WO2014168844A2 - Système de transformation et d'identification dynamique pour substances nutritionnelles - Google Patents

Système de transformation et d'identification dynamique pour substances nutritionnelles Download PDF

Info

Publication number
WO2014168844A2
WO2014168844A2 PCT/US2014/033084 US2014033084W WO2014168844A2 WO 2014168844 A2 WO2014168844 A2 WO 2014168844A2 US 2014033084 W US2014033084 W US 2014033084W WO 2014168844 A2 WO2014168844 A2 WO 2014168844A2
Authority
WO
WIPO (PCT)
Prior art keywords
nutritional
information
consumer
compliance
nutritional substance
Prior art date
Application number
PCT/US2014/033084
Other languages
English (en)
Other versions
WO2014168844A3 (fr
Inventor
Eugenio MINVIELLE
Original Assignee
Minvielle Eugenio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/861,300 external-priority patent/US9414623B2/en
Application filed by Minvielle Eugenio filed Critical Minvielle Eugenio
Priority to KR1020157032353A priority Critical patent/KR20150143666A/ko
Priority to EP14783369.3A priority patent/EP2984620A4/fr
Publication of WO2014168844A2 publication Critical patent/WO2014168844A2/fr
Publication of WO2014168844A3 publication Critical patent/WO2014168844A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/196Products in which the original granular shape is maintained, e.g. parboiled rice
    • A23L7/1965Cooked; Precooked; Fried or pre-fried in a non-aqueous liquid frying medium, e.g. oil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0833Tracking
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets

Definitions

  • the present inventions relate to transformation of nutritional substances in conjunction with the collection, transmission, and use of information regarding source and preservation and transformation information of the nutritional substance, including use of such information to quickly identify if nutritional substances comply, or do not comply, with consumer requirements.
  • the nutritional substance would normally be human food and beverages, including medicaments, but some circumstances are envisioned where the nutritional substance is intended for consumption by other animals, notably pets.
  • Nutritional substances are traditionally grown (plants), raised (animals) or synthesized (synthetic compounds). Additionally, nutritional substances can be found in a wild, non-cultivated form, which can be caught or collected. While the collectors and creators of nutritional substances generally obtain and/or generate information about the source, history, caloric content and/or nutritional content of their products, they generally do not pass such information along to the users of their products. One reason is the nutritional substance industries have tended to act like "silo" industries. Each group in the food and beverage industry: growers, packagers, processors, distributors, retailers, and preparers work separately, and either shares no information, or very little information, between themselves.
  • Caloric content refers to the energy in nutritional substances, commonly measured in calories.
  • the caloric content could be represented as sugars and/or carbohydrates in the nutritional substances.
  • the nutritional content, also referred to herein as nutritional value, of foods and beverages, as used herein refers to the non-caloric content of these nutritional substances which are beneficial to the organisms which consume these nutritional substances.
  • the nutritional content of a nutritional substance could include vitamins, minerals, proteins, and other non-caloric components which are necessary, or at least beneficial, to the organism consuming the nutritional substances.
  • those who sell nutritional substances to consumers could communicate perceived qualitative values of the nutritional substance in their efforts to market and position their nutritional substance products.
  • a determinant of price of the nutritional substance could be particular nutritional, organoleptic, or aesthetic values, and if changes to those values are perceived as desirable. For example, if a desirable value has been maintained, improved, or minimally degraded, it could be marketed as a premium product.
  • This information could even give consumers the ability to rapidly query nutritional substances regarding compliance, or non-compliance, with the consumer's requirements for the components of the nutritional substance, the integrity of the nutritional substance, the nutritional, organoleptic, and aesthetic values of the nutritional substance, and changes to the nutritional, organoleptic, and aesthetic values of the nutritional substance. In other words, this information could give food a voice, and enable consumers to listen to food.
  • the grower of sweet corn generally only provides basic information as the variety and grade of its corn to the packager, who preserves and ships the corn to a producer for use in a ready-to-eat dinner.
  • the packager may only tell the producer that the corn has been frozen as loose kernels of sweet corn.
  • the producer may only provide the consumer with rudimentary instructions how to cook or reheat the ready-to-eat dinner in a microwave oven, toaster oven or conventional oven, and only tell the consumer that the dinner contains whole kernel corn among the various items in the dinner.
  • the consumer of the dinner will likely keep her opinions on the quality of the dinner to herself, unless it was an especially bad experience, where she might contact the producer's customer support program to complain.
  • the producer of the ready-to-eat dinner in the prior example, has very little information to share other than possibly the source of the elements of the ready-to-eat dinner and its processing steps in preparing the dinner.
  • the producer of the ready-to-eat dinner does not know the nutritional content and organoleptic state and aesthetic condition of the product after it has been reheated or cooked by the consumer, cannot predict changes to these properties, and cannot inform a consumer of this information to enable the consumer to better meet their needs.
  • the consumer may want to know what proportion of desired organoleptic properties or values, desired nutritional content or values, or desired aesthetic properties or values of the corn in the ready-to- eat dinner remain after cooking or reheating, and the change in the desired nutritional content or values, the desired organoleptic properties or values, or the desired aesthetic properties or values (usually a degradation, but could be a maintenance or even improvement).
  • the caloric and nutritional content information for a prepared food that is provided to the consumer is often minimal.
  • the consumer when sugar is listed in the ingredient list, the consumer generally does receive any information about the source of the sugar, which can come from a variety of plants, such as sugarcane, beets, or corn, which will affect its nutritional content.
  • some nutritional information that is provided to consumers is so detailed and static, the consumer can do little with it.
  • this list of ingredients is from a nutritional label on a consumer product: Vitamins - A 355 IU 7%, E 0.8mg 4%, K 0.5 meg, 1%, Thiamin 0.6mg 43%, Riboflavin 0.3mg 20%, Niacin 6.0 mg 30%, B6 1.0 mg 52%, Foliate 31.5 meg 8%), Pantothenic 7%; Minerals Calcium 11.6 1%, Iron 4.5mg 25%, Phosphorus 349mg 35%, Potassium 476 mg 14%, Sodium 58.1 mg 2%, Zinc 3.7 mg 24%, Copper 0.5 mg 26%, Manganese 0.8 mg 40%, Selenium 25.7 meg 37%; Carbohydrate 123g, Dietary fiber 12.1 g, Saturated fat 7.9g, Monosaturated Fat 2,lg, Polysaturated Fat 3.6g, Omega 3 fatty acids 108g, Omega 6 fatty acids 3481, Ash 2.0 g and Water 17.2g.
  • each silo in the food and beverage industry already creates and tracks some information, including caloric and nutritional information, about their product internally.
  • the famer who grew the corn knows the variety of the seed, condition of the soil, the source of the water, the fertilizers and pesticides used, and can measure the caloric and nutritional content at creation.
  • the packager of the corn knows when it was picked, how it was transported to the packaging plant, how the corn was preserved and packaged before being sent to the ready-to-eat dinner producer, when it was delivered to the producer, and what degradation to caloric and nutritional content has occurred.
  • the producer knows the source of each element of the ready-to-eat dinner, how it was processed, including the recipe followed, and how it was preserved and packaged for the consumer.
  • the quality of the nutritional substances could be preserved and improved. Consumers could be better informed about nutritional substances they select and consume, including the state, and changes in the state, of the nutritional substance throughout its lifecycle from creation to consumption. The efficiency and cost effectiveness of nutritional substances could also be improved. Feedback within the entire chain from creator to consumer could provide a closed-loop system that could improve quality (taste, appearance, and caloric and nutritional content), efficiency, value and profit. For example, in the milk supply chain, at least 10% of the milk produced is wasted due to safety margins included in product expiration dates.
  • a transformer of nutritional substance maintains creation and/or preservation information for components of a transformed nutritional substance.
  • a transformer of nutritional substance maintains creation and/or preservation information for components of a transformed nutritional substance and additionally provides information regarding the transformation.
  • a transformer of nutritional substance maintains creation and/or packaging information for components of a transformed nutritional substance and that consumers can query the transformed nutritional substance to determine compliance, or non-compliance, with the consumer's requirements for the components of the nutritional substance, the integrity of the nutritional substance, the nutritional, organoleptic, and aesthetic values of the nutritional substance, and changes to the nutritional, organoleptic, and aesthetic values of the nutritional substance.
  • a transformer of nutritional substance maintains creation and/or packaging information for components of a transformed nutritional substance and additionally provides information regarding the transformation of the nutritional substance and that consumers can query the transformed nutritional substance to determine compliance, or non-compliance, with the consumer's requirements for the components of the nutritional substance, the integrity of the nutritional substance, the nutritional, organoleptic, and aesthetic values of the nutritional substance, and changes to the nutritional, organoleptic, and aesthetic values of the nutritional substance.
  • a user and/or consumer may utilize an application running on a smartphone or other wireless device to query the nutritional substance to determine compliance, or non-compliance, with the consumer's requirements for the components of the nutritional substance, the integrity of the nutritional substance, the nutritional, organoleptic, and aesthetic values of the nutritional substance, and degradation of the nutritional, organoleptic, and aesthetic values of the nutritional substance.
  • the determination of compliance, or non-compliance is communicated through the smartphone or other wireless device by visual, audible, tactile, thermal or olfactory mechanisms, and could be provided in a symbolic or language format, wherein the communication mechanism and format may be selected by the application or the user and/or consumer.
  • the transformer of nutritional substances obtains and transmits source and/or preservation information to be utilized by users and/or consumers of the transformed nutritional substance.
  • the transformer of nutritional substances obtains and transmits source and/or preservation information to be utilized by users and/or consumers of the transformed nutritional substance, wherein the users and/or consumers further query the transformed nutritional substance to determine, from the source and/or preservation information the nutritional substance compliance, or non-compliance, with the user's and/or consumer's: component requirements for the nutritional substance; integrity requirements for the nutritional substance; requirements for nutritional, organoleptic, and aesthetic values for the nutritional substance; and requirements related to changes in the nutritional, organoleptic, and aesthetic values for the nutritional substance (collectively and individually referred to herein as ⁇ ).
  • the transformer of nutritional substances obtains and transmits source and/or preservation information and information regarding the transformation to be utilized by users and/or consumers of the transformed nutritional substance.
  • the transformer of nutritional substances obtains and transmits source and/or preservation information and information regarding the transformation of a nutritional substance to be utilized by users and/or consumers of the transformed nutritional substance, wherein the users and/or consumers further query the transformed nutritional substance to determine, from the source and/or preservation information and information regarding the transformation of the nutritional substance, the nutritional substance compliance, or non-compliance, with the user's and/or consumer's: component requirements for the nutritional substance; integrity requirements for the nutritional substance; requirements for nutritional, organoleptic, and aesthetic values for the nutritional substance; and requirements related to changes in the nutritional, organoleptic, and aesthetic values for the nutritional substance (collectively and individually referred to herein as ⁇ ).
  • the transformer of nutritional substances obtains and transmits source and/or packaging information to be utilized by users and/or consumers of the transformed nutritional substance.
  • the transformer of nutritional substances obtains and transmits source and/or product / packaging information to be utilized by users and/or consumers of the transformed nutritional substance, wherein the users and/or consumers further query the transformed nutritional substance to determine, from the source and/or product / packaging information the nutritional substance compliance, or non-compliance, with the user's and/or consumer's: component requirements for the nutritional substance; integrity requirements for the nutritional substance; requirements for nutritional, organoleptic, and aesthetic values for the nutritional substance; and requirements related to changes in the nutritional, organoleptic, and aesthetic values for the nutritional substance (collectively and individually referred to herein as ⁇ ).
  • the transformer of nutritional substances obtains and transmits source and/or product / packaging information and information regarding the transformation to be utilized by users and/or consumers of the transformed nutritional substance.
  • the transformer of nutritional substances obtains and transmits source and/or product / packaging information and information regarding the transformation of a nutritional substance to be utilized by users and/or consumers of the transformed nutritional substance, wherein the users and/or consumers further query the transformed nutritional substance to determine, from the source and/or product / packaging information and information regarding the transformation of the nutritional substance, the nutritional substance compliance, or non-compliance, with the user's and/or consumer's: component requirements for the nutritional substance; integrity requirements for the nutritional substance; requirements for nutritional, organoleptic, and aesthetic values for the nutritional substance; and requirements related to changes in the nutritional, organoleptic, and aesthetic values for the nutritional substance (collectively and individually referred to herein as ⁇ ).
  • the user and/or consumer query to determine compliance, or non-compliance, with the user's and/or consumer's: component requirements for the nutritional substance; integrity requirements for the nutritional substance; requirements for nutritional, organoleptic, and aesthetic values for the nutritional substance; and requirements related to changes in the nutritional, organoleptic, and aesthetic values for the nutritional substance is conducted using an application running on a smartphone or other wireless device. Still further, the determination of compliance, or non-compliance, is communicated through the smartphone or other wireless device by visual, audible, tactile, thermal, or olfactory mechanisms, and could be provided in a symbolic or language format, wherein the communication mechanism and format may be selected by the application or the user and/or consumer.
  • source and/or packaging and/or preservation information is used by the transformer to modify or adapt the process for transformation of the nutritional substance so as to preserve and/or optimize / monitor a change / evolution / degradation of and/or improve nutritional, organoleptic, or aesthetic value and/or quality of the transformed nutritional substance.
  • source and/or packaging and/or preservation information for multiple components of the nutritional substance being transformed are used to adaptively transform the nutritional substance so as to preserve and/or minimize degradation of and/or improve nutritional, organoleptic, or aesthetic value and/or quality of the transformed nutritional substance or of specific components of the transformed nutritional substance.
  • information regarding a change of nutritional, organoleptic, and/or aesthetic value of nutritional substances is: measured or collected or calculated or created or estimated or indicated or determined in any suitable manner; stored and/or tracked and/or transmitted and/or processed prior to transformation and/or following transformation, such that the change / evolution of specific nutritional, organoleptic, and/or aesthetic values can be tracked and monitored, degradation minimized, and specific residual nutritional, organoleptic, and/or aesthetic value can be optimized.
  • a change of nutritional, organoleptic, and/or aesthetic value may not occur, in which case ⁇ would be zero.
  • the change of nutritional, organoleptic, and/or aesthetic value may be a degradation, in which case ⁇ would be negative.
  • the change of nutritional, organoleptic, and/or aesthetic value may be an improvement, in which case ⁇ would be positive.
  • An embodiment of the present invention provides a system for the creation, collection, storage, transmission, and/or processing of information regarding nutritional substances so as to improve, maintain, or minimize degradation of nutritional, organoleptic, and/or aesthetic value of nutritional substances. Additionally, the present invention provides such information for use by the creators, preservers, transformers, conditioners, and consumers of nutritional substances.
