WO2014181810A1 - Water vapor transmission rate evaluation method, water vapor transmission rate evaluation system, and gas barrier film production method - Google Patents

Water vapor transmission rate evaluation method, water vapor transmission rate evaluation system, and gas barrier film production method Download PDF

Info

Publication number
WO2014181810A1
WO2014181810A1 PCT/JP2014/062294 JP2014062294W WO2014181810A1 WO 2014181810 A1 WO2014181810 A1 WO 2014181810A1 JP 2014062294 W JP2014062294 W JP 2014062294W WO 2014181810 A1 WO2014181810 A1 WO 2014181810A1
Authority
WO
WIPO (PCT)
Prior art keywords
water vapor
gas barrier
vapor permeability
barrier film
refractive index
Prior art date
Application number
PCT/JP2014/062294
Other languages
French (fr)
Japanese (ja)
Inventor
森 宏之
増田 修
康一 郡山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014181810A1 publication Critical patent/WO2014181810A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light

Definitions

  • the present invention relates to a method for evaluating water vapor permeability.
  • the present invention also relates to a water vapor permeability evaluation system and a gas barrier film manufacturing method using the water vapor permeability evaluation method. More specifically, the present invention relates to a method for evaluating water vapor permeability with improved inspection efficiency.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. For this reason, it is widely used in applications for packaging articles that require blocking of various gases.
  • the present invention in order to prevent deterioration due to various gases, the present invention is also used for sealing electronic devices such as solar cells, liquid crystal display elements or organic electroluminescent elements (hereinafter also referred to as organic EL elements). in use.
  • a gas barrier film is superior in flexibility to a glass substrate, and is superior in terms of roll-type production suitability, weight reduction and handling of electronic devices.
  • a film substrate such as a transparent plastic has a problem that gas barrier properties are inferior to a glass substrate. It has been found that when a substrate with inferior gas barrier properties is used, water vapor or oxygen penetrates and, for example, the function in the electronic device is deteriorated.
  • a calcium corrosion method (hereinafter also referred to as a calcium method or a Ca method) for measuring water vapor permeability is known.
  • a film having a calcium film formed on the inside is used as a test piece, placed in a constant temperature and humidity environment, and the amount of calcium corroded by reacting with water vapor that has passed through the film is measured by image processing or the like.
  • the water vapor permeability is calculated.
  • the calcium corrosion method can calculate the water vapor transmission rate with higher sensitivity than the conventional mocon method or the like, but is a destruction method in which a part of a sample is extracted.
  • the superiority or inferiority of the gas barrier layer is determined based on the refractive index of the marker part.
  • An inspection method for example, see Patent Document 2 is known.
  • Patent Document 1 is a destruction method in which a part of a sample specimen is extracted as in the calcium corrosion method.
  • the method described in Patent Document 2 is a partial evaluation based on the premise of the uniformity of the gas barrier film, and does not guarantee the water vapor permeability of the entire gas barrier film.
  • Patent Document 3 discloses a method for calculating a refractive index based on a measured film thickness of a gas barrier laminate film and determining a gas barrier property of the film from a relationship with a water vapor permeability measured by a differential pressure method. Are listed.
  • Patent Document 3 roughly determines a gas barrier film failure from a correlation based on the measured values of water vapor permeability and refractive index, and does not calculate water vapor permeability.
  • the present invention has been made in view of the above problems and situations, and a solution to the problem is water vapor that can be calculated non-destructively and non-contact, and the water vapor permeability of the entire gas barrier film having a gas barrier layer. It is to provide a transmittance evaluation method. Moreover, it is providing the manufacturing method of the water vapor permeability evaluation system and gas barrier film which used the said water vapor permeability evaluation method.
  • the present inventor examined the cause of the above problems and the like, and based on the thickness and refractive index of the gas barrier film having the gas barrier layer, the water vapor permeation of the entire gas barrier film in the measurement range.
  • the inventors have found that the problem of the present invention can be solved by calculating the degree, and have reached the present invention.
  • a water vapor permeability evaluation method for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film (1) a measuring step for optically measuring the thickness and refractive index of the gas barrier layer; (2) a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring step;
  • the water vapor permeability evaluation method characterized by including.
  • the water vapor permeability is estimated using a water vapor permeability estimation model created based on the water vapor permeability of the gas barrier film, the thickness of the gas barrier layer and the refractive index measured by the calcium corrosion method.
  • the estimation model of water vapor permeability includes a preset water vapor permeability term, a preset water vapor permeability change amount based on a change amount from a predetermined layer thickness and refractive index, and a correction term.
  • the water vapor permeability evaluation method according to item 2 characterized in that:
  • the gas barrier layer to be measured is a gas barrier layer formed by applying a coating liquid containing polysilazane to a substrate and drying the layer to modify it by irradiating with vacuum ultraviolet light.
  • the water vapor permeability evaluation method according to any one of items 1 to 3, which is a characteristic.
  • a water vapor permeability evaluation system for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film, (1) measuring means for optically measuring the thickness and refractive index of the gas barrier layer; (2) Water vapor permeability calculating means for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring means;
  • a water vapor transmission rate evaluation system comprising:
  • a gas barrier film comprising a step of evaluating the water vapor permeability of a gas barrier film using the method for evaluating the water vapor permeability of a gas barrier film according to any one of items 1 to 5. Manufacturing method.
  • a film substrate having a high gas barrier property against water vapor is essential, and an increase in water vapor permeability due to non-uniformity of the film substrate leads to deterioration of the electronic device. Therefore, the thickness and refractive index of a gas barrier film having a gas barrier layer are measured, and the water vapor permeability of the entire gas barrier film is calculated using the layer thickness and refractive index, so that the film is non-destructive and non-contact. It was found that a highly reliable water vapor permeability can be obtained in this state.
  • Schematic configuration diagram showing an example of a water vapor permeability evaluation system according to the present invention The block diagram which shows the main structures of the water-vapor-permeation evaluation system based on this invention Sectional drawing which shows an example of the gas barrier film which concerns on this invention
  • Conceptual diagram showing the relationship between refractive index and water vapor transmission rate Flow chart showing flow of water vapor permeability estimation model creation process Flow chart showing the flow of water vapor permeability evaluation processing by the water vapor permeability evaluation system
  • the water vapor permeability evaluation method of the present invention is a water vapor permeability evaluation method for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film, and the layer thickness of the gas barrier layer And a measuring step for optically measuring the refractive index, and a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measuring range based on the layer thickness and the refractive index measured by the measuring step. It is characterized by including. This feature is a technical feature common to the inventions according to claims 1 to 8.
  • the water vapor permeability of the gas barrier film measured by the calcium corrosion method, the layer thickness of the gas barrier layer, and the refraction in that the effect of the present invention can be expressed more. It is preferable to calculate the water vapor transmission rate using an estimation model of the water vapor transmission rate created based on the rate. Thereby, the water vapor transmission rate close to the actual measurement value can be calculated in a non-destructive and non-contact state.
  • the estimation model of the water vapor transmission rate includes a predetermined water vapor transmission rate term and a change amount of water vapor transmission rate based on a change amount from a preset layer thickness and refractive index. And a correction term.
  • the gas barrier layer to be measured was formed by applying a coating liquid containing polysilazane to a substrate and drying the layer obtained by irradiation with vacuum ultraviolet light to modify the layer.
  • a gas barrier layer is preferred. Thereby, an accurate water vapor permeability can be calculated for a gas barrier film having a high gas barrier property.
  • the layer thickness and the refractive index are measured using a spectral reflectometer or an ellipsometer.
  • a film thickness (layer thickness) and a refractive index can be simultaneously measured in a non-contact manner.
  • the water vapor permeability evaluation system of the present invention is a water vapor permeability evaluation system for evaluating the water vapor permeability of a gas barrier film based on the layer thickness and refractive index of the gas barrier layer of the gas barrier film, (1) measuring means for optically measuring the thickness and refractive index of the gas barrier layer; (2) Water vapor permeability calculating means for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring means; It is characterized by including. Based on the optically measured thickness and refractive index of the gas barrier layer, the water vapor permeability of the entire gas barrier film in the measurement range is calculated. Can do.
  • the water vapor permeability evaluation system of the present invention is preferably used for evaluating the water vapor permeability of the gas barrier film in the step of producing the gas barrier film. Since the evaluation of the water vapor permeability of the gas barrier film is incorporated in the production process, it becomes easy to associate the water vapor permeability with the production conditions.
  • the gas barrier film of the present invention it is temporally and economically to have a step of evaluating the water vapor permeability of the gas barrier film using the water vapor permeability evaluation method of the gas barrier film. It is preferable from the viewpoint.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the method for evaluating water vapor permeability of the present invention comprises a measurement step for optically measuring the thickness and refractive index of a gas barrier layer based on the thickness and refractive index of the gas barrier layer of the gas barrier film, and a measurement step. And a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and the refractive index. Specifically, for a gas barrier film used in an electronic device such as a solar cell, a liquid crystal display element, or an organic EL element, the thickness and refractive index of the gas barrier layer of the gas barrier film are measured. Next, based on the measured layer thickness and refractive index, the water vapor permeability of the entire gas barrier film in the measurement range is calculated.
  • the thickness and refractive index of the gas barrier layer are preferably measured using a spectral reflectometer or an ellipsometer.
  • the thickness of the layer and the refractive index may be calculated by measuring the surface of the gas barrier layer every 1 mm 2 using a spectral reflectometer. It is more preferable to calculate the thickness and refractive index of the gas barrier layer together with the coordinate information of the gas barrier layer. Thereby, the layer thickness and refractive index of the gas barrier layer within a predetermined range can be obtained in association with the position information.
  • the water vapor permeability is calculated using an estimated model of water vapor permeability created based on the water vapor permeability of the gas barrier film measured by the calcium corrosion method, the layer thickness of the gas barrier layer, and the refractive index. It is preferable to calculate. Specifically, in the water vapor permeability calculation step, an optimum water vapor permeability estimation model is created for the gas barrier film to be measured in accordance with the target water vapor permeability range.
  • the estimation model of water vapor permeability has a preset water vapor permeability term, a preset water vapor permeability change amount based on a change amount from the layer thickness and refractive index, and a correction term. Is preferred. Specifically, since the water vapor permeability is correlated with the layer thickness and the refractive index, the water vapor permeability estimation model uses the water vapor permeability obtained by the calcium corrosion method to change the layer thickness and the refractive index. Can be obtained by performing multiple regression analysis. Multiple regression analysis yields an estimated model for water vapor transmission rate, which has a water vapor transmission rate term, a water vapor transmission rate change term based on a preset change in thickness and refractive index, and a correction term. It is done.
  • the thickness and refractive index of the gas barrier layer measured by the measurement step are outside a predetermined range. Specifically, it is determined whether or not the measured thickness and refractive index of the gas barrier layer are outside a predetermined range set in advance according to the type of the gas barrier film. For example, when it is determined that at least one of the thickness and refractive index of the gas barrier layer is outside a predetermined range, it is determined as an abnormal portion. Since at least one of the thickness and refractive index of the gas barrier layer is out of the predetermined range, the water vapor transmission rate is often lower than the practical value, so that it is practical by calculating the water vapor transmission rate. It is effective to check whether or not.
  • the predetermined thickness and refractive index ranges required for the gas barrier layer of the gas barrier film can be set for each gas barrier film.
  • the gas barrier layer portion having a layer thickness or refractive index outside the predetermined range, that is, the water vapor permeability of the abnormal portion is estimated. Calculate using the model.
  • the portion of the gas barrier layer whose layer thickness and refractive index are within the predetermined range (hereinafter referred to as a normal portion) is considered to satisfy the water vapor permeability required for a gas barrier film, and thus is a specified value.
  • the above water vapor permeability can be obtained.
  • the water vapor permeability of the entire gas barrier film in the measurement range is calculated by combining the water vapor permeability of the abnormal part calculated by the estimation model and the water vapor permeability of the normal part.
  • the water vapor permeability of the normal part is equal to or higher than a specified value, but is not calculated using the estimation model, but can be appropriately set to calculate the water vapor permeability using the estimation model. .
  • FIG. 1 shows an example of the configuration of a gas barrier film water vapor permeability evaluation system 100 that uses the gas barrier film water vapor permeability evaluation method of the present invention.
  • a functional block diagram of the water vapor permeability evaluation system 100 of the gas barrier film is shown in FIG.
  • the water vapor permeability evaluation system 100 for a gas barrier film according to the present invention includes a data processing device 1, a spectral reflectance meter adjustment device 2, a spectral reflectance meter 3, and a film observation table 4. Is preferred.
  • the data processing device 1 is connected to the spectral reflectometer adjusting device 2 and the spectral reflectometer 3 so that they can communicate with each other. Below, each structure of the data processor 1 is demonstrated. As shown in FIG. 2, the data processing apparatus 1 includes a control unit 11, a recording unit 12, a communication unit 13, a data processing unit 14 (estimated model creation unit 14a, gas barrier layer determination unit 14b, water vapor permeability calculation unit 14c), and An operation display unit 15 and the like are provided, and each unit is connected to be communicable with each other by a bus 16.
  • the control unit 11 includes a CPU (Central Processing Unit) 11a that performs overall control of the operation of the data processing device 1, and a RAM (Random) that functions as a work memory for temporarily storing various data when the CPU 11a executes a program.
  • CPU Central Processing Unit
  • RAM Random
  • the program memory 11c is composed of a ROM or the like.
  • the recording unit 12 uses threshold data used in the data processing unit and the amount of irradiation light when producing the gas barrier layer.
  • the water vapor permeability estimation model created according to the value of the water vapor permeability, the type of substrate, etc. is recorded.
  • the communication unit 13 includes a communication interface such as a network I / F, and transmits the measurement conditions input from the operation display unit 15 to the spectral reflectometer adjustment device 2 via a network such as an intranet. Further, the communication unit 13 receives the values of the thickness and refractive index of the gas barrier layer of the gas barrier film measured by the spectral reflectometer 3.
  • the data processing unit 14 analyzes the thickness and refractive index of the gas barrier layer of the gas barrier film measured by the spectral reflectometer 3 received by the communication unit 13.
  • the data processing unit 14 includes an estimated model creation unit 14a, a gas barrier layer determination unit 14b, and a water vapor permeability calculation unit 14c.
  • the layer thickness and refractive index of the gas barrier layer are exemplified by the configuration measured and calculated by the spectral reflectometer 3. However, based on the physical property values measured by the spectral reflectometer 3, the data processing unit 14 uses the gas thickness.
  • the thickness and refractive index of the barrier layer may be calculated.
  • the estimation model creation unit 14a creates an estimation model for calculating the water vapor permeability of the gas barrier film. Specifically, the estimated model creation unit 14a is determined to be an abnormal part by using the measured values of the gas barrier layer thickness and refractive index calculated by the spectral reflectometer 3 and the water vapor permeability by the calcium corrosion method. An estimation model for calculating the water vapor permeability of the gas barrier layer is created. In creating the estimation model, the irradiation light quantity for modifying the polysilazane contained in the gas barrier layer described later greatly affects the refractive index of the gas barrier layer. You may create the database which shows a correspondence relationship with the actual value of the water vapor permeability by a calcium corrosion method.
  • the estimated model creation unit 14a performs a multiple regression analysis using the water vapor permeability obtained by the calcium corrosion method, the layer thickness and the refractive index of the gas barrier layer as explanatory variables, and the water vapor permeability as an objective variable.
  • Create an estimation model of transparency As an example, a graph showing the relationship between the layer thickness and the water vapor permeability is shown in FIG. FIG. 5 shows a graph showing the relationship between the refractive index and the water vapor transmission rate.
  • the estimation model for water vapor transmission rate is a multiple regression analysis based on the relationship between the layer thickness and water vapor transmission rate and the relationship between the refractive index and water vapor transmission rate. Looking for.
  • the estimation model (A) of water vapor permeability is shown below.
  • the water vapor permeability estimation model (B) created by performing multiple regression analysis using the difference from the values of the thickness and refractive index of the gas barrier layer showing the normal value of water vapor permeability is shown.
  • the thickness of the gas barrier layer showing a normal value of water vapor permeability is 250 nm
  • the refractive index is 1.78
  • the water vapor permeability is 1.0 ⁇ 10 ⁇ 6 g / m 2 ⁇ 24 h.
  • the gas barrier layer determination unit 14b determines whether any of the measured layer thickness and refractive index of the gas barrier layer is outside a predetermined range set in advance. Here, if the gas barrier layer determination unit 14b determines that either the measured thickness or refractive index of the measured portion of the gas barrier layer is outside the predetermined range set in advance, the gas barrier layer determination unit 14b determines that it is an abnormal part. On the other hand, if the layer thickness and refractive index of the measured portion of the gas barrier layer are determined to be the layer thickness and refractive index within a predetermined range set in advance, the gas barrier layer determination unit 14b determines that it is a normal part.
  • the predetermined ranges of the layer thickness and the refractive index can be appropriately set depending on the gas barrier film to be measured.
  • the range of the thickness of the gas barrier layer is in the range of 240 to 260 nm
  • the range of the refractive index is in the range of 1.73 to 1.83 as a predetermined range in which the layer thickness and the refractive index are set in advance. can do. In that case, if it is determined that either the layer thickness or the refractive index is out of this range, it is determined as an abnormal part.
  • the thickness of the gas barrier layer is 270 nm and the refractive index is 1.70, it is determined to be out of the predetermined range and determined to be an abnormal part.
  • the water vapor transmission rate calculation unit 14 c calculates the water vapor transmission rate of the entire gas barrier film in the measurement range based on the thickness and refractive index of the gas barrier layer measured by the spectral reflectometer 3. Specifically, the water vapor transmission rate calculation unit 14c calculates the water vapor transmission rate of the portion determined as an abnormal part by the gas barrier layer determination unit 14b using the estimation model.
  • the normal part is a practical gas barrier film, and the water vapor transmission rate does not have to be calculated using the water vapor transmission rate estimation model.
  • the normal part of the gas barrier layer having a layer thickness and a refractive index in a predetermined range has a water vapor permeability equal to or higher than a predetermined value, and the predetermined value is set as a part of the gas barrier layer having a practical water vapor permeability. It can be estimated as transmission.
  • the water vapor permeability of the whole gas barrier film in the measurement range can be calculated by adding the water vapor permeability of the normal part and the water vapor permeability of the abnormal part calculated by the estimation model.
  • the water vapor permeability calculator 14c functions as a water vapor permeability calculator that calculates the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index created by the spectral reflectometer 3.
  • the data processing unit 14 may further include a water vapor permeability distribution calculating unit that calculates a water vapor permeability distribution of the gas barrier film.
  • the water vapor permeability distribution calculating unit may calculate the water vapor permeability distribution of the gas barrier film from the water vapor permeability of the normal part and the abnormal part determined by the data processing unit 14.
  • the water vapor transmission rate distribution calculation unit calculates the water vapor transmission rate calculated by the water vapor transmission rate calculation unit 14c and the normal portion water vapor for the portion of the gas barrier layer determined to be abnormal by the data processing unit 14. From the permeability, a water vapor permeability distribution corresponding to the position coordinates of the gas barrier film may be calculated.
  • the operation display unit 15 may include, for example, an LCD (Liquid Crystal Display), a touch panel provided so as to cover the LCD, various switches and buttons, a numeric keypad, an operation key group, and the like (not shown).
  • the operation display unit 15 receives an instruction from the user and outputs an operation signal to the control unit 11.
  • the operation display unit 15 displays on the LCD an operation screen for displaying various setting instructions for inputting various operation instructions and setting information, various processing results, and the like, in accordance with a display signal output from the control unit 11.
  • the spectral reflectance meter adjustment device 2 adjusts the spectral reflectance meter 3 based on the measurement conditions received from the data processing device 1. Specifically, the spectral reflectance meter adjustment device 2 is configured to measure the measurement conditions received from the data processing device 1, such as the position (height) from the gas barrier film, the wavelength, the measurement interval of the spectral reflectance meter 3, and the moving speed. The spectral reflectometer 3 can be adjusted based on the above.
  • the spectral reflectometer 3 measures the thickness and refractive index of the gas barrier layer of the gas barrier film under the conditions adjusted by the spectral reflectometer adjusting device 2.
  • the spectral reflectometer 3 includes a light receiving unit 31 and a light source 32.
  • the spectral reflectometer 3 is, for example, a spectral reflectometer or an ellipsometer, and can optically measure the gas barrier layer of the gas barrier film to calculate the layer thickness and the refractive index.
  • the spectral reflectometer 3 is a gas barrier film according to the conditions adjusted by the spectral reflectometer adjusting device 2, such as the position (height) of the light receiving unit, the wavelength, the moving direction of the spectral reflectometer, etc.
  • the spectral reflectance of the gas barrier layer is measured, and the layer thickness and refractive index are calculated based on the measured spectral reflectance.
  • the spectral reflectometer 3 preferably measures the gas barrier layer of the gas barrier film every 1 mm 2 . Thereby, the water vapor permeability of the gas barrier layer can be accurately calculated.
  • the spectral reflectometer 3 preferably measures the gas barrier layer at a wavelength in the range of 380 to 1050 nm, and particularly preferably in the range of 380 to 750 nm in the visible light region. Then, the spectral reflectometer 3 transmits the obtained thickness and refractive index of the gas barrier layer to the data processing device 1 via the communication unit 13.
  • the layer thickness and refractive index of only the gas barrier layer can be determined by measuring the layer thickness and refractive index of the substrate and other layers in advance.
  • a spectral reflectometer or an ellipsometer can be suitably selected according to the gas barrier film used as a measuring object. For example, when the gas barrier film is thinner than 10 ⁇ m, an ellipsometer may be used, and when it is 10 ⁇ m or more, a spectral reflectometer may be used.
  • the spectral reflectometer 3 functions as a measuring means for optically measuring the thickness and refractive index of the gas barrier layer.
  • the film observation table 4 preferably includes a film fixing table 41, a biaxial electric stage 42, and an apparatus frame 43.
  • the film observation table 4 can fix the gas barrier film (see FIG. 3) as a sample by the film fixing table 41 and measure the thickness and refractive index of the gas barrier layer with the spectral reflectometer 3. Secure to. Even when the gas barrier film as a sample is wound in a roll shape, for example, the minor axis direction is fixed by the film fixing base 41, the two-axis electric stage is moved at a predetermined speed, and the gas barrier film is By moving the film in the long axis direction, a range wider than the film observation table 4 can be measured with the spectral reflectometer 3.
  • the film observation stand 4 may be connected to the data processing apparatus 1 so as to be able to communicate.
  • the data processing device 1 and the film observing table 4 are connected so that they can communicate with each other, so that the data processing device 1 may set the speed at which the gas barrier film is moved.
  • the data processing device 1 may include an external output device 5 that is communicably connected to the data processing device 1.
  • the external output device 5 may be a general PC (Personal Computer), an image forming device, or the like. Further, the external output device 5 may function as an operation display unit instead of the operation display unit 15 of the data processing device 1.
  • the water vapor permeability is measured for a partial range of the sample by a method such as a calcium corrosion method using a sample equivalent to the sample to be measured. And based on the measured water vapor transmission rate, it is the process which creates the estimation model of the water vapor transmission rate used for the water vapor transmission rate calculation of a gas barrier film.
  • the control unit 11 sets the measurement conditions of the gas barrier layer of the gas barrier film recorded on the recording unit 12, the layer thickness of the normal part, and the refractive index range (step S1). Specifically, the control unit 11 transmits the measurement conditions to the spectral reflectometer 3 via the communication unit 13, and sets a predetermined range of the layer thickness and the refractive index (the range of the normal portion layer thickness and the refractive index). The data is transmitted to the data processing unit 14 and set.
  • the conditions such as the measurement conditions may be set in advance in the recording unit 12, or the user may select the operation display unit 15 according to the state of the sample to be measured and the accuracy of the desired water vapor transmission rate. Can be entered or changed.
  • the spectral reflectometer 3 measures the spectral reflectance of the gas barrier layer of the gas barrier film (step S2). Specifically, the spectral reflectance meter 3 measures the spectral reflectance of the gas barrier layer of the gas barrier film under the measurement conditions and the like input from the data processing device 1.
  • the spectral reflectometer 3 calculates the thickness and refractive index of the gas barrier layer based on the measured spectral reflectance (step S3).
  • the film thickness and refractive index of the gas barrier film can be calculated by analyzing the reflection from the interface between the surface of the gas barrier film and the substrate. Since the layer thickness (film thickness) and refractive index of a layer (film) other than the gas barrier film substrate and the gas barrier layer can be measured in advance, the film thickness and refractive index of the entire gas barrier film should be calculated. Thus, the layer thickness and refractive index of the gas barrier layer alone can be obtained.
  • the water vapor permeability of the gas barrier film is measured using a method such as a calcium corrosion method (step S4).
  • the control part 11 records the measured value of the water vapor permeability of the gas barrier film by the calcium corrosion method in the recording part.
  • the method for measuring the water vapor permeability of the gas barrier film equivalent to the sample to be measured in advance is not limited to the calcium corrosion method, and is less than 1.0 ⁇ 10 ⁇ 6 g / m 2 ⁇ 24 h. Any method capable of measuring the water vapor permeability may be used. In the following description, as an example, an explanation will be given using an actual measured value of water vapor permeability obtained by the calcium corrosion method.
  • the estimation model creation unit 14a creates a water vapor permeability estimation model using the multiple regression analysis from the measured values of the water vapor permeability obtained by the thickness and refractive index of the gas barrier layer and the calcium corrosion method.
  • Step S5 the estimation model creation unit 14a uses a multiple regression analysis method from the measured values of the water vapor permeability obtained by the layer thickness and refractive index of the gas barrier layer and the calcium corrosion method.
  • the estimated model creation unit 14a has a water vapor permeability term based on the normal value of the water vapor permeability set according to the type of the gas barrier film, and the water vapor permeability based on the amount of change in the layer thickness and the refractive index.
  • An estimation model having a change amount term and a correction term is created.
  • the water vapor permeability evaluation process of the gas barrier film is performed by calculating the water vapor permeability in the measurement range of the gas barrier film by using the water vapor permeability estimation model created by the water vapor permeability estimation model creation process. Is a process for evaluating
  • steps S11 to S13 the same processing as in steps S1 to S3 shown in FIG. 6 is performed on the sample to be measured.
  • the gas barrier layer determination unit 14b determines whether or not the layer thickness and the refractive index of the gas barrier layer calculated in step S13 are outside a predetermined range (step S14). Specifically, when the gas barrier layer determination unit 14b determines that the thickness and refractive index of the gas barrier layer of the normal part transmitted to the data processing unit 14 are out of range (step S14; Yes), The relevant part of the gas barrier layer is determined as an abnormal part. For example, in the gas barrier layer determination unit 14b, the thickness of the normal gas barrier layer transmitted to the data processing unit 14 is in the range of 240 to 260 nm, and the refractive index is in the range of 1.73 to 1.78.
  • the gas barrier layer portion having a layer thickness of 250 nm and a refractive index of 1.45 is determined as an abnormal portion.
  • the gas barrier layer determination unit 14b determines that the gas barrier layer is not outside the set range (step S14; No), and the gas barrier layer This part is determined as a normal part.
  • water vapor permeability calculation part 14c is abnormal using an estimated model of water vapor permeability from the layer thickness and refractive index of the gas barrier layer calculated in Step S13.
  • the water vapor permeability of the part is calculated (step S15). Specifically, the water vapor permeability calculation unit 14c calculates the water vapor permeability of the abnormal part using the water vapor permeability estimation model created by the water vapor permeability estimation model creation process.
  • the water vapor transmission rate calculation unit 14c calculates the water vapor transmission rate of the entire gas barrier film in the measurement range from the water vapor transmission rate of the normal part and the water vapor transmission rate of the abnormal part calculated in step S14 (step S16). . Specifically, the water vapor transmission rate calculation unit 14c adds the water vapor transmission rate of the abnormal part calculated by the estimation model and the water vapor transmission rate of the normal part within a predetermined range, thereby obtaining a gas barrier in the measurement range. Calculate the water vapor permeability of the entire film.
  • the water vapor permeability of the normal part can be regarded as being equal to or less than a certain water vapor permeability because the calculated layer thickness and refractive index are within a predetermined range. Yes (step S16). Note that the calculation of the water vapor transmission rate using the normal part estimation model can be omitted from the economical and temporal viewpoints, but the normal part water vapor transmission rate may also be calculated using the estimation model. However, when the water vapor permeability of the normal part is calculated using the estimation model, the correction term k of the estimation model is 0.
  • a manufacturing method of a gas barrier film it is preferable to have the process of evaluating the water vapor permeability of a gas barrier film using the water vapor permeability evaluation method or water vapor permeability evaluation system of a gas barrier film. Since the water vapor permeability evaluation method and the water vapor permeability evaluation system of the gas barrier film measure the water vapor permeability of the entire gas barrier film in a non-destructive and non-contact manner, the water vapor permeability is incorporated into the manufacturing process of the gas barrier film. Can be evaluated.
  • FIG. 3 An example of the gas barrier film to be measured is shown in FIG.
  • the gas barrier film F is comprised from the board
  • the gas barrier film F includes a smooth layer F3 on one surface of the substrate F1, and the gas barrier layer F4 is laminated on the smooth layer F3. Further, a bleed-out prevention layer F2 is provided on the other surface side of the substrate F1.
  • the gas barrier film shown in FIG. 3 is an example, and does not limit the gas barrier film to be measured.
  • the substrate F1 constituting the gas barrier film F examples include a flexible and bendable resin film, but it may be a glass substrate or the like.
  • the substrate F1 is not particularly limited as long as it is a material that can hold the gas barrier layer F4 having gas barrier properties, the smooth layer F3 according to the present invention, and other various functional layers.
  • Examples of the resin material applicable to the substrate F1 include acrylic acid ester, methacrylic acid ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride ( PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyetherimide, etc.
  • Resin film heat-resistant transparent film (product name: Silplus, manufactured by Nippon Steel Chemical Co., Ltd.) based on silsesquioxane having an organic / inorganic hybrid structure, and two or more layers of the above film materials Can be used consists resin film by.
  • films such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polycarbonate (PC) are preferably used from the viewpoints of economy and availability.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • a transparent polyimide film having both heat resistance and transparency for example, a transparent polyimide film (for example, type HM) manufactured by Toyobo Co., Ltd.
  • a transparent polyimide film for example, Neoprim L L-3430 manufactured by Mitsubishi Gas Chemical Co., Ltd. can be preferably used.
  • the thickness of the substrate F1 applied to the present invention is preferably in the range of 5 to 500 ⁇ m, but is preferably 25 to 250 ⁇ m in view of heat resistance and ease of conveyance.
  • the substrate F1 using the above resin material may be an unstretched film or a stretched film.
  • the smooth layer F3 flattens the rough surface of the substrate F1 where minute protrusions and the like are present, so that irregularities and pinholes are not generated in the gas barrier layer F4 and the like formed on the substrate F1 by the protrusions on the surface of the substrate F1. Therefore, it has a function of trapping the amine catalyst and ammonia diffusing from the gas barrier layer as described above, or moisture diffusing from the substrate F1 to the gas barrier layer F4, and the adhesion between each layer is improved. It is a layer that has been given a role to improve.
  • Such a smooth layer F3 may be a compound having at least one urethane bond in the polymer skeleton, for example, and a known polyol compound having at least two hydroxy groups in one molecule and an isocyanate group in one molecule. It is preferable that it is a urethane-cured cured resin using a known polyfunctional isocyanate having two or more. Such a range includes a phenoxy resin crosslinked with isocyanate and a copolymer thereof, and a polyvinyl acetal resin.
  • the gas barrier layer F4 is formed by applying a coating liquid for forming a gas barrier layer containing polysilazane on the smooth layer F3 formed by the above method and drying to form a coating film, and then applying vacuum ultraviolet light to the formed coating film. It is preferable to form it by irradiating and subjecting it to a modification treatment.
  • Coating reforming layer as a gas barrier layer As a method of coating a coating film modifying layer, which is a thin film for forming a gas barrier layer on a substrate and a smooth layer, for example, a gas barrier layer forming coating solution containing polysilazane is applied and dried on the smooth layer.
  • the coating film (polysilazane-containing layer) formed in this manner is subjected to an ultraviolet irradiation treatment that irradiates vacuum ultraviolet light, and converted to a gas barrier layer, which is a polysilazane modified layer having gas barrier properties.
  • the gas barrier layer is formed by subjecting a polysilazane-containing layer formed by applying and drying a gas barrier layer-forming coating solution containing polysilazane to a smooth layer and subjecting the polysilazane-containing layer to a vacuum ultraviolet light irradiation. It can be formed by modifying the gas barrier layer. Moreover, on the polysilazane content layer (gas barrier layer) formed by application
  • the gas barrier layer is preferably formed by a wet coating method in which a coating solution for forming a gas barrier layer containing polysilazane is applied to form a coating film.
  • polysilazane is a polymer having a silicon-nitrogen bond, SiO 2 having a bond such as Si—N, Si—H, N—H, etc., Si 3 N 4 and both intermediate solid solutions SiO x N y. It is a ceramic precursor inorganic polymer composed of, and the like.
  • the wet coating method for coating the gas barrier layer-forming coating solution containing polysilazane can be appropriately selected from conventionally known methods. Specific examples of coating methods include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, cast film formation, bar coating, and gravure printing. It is done.
  • the layer thickness of the polysilazane-containing layer formed on the smooth layer is appropriately set according to the purpose, but the thickness after drying is preferably in the range of 1 nm to 100 ⁇ m, more preferably 10 nm to It is in the range of 10 ⁇ m, and most preferably in the range of 10 nm to 1 ⁇ m.
  • the polysilazane to be applied is preferably a compound that is converted to silica by being ceramicized at a relatively low temperature condition so as to be applied so as not to impair the properties of the substrate to be used.
  • a compound that is converted to silica by being ceramicized at a relatively low temperature condition so as to be applied so as not to impair the properties of the substrate to be used.
  • Compounds are preferred.
  • the polysilazane modification treatment refers to a treatment for converting a part or most of the polysilazane compound into silicon oxide or silicon oxynitride.
  • a conversion reaction using ultraviolet light capable of a conversion reaction at a lower temperature is suitably used from the viewpoint of adapting to a plastic substrate when producing a gas barrier film.
  • the polysilazane coating film (polysilazane-containing layer) from which moisture has been removed is modified by ultraviolet light irradiation treatment.
  • Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures. It is.
  • UV light irradiation O 2 and H 2 O, UV absorbers, polysilazane itself, etc. that contribute to ceramics are excited and activated. And the ceramicization of the excited polysilazane is promoted, and the resulting ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the formation of the coating film.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane layer coating is preferably in the range of 30 to 200 mW / cm 2 , and in the range of 50 to 160 mW / cm 2. Is more preferable. If it is 30 mW / cm 2 or more, there is no concern that the reforming efficiency is lowered, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged, which is preferable.
  • the irradiation amount of vacuum ultraviolet light may be adjusted in accordance with the refractive index of the target gas barrier layer.
  • This protective layer can be formed by applying a protective layer-forming coating solution on the gas barrier layer and then drying.
  • the coating liquid for forming the protective layer is subjected to a predetermined modification treatment (for example, an ultraviolet irradiation treatment for irradiating vacuum ultraviolet light similar to that used for forming a gas barrier layer, A method of forming a protective layer by applying a heat treatment with irradiation with heat rays may be applied.
  • the compound used for forming the protective layer is an organic or inorganic compound, and is preferably a transparent film in the ultraviolet to visible light region.
  • the organic resin include polyester resins, isocyanate resins, urethane resins, An acrylic resin, an ethylene vinyl alcohol resin, a vinyl modified resin, an epoxy resin, a modified styrene resin, a modified silicon resin, an acetal resin, or the like can be used alone or in combination. Conventionally known additives can be added to these resins. And after preparing the coating liquid for protective layer formation by melt
  • the protective layer can be formed by coating on the gas barrier layer by a known wet coating method such as spray coating, and then drying and removing the solvent, diluent and the like.
  • the coating amount is preferably within a range of 0.01 to 1 g / m 2 (dry state).
  • the protective layer is laminated on a gas barrier layer (polysilazane-containing layer) provided on the smooth layer.
  • a protective layer-forming coating solution prepared by dissolving and dispersing the compound in a solvent having a low moisture content is used in a low humidity environment. It is preferable to form by applying and drying.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%)
  • a more preferable dew point temperature is ⁇ 8 ° C. (temperature 25 ° C./humidity 10%) or lower
  • a more preferable dew point temperature is ⁇ 31 ° C. (temperature 25 ° C./temperature). Humidity 1%) or less.
  • the thickness of the protective layer is usually in the range of 1 to 1000 nm, preferably in the range of 10 to 500 nm. In the present invention, if the thickness of the protective layer is within the range specified above, it is easy to ensure the uniformity of the protective layer coating film to be formed, and the gas barrier layer is protected from scratches and stress during bending. Can be protected.
  • a bleed-out prevention layer F2 may be formed on the opposite side of the substrate F1 from the smooth layer.
  • the bleed-out prevention layer F2 is for the purpose of suppressing the phenomenon that unreacted oligomers migrate from the substrate F1 to the surface of the substrate F1 when the substrate (film) having the smooth layer F3 is heated to contaminate the film surface. And provided on the opposite surface of the substrate F1 having the smooth layer F3.
  • the bleed-out prevention layer F2 may basically have the same configuration as the smoothing layer F3 as long as it has this function.
  • the molecule As an unsaturated organic compound having a polymerizable unsaturated group (hereinafter also referred to as a hard coat agent) that can be included in the bleed-out prevention layer F2, the molecule has two or more polymerizable unsaturated groups. Examples thereof include polyunsaturated organic compounds and unit price unsaturated organic compounds having one polymerizable unsaturated group in the molecule.
  • the thickness of the gas barrier layer is in the range of 240 to 260 nm, and the range of the gas barrier layer in which the refractive index is in the range of 1.73 to 1.78 is outside the normal range.
  • the water vapor transmission rate was calculated using as an abnormal part.
  • a polyethylene terephthalate (PET) substrate (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m that is easily bonded on both sides is used as the substrate F1, and the sheet-like substrate F1 has a temperature of 25 ° C. and a relative humidity of 55%.
  • a bleed-out prevention layer F2 on one side and a smooth layer F3 on the opposite side were prepared and used as described below.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied by spin coating using a spin coater MS-A100 manufactured by Mikasa so that the layer thickness after drying was 4 ⁇ m. Then, using a high-pressure mercury lamp under air, curing and drying were performed under a curing condition of 1.0 J / cm 2 and a drying condition of 80 ° C. for 3 minutes to form a bleed-out prevention layer.
  • Two-component polyurethane resin paint Washin Coat MP-6103A (normal butyl acetate solution with a solid content of 40% by mass); Tolylene diisocyanate modified isocyanate resin (Material having an isocyanate group) and Washin Coat MP-6103B (a toluene / methyl ethyl ketone mixed solution having a solid content concentration of 30% by mass); a modified polyester resin (polyol) having a mass ratio of hydroxy groups to isocyanate groups in the polyol of 1:
  • a coating solution diluted with a 1/1 mixed solvent of methyl ethyl ketone / methyl isobutyl ketone was prepared so that the solid content concentration as the coating solution was 10% by mass.
  • the obtained coated sample was treated with dry air at a temperature of 95 ° C. and a dew point of ⁇ 5 ° C. for 2 minutes to obtain a sample in which a polysilazane-containing layer was formed on the smooth layer F3 on the upper surface of the substrate F1.
  • each sample was irradiated with vacuum ultraviolet light (excimer modification treatment) under the following apparatus and conditions to modify the polysilazane-containing layer to form a gas barrier layer.
  • Excimer modification treatment The sample after the polysilazane coating film was dried and the polysilazane-containing layer was formed was subjected to an excimer modification treatment with the following apparatus and conditions to modify the polysilazane-containing layer to form a gas barrier layer F4.
  • Excimer irradiation device MODEL MECL-M-1-200 manufactured by M.D.Com Wavelength: 172nm Lamp filled gas: Xe ⁇ Reforming treatment conditions> Average excimer light intensity: 130 mW / cm 2 (172 nm) Distance between sample and light source: 2mm Stage heating temperature: 95 ° C Oxygen concentration in the irradiation apparatus: Maintaining 0.1% by volume or less Stage transport speed during excimer light irradiation: 10 mm / sec Number of stage transport times during excimer light irradiation: Accumulated amount of excimer light exposure on the sample surface is 5000 mJ / Adjust to be cm 2 .
  • a substrate (gas barrier film) on which the above gas barrier layer was formed was further prepared in order to obtain an actual measurement value by the calcium corrosion method. evaluated.
  • Vapor deposition equipment JEOL-made vacuum vapor deposition equipment JEE-400
  • Constant temperature and humidity oven Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular)
  • Water vapor impermeable metal Aluminum ( ⁇ 3-5mm, granular)
  • Metallic calcium was vapor-deposited on the surface of the protective layer of the gas barrier film sample using a vacuum evaporation apparatus (JEOL-made vacuum evaporation apparatus JEE-400).
  • the metal calcium vapor deposition surface is bonded and bonded to quartz glass having a thickness of 0.2 mm via a sealing ultraviolet curable resin (manufactured by Nagase ChemteX) and irradiated with ultraviolet rays.
  • a sealing ultraviolet curable resin manufactured by Nagase ChemteX
  • An evaluation cell was produced.
  • test piece described in Japanese Patent Application Laid-Open No. 2005-283561 is imaged under a constant temperature and humidity environment, and the obtained image is subjected to image processing to calculate corroded calcium and obtained based on a method of measuring water vapor permeability.
  • the obtained sample (evaluation cell) was stored under conditions of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell was evaluated from the corrosion amount of metallic calcium.
  • Water vapor permeability (g / m 2 ⁇ 24h) 1.0 ⁇ 10 ⁇ 6 ⁇ 2.7 ⁇ 10 ⁇ 7 ⁇ ⁇ d ⁇ 1.7 ⁇ 10 ⁇ 4 ⁇ ⁇ n + k ⁇ n is a difference in refractive index between the gas barrier layer of the normal part and the gas barrier layer of the gas barrier film to be measured.
  • ⁇ d is a difference in layer thickness between the gas barrier layer of the normal part and the gas barrier layer of the gas barrier film to be measured.
  • the constant k is a correction term for the water vapor transmission rate obtained from an actual measurement value by a multiple regression analysis and a calcium corrosion method.
  • the thickness and refractive index of the gas barrier layer were measured in the same manner as the gas barrier film used for calculating the water vapor permeability estimation model by the calcium corrosion method.
  • the portion of the gas barrier layer determined to be out of the predetermined range is determined as an abnormal portion, and within the predetermined range
  • the portion of the gas barrier layer that was determined to be present was determined as the normal portion.
  • the portion determined to be a normal portion was designated as sample number 1
  • the portion determined to be an abnormal portion was designated as sample numbers 2 to 4.
  • the water vapor transmission rate was measured based on the estimated model for sample numbers 2 to 4. Calculated.
  • the water vapor permeability (normal value of water vapor permeability) of the normal part is 1.0 ⁇ 10 ⁇ 6 g / m 2 ⁇ 24 h or less. The results are shown in Table 1.
  • the water vapor permeability evaluation system for the gas barrier film of the present invention can calculate the water vapor permeability of the entire gas barrier film in a non-destructive and non-contact manner, and the water vapor permeability evaluation system is deteriorated by a gas such as water vapor. Therefore, it may be used in the field of inspecting the quality of gas barrier films used in electronic devices such as organic EL elements.

