could be indicated symbolically as by the use of colors - such as green, yellow and red employed on semaphores - or other designations.
  • the dynamic expiration date would not be interpreted literally but, rather, as a dynamically-determined advisory date.
  • a dynamic expiration date will be provided for at least one component of a single or multi-component nutritional substance.
  • the dynamic expiration date could be interpreted as a "best" date for consumption for particular components. Consumers of nutritional substances provided with dynamic labeling comprising dynamic information identifiers according to the present invention could readily access this type of information regarding dynamic expiration dates for the nutritional substances.
  • the food processor could include a dynamically generated nutritional value table, also referred to herein as a dynamic nutritional value table, for the actual dynamically-labeled nutritional substance being supplied.
  • the information in such a dynamic nutritional value table could be used by conditioning module 500 in the preparation of the dynamically-labeled nutritional substance, and/or used by consumption module 600, so as to allow the ultimate consumer the ability to select the most desirable dynamically-labeled nutritional substance which meets their needs, and/or to track information regarding dynamically-labeled nutritional substances consumed.
  • Information about changes in nutritional, organoleptic, and/or aesthetic values of nutritional substances, or ⁇ is particularly useful in the conditioning module 500 of the present invention, as it allows knowing, or estimating, the pre-conditioning state of the nutritional, organoleptic, and/or aesthetic values of the dynamically labeled nutritional substance, and allows for estimation of a ⁇ associated with proposed conditioning parameters.
  • the conditioning module 500 can therefore create conditioning parameters, such as by modifying existing or baseline conditioning parameters, which can exist as recipes and conditioning protocols available through the information module 100 or locally available through the conditioning module 500, to deliver desired nutritional, organoleptic, and/or aesthetic values after conditioning.
  • conditioning module 500 could provide the consumer with the actual, and/or estimated change in nutritional, organoleptic, and/or aesthetic values of a dynamically-labeled nutritional substance, or ⁇ .
  • Such information regarding the change to nutritional, organoleptic and/or aesthetic value of the dynamically-labeled nutritional substance, or ⁇ could be provided not only to the consumer, but could also be provided to information module 100 for use by creation module 200, preservation module 300, transformation module 400, so as to track, and possibly improve nutritional substances throughout the entire nutritional substance supply system 10.
  • consumption module 600 can replace or complement existing information sources such as recipe books, food databases like www.epicurious.com, and Epicurious apps.
  • information module 100 can replace or complement existing information sources such as recipe books, food databases like www.epicurious.com, and Epicurious apps.
  • consumption module 600 can use consumption module 600 to select nutritional substances according to nutritional, organoleptic, and/or aesthetic values. This will further allow consumers to make informed decisions regarding nutritional substance additives, preservatives, genetic modifications, origins, traceability, and other nutritional substance attributes that may also be tracked through the information module 100.
  • This information can be provided by consumption module 600 through personal computers, laptop computers, tablet computers, and/or smartphones.
  • Software running on these devices can include dedicated computer programs, modules within general programs, and/or smartphone apps.
  • consumption module 600 may provide information for the consumer to operate conditioning module 500 in such a manner as to optimize nutritional, organoleptic, and/or aesthetic values of a dynamically-labeled nutritional substance and/or component nutritional substances thereof according to the consumer's needs or preference, and/or minimize degradation of, preserve, or improve nutritional, organoleptic, and/or aesthetic value of a dynamically-labeled nutritional substance and/or component nutritional substances thereof.
  • nutritional substance supply system 10 can track nutritional, organoleptic, and/or aesthetic value of dynamically-labeled nutritional substances.
  • dynamically- labeled nutritional substances travelling through nutritional substance supply system 10 can be dynamically valued and priced according to nutritional, organoleptic, and/or aesthetic values. For example, nutritional substances with longer dynamic expiration dates (longer shelf life) may be more highly valued than nutritional substances with shorter expiration dates. Additionally, nutritional substances with higher nutritional, organoleptic, and/or aesthetic values may be more highly valued, not just by the consumer, but also by each entity within nutritional substance supply system 10.