  • the nutritional information creation, preservation, and transmission system of the present invention should allow the nutritional substance supply system to improve its ability to minimize degradation of nutritional, organoleptic and/or aesthetic value of the nutritional substance, and/or inform the consumer about such degradation.
  • the ultimate goal of the nutritional substance supply system is to optimize change, monitor evolution and trace location end to end of nutritional, organoleptic and/or aesthetic values, or as it relates to ⁇ , minimize the negative magnitude of ⁇ .
  • an interim goal should be providing consumers with significant information regarding any change, particularly degradation, of nutritional, organoleptic and/or aesthetic values of nutritional substances consumers select and consume, the ⁇ , such that desired information regarding specific residual nutritional, organoleptic, and/or aesthetic values can be ascertained using the ⁇ .
  • Entities within the nutritional substance supply system who provide such ⁇ information regarding nutritional substances, particularly regarding degradation will be able to differentiate their products from those who obscure and/or hide such information. Additionally, such entities should be able to charge a premium for products which either maintain their nutritional, organoleptic, and/or aesthetic value, or supply more complete information about changes in their nutritional, organoleptic, and/or aesthetic value, the ⁇ .
  • a system for determining compliance of nutritional substances with requirements specified by a consumer comprising an information system populated with source information regarding at least one component of a single or multiple component nutritional substance, and wherein the source information comprises dynamically generated information reflecting at least one of a state and a change in state of the at least one component prior to adaptive transformation.
  • a transformer adaptively transforms the single or multiple component nutritional substance with processing parameters responsive to the source information to create an adaptively transformed nutritional substance, and wherein said information system is further populated with information regarding the adaptive transformation and allows enquiry of the information system to determine compliance of the adaptively transformed nutritional substance with requirements specified by a consumer.
  • a system for creating adaptively transformed nutritional substances from one or more component nutritional substances comprising a dynamic information identifier associated with each component nutritional substance referenced to dynamically generated source information, stored in an information system, regarding each component nutritional substance, and wherein the source information comprises at least one of a nutritional value, an organoleptic value, or an aesthetic value of the component nutritional substance.
  • a transformer adaptively transforms the component nutritional substances with processing parameters responsive to said source information for improvement, maintenance, or minimization of degradation of the nutritional value, the organoleptic value, or the aesthetic value of one or more of the component nutritional substances following adaptive transformation, and wherein information regarding said improvement, maintenance, or minimization of degradation is stored in the information system and referenced by a dynamic information identifier.
  • a method for determining compliance of nutritional substances with consumer requirements comprising the steps of: communicating nutritional substance requirements for one or more specific consumers to a nutritional substance information system, wherein the nutritional substance requirements comprise at least one of a state, or change of state, of nutritional value, organoleptic value, and aesthetic value for the nutritional substance; accessing an information system containing dynamically generated data regarding a state, or change of state, of nutritional value, organoleptic value, and aesthetic value for the nutritional substance; determining if said dynamically generated data regarding the selected nutritional substance is in compliance, or noncompliance, with said nutritional substance requirements; and indicating said compliance, or non-compliance, to said one or more specific consumers.
  • Figure 1 shows a schematic functional block diagram of a nutritional substance supply relating to the present invention
  • Figure 2 shows a graph representing a value of a nutritional substance which changes according to a change of condition for the nutritional substance
  • FIG. 3 shows a schematic functional block diagram of the transformation module 400 according to the present invention
  • FIG. 4 shows a schematic functional block diagram of the transformation module 400 according to the present invention.
  • Figure 5 shows a schematic functional block diagram of the transformation module 400 according to the present invention.
  • Figure 6 shows in tabular form consumer attribute criteria input for nutritional substances vs. compliance and non-compliance responses from a system according to the present invention.
  • the disparate processing devices are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet.
  • LAN Local Area Network
  • WAN Wide Area Network
  • program modules may be located in both local and remote memory storage devices.
  • aspects of the invention may be stored or distributed on tangible computer- readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media.
  • computer implemented instructions, data structures, screen displays, and other data related to the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time.
  • the data may be provided on any analog or digital network (packet switched, circuit switched, or other scheme).
  • the interconnection between modules is the internet, allowing the modules (with, for example, WiFi capability) to access web content offered through various web servers.
  • the network may be any type of cellular, IP -based or converged telecommunications network, including but not limited to Global System for Mobile Communications (GSM), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDM), General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Advanced Mobile Phone System (AMPS), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS), Evolution-Data Optimized (EVDO), Long Term Evolution (LTE), Ultra Mobile Broadband (UMB), Voice over Internet Protocol (VoIP), Unlicensed Mobile Access (UMA), etc.
  • GSM Global System for Mobile Communications
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiple Access
  • GPRS General Packet Radio Service
  • modules in the systems can be understood to be integrated in some instances and in particular embodiments, only particular modules may be interconnected.
  • Figure 1 shows the components of a nutritional substance industry 10. It should be understood that this could be the food and beverage ecosystem for human consumption, but could also be the feed industry for animal consumption, such as the pet food industry.
  • a goal of the present invention for nutritional substance industry 10 is to create, preserve, transform and trace the change in nutritional, organoleptic and/or aesthetic values of nutritional substances, collectively and individually also referred to herein as ⁇ , through their creation, preservation, transformation, conditioning and consumption. While the nutritional substance industry 10 can be composed of many companies or businesses, it can also be integrated into combinations of business serving many roles, or can be one business or even individual.
  • is a measure of the change in a value of a nutritional substance
  • knowledge of a prior value (or state) of a nutritional substance and the ⁇ value will provide knowledge of the changed value (or state) of a nutritional substance, and can further provide the ability to estimate a change in value (or state).
  • Module 200 is the creation module. This can be a system, organization, or individual which creates and/or originates nutritional substances. Examples of this module include a farm which grows produce; a ranch which raises beef; an aquaculture farm for growing shrimp; a factory that synthesizes nutritional compounds; a collector of wild truffles; or a deep sea crab trawler.
  • Preservation module 300 is a preservation system for preserving and protecting the nutritional substances created by creation module 200. Once the nutritional substance has been created, generally, it will need to be packaged in some manner for its transition to other modules in the nutritional substances industry 10. While preservation module 300 is shown in a particular position in the nutritional substance industry 10, following the creation module 200, it should be understood that the preservation module 300 actually can be placed anywhere nutritional substances need to be preserved during their transition from creation to consumption.
  • Transformation module 400 is a nutritional substance processing system, such as a manufacturer who processes raw materials such as grains into breakfast cereals. Transformation module 400 could also be a ready-to-eat dinner manufacturer who receives the components for a ready-to-eat dinner from preservation module 300 and prepares them into a frozen dinner. While transformation module 400 is depicted as one module, it will be understood that nutritional substances may be transformed by a number of transformation modules 400 on their path to consumption.
  • Conditioning module 500 is a consumer preparation system for preparing the nutritional substance immediately before consumption by the consumer.
  • Conditioning module 500 can be a microwave oven, a blender, a toaster, a convection oven, a cook, etc. It can also be systems used by commercial establishments to prepare nutritional substance for consumers such as a restaurant, an espresso maker, pizza oven, and other devices located at businesses which provide nutritional substances to consumers. Such nutritional substances could be for consumption at the business or for the consumer to take out from the business.
  • Conditioning module 500 can also be a combination of any of these devices used to prepare nutritional substances for consumption by consumers.
  • Consumer module 600 collects information from the living entity which consumes the nutritional substance which has passed through the various modules from creation to consumption.
  • the consumer can be a human being, but could also be an animal, such as pets, zoo animals and livestock, which are they themselves nutritional substances for other consumption chains. Consumers could also be plant life which consumes nutritional substances to grow.
  • Information module 100 receives and transmits information regarding a nutritional substance between each of the modules in the nutritional substance industry 10 including, the creation module 200, the preservation module 300, the transformation module 400, the conditioning module 500, and the consumer module 600.
  • the nutritional substance information module 100 can be an interconnecting information transmission system which allows the transmission of information between various modules.
  • Information module 100 contains a database, also referred to herein as a dynamic nutritional value database, where the information regarding the nutritional substance resides.
  • Information module 100 can be connected to the other modules by a variety of communication systems, such as paper, computer networks, the internet and telecommunication systems, such as wireless telecommunication systems.
  • Figure 2 is a graph showing the function of how a nutritional, organoleptic, or aesthetic value of a nutritional substance varies over the change in a condition of the nutritional substance. Plotted on the vertical axis of this graph can be either the nutritional value, organoleptic value, or even the aesthetic value of a nutritional substance. Plotted on the horizontal axis can be the change in condition of the nutritional substance over a variable such as time, temperature, location, and/or exposure to environmental conditions.
  • This exposure to environmental conditions can include: exposure to air, including the air pressure and partial pressures of oxygen, carbon dioxide, water, or ozone; airborne chemicals, pollutants, allergens, dust, smoke, carcinogens, radioactive isotopes, or combustion byproducts; exposure to moisture; exposure to energy such as mechanical impact, mechanical vibration, irradiation, heat, or sunlight; or exposure to materials such as packaging.
  • the function plotted as nutritional substance A could show a ⁇ for milk, such as the degradation of a nutritional value of milk over time. Any point on this curve can be compared to another point to measure and/or describe the change in nutritional value, or the ⁇ of nutritional substance A.
  • the plot of the degradation in the same nutritional value of nutritional substance B, also milk, describes the change in nutritional value, or the ⁇ of nutritional substance B, a nutritional substance which starts out with a higher nutritional value than nutritional substance A, but degrades over time more quickly than nutritional substance A.
  • this ⁇ information regarding the nutritional substance degradation profile of each milk could be used by the consumer in the selection and/or consumption of the milk. If the consumer has this information at time zero when selecting a milk product for purchase, the consumer could consider when he plans to consume the milk, whether that is on one occasion or multiple occasions. For example, if the consumer planned to consume the milk prior to the point when the curve represented by nutritional substance B crosses the curve represented by nutritional substance A, then the consumer should choose the milk represented by nutritional substance B because it has a higher residual nutritional value until it crosses the curve represented by nutritional substance A.
  • This example demonstrates how dynamically generated information regarding a ⁇ of a nutritional substance, in this case a change in nutritional value of milk, can be used to understand a rate at which that nutritional value changes or degrades; when that nutritional value expires; and a residual nutritional value of the nutritional substance over a change in a condition of the nutritional substance, in this example a change in time.
  • This ⁇ information could further be used to determine a best consumption date for nutritional substance A and B, which could be different from each other depending upon the dynamically generated information generated for each.
  • Creation module 200 can dynamically encode nutritional substances to enable the tracking of changes in nutritional, organoleptic, and/or aesthetic value of the nutritional substance, or ⁇ .
  • This dynamic encoding can replace and/or complement existing nutritional substance marking systems such as barcodes, labels, and/or ink markings.
  • This dynamic encoding, or dynamic information identifier can be used to make nutritional substance information from creation module 200 available to information module 100 for use by preservation module 300, transformation module 400, conditioning module 500, and/or consumption module 600, which includes the ultimate consumer of the nutritional substance.
  • the information may relate to the nutritional, organoleptic, and aesthetic value of the nutritional substance, changes in the nutritional, organoleptic, and aesthetic value of the nutritional substance, or ⁇ .
  • the information may further relate to origin and creation and composition of the components of the nutritional substance and the integrity of the nutritional substance, such as information regarding additives, preservatives, or substitutes, information regarding contaminants such as pesticides, hormones, antibiotics, heavy metals, or bacteria, and information related to or indicating product tampering, spoiled, inappropriate storage conditions, appropriately, and any other form of product adulteration.
  • One method of marking the nutritional substance with a dynamic information identifier by creation module 200, or any other module in nutritional supply system 10 could include an electronic tagging system, such as the tagging system manufactured by Kovio of San Jose, California, USA.
  • Such thin film chips can be used not only for tracking nutritional substances, by can include components to measure attributes of nutritional substances, and record and transmit such information.
  • Such information may be readable by a reader including a satellite-based system.
  • a satellite-based nutritional substance information tracking system could comprise a network of satellites with coverage of some or all the surface of the earth, so as to allow information module 100 real time, or near real time updates about a ⁇ of a particular nutritional substance.
  • Preservation module 300 includes packers and shippers of nutritional substances.
  • preservation module 300 allows for dynamic expiration dates for nutritional substances. For example, expiration dates for dairy products are currently based generally only on time using assumptions regarding minimal conditions at which dairy products are maintained. This extrapolated expiration date is based on a worst-case scenario for when the product becomes unsafe to consume during the preservation period. In reality, the degradation of dairy products may be significantly less than this worst-case. If preservation module 300 could measure or derive the actual degradation information such as ⁇ , an actual expiration date, referred to herein as a dynamic expiration date, can be determined dynamically, and could be significantly later in time than an extrapolated expiration date.