Abstract

The present invention addresses the problem of providing a non-destructive, non-contact water vapor transmission rate evaluation method for a gas barrier film that makes it possible to calculate the water vapor transmission rate for the entirety of a gas barrier film having a gas barrier layer. Further, the invention also addresses the problems of providing a water vapor transmission rate evaluation system and a gas barrier film production method that use said water vapor transmission rate evaluation method. The water vapor transmission rate evaluation method according to the present invention is a water vapor transmission rate evaluation method for evaluating the water vapor transmission rate of a gas barrier film (F) on the basis of the layer thickness and refractive index of a gas barrier layer (F4) of the gas barrier film (F) and is characterized by the inclusion of a measurement step for measuring the layer thickness and refractive index of the gas barrier layer (F4) and a water vapor transmission rate calculation step for calculating the overall water vapor transmission rate of the gas barrier film (F) within a measurement range.

Description

水蒸気透過度評価方法、水蒸気透過度評価システム及びガスバリアーフィルムの製造方法Water vapor permeability evaluation method, water vapor permeability evaluation system and gas barrier film manufacturing method
 本発明は、水蒸気透過度評価方法に関する。また、当該水蒸気透過度評価方法を用いた水蒸気透過度評価システム及びガスバリアーフィルムの製造方法に関する。より詳しくは、検査効率が改善された水蒸気透過度評価方法等に関する。 The present invention relates to a method for evaluating water vapor permeability. The present invention also relates to a water vapor permeability evaluation system and a gas barrier film manufacturing method using the water vapor permeability evaluation method. More specifically, the present invention relates to a method for evaluating water vapor permeability with improved inspection efficiency.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム又は酸化ケイ素等の金属酸化物を含む薄膜(ガスバリアー層)を形成したガスバリアーフィルムは、水蒸気や酸素等の各種ガスによる変質を防止するため、各種ガスの遮断を必要とする物品を包装する用途で広く用いられている。また、上記包装用途以外にも、各種ガスによる変質を防止するため、太陽電池、液晶表示素子又は有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)等の電子デバイスを封止する用途にも使用されている。ガスバリアーフィルムは、ガラス基板と比べてフレキシブル性に優れており、ロール式での生産適性や、電子デバイスの軽量化及び取り扱い性の点において優位である。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. For this reason, it is widely used in applications for packaging articles that require blocking of various gases. In addition to the above packaging applications, in order to prevent deterioration due to various gases, the present invention is also used for sealing electronic devices such as solar cells, liquid crystal display elements or organic electroluminescent elements (hereinafter also referred to as organic EL elements). in use. A gas barrier film is superior in flexibility to a glass substrate, and is superior in terms of roll-type production suitability, weight reduction and handling of electronic devices.
 しかしながら、透明プラスチック等のフィルム基板は、ガラス基板に対しガスバリアー性が劣るという問題がある。ガスバリアー性が劣る基板を用いると、水蒸気や酸素が浸透してしまい、例えば、電子デバイス内の機能を劣化させてしまうという問題があることが分かっている。 However, a film substrate such as a transparent plastic has a problem that gas barrier properties are inferior to a glass substrate. It has been found that when a substrate with inferior gas barrier properties is used, water vapor or oxygen penetrates and, for example, the function in the electronic device is deteriorated.
 従来から用いられてきた水蒸気透過度の評価は、カップ法(JIS Z 0208-1976)やいわゆるモコン法(JIS K 7129-1992 B法)等である。これらの方法のうち、測定可能な範囲の広いモコン法であっても水蒸気透過度が5×10-2~5×10g/m・24hの範囲が対象となっている。しかし、液晶基板や有機EL基板等には、更に高感度の水蒸気透過度の評価が要求されている。 Conventionally used evaluation of water vapor permeability is the cup method (JIS Z 0208-1976), the so-called Mokon method (JIS K 7129-1992 B method), and the like. Among these methods, even the Mokon method, which has a wide measurable range, covers the range of water vapor permeability of 5 × 10 −2 to 5 × 10 3 g / m 2 · 24 h. However, liquid crystal substrates, organic EL substrates, and the like are required to evaluate water vapor permeability with higher sensitivity.
 ガスバリアーフィルムのガスバリアー性を評価する方法として、上記方法に加えて、水蒸気透過度を測定するカルシウム腐食法(以下、カルシウム法又はCa法ともいう。)が知られている。この方法は、内側にカルシウムの膜を成膜したフィルムを試験片として、恒温恒湿環境下に置き、フィルムを透過した水蒸気と反応して腐食したカルシウムの量を画像処理等で測定し、フィルムの水蒸気透過度を算出する。カルシウム腐食法は、従来のモコン法等よりも高感度に水蒸気透過度を算出することができるが、サンプル試料の一部を抜き取る破壊法である。 As a method for evaluating the gas barrier property of a gas barrier film, in addition to the above method, a calcium corrosion method (hereinafter also referred to as a calcium method or a Ca method) for measuring water vapor permeability is known. In this method, a film having a calcium film formed on the inside is used as a test piece, placed in a constant temperature and humidity environment, and the amount of calcium corroded by reacting with water vapor that has passed through the film is measured by image processing or the like. The water vapor permeability is calculated. The calcium corrosion method can calculate the water vapor transmission rate with higher sensitivity than the conventional mocon method or the like, but is a destruction method in which a part of a sample is extracted.
 また、質量分析計等を用いて水蒸気透過度を評価する方法(例えば、特許文献1参照。)や、マーカー部を有する機能性素子について、マーカー部の屈折率を基準にガスバリアー層の優劣を検査する方法(例えば、特許文献2参照。)が知られている。 In addition, with respect to a method for evaluating water vapor permeability using a mass spectrometer or the like (for example, see Patent Document 1) and a functional element having a marker part, the superiority or inferiority of the gas barrier layer is determined based on the refractive index of the marker part. An inspection method (for example, see Patent Document 2) is known.
 しかしながら、特許文献1に記載の方法は、カルシウム腐食法と同様に、サンプル試料を一部抜き取る破壊法である。また、特許文献2に記載の方法は、ガスバリアーフィルムの一様性を前提とした部分評価であり、ガスバリアーフィルム全体の水蒸気透過度を保障するものではない。 However, the method described in Patent Document 1 is a destruction method in which a part of a sample specimen is extracted as in the calcium corrosion method. The method described in Patent Document 2 is a partial evaluation based on the premise of the uniformity of the gas barrier film, and does not guarantee the water vapor permeability of the entire gas barrier film.
 また、特許文献3には、ガスバリアー性積層フィルムの測定した膜厚に基づいて屈折率を算出し、差圧法による測定した水蒸気透過度との関係から前記フィルムのガスバリアー性を判定する方法が記載されている。 Patent Document 3 discloses a method for calculating a refractive index based on a measured film thickness of a gas barrier laminate film and determining a gas barrier property of the film from a relationship with a water vapor permeability measured by a differential pressure method. Are listed.
 しかしながら、特許文献3の方法は、水蒸気透過度と屈折率の実測値に基づく相関からガスバリアー膜の不良をおおまかに判定するものであり、水蒸気透過度を算出するものではない。 However, the method of Patent Document 3 roughly determines a gas barrier film failure from a correlation based on the measured values of water vapor permeability and refractive index, and does not calculate water vapor permeability.
特許第4759096号公報Japanese Patent No. 4759096 特開2005-317286号公報JP 2005-317286 A 特開2013-44542号公報JP 2013-44542 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、非破壊・非接触で、ガスバリアー層を有するガスバリアーフィルム全体の水蒸気透過度を算出することが可能な水蒸気透過度評価方法を提供することである。また、当該水蒸気透過度評価方法を用いた水蒸気透過度評価システム及びガスバリアーフィルムの製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to the problem is water vapor that can be calculated non-destructively and non-contact, and the water vapor permeability of the entire gas barrier film having a gas barrier layer. It is to provide a transmittance evaluation method. Moreover, it is providing the manufacturing method of the water vapor permeability evaluation system and gas barrier film which used the said water vapor permeability evaluation method.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討したところ、ガスバリアー層を有するガスバリアーフィルムの層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出することで本発明の課題を解決できることを見出し本発明に至った。 In order to solve the above problems, the present inventor examined the cause of the above problems and the like, and based on the thickness and refractive index of the gas barrier film having the gas barrier layer, the water vapor permeation of the entire gas barrier film in the measurement range. The inventors have found that the problem of the present invention can be solved by calculating the degree, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づきガスバリアーフィルムの水蒸気透過度を評価する水蒸気透過度評価方法であって、
(1)前記ガスバリアー層の層厚及び屈折率を光学的に測定する測定ステップと、
(2)前記測定ステップにより測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出ステップと、
 を含むことを特徴とする水蒸気透過度評価方法。
That is, the said subject which concerns on this invention is solved by the following means.
1. A water vapor permeability evaluation method for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film,
(1) a measuring step for optically measuring the thickness and refractive index of the gas barrier layer;
(2) a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring step;
The water vapor permeability evaluation method characterized by including.
 2.前記水蒸気透過度算出ステップでは、カルシウム腐食法により測定されたガスバリアーフィルムの水蒸気透過度、ガスバリアー層の層厚及び屈折率に基づいて作成される水蒸気透過度の推定モデルを用いて水蒸気透過度を算出することを特徴とする第1項に記載の水蒸気透過度評価方法。 2. In the water vapor permeability calculation step, the water vapor permeability is estimated using a water vapor permeability estimation model created based on the water vapor permeability of the gas barrier film, the thickness of the gas barrier layer and the refractive index measured by the calcium corrosion method. The water vapor permeability evaluation method according to item 1, wherein the water vapor permeability is calculated.
 3.前記水蒸気透過度の推定モデルが、あらかじめ設定された水蒸気透過度の項と、あらかじめ設定された層厚及び屈折率からの変化量に基づく水蒸気透過度の変化量の項と、補正項とを有することを特徴とする第2項に記載の水蒸気透過度評価方法。 3. The estimation model of water vapor permeability includes a preset water vapor permeability term, a preset water vapor permeability change amount based on a change amount from a predetermined layer thickness and refractive index, and a correction term. The water vapor permeability evaluation method according to item 2, characterized in that:
 4.測定対象のガスバリアー層が、基板にポリシラザンを含有する塗布液を塗布し、乾燥して得られる層に、真空紫外光を照射して改質することにより形成されたガスバリアー層であることを特徴とする第1項から第3項までのいずれか一項に記載の水蒸気透過度評価方法。 4. The gas barrier layer to be measured is a gas barrier layer formed by applying a coating liquid containing polysilazane to a substrate and drying the layer to modify it by irradiating with vacuum ultraviolet light. The water vapor permeability evaluation method according to any one of items 1 to 3, which is a characteristic.
 5.前記測定ステップでは、前記層厚及び屈折率を分光反射率計又はエリプソメーターを用いて測定することを特徴とする第1項から第4項までのいずれか一項に記載の水蒸気透過度評価方法。 5. The water vapor permeability evaluation method according to any one of claims 1 to 4, wherein in the measurement step, the layer thickness and the refractive index are measured using a spectral reflectometer or an ellipsometer. .
 6.ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づきガスバリアーフィルムの水蒸気透過度を評価する水蒸気透過度評価システムであって、
(1)前記ガスバリアー層の層厚及び屈折率を光学的に測定する測定手段と、
(2)前記測定手段により測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出手段と、
 を含むことを特徴とする水蒸気透過度評価システム。
6). A water vapor permeability evaluation system for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film,
(1) measuring means for optically measuring the thickness and refractive index of the gas barrier layer;
(2) Water vapor permeability calculating means for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring means;
A water vapor transmission rate evaluation system comprising:
 7.前記ガスバリアーフィルムを製造する工程において、当該ガスバリアーフィルムの水蒸気透過度を評価するために用いられることを特徴とする第6項に記載の水蒸気透過度評価システム。 7. The water vapor permeability evaluation system according to claim 6, which is used for evaluating the water vapor permeability of the gas barrier film in the step of producing the gas barrier film.
 8.第1項から第5項までのいずれか一項に記載のガスバリアーフィルムの水蒸気透過度評価方法を用いて、ガスバリアーフィルムの水蒸気透過度を評価する工程を有することを特徴とするガスバリアーフィルムの製造方法。 8. A gas barrier film comprising a step of evaluating the water vapor permeability of a gas barrier film using the method for evaluating the water vapor permeability of a gas barrier film according to any one of items 1 to 5. Manufacturing method.
 本発明の上記手段により、非破壊・非接触で、ガスバリアー層を有するガスバリアーフィルム全体の水蒸気透過度を算出することが可能な水蒸気透過度評価方法を提供することができる。また、当該水蒸気透過度評価方法を用いた水蒸気透過度評価システム及びガスバリアーフィルムの製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a water vapor permeability evaluation method capable of calculating the water vapor permeability of the entire gas barrier film having a gas barrier layer in a nondestructive and non-contact manner. In addition, a water vapor permeability evaluation system using the water vapor permeability evaluation method and a gas barrier film manufacturing method can be provided.
 フィルム基板を用いる有機エレクトロルミネッセンス素子等の電子デバイスにおいて、水蒸気に対する高いガスバリアー性を有するフィルム基板が必須であり、フィルム基板の不均一性等による水蒸気透過度の上昇が電子デバイスの劣化につながる。そこで、ガスバリアー層を有するガスバリアーフィルムの層厚及び屈折率を測定し、当該層厚及び屈折率を用いてガスバリアーフィルム全体の水蒸気透過度を算出することで、フィルムが非破壊・非接触の状態で、信頼性の高い水蒸気透過度が得られることを見出した。 In an electronic device such as an organic electroluminescence element using a film substrate, a film substrate having a high gas barrier property against water vapor is essential, and an increase in water vapor permeability due to non-uniformity of the film substrate leads to deterioration of the electronic device. Therefore, the thickness and refractive index of a gas barrier film having a gas barrier layer are measured, and the water vapor permeability of the entire gas barrier film is calculated using the layer thickness and refractive index, so that the film is non-destructive and non-contact. It was found that a highly reliable water vapor permeability can be obtained in this state.
本発明に係る水蒸気透過度評価システムの一例を示す概略構成図Schematic configuration diagram showing an example of a water vapor permeability evaluation system according to the present invention 本発明に係る水蒸気透過度評価システムの主要構成を示すブロック図The block diagram which shows the main structures of the water-vapor-permeation evaluation system based on this invention 本発明に係るガスバリアーフィルムの一例を示す断面図Sectional drawing which shows an example of the gas barrier film which concerns on this invention 層厚と水蒸気透過度の関係を示す概念図Conceptual diagram showing the relationship between layer thickness and water vapor permeability 屈折率と水蒸気透過度の関係を示す概念図Conceptual diagram showing the relationship between refractive index and water vapor transmission rate 水蒸気透過度推定モデル作成処理の流れを示すフローチャートFlow chart showing flow of water vapor permeability estimation model creation process 水蒸気透過度評価システムによる水蒸気透過度評価処理の流れを示すフローチャートFlow chart showing the flow of water vapor permeability evaluation processing by the water vapor permeability evaluation system
 本発明の水蒸気透過度評価方法は、ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づきガスバリアーフィルムの水蒸気透過度を評価する水蒸気透過度評価方法であって、ガスバリアー層の層厚及び屈折率を光学的に測定する測定ステップと、測定ステップにより測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出ステップと、を含むことを特徴とする。この特徴は、請求項1から請求項8に係る発明に共通する技術的特徴である。 The water vapor permeability evaluation method of the present invention is a water vapor permeability evaluation method for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film, and the layer thickness of the gas barrier layer And a measuring step for optically measuring the refractive index, and a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measuring range based on the layer thickness and the refractive index measured by the measuring step. It is characterized by including. This feature is a technical feature common to the inventions according to claims 1 to 8.
 本発明の実施態様としては、本発明の効果をより発現できる点で、前記水蒸気透過度算出ステップでは、カルシウム腐食法により測定されたガスバリアーフィルムの水蒸気透過度、ガスバリアー層の層厚及び屈折率に基づいて作成される水蒸気透過度の推定モデルを用いて水蒸気透過度を算出することが好ましい。これにより、非破壊・非接触の状態で実測値に近い水蒸気透過度を算出することができる。 As an embodiment of the present invention, in the water vapor permeability calculation step, the water vapor permeability of the gas barrier film measured by the calcium corrosion method, the layer thickness of the gas barrier layer, and the refraction in that the effect of the present invention can be expressed more. It is preferable to calculate the water vapor transmission rate using an estimation model of the water vapor transmission rate created based on the rate. Thereby, the water vapor transmission rate close to the actual measurement value can be calculated in a non-destructive and non-contact state.
 また、本発明においては、前記水蒸気透過度の推定モデルが、あらかじめ設定された水蒸気透過度の項と、あらかじめ設定された層厚及び屈折率からの変化量に基づく水蒸気透過度の変化量の項と、補正項とを有することが好ましい。これにより、層厚又は屈折率が所定の範囲から僅かに外れる部分についても正確な水蒸気透過度を算出することができる。 Further, in the present invention, the estimation model of the water vapor transmission rate includes a predetermined water vapor transmission rate term and a change amount of water vapor transmission rate based on a change amount from a preset layer thickness and refractive index. And a correction term. Thereby, an accurate water vapor transmission rate can be calculated even for a portion where the layer thickness or the refractive index slightly deviates from the predetermined range.
 また、本発明においては、測定対象のガスバリアー層が、基板にポリシラザンを含有する塗布液を塗布し、乾燥して得られる層に、真空紫外光を照射して改質することにより形成されたガスバリアー層であることが好ましい。これにより、高いガスバリアー性のガスバリアーフィルムについても正確な水蒸気透過度を算出することができる。 Further, in the present invention, the gas barrier layer to be measured was formed by applying a coating liquid containing polysilazane to a substrate and drying the layer obtained by irradiation with vacuum ultraviolet light to modify the layer. A gas barrier layer is preferred. Thereby, an accurate water vapor permeability can be calculated for a gas barrier film having a high gas barrier property.
 また、本発明においては、前記測定ステップでは、前記層厚及び屈折率を分光反射率計又はエリプソメーターを用いて測定することが好ましい。これにより、多層膜であっても膜厚(層厚)と屈折率を同時に非接触で測定することができる。 In the present invention, it is preferable that in the measurement step, the layer thickness and the refractive index are measured using a spectral reflectometer or an ellipsometer. Thereby, even if it is a multilayer film, a film thickness (layer thickness) and a refractive index can be simultaneously measured in a non-contact manner.
 また、本発明の水蒸気透過度評価システムとしては、ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づきガスバリアーフィルムの水蒸気透過度を評価する水蒸気透過度評価システムであって、
(1)前記ガスバリアー層の層厚及び屈折率を光学的に測定する測定手段と、
(2)前記測定手段により測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出手段と、
 を含むことを特徴とする。光学的に測定したガスバリアー層の層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出しているため、非破壊、非接触で広範囲に水蒸気透過度を得ることができる。
The water vapor permeability evaluation system of the present invention is a water vapor permeability evaluation system for evaluating the water vapor permeability of a gas barrier film based on the layer thickness and refractive index of the gas barrier layer of the gas barrier film,
(1) measuring means for optically measuring the thickness and refractive index of the gas barrier layer;
(2) Water vapor permeability calculating means for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring means;
It is characterized by including. Based on the optically measured thickness and refractive index of the gas barrier layer, the water vapor permeability of the entire gas barrier film in the measurement range is calculated. Can do.