  • both the starting nutritional, organoleptic, and/or aesthetic value and the ⁇ associated with those values are important factors in determining or estimating an actual, or residual, nutritional, organoleptic, and/or aesthetic value of a nutritional substance, and accordingly are important factors in establishing dynamically valued and priced nutritional substances.
  • information module 100 has the ability for creating traffic and signing on the address of users to not only facilitate the rapid adoption and utilization of better nutritional substance information according to the present invention, but also be a key source of business and revenue growth.
  • the producer of a ready-to-eat dinner would prefer to use corn of a high nutritional, organoleptic, and/or aesthetic value in the production of its product, the ready-to-eat dinner, so as to produce a premium product of high nutritional, organoleptic, and/or aesthetic value.
  • the ready-to-eat dinner producer may be able to charge a premium price and/or differentiate its product from that of other producers.
  • the producer will seek corn of high nutritional, organoleptic, and/or aesthetic value from preservation module 300 that meets its requirements for nutritional, organoleptic, and/or aesthetic value.
  • the packager/shipper of preservation module 300 would also be able to charge a premium for corn which has high nutritional, organoleptic, and/or aesthetic values. And finally, the packager/shipper of preservation module 300 will select corn of high nutritional, organoleptic, and/or aesthetic value from the grower of creation module 200, who will also be able to charge a premium for corn of high nutritional, organoleptic, and/or aesthetic values.
  • the change to nutritional, organoleptic, and/or aesthetic value for an information- enabled nutritional substance, or ⁇ , tracked through nutritional substance supply system 10 through nutritional substance information from information module 100 can be preferably determined from measured information.
  • some or all such nutritional substance ⁇ information may be derived through measurements of environmental conditions of the nutritional substance as it travelled through nutritional substance supply system 10.
  • some or all of the information-enabled nutritional substance ⁇ information can be derived from ⁇ data of other information-enabled nutritional substances which have travelled through nutritional substance supply system 10.
  • Information-enabled nutritional substance ⁇ information can also be derived from laboratory experiments performed on other nutritional substances, which may approximate conditions and/or processes to which the actual information-enabled nutritional substance has been exposed.
  • consumer feedback and updates regarding observed or measured changes in the nutritional, organoleptic, and/or aesthetic value of information-enabled nutritional substances can play a role in updating ⁇ information.
  • a creator, preserver, transformer, or conditioner may revise ⁇ information, or information regarding other attributes of information-enabled nutritional substances they have previously created or processed, based upon newly acquired information affecting the ⁇ or the other attributes.
  • laboratory experiments can be performed on bananas to determine effect on or change in nutritional, organoleptic, and/or aesthetic value, or ⁇ , for a variety of environmental conditions bananas may be exposed to during packaging and shipment in preservation module 300.
  • Figure 3 shows an embodiment of the preservation module of the present invention.
  • Preservation system 300 includes a container 310 which contains nutritional substance 320. Also included in container 310 is information storage module 330 which can be connected to an external reader 340. In this embodiment, information storage module 330 contains information regarding the nutritional substance 320. This information can include creation information from the creation of the nutritional substance 320. However, information in the information storage module 320 might include identification information, information regarding prior transformation of the nutritional substance 320, information related to ⁇ , and other historic information. A shipper, or user, of container 310 can operatively connect to information storage module 330 using reader 340 to retrieve information stored therein.
  • reader 340 can also write to information storage module
  • information regarding the container and/or nutritional substance 320 can be modified or added to information storage module 330 by the user or shipper.
  • Figure 4 shows another embodiment of preservation system 300 wherein container
  • Controller 350 is connected to external sensor 360 located either inside, on the surface of, or external to container 310 such that external sensor 360 can obtain information regarding the environment external to container 310.
  • Controller 350 and exterior sensor 360 can take the form of electronic components such as a microcontroller and an electronic sensor.
  • the controller-sensor combination may also be chemical or organic materials which perform the same function, such as a liquid crystal sensor/display.
  • reader 340 could be a user interface device such as a computer which can be electronically connected to controller 350.