  • a dynamic expiration date need not be indicated numerically (i.e., as a numerical date) but could be indicated symbolically as by the use of colors - such as green, yellow and red employed on semaphores - or other designations. In those instances, the dynamic expiration date would not be interpreted literally but, rather, as a dynamically-determined advisory date. In practice a dynamic expiration date will be provided for at least one component of a single or multi-component nutritional substance. For multi- component nutritional substances, the dynamic expiration date could be interpreted as a "best' date for consumption for particular components.
  • the information in such a dynamic nutritional value table could be used by conditioning module 500 in the preparation of the nutritional substance, and/or used by consumption module 600, so as to allow the ultimate consumer the ability to select the most desirable nutritional substance which meets their needs, and/or to track information regarding nutritional substances consumed.
  • conditioning module 500 The change in nutritional, organoleptic, and/or aesthetic value, or ⁇ , by conditioning module 500 is currently not tracked or provided to the consumer. However, using information provided by information module 100 from creation module 200, preservation module 300, transformation module 400, and/or information measured or generated by conditioning module 500, conditioning module 500 could provide the consumer with the actual, and/or estimated change in nutritional, organoleptic, and/or aesthetic values of the nutritional substance, or ⁇ . Such information regarding the change to nutritional, organoleptic and/or aesthetic value of the nutritional substance, or ⁇ , could be provided not only to the consumer, but could also be provided to information module 100 for use by creation module 200, preservation module 300, transformation module 400, so as to track, and possibly improve nutritional substances throughout the entire nutritional substance supply system 10.
  • consumption module 600 can replace or complement existing information sources such as recipe books, food databases like www.epicurious.com, and Epicurious apps.
  • information module 100 can use consumption module 600 to select nutritional substances according to nutritional, organoleptic, and/or aesthetic values. This will allow consumers to make informed decisions regarding nutritional substance additives, preservatives, genetic modifications, origins, traceability, and other nutritional substance attributes.
  • This information can be provided by consumption module 600 through personal computers, laptop computers, tablet computers, and/or smartphones.
  • Software running on these devices can include dedicated computer programs, modules within general programs, and/or smartphone apps.
  • An example of such a smartphone app regarding nutritional substances is the iOS ShopNoGMO from the Institute for responsible Technology.
  • consumption module 600 may provide information for the consumer to operate conditioning module 500 in such a manner as to preserve or optimize or minimize degradation of nutritional, organoleptic, and/or aesthetic value.
  • nutritional substance supply system 10 can track nutritional, organoleptic, and/or aesthetic value.
  • nutritional substances travelling through nutritional substance supply system 10 can be dynamically valued and priced according to nutritional, organoleptic, and/or aesthetic values. For example, nutritional substances with longer dynamic expiration dates (longer shelf life) may be more highly valued than nutritional substances with shorter expiration dates. Additionally, nutritional substances with higher nutritional, organoleptic, and/or aesthetic values may be more highly valued, not just by the consumer, but also by each entity within nutritional substance supply system 10. This is because each entity will want to start with a nutritional substance with higher nutritional, organoleptic, and/or aesthetic value before it performs its function and passes the nutritional substance along to the next entity.
  • nutritional substances being marketed including information-enabled nutritional substances, that is to say nutritional substances provided with dynamic information identifiers according to the present invention, and nutritional substances which are not information enabled, or dumb nutritional substances.
  • Information-enabled nutritional substances would be available in virtual internet marketplaces, as well as traditional marketplaces. Because of information provided by information-enabled nutritional substances, entities within the nutritional substance supply system 10, including consumers, would be able to review and select information-enabled nutritional substances for purchase. It should be expected that, initially, the information-enabled nutritional substances would enjoy a higher market value and price than dumb nutritional substances. However, as information-enabled nutritional substances become more the norm, the cost savings from less waste due to degradation of information-enabled nutritional substances could lead to their price actually becoming less than dumb nutritional substances.
  • the producer of a ready-to-eat dinner would prefer to use corn of a high nutritional, organoleptic, and/or aesthetic value in the production of its product, the ready- to-eat dinner, so as to produce a premium product of high nutritional, organoleptic, and/or aesthetic value.
  • the ready-to-eat dinner producer may be able to charge a premium price and/or differentiate its product from that of other producers.
  • the producer will seek corn of high nutritional, organoleptic, and/or aesthetic value from preservation module 300 that meets its requirements for nutritional, organoleptic, and/or aesthetic value.
  • the packager/shipper of preservation module 300 would also be able to charge a premium for corn which has high nutritional, organoleptic, and/or aesthetic values. And finally, the packager/shipper of preservation module 300 will select corn of high nutritional, organoleptic, and/or aesthetic value from the grower of creation module 200, who will also be able to charge a premium for corn of high nutritional, organoleptic, and/or aesthetic values.
  • the change to nutritional, organoleptic, and/or aesthetic value for a nutritional substance, or ⁇ , tracked through nutritional substance supply system 10 through nutritional substance information from information module 100 can be preferably determined from measured information.
  • some or all such nutritional substance ⁇ information may be derived through measurements of environmental conditions of the nutritional substance as it travelled through nutritional substance supply system 10.
  • some or all of the nutritional substance ⁇ information can be derived from ⁇ data of other nutritional substances which have travelled through nutritional substance supply system 10.
  • nutritional substance ⁇ information can also be derived from laboratory experiments performed on other nutritional substances, which may approximate conditions and/or processes to which the actual nutritional substance has been exposed.
  • FIG. 3 shows an embodiment of transformation module 400 of the present invention.
  • Transformation module 400 includes transformer 410, which acts upon nutritional substance 420, and information transmission module 430.
  • information transmission module 430 also receives, or retrieves information about the particular nutritional substance 420 that is to be transformed. This information can include creation information, preservation information, packaging information, shipping information, and possibly previous transformation information.
  • creation information can include creation information, preservation information, packaging information, shipping information, and possibly previous transformation information.
  • sweet corn that arrives for processing by transformer 410 has information associated with it, including the corn variety, where it was planted, when it was planted, when it was picked, the soil it was grown in, the water used for irrigation, and the fertilizers and pesticides that were used during its growth.
  • information on nutritional and/or organoleptic and/or aesthetic values of the corn when it was preserved for shipment may be stored in the labeling of the corn. However, it may be stored in a database maintained by the grower, shipper, or the nutritional substances industry, also referred to herein as a dynamic nutritional value database. Such information could be accessed by means of telecommunications systems, such as wireless telecommunication systems.
  • the corn may have information associated with it regarding how it was preserved for shipment from the farm to transformation module 400.
  • Such information may include historical information on the environment exterior the container it was shipped in, internal conditions of the container and actual information about the corn during the shipment.
  • information about the preservation measures may also be available.
  • Such information may be stored in the preservation system. However, it may be stored in a database maintained by the grower, shipper, or the nutritional substances industry, also referred to herein as a dynamic nutritional value database.
  • telecommunications systems such as wireless telecommunication systems.
  • transformer 410 removes the husk and the silk from the corn. It then separates the kernels from the cob, washes the kernels, and cooks them. Finally, transformer 410 packages the cooked corn in a can and labels the can.
  • the label on the can may contain all the information provided to information transmission module 430.
  • this information is referenced by a dynamic encode or tag, herein referred to as a dynamic information identifier, which identifies the information regarding the corn in the can that is being transmitted by information transmission module 430.
  • information transmission module 430 would receive the information regarding the nutritional substance 420 from a database that is being used to track the corn during its journey from the farm to the consumer.
  • information transmission module 430 retrieves the appropriate information from the database and transmits it to another database.
  • the information retrieved by transmission module 430 would be transmitted back to the original database, noting that the transformation had occurred.
  • the information regarding the corn retrieved by transmission module 430 would simply be appended with the information that the transformation had occurred.
  • Such databases are individually and collectively referred to herein as a dynamic nutritional value database.
  • new reference information or a new dynamic information identifier may be created.
  • the information for each may be combined and assigned a new reference number or a new dynamic information identifier.
  • a new entry is created in the dynamic nutritional value database, with references to the information related to the corn and the information related to the lima beans.
  • FIG. 4 shows an embodiment of transformation module 400 of the present invention.
  • Transformation module 400 includes transformer 410, which acts upon nutritional substance 420, and information transmission module 430.
  • information transmission module 430 also receives, or retrieves information about the particular nutritional substance 420 that is to be transformed. This information can include creation information, packaging information, shipping information, and possibly previous transformation information.
  • sweet corn that arrives for processing by transformer 410 has information associated with it, including the corn variety, where it was planted, when it was planted, when it was picked, the soil it was grown in, the water used for irrigation, and the fertilizers and pesticides that were used during its growth.
  • information on nutritional, organoleptic and aesthetic values of the corn when it was preserved for shipment may be stored in the labeling of the corn. However, it may be stored in a dynamic nutritional value database maintained by the grower, shipper, or the nutritional substances industry. Such information could be accessed by telecommunications systems, such as wireless telecommunication systems.
  • the corn may have information associated with it regarding how it was preserved for shipment from the farm to transformation module 400.
  • Such information may include historical information on the environment exterior the container it was shipped in, internal conditions of the container and actual information about the corn during the shipment.
  • information about the preservation measures may also be available.
  • Such information may be stored in the preservation system. However, it may be stored in a dynamic nutritional value database maintained by the grower, shipper, or the nutritional substances industry. Such information could be accessed by means of telecommunications systems, such as wireless telecommunication systems.
  • transformer 410 removes the husk and the silk from the corn. It then separates the kernels from the cob, washes the kernels, and cooks them. Finally, transformer 410 packages the cooked corn in a can and labels the can.
  • information about the transformation can be captured by transformer 410 and sent to information transmission module 430.
  • This information can include how the transformation was accomplished; including information on the transformer used, the recipe implemented by transformer 410, and the settings for transformer 410 when the transformation occurred. Additionally, any information created during the transformation by transformer 410 can be sent to the information transmission module 430. This could include measured information, such as the actual cooking temperature, length of time of each of the steps. Additionally, this information could include measured aesthetic, organoleptic and nutritional values.
  • the dynamic label/information on the can may contain all the information provided to information transmission module 430.
  • this information is referenced by a dynamic information identifier which identifies the information regarding the corn in the can that is being transmitted by information transmission module 430.
  • information transmission module 430 would receive the information regarding the nutritional substance 420 from a database that is being used to track the corn during its journey from the farm to the consumer.
  • information transmission module 430 retrieves the appropriate information from the database, appends it with the information from transformer 410 regarding the transformation, and transmits it to another database.
  • such information would be transmitted back to the original database, including the transformation information.
  • the information regarding the corn would simply be appended with the information from transformer 410 about the transformation.
  • Such databases are individually and collectively referred to herein as a dynamic nutritional value database
  • new reference information or a new dynamic information identifier may be created.
  • the information for each may be combined and assigned a new reference number or a new dynamic information identifier.
  • a new entry is created in the dynamic nutritional value database, with references to the information related to the corn and the information related to the lima beans.
  • FIG. 5 shows an embodiment of transformation module 400 of the present invention.
  • Transformation module 400 includes transformer 410, which acts upon nutritional substance 420, and information transmission module 430.
  • information transmission module 430 also receives, or retrieves information about the particular nutritional substance 420 that is to be transformed. This information can include creation information, packaging information, shipping information, and possibly previous transformation information.
  • This information is used by transformer 410 to dynamically modify the transformation, the process referred to herein as adaptive transformation. After nutritional substance 420 has been transformed by transformer 410, such information is passed along with the transformed nutritional substance 420 by the information transmission module 430, along with specific information relating to the adaptive transformation done by transformer 410.
  • sweet corn that arrives for processing by transformer 410 has origination information associated with it, including the corn variety, where it was planted, when it was planted, when it was picked, the soil it was grown in, the water used for irrigation, and the fertilizers and pesticides that were used during its growth.
  • origination information including the corn variety, where it was planted, when it was planted, when it was picked, the soil it was grown in, the water used for irrigation, and the fertilizers and pesticides that were used during its growth.
  • This information may be stored in the labeling of the corn. However, it may be stored in a dynamic nutritional value database maintained by the grower, shipper, or the nutritional substances industry. Such information could be accessed by telecommunications systems, such as wireless telecommunication systems.