 また、本発明の水蒸気透過度評価システムとしては、前記ガスバリアーフィルムを製造する工程において、当該ガスバリアーフィルムの水蒸気透過度を評価するために用いられることが好ましい。ガスバリアーフィルムの水蒸気透過度の評価が製造工程に組み込まれていることで、水蒸気透過度と製造条件を対応付けることが容易となる。 Moreover, the water vapor permeability evaluation system of the present invention is preferably used for evaluating the water vapor permeability of the gas barrier film in the step of producing the gas barrier film. Since the evaluation of the water vapor permeability of the gas barrier film is incorporated in the production process, it becomes easy to associate the water vapor permeability with the production conditions.
 また、本発明のガスバリアーフィルムの製造方法としては、前記ガスバリアーフィルムの水蒸気透過度評価方法を用いて、ガスバリアーフィルムの水蒸気透過度を評価する工程を有することが、時間的・経済的な観点から好ましい。 In addition, as a method for producing the gas barrier film of the present invention, it is temporally and economically to have a step of evaluating the water vapor permeability of the gas barrier film using the water vapor permeability evaluation method of the gas barrier film. It is preferable from the viewpoint.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 <水蒸気透過度評価方法の概要>
 本発明の水蒸気透過度評価方法は、ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づいて、ガスバリアー層の層厚及び屈折率を光学的に測定する測定ステップと、測定ステップにより測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出ステップと、を含むことを特徴とする。
 具体的には、太陽電池、液晶表示素子又は有機EL素子等の電子デバイスに用いられるガスバリアーフィルムについて、ガスバリアーフィルムのガスバリアー層の層厚及び屈折率を測定する。次に、測定された層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する。
<Outline of water vapor permeability evaluation method>
The method for evaluating water vapor permeability of the present invention comprises a measurement step for optically measuring the thickness and refractive index of a gas barrier layer based on the thickness and refractive index of the gas barrier layer of the gas barrier film, and a measurement step. And a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and the refractive index.
Specifically, for a gas barrier film used in an electronic device such as a solar cell, a liquid crystal display element, or an organic EL element, the thickness and refractive index of the gas barrier layer of the gas barrier film are measured. Next, based on the measured layer thickness and refractive index, the water vapor permeability of the entire gas barrier film in the measurement range is calculated.
 測定ステップでは、ガスバリアー層の層厚及び屈折率を分光反射率計又はエリプソメーターを用いて測定することが好ましい。
 例えば、分光反射率計を用いて、ガスバリアー層の表面を1mm毎に測定し、層厚及び屈折率を算出してもよい。ガスバリアー層の座標情報とともにガスバリアー層の層厚及び屈折率を算出することがより好ましい。これにより、所定の範囲内のガスバリアー層の層厚及び屈折率を位置情報と関連付けて取得することができる。
In the measurement step, the thickness and refractive index of the gas barrier layer are preferably measured using a spectral reflectometer or an ellipsometer.
For example, the thickness of the layer and the refractive index may be calculated by measuring the surface of the gas barrier layer every 1 mm 2 using a spectral reflectometer. It is more preferable to calculate the thickness and refractive index of the gas barrier layer together with the coordinate information of the gas barrier layer. Thereby, the layer thickness and refractive index of the gas barrier layer within a predetermined range can be obtained in association with the position information.
 水蒸気透過度算出ステップでは、カルシウム腐食法により測定されたガスバリアーフィルムの水蒸気透過度、ガスバリアー層の層厚及び屈折率に基づいて作成される水蒸気透過度の推定モデルを用いて水蒸気透過度を算出することが好ましい。
 具体的には、水蒸気透過度算出ステップでは、測定対象となるガスバリアーフィルムについて、目的とする水蒸気透過度の範囲に合わせて、最適な水蒸気透過度の推定モデルを作成する。
In the water vapor permeability calculation step, the water vapor permeability is calculated using an estimated model of water vapor permeability created based on the water vapor permeability of the gas barrier film measured by the calcium corrosion method, the layer thickness of the gas barrier layer, and the refractive index. It is preferable to calculate.
Specifically, in the water vapor permeability calculation step, an optimum water vapor permeability estimation model is created for the gas barrier film to be measured in accordance with the target water vapor permeability range.
 水蒸気透過度の推定モデルは、あらかじめ設定された水蒸気透過度の項と、あらかじめ設定された層厚及び屈折率からの変化量に基づく水蒸気透過度の変化量の項と、補正項とを有することが好ましい。
 具体的には、水蒸気透過度が層厚及び屈折率と相関があるため、水蒸気透過度の推定モデルは、カルシウム腐食法により得られた水蒸気透過度を用いて、層厚及び屈折率を変化量とする重回帰分析を行って求めることができる。重回帰分析により、水蒸気透過度の項と、あらかじめ設定された層厚及び屈折率からの変化量に基づく水蒸気透過度の変化量の項と、補正項とを有する水蒸気透過度の推定モデルが得られる。
The estimation model of water vapor permeability has a preset water vapor permeability term, a preset water vapor permeability change amount based on a change amount from the layer thickness and refractive index, and a correction term. Is preferred.
Specifically, since the water vapor permeability is correlated with the layer thickness and the refractive index, the water vapor permeability estimation model uses the water vapor permeability obtained by the calcium corrosion method to change the layer thickness and the refractive index. Can be obtained by performing multiple regression analysis. Multiple regression analysis yields an estimated model for water vapor transmission rate, which has a water vapor transmission rate term, a water vapor transmission rate change term based on a preset change in thickness and refractive index, and a correction term. It is done.
 次に、測定ステップにより測定されたガスバリアー層の層厚及び屈折率が所定の範囲外であるか否かを判定する。
 具体的には、ガスバリアーフィルムの種類等に応じて、測定されたガスバリアー層の層厚及び屈折率があらかじめ設定された所定範囲外であるか否かを判定する。例えば、ガスバリアー層の層厚及び屈折率のうち少なくとも一方が所定範囲外であると判定されると、異常部と判断する。ガスバリアー層の層厚及び屈折率のうち少なくとも一方が所定範囲外であると水蒸気透過度が実用に耐える値よりも低い場合が多いことから、水蒸気透過度を算出することで、実用可能であるか否かを確認することが有効である。
 なお、ガスバリアーフィルムのガスバリアー層に求められる層厚及び屈折率の所定の範囲は、ガスバリアーフィルム毎に設定することができる。
Next, it is determined whether or not the thickness and refractive index of the gas barrier layer measured by the measurement step are outside a predetermined range.
Specifically, it is determined whether or not the measured thickness and refractive index of the gas barrier layer are outside a predetermined range set in advance according to the type of the gas barrier film. For example, when it is determined that at least one of the thickness and refractive index of the gas barrier layer is outside a predetermined range, it is determined as an abnormal portion. Since at least one of the thickness and refractive index of the gas barrier layer is out of the predetermined range, the water vapor transmission rate is often lower than the practical value, so that it is practical by calculating the water vapor transmission rate. It is effective to check whether or not.
The predetermined thickness and refractive index ranges required for the gas barrier layer of the gas barrier film can be set for each gas barrier film.
 そして、測定ステップにより測定されたガスバリアー層の層厚及び屈折率に基づいて、所定の範囲外の層厚又は屈折率を有するガスバリアー層の部分、すなわち、異常部の水蒸気透過度を、推定モデルを用いて算出する。
 なお、層厚及び屈折率が所定の範囲内のガスバリアー層の部分(以下、正常部とする。)は、ガスバリアーフィルムとして求められる水蒸気透過度を満たしていると考えられるため、規定の値以上の水蒸気透過度とすることができる。
Based on the thickness and refractive index of the gas barrier layer measured in the measuring step, the gas barrier layer portion having a layer thickness or refractive index outside the predetermined range, that is, the water vapor permeability of the abnormal portion is estimated. Calculate using the model.
The portion of the gas barrier layer whose layer thickness and refractive index are within the predetermined range (hereinafter referred to as a normal portion) is considered to satisfy the water vapor permeability required for a gas barrier film, and thus is a specified value. The above water vapor permeability can be obtained.
 次に、水蒸気透過度算出ステップでは、推定モデルにより算出された異常部の水蒸気透過度と、正常部の水蒸気透過度を合わせて測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する。
 以下の説明においては、正常部の水蒸気透過度は規定の値以上であるとして、推定モデルを用いて算出していないが、推定モデルを用いて水蒸気透過度を算出するよう適宜設定することができる。
Next, in the water vapor permeability calculation step, the water vapor permeability of the entire gas barrier film in the measurement range is calculated by combining the water vapor permeability of the abnormal part calculated by the estimation model and the water vapor permeability of the normal part.
In the following description, it is assumed that the water vapor permeability of the normal part is equal to or higher than a specified value, but is not calculated using the estimation model, but can be appropriately set to calculate the water vapor permeability using the estimation model. .
 <水蒸気透過度評価システムの構成>
 本発明のガスバリアーフィルムの水蒸気透過度評価方法を用いるガスバリアーフィルムの水蒸気透過度評価システム100の構成の一例として、図1に示す。ガスバリアーフィルムの水蒸気透過度評価システム100の機能ブロック図を図2に示す。
 図1に示すとおり、本発明にかかるガスバリアーフィルムの水蒸気透過度評価システム100は、データ処理装置1、分光反射率計調整装置2、分光反射率計3及びフィルム観察台4を備えていることが好ましい。
<Configuration of water vapor permeability evaluation system>
FIG. 1 shows an example of the configuration of a gas barrier film water vapor permeability evaluation system 100 that uses the gas barrier film water vapor permeability evaluation method of the present invention. A functional block diagram of the water vapor permeability evaluation system 100 of the gas barrier film is shown in FIG.
As shown in FIG. 1, the water vapor permeability evaluation system 100 for a gas barrier film according to the present invention includes a data processing device 1, a spectral reflectance meter adjustment device 2, a spectral reflectance meter 3, and a film observation table 4. Is preferred.
 [データ処理装置]
 データ処理装置1は、分光反射率計調整装置2及び分光反射率計3と相互に通信可能に接続されている。以下において、データ処理装置1の各構成について説明する。
 図2に示すとおり、データ処理装置1は、制御部11、記録部12、通信部13、データ処理部14(推定モデル作成部14a、ガスバリアー層判定部14b、水蒸気透過度算出部14c)及び操作表示部15等を備え、バス16により各部が相互に通信可能に接続されている。
[Data processing device]
The data processing device 1 is connected to the spectral reflectometer adjusting device 2 and the spectral reflectometer 3 so that they can communicate with each other. Below, each structure of the data processor 1 is demonstrated.
As shown in FIG. 2, the data processing apparatus 1 includes a control unit 11, a recording unit 12, a communication unit 13, a data processing unit 14 (estimated model creation unit 14a, gas barrier layer determination unit 14b, water vapor permeability calculation unit 14c), and An operation display unit 15 and the like are provided, and each unit is connected to be communicable with each other by a bus 16.
 制御部11は、データ処理装置1の動作を統括制御するCPU(Central Processing Unit)11aと、CPU11aがプログラムを実行する際に各種データを一時的に格納するためのワークメモリーとして機能するRAM(Random Access Memory)11bと、CPU11aが読み出して実行するプログラムや固定データが記憶されたプログラムメモリー11cなどを備えている。プログラムメモリー11cは、ROMなどにより構成されている。 The control unit 11 includes a CPU (Central Processing Unit) 11a that performs overall control of the operation of the data processing device 1, and a RAM (Random) that functions as a work memory for temporarily storing various data when the CPU 11a executes a program. (Access Memory) 11b, a program that is read and executed by the CPU 11a, a program memory 11c that stores fixed data, and the like. The program memory 11c is composed of a ROM or the like.
 記録部12は、分光反射率計3により測定されたガスバリアーフィルムのガスバリアー層の層厚及び屈折率の値の他、データ処理部で用いる閾値のデータやガスバリアー層作製の際の照射光量、水蒸気透過度の値、基板の種類等に応じて作成された水蒸気透過度の推定モデル等を記録する。 In addition to the layer thickness and refractive index values of the gas barrier layer of the gas barrier film measured by the spectral reflectometer 3, the recording unit 12 uses threshold data used in the data processing unit and the amount of irradiation light when producing the gas barrier layer. The water vapor permeability estimation model created according to the value of the water vapor permeability, the type of substrate, etc. is recorded.
 通信部13は、ネットワークI/F等の通信用のインターフェイスを備え、イントラネット等のネットワークを介して、操作表示部15から入力された測定条件を分光反射率計調整装置2に送信する。また、通信部13は、分光反射率計3により測定されたガスバリアーフィルムのガスバリアー層の層厚及び屈折率の値を受信する。 The communication unit 13 includes a communication interface such as a network I / F, and transmits the measurement conditions input from the operation display unit 15 to the spectral reflectometer adjustment device 2 via a network such as an intranet. Further, the communication unit 13 receives the values of the thickness and refractive index of the gas barrier layer of the gas barrier film measured by the spectral reflectometer 3.
 データ処理部14は、通信部13により受信した、分光反射率計3により測定されたガスバリアーフィルムのガスバリアー層の層厚及び屈折率について解析する。
 データ処理部14は、推定モデル作成部14a、ガスバリアー層判定部14b及び水蒸気透過度算出部14cを備える。
 なお、ガスバリアー層の層厚及び屈折率は、分光反射率計3が測定及び算出する構成を例示したが、分光反射率計3により測定された物性値に基づいて、データ処理部14によりガスバリアー層の層厚及び屈折率を算出してもよい。
The data processing unit 14 analyzes the thickness and refractive index of the gas barrier layer of the gas barrier film measured by the spectral reflectometer 3 received by the communication unit 13.
The data processing unit 14 includes an estimated model creation unit 14a, a gas barrier layer determination unit 14b, and a water vapor permeability calculation unit 14c.
The layer thickness and refractive index of the gas barrier layer are exemplified by the configuration measured and calculated by the spectral reflectometer 3. However, based on the physical property values measured by the spectral reflectometer 3, the data processing unit 14 uses the gas thickness. The thickness and refractive index of the barrier layer may be calculated.
 推定モデル作成部14aは、ガスバリアーフィルムの水蒸気透過度を算出する推定モデルを作成する。
 具体的には、推定モデル作成部14aは、分光反射率計3により計算されたガスバリアー層の層厚及び屈折率並びにカルシウム腐食法による水蒸気透過度の実測値を用いて、異常部と判定されたガスバリアー層の水蒸気透過度を算出する推定モデルを作成する。
 推定モデルの作成に当たっては、後述するガスバリアー層に含有されるポリシラザンを改質する照射光量がガスバリアー層の屈折率に大きく関与するため、当該照射光量をガスバリアー層の層厚及び屈折率並びにカルシウム腐食法による水蒸気透過度の実測値とともに対応関係を示すデータベースを作成してもよい。
The estimation model creation unit 14a creates an estimation model for calculating the water vapor permeability of the gas barrier film.
Specifically, the estimated model creation unit 14a is determined to be an abnormal part by using the measured values of the gas barrier layer thickness and refractive index calculated by the spectral reflectometer 3 and the water vapor permeability by the calcium corrosion method. An estimation model for calculating the water vapor permeability of the gas barrier layer is created.
In creating the estimation model, the irradiation light quantity for modifying the polysilazane contained in the gas barrier layer described later greatly affects the refractive index of the gas barrier layer. You may create the database which shows a correspondence relationship with the actual value of the water vapor permeability by a calcium corrosion method.
 例えば、推定モデル作成部14aは、カルシウム腐食法にて得られた水蒸気透過度、ガスバリアー層の層厚及び屈折率を説明変数として、水蒸気透過度を目的変数とする重回帰分析を行い、水蒸気透過度の推定モデルを作成する。
 一例として、層厚と水蒸気透過度の関係を表すグラフを図4に示す。また、屈折率と水蒸気透過度の関係を表すグラフを図5に示す。
 水蒸気透過度の推定モデルは、これらの層厚と水蒸気透過度の関係及び屈折率と水蒸気透過度の関係に基づいて重回帰分析を行い、層厚の変化量及び屈折率の変化量に対する係数を求めている。以下に水蒸気透過度の推定モデル(A)を示す。
For example, the estimated model creation unit 14a performs a multiple regression analysis using the water vapor permeability obtained by the calcium corrosion method, the layer thickness and the refractive index of the gas barrier layer as explanatory variables, and the water vapor permeability as an objective variable. Create an estimation model of transparency.
As an example, a graph showing the relationship between the layer thickness and the water vapor permeability is shown in FIG. FIG. 5 shows a graph showing the relationship between the refractive index and the water vapor transmission rate.
The estimation model for water vapor transmission rate is a multiple regression analysis based on the relationship between the layer thickness and water vapor transmission rate and the relationship between the refractive index and water vapor transmission rate. Looking for. The estimation model (A) of water vapor permeability is shown below.
 (A)水蒸気透過度(WVTR)[g/m・24h]=WVTR(d,n)+f(Δd,Δn)+k
 WVTR(d,n):水蒸気透過度の正常値
 d:層厚
 n:屈折率
 f(Δd,Δn):層厚変化及び屈折率変化による水蒸気透過度の変化量
 Δd:層厚変化量
 Δn:屈折率変化量
 k:定数
(A) Water vapor transmission rate (WVTR) [g / m 2 · 24h] = WVTR (d, n) + f (Δd, Δn) + k
WVTR (d, n): Normal value of water vapor transmission rate d: Layer thickness n: Refractive index f (Δd, Δn): Change in layer thickness and change in water vapor transmission rate due to change in refractive index Δd: Change in layer thickness Δn: Refractive index change k: Constant
 水蒸気透過度の正常値を示すガスバリアー層の層厚及び屈折率の値からの差分を用いて重回帰分析を行って、作成した水蒸気透過度推定モデル(B)を示す。ここでの水蒸気透過度の正常値を示すガスバリアー層の層厚は250nm、屈折率は1.78、水蒸気透過度は1.0×10-6g/m・24hとしている。
 (B)水蒸気透過度(WVTR)[g/m・24h]=1.0×10-6-2.7×10-7×Δd-1.7×10-4×Δn+k
 ここで、定数kは、重回帰分析とカルシウム腐食法による実測値から求めた水蒸気透過度の補正項である。
The water vapor permeability estimation model (B) created by performing multiple regression analysis using the difference from the values of the thickness and refractive index of the gas barrier layer showing the normal value of water vapor permeability is shown. Here, the thickness of the gas barrier layer showing a normal value of water vapor permeability is 250 nm, the refractive index is 1.78, and the water vapor permeability is 1.0 × 10 −6 g / m 2 · 24 h.
(B) Water vapor transmission rate (WVTR) [g / m 2 · 24h] = 1.0 × 10 −6 −2.7 × 10 −7 × Δd−1.7 × 10 −4 × Δn + k
Here, the constant k is a correction term for the water vapor transmission rate obtained from an actual measurement value by a multiple regression analysis and a calcium corrosion method.
 ガスバリアー層判定部14bは、ガスバリアー層の測定された部分の層厚及び屈折率のいずれかが、あらかじめ設定された所定の範囲外であるか否かを判定する。
 ここで、ガスバリアー層判定部14bは、ガスバリアー層の測定された部分の層厚及び屈折率のいずれかが、あらかじめ設定された所定の範囲外であると判定すると、異常部と判断する。一方、ガスバリアー層判定部14bは、ガスバリアー層の測定された部分の層厚及び屈折率が、あらかじめ設定された所定の範囲内の層厚及び屈折率と判定すると、正常部と判断する。
 ここで、層厚及び屈折率のあらかじめ設定された所定の範囲とは、測定対象となるガスバリアーフィルムによって適宜設定することができる。例えば、ガスバリアー層の層厚の範囲が240~260nmの範囲内で、屈折率の範囲が1.73~1.83の範囲内を層厚及び屈折率のあらかじめ設定された所定の範囲として設定することができる。その場合、層厚又は屈折率のいずれかがこの範囲から外れると判定されると、異常部と判断される。
The gas barrier layer determination unit 14b determines whether any of the measured layer thickness and refractive index of the gas barrier layer is outside a predetermined range set in advance.
Here, if the gas barrier layer determination unit 14b determines that either the measured thickness or refractive index of the measured portion of the gas barrier layer is outside the predetermined range set in advance, the gas barrier layer determination unit 14b determines that it is an abnormal part. On the other hand, if the layer thickness and refractive index of the measured portion of the gas barrier layer are determined to be the layer thickness and refractive index within a predetermined range set in advance, the gas barrier layer determination unit 14b determines that it is a normal part.
Here, the predetermined ranges of the layer thickness and the refractive index can be appropriately set depending on the gas barrier film to be measured. For example, the range of the thickness of the gas barrier layer is in the range of 240 to 260 nm, and the range of the refractive index is in the range of 1.73 to 1.83 as a predetermined range in which the layer thickness and the refractive index are set in advance. can do. In that case, if it is determined that either the layer thickness or the refractive index is out of this range, it is determined as an abnormal part.