  • the ready could be a human looking at the display.
  • reader 340 can be directly connected to external sensor 360 to obtain the information from external sensor 360 without need of a controller 350.
  • external sensor 360 provides information to controller 350 which is presented as a visual display to the shipper or user.
  • external sensor 360 could provide information directly to the user or shipper by visual means such as a temperature sensitive liquid crystal thermometer.
  • controller 350 can modify the operation of container
  • container 310 so as modify the preservation capabilities of container 310, so as to favorably influence a ⁇ of the nutritional substance. For example, if the exterior environment of container 310 would adversely affect the nutritional substance 320, container 310 could adjust the internal environment of container 310 to better preserve the nutritional substance. If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the external sensor 360 provide exterior temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • preservation system 300 includes container 310 which contains nutritional substance 320, controller 350, and information storage module 330.
  • External sensor 360 is positioned such that it can provide information on the exterior environment to container 310. Information from the external sensor and information storage module can be retrieved by connecting reader 340 to container 310.
  • information regarding the external environment sensed by external sensor 360 and provided to controller 350 can be stored in information storage module 330. This storage of external environment can be used to record a history the external environment container 310 has been subjected to. This would allow the shipper or user of container 310 to understand the external environment the container has been subjected to during the time it has preserved the nutritional substance.
  • Such information can be used to determine any number of ⁇ values for the nutritional substance and if the nutritional substance is no longer safe for consumption or has been degraded such that the nutritional substance is no longer in an optimal state. Additionally, the user of the nutritional substance could modify its transformation, conditioning, or consumption according to any changes, or ANs that may have occurred because of the external conditions of the container.
  • information storage module 340 could contain other information regarding the nutritional substance, including creation information, identification information, and/or prior transformation information.
  • controller 350 can modify the operation of container
  • Controller 350 can analyze the historic information from external sensor 360, stored in information storage module 330 to determine any long-term exterior conditions environmental If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the external sensor 360 provide exterior temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • Figure 6 shows embodiment of preservation system 300 wherein container 310 contains nutritional substance 320 as well as internal sensor 370 located either inside, or on the surface of, container 310, such that internal sensor 370 can obtain information regarding the environment internal to container 310.
  • Internal sensor 370 can be connected to reader 340 to obtain the interior conditions of container 310.
  • Internal sensor 360 and reader 340 can take the form of electronic components such as an electronic sensor and electronic display. However, the controller- sensor combination may also be chemical or organic materials which perform the same function, such as a liquid crystal sensor/display.
  • FIG. 7 shows embodiment of preservation system 300 wherein container 310 contains nutritional substance 320 as well as controller 350.
  • Controller 350 is connected to internal sensor 370 located either inside, or on the surface of, container 310, such that internal sensor 370 can obtain information regarding the environment internal to container 310.
  • Controller 350 and internal sensor 360 can take the form of electronic components such as a micro-controller and an electronic sensor.
  • the controller-sensor combination may also be chemical or organic materials which perform the same function, such as a liquid crystal sensor/display.
  • reader 340 could be a user interface device such as a computer which can be electronically connected to internal sensor 370.
  • controller 350 can modify the operation of container
  • container 310 so as modify the preservation capabilities of container 310, so as to favorably influence a ⁇ of the nutritional substance. For example, if the interior environment of container 310 would adversely affect the nutritional substance 320, container 310 could adjust the internal environment of container 310 to better preserve the nutritional substance. If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the internal sensor 370 provide internal temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • preservation system 300 includes container 310 which contains nutritional substance 320, controller 350, and information storage module 330.