  • the corn may have information associated with it regarding how it was preserved for shipment from the farm to transformation module 400.
  • Such information may include historical information on the environment exterior the container it was shipped in, internal conditions of the container and actual information about the corn during the shipment.
  • information about the preservation measures may also be available.
  • Such information may be stored in the preservation system. However, it may be stored in a database maintained by the grower, shipper, or the nutritional substances industry, also referred to herein as a dynamic nutritional value database.
  • telecommunications systems such as wireless telecommunication systems.
  • Transformer 410 can dynamically modify its transformation of nutritional substance 420 in response to such information to adaptively transform the nutritional substance in order to preserver or improve or minimize the degradation of the nutritional, organoleptic and/or aesthetic values of nutritional substance 420.
  • transformer 410 removes the husk and the silk from the corn. It then separates the kernels from the cob, washes the kernels, and cooks them.
  • transformer can dynamically modify the cooking temperature and time. For example, if transformer 410 receives information that indicates that the corn is low in certain desirable nutrients, it might lower the cooking temperature and time to preserve those nutrients, thus achieving a more desirable nutritional value related to those specific nutrients in the transformed nutritional substance.
  • transformer 410 packages the cooked corn in a can and labels the can.
  • transformer 410 can modify its transformation of the nutritional substance in response to measured attributes of the particular nutritional substance 420 being transformed. For example, transformer 410 can measure the color of the corn to be processed, and in response make adjustment to the transformation to preserve or enhance the color of the transformed corn, thus achieving a more desirable aesthetic value related to the appearance of the transformed nutritional substance.
  • information about the transformation can be captured by transformer 410 and sent to information transmission module 430.
  • This information can include how the transformation was accomplished; including information on any dynamic transformation modifications in response to information about the particular nutritional substance to be transformed, the recipe implemented by transformer 410, and the settings for transformer 410 when the transformation occurred.
  • any information created during the transformation by transformer 410 can be sent to the information transmission module 430. This could include measured information, such as the actual cooking temperature, length of time of each of the steps. Additionally, this information could include measured aesthetic, organoleptic, and nutritional information, weight, and physical dimension.
  • the label on the packaging may contain all the information provided to information transmission module 430.
  • this information is referenced by a dynamic information identifier which identifies the information regarding the nutritional substance in the packaging that is being transmitted by information transmission module 430.
  • information transmission module 430 would receive the information regarding the nutritional substance 420 from a database that is being used to track the corn during its journey from the farm to the consumer.
  • information transmission module 430 retrieves the appropriate information from the database, appends it with the information from transformer 410 regarding the adaptive transformation, and transmits it to another database.
  • such information would be transmitted back to the original database, including the adaptive transformation information.
  • the information regarding the corn would simply be appended with the information from transformer 410 about the adaptive transformation.
  • Such databases are individually and collectively referred to herein as a dynamic nutritional value database
  • new reference information or a new dynamic information identifier may be created.
  • the information for each may be combined and assigned a new reference number or a new dynamic information identifier.
  • a new entry is created in the dynamic nutritional value database, with references to the information related to the corn and the information related to the lima beans.
  • the information system of the present invention can be utilized in such a way as to give nutritional substances a voice and allow consumers can listen to the nutritional substances, as will now be explained.
  • a tool such as an application running on a smartphone or any other wireless device compatible with the application, can serve as the facilitator that provides nutritional substances with a voice and further allows the consumer to listen to the nutritional substance.
  • an application will be referred to herein as "Listen to your food.”
  • the consumer can use "Listen to your food” to query information-enabled nutritional substances regarding their compliance with input criteria chosen, selected, or provided by the consumer, or possibly provided by the application.
  • “Listen to your food” further enables the communication of a simple response from the nutritional substance regarding the nutritional substance's compliance, or non-compliance, with the consumer's input criteria.
  • the consumer's detection and dynamic input criteria may include any number, from 0 to "n”, and any combination of: component attributes (which include origin and creation information); integrity attributes; nutritional attributes; organoleptic attributes; and aesthetic attributes.
  • Input criteria may exist as: one or more consumer profiles compatible with "Listen to your food”; component attributes; integrity attributes; nutritional attributes; organoleptic attributes; and aesthetic attributes chosen, selected, or input concurrently with the use of "Listen to your food”; or any combination thereof.
  • Non-compliance Response Format and "Listen To Your Food” Non-compliance Response Format"
  • the simple response from the nutritional substance regarding the nutritional substance's compliance, or noncompliance, with the consumer's detection and dynamic input criteria may be provided in formats to be perceived by any one or more of auditory, visual, tactile, thermal, and olfactory mechanisms, and may be presented in a language format or a symbolic format. Such response would be provided through the consumer's smartphone, or any other wireless device compatible with "Listen to your food.” It is preferred that the consumer can select, specify, or otherwise customize the mechanism and format of the response from the nutritional substance.
  • Audible responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be in the form of language, as indicated in Figure 6 under the headings ""Listen To Your Food” Compliance Response Format”/"Audio”/"Language” and ""Listen To Your Food” Non-compliance Response Format”/" Audio'V'Language”. It is understood that responses in the form of language could be provided in any language chosen by a consumer, or could be provided in a default language, such as the language spoken in the country of origin of the consumer's smartphone, or the language spoken in the current location of the smartphone. Any number of traditional responses communicating compliance or noncompliance with the consumer's input criteria may be utilized.
  • Examples communicating compliance include, but are not limited to, audible statements of: “yes”; “affirmative”, “good”, “ok”, and so forth.
  • Examples communicating non-compliance include, but are not limited to, audible statements of: “no”; “stop”, “bad”, and so forth.
  • "Listen to your food” may provide the consumer the ability to create custom audible language based responses, such as digital recordings stating “thumbs up” or “super” for compliance, or “forget about it” or “no way” for non-compliance. Further, audible language based responses might be selected by the consumer from libraries of digital recordings.
  • Audible responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be symbolic in form, as indicated in Figure 6 under the headings ""Listen To Your Food” Compliance Response Format"/" Audio'V'Symbolic” and ""Listen To Your Food” Non-compliance Response Format'V'Audio"/" Symbolic”. Any number of symbolic audible responses communicating compliance or non-compliance with the consumer's input criteria may be utilized. Examples communicating compliance include, but are not limited to: sounds associated with celebration, laughter, happy musical notes, and so forth. Examples communicating non-compliance include, but are not limited to: sound of tires skidding to a stop, sound of a frightened scream, sound of a railroad crossing, and so forth.
  • “Listen to your food” may provide the consumer the ability to create custom audible symbolic responses, such as by making their own digital recordings. Further, audible symbolic responses might be chosen from libraries of digital recordings. [00100] Visual responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be in the form of language, as indicated in Figure 6 under the headings ""Listen To Your Food” Compliance Response Format “/"Visual' '/"Language” and “"Listen To Your Food” Non-compliance Response Format”/" Visual' '/"Language”.
  • visual responses in the form of language could be provided in any language chosen by a consumer, or could be provided in a default language, such as the written language in the country of origin of the consumer's smartphone, or the written language in the current location of the smartphone.
  • Any number of traditional responses communicating compliance or non-compliance with the consumer's input criteria may be utilized. Examples communicating compliance include, but are not limited to, written statements of: “yes”; “affirmative”, “good”, “ok”, and so forth. Examples communicating non-compliance include, but are not limited to, written statements of: “no”; “stop”, “bad”, and so forth.
  • “Listen to your food” may provide the consumer the ability to create custom visual language based responses, such as text stating “thumbs up” or “super” for compliance, or “forget about it” or “no way” for noncompliance. Further, visual language based responses might be selected by the consumer from libraries of text or text images.
  • Visual responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be symbolic in form, as indicated in Figure 6 under the headings ""Listen To Your Food” Compliance Response Format”/"Visual”/"Symbolic” and ""Listen To Your Food” Non-compliance Response Format”/"Visual”/"Symbolic”. Any number of symbolic visual responses communicating compliance or non-compliance with the consumer's input criteria may be utilized. Examples communicating compliance include, but are not limited to: a green light, image of a check-mark, image of a plus sign, and so forth. Examples communicating non-compliance include, but are not limited to: a red light, image of a skull and cross-bones, image of the "0" symbol, and so forth. "Listen to your food” may provide the consumer the ability to create custom visual symbolic responses, such as by making or capturing their own digital images. Further, visual symbolic responses might be chosen from libraries of digital images.
  • Tactile responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be symbolic in form, as indicated in Figure 6 under the headings ""Listen To Your Food" Compliance Response Format/'Other sensory'VTactile" and ""Listen To Your Food” Non-compliance Response Format'V'Other sensory'VTactile".
  • Any number of symbolic tactile responses communicating compliance or non-compliance with the consumer's input criteria may be utilized. Examples communicating compliance include, but are not limited to: vibration or pattern of vibration. Examples communicating non-compliance include, but are not limited to: no vibration, vibration or pattern of vibration different than that communicating compliance. "Listen to your food” may provide the consumer the ability to create custom tactile symbolic responses, or may allow tactile symbolic responses to be chosen from libraries of tactile responses.
  • Thermal responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be symbolic in form, as indicated in Figure 6 under the headings ""Listen To Your Food" Compliance Response Format/'Other sensory'V'Thermal” and ""Listen To Your Food” Non-compliance Response Format'V'Other sensory'V'Thermal”.
  • a variety of symbolic thermal responses communicating compliance or non-compliance with the consumer's input criteria may be utilized. Examples communicating compliance include, but are not limited to: warm to the touch sensation. Examples communicating non-compliance include, but are not limited to: cold to the touch sensation. "Listen to your food” may provide the consumer the ability to create custom thermal symbolic responses, or may allow thermal symbolic responses to be chosen from libraries of thermal responses.
  • Olfactory responses regarding the consumer's detection and dynamic input criteria from the nutritional substance can be symbolic in form, as indicated in Figure 6 under the headings ""Listen To Your Food" Compliance Response Format/'Other sensory'VOlfactory” and ""Listen To Your Food” Non-compliance Response Format'V'Other sensory'VOlfactory”. Any number of symbolic olfactory responses communicating compliance or non-compliance with the consumer's input criteria may be utilized. Examples communicating compliance include, but are not limited to: a scent of candy, a scent of flowers, and so forth. Examples communicating non-compliance include, but are not limited to: a scent of something burned, a musty scent, and so forth. "Listen to your food” may provide the consumer the ability to create custom olfactory symbolic responses, or may allow olfactory symbolic responses to be chosen from libraries of olfactory responses
  • Consumer input criteria regarding component attributes may include, but are not limited to, any combination of: specific ingredients (i.e., sugar, gluten, soy product, peanut product, and so forth); classes of nutritional substances (i.e., organic, vegan, free range, Kosher, and so forth); origin and creation of ingredients (i.e., country of origin, region of creation, food group, species, where it was transformed, how it was preserved, and so forth); additives (i.e., preservatives, accelerators, colorants, substitutes, and so forth) and any other type of attribute regarding the components of a nutritional substance. It is also understood that such criteria may be input to confirm or rule out any particular attribute.
  • specific ingredients i.e., sugar, gluten, soy product, peanut product, and so forth
  • classes of nutritional substances i.e., organic, vegan, free range, Kosher, and so forth
  • origin and creation of ingredients i.e., country of origin, region of creation, food group, species, where it was transformed, how it was preserved, and so forth
  • input criteria regarding component attributes for a vegan consumer with a peanut allergy might include “vegan” and “no peanut products”.
  • Input criteria regarding component attributes for a British national who prefers to eat organic nutritional substances might include "country of origin UK” and "organic”.
  • Consumer input criteria regarding component attributes may be provided by a consumer concurrent with his use of the "Listen to Your Food” application, prior to his use of the "Listen to Your Food” application (such as by a personal profile compatible with the application), or as a combination of both.
  • a consumer with an existing "Listen to Your Food” compatible profile may be on holiday in a particular region far from his home.
  • His existing "Listen to Your Food” compatible profile may include no input criteria requiring, or limiting, "region of creation”. The consumer wants to experience truly local cuisine, so he can instruct the "Listen to Your Food” application that his input criteria includes his existing profile plus an additional input criteria requiring that the "region of creation” is related to the specific region he is visiting.
  • his input criteria includes "region of creation” related to the particular region for a time period corresponding to his stay in the particular region. If the consumer was planning to visit several different regions far from his home during his holiday, he might instruct the application that his input criteria includes his existing profile plus an additional input criteria requiring that the "region of creation" is related to his current location for a time period corresponding to his holiday.
  • a consumer's "Listen to Your Food" compatible profile might include the aggregated input criteria corresponding to a particular group of consumers, such as his entire family. In this way, the consumer can simplify shopping for his entire family. Additionally, at any time the consumer might instruct the application that the input criteria includes the aggregate of any two or more individual or group profiles so that he may efficiently shop for those two or more individuals or groups. For example, a consumer may be preparing to go grocery shopping for his family and two dinner guests. One dinner guest has a peanut allergy and the other only eats organic food. The consumer can instruct the application that his input criteria includes a group profile corresponding to his family aggregated with the input profiles of his two guests.