 例えば、ガスバリアー層の層厚が270nm、屈折率が1.70の場合、所定の範囲外と判定され、異常部と判断される。この場合、水蒸気透過度を算出するために、Δdとして、層厚の変化量(270-250=20nm)を用いる。また、Δnとして、屈折率の変化量(1.70-1.78=-0.08)を用いる。この値を前記(B)に代入することで、異常部と判断されたガスバリアー層の水蒸気透過度を算出することができる。 For example, when the thickness of the gas barrier layer is 270 nm and the refractive index is 1.70, it is determined to be out of the predetermined range and determined to be an abnormal part. In this case, in order to calculate the water vapor transmission rate, the change amount of the layer thickness (270−250 = 20 nm) is used as Δd. Further, as Δn, a refractive index change amount (1.70-1.78 = −0.08) is used. By substituting this value into (B), the water vapor permeability of the gas barrier layer determined to be an abnormal part can be calculated.
 水蒸気透過度算出部14cは、分光反射率計3により測定されるガスバリアー層の層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する。
 具体的には、水蒸気透過度算出部14cは、ガスバリアー層判定部14bにて異常部と判断された部分の水蒸気透過度を、推定モデルを用いて算出する。
 正常部については、実用可能なガスバリアーフィルムであり、水蒸気透過度の推定モデルを用いて水蒸気透過度を算出しなくてもよい。すなわち、所定範囲の層厚及び屈折率を有するガスバリアー層の正常部は、所定の値以上の水蒸気透過度であり、実用可能な水蒸気透過度を有するガスバリアー層の部分として所定の値を水蒸気透過度として概算することができる。なお、正常部の水蒸気透過度を、推定モデルを用いて算出する場合は、補正項k=0として水蒸気透過度を算出することができる。
 これにより、正常部の水蒸気透過度と推定モデルにより算出した異常部の水蒸気透過度を合算することにより測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出することができる。
 水蒸気透過度算出部14cは、分光反射率計3により作成される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出手段として機能する。
The water vapor transmission rate calculation unit 14 c calculates the water vapor transmission rate of the entire gas barrier film in the measurement range based on the thickness and refractive index of the gas barrier layer measured by the spectral reflectometer 3.
Specifically, the water vapor transmission rate calculation unit 14c calculates the water vapor transmission rate of the portion determined as an abnormal part by the gas barrier layer determination unit 14b using the estimation model.
The normal part is a practical gas barrier film, and the water vapor transmission rate does not have to be calculated using the water vapor transmission rate estimation model. That is, the normal part of the gas barrier layer having a layer thickness and a refractive index in a predetermined range has a water vapor permeability equal to or higher than a predetermined value, and the predetermined value is set as a part of the gas barrier layer having a practical water vapor permeability. It can be estimated as transmission. When the water vapor permeability of the normal part is calculated using the estimation model, the water vapor permeability can be calculated with the correction term k = 0.
Thereby, the water vapor permeability of the whole gas barrier film in the measurement range can be calculated by adding the water vapor permeability of the normal part and the water vapor permeability of the abnormal part calculated by the estimation model.
The water vapor permeability calculator 14c functions as a water vapor permeability calculator that calculates the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index created by the spectral reflectometer 3.
 また、データ処理部14は、ガスバリアーフィルムの水蒸気透過度の分布を算出する水蒸気透過度分布算出部をさらに備えていてもよい。
 水蒸気透過度分布算出部は、データ処理部14により判断される正常部及び異常部の水蒸気透過度から、ガスバリアーフィルムの水蒸気透過度分布を算出してもよい。
 具体的には、水蒸気透過度分布算出部は、データ処理部14により異常部と判断された部分のガスバリアー層について、水蒸気透過度算出部14cにより算出される水蒸気透過度と、正常部の水蒸気透過度から、ガスバリアーフィルムの位置座標に対応させた水蒸気透過度の分布を算出してもよい。
The data processing unit 14 may further include a water vapor permeability distribution calculating unit that calculates a water vapor permeability distribution of the gas barrier film.
The water vapor permeability distribution calculating unit may calculate the water vapor permeability distribution of the gas barrier film from the water vapor permeability of the normal part and the abnormal part determined by the data processing unit 14.
Specifically, the water vapor transmission rate distribution calculation unit calculates the water vapor transmission rate calculated by the water vapor transmission rate calculation unit 14c and the normal portion water vapor for the portion of the gas barrier layer determined to be abnormal by the data processing unit 14. From the permeability, a water vapor permeability distribution corresponding to the position coordinates of the gas barrier film may be calculated.
 操作表示部15は、例えば、LCD(Liquid Crystal Display)、LCDを覆うように設けられたタッチパネル、各種スイッチやボタン、テンキー及び操作キー群等(図示略)から構成されてもよい。操作表示部15は、ユーザーからの指示を受け付けその操作信号を制御部11に出力する。また、操作表示部15は、制御部11から出力される表示信号に従って、各種操作指示や設定情報を入力するための各種設定画面や各種処理結果等を表示する操作画面をLCD上に表示する。 The operation display unit 15 may include, for example, an LCD (Liquid Crystal Display), a touch panel provided so as to cover the LCD, various switches and buttons, a numeric keypad, an operation key group, and the like (not shown). The operation display unit 15 receives an instruction from the user and outputs an operation signal to the control unit 11. The operation display unit 15 displays on the LCD an operation screen for displaying various setting instructions for inputting various operation instructions and setting information, various processing results, and the like, in accordance with a display signal output from the control unit 11.
 [分光反射率計調整装置]
 分光反射率計調整装置2は、データ処理装置1から受信した測定条件に基づいて分光反射率計3を調整する。
 具体的には、分光反射率計調整装置2は、データ処理装置1から受信した測定条件、例えば、ガスバリアーフィルムからの位置(高さ)、波長、分光反射率計3の測定間隔、移動速度等に基づいて分光反射率計3を調整することができる。
[Spectral reflectometer adjustment device]
The spectral reflectance meter adjustment device 2 adjusts the spectral reflectance meter 3 based on the measurement conditions received from the data processing device 1.
Specifically, the spectral reflectance meter adjustment device 2 is configured to measure the measurement conditions received from the data processing device 1, such as the position (height) from the gas barrier film, the wavelength, the measurement interval of the spectral reflectance meter 3, and the moving speed. The spectral reflectometer 3 can be adjusted based on the above.
 [分光反射率計]
 分光反射率計3は、分光反射率計調整装置2により調整された条件でガスバリアーフィルムのガスバリアー層の層厚及び屈折率を測定する。
 分光反射率計3は、受光部31及び光源32を備えている。分光反射率計3は、例えば、分光反射率計又はエリプソメーターであって、ガスバリアーフィルムのガスバリアー層を光学的に測定し、層厚及び屈折率を算出することができる。
 具体的には、分光反射率計3は、分光反射率計調整装置2により調整された条件、例えば、受光部の位置(高さ)、波長、分光反射率計の移動方向等に従ってガスバリアーフィルムのガスバリアー層の分光反射率を測定し、測定された分光反射率に基づいて、層厚及び屈折率を算出する。
 例えば、分光反射率計3は、ガスバリアーフィルムのガスバリアー層を1mm毎に測定することが好ましい。これにより、ガスバリアー層の水蒸気透過度を正確に算出することができる。
 また、分光反射率計3は、380~1050nmの範囲内の波長でガスバリアー層を測定することが好ましく、特に、可視光域の380~750nmの範囲内が好ましい。
 そして、分光反射率計3は、得られたガスバリアー層の層厚及び屈折率を、通信部13を介してデータ処理装置1に送信する。
 なお、ガスバリアー層の層厚及び屈折率を求めるにあたり、あらかじめ基板やその他の層の層厚及び屈折率を測定することで、ガスバリアー層のみの層厚及び屈折率を求めることができる。
 また、分光反射率計又はエリプソメーターは、測定対象となるガスバリアーフィルムに応じて適宜選択することができる。例えば、ガスバリアーフィルムが10μmよりも薄い場合に、エリプソメーターを用いて、10μm以上である場合に、分光反射率計を用いてもよい。
 分光反射率計3は、ガスバリアー層の層厚及び屈折率を光学的に測定する測定手段として機能する。
[Spectral reflectometer]
The spectral reflectometer 3 measures the thickness and refractive index of the gas barrier layer of the gas barrier film under the conditions adjusted by the spectral reflectometer adjusting device 2.
The spectral reflectometer 3 includes a light receiving unit 31 and a light source 32. The spectral reflectometer 3 is, for example, a spectral reflectometer or an ellipsometer, and can optically measure the gas barrier layer of the gas barrier film to calculate the layer thickness and the refractive index.
Specifically, the spectral reflectometer 3 is a gas barrier film according to the conditions adjusted by the spectral reflectometer adjusting device 2, such as the position (height) of the light receiving unit, the wavelength, the moving direction of the spectral reflectometer, etc. The spectral reflectance of the gas barrier layer is measured, and the layer thickness and refractive index are calculated based on the measured spectral reflectance.
For example, the spectral reflectometer 3 preferably measures the gas barrier layer of the gas barrier film every 1 mm 2 . Thereby, the water vapor permeability of the gas barrier layer can be accurately calculated.
The spectral reflectometer 3 preferably measures the gas barrier layer at a wavelength in the range of 380 to 1050 nm, and particularly preferably in the range of 380 to 750 nm in the visible light region.
Then, the spectral reflectometer 3 transmits the obtained thickness and refractive index of the gas barrier layer to the data processing device 1 via the communication unit 13.
In determining the layer thickness and refractive index of the gas barrier layer, the layer thickness and refractive index of only the gas barrier layer can be determined by measuring the layer thickness and refractive index of the substrate and other layers in advance.
Moreover, a spectral reflectometer or an ellipsometer can be suitably selected according to the gas barrier film used as a measuring object. For example, when the gas barrier film is thinner than 10 μm, an ellipsometer may be used, and when it is 10 μm or more, a spectral reflectometer may be used.
The spectral reflectometer 3 functions as a measuring means for optically measuring the thickness and refractive index of the gas barrier layer.
 [フィルム観察台]
 フィルム観察台4は、例えば、フィルム固定台41、二軸電動ステージ42及び装置フレーム43を備える態様が好ましい。
 具体的には、フィルム観察台4は、フィルム固定台41によって試料となるガスバリアーフィルム(図3参照)を固定し、ガスバリアー層の層厚及び屈折率を分光反射率計3により測定できるように固定する。試料となるガスバリアーフィルムが、例えば、ロール状に巻き取られている場合であっても、短軸方向をフィルム固定台41によって固定し、所定の速さで二軸電動ステージを動かし、ガスバリアーフィルムを長軸方向に移動させることで、フィルム観察台4よりも広い範囲を分光反射率計3で測定することができる。
[Film observation stand]
For example, the film observation table 4 preferably includes a film fixing table 41, a biaxial electric stage 42, and an apparatus frame 43.
Specifically, the film observation table 4 can fix the gas barrier film (see FIG. 3) as a sample by the film fixing table 41 and measure the thickness and refractive index of the gas barrier layer with the spectral reflectometer 3. Secure to. Even when the gas barrier film as a sample is wound in a roll shape, for example, the minor axis direction is fixed by the film fixing base 41, the two-axis electric stage is moved at a predetermined speed, and the gas barrier film is By moving the film in the long axis direction, a range wider than the film observation table 4 can be measured with the spectral reflectometer 3.
 なお、フィルム観察台4は、データ処理装置1と通信可能に接続されていてもよい。データ処理装置1とフィルム観察台4を相互に通信可能に接続することで、ガスバリアーフィルムを移動させる速度をデータ処理装置1により設定してもよい。 In addition, the film observation stand 4 may be connected to the data processing apparatus 1 so as to be able to communicate. The data processing device 1 and the film observing table 4 are connected so that they can communicate with each other, so that the data processing device 1 may set the speed at which the gas barrier film is moved.
 [外部出力装置]
 データ処理装置1は、データ処理装置1と通信可能に接続される外部出力装置5を備えていてもよい。外部出力装置5は、一般的なPC(Personal Computer)であってもよいし、画像形成装置等であってもよい。また、外部出力装置5は、データ処理装置1の操作表示部15の代わりに操作表示部として機能してもよい。
[External output device]
The data processing device 1 may include an external output device 5 that is communicably connected to the data processing device 1. The external output device 5 may be a general PC (Personal Computer), an image forming device, or the like. Further, the external output device 5 may function as an operation display unit instead of the operation display unit 15 of the data processing device 1.
 <ガスバリアーフィルムの水蒸気透過度評価方法>
 [ガスバリアーフィルムの水蒸気透過度の推定モデル作成処理]
 次に、図6及び図7に示すフローチャートを参照しながらガスバリアーフィルムの水蒸気透過度評価方法について説明する。
 具体的には、図6に示すガスバリアーフィルムの水蒸気透過度の推定モデルの作成処理と、図7に示すガスバリアーフィルムの水蒸気透過度評価処理について説明する。
 ガスバリアーフィルムの水蒸気透過度の推定モデル作成処理は、まず、測定対象の試料と同等の試料を用いてカルシウム腐食法等の方法により試料の一部の範囲について水蒸気透過度を測定する。そして、測定した水蒸気透過度に基づいて、ガスバリアーフィルムの水蒸気透過度算出に用いる水蒸気透過度の推定モデルを作成する処理である。
<Method for evaluating water vapor permeability of gas barrier film>
[Estimated model creation process for water vapor permeability of gas barrier film]
Next, a method for evaluating the water vapor permeability of a gas barrier film will be described with reference to the flowcharts shown in FIGS.
Specifically, a process for creating an estimation model of the water vapor permeability of the gas barrier film shown in FIG. 6 and a water vapor permeability evaluation process for the gas barrier film shown in FIG. 7 will be described.
In the process of creating an estimated model of the water vapor permeability of the gas barrier film, first, the water vapor permeability is measured for a partial range of the sample by a method such as a calcium corrosion method using a sample equivalent to the sample to be measured. And based on the measured water vapor transmission rate, it is the process which creates the estimation model of the water vapor transmission rate used for the water vapor transmission rate calculation of a gas barrier film.
 制御部11は、記録部12に記録されたガスバリアーフィルムのガスバリアー層の測定条件、正常部の層厚及び屈折率の範囲を設定する(ステップS1)。
 具体的には、制御部11は、測定条件を分光反射率計3に通信部13を介して送信し、層厚及び屈折率の所定の範囲(正常部の層厚及び屈折率の範囲)をデータ処理部14に送信し、設定する。なお、測定条件等の設定は、あらかじめ記録部12に記録されている条件を用いてもよいし、測定対象となる試料の状態、所望の水蒸気透過度の精度に合わせてユーザーが操作表示部15により入力又は変更することができる。
The control unit 11 sets the measurement conditions of the gas barrier layer of the gas barrier film recorded on the recording unit 12, the layer thickness of the normal part, and the refractive index range (step S1).
Specifically, the control unit 11 transmits the measurement conditions to the spectral reflectometer 3 via the communication unit 13, and sets a predetermined range of the layer thickness and the refractive index (the range of the normal portion layer thickness and the refractive index). The data is transmitted to the data processing unit 14 and set. The conditions such as the measurement conditions may be set in advance in the recording unit 12, or the user may select the operation display unit 15 according to the state of the sample to be measured and the accuracy of the desired water vapor transmission rate. Can be entered or changed.
 次に、分光反射率計3は、ガスバリアーフィルムのガスバリアー層の分光反射率を測定する(ステップS2)。
 具体的には、分光反射率計3は、データ処理装置1から入力された測定条件等でガスバリアーフィルムのガスバリアー層の分光反射率を測定する。
Next, the spectral reflectometer 3 measures the spectral reflectance of the gas barrier layer of the gas barrier film (step S2).
Specifically, the spectral reflectance meter 3 measures the spectral reflectance of the gas barrier layer of the gas barrier film under the measurement conditions and the like input from the data processing device 1.
 次に、分光反射率計3は、測定した分光反射率に基づいて、ガスバリアー層の層厚及び屈折率を算出する(ステップS3)。
 具体的には、ガスバリアーフィルムの表面と基板との界面からの反射を解析することにより、ガスバリアーフィルムの膜厚及び屈折率を算出することができる。ガスバリアーフィルムの基板やガスバリアー層以外の層(膜)の層厚(膜厚)及び屈折率については、あらかじめ測定することができるため、ガスバリアーフィルム全体の膜厚及び屈折率を算出することで、ガスバリアー層単独の層厚及び屈折率を求めることができる。
Next, the spectral reflectometer 3 calculates the thickness and refractive index of the gas barrier layer based on the measured spectral reflectance (step S3).
Specifically, the film thickness and refractive index of the gas barrier film can be calculated by analyzing the reflection from the interface between the surface of the gas barrier film and the substrate. Since the layer thickness (film thickness) and refractive index of a layer (film) other than the gas barrier film substrate and the gas barrier layer can be measured in advance, the film thickness and refractive index of the entire gas barrier film should be calculated. Thus, the layer thickness and refractive index of the gas barrier layer alone can be obtained.
 次に、カルシウム腐食法等の方法を用いてガスバリアーフィルムの水蒸気透過度を測定する(ステップS4)。
 具体的には、制御部11は、カルシウム腐食法によるガスバリアーフィルムの水蒸気透過度の実測値を記録部に記録させる。
 なお、あらかじめ測定対象となる試料と同等のガスバリアーフィルムの水蒸気透過度を測定する方法としては、カルシウム腐食法に限定するものではなく、1.0×10-6g/m・24h未満の水蒸気透過度についても測定できる方法であればよい。以下の説明においては、一例としてカルシウム腐食法により得られた水蒸気透過度の実測値を用いて説明する。
Next, the water vapor permeability of the gas barrier film is measured using a method such as a calcium corrosion method (step S4).
Specifically, the control part 11 records the measured value of the water vapor permeability of the gas barrier film by the calcium corrosion method in the recording part.
The method for measuring the water vapor permeability of the gas barrier film equivalent to the sample to be measured in advance is not limited to the calcium corrosion method, and is less than 1.0 × 10 −6 g / m 2 · 24 h. Any method capable of measuring the water vapor permeability may be used. In the following description, as an example, an explanation will be given using an actual measured value of water vapor permeability obtained by the calcium corrosion method.
 次に、推定モデル作成部14aは、ガスバリアー層の層厚及び屈折率並びにカルシウム腐食法により得られた水蒸気透過度の実測値から重回帰分析法を用いて水蒸気透過度の推定モデルを作成する(ステップS5)。
 具体的には、推定モデル作成部14aは、ガスバリアー層の層厚及び屈折率並びにカルシウム腐食法により得られた水蒸気透過度の実測値から重回帰分析法を用いる。例えば、推定モデル作成部14aは、ガスバリアーフィルムの種類等に応じて設定された水蒸気透過度の正常値に基づく水蒸気透過度の項と、層厚及び屈折率の変化量に基づく水蒸気透過度の変化量の項と、補正項とを有する推定モデルを作成する。
Next, the estimation model creation unit 14a creates a water vapor permeability estimation model using the multiple regression analysis from the measured values of the water vapor permeability obtained by the thickness and refractive index of the gas barrier layer and the calcium corrosion method. (Step S5).
Specifically, the estimation model creation unit 14a uses a multiple regression analysis method from the measured values of the water vapor permeability obtained by the layer thickness and refractive index of the gas barrier layer and the calcium corrosion method. For example, the estimated model creation unit 14a has a water vapor permeability term based on the normal value of the water vapor permeability set according to the type of the gas barrier film, and the water vapor permeability based on the amount of change in the layer thickness and the refractive index. An estimation model having a change amount term and a correction term is created.
 [ガスバリアーフィルムの水蒸気透過度評価処理]
 次に、図7に示すフローチャートを参照しながらガスバリアーフィルムの水蒸気透過度評価処理について説明する。
 ガスバリアーフィルムの水蒸気透過度評価処理は、水蒸気透過度推定モデル作成処理により作成された水蒸気透過度の推定モデルを用いて、ガスバリアーフィルムの測定範囲の水蒸気透過度を算出することで水蒸気透過度を評価する処理である。
[Evaluation of water vapor permeability of gas barrier film]
Next, the water vapor permeability evaluation process of the gas barrier film will be described with reference to the flowchart shown in FIG.
The water vapor permeability evaluation process of the gas barrier film is performed by calculating the water vapor permeability in the measurement range of the gas barrier film by using the water vapor permeability estimation model created by the water vapor permeability estimation model creation process. Is a process for evaluating
 ステップS11~S13の処理については、図6に示すステップS1~S3と同様の処理を測定対象となる試料に行う。 As for the processing in steps S11 to S13, the same processing as in steps S1 to S3 shown in FIG. 6 is performed on the sample to be measured.
 ガスバリアー層判定部14bは、ステップS13にて算出されたガスバリアー層の層厚及び屈折率が所定範囲外であるか否かを判定する(ステップS14)。
 具体的には、ガスバリアー層判定部14bは、データ処理部14に送信された正常部のガスバリアー層の層厚及び屈折率が範囲外であると判定されると(ステップS14;Yes)、ガスバリアー層の当該部分を異常部と判断する。
 例えば、ガスバリアー層判定部14bは、データ処理部14に送信された正常部のガスバリアー層の層厚が240~260nmの範囲内であり、屈折率が1.73~1.78の範囲内として設定されている場合、層厚が250nmで屈折率が1.45のガスバリアー層の部分を異常部と判断される。
 一方で、ガスバリアー層判定部14bは、ガスバリアー層の層厚が250nmで屈折率が1.75である場合、設定された範囲外ではないと判定し(ステップS14;No)、ガスバリアー層の当該部分を正常部と判断する。