  • Internal sensor 370 is positioned such that it can provide information on the internal environment to container 310. Information from the internal sensor and information storage module can be retrieved by connecting reader 340 to container 310.
  • information regarding the internal environment sensed by internal sensor 370 and provided to controller 350 can be stored in information storage module 330.
  • This storage of internal environment can be used to record a history the internal environment container 310 has been subjected to. This would allow the shipper or user of container 310 to understand the internal environment the container has been subjected to during the time it has preserved the nutritional substance.
  • Such information can be used to determine any number of ⁇ values of the nutritional substance and if the nutritional substance is no longer safe for consumption or has been degraded such that the nutritional substance is no longer in an optimal state.
  • the user of the nutritional substance could modify its transformation, conditioning, or consumption according to any changes, or ANs, that may have occurred because of the internal conditions of the container.
  • information storage module 340 could contain other information regarding the nutritional substance, including creation information, identification information, and/or prior transformation information.
  • controller 350 can modify the operation of container
  • container 310 so as modify the preservation capabilities of container 310. For example, if the internal environment of container 310 would adversely affect the nutritional substance 320, container 310 could adjust the internal environment of container 310, so as to favorably influence a ⁇ of the nutritional substance. For example, if the internal environment of container 310 would adversely affect the nutritional substance 320, container 310 could adjust the internal environment of container 310 to better preserve the nutritional substance.
  • Controller 350 can analyze the historic information from internal sensor 370, stored in information storage module 330 to determine any long-term internal conditions environmental If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the internal sensor 370 provide internal temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • Information in the information storage module 320 might include identification information, information regarding prior transformation of the nutritional substance 320, and other historic information.
  • a shipper, or user, of container 310 can operatively connect to information storage module 330 using reader 340 to retrieve information stored therein.
  • reader 340 can also write to information storage module 330.
  • information regarding the container and/or nutritional substance 320 can be modified or added to information storage module 330 by the user or shipper.
  • Figure 9 shows an alternate embodiment of the present invention.
  • Preservation system 300 includes container 310 which contains nutritional substance 320, nutritional substance label 325, controller 350, and information storage module 330.
  • Internal sensor 370 is positioned such that it can provide information on the internal environment to container 310.
  • Nutritional substance label 325 is attached to nutritional substance 320 so as to sense, measure, and/or indicate the current state of nutritional substance 320.
  • Nutritional substance label 325 can be read by reader 340.
  • Nutritional substance label 325 could be a material/chemical tag that, through a physical reaction with the surface of nutritional substance 320, provides information regarding the nutritional, organoleptic, and aesthetic state of the nutritional substance, or information regarding changes in the nutritional, organoleptic, and aesthetic values of the nutritional substance, including where nutritional substance 320 is in its life cycle. As an example, this label/tag could change color as a fruit, cheese or wine matures across time. It could also indicate if it detects traces of pesticides, hormones, allergens, harmful or dangerous bacteria, or any other substances.
  • information regarding the internal environment sensed by internal sensor 370 and provided to controller 350 can be stored in information storage module 330.
  • This storage of internal environment can be used to record a history the internal environment container 310 has been subjected to. This would allow the shipper or user of container 310 to understand the internal environment the container has been subjected to during the time it has preserved the nutritional substance.
  • Such information can be used to determine any number of ⁇ values for the nutritional substance, including if the nutritional substance is no longer safe for consumption or has been degraded such that the nutritional substance is no longer in an optimal state.
  • the user of the nutritional substance could modify its transformation, conditioning, or consumption according to any changes, or ANs, that may have occurred because of the internal conditions of the container.
  • information storage module 340 could contain other information regarding the nutritional substance, including creation information, identification information, and/or prior transformation information.
  • controller 350 can modify the operation of container