  • the consumer can instruct the application that his input criteria includes a group profile corresponding to his family aggregated with the additional input criteria of "no peanut product” and "organic".
  • his input criteria includes a group profile corresponding to his family aggregated with the additional input criteria of "no peanut product” and "organic”.
  • the consumer can utilize the "Listen to Your Food” application to efficiently meet the nutritional needs of his family and quests.
  • the input criteria regarding component attributes can include the aggregate of any combination of "Listen to Your Food" compatible individual profiles, group profiles, and additional specific input criteria.
  • Consumer input criteria regarding integrity attributes may include, but are not limited to, any combination of: specific substances related to creation (i.e., pesticides, fertilizers, hormones, water, and so forth); contamination (i.e., chemical, radiation, biological, heavy metals, radioactive isotopes, pollutants, and so forth); adulteration of any kind (i.e. spoilage, tampering, recall, loss of package integrity); and any other type of attribute regarding the integrity of the nutritional substance. It is also understood that such criteria may be input to confirm or eliminate any particular criteria. By way of example only, input criteria regarding integrity attributes for a consumer of shellfish might include "no heavy metals" and "no pesticides”.
  • Input criteria regarding integrity attributes for a consumer of chicken might include "no antibiotics” and “no artificial hormones”.
  • Input criteria regarding integrity attributes for a consumer of any packaged product might include "no tampering" or "no spoilage”.
  • the input criteria regarding integrity attributes could allow the consumer to verify the true nature of a nutritional substance, for example, if it is beef or horse meat.
  • input criteria regarding integrity attributes may be provided by a consumer concurrent with his use of the "Listen to Your Food” application, prior to his use of the "Listen to Your Food” application (such as by a personal profile compatible with the application), or as a combination of both. It is further understood that the input criteria regarding integrity attributes can include the aggregate of any combination of "Listen to Your Food" compatible individual profiles, group profiles, and additional specific input criteria.
  • Consumer input criteria regarding nutritional attributes may include, but are not limited to, any combination of: specific values and changes in values of vitamins (i.e., vitamin C content of orange juice); specific values and changes in values of probiotic content (i.e., level of active lactobacillus in yogurt); specific values and changes in values of fat content (i.e., fat content in ground meat); and any other type of nutritional attributes of a nutritional substance. It is also understood that such criteria may be input to confirm or eliminate any particular criteria.
  • input criteria regarding nutritional attributes for a consumer of orange juice might include "vitamin C content > 75% vitamin C content of fresh orange juice”.
  • Input criteria regarding nutritional attributes for a consumer of ground beef might include "fat content ⁇ 7%”.
  • input criteria regarding nutritional attributes may be provided by a consumer concurrent with his use of the "Listen to Your Food” application, prior to his use of the "Listen to Your Food” application (such as by a personal profile compatible with the application), or as a combination of both. It is further understood that the input criteria regarding nutritional attributes can include the aggregate of any combination of "Listen to Your Food" compatible individual profiles, group profiles, and additional specific input criteria.
  • organoleptic attributes may include, but are not limited to, any combination of: specific values and changes in values of flavor (i.e. tannin levels in wine change with time and storage conditions and greatly affect the fiavor of the wine); specific values and changes in values of aroma (i.e. the aroma of cinnamon is a value directly related to the aroma and fiavor of the cinnamon); specific values and changes in values of ripeness (i.e. ripeness of tomatoes changes with time and conditions and is a value directly related to the texture and flavor of tomatoes); and any other type of organoleptic attribute of a nutritional substance.
  • specific values and changes in values of flavor i.e. tannin levels in wine change with time and storage conditions and greatly affect the fiavor of the wine
  • specific values and changes in values of aroma i.e. the aroma of cinnamon is a value directly related to the aroma and fiavor of the cinnamon
  • specific values and changes in values of ripeness i.e. ripeness of tomatoes changes with time and conditions and is a value directly related to the texture and
  • organoleptic attributes for a consumer of wine might include a specified "acceptable range for tannins”.
  • input criteria regarding organoleptic attributes for a consumer of cinnamon might include a specified "acceptable level of aroma”.
  • input criteria regarding organoleptic attributes for a consumer of tomatoes might include "ripeness 100% ⁇ 10%>”.
  • input criteria regarding organoleptic attributes may be provided by a consumer concurrent with his use of the "Listen to Your Food” application, prior to his use of the "Listen to Your Food” application (such as by a personal profile compatible with the application), or as a combination of both. It is further understood that the input criteria regarding organoleptic attributes can include the aggregate of any combination of "Listen to Your Food" compatible individual profiles, group profiles, and additional specific input criteria.
  • Consumer input criteria regarding aesthetic attributes may include, but are not limited to, any combination of: specific values and changes in values of color of nutritional substances, such as: those occurring as a result of oxidation (i.e. oxidation induced changes in color of sliced apples, guacamole, meat, and so forth); those occurring as a result of maturation (i.e., cherries, tomatoes and so forth); those occurring as a result of cooking (i.e., steamed shrimp, tuna, and so forth); and any other type of aesthetic attribute of a nutritional substance. It is also understood that such criteria may be input to confirm or eliminate any particular criteria.
  • specific values and changes in values of color of nutritional substances such as: those occurring as a result of oxidation (i.e. oxidation induced changes in color of sliced apples, guacamole, meat, and so forth); those occurring as a result of maturation (i.e., cherries, tomatoes and so forth); those occurring as a result of cooking (i.e., steamed shrimp, tuna
  • input criteria regarding aesthetic attributes for a consumer of beef might include “very red”, which further corresponds to a visual scale available through “Listen to Your Food”.
  • input criteria regarding aesthetic attributes for a consumer of cherries might include “medium red”, which further corresponds to a visual scale available through “Listen to Your Food”.
  • input criteria regarding aesthetic attributes for a consumer of steamed shrimp might include “light to dark pink”, which further corresponds to a visual scale available through “Listen to Your Food”.
  • other aesthetic attributes including, but not limited to, visual texture, shape, size, and so forth may be specified.
  • input criteria regarding aesthetic attributes may be provided by a consumer concurrent with his use of the "Listen to Your Food” application, prior to his use of the "Listen to Your Food” application (such as by a personal profile compatible with the application), or as a combination of both. It is further understood that the input criteria regarding aesthetic attributes can include the aggregate of any combination of "Listen to Your Food" compatible individual profiles, group profiles, and additional specific input criteria.
  • Examples of a consumer utilizing "Listen to Your Food” are now provided.
  • a consumer uses "Listen to Your Food” on his smartphone to determine nutritional substance compliance or non-compliance with his need for Gluten free nutritional substances, and further to determine compliance or non-compliance with his aversion to eating horse meat, as he is an avid equestrian and believes horses are too noble to be eaten. He goes to the supermarket and opens the "Listen to Your Food” application on his smartphone. The application asks him to identify the specific consumer profiles and the specific input criteria with which he would like to determine compliance, or non-compliance, of nutritional substances.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding Gluten content and horse meat content of the nutritional substance referenced by the dynamic information identifier. The information retrieved indicates that this first item does not contain horse meat, but does contain Gluten.
  • "Listen to Your Food” directs the smartphone to display an image of a red traffic light and play an audible "NO". The consumer knows immediately that the first item does not meet his needs. He scans the dynamic information identifier on a second item that he considers for purchase with the camera on his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding Gluten content and horse meat content of the nutritional substance referenced by the dynamic information identifier of the just scanned second item. The information retrieved indicates that this second item does not contain Gluten, but does contain horse meat additives.
  • “Listen to Your Food” directs the smartphone to display an image of a red traffic light and play an audible "NO". The consumer knows immediately that the second item does not meet his needs. He selects a third item and scans its dynamic information identifier with his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding Gluten content and horse meat content of the nutritional substance referenced by the dynamic information identifier of the just scanned third item. The information retrieved indicates that this third item contains no Gluten and no horse meat.
  • “Listen to Your Food” directs the smartphone to display an image of a green traffic light and play an audible "YES", The consumer knows immediately that the third item meets his needs.
  • a consumer uses "Listen to Your Food” on his smartphone to determine nutritional substance compliance or non-compliance with his needs. He goes to the supermarket and opens the "Listen to Your Food” application on his smartphone. The application asks him to identify the specific consumer profiles and the specific input criteria with which he would like to determine compliance, or non-compliance, of nutritional substances. He has used the application before, and had previously created a consumer profile by following the application's prompts to enter his input criteria. He selects his personal profile, which requires foods rich in vitamin C and the probiotic lactobacillus, and additionally non-adulterated product.
  • the personal profile he created for himself includes the input criteria for orange juice: "vitamin C content >75% of fresh”, for yogurt: “lactobacillus level >50% of fresh”, and for all nutritional substances: "non-adulterated”.
  • His personal profile further includes his custom settings regarding notification mechanism and format for "compliance” and “non-compliance”, which are: image of a thumbs-up and audible sound of a crowd cheering for Compliance; and image of a thumbs-down and audible sound of a crowd booing for Non-compliance. He proceeds to do his grocery shopping, and he scans the dynamic information identifier on a carton of orange juice with the camera on his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding vitamin C content and adulteration of the orange juice referenced by that dynamic information identifier. The information retrieved indicates that this this particular orange juice has lost 40% of its fresh vitamin C content, and is non-adulterated. "Listen to Your Food” accordingly directs the smartphone to display a thumbs- down and audible sound of a crowd booing. The consumer knows immediately that this item does not meet his needs. He selects an alternate orange juice and scans its dynamic information identifier with his smartphone. "Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding vitamin C content and adulteration of the orange juice referenced by the dynamic information identifier of the just scanned alternate item.
  • the information retrieved indicates that this alternate item has only lost 15% of its fresh vitamin C content, and is non-adulterated. "Listen to Your Food” directs the smartphone to display a thumbs-up and audible sound of a crowd cheering. The consumer knows immediately that the alternate item meets his needs.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding lactobaciUus content and adulteration of the yogurt referenced by that dynamic information identifier. The information retrieved indicates that this this particular yogurt is non- adulterated, but has lost 90% of its fresh lactobaciUus content. "Listen to Your Food” accordingly directs the smartphone to display a thumbs-down and audible sound of a crowd booing. The consumer knows immediately that this item does not meet his needs. He selects yet another yogurt and scans the dynamic information identifier on a container of yogurt with the camera on his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding lactobaciUus content and adulteration of the yogurt referenced by the dynamic information identifier of the just scanned item. The information retrieved indicates that this yogurt has only lost 15% of its fresh lactobaciUus content, and is non-adulterated. "Listen to Your Food” directs the smartphone to display a thumbs-up and audible sound of a crowd cheering. The consumer knows immediately that this item meets his needs.
  • a consumer uses "Listen to Your Food” on his smartphone to determine nutritional substance compliance, or non-compliance, with his needs, which include going to the supermarket to shop for himself, his spouse, and a breakfast guest.
  • the supermarket he opens the "Listen to Your Food” application on his smartphone.
  • the application asks him to identify the specific consumer profiles and the specific input criteria with which he would like to determine compliance, or non-compliance, of nutritional substances. He and his spouse have used the application before, and have each previously created their own consumer profile by following the application's prompts to enter their individual input criteria.
  • the breakfast guest has not previously created a consumer profile for "Listen to Your Food".
  • the consumer selects his personal profile, which requires foods rich in vitamin C, and selects the personal profile of his spouse, which includes foods high in the probiotic lactobaciUus, and while he does not have a personal profile for the breakfast guest, he knows that the quest believes in eating foods that are organic and unadulterated.
  • the personal profile he created for himself includes the input criteria for orange juice: "vitamin C content >75% of fresh”.
  • His personal profile further includes his custom settings regarding notification mechanism and format for "compliance” and "non-compliance”, which are: image of a thumbs-up and audible sound of a crowd cheering for Compliance; and image of a thumbs-down and audible sound of a crowd booing for Non-compliance.
  • His spouse's personal profile includes the input criteria for yogurt: "lactobacillus level >50% of fresh”. He instructs "Listen to Your Food” to use an aggregated input criteria comprising his personal profile plus his spouse's personal profile plus, in order to account for the breakfast guest's preferences, the added input criteria of: all nutritional substances "organic creation” and all nutritional substances: “non-adulterated”. He further instructs the application to use his custom settings regarding notification mechanism and format for "compliance” and "non-compliance”. He proceeds to do his grocery shopping, and he scans the dynamic information identifier on a carton of orange juice with the camera on his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding the vitamin C content, organic creation, and adulteration of the orange juice referenced by that dynamic information identifier. The information retrieved indicates that this this particular orange juice has lost 20% of its fresh vitamin C content, is non- adulterated, but was squeezed from genetically altered oranges, which are not considered organic. "Listen to Your Food” accordingly directs the smartphone to display a thumbs-down and audible sound of a crowd booing. The consumer knows immediately that this item does not meet his needs. He selects an alternate orange juice and scans its dynamic information identifier with his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding vitamin C content, organic creation, and adulteration of the orange juice referenced by the dynamic information identifier of the just scanned alternate item. The information retrieved indicates that this alternate item has lost 15% of its fresh vitamin C content, was organically created, and is non-adulterated. "Listen to Your Food” directs the smartphone to display a thumbs-up and audible sound of a crowd cheering. The consumer knows immediately that this item meets his needs.