The gas barrier layer determination unit 14b determines whether or not the layer thickness and the refractive index of the gas barrier layer calculated in step S13 are outside a predetermined range (step S14).
Specifically, when the gas barrier layer determination unit 14b determines that the thickness and refractive index of the gas barrier layer of the normal part transmitted to the data processing unit 14 are out of range (step S14; Yes), The relevant part of the gas barrier layer is determined as an abnormal part.
For example, in the gas barrier layer determination unit 14b, the thickness of the normal gas barrier layer transmitted to the data processing unit 14 is in the range of 240 to 260 nm, and the refractive index is in the range of 1.73 to 1.78. , The gas barrier layer portion having a layer thickness of 250 nm and a refractive index of 1.45 is determined as an abnormal portion.
On the other hand, when the thickness of the gas barrier layer is 250 nm and the refractive index is 1.75, the gas barrier layer determination unit 14b determines that the gas barrier layer is not outside the set range (step S14; No), and the gas barrier layer This part is determined as a normal part.
 そして、ステップS14にて異常部と判断された場合、水蒸気透過度算出部14cは、ステップS13にて算出されたガスバリアー層の層厚及び屈折率から、水蒸気透過度の推定モデルを用いて異常部の水蒸気透過度を算出する(ステップS15)。
 具体的には、水蒸気透過度算出部14cは、水蒸気透過度推定モデル作成処理で作成した水蒸気透過度の推定モデルを用いて、異常部の水蒸気透過度を算出する。
And when it is judged that it is an abnormal part in Step S14, water vapor permeability calculation part 14c is abnormal using an estimated model of water vapor permeability from the layer thickness and refractive index of the gas barrier layer calculated in Step S13. The water vapor permeability of the part is calculated (step S15).
Specifically, the water vapor permeability calculation unit 14c calculates the water vapor permeability of the abnormal part using the water vapor permeability estimation model created by the water vapor permeability estimation model creation process.
 次に、水蒸気透過度算出部14cは、正常部の水蒸気透過度及びステップS14にて算出された異常部の水蒸気透過度から測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する(ステップS16)。
 具体的には、水蒸気透過度算出部14cは、推定モデルにより算出された異常部の水蒸気透過度と、所定の範囲内である正常部の水蒸気透過度を合算することにより、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する。
 また、ステップS14にて正常部と判断された場合、正常部の水蒸気透過度は、算出された層厚及び屈折率が所定の範囲内であることから、一定の水蒸気透過度以下とみなすことができる(ステップS16)。
 なお、経済的、時間的な観点から正常部の推定モデルを用いた水蒸気透過度の算出は省略することができるが、正常部の水蒸気透過度についても推定モデルを用いて算出してもよい。ただし、推定モデルを用いて正常部の水蒸気透過度を算出する場合、推定モデルの補正項kは0とする。
Next, the water vapor transmission rate calculation unit 14c calculates the water vapor transmission rate of the entire gas barrier film in the measurement range from the water vapor transmission rate of the normal part and the water vapor transmission rate of the abnormal part calculated in step S14 (step S16). .
Specifically, the water vapor transmission rate calculation unit 14c adds the water vapor transmission rate of the abnormal part calculated by the estimation model and the water vapor transmission rate of the normal part within a predetermined range, thereby obtaining a gas barrier in the measurement range. Calculate the water vapor permeability of the entire film.
Further, when the normal part is determined in step S14, the water vapor permeability of the normal part can be regarded as being equal to or less than a certain water vapor permeability because the calculated layer thickness and refractive index are within a predetermined range. Yes (step S16).
Note that the calculation of the water vapor transmission rate using the normal part estimation model can be omitted from the economical and temporal viewpoints, but the normal part water vapor transmission rate may also be calculated using the estimation model. However, when the water vapor permeability of the normal part is calculated using the estimation model, the correction term k of the estimation model is 0.
 また、ガスバリアーフィルムの製造方法としては、ガスバリアーフィルムの水蒸気透過度評価方法又は水蒸気透過度評価システムを用いて、ガスバリアーフィルムの水蒸気透過度を評価する工程を有することが好ましい。
 当該ガスバリアーフィルムの水蒸気透過度評価方法及び水蒸気透過度評価システムは、非破壊・非接触でガスバリアーフィルム全体の水蒸気透過度を測定することから、ガスバリアーフィルムの製造工程に組み込み、水蒸気透過度を評価することができる。
Moreover, as a manufacturing method of a gas barrier film, it is preferable to have the process of evaluating the water vapor permeability of a gas barrier film using the water vapor permeability evaluation method or water vapor permeability evaluation system of a gas barrier film.
Since the water vapor permeability evaluation method and the water vapor permeability evaluation system of the gas barrier film measure the water vapor permeability of the entire gas barrier film in a non-destructive and non-contact manner, the water vapor permeability is incorporated into the manufacturing process of the gas barrier film. Can be evaluated.
 <ガスバリアーフィルムの構成>
 測定対象となるガスバリアーフィルムの一例を図3に示す。図3に示すように、ガスバリアーフィルムFは、基板F1、ブリードアウト防止層F2、平滑層F3、ガスバリアー層F4から構成されている。
 ガスバリアーフィルムFは、図3に示すように、基板F1の一方の面に平滑層F3を備え、その平滑層F3上にガスバリアー層F4が積層されている。また、基板F1の他方の面側にはブリードアウト防止層F2を備えている。図3に示すガスバリアーフィルムは一例であって、測定対象となるガスバリアーフィルムを限定するものではない。
<Configuration of gas barrier film>
An example of the gas barrier film to be measured is shown in FIG. As shown in FIG. 3, the gas barrier film F is comprised from the board | substrate F1, the bleed-out prevention layer F2, the smooth layer F3, and the gas barrier layer F4.
As shown in FIG. 3, the gas barrier film F includes a smooth layer F3 on one surface of the substrate F1, and the gas barrier layer F4 is laminated on the smooth layer F3. Further, a bleed-out prevention layer F2 is provided on the other surface side of the substrate F1. The gas barrier film shown in FIG. 3 is an example, and does not limit the gas barrier film to be measured.
 以下、本発明に係るガスバリアーフィルムの主要構成について、詳細に説明する。 Hereinafter, the main structure of the gas barrier film according to the present invention will be described in detail.
 〔基板〕
 ガスバリアーフィルムFを構成する基板F1としては、可撓性を有する折り曲げ可能な樹脂フィルムが挙げられるが、ガラス基板等であってもよい。この基板F1は、ガスバリアー性を有するガスバリアー層F4や本発明に係る平滑層F3及びその他の各種機能層を保持することができる材料であれば、特に限定されるものではない。
〔substrate〕
Examples of the substrate F1 constituting the gas barrier film F include a flexible and bendable resin film, but it may be a glass substrate or the like. The substrate F1 is not particularly limited as long as it is a material that can hold the gas barrier layer F4 having gas barrier properties, the smooth layer F3 according to the present invention, and other various functional layers.
 基板F1に適用可能な樹脂材料としては、例えば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂材料から構成される樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名:シルプラス、新日鐵化学株式会社製)、さらには上記したフィルム材料を2層以上積層して構成される樹脂フィルム等を用いることができる。 Examples of the resin material applicable to the substrate F1 include acrylic acid ester, methacrylic acid ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride ( PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyetherimide, etc. Resin film, heat-resistant transparent film (product name: Silplus, manufactured by Nippon Steel Chemical Co., Ltd.) based on silsesquioxane having an organic / inorganic hybrid structure, and two or more layers of the above film materials Can be used consists resin film by.
 これら樹脂フィルムのうち、経済性や入手の容易性の観点からは、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等のフィルムが好ましく用いられる。 Of these resin films, films such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polycarbonate (PC) are preferably used from the viewpoints of economy and availability.
 また、デバイスを封止する封止工程で高温処理が必要な場合には、耐熱性と透明性を両立した透明ポリイミドフィルム、例えば、東洋紡株式会社製の透明ポリイミド系フィルム(例えば、タイプHM)や、三菱瓦斯化学株式会社製の透明ポリイミド系フィルム(例えば、ネオプリムL L-3430)などを好ましく用いることができる。 In addition, when high temperature treatment is required in the sealing process for sealing the device, a transparent polyimide film having both heat resistance and transparency, for example, a transparent polyimide film (for example, type HM) manufactured by Toyobo Co., Ltd. A transparent polyimide film (for example, Neoprim L L-3430) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be preferably used.
 本発明に適用する基板F1の厚さとしては、5~500μmの範囲が好ましいが、耐熱性、搬送の容易さを考慮して25~250μmが特に望ましい。 The thickness of the substrate F1 applied to the present invention is preferably in the range of 5 to 500 μm, but is preferably 25 to 250 μm in view of heat resistance and ease of conveyance.
 上記の樹脂材料を用いた基板F1は、未延伸フィルムでもよく、延伸フィルムでもよい。 The substrate F1 using the above resin material may be an unstretched film or a stretched film.
 〔平滑層〕
 平滑層F3は、微小な突起等が存在する基板F1の粗面を平坦化し、基板F1表面の突起等によって基板F1上に成膜するガスバリアー層F4などに凹凸やピンホールが生じないようにするため、及び前記のようなガスバリアー層から拡散してくるアミン触媒やアンモニア、あるいは基板F1からガスバリアー層F4に拡散してくる水分等をトラップする機能を有し、各層間の密着性を向上させる役割を付与した層である。
[Smooth layer]
The smooth layer F3 flattens the rough surface of the substrate F1 where minute protrusions and the like are present, so that irregularities and pinholes are not generated in the gas barrier layer F4 and the like formed on the substrate F1 by the protrusions on the surface of the substrate F1. Therefore, it has a function of trapping the amine catalyst and ammonia diffusing from the gas barrier layer as described above, or moisture diffusing from the substrate F1 to the gas barrier layer F4, and the adhesion between each layer is improved. It is a layer that has been given a role to improve.
 このような平滑層F3は、例えば、ポリマー骨格中に少なくとも一つのウレタン結合を有する化合物であれば良く、1分子中に少なくとも二つのヒドロキシ基を有する公知のポリオール化合物と、1分子中にイソシアネート基を二つ以上有する公知の多官能イソシアネートを用いて、ウレタン架橋した硬化樹脂であることが好ましい。このような範囲には、イソシアネートで架橋硬化したフェノキシ樹脂及びその共重合体や、ポリビニルアセタール樹脂も含まれる。 Such a smooth layer F3 may be a compound having at least one urethane bond in the polymer skeleton, for example, and a known polyol compound having at least two hydroxy groups in one molecule and an isocyanate group in one molecule. It is preferable that it is a urethane-cured cured resin using a known polyfunctional isocyanate having two or more. Such a range includes a phenoxy resin crosslinked with isocyanate and a copolymer thereof, and a polyvinyl acetal resin.
 〔ガスバリアー層〕
 ガスバリアー層F4は、上記方法で形成した平滑層F3上に、ポリシラザンを含有するガスバリアー層形成用塗布液を塗布、乾燥して塗膜を形成した後、形成した塗膜に真空紫外光を照射して改質処理を施すことにより形成することが好ましい。
[Gas barrier layer]
The gas barrier layer F4 is formed by applying a coating liquid for forming a gas barrier layer containing polysilazane on the smooth layer F3 formed by the above method and drying to form a coating film, and then applying vacuum ultraviolet light to the formed coating film. It is preferable to form it by irradiating and subjecting it to a modification treatment.
 (ガスバリアー層としての塗膜改質層)
 基板及び平滑層上にガスバリアー層を形成する薄膜である塗膜改質層を塗設する方法としては、例えば、ポリシラザンを含むガスバリアー層形成用塗布液を、平滑層上に塗布及び乾燥して形成した塗膜(ポリシラザン含有層)に、真空紫外光を照射する紫外線照射処理を施して、ガスバリアー性を有するポリシラザン改質層であるガスバリアー層に転化する方法である。
(Coating reforming layer as a gas barrier layer)
As a method of coating a coating film modifying layer, which is a thin film for forming a gas barrier layer on a substrate and a smooth layer, for example, a gas barrier layer forming coating solution containing polysilazane is applied and dried on the smooth layer. The coating film (polysilazane-containing layer) formed in this manner is subjected to an ultraviolet irradiation treatment that irradiates vacuum ultraviolet light, and converted to a gas barrier layer, which is a polysilazane modified layer having gas barrier properties.
 例えば、ガスバリアー層は、平滑層上にポリシラザンを含むガスバリアー層形成用塗布液を塗布及び乾燥して形成したポリシラザン含有層に真空紫外光を照射する改質処理を施して、ポリシラザン含有層をガスバリアー層に改質することで形成できる。また、塗布及び乾燥によって形成したポリシラザン含有層(ガスバリアー層)上には、保護層を積層し、その保護層の塗膜面側から真空紫外光を照射するなどの改質処理を施すことによって、ポリシラザン含有層をガスバリアー層に改質して形成することもできる。 For example, the gas barrier layer is formed by subjecting a polysilazane-containing layer formed by applying and drying a gas barrier layer-forming coating solution containing polysilazane to a smooth layer and subjecting the polysilazane-containing layer to a vacuum ultraviolet light irradiation. It can be formed by modifying the gas barrier layer. Moreover, on the polysilazane content layer (gas barrier layer) formed by application | coating and drying, a protective layer is laminated | stacked and the modification process of irradiating vacuum ultraviolet light from the coating-film side of the protective layer is performed. The polysilazane-containing layer can be formed by modifying it into a gas barrier layer.
 (ポリシラザンを含むガスバリアー層形成用塗布液の塗布)
 ガスバリアー層は、ポリシラザンを含むガスバリアー層形成用塗布液を塗布し、塗膜を成膜する湿式塗布方法によって形成することが好ましい。
(Application of gas barrier layer forming coating solution containing polysilazane)
The gas barrier layer is preferably formed by a wet coating method in which a coating solution for forming a gas barrier layer containing polysilazane is applied to form a coating film.
 ここで、「ポリシラザン」とは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等の結合を有するSiO、Si及び両方の中間固溶体SiO等から構成されるセラミック前駆体無機ポリマーである。 Here, “polysilazane” is a polymer having a silicon-nitrogen bond, SiO 2 having a bond such as Si—N, Si—H, N—H, etc., Si 3 N 4 and both intermediate solid solutions SiO x N y. It is a ceramic precursor inorganic polymer composed of, and the like.
 そのポリシラザンを含むガスバリアー層形成用塗布液を塗布する湿式塗布方法としては、従来公知の方法から適宜選択して用いることができる。具体例な塗布方法としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法及びグラビア印刷法等が挙げられる。 The wet coating method for coating the gas barrier layer-forming coating solution containing polysilazane can be appropriately selected from conventionally known methods. Specific examples of coating methods include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, cast film formation, bar coating, and gravure printing. It is done.
 平滑層上に形成するポリシラザン含有層の層厚としては、目的に応じて適宜設定されるが、乾燥後の厚さとしては、1nm~100μmの範囲内であることが好ましく、さらに好ましくは10nm~10μmの範囲内であり、最も好ましくは10nm~1μmの範囲内である。 The layer thickness of the polysilazane-containing layer formed on the smooth layer is appropriately set according to the purpose, but the thickness after drying is preferably in the range of 1 nm to 100 μm, more preferably 10 nm to It is in the range of 10 μm, and most preferably in the range of 10 nm to 1 μm.
 また、適用するポリシラザンとしては、使用する基板の性状を損なわないように塗布するため、比較的低温条件でセラミック化してシリカに変性する化合物が好ましく、例えば、特開平8-112879号公報に記載の化合物が好ましい。 In addition, the polysilazane to be applied is preferably a compound that is converted to silica by being ceramicized at a relatively low temperature condition so as to be applied so as not to impair the properties of the substrate to be used. For example, as described in JP-A-8-112879 Compounds are preferred.
 (ポリシラザンの改質処理:真空紫外光照射処理)
 ポリシラザンの改質処理とは、ポリシラザン化合物の一部又は大部分を、酸化ケイ素又は酸化窒化ケイ素へ転化する処理をいう。
(Polysilazane modification treatment: vacuum ultraviolet light irradiation treatment)
The polysilazane modification treatment refers to a treatment for converting a part or most of the polysilazane compound into silicon oxide or silicon oxynitride.
 この改質処理は、ガスバリアーフィルムを作製するに際し、プラスチック基板への適応という観点から、より低温で、転化反応が可能な紫外光を適用した転化反応が好適に用いられる。 In this modification treatment, a conversion reaction using ultraviolet light capable of a conversion reaction at a lower temperature is suitably used from the viewpoint of adapting to a plastic substrate when producing a gas barrier film.
 水分が取り除かれたポリシラザン塗膜(ポリシラザン含有層)は、紫外光の照射処理により改質される。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜又は酸化窒化ケイ素膜を形成することが可能である。 The polysilazane coating film (polysilazane-containing layer) from which moisture has been removed is modified by ultraviolet light irradiation treatment. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures. It is.
 この紫外光照射により、セラミックス化に寄与するOとHO、紫外線吸収剤、ポリシラザン自身等が励起し、活性化される。そして、励起したポリシラザンのセラミックス化が促進され、得られるセラミックス膜が緻密になる。紫外光照射は、塗膜形成後であればいずれの時点で実施しても有効である。 By this ultraviolet light irradiation, O 2 and H 2 O, UV absorbers, polysilazane itself, etc. that contribute to ceramics are excited and activated. And the ceramicization of the excited polysilazane is promoted, and the resulting ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the formation of the coating film.
 真空紫外線照射処理において、ポリシラザン層塗膜が受ける塗膜面での該真空紫外線の照度は30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。30mW/cm以上では、改質効率が低下する懸念がなく、200mW/cm以下では、塗膜にアブレーションを生じず、基板にダメージを与えないため好ましい。
 なお、真空紫外光の照射光量とガスバリアー層の屈折率に相関があると考えられるため、目的とするガスバリアー層の屈折率に合わせて真空紫外光の照射光量を調節してもよい。
In the vacuum ultraviolet irradiation treatment, the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane layer coating is preferably in the range of 30 to 200 mW / cm 2 , and in the range of 50 to 160 mW / cm 2. Is more preferable. If it is 30 mW / cm 2 or more, there is no concern that the reforming efficiency is lowered, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged, which is preferable.
In addition, since it is thought that there is a correlation between the irradiation amount of vacuum ultraviolet light and the refractive index of the gas barrier layer, the irradiation amount of vacuum ultraviolet light may be adjusted in accordance with the refractive index of the target gas barrier layer.
 〔保護層〕
 本発明に係るガスバリアーフィルムにおいては、必要に応じて、保護層を設けてもよい。該保護層は、平滑層上に形成したガスバリアー層を保護する目的で、ガスバリアー層上に積層されている。
[Protective layer]
In the gas barrier film which concerns on this invention, you may provide a protective layer as needed. The protective layer is laminated on the gas barrier layer for the purpose of protecting the gas barrier layer formed on the smooth layer.
 この保護層は、ガスバリアー層上に保護層形成用塗布液を塗布した後、乾燥することによって形成することができる。また、保護層形成用塗布液を塗布、乾燥した後、形成した塗膜に所定の改質処理(例えば、ガスバリアー層の形成に用いるのと同様の真空紫外光を照射する紫外線照射処理や、熱線を照射する加熱処理)を施して、保護層を形成する方法を適用してもよい。 This protective layer can be formed by applying a protective layer-forming coating solution on the gas barrier layer and then drying. In addition, after applying and drying the coating liquid for forming the protective layer, the coating film formed is subjected to a predetermined modification treatment (for example, an ultraviolet irradiation treatment for irradiating vacuum ultraviolet light similar to that used for forming a gas barrier layer, A method of forming a protective layer by applying a heat treatment with irradiation with heat rays may be applied.
 保護層の形成に用いられる化合物としては、有機又は無機の化合物で、紫外~可視光の領域において透明な被膜であることが好ましく、有機の樹脂として、例えば、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂及びアセタール樹脂等を、1種又は2種以上併せて使用することができる。これらの樹脂には、従来公知の添加剤を加えることもできる。そして、上記の化合物材料(樹脂)及び各種添加剤を、適宜選択した溶剤や希釈剤等で溶解して保護層形成用塗布液を調製した後、ロールコート、グラビアコート、ナイフコート、ディップコート及びスプレーコート等の公知の湿式塗布方法により、ガスバリアー層上にコーティングし、次いで溶剤や希釈剤等を乾燥除去することにより、保護層を形成することができる。その塗布量としては、0.01~1g/m(乾燥状態)の範囲内が好ましい。 The compound used for forming the protective layer is an organic or inorganic compound, and is preferably a transparent film in the ultraviolet to visible light region. Examples of the organic resin include polyester resins, isocyanate resins, urethane resins, An acrylic resin, an ethylene vinyl alcohol resin, a vinyl modified resin, an epoxy resin, a modified styrene resin, a modified silicon resin, an acetal resin, or the like can be used alone or in combination. Conventionally known additives can be added to these resins. And after preparing the coating liquid for protective layer formation by melt | dissolving said compound material (resin) and various additives with the solvent and diluent etc. which were selected suitably, roll coat, gravure coat, knife coat, dip coat, The protective layer can be formed by coating on the gas barrier layer by a known wet coating method such as spray coating, and then drying and removing the solvent, diluent and the like. The coating amount is preferably within a range of 0.01 to 1 g / m 2 (dry state).