  • Controller 350 can analyze the historic information from internal sensor 370, stored in information storage module 330 to determine any long-term internal conditions environmental If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the internal sensor 370 provide internal temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • Information in the information storage module 320 might include identification information, information regarding prior transformation of the nutritional substance 320, and other historic information.
  • a shipper, or user, of container 310 can operatively connect to information storage module 330 using reader 340 to retrieve information stored therein. Additionally, such a shipper, or user, of container 310 can obtain information from nutritional substance label 325, either through direct observation or through reader 340.
  • reader 340 can also write to information storage module 330.
  • information regarding the container and/or nutritional substance 320 can be modified or added to information storage module 330 by the user or shipper.
  • Figure 10 shows embodiment of preservation system 300 wherein container 310 contains nutritional substance 320 as well as nutritional substance sensor 380 in contact with nutritional substance 320, such that nutritional substance sensor 380 can obtain information regarding the nutritional substance 320 in container 310.
  • Nutritional substance sensor 380 can be connected to reader 340 to obtain the nutritional substance 320 condition.
  • Nutritional substance sensor 380 and reader 340 can take the form of electronic components such as an electronic sensor and electronic display. However, the controller-sensor combination may also be chemical or organic materials which perform the same function, such as a liquid crystal sensor/display.
  • FIG 11 shows embodiment of preservation system 300 wherein container 310 contains nutritional substance 320 as well as controller 350.
  • Controller 350 is connected to nutritional substance sensor 380.
  • Controller 350 and nutritional substance sensor 380 can take the form of electronic components such as a micro-controller and an electronic sensor. However, the controller-sensor combination may also be chemical or organic materials which perform the same function, such as a liquid crystal sensor/display.
  • reader 340 could be a user interface device such as a computer which can be electronically connected to nutritional substance sensor 380.
  • controller 350 can modify the operation of container
  • container 310 so as modify the preservation capabilities of container 310, so as to favorably influence a ⁇ of the nutritional substance. For example, if the interior environment of container 310 is adversely affecting the nutritional substance 320, container 310 could adjust the nutritional substance environment of container 310 to better preserve the nutritional substance. If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the nutritional substance sensor 380 provide nutritional substance temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • preservation system 300 includes container 310 which contains nutritional substance 320, controller 350, and information storage module 330.
  • Nutritional substance sensor 380 is positioned such that it can provide information on the nutritional substance in container 310. Information from the nutritional substance sensor 380 and information storage module can be retrieved by connecting reader 340 to controller 350.
  • information regarding the nutritional substance sensed by nutritional substance sensor 380, and provided to controller 350 can be stored in information storage module 330.
  • This storage of nutritional substance environment can be used to record a history the nutritional substance. This would allow the shipper or user of container 310 to understand the nutritional substance during the time it has preserved the nutritional substance. Such information can be used to determine any number of ⁇ values of the nutritional substance and if the nutritional substance is no longer safe for consumption or has been degraded such that the nutritional substance is no longer in an optimal state. Additionally, the user of the nutritional substance could modify its transformation, conditioning, or consumption according to any changes, or ANs, that may have occurred because of the conditions of the container. [00114] Additionally, in this embodiment, information storage module 330 could contain other information regarding the nutritional substance, including creation information, identification information, and/or prior transformation information.
  • controller 350 can modify the operation of container
  • controller 350 could adjust the container 310 to better preserve the nutritional substance.
  • Controller 350 can analyze the historic information from nutritional substance sensor 380 stored in information storage module 330 to determine any long- term nutritional substance conditions that need to be changed, If nutritional substance needs to be kept within a certain temperature range to preserve its organoleptic and/or nutritional properties, and the nutritional substance sensor 380 provide nutritional substance temperature information to controller 350, controller 350 could modify container 310 so as to maintain nutritional substance 320 within the required temperature range.