  • "Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding lactobacillus content, organic creation, and adulteration of the yogurt referenced by that dynamic information identifier. The information retrieved indicates that this this particular yogurt is non-adulterated, but has lost 90% of its fresh lactobacillus content.
  • "Listen to Your Food” accordingly directs the smartphone to display a thumbs-down and audible sound of a crowd booing. The consumer knows immediately that this item does not meet his needs. He selects yet another container of yogurt and scans the dynamic information identifier on the container of yogurt with the camera on his smartphone.
  • “Listen to Your Food” directs the smartphone to retrieve from the information module the information regarding lactobacillus content, organic creation, and adulteration of the yogurt referenced by the dynamic information identifier of the just scanned item. The information retrieved indicates that this yogurt has only lost 15% of its fresh lactobacillus content, was organically created, and is non-adulterated. "Listen to Your Food” directs the smartphone to display a thumbs-up and audible sound of a crowd cheering. The consumer knows immediately that this item meets his needs.
  • the consumer uses his smartphone to: access a nutritional substance information module that has access to a consumer module with the consumer's personal consumer profile, including low sodium, gluten-free and high lycopene preferences, and retrieves appropriate recipes; or alternatively, the consumer might use his smartphone to access various recipe databases for Italian recipes using an application on his smartphone to filter the recipes according to his consumer profile, including low sodium, gluten-free and high lycopene; or alternatively, the consumer might use his smartphone to access a recipe database for Italian recipes wherein the database provides consumer interface through the consumer's smartphone screen to provide input regarding the consumer's needs, such as low sodium, gluten- free and high lycopene. In this way, the consumer obtains a recipe comprising a list of ingredients for an entree that meets his essential health needs, and can capture the recipe. In this case, consumer has selected a recipe for gluten-free pasta with marinara sauce.
  • the consumer's smartphone utilizes an application created for the alternate supermarket to identify the location within the alternate supermarket of the various items on his shopping list and generate a route within the alternate supermarket that the consumer can follow that will result in the least amount of time required for collecting the ingredients.
  • the suggested route may instruct that he starts in the produce isle of the supermarket, in this case isle number 1, and provide the list of ingredients to collect at that location.
  • his smartphone can allow him to delete a collected item, change its status to indicate it has been collected, or may allow him to move it from a list of items to be collected to a list of items collected.
  • the smartphone Upon collecting the last item from the produce isle, the smartphone instructs him to go to the specific isle where the low sodium, gluten- free pasta can be found, which in this case is isle 11. Upon collecting the gluten-free pasta from isle 11 , the smartphone instructs him to go to the specific isle where wine is located, which in this case is isle 14. Upon collecting the wine from isle 14, the smartphone instructs him to go to the specific isle where cheese can be found, in this case isle 15. In this way, the consumer's time spent locating and collecting the items required for purchase is minimized because he is able to make one quick pass through the supermarket, visiting only the correct location for each item, and with no backtracking. Additionally, his smartphone can easily verify that all required items have been collected.
  • the "Listen to your food” application on his smartphone can be used to quickly determine compliance, or noncompliance, of each item with the nutritional substance needs that he has communicated through his "Listen to your food" profile or input criteria.
  • the nutritional substance is provided with a QR code including the dynamic information identifier and a URL to hardlink the consumer to the nutritional substance information module.
  • the consumer could use his smartphone to scan such a QR code on a nutritional substance of interest. The smartphone, would then hardlink the consumer to the nutritional substance information system, retrieve source and ⁇ information associated with the dynamic information identifier, determine compliance, or non-compliance with the consumer's needs, and communicate the compliance or non-compliance.
  • the consumer can still retrieve a route requiring the least time to collect the items from multiple supermarkets. For example, if the consumer must visit two supermarkets to collect all items, the route retrieved can include both the driving instructions from the consumer's home to a first supermarket, the route to follow within the first supermarket, driving instructions from the first supermarket to a second supermarket, the route to follow within the second supermarket, and driving instructions from the second supermarket to the consumer's home.
  • his smartphone can be used to retrieve a dynamic information identifier from any nutritional substance provided with a dynamic information identifier and a URL to hardlink to the nutritional substance information module so that he may utilize the "Listen to your food” application to quickly determine the nutritional substance's compliance, or non-compliance, with his needs.
  • the consumer goes to the supermarket to purchase the ingredients for the desired entree.
  • the consumer is interested in preparing a meal that meets his needs when it is prepared 4 days from the time of purchase.
  • the recipe calls for tomatoes and pasta among the ingredients.
  • the consumer scans a dynamic information identifier on Heirloom tomatoes with his smartphone, such as by scanning a QR code including the dynamic information identifier and a URL to hardlink to the nutritional substance information module, to determine if the Heirloom tomatoes are in compliance, or non-compliance, with his needs for high lycopene when prepared in 4 days.
  • the consumer scans a QR code including a dynamic information identifier and URL for the nutritional substance information module on one or more pasta products, to determine if they are in compliance, or non-compliance, with his low sodium and gluten-free needs when prepared in 4 days, and makes purchasing decisions regarding pasta based upon the indication of compliance or non-compliance provided through his smartphone.
  • the consumer is not the only entity that has benefited from the dynamic nutritional information about the Heirloom tomatoes, the Roma tomatoes and the pasta, as data regarding the consumer's needs for low sodium, gluten- free, and high lycopene can be collected by the consumer module and correlated with the respective dynamic information identifiers, and are available to, such as transmitted to, the information module and are of particular interest and accessible to the growers and packagers of the respective tomatoes and to the transformer of the one or more pastas.
  • the dynamic nutritional value database can provide source information and ⁇ information of how the nutritional values of any other ingredients he is buying have evolved thus far, and will evolve during the next 4 days (tomatoes, pasta, garlic, onions, basil etc..) if those ingredients are supplied with dynamic information identifiers. This consumer information can be saved and be made available to all other entities in the nutritional substance supply system.
  • a consumer utilizing the consumer information system of the present invention can benefit from in-store routing technologies to assist his efforts to efficiently locate and purchase nutritional substances.
  • An in-store routing technology placing little to no burden on the consumer, placing little to no burden on the retailer, facilitating improved shopping efficiency, and further allowing monetary benefit to both retailer and consumer based on transactions would favor adoption.
  • the consumer would be able to utilize his smart phone to navigate within any establishment that was appropriately navigation enabled.
  • the retail establishment would require no additional equipment or infrastructure to become navigation enabled.
  • a technology that can provide these advantages is ambient magnetic field anomaly-based positioning.
  • the technology utilizes local variations in the Earth's magnetic field to map an indoor location. Variations to the Earth's magnetic field commonly exist inside of modern buildings and are a result of the overall structures of the building.
  • the Earth's magnetic field and the magnetic anomalies created by a specific building create a unique three dimensional magnetic footprint of the interior of the building.
  • Evolving software applications combined with smartphones capable of sensing and recording the resulting magnetic field anomalies can be used to map indoor locations.
  • IndoorAtlas, Ltd. is a company that offers software tools enabling this technology, allowing retailers to magnetically map the interior of a building, such as a modern supermarket, using an Android smartphone and enabling consumers to navigate the interior of the building using their Android smartphone.
  • the accuracy of the technology in modern buildings ranges from 0.1 meter to 2 meters.
  • the nutritional substances identified would only include nutritional substances with dynamic information identifiers on the product itself, enabling the consumer to retrieve source and ⁇ information from a nutritional substance information module also using their smartphone.
  • the consumer could utilize an application such as that referred to herein as "Listen to your food", to quickly determine compliance, or non- compliance, with his nutritional substance requirements. If nutritional substances with and without dynamic information identifiers were identified, a transaction rebate related to the purchase of nutritional substances with dynamic information identifiers could be available.
  • the consumer can use an indoor location-awareness application to create a shopping list for nutritional substances and identify the supermarket where he will shop.
  • the consumer could create the shopping list and identify the supermarket where he will shop using other software and send it to the indoor location-awareness application.
  • the application uses information regarding the contents of the chosen navigation-enabled supermarket the application creates a modified shopping list.
  • the modified shopping list includes the primary items from the consumer's shopping list, and in some cases, variations or alternatives of those items. Further, the modified shopping list may include added items that are complimentary to the primary and alternative items. For example, shredded parmesan cheese could be suggested as a complementary item to pasta and pasta alternatives on the shopping list.
  • the consumer can see and compare price or price per unit of items on list, including rebates associated with each item, which items can be purchased with an electronic coupon provided by the application, or which items are supplied with a dynamic information identifier. It is preferable that the modified shopping list is generated and presented to the consumer before the consumer begins shopping, in which case the consumer may select various primary, alternative, and complementary items.
  • the application can generate the best in-store route to retrieve the items. The application can still retrieve and still show the items not accepted, in case the consumer wants to reconsider an item while shopping.
  • the consumer follows the in-store route and collects items from the final list he can indicate through his smartphone that the items have been collected. He may also encounter an item on the final list that he decides not to purchase. For example, he might remember that he already has a particular item at home, in which case he can create a modified final list by deleting the item.
  • the application could then generate a new in-store route based upon the modified final list, which includes the remaining items and the consumer's current location.
  • he may utilize "Listen to your food" and use his smartphone to read a QR code with the item's dynamic information identifier and URL to the nutritional substance information module to determine the item's compliance, or non-compliance, with his requirements. If he determines that the item is in non-compliance with his requirements, he may decide he is no longer interested and would rather consider a previously identified alternative item. In this case, he could create a modified final list by accepting the alternative item still shown on the final list and unselecting the item he has lost interest in. The application could then generate a new in- store route based upon the modified final list, which includes the newly accepted item, the remaining items, and the consumer's current location.
  • the consumer may remember an item that was not originally on his shopping list and add it to the final list, creating a modified final list.
  • the application could then generate a new in-store route based upon the modified final list, which includes the newly added item, the remaining items, and the consumer's current location.
  • Rebates related to transactions resulting from or assisted by the use of the in-store application could be structured in various ways.
  • rebates could be based simply on a rebate per purchase methodology.
  • Rebates might be structured depending upon hierarchy of the item on the consumer's shopping list, for example depending upon if the purchased item was a primary shopping list item, an alternative item, or a complimentary item.
  • Rebates could be related to the presence of a dynamic information identifier on the purchased item.
  • Rebates could be related to specific supplier or in-store promotions presented to the consumer through the application. It is further understood that rebates related to transactions resulting from or assisted by the use of the "Listen to your food" application may also be provided, and can be structured in various ways.
  • the consumer can scan the receipt using his smartphone and transmit the information regarding purchases resulting from or assisted by the use of an application to a redemption resource, which could be the application provider.
  • a redemption resource which could be the application provider.
  • the supermarket could transmit this information along with a consumer identification code. This would ideally enable the application provider to redeem fees from the suppliers of the items purchased.
  • the application provider would in turn provide the appropriate rebates to the consumer.
  • the consumer rebates may take any number of forms, including direct deposit to a consumer account, periodic checks, or credit codes redeemable at suppliers or supermarkets participating in the application rebate program. Further, the application provider would provide monetary compensation to the retailer or supermarket for transactions resulting from or assisted by the use of the application.
  • transaction-based services are enhanced by the usage of ambient magnetic field anomaly-based positioning technology, since the routing to products is independent of in-store communication systems provided by a retailer and, also, independent of systems based upon GPS or other triangulation technologies.
  • the transaction-based services using ⁇ information can be readily associated with, or coupled to, the application using the ambient magnetic field anomaly-based positioning technology.
  • a consumer utilizing the consumer information system of the present invention can benefit from indoor routing technologies to assist his efforts to efficiently locate and purchase nutritional substances. While magnetic field anomaly-based positioning technology is promising and requires no additional equipment or infrastructure for a retailer to become navigation enabled, it is not the only method by which retailers might become indoor navigation enabled and is provided as one example of how indoor routing might be accomplished in conjunction with the present invention, and is not intended to be limiting in any way. Other indoor routing and location technologies have been developed and are conceived.
  • systems are contemplated that function by various combinations of: analyzing radio signals from cell towers; analyzing specific types of radio beacons; analyzing signals from Wi-Fi hotspots (including triangulation and analyzing signal strength); analyzing device movements using motion tracking sensors or inertial navigation; utilizing Bluetooth beacons; and even analyzing light modulation.
  • the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense (i.e., to say, in the sense of “including, but not limited to”), as opposed to an exclusive or exhaustive sense.
  • the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements. Such a coupling or connection between the elements can be physical, logical, or a combination thereof.
  • the words “herein,” “above,” “below,” and words of similar import when used in this application, refer to this application as a whole and not to any particular portions of this application.

Abstract

L'invention concerne un système de transformation pour au moins un composant d'une substance nutritionnelle à composant unique ou à multiples composants. Le système de transformation obtient des informations concernant la substance nutritionnelle à transformer, la transformation souhaitée et les caractéristiques souhaitées, comprenant un contenu nutritionnel, de la substance nutritionnelle transformée et modifie dynamiquement la transformation en réponse à ces informations. L'invention concerne également un système d'informations, qui permet la détermination rapide d'une conformité ou non-conformité d'une substance nutritionnelle à l'aide des exigences de substance nutritionnelle d'un consommateur.
PCT/US2014/033084 2013-04-11 2014-04-04 Système de transformation et d'identification dynamique pour substances nutritionnelles WO2014168844A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157032353A KR20150143666A (ko) 2013-04-11 2014-04-04 영양 물질들에 대한 변환 및 동적 인식 시스템
EP14783369.3A EP2984620A4 (fr) 2013-04-11 2014-04-04 Système de transformation et d'identification dynamique pour substances nutritionnelles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/861,300 US9414623B2 (en) 2012-04-16 2013-04-11 Transformation and dynamic identification system for nutritional substances
US13/861,300 2013-04-11

Publications (2)

Publication Number Publication Date
WO2014168844A2 true WO2014168844A2 (fr) 2014-10-16
WO2014168844A3 WO2014168844A3 (fr) 2015-04-30

Family

ID=51627876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/033084 WO2014168844A2 (fr) 2013-04-11 2014-04-04 Système de transformation et d'identification dynamique pour substances nutritionnelles

Country Status (5)

Country Link
EP (1) EP2984620A4 (fr)
KR (1) KR20150143666A (fr)
FR (1) FR3004569A1 (fr)
MX (1) MX2014004257A (fr)
WO (1) WO2014168844A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016193B2 (en) 2012-04-16 2015-04-28 Eugenio Minvielle Logistic transport system for nutritional substances
US9069340B2 (en) 2012-04-16 2015-06-30 Eugenio Minvielle Multi-conditioner control for conditioning nutritional substances
US9072317B2 (en) 2012-04-16 2015-07-07 Eugenio Minvielle Transformation system for nutritional substances
US9080997B2 (en) 2012-04-16 2015-07-14 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9171061B2 (en) 2012-04-16 2015-10-27 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
USD762081S1 (en) 2014-07-29 2016-07-26 Eugenio Minvielle Device for food preservation and preparation
US9414623B2 (en) 2012-04-16 2016-08-16 Eugenio Minvielle Transformation and dynamic identification system for nutritional substances
US9429920B2 (en) 2012-04-16 2016-08-30 Eugenio Minvielle Instructions for conditioning nutritional substances
US9436170B2 (en) 2012-04-16 2016-09-06 Eugenio Minvielle Appliances with weight sensors for nutritional substances
US9460633B2 (en) 2012-04-16 2016-10-04 Eugenio Minvielle Conditioner with sensors for nutritional substances
US9497990B2 (en) 2012-04-16 2016-11-22 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9528972B2 (en) 2012-04-16 2016-12-27 Eugenio Minvielle Dynamic recipe control
US9541536B2 (en) 2012-04-16 2017-01-10 Eugenio Minvielle Preservation system for nutritional substances
US9564064B2 (en) 2012-04-16 2017-02-07 Eugenio Minvielle Conditioner with weight sensors for nutritional substances
US9619781B2 (en) 2012-04-16 2017-04-11 Iceberg Luxembourg S.A.R.L. Conditioning system for nutritional substances
US9702858B1 (en) 2012-04-16 2017-07-11 Iceberg Luxembourg S.A.R.L. Dynamic recipe control
US9902511B2 (en) 2012-04-16 2018-02-27 Iceberg Luxembourg S.A.R.L. Transformation system for optimization of nutritional substances at consumption
US10207859B2 (en) 2012-04-16 2019-02-19 Iceberg Luxembourg S.A.R.L. Nutritional substance label system for adaptive conditioning
US10219531B2 (en) 2012-04-16 2019-03-05 Iceberg Luxembourg S.A.R.L. Preservation system for nutritional substances
US10790062B2 (en) 2013-10-08 2020-09-29 Eugenio Minvielle System for tracking and optimizing health indices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412560A (en) * 1991-08-27 1995-05-02 Dine Systems, Inc. Method for evaluating and analyzing food choices
US5954640A (en) * 1996-06-27 1999-09-21 Szabo; Andrew J. Nutritional optimization method
US6356940B1 (en) * 1999-05-26 2002-03-12 Brian Robert Short Method and system of electronically logging remote user dietary information, and generating and automatically sending suggested dietary modifications
US20060015371A1 (en) * 2004-07-16 2006-01-19 Noah Knauf Health tracking system
EP1758038A1 (fr) * 2005-08-22 2007-02-28 InterComponentWare AG Procédé realisé par ordinateur, système, programme d'ordinateur et structure de données pour élaborer un régime de nutrition
US7966971B2 (en) * 2008-05-23 2011-06-28 C-Lock Inc. Method and system for monitoring and reducing ruminant methane production
US9414623B2 (en) * 2012-04-16 2016-08-16 Eugenio Minvielle Transformation and dynamic identification system for nutritional substances

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541536B2 (en) 2012-04-16 2017-01-10 Eugenio Minvielle Preservation system for nutritional substances
US10207859B2 (en) 2012-04-16 2019-02-19 Iceberg Luxembourg S.A.R.L. Nutritional substance label system for adaptive conditioning
US9016193B2 (en) 2012-04-16 2015-04-28 Eugenio Minvielle Logistic transport system for nutritional substances
US9080997B2 (en) 2012-04-16 2015-07-14 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9171061B2 (en) 2012-04-16 2015-10-27 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9564064B2 (en) 2012-04-16 2017-02-07 Eugenio Minvielle Conditioner with weight sensors for nutritional substances
US9414623B2 (en) 2012-04-16 2016-08-16 Eugenio Minvielle Transformation and dynamic identification system for nutritional substances
US9429920B2 (en) 2012-04-16 2016-08-30 Eugenio Minvielle Instructions for conditioning nutritional substances
US9436170B2 (en) 2012-04-16 2016-09-06 Eugenio Minvielle Appliances with weight sensors for nutritional substances
US9460633B2 (en) 2012-04-16 2016-10-04 Eugenio Minvielle Conditioner with sensors for nutritional substances
US9497990B2 (en) 2012-04-16 2016-11-22 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9528972B2 (en) 2012-04-16 2016-12-27 Eugenio Minvielle Dynamic recipe control
US9072317B2 (en) 2012-04-16 2015-07-07 Eugenio Minvielle Transformation system for nutritional substances
US10847054B2 (en) 2012-04-16 2020-11-24 Iceberg Luxembourg S.A.R.L. Conditioner with sensors for nutritional substances
US10215744B2 (en) 2012-04-16 2019-02-26 Iceberg Luxembourg S.A.R.L. Dynamic recipe control
US9702858B1 (en) 2012-04-16 2017-07-11 Iceberg Luxembourg S.A.R.L. Dynamic recipe control
US9877504B2 (en) 2012-04-16 2018-01-30 Iceberg Luxembourg S.A.R.L. Conditioning system for nutritional substances
US9892657B2 (en) 2012-04-16 2018-02-13 Iceberg Luxembourg S.A.R.L. Conditioner with sensors for nutritional substances
US9902511B2 (en) 2012-04-16 2018-02-27 Iceberg Luxembourg S.A.R.L. Transformation system for optimization of nutritional substances at consumption
US9069340B2 (en) 2012-04-16 2015-06-30 Eugenio Minvielle Multi-conditioner control for conditioning nutritional substances
US10209691B2 (en) 2012-04-16 2019-02-19 Iceberg Luxembourg S.A.R.L. Instructions for conditioning nutritional substances
US9619781B2 (en) 2012-04-16 2017-04-11 Iceberg Luxembourg S.A.R.L. Conditioning system for nutritional substances
US10219531B2 (en) 2012-04-16 2019-03-05 Iceberg Luxembourg S.A.R.L. Preservation system for nutritional substances
US10332421B2 (en) 2012-04-16 2019-06-25 Iceberg Luxembourg S.A.R.L. Conditioner with sensors for nutritional substances
US10790062B2 (en) 2013-10-08 2020-09-29 Eugenio Minvielle System for tracking and optimizing health indices
US11869665B2 (en) 2013-10-08 2024-01-09 Eugenio Minvielle System for tracking and optimizing health indices
USD762081S1 (en) 2014-07-29 2016-07-26 Eugenio Minvielle Device for food preservation and preparation

Also Published As

Publication number Publication date
FR3004569A1 (fr) 2014-10-17
EP2984620A2 (fr) 2016-02-17
MX2014004257A (es) 2015-08-05
WO2014168844A3 (fr) 2015-04-30
EP2984620A4 (fr) 2017-02-01
KR20150143666A (ko) 2015-12-23

Similar Documents

Publication Publication Date Title
US9414623B2 (en) Transformation and dynamic identification system for nutritional substances
US9072317B2 (en) Transformation system for nutritional substances
WO2014168844A2 (fr) Système de transformation et d'identification dynamique pour substances nutritionnelles
US10207859B2 (en) Nutritional substance label system for adaptive conditioning
US20130275037A1 (en) Consumer Information and Navigation System for Nutritional Substances
US8668140B2 (en) Transformation system for nutritional substances
US20130275460A1 (en) Consumer Information System for Nutritional Substances
US9171061B2 (en) Local storage and conditioning systems for nutritional substances
US20130275426A1 (en) Information System for Nutritional Substances
US9497990B2 (en) Local storage and conditioning systems for nutritional substances
US20140290395A1 (en) Preservation System for Nutritional Substances
US10219531B2 (en) Preservation system for nutritional substances
US20130295532A1 (en) Consumer Information and Sensing System for Nutritional Substances
EP2839424A2 (fr) Système d'information de consommateurs sur des substances nutritionnelles
EP2839386A1 (fr) Système d'information sur des substances nutritionnelles
US20130275370A1 (en) Label Content Update System for Nutritional Substances
US20130273507A1 (en) Consumer information system for nutritional substances
US20130309636A1 (en) Consumer Information and Sensing System for Nutritional Substances
US20150100462A1 (en) Systems and Methods to Improve Nutrition
US20130269538A1 (en) Transformation system for nutritional substances
WO2013134544A1 (fr) Système d'informations pour substances nutritives
WO2014182566A2 (fr) Système de conservation pour substances nutritives
US20130275342A1 (en) Information system for nutritional substances
WO2015006351A1 (fr) Système d'information de consommateurs et de détection pour des substances nutritionnelles
EP3068695A1 (fr) Système d'étiquetage de substances nutritionnelles en vue d'un conditionnement adaptatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783369

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2014783369

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157032353

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783369

Country of ref document: EP

Kind code of ref document: A2