 (保護層の積層方法)
 保護層は、平滑層上に設けられたガスバリアー層(ポリシラザン含有層)上に積層される。
(Lamination method of protective layer)
The protective layer is laminated on a gas barrier layer (polysilazane-containing layer) provided on the smooth layer.
 保護層の形成方法としては、水分と反応性のある無機化合物を用いる場合には、水分含有率の低い溶媒にその化合物を溶解、分散して調製した保護層形成用塗布液を低湿度環境下で塗布し乾燥することによって形成することが好ましい。ここで低湿度環境における湿度は、温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-8℃(温度25℃/湿度10%)以下、さらに好ましい露点温度は-31℃(温度25℃/湿度1%)以下である。 As a method for forming the protective layer, when an inorganic compound reactive with moisture is used, a protective layer-forming coating solution prepared by dissolving and dispersing the compound in a solvent having a low moisture content is used in a low humidity environment. It is preferable to form by applying and drying. Here, since the humidity in the low humidity environment varies depending on the temperature, a preferable form is shown for the relationship between the temperature and the humidity by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is −8 ° C. (temperature 25 ° C./humidity 10%) or lower, and a more preferable dew point temperature is −31 ° C. (temperature 25 ° C./temperature). Humidity 1%) or less.
 また、保護層の厚さは、通常1~1000nmの範囲であり、好ましくは、10~500nmの範囲である。本発明において、保護層の厚さが、上記で規定する範囲内にあれば、形成する保護層塗膜の均一性を確保しやすくなり、また、ガスバリアー層を、擦り傷や折り曲げ時のストレスから保護することができる。 The thickness of the protective layer is usually in the range of 1 to 1000 nm, preferably in the range of 10 to 500 nm. In the present invention, if the thickness of the protective layer is within the range specified above, it is easy to ensure the uniformity of the protective layer coating film to be formed, and the gas barrier layer is protected from scratches and stress during bending. Can be protected.
 〔ブリードアウト防止層〕
 また、ガスバリアーフィルムにおいては、図3に示すように、基板F1の平滑層等を形成するのとは反対側の面に、ブリードアウト防止層F2を形成してもよい。
[Bleed-out prevention layer]
In the gas barrier film, as shown in FIG. 3, a bleed-out prevention layer F2 may be formed on the opposite side of the substrate F1 from the smooth layer.
 ブリードアウト防止層F2は、平滑層F3を有する基板(フィルム)を加熱した際に、基板F1中からその表面に未反応のオリゴマー等が移行して、フィルム表面を汚染する現象を抑制する目的で、平滑層F3を有する基板F1の反対面に設けられる。ブリードアウト防止層F2は、この機能を有していれば、基本的に平滑層F3と同じ構成をとっても構わない。 The bleed-out prevention layer F2 is for the purpose of suppressing the phenomenon that unreacted oligomers migrate from the substrate F1 to the surface of the substrate F1 when the substrate (film) having the smooth layer F3 is heated to contaminate the film surface. And provided on the opposite surface of the substrate F1 having the smooth layer F3. The bleed-out prevention layer F2 may basically have the same configuration as the smoothing layer F3 as long as it has this function.
 ブリードアウト防止層F2に含ませることが可能な重合性不飽和基を有する不飽和有機化合物(以下、ハードコート剤ともいう。)としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。 As an unsaturated organic compound having a polymerizable unsaturated group (hereinafter also referred to as a hard coat agent) that can be included in the bleed-out prevention layer F2, the molecule has two or more polymerizable unsaturated groups. Examples thereof include polyunsaturated organic compounds and unit price unsaturated organic compounds having one polymerizable unsaturated group in the molecule.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、以下の実施例では、ガスバリアー層の層厚が240~260nmの範囲内であり、屈折率が1.73~1.78の範囲内であるガスバリアー層の範囲を正常部、範囲外を異常部として水蒸気透過度を算出した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
In the following examples, the thickness of the gas barrier layer is in the range of 240 to 260 nm, and the range of the gas barrier layer in which the refractive index is in the range of 1.73 to 1.78 is outside the normal range. The water vapor transmission rate was calculated using as an abnormal part.
 [水蒸気透過度の推定モデルの作成]
 (基板の作製)
 両面に易接着加工された100μmの厚さのポリエチレンテレフタレート(PET)基板(東洋紡績株式会社製、コスモシャインA4300)を基板F1として用い、シート状の基板F1を温度25℃、相対湿度55%の環境下で96時間保管して調湿した後、下記のように、片面にブリードアウト防止層F2、反対面に平滑層F3を作製して用いた。
[Creation of water vapor permeability estimation model]
(Production of substrate)
A polyethylene terephthalate (PET) substrate (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm that is easily bonded on both sides is used as the substrate F1, and the sheet-like substrate F1 has a temperature of 25 ° C. and a relative humidity of 55%. After storage and conditioning in the environment for 96 hours, a bleed-out prevention layer F2 on one side and a smooth layer F3 on the opposite side were prepared and used as described below.
 (ブリードアウト防止層の形成)
 上記基板の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を、乾燥後の層厚が4μmになるようにミカサ製スピンコーター MS-A100を用いてスピンコートにより、塗布した後、空気下で高圧水銀ランプを使用して、1.0J/cmの硬化条件、80℃、3分間の乾燥条件で硬化及び乾燥を行い、ブリードアウト防止層を形成した。
(Formation of bleed-out prevention layer)
On one side of the substrate, a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied by spin coating using a spin coater MS-A100 manufactured by Mikasa so that the layer thickness after drying was 4 μm. Then, using a high-pressure mercury lamp under air, curing and drying were performed under a curing condition of 1.0 J / cm 2 and a drying condition of 80 ° C. for 3 minutes to form a bleed-out prevention layer.
 (平滑層の形成)
 基板の上記ブリードアウト防止層を形成した面の反対側の面に、二液型ポリウレタン樹脂塗料、ワシンコート MP-6103A(固形分濃度40質量%の酢酸ノルマルブチル溶液);トリレンジイソシアネート系変性イソシアネート樹脂(イソシアネート基を有する素材)、とワシンコート MP-6103B(固形分濃度30質量%のトルエン・メチルエチルケトン混合溶液);変性ポリエステル樹脂(ポリオール)を、ポリオール中のヒドロキシ基とイソシアネート基の質量比率が1:4のようになるように混合し、塗布液としての固形分濃度が10質量%になるように、メチルエチルケトン/メチルイソブチルケトンの1/1の混合溶媒で希釈した塗布液を調製した。これらの塗布液を用いて、乾燥後の層厚が2μmになるようにミカサ製スピンコーター MS-A100を用いてスピンコートにより、塗布した後、80℃、3分間の乾燥条件で乾燥し、その後、40℃の環境下で48時間静置した。
(Formation of smooth layer)
Two-component polyurethane resin paint, Washin Coat MP-6103A (normal butyl acetate solution with a solid content of 40% by mass); Tolylene diisocyanate modified isocyanate resin (Material having an isocyanate group) and Washin Coat MP-6103B (a toluene / methyl ethyl ketone mixed solution having a solid content concentration of 30% by mass); a modified polyester resin (polyol) having a mass ratio of hydroxy groups to isocyanate groups in the polyol of 1: Thus, a coating solution diluted with a 1/1 mixed solvent of methyl ethyl ketone / methyl isobutyl ketone was prepared so that the solid content concentration as the coating solution was 10% by mass. Using these coating solutions, spin coating using Mikasa spin coater MS-A100 so that the layer thickness after drying is 2 μm, followed by drying at 80 ° C. for 3 minutes, followed by drying. And allowed to stand for 48 hours in an environment of 40 ° C.
 (ガスバリアー層の形成)
 次いで、パーヒドロポリシラザン(アクアミカ NN120-10、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液と、アミン触媒のN,N,N′,N′-テトラメチル-1,6-ジアミノヘキサンの10質量%ジブチルエーテル溶液を、99対1の割合で混合した液体(第1の塗布液)を、ミカサ製スピンコーター MS-A100を用いてスピンコートにより、乾燥後の(平均)層厚が、250nmとなるように平滑層F3上に塗布し、温度50℃、露点-5℃の乾燥空気で1分間乾燥して塗布試料を得た。得られた塗布試料を、温度95℃、露点-5℃の乾燥空気で2分間処理し、基板F1上面の平滑層F3上にポリシラザン含有層を形成した試料を得た。
(Formation of gas barrier layer)
Next, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, manufactured by AZ Electronic Materials Co., Ltd.) and amine catalyst N, N, N ′, N′-tetramethyl-1,6-diamino A (average) layer thickness after drying a liquid (first coating liquid) in which a 10% by mass dibutyl ether solution of hexane was mixed at a ratio of 99: 1 by spin coating using a Mikasa spin coater MS-A100. However, it was applied on the smooth layer F3 so as to have a thickness of 250 nm, and dried with dry air at a temperature of 50 ° C. and a dew point of −5 ° C. for 1 minute to obtain a coated sample. The obtained coated sample was treated with dry air at a temperature of 95 ° C. and a dew point of −5 ° C. for 2 minutes to obtain a sample in which a polysilazane-containing layer was formed on the smooth layer F3 on the upper surface of the substrate F1.
 各試料の表面に下記装置、条件で真空紫外光照射(エキシマ改質処理)を行い、ポリシラザン含有層を改質してガスバリアー層を形成した。
 (エキシマ改質処理)
 ポリシラザン塗膜を乾燥し、ポリシラザン含有層を形成した後の上記試料に対し、下記の装置、条件でエキシマ改質処理を施してポリシラザン含有層を改質してガスバリアー層F4を形成した。
 〈エキシマ照射装置〉
  (株)エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
  波長:172nm
  ランプ封入ガス:Xe
 〈改質処理条件〉
 平均エキシマ光強度  :130mW/cm(172nm)
 試料と光源の距離   :2mm
 ステージ加熱温度   :95℃
 照射装置内の酸素濃度 :0.1体積%以下を維持
 エキシマ光照射時のステージ搬送速度:10mm/秒
 エキシマ光照射時のステージ搬送回数:試料表面へのエキシマ光露光量の積算量が5000mJ/cmとなるように調整。
The surface of each sample was irradiated with vacuum ultraviolet light (excimer modification treatment) under the following apparatus and conditions to modify the polysilazane-containing layer to form a gas barrier layer.
(Excimer modification treatment)
The sample after the polysilazane coating film was dried and the polysilazane-containing layer was formed was subjected to an excimer modification treatment with the following apparatus and conditions to modify the polysilazane-containing layer to form a gas barrier layer F4.
<Excimer irradiation system>
Excimer irradiation device MODEL: MECL-M-1-200 manufactured by M.D.Com
Wavelength: 172nm
Lamp filled gas: Xe
<Reforming treatment conditions>
Average excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 2mm
Stage heating temperature: 95 ° C
Oxygen concentration in the irradiation apparatus: Maintaining 0.1% by volume or less Stage transport speed during excimer light irradiation: 10 mm / sec Number of stage transport times during excimer light irradiation: Accumulated amount of excimer light exposure on the sample surface is 5000 mJ / Adjust to be cm 2 .
 (層厚及び屈折率の測定)
 XYステージでガスバリアーフィルムを移動させながら、1mm毎にガスバリアー層の層厚及び屈折率を測定した。1mm当たりの測定時間は、約1秒で測定した。
 使用装置:膜厚測定システム F20(フィルメトリクス社製)
 使用ソフト:FILMeasure(フィルメトリクス社製)
(Measurement of layer thickness and refractive index)
While moving the gas barrier film on the XY stage, the thickness and refractive index of the gas barrier layer were measured every 1 mm 2 . The measurement time per 1 mm 2 was measured at about 1 second.
Equipment used: Film thickness measurement system F20 (manufactured by Filmetrics)
Software used: FILMeasure (Filmetrics)
 (カルシウム腐食法によるガスバリアー性の評価)
 上記のガスバリアー層を形成した基板(ガスバリアーフィルム)をカルシウム腐食法による実測値を得るために更に作製し、以下の測定方法に従って、ガスバリアーフィルムの水蒸気透過度の実測値をカルシウム腐食法により評価した。
 〈評価装置〉
 蒸着装置:日本電子製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 〈ガスバリアー性評価用セルの作製〉
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、ガスバリアーフィルム試料の保護層の表面に金属カルシウムを蒸着させた。次いで、乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介して金属カルシウム蒸着面を対面させて接着し、紫外線を照射することで、評価用セルを作製した。
(Evaluation of gas barrier properties by the calcium corrosion method)
A substrate (gas barrier film) on which the above gas barrier layer was formed was further prepared in order to obtain an actual measurement value by the calcium corrosion method. evaluated.
<Evaluation equipment>
Vapor deposition equipment: JEOL-made vacuum vapor deposition equipment JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
<Production of gas barrier evaluation cell>
Metallic calcium was vapor-deposited on the surface of the protective layer of the gas barrier film sample using a vacuum evaporation apparatus (JEOL-made vacuum evaporation apparatus JEE-400). Next, in a dry nitrogen gas atmosphere, the metal calcium vapor deposition surface is bonded and bonded to quartz glass having a thickness of 0.2 mm via a sealing ultraviolet curable resin (manufactured by Nagase ChemteX) and irradiated with ultraviolet rays. An evaluation cell was produced.
 特開2005-283561号公報に記載の試験片を恒温恒湿環境下で撮像し、得られた画像を画像処理することで腐食したカルシウムを算出し、水蒸気透過度を測定する方法に基づき、得られた試料(評価用セル)を60℃、90%RHの条件下で保存し、金属カルシウムの腐食量からセル内に透過した水分量を評価した。 The test piece described in Japanese Patent Application Laid-Open No. 2005-283561 is imaged under a constant temperature and humidity environment, and the obtained image is subjected to image processing to calculate corroded calcium and obtained based on a method of measuring water vapor permeability. The obtained sample (evaluation cell) was stored under conditions of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell was evaluated from the corrosion amount of metallic calcium.
 (層厚及び屈折率からの水蒸気透過度の推定モデル作成)
 説明変数としてカルシウム腐食法により得られた水蒸気透過度、ガスバリアー層の層厚及び屈折率を用いて重回帰分析を行った。変化量を算出するための正常部のガスバリアー層の層厚を250nm、屈折率を1.78、水蒸気透過度を1.0×10-6g/m・24hとして、水蒸気透過度の推定モデルを以下のように作成した。
 水蒸気透過度(g/m・24h)=1.0×10-6-2.7×10-7×Δd-1.7×10-4×Δn+k
 Δnは、正常部のガスバリアー層と測定するガスバリアーフィルムのガスバリアー層との屈折率の差分である。Δdは、正常部のガスバリアー層と測定するガスバリアーフィルムのガスバリアー層との層厚の差分である。定数kは、重回帰分析とカルシウム腐食法による実測値から求めた水蒸気透過度の補正項である。
(Preparation model of water vapor permeability from layer thickness and refractive index)
Multiple regression analysis was performed using the water vapor permeability obtained by the calcium corrosion method, the thickness of the gas barrier layer, and the refractive index as explanatory variables. Estimating the water vapor transmission rate with a normal gas barrier layer thickness of 250 nm, a refractive index of 1.78, and a water vapor transmission rate of 1.0 × 10 −6 g / m 2 · 24 h for calculating the amount of change The model was created as follows.
Water vapor permeability (g / m 2 · 24h) = 1.0 × 10 −6 −2.7 × 10 −7 × Δd−1.7 × 10 −4 × Δn + k
Δn is a difference in refractive index between the gas barrier layer of the normal part and the gas barrier layer of the gas barrier film to be measured. Δd is a difference in layer thickness between the gas barrier layer of the normal part and the gas barrier layer of the gas barrier film to be measured. The constant k is a correction term for the water vapor transmission rate obtained from an actual measurement value by a multiple regression analysis and a calcium corrosion method.
 [水蒸気透過度推定モデルによる水蒸気透過度の算出]
 (ガスバリアーフィルムの作製)
 ガスバリアーフィルムは、カルシウム腐食法により水蒸気透過度の推定モデルを算出するために用いたガスバリアーフィルムと同様に作製した。
[Calculation of water vapor permeability by water vapor permeability estimation model]
(Production of gas barrier film)
The gas barrier film was produced in the same manner as the gas barrier film used for calculating the water vapor permeability estimation model by the calcium corrosion method.
 (層厚及び屈折率の測定)
 ガスバリアーフィルムは、カルシウム腐食法により水蒸気透過度の推定モデルを算出するために用いたガスバリアーフィルムと同様にガスバリアー層の層厚及び屈折率を測定した。
(Measurement of layer thickness and refractive index)
As for the gas barrier film, the thickness and refractive index of the gas barrier layer were measured in the same manner as the gas barrier film used for calculating the water vapor permeability estimation model by the calcium corrosion method.
 (ガスバリアーフィルムの判定)
 分光反射率計により算出された層厚及び屈折率が所定の範囲外か否かが判定され、所定の範囲外と判定されたガスバリアー層の部分を異常部と判断し、所定の範囲内であると判定されたガスバリアー層の部分を正常部と判断した。
 本実施例では、ガスバリアー層の層厚及び屈折率を算出した部分のうち、正常部と判断された部分を試料番号1として、異常部と判断された部分を試料番号2~4とした。
(Determination of gas barrier film)
It is determined whether or not the layer thickness and refractive index calculated by the spectroscopic reflectometer are outside the predetermined range, the portion of the gas barrier layer determined to be out of the predetermined range is determined as an abnormal portion, and within the predetermined range The portion of the gas barrier layer that was determined to be present was determined as the normal portion.
In this example, among the portions where the thickness and refractive index of the gas barrier layer were calculated, the portion determined to be a normal portion was designated as sample number 1, and the portion determined to be an abnormal portion was designated as sample numbers 2 to 4.
 測定された層厚及び屈折率に基づいて、ガスバリアー層の層厚が250nm、屈折率が1.78との差分を用いて、試料番号2~4について、推定モデルに基づいて水蒸気透過度を算出した。なお、正常部(試料番号1)の水蒸気透過度(水蒸気透過度の正常値)は、1.0×10-6g/m・24h以下としている。結果を表1に示す。 Based on the measured layer thickness and refractive index, using the difference between the gas barrier layer thickness of 250 nm and the refractive index of 1.78, the water vapor transmission rate was measured based on the estimated model for sample numbers 2 to 4. Calculated. The water vapor permeability (normal value of water vapor permeability) of the normal part (sample number 1) is 1.0 × 10 −6 g / m 2 · 24 h or less. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (カルシウム腐食法による水蒸気透過度との比較)
 推定モデルにより算出された異常部(試料番号2~4)の水蒸気透過度の値は、カルシウム腐食法で得られた実測値と近い値が得られている。
 以上より、本発明のガスバリアーフィルムの水蒸気透過度の評価方法を用いて、非接触、非破壊で短時間、広範囲にガスバリアー性能を評価できることがわかった。本発明の水蒸気透過度評価方法を高速の分光反射率計又はエリプソメーターを用いることで、ガスバリアーフィルムの製造工程に組み込むことも可能となる。
(Comparison with water vapor permeability by calcium corrosion method)
The value of the water vapor permeability of the abnormal part (sample numbers 2 to 4) calculated by the estimation model is close to the actual measurement value obtained by the calcium corrosion method.
From the above, it has been found that the gas barrier performance can be evaluated over a wide range in a short time without contact and non-destructively using the method for evaluating the water vapor permeability of the gas barrier film of the present invention. By using the high-speed spectral reflectometer or ellipsometer, the water vapor permeability evaluation method of the present invention can be incorporated into the production process of the gas barrier film.
 本発明のガスバリアーフィルムの水蒸気透過度評価システムにより、非破壊・非接触でガスバリアーフィルム全体の水蒸気透過度を算出することができ、当該水蒸気透過度評価システムは、水蒸気等のガスにより劣化してしまう有機EL素子等の電子デバイスに用いられるガスバリアーフィルムの品質を検査する分野において利用可能性がある。 The water vapor permeability evaluation system for the gas barrier film of the present invention can calculate the water vapor permeability of the entire gas barrier film in a non-destructive and non-contact manner, and the water vapor permeability evaluation system is deteriorated by a gas such as water vapor. Therefore, it may be used in the field of inspecting the quality of gas barrier films used in electronic devices such as organic EL elements.
100 水蒸気透過度評価システム
1 データ処理装置
 11 制御部
 12 記録部
 13 通信部
 14 データ処理部
 14a 推定モデル作成部
 14b ガスバリアー層判定部
 14c 水蒸気透過度算出部
 15 操作表示部
2 分光反射率計調整装置
3 分光反射率計
 31 受光部
 32 光源
4 フィルム観察台
 41 フィルム固定台
 42 二軸電動ステージ
 43 装置フレーム
F ガスバリアーフィルム
 F1 基板
 F2 ブリードアウト防止層
 F3 平滑層
 F4 ガスバリアー層
DESCRIPTION OF SYMBOLS 100 Water vapor permeability evaluation system 1 Data processor 11 Control part 12 Recording part 13 Communication part 14 Data processing part 14a Estimated model preparation part 14b Gas barrier layer determination part 14c Water vapor permeability calculation part 15 Operation display part 2 Spectral reflectometer adjustment Device 3 Spectral Reflectance Meter 31 Light Receiving Unit 32 Light Source 4 Film Observation Table 41 Film Fixing Table 42 Biaxial Motorized Stage 43 Device Frame F Gas Barrier Film F1 Substrate F2 Bleed-out Prevention Layer F3 Smooth Layer F4 Gas Barrier Layer