  • Information in the information storage module 320 might include identification information, information regarding prior transformation of the nutritional substance 320, and other historic information.
  • a shipper, or user, of container 310 can operatively connect to information storage module 330 using reader 340 to retrieve information stored therein.
  • reader 340 can also write to information storage module 330.
  • information regarding the container and/or nutritional substance 320 can be modified or added to information storage module 330 by the user or shipper.
  • Figure 13 shows the preferred embodiment of preservation module 300.
  • container 310 Within container 310 is nutritional substance 320, nutritional substance sensor 380, internal sensor 370, information storage module 340, and controller 350.
  • External sensor 360 is located outside or on the surface of container 310.
  • controller 350 receives information from nutritional substance sensor 380, internal sensor 370, and external sensor 360. Additionally, controller 350 can store the information received from the three sensors in in information storage module 330. Controller 350 can retrieve such stored information and transmit it to reader 340. Reader 340 can also transmit instructions to controller 350.
  • Controller 350 is operably connected to container 310 so as to use the information obtained from the sensors and/or information stored in the information storage module to modify the operation of container 310 to affect the state of nutritional substance 320, that is, to favorably influence a ⁇ for the nutritional substance.
  • storage module 330 could contain information regarding nutritional substance 320 as to its identity, creation information and/or prior transformation information. This historic information could also be used in modifying the operation of container 310 in its preservation of nutritional substance 320.
  • nutritional substance 320 could be bananas being shipped to a distribution warehouse. Bananas are in container 310 which is capable of controlling its internal temperature, humidity, and the level of certain gasses within the container. Creation information as to the bananas is placed in information storage module 330 prior to shipment. During shipment, external sensor 360 measures the temperature and humidity outside container 310. This information is stored by controller 350 in information storage module 330. Controller 350 also receives information on the internal environment within container 310 from internal sensor 370 and stores this information in information storage module 330. This information includes the internal temperature, humidity, and certain gas levels within container 310. Finally, nutritional substance sensor 380, which is attached to the surface of the bananas, provides information as to the state of the bananas to controller 350. This information could include surface temperature, surface humidity, gasses being emitted, and surface chemicals. At any time during its shipment and delivery to the distribution warehouse, reader 340 can be used to retrieve both current information and historic information stored within information storage module 330.
  • container 310 modifies its internal conditions according to instructions provided by controller 350.
  • Controller 350 contains instructions as to how to preserve, and possibly ripen, the bananas using information stored in information storage module 330 about the creation of the bananas, as well as historical information received from the three sensors, as well as current information being received from the three sensors.
  • preservation module 300 can preserve and optimize and minimize degradation of the bananas.
  • preservation module 300 can operate in a way to favorably influence changes in aesthetic, organoleptic and nutritional values/attributes, ANs, of the bananas while they are being shipped and stored.
  • nutritional substance sensor 380, internal sensor 370, external sensor 360, information storage module 330, controller 350, reader 340, and parts of container 310 are each electrical or electromechanical devices which perform each of the indicated functions.
  • information storage module 330, controller 350, reader 340, and parts of container 310 are each electrical or electromechanical devices which perform each of the indicated functions.
  • a specifically designed plastic wrap for bananas can sense the exterior conditions of the package, the interior conditions of the package, and control gas flow through its surface so as to preserve and ripen the bananas.
  • the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense (i.e., to say, in the sense of “including, but not limited to”), as opposed to an exclusive or exhaustive sense.
  • the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements. Such a coupling or connection between the elements can be physical, logical, or a combination thereof.
  • the words “herein,” “above,” “below,” and words of similar import when used in this application, refer to this application as a whole and not to any particular portions of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