Claims (8)

  1.  ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づきガスバリアーフィルムの水蒸気透過度を評価する水蒸気透過度評価方法であって、
    (1)前記ガスバリアー層の層厚及び屈折率を光学的に測定する測定ステップと、
    (2)前記測定ステップにより測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出ステップと、
     を含むことを特徴とする水蒸気透過度評価方法。
    A water vapor permeability evaluation method for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film,
    (1) a measuring step for optically measuring the thickness and refractive index of the gas barrier layer;
    (2) a water vapor permeability calculating step for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring step;
    The water vapor permeability evaluation method characterized by including.
  2.  前記水蒸気透過度算出ステップでは、カルシウム腐食法により測定されたガスバリアーフィルムの水蒸気透過度、ガスバリアー層の層厚及び屈折率に基づいて作成される水蒸気透過度の推定モデルを用いて水蒸気透過度を算出することを特徴とする請求項1に記載の水蒸気透過度評価方法。 In the water vapor permeability calculation step, the water vapor permeability is estimated using a water vapor permeability estimation model created based on the water vapor permeability of the gas barrier film, the thickness of the gas barrier layer and the refractive index measured by the calcium corrosion method. The water vapor permeability evaluation method according to claim 1, wherein:
  3.  前記水蒸気透過度の推定モデルが、あらかじめ設定された水蒸気透過度の項と、あらかじめ設定された層厚及び屈折率からの変化量に基づく水蒸気透過度の変化量の項と、補正項とを有することを特徴とする請求項2に記載の水蒸気透過度評価方法。 The estimation model of water vapor permeability includes a preset water vapor permeability term, a preset water vapor permeability change amount based on a change amount from a predetermined layer thickness and refractive index, and a correction term. The method for evaluating water vapor transmission rate according to claim 2.
  4.  測定対象のガスバリアー層が、基板にポリシラザンを含有する塗布液を塗布し、乾燥して得られる層に、真空紫外光を照射して改質することにより形成されたガスバリアー層であることを特徴とする請求項1から請求項3までのいずれか一項に記載の水蒸気透過度評価方法。 The gas barrier layer to be measured is a gas barrier layer formed by applying a coating liquid containing polysilazane to a substrate and drying the layer to modify it by irradiating with vacuum ultraviolet light. The water vapor permeability evaluation method according to any one of claims 1 to 3, wherein the water vapor transmission rate is evaluated.
  5.  前記測定ステップでは、前記層厚及び屈折率を分光反射率計又はエリプソメーターを用いて測定することを特徴とする請求項1から請求項4までのいずれか一項に記載の水蒸気透過度評価方法。 5. The water vapor transmission rate evaluation method according to claim 1, wherein in the measurement step, the layer thickness and the refractive index are measured using a spectral reflectometer or an ellipsometer. .
  6.  ガスバリアーフィルムのガスバリアー層の層厚及び屈折率に基づきガスバリアーフィルムの水蒸気透過度を評価する水蒸気透過度評価システムであって、
    (1)前記ガスバリアー層の層厚及び屈折率を光学的に測定する測定手段と、
    (2)前記測定手段により測定される層厚及び屈折率に基づいて、測定範囲のガスバリアーフィルム全体の水蒸気透過度を算出する水蒸気透過度算出手段と、
     を含むことを特徴とする水蒸気透過度評価システム。
    A water vapor permeability evaluation system for evaluating the water vapor permeability of a gas barrier film based on the thickness and refractive index of the gas barrier layer of the gas barrier film,
    (1) measuring means for optically measuring the thickness and refractive index of the gas barrier layer;
    (2) Water vapor permeability calculating means for calculating the water vapor permeability of the entire gas barrier film in the measurement range based on the layer thickness and refractive index measured by the measuring means;
    A water vapor transmission rate evaluation system comprising:
  7.  前記ガスバリアーフィルムを製造する工程において、当該ガスバリアーフィルムの水蒸気透過度を評価するために用いられることを特徴とする請求項6に記載の水蒸気透過度評価システム。 The water vapor permeability evaluation system according to claim 6, which is used for evaluating the water vapor permeability of the gas barrier film in the step of producing the gas barrier film.
  8.  請求項1から請求項5までのいずれか一項に記載のガスバリアーフィルムの水蒸気透過度評価方法を用いて、ガスバリアーフィルムの水蒸気透過度を評価する工程を有することを特徴とするガスバリアーフィルムの製造方法。 A gas barrier film comprising a step of evaluating the water vapor permeability of a gas barrier film using the method for evaluating the water vapor permeability of a gas barrier film according to any one of claims 1 to 5. Manufacturing method.
PCT/JP2014/062294 2013-05-10 2014-05-08 Water vapor transmission rate evaluation method, water vapor transmission rate evaluation system, and gas barrier film production method WO2014181810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-100136 2013-05-10
JP2013100136A JP2016136086A (en) 2013-05-10 2013-05-10 Water vapor permeation degree evaluation method, water vapor permeation degree evaluation system and manufacturing method of gas barrier film