L'invention concerne un système de conservation pour des substances nutritives. Le système de conservation obtient des informations concernant la substance nutritive à conserver, détecte et mesure l'environnement externe au système de conservation, détecte et mesure l'environnement interne au système de conservation, détecte et mesure l'état de la substance nutritive et stocke de telles informations tout au long de la période de conservation. A l'aide de ces informations accumulées, le système de conservation peut mesurer ou estimer des changements du contenu nutritif (généralement une dégradation) pendant la période de conservation. De plus, le système de conservation peut utiliser ces informations pour modifier dynamiquement le système de conservation afin de rendre minimaux les changements nuisibles au contenu nutritif de la substance nutritive et, dans certains cas, améliorer réellement les attributs de la substance nutritive.
PCT/US2014/036570 2013-05-06 2014-05-02 Système de conservation pour substances nutritives WO2014182566A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/888,353 US20130269454A1 (en) 2012-04-16 2013-05-06 Preservation System for Nutritional Substances
US13/888,353 2013-05-06

Publications (2)

Publication Number Publication Date
WO2014182566A2 true WO2014182566A2 (fr) 2014-11-13
WO2014182566A3 WO2014182566A3 (fr) 2015-05-07

Family

ID=51867844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/036570 WO2014182566A2 (fr) 2013-05-06 2014-05-02 Système de conservation pour substances nutritives

Country Status (1)

Country Link
WO (1) WO2014182566A2 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069340B2 (en) 2012-04-16 2015-06-30 Eugenio Minvielle Multi-conditioner control for conditioning nutritional substances
US9072317B2 (en) 2012-04-16 2015-07-07 Eugenio Minvielle Transformation system for nutritional substances
US9080997B2 (en) 2012-04-16 2015-07-14 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9171061B2 (en) 2012-04-16 2015-10-27 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
USD762081S1 (en) 2014-07-29 2016-07-26 Eugenio Minvielle Device for food preservation and preparation
US9414623B2 (en) 2012-04-16 2016-08-16 Eugenio Minvielle Transformation and dynamic identification system for nutritional substances
US9429920B2 (en) 2012-04-16 2016-08-30 Eugenio Minvielle Instructions for conditioning nutritional substances
US9436170B2 (en) 2012-04-16 2016-09-06 Eugenio Minvielle Appliances with weight sensors for nutritional substances
US9460633B2 (en) 2012-04-16 2016-10-04 Eugenio Minvielle Conditioner with sensors for nutritional substances
US9497990B2 (en) 2012-04-16 2016-11-22 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9528972B2 (en) 2012-04-16 2016-12-27 Eugenio Minvielle Dynamic recipe control
US9541536B2 (en) 2012-04-16 2017-01-10 Eugenio Minvielle Preservation system for nutritional substances
US9564064B2 (en) 2012-04-16 2017-02-07 Eugenio Minvielle Conditioner with weight sensors for nutritional substances
US9619781B2 (en) 2012-04-16 2017-04-11 Iceberg Luxembourg S.A.R.L. Conditioning system for nutritional substances
US9902511B2 (en) 2012-04-16 2018-02-27 Iceberg Luxembourg S.A.R.L. Transformation system for optimization of nutritional substances at consumption
US10219531B2 (en) 2012-04-16 2019-03-05 Iceberg Luxembourg S.A.R.L. Preservation system for nutritional substances
US10790062B2 (en) 2013-10-08 2020-09-29 Eugenio Minvielle System for tracking and optimizing health indices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982640B2 (en) * 2002-11-21 2006-01-03 Kimberly-Clark Worldwide, Inc. RFID system and method for tracking food freshness
US7401469B2 (en) * 2004-12-20 2008-07-22 General Electric Company System and method for preserving food
US8575525B2 (en) * 2005-01-03 2013-11-05 Jeffrey H. Mackay Tunnel for conditioning of products, especially for sterilization of food in prepackaged containers
US20100106626A1 (en) * 2008-10-23 2010-04-29 Whirlpool Corporation System and method for tracking inventory history
US20130269538A1 (en) * 2012-04-16 2013-10-17 Eugenio Minvielle Transformation system for nutritional substances

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564064B2 (en) 2012-04-16 2017-02-07 Eugenio Minvielle Conditioner with weight sensors for nutritional substances
US9619781B2 (en) 2012-04-16 2017-04-11 Iceberg Luxembourg S.A.R.L. Conditioning system for nutritional substances
US9460633B2 (en) 2012-04-16 2016-10-04 Eugenio Minvielle Conditioner with sensors for nutritional substances
US9171061B2 (en) 2012-04-16 2015-10-27 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9497990B2 (en) 2012-04-16 2016-11-22 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9414623B2 (en) 2012-04-16 2016-08-16 Eugenio Minvielle Transformation and dynamic identification system for nutritional substances
US9429920B2 (en) 2012-04-16 2016-08-30 Eugenio Minvielle Instructions for conditioning nutritional substances
US9436170B2 (en) 2012-04-16 2016-09-06 Eugenio Minvielle Appliances with weight sensors for nutritional substances
US9080997B2 (en) 2012-04-16 2015-07-14 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US10219531B2 (en) 2012-04-16 2019-03-05 Iceberg Luxembourg S.A.R.L. Preservation system for nutritional substances
US9541536B2 (en) 2012-04-16 2017-01-10 Eugenio Minvielle Preservation system for nutritional substances
US9528972B2 (en) 2012-04-16 2016-12-27 Eugenio Minvielle Dynamic recipe control
US9069340B2 (en) 2012-04-16 2015-06-30 Eugenio Minvielle Multi-conditioner control for conditioning nutritional substances
US9072317B2 (en) 2012-04-16 2015-07-07 Eugenio Minvielle Transformation system for nutritional substances
US9877504B2 (en) 2012-04-16 2018-01-30 Iceberg Luxembourg S.A.R.L. Conditioning system for nutritional substances
US9902511B2 (en) 2012-04-16 2018-02-27 Iceberg Luxembourg S.A.R.L. Transformation system for optimization of nutritional substances at consumption
US11869665B2 (en) 2013-10-08 2024-01-09 Eugenio Minvielle System for tracking and optimizing health indices
US10790062B2 (en) 2013-10-08 2020-09-29 Eugenio Minvielle System for tracking and optimizing health indices
USD762081S1 (en) 2014-07-29 2016-07-26 Eugenio Minvielle Device for food preservation and preparation

Also Published As

Publication number Publication date
WO2014182566A3 (fr) 2015-05-07

Similar Documents

Publication Publication Date Title
US20140290395A1 (en) Preservation System for Nutritional Substances
US9072317B2 (en) Transformation system for nutritional substances
US10219531B2 (en) Preservation system for nutritional substances
WO2014182566A2 (fr) Système de conservation pour substances nutritives
US8668140B2 (en) Transformation system for nutritional substances
US9541536B2 (en) Preservation system for nutritional substances
US9171061B2 (en) Local storage and conditioning systems for nutritional substances
US9414623B2 (en) Transformation and dynamic identification system for nutritional substances
US9497990B2 (en) Local storage and conditioning systems for nutritional substances
US9121840B2 (en) Logistic transport system for nutritional substances
US9016193B2 (en) Logistic transport system for nutritional substances
US20140041533A1 (en) Logistic Transport System for Nutritional Substances
US20130273507A1 (en) Consumer information system for nutritional substances
US20130269538A1 (en) Transformation system for nutritional substances
US20130275460A1 (en) Consumer Information System for Nutritional Substances
WO2013158576A1 (fr) Système d'information sur des substances nutritionnelles
US20130275370A1 (en) Label Content Update System for Nutritional Substances
US20150269867A1 (en) Information system for nutritional substances
US20130269543A1 (en) System for Managing the Nutritional Content for Nutritional Substances
US20150100462A1 (en) Systems and Methods to Improve Nutrition
EP2776826A1 (fr) Système de conservation pour substances nutritives
WO2014168844A2 (fr) Système de transformation et d'identification dynamique pour substances nutritionnelles
EP3055817A1 (fr) Système de transport logistique pour des substances nutritives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794930

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14794930

Country of ref document: EP

Kind code of ref document: A2