Publications (1)

Publication Number Publication Date
WO2014181810A1 true WO2014181810A1 (en) 2014-11-13

Family

ID=51867288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062294 WO2014181810A1 (en) 2013-05-10 2014-05-08 Water vapor transmission rate evaluation method, water vapor transmission rate evaluation system, and gas barrier film production method

Country Status (2)

Country Link
JP (1) JP2016136086A (en)
WO (1) WO2014181810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449704A (en) * 2017-05-22 2017-12-08 茆胜 The method of testing of film water vapor transmittance
CN112432887A (en) * 2020-11-10 2021-03-02 海鹰企业集团有限责任公司 Method for testing water vapor transmission rate of high polymer material under pressure condition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213974B4 (en) * 2015-07-23 2017-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement for determining the permeation rate of a sample

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015856A (en) * 1990-03-28 1991-05-14 E. I. Du Pont De Nemours And Company Automated process for permeability determinations of barrier resins
US5381228A (en) * 1993-09-30 1995-01-10 Hoover Universal, Inc. Rapid estimation of the oxygen permeation rate of a thin film on a plastic container
JP2004066730A (en) * 2002-08-08 2004-03-04 Dainippon Printing Co Ltd Gas barrier film, inspection method for laminated body, and manufacturing system for gas barrier film
WO2011007543A1 (en) * 2009-07-17 2011-01-20 三井化学株式会社 Laminate and process for production thereof
JP2012154865A (en) * 2011-01-28 2012-08-16 Mitsubishi Materials Corp Evaluation method of steam barrier property
JP2013044542A (en) * 2011-08-22 2013-03-04 Sumitomo Chemical Co Ltd Inspection method for gas barrier laminated film, manufacturing method tor the same, inspection method for electronic device using the same, and manufacturing method therefor
WO2013035432A1 (en) * 2011-09-08 2013-03-14 リンテック株式会社 Modified polysilazane film and method for producing gas barrier film
JP2013067146A (en) * 2011-09-26 2013-04-18 Fujifilm Corp Barrier laminate, gas-barrier film, and device using barrier laminate and gas-barrier film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015856A (en) * 1990-03-28 1991-05-14 E. I. Du Pont De Nemours And Company Automated process for permeability determinations of barrier resins
US5381228A (en) * 1993-09-30 1995-01-10 Hoover Universal, Inc. Rapid estimation of the oxygen permeation rate of a thin film on a plastic container
JP2004066730A (en) * 2002-08-08 2004-03-04 Dainippon Printing Co Ltd Gas barrier film, inspection method for laminated body, and manufacturing system for gas barrier film
WO2011007543A1 (en) * 2009-07-17 2011-01-20 三井化学株式会社 Laminate and process for production thereof
JP2012154865A (en) * 2011-01-28 2012-08-16 Mitsubishi Materials Corp Evaluation method of steam barrier property
JP2013044542A (en) * 2011-08-22 2013-03-04 Sumitomo Chemical Co Ltd Inspection method for gas barrier laminated film, manufacturing method tor the same, inspection method for electronic device using the same, and manufacturing method therefor
WO2013035432A1 (en) * 2011-09-08 2013-03-14 リンテック株式会社 Modified polysilazane film and method for producing gas barrier film
JP2013067146A (en) * 2011-09-26 2013-04-18 Fujifilm Corp Barrier laminate, gas-barrier film, and device using barrier laminate and gas-barrier film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449704A (en) * 2017-05-22 2017-12-08 茆胜 The method of testing of film water vapor transmittance
CN112432887A (en) * 2020-11-10 2021-03-02 海鹰企业集团有限责任公司 Method for testing water vapor transmission rate of high polymer material under pressure condition
CN112432887B (en) * 2020-11-10 2022-11-11 海鹰企业集团有限责任公司 Method for testing water vapor transmission rate of high polymer material under pressure condition

Also Published As

Publication number Publication date
JP2016136086A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6299751B2 (en) Method and system for evaluating water vapor permeability of gas barrier film and method for producing gas barrier film
Zhang et al. Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane
KR101946132B1 (en) Gas barrier film and method for producing same
CN102470637A (en) Laminate and process for production thereof
WO2014181810A1 (en) Water vapor transmission rate evaluation method, water vapor transmission rate evaluation system, and gas barrier film production method
JP7010560B2 (en) Goods with a hard coat
US20160076134A1 (en) Gas barrier film and method for producing same
JPWO2018168671A1 (en) Gas barrier film, gas barrier film, method of manufacturing gas barrier film, and method of manufacturing gas barrier film
TW201625412A (en) Gas barrier laminate film and method for producing same
KR20150097796A (en) Thin film silicon nitride barrier layers on flexible substrate
JP7211740B2 (en) Gas barrier films and flexible electronic devices
TW201941962A (en) Laminate film
Özpirin et al. Transparent block copolymer thin films for protection of optical elements via chemical vapor deposition
JP6720964B2 (en) Gas barrier film
KR20100022418A (en) Liquid crystal display device
KR20150003302A (en) Film Formation Method
Hoferek et al. Multilayer and functionally gradient films of plasma polymers intended as compatible interlayers for hybrid materials
JP6635033B2 (en) Water vapor permeability evaluation method and water vapor permeability evaluation device
TWI739962B (en) Gas barrier film and flexible electronic device
Lee et al. Hygroscopic fluorine‐doped silicon oxide thin‐film‐based large‐area three‐layered moisture barrier using a roll‐to‐roll microwave plasma‐enhanced chemical vapor deposition system
CN111065515B (en) Gas barrier film, test piece for evaluating water vapor barrier property, and method for evaluating water vapor barrier property of gas barrier film
Nagai A numerical study for the integrative definition of moisture-barrier performance regarding multilayered barrier-stack for an encapsulated system
JP2012086436A (en) Gas barrier molding
WO2021106736A1 (en) Laminated film
Cai et al. Water Vapor Permeation in Alumina Films on Polymer Substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP