WO2014181804A1 - Steam injector and heat pump device - Google Patents

Steam injector and heat pump device Download PDF

Info

Publication number
WO2014181804A1
WO2014181804A1 PCT/JP2014/062271 JP2014062271W WO2014181804A1 WO 2014181804 A1 WO2014181804 A1 WO 2014181804A1 JP 2014062271 W JP2014062271 W JP 2014062271W WO 2014181804 A1 WO2014181804 A1 WO 2014181804A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
refrigerant
steam injector
plate
steam
Prior art date
Application number
PCT/JP2014/062271
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 豊
孝一郎 武内
鈴木 裕
Original Assignee
国立大学法人筑波大学
株式会社Welcon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013098872A external-priority patent/JP6195235B2/en
Priority claimed from JP2013098752A external-priority patent/JP6160993B2/en
Application filed by 国立大学法人筑波大学, 株式会社Welcon filed Critical 国立大学法人筑波大学
Priority to US14/889,606 priority Critical patent/US20160187032A1/en
Publication of WO2014181804A1 publication Critical patent/WO2014181804A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • F25B1/08Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure using vapour under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/04Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/463Arrangements of nozzles with provisions for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0014Ejectors with a high pressure hot primary flow from a compressor discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present invention relates to a steam injector and a heat pump device using the same.
  • Non-Patent Document 2 a small steam injector having a throat portion with an inner diameter of 6.0 mm is disclosed (for example, see Non-Patent Document 2). According to this steam injector, a higher discharge pressure is obtained compared to the input steam pressure.
  • the present invention has been made in view of the above, and an object thereof is to provide a steam injector having a higher discharge pressure and a heat pump device using the same.
  • a steam injector includes an introduction unit that introduces a refrigerant liquid flow and the refrigerant vapor flow, and a traveling direction of the liquid flow. And a throat formed on the output side of the mixing unit, the mixing unit forming a refrigerant flow by mixing the liquid flow and the vapor flow in the form of a jet, And a diffuser part that has a shape in which an internal cross-sectional area expands from the throat part toward the traveling direction of the refrigerant flow, and discharges the refrigerant flow with increased pressure from the discharge part, and the throat
  • the internal cross-sectional area of the part is smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow discharged from the discharge part of the diffuser part increases nonlinearly when the internal cross-sectional area of the throat part is decreased. It is characterized by being That.
  • the first-order differential coefficient of the curve representing the change in the discharge pressure of the refrigerant flow with respect to the change in the inner cross-sectional area of the throat portion is less than zero. Or an internal cross-sectional area having a second-order differential coefficient larger than 0.
  • the internal cross-sectional area of the throat portion is A 1
  • the mass flow rate and the flow rate of the liquid flow in the introduction portion are m w0 and u w0
  • the vapor flow in the introduction portion is The mass flow rate and flow velocity are m s0 and u s0 , respectively
  • the mass flow rate and flow velocity of the refrigerant flow in the throat portion are m 1 and u 1 , respectively
  • the pressure loss coefficients in the mixing portion, the throat portion, and the diffuser portion are N, zeta T, zeta D, density [rho w of the liquid flow, when the discharge pressure and P D at the discharge portion of the refrigerant flow, wherein the following formula is valid (1).
  • the steam injector according to one aspect of the present invention is characterized in that the inner section of the throat portion is circular, and the diameter of the inner section is 2 mm or less.
  • the steam injector according to one aspect of the present invention is characterized in that a diameter of the internal cross section is 1 mm or less.
  • a s0 / A w0 is 7 or more and 30 or less.
  • the steam injector according to an aspect of the present invention is characterized in that the A s0 / A w0 is 10 or more and 20 or less.
  • the steam injector according to one aspect of the present invention further includes a drain pipe formed so as to communicate with the outside air from the inside of the mixing unit.
  • the steam injector according to one aspect of the present invention is characterized in that the drain pipe is provided with a check valve.
  • the steam injector according to one aspect of the present invention is characterized in that the refrigerant is water or alternative chlorofluorocarbon.
  • a steam injector includes a plurality of unit steam injectors that are the steam injectors, and a liquid flow for supplying each of the refrigerant liquid flow and the vapor flow to each introduction portion of each unit steam injector.
  • the steam injector is formed by joining a set of constituent members, and each of the set of constituent members includes the introduction portion, the mixing portion, and the A throat portion and a groove or hole having a shape obtained by dividing the diffuser portion into a plurality of portions are formed, and the introduction portion, the mixing portion, the throat portion, and the diffuser portion are joined to the set of constituent members. Sometimes formed by the groove or the hole.
  • the set of constituent members is plate-shaped and joined to each other in a stacked state, and at least two of the plurality of unit steam injectors are the plate. It arrange
  • the steam injector according to one aspect of the present invention is characterized in that a flow path that communicates each of the introduction portions of the unit steam injectors arranged along the main surface of the plate-like component is formed.
  • the set of constituent members is plate-shaped and joined to each other in a stacked state, and at least two of the plurality of unit steam injectors are the plate. It arrange
  • the steam injector according to one aspect of the present invention is characterized in that a flow path that communicates the introduction portions of the unit steam injectors arranged in the stacking direction of the plate-like constituent members is formed.
  • the pair of constituent members are joined to each other in a stacked state, and the plurality of unit steam injectors extend along the stacking direction of the constituent members. It is characterized by being.
  • the steam injector according to one aspect of the present invention is characterized in that the set of constituent members are joined by diffusion joining.
  • a heat pump device includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant, an evaporator that evaporates the refrigerant, a vapor flow of the refrigerant, and a liquid flow of the refrigerant. And the steam injector for discharging the refrigerant flow whose pressure is increased from the discharge portion of the diffuser portion.
  • FIG. 1 is a schematic configuration diagram of a steam injector according to the first embodiment.
  • FIG. 2 is an enlarged view of a main part of the introduction part and the mixing part of FIG.
  • FIG. 3 is a diagram for explaining an operational characteristic prediction model of a steam injector.
  • FIG. 4 is a diagram illustrating the relationship between the inner diameter of the throat portion and the discharge pressure.
  • FIG. 5 is a diagram showing first-order differential coefficients of the curve shown in FIG.
  • FIG. 6 is a diagram illustrating the second derivative of the curve shown in FIG.
  • FIG. 7 is a diagram illustrating the relationship between the pressure of the steam flow and the discharge pressure in the introduction section.
  • FIG. 8 is a diagram showing the pressure of the steam flow introduced and the pressure in the drain pipe during the stable operation and the unstable operation.
  • FIG. 8 is a diagram showing the pressure of the steam flow introduced and the pressure in the drain pipe during the stable operation and the unstable operation.
  • FIG. 9 is a schematic perspective view of the steam injector according to the second embodiment.
  • 10 is a plan view of the plate-like component shown in FIG. 11 is a cross-sectional view of a main part of the steam injector of FIG.
  • FIG. 12 is a diagram for explaining the flow of the refrigerant.
  • FIG. 13 is a cross-sectional view of a main part for explaining another aspect of the introduction part.
  • FIG. 14A is a schematic diagram for explaining the internal configuration of the steam injector according to the first modification.
  • FIG. 14B is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification.
  • FIG. 14C is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification.
  • FIG. 14A is a schematic diagram for explaining the internal configuration of the steam injector according to the first modification.
  • FIG. 14B is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification.
  • FIG. 14C is a schematic diagram
  • FIG. 14D is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification.
  • FIG. 15 is a plan view of the plate-like component of FIG. 14B.
  • FIG. 16 is a plan view of the plate-like component shown in FIG. 14D.
  • FIG. 17 is a perspective view of the plate-like component shown in FIG. 14B.
  • FIG. 18A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 2.
  • FIG. 18B is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification.
  • FIG. 18C is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification.
  • FIG. 18D is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification.
  • FIG. 18A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 2.
  • FIG. 18B is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification
  • FIG. 19 is a plan view of the plate-shaped component shown in FIG. 18B.
  • FIG. 20 is a plan view of the plate-like component shown in FIG. 18D.
  • FIG. 21A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 3.
  • FIG. 21B is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 3.
  • FIG. 21C is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 3.
  • FIG. 21D is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 3.
  • FIG. 22 is a plan view of the plate-like component shown in FIG. 21B.
  • FIG. 23 is a plan view of the plate-like component shown in FIG. 21D.
  • FIG. 21A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 3.
  • FIG. 21B is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 3.
  • FIG. 24A is a schematic diagram illustrating a configuration of a steam injector according to Modification 4.
  • FIG. 24B is a schematic diagram illustrating a configuration of a steam injector according to Modification 4.
  • FIG. 24C is a schematic diagram illustrating a configuration of a steam injector according to Modification 4.
  • FIG. 24D is a schematic diagram illustrating a configuration of a steam injector according to Modification 4.
  • FIG. 25A is a schematic diagram illustrating the configuration of the plate-like component member of FIG. 24B.
  • FIG. 25B is a schematic diagram illustrating the configuration of the plate-shaped component member of FIG. 24B.
  • FIG. 25C is a schematic diagram illustrating the configuration of the plate-shaped component member of FIG. 24B.
  • FIG. 25D is a schematic diagram illustrating the configuration of the plate-shaped component member of FIG. 24B.
  • FIG. 25E is a schematic diagram illustrating the configuration of the nozzle of FIG. 24C.
  • FIG. 26A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 5.
  • FIG. 26B is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5.
  • FIG. 26C is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5.
  • FIG. 26D is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5.
  • FIG. 26E is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5.
  • FIG. 27 is a plan view of the plate-shaped component shown in FIG. 26C.
  • FIG. 26A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 5.
  • FIG. 26B is a schematic diagram illustrating the internal configuration of the steam injector according
  • FIG. 28 is a plan view of the plate-like component shown in FIG. 26B.
  • FIG. 29 is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 6.
  • FIG. 30 is a block diagram of a heat pump device according to the third embodiment.
  • FIG. 31 is a block diagram of a heat pump device according to the fourth embodiment.
  • the present inventors diligently studied to realize a steam injector having a higher discharge pressure.When the area of the throat portion becomes a predetermined value or less, the discharge pressure of the jet liquid flow to be discharged rapidly increases. It was discovered for the first time and arrived at the present invention.
  • FIG. 1 is a schematic configuration diagram of a steam injector according to the first embodiment.
  • the steam injector 10 includes an introduction part 1, a mixing part 2, a throat part 3, a diffuser part 4, a drain pipe 5, and a check valve 6.
  • the configuration and operation of the steam injector 10 will be described.
  • the introduction unit 1 includes a nozzle-like liquid flow introduction unit 1a that introduces the refrigerant liquid flow W1, and a vapor flow introduction unit 1b that is formed on both sides of the liquid flow introduction unit 1a and introduces the refrigerant vapor flow S1.
  • the liquid flow W1 is introduced in the form of a jet by the nozzle-shaped liquid flow introducing portion 1a.
  • coolant to be used is a refrigerant
  • the mixing unit 2 has a shape in which the internal cross-sectional area decreases in the liquid flow traveling direction, which is the lower side of the paper surface of FIG.
  • the mixing unit 2 has a circular cross section, but may have another shape such as a rectangular cross section.
  • the mixing unit 2 is a part that mixes the liquid flow and the vapor flow inside to form a refrigerant flow in a gas-liquid mixed state.
  • the vapor flow is rapidly cooled and condensed by the liquid flow, and its volume is greatly reduced, so that a negative pressure is generated inside the mixing unit 2. This also increases the flow rate of the steam flow introduced.
  • FIG. 2 is an enlarged view of a main part of the introduction unit 1 and the mixing unit 2 of FIG.
  • the vapor flow S1 introduced from the vapor flow introduction portion 1b joins and mixes with the liquid flow W1 from the outer peripheral side of the jet-like liquid flow W1 introduced from the liquid flow introduction portion 1a.
  • symbol C1 has shown the area
  • the cross-sectional area of this region C1 is Aw0 .
  • Reference C2 indicates a region where the steam flow S1 is introduced and mixed with the liquid flow W1.
  • the cross-sectional area of this region C2 is assumed to be As0 .
  • the throat section 3 is formed on the output side of the mixing section 2 and on the input side of the diffuser section 4.
  • the throat portion 3 has a circular cross section, but may have another shape such as a rectangular cross section.
  • the throat portion 3 is a portion extending from the mixing portion 2 to the diffuser portion 4 and having the smallest internal cross-sectional area. Therefore, the refrigerant flow has the highest flow velocity when passing through the throat portion 3.
  • the diffuser portion 4 has a shape in which the internal cross-sectional area increases from the throat portion 3 toward the traveling direction of the refrigerant flow.
  • the diffuser portion 4 has a circular cross section, but may have another shape such as a rectangular cross section. Since the internal cross-sectional area of the diffuser portion 4 increases in the direction of travel of the coolant flow, the flow velocity decreases and the pressure increases as the coolant flow proceeds. As a result, the diffuser unit 4 discharges the refrigerant flow whose pressure is increased from the discharge unit 4a as the refrigerant flow F1.
  • the drain pipe 5 is formed so as to communicate from the inside of the mixing unit 2 to the outside.
  • the drain pipe 5 is provided with a check valve 6.
  • the drain pipe 5 has a function of exhausting excess steam in the mixing unit 2. By exhausting excess steam in this way, the operation stability of the steam injector 10 is enhanced.
  • a negative pressure is generated inside the mixing unit 2 as described above.
  • the check valve 6 functions to prevent outside air from flowing into the mixing unit 2 due to negative pressure, thereby increasing the stability of the operation of the steam injector 10.
  • the steam injector 10 includes, for example, an introduction unit 1, a mixing unit 2, a throat unit 3, a diffuser unit 4, and a drain pipe in each of a set of two or more structural members (for example, plate-shaped structural members).
  • a groove or hole having a shape obtained by dividing 5 into a plurality of parts may be formed, and a set of constituent members formed with the groove or hole may be joined.
  • each of the introduction portion 1, the mixing portion 2, the throat portion 3, the diffuser portion 4, and the drain pipe 5 is formed by combining grooves or holes formed in the respective constituent members when a set of constituent members are joined. Formed by.
  • the constituent material of the constituent member may be, for example, a resin material, but the constituent member is made of metal or the like, and the pair of constituent members are joined by diffusion joining or the like, so that the discharge pressure of the refrigerant flow F1 is high. Sufficient bonding strength that can withstand it can be obtained.
  • a metal material which comprises a structural member what has high heat insulation, such as stainless steel material, is preferable.
  • the internal cross-sectional area of the throat portion 3 is set smaller than a predetermined critical cross-sectional area. Therefore, the discharge pressure of the refrigerant flow discharged from the discharge part 4a of the diffuser part 4 is increased.
  • FIG. 3 is a diagram for explaining an operational characteristic prediction model of a steam injector.
  • the symbol “0” indicates the start point of the region where the liquid flow W1 and the vapor flow S1 are mixed (see the regions C1 and C2 in FIG. 2).
  • Reference numeral “1” indicates the throat portion 3.
  • Reference sign “D” indicates the discharge section 4 a of the diffuser section 4.
  • the equation of conservation of mass, the equation of conservation of energy, and the equation of conservation of momentum are applied to the liquid flow W1, the vapor flow S1, and the refrigerant flow F1 in the mixing section 2 (between “0” and “1”).
  • Bernoulli's equation is applied to the refrigerant flow F1 in the diffuser section 4 (between “1” and “D”).
  • the refrigerant is water. That is, the values of the water flow and the water vapor flow were used as the parameter values relating to the liquid flow and the vapor flow.
  • the internal cross-sectional area of the throat portion 3 is A 1
  • the mass flow rate of the liquid flow W1 in the introduction portion 1 and the flow velocity are m w0 and u w0 , respectively
  • the mass flow rate of the refrigerant flow F1 in the throat part 3 the flow speeds m 1 , u 1 , the mixing part 2, the throat part 3, and the pressure loss coefficients in the diffuser part 4 respectively ⁇ N , ⁇ T, ⁇ D
  • density [rho w liquid flow W1 the discharge pressure in the discharge section 4a of the refrigerant flow F1 is set to P D.
  • a w0 was set to 7.54 ⁇ 10 ⁇ 7 m 2
  • a s0 was set to 5.42 ⁇ 10 ⁇ 6 m 2 .
  • a s0 / A w0 is about 7.2.
  • the temperature Tw0 of the liquid flow W1 in the introduction part 1 was set to 20 ° C., and ⁇ s was set to 0.37.
  • ⁇ N is 0.05, ⁇ T is 0.1, ⁇ D is 0.15, m w0 is 1.27 ⁇ 10 ⁇ 2 kg / s, and the steam flow S1 in the introduction portion 1 0.10MPa pressure P s of, when a 0.13MPa or 0.15 MPa, was calculated change in the discharge pressure P D when the inner diameter D T of the throat portion 3 is varied from 6.0mm to 300 ⁇ m .
  • 1 atmosphere is 0.1024 MPa.
  • the throat portion 3 has a circular cross section.
  • ⁇ (D T / 2) 2 A 1 holds for the internal cross-sectional area A 1 .
  • FIG. 4 is a diagram showing the relationship between the inner diameter D T and the discharge pressure P D of the throat portion 3.
  • FIG. 5 is a diagram showing first-order differential coefficients of the curve shown in FIG.
  • FIG. 6 is a diagram illustrating the second derivative of the curve shown in FIG. In deriving FIGS. 4 to 6, the calculation was performed by changing the value of DT in steps of 0.01 mm. As shown in FIG. 4, for the value of any of the pressure P s, also to reduce the inner diameter D T of 6.0 mm, the discharge pressure P D was substantially constant.
  • the inner diameter D T of about 1.0mm as the critical value the critical value less than the inner diameter D T is (for example 600 .mu.m) in the discharge pressure P D is nonlinearly rapidly increased It was confirmed from the analysis of the formula (1). Further, as shown in FIG. 5, first-order differential coefficient of a curve showing the relationship between the inner diameter D T and the pressure P s shown in FIG. 4 is substantially zero when the inner diameter D T is greater than 1.0 mm. However, when the critical value is about 1.0 mm and the inner diameter DT is smaller than the critical value, it becomes smaller than 0 and then decreases rapidly. Furthermore, as shown in FIG.
  • second order derivative of the curve showing the relationship between the inner diameter D T and the pressure P s shown in FIG. 4 is substantially zero when the inner diameter D T is greater than 1.0 mm.
  • the critical value is about 1.0 mm and the inner diameter DT is smaller than the critical value, it becomes larger than 0 and then increases rapidly.
  • the steam injector 10 according to the first embodiment, the inner diameter D T of the throat portion 3 or the internal cross-sectional area A 1,, threshold discharge pressure P D is increased (inner diameter or cross-sectional area) smaller than the inner diameter or cross-sectional
  • threshold discharge pressure P D is increased (inner diameter or cross-sectional area) smaller than the inner diameter or cross-sectional
  • the first curve representing relative changes in the internal diameter D T or internal cross-sectional area A 1 of the throat portion 3, a change in the discharge pressure P D (i.e., the curve shown in FIG. 4)
  • the rank differential coefficient is smaller than 0.
  • the second order differential coefficient is larger than zero. Therefore, a high discharge pressure P D is realized by setting the inner diameter D T or the inner sectional area A 1 where the differential coefficient of the first or second floor changes from 0.
  • the critical value can be defined as a value at which the first- or second-order differential coefficient changes from zero.
  • a value at which the second-order differential coefficient increases by 10% or more in accordance with a decrease in the inner diameter D T or the inner cross-sectional area A 1 may be defined as a critical value.
  • the critical value of the inner diameter DT is 1 It may be defined as 0.0 mm.
  • the critical value of the discharge pressure P D is increased (inner diameter or cross-sectional area) is changed by the value of each parameter included in the formula (1). Therefore, in consideration of the value of each parameter, by setting the inner diameter D T or internal cross-sectional area A 1 of the throat portion 3 to be less than the critical value, to obtain a high discharge pressure P D as the effect of the present invention Can do.
  • the parameter relating to water may be replaced with the parameter relating to the refrigerant to be used to set the inner diameter D T or the internal sectional area A 1 of the throat portion 3.
  • the internal cross-sectional area A 1 of the throat portion 3 is 2.83 ⁇ 10 ⁇ 7 m 2 (the inner diameter DT is 600 ⁇ m), and m w0 is 1.27 ⁇ 10 ⁇ 2 kg / s, 1.43 ⁇ 10 ⁇ 2 kg / s, or 1.59 ⁇ 10 ⁇ 2 kg / s, the discharge pressure P D when the pressure P s of the steam flow S1 in the introduction unit 1 is changed The change of was calculated.
  • Figure 7 is a diagram showing the relationship between the pressure P s and the discharge pressure P D of the vapor stream S1 in the introductory part 1. As shown in FIG. 7, it was confirmed from the analysis of equation (1) that it is possible to increase the discharge pressure P D as increasing the pressure P s.
  • a steam injector was actually fabricated using a resin material, and an experiment was performed to verify its operation.
  • the sample has the same configuration as sample 1 (sample 3) except that the check valve and drain pipe are not provided.
  • the configuration of the first embodiment shown in FIG. 1 is further provided with a mechanism capable of making A s0 / A w0 variable (sample 7).
  • a variable mechanism is realizable by comprising so that the protrusion amount to the mixing part 2 of the liquid flow introduction part 1a can be changed.
  • the length of the mixing unit 2 is 22.5 mm
  • the inner diameter of the mixing unit 2 opposite to the throat unit 3 is 3.4 mm
  • the liquid flow W1 is introduced.
  • the cross-sectional area a w0 and 1.94 M 2 (as the inner diameter of 1.57 mm)
  • the diffuser section 4 a length and 14.4 mm
  • the inner diameter was 2.0 mm.
  • the drain tube 5 has an inner diameter of 0.45 mm.
  • the pressure P s of the vapor flow in the introduction part can be adjusted in the range of 0.11 MPa to 0.15 MPa.
  • the liquid flow temperature T w0 can be adjusted in the range of 11.9 ° C. to 26 ° C.
  • the vapor flow temperature T s0 can be adjusted in the range of 101.4 ° C. to 111.2 ° C.
  • the flow velocity m w0 of the liquid flow in the introduction section can be adjusted in the range of 1.59 ml / s to 2.20 ml / s (note that the density of the liquid flow is, for example, 958 kg / m 3 ).
  • the dissolved oxygen amount DO w or DO s of the liquid flow or vapor flow to be introduced can be adjusted in the range of 0.8 mg / l to 8.0 mg / l.
  • FIG. 8 is a diagram showing the pressure of the steam flow introduced and the pressure in the drain pipe during the stable operation and the unstable operation.
  • the horizontal axis is the elapsed time from the start of measurement.
  • P in denotes the pressure in the drain pipe
  • P s represents the pressure of the steam flow.
  • Stable means that the steam injector is in a stable operation state
  • Unstable means that the steam injector is in an unstable operation state.
  • the value of A s0 / A w0 is preferably in the range of 7 to 30 in terms of the operation of the steam injector, and is stable operation in the case of 10 to 20 inclusive. Even more preferable.
  • the steam injector according to the second embodiment includes a plurality of unit steam injectors having the same configuration as that of the steam injector 10 according to the first embodiment.
  • the steam injector according to the second embodiment includes a plurality of unit steam injectors that are small and have a high discharge pressure.
  • the unit steam injectors discharge and discharge all the refrigerant flows that have been increased in discharge pressure. By doing so, a high discharge pressure and a high discharge amount are realized while being small.
  • FIG. 9 is a schematic perspective view of the steam injector according to the second embodiment.
  • the steam injector 100 is composed of a plurality (5 in the second embodiment) of plate-like constituent members 101, 102, 103, 104, and 105.
  • the set of plate-like constituent members 101, 102, 103, 104, and 105 are joined to each other in a stacked state.
  • the plate-like constituent members 101 and 105 constitute the uppermost layer or the lowermost layer of the steam injector 100 having a laminated structure.
  • the plate-like component 101 is formed with a refrigerant liquid supply port 101a for supplying the refrigerant liquid flow W1 from the outside and a refrigerant vapor discharge port 101b for discharging the refrigerant vapor flow S1 to the outside.
  • the plate-like component 105 is formed with a refrigerant liquid discharge port 105a for discharging the liquid flow W1 to the outside and a refrigerant vapor supply port 105b for supplying the vapor flow S1 from the outside.
  • a refrigerant flow discharge port 106 for discharging the refrigerant flow F ⁇ b> 1 is formed on the side surface of the vapor injector 100.
  • FIG. 10 is a plan view of the plate-like component 102.
  • the hatched portion is the main surface of the plate-like component member 102, and a plurality of grooves and holes are formed on the main surface of the plate-like component member 102.
  • These grooves and holes are the plate-like components of the plate-like component member 101, the main surface of the plate-like member 102 facing the plate-like component member 102, the two main surfaces of the plate-like component members 102, 103, and 104, It is also formed on the main surface facing the member 104.
  • These grooves and holes include a groove or hole having a shape obtained by dividing an introduction portion, a mixing portion, a throat portion, and a diffuser portion of a unit steam injector, which will be described later.
  • these grooves or holes are combined to form a refrigerant liquid for the plurality of unit steam injectors and the unit steam injectors. And a flow path for supplying or discharging the refrigerant vapor.
  • the plate-like component 102 is formed with a refrigerant liquid supply port 102a, a refrigerant vapor discharge port 102b, a refrigerant liquid discharge port 102c, and a refrigerant vapor supply port 102d. ing. Further, by joining the plate-like member 102 and the plate-like member 103, three unit vapor injectors 10 ', a refrigerant liquid channel 102e, a refrigerant vapor channel 102f, and a refrigerant flow merge channel 102g are formed. Is done.
  • the refrigerant liquid supply port 102a communicates with the refrigerant liquid supply port 101a shown in FIG.
  • the refrigerant vapor outlet 102b communicates with the refrigerant vapor outlet 101b shown in FIG.
  • the refrigerant liquid outlet 102c communicates with the refrigerant liquid outlet 105a shown in FIG.
  • the refrigerant vapor supply port 102d communicates with the refrigerant vapor supply port 105b shown in FIG.
  • the refrigerant liquid supply port 102a and the refrigerant liquid discharge port 102c communicate with each other via the refrigerant liquid flow path 102e.
  • the refrigerant vapor discharge port 102b and the refrigerant vapor supply port 102d communicate with each other via a refrigerant vapor channel 102f.
  • the unit steam injectors 10 ′ are arranged along the main surfaces of the plate-like constituent members 101 and 102. Further, since the unit steam injector 10 ′ is formed between the respective plate-shaped components by joining a set of plate-shaped components 101, 102, 103, 104, 105, the plate-shaped components 101, 102, They are also arranged along the stacking direction of 103, 104, and 105. In the steam injector 100, three unit steam injectors are formed along the main surface and four along the stacking direction. Therefore, the steam injector 100 is a total of 12 unit steam injectors.
  • N 1 and M is 2
  • N may be 2 or more
  • M may be 1, or N and M may be 2 or more.
  • Each unit steam injector 10 ′ includes an introduction part 1, a mixing part 2, a throat part 3, and a diffuser part 4, similarly to the steam injector 10 according to the first embodiment.
  • the introduction part 1 has a nozzle-like liquid flow introduction part 1a and a vapor flow introduction part 1b.
  • the liquid flow introduction unit 1a introduces a refrigerant liquid flow W1 supplied from the outside through the refrigerant liquid supply port 101a, the refrigerant liquid supply port 102a, and the refrigerant liquid channel 102e.
  • the vapor flow introducing portion 1b is formed on both sides of the liquid flow introducing portion 1a, and introduces the vapor flow S1 supplied via the refrigerant vapor supply port 105b, the refrigerant vapor supply port 102d, and the refrigerant vapor channel 102f.
  • the liquid flow W1 is introduced in the form of a jet by the nozzle-shaped liquid flow introducing portion 1a.
  • coolant to be used is a refrigerant
  • FIG. 11 is a cross-sectional view of a main part of the steam injector 100, showing a cross section corresponding to the line AA in FIG.
  • the liquid flow introducing portion 1a and the vapor flow introducing portion 1b are formed by combining the grooves formed on the opposing main surfaces when the plate-like component member 101 and the plate-like component member 102 are joined.
  • the mixing unit 2 has a shape in which the internal cross-sectional area decreases in the liquid flow progression direction, which is the right side of the drawing in FIG.
  • the mixing unit 2 has a rectangular cross section.
  • the cross section may be circular as in the case of the first embodiment, or another shape.
  • the mixing unit 2 mixes the liquid flow and the vapor flow inside to form a refrigerant flow in a gas-liquid mixed state. A negative pressure is generated inside the mixing unit 2, and the flow velocity of the steam flow introduced thereby increases.
  • the vapor flow S1 introduced from the vapor flow introduction portion 1b joins and mixes with the liquid flow W1 from the outer peripheral side of the jet-like liquid flow W1 introduced from the liquid flow introduction portion 1a. .
  • the throat section 3 is formed on the output side of the mixing section 2 and on the input side of the diffuser section 4.
  • the throat portion 3 has a rectangular cross section, but the cross section may be circular as in the case of the first embodiment, or another shape.
  • the refrigerant flow has the highest flow velocity when passing through the throat portion 3.
  • the diffuser portion 4 has a shape in which the internal cross-sectional area increases from the throat portion 3 toward the traveling direction of the refrigerant flow.
  • the diffuser section 4 has a rectangular cross section, but the cross section may be circular as in the case of the first embodiment, or another shape.
  • the refrigerant flow is increased in pressure while the flow velocity is decreased.
  • the diffuser unit 4 discharges the refrigerant flow whose pressure is increased from the discharge unit 4a as the refrigerant flow F1.
  • the refrigerant flow merging flow path 102g communicates with the discharge portion of the diffuser portion of each unit vapor injector 10 ', and merges the discharged refrigerant flows F1.
  • the refrigerant flow outlet 106 discharges the merged refrigerant flow F ⁇ b> 1 to the outside of the vapor injector 100.
  • FIG. 12 is a diagram for explaining the flow of the refrigerant.
  • the refrigerant liquid flow W ⁇ b> 1 is supplied from the refrigerant liquid supply port 101 a, and then is supplied from the refrigerant liquid supply port formed in the plate-like component 102 to the plate-like component 101 and the plate-like component.
  • the unit steam injectors formed by joining with 102 are supplied.
  • the liquid flow that has not been supplied to each unit vapor injector is discharged from the refrigerant liquid discharge port, and is joined to the plate-shaped component member 102 and the plate-shaped component member 103 from the refrigerant liquid supply port formed in the plate-shaped component member 103. It is supplied to each unit steam injector formed.
  • the refrigerant liquid supply port and the refrigerant liquid discharge port of the adjacent plate-shaped component members are in communication with each other, and a flow path that communicates each introduction portion of the unit steam injectors arranged along the stacking direction of the plate-shaped component members.
  • a liquid flow is supplied to each unit steam injector formed by joining the respective plate-shaped component members, and an unused liquid flow is discharged to the outside from the refrigerant liquid discharge port 105a of the plate-shaped component member 105.
  • the refrigerant vapor flow S ⁇ b> 1 is supplied from the refrigerant vapor supply port 105 b and then joined to the plate-like component member 105 and the plate-like component member 104 from the refrigerant vapor supply port formed in the plate-like component member 104.
  • Is supplied to each unit steam injector formed The vapor flow that has not been supplied to each unit vapor injector is discharged from the refrigerant vapor discharge port, and the plate-like component member 104 and the plate-like component member 103 are joined from the refrigerant vapor supply port formed in the plate-like component member 103. It is supplied to each unit steam injector formed.
  • a steam flow is supplied to each unit steam injector formed by joining each plate-shaped component, and the unused steam flow is discharged to the outside from the refrigerant vapor discharge port 101b of the plate-shaped component 101. .
  • This steam injector 100 is an assembly of twelve unit steam injectors as described above, and discharges a refrigerant flow that combines all of the refrigerant flows discharged by each unit steam injector.
  • the unit steam injector 10 ′ has the same configuration as the steam injector 10 according to the first embodiment, and the internal cross-sectional area of the throat portion 3 is a critical interruption in which the discharge pressure of the refrigerant flow increases nonlinearly. It is set smaller than the area.
  • the unit steam injector 10 ′ has a higher discharge pressure of the refrigerant flow discharged from the discharge section 4 a of the diffuser section 4 in the same manner as the steam injector 10. Therefore, the steam injector 100 has a small discharge pressure, a high discharge pressure, and a large discharge amount.
  • FIG. 13 is a principal part sectional view for explaining another aspect of the introduction part.
  • the introduction part 1 ′ can be used in place of the introduction part 1 shown in FIG. 10, and is a heat insulating layer interposed between the liquid flow introduction part 1a and the vapor flow introduction part 1b. 1c.
  • the heat insulation layer 1c can be configured, for example, as a layer filled with air between two wall portions or a vacuum layer.
  • the heat insulating layer 1 c prevents or suppresses the liquid flow W ⁇ b> 1 from being heated by the vapor flow S ⁇ b> 1, thereby preventing or suppressing the decrease in the condensation effect.
  • the plate-like constituent members 101, 102, 103, 104, and 105 may be made of, for example, a resin material. These are made of metal or the like, and a set of plate-like constituent members are joined by diffusion bonding or the like. As a result, the discharge amount of the refrigerant flow F1 is large, and a sufficient bonding strength can be obtained even if the discharge pressure is high.
  • a metal material which comprises a plate-shaped structural member what has high heat insulation, such as stainless steel material, is preferable.
  • the unit steam injector 10 ′ may further include a drain pipe formed so as to communicate with the outside air from the inside of the mixing unit 2.
  • the operation of the unit steam injector 10 ′ becomes more stable by exhausting excess steam in the mixing unit 2 by the drain pipe.
  • the drain pipe may be provided with a check valve. The check valve functions to prevent the outside air from flowing into the mixing unit 2 due to the negative pressure generated during the operation of the unit steam injector 10 ', thereby improving the operation stability of the unit steam injector 10'.
  • FIG. 14A shows a steam injector 100A
  • FIGS. 14B, 14C, and 14D show plate-like constituent members 102A, 103A, and 101A that are constituent elements thereof.
  • the steam injector 100A has a configuration in which a plurality of sets of plate-like component members 101A arranged between a plurality of plate-like component members 102A and 103A are stacked.
  • These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
  • FIG. 15 is a plan view of the plate-like component 102A of FIG. 14B.
  • region where the cross hatching was given has shown the groove
  • the plate-like component 103A has the same configuration as the plate-like member 102A.
  • the plate-like component 102A includes a refrigerant liquid channel 102Ae, a refrigerant vapor channel 102Af, a refrigerant flow merge channel 102Ag, and a refrigerant flow so as to penetrate the plate-like member 102A.
  • a discharge port 106A is formed.
  • the plate-like component 102A has grooves for constituting the introduction part 1A, the mixing part 2A, the throat part 3A, and the diffuser part 4A of the unit steam injector 10A.
  • a unit steam injector 10A is formed by joining the plate-like member 102A and the plate-like member 103A.
  • the plate-like component 102A and the plate-like member 103A may be laminated so that the grooves are combined with each other, the main surface on which the groove of one plate-like component is formed, and one plate-like member You may laminate
  • Each unit steam injector 10A includes an introduction part 1A, a mixing part 2A, a throat part 3A, and a diffuser part 4A.
  • the introduction unit 1A includes a nozzle-like liquid flow introduction unit 1Aa and a vapor flow introduction unit 1Ab.
  • the liquid flow introduction unit 1Aa introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 102Ae.
  • the vapor flow introduction part 1Ab is formed on both sides of the liquid flow introduction part 1Aa, and introduces the vapor flow supplied via the refrigerant vapor flow path 102Af.
  • the specific configuration and operation of the unit steam injector 10A are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3A is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
  • FIG. 16 is a plan view of the plate-like component 101A shown in FIG. 14D.
  • a refrigerant liquid channel 101Ae in the plate-shaped component 101A, a refrigerant liquid channel 101Ae, a refrigerant vapor channel 101Af, a refrigerant flow merging channel 101Ag, and a refrigerant flow discharge port 106A are formed.
  • the plate-shaped component 101A is sandwiched between the plate-shaped component 102A and the plate-shaped component 103A, and a spacer for securing a flow path of the refrigerant vapor to the vapor flow introducing portion 1Ab of each unit vapor injector 10A. It plays the role of
  • FIG. 17 is a perspective view of the plate-like component 102A shown in FIG. 14B, in which the plate-like member 102A is cut for easy understanding of the groove configuration.
  • FIG. 18A shows a steam injector 100B
  • FIGS. 18B, 18C, and 18D show plate-like constituent members 102B, 103B, and 101B that are constituent elements thereof.
  • the steam injector 100B has a configuration in which a plurality of sets of plate-like component members 101B arranged between a plurality of plate-like component members 102B and 103B are stacked.
  • These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
  • FIG. 19 is a plan view of the plate-like component 102B of FIG. 18B.
  • region where the cross hatching was given has shown the groove
  • the plate-like component 103B has the same configuration as the plate-like member 102B.
  • the plate-like component 102B includes a refrigerant liquid channel 102Be, a refrigerant vapor channel 102Bf, a refrigerant flow merge channel 102Bg, and a refrigerant flow so as to penetrate the plate-like member 102B.
  • a discharge port 106B is formed.
  • the plate-like component 102B has grooves for constituting the introduction part 1B, the mixing part 2B, the throat part 3B, and the diffuser part 4B of the unit steam injector 10B.
  • a unit steam injector 10B is formed by joining the plate-like member 102B and the plate-like member 103B.
  • the plate-like component member 102B and the plate-like component member 103B may be laminated so that the grooves are combined with each other, the main surface on which the groove of one plate-like component member is formed, and one plate-like member You may laminate
  • Each unit steam injector 10B includes an introduction part 1B, a mixing part 2B, a throat part 3B, and a diffuser part 4B.
  • the introduction part 1B has a nozzle-like liquid flow introduction part 1Ba and a vapor flow introduction part 1Bb.
  • the liquid flow introduction unit 1Ba introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 102Be.
  • the vapor flow introduction part 1Bb is formed on both sides of the liquid flow introduction part 1Ba, and introduces the vapor flow supplied via the refrigerant vapor flow path 102Bf.
  • the specific configuration and operation of the unit steam injector 10B are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3B is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is high.
  • FIG. 20 is a plan view of the plate-like component 101B shown in FIG. 18D.
  • a refrigerant liquid channel 101Be a refrigerant liquid channel 101Be, a refrigerant vapor channel 101Bf, a refrigerant flow merging channel 101Bg, and a refrigerant flow outlet 106B are formed in the plate-like component 101B.
  • the plate-like member 101B is sandwiched between the plate-like member 102B and the plate-like member 103B, and a spacer for securing a flow path of the refrigerant vapor to the vapor flow introduction portion 1Bb of each unit vapor injector 10B. It plays the role of
  • the plate-like component 102B is further formed with a through groove 1Bc interposed between the liquid flow introduction portion 1Ba and the vapor flow introduction portion 1Bb.
  • a through groove 1Bc is also formed in the plate-like component 101B.
  • the through groove 1Bc is formed so as to be interposed between the refrigerant liquid channel 102Be and the refrigerant vapor channel 102Bf.
  • This through groove 1Bc forms an air layer as a heat insulating layer that insulates between the liquid flow introducing portion 1Ba and the vapor flow introducing portion 1Bb and between the refrigerant liquid flow channel 102Be and the refrigerant vapor flow channel 102Bf. Accordingly, the liquid flow is prevented or suppressed from being heated by the vapor flow before mixing, so that the reduction of the condensation effect in the mixing unit 2B is prevented or suppressed.
  • the through groove 1Bc may be evacuated.
  • FIG. 21A shows a steam injector 100C
  • FIGS. 21B, 21C, and 21D show plate-like constituent members 102C, 103C, and 101C that are constituent elements thereof.
  • the steam injector 100C has a configuration in which a plurality of plate-like component members 101C arranged between a plurality of plate-like component members 102C and 103C are stacked.
  • These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
  • FIG. 22 is a plan view of the plate-like component 102C of FIG. 21B.
  • region where the cross hatching was given has shown the groove
  • the plate-like component 103C has the same configuration as the plate-like member 102C.
  • the plate-like component 102C includes a refrigerant liquid channel 102Ce, a refrigerant vapor channel 102Cf, a refrigerant flow merge channel 102Cg, and a refrigerant flow so as to penetrate the plate-like member 102C.
  • a discharge port 106C is formed.
  • the plate-like component member 102C has grooves for constituting the introduction part 1C, the mixing part 2C, the throat part 3C, and the diffuser part 4C of the unit steam injector 10C.
  • a unit steam injector 10C is formed by joining the plate-like member 102C and the plate-like member 103C.
  • the plate-like component member 102C and the plate-like component member 103C may be laminated so that the grooves are combined with each other, the main surface on which the groove of one plate-like component member is formed, and one plate-like member You may laminate
  • Each unit steam injector 10C includes an introduction part 1C, a mixing part 2C, a throat part 3C, and a diffuser part 4C.
  • the introduction part 1C has a nozzle-like liquid flow introduction part 1Ca and a vapor flow introduction part 1Cb.
  • the liquid flow introduction unit 1Ca introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 102Ce.
  • the vapor flow introduction part 1Cb is formed on both sides of the liquid flow introduction part 1Ca, and introduces the vapor flow supplied via the refrigerant vapor flow path 102Cf.
  • the specific configuration and operation of the unit steam injector 10C are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3C is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
  • the unit steam injector 10C the steam flow is mixed from the side surface in the liquid flow traveling direction.
  • reference numeral 1Caa represents a cross-sectional area into which a liquid flow is introduced when mixing
  • reference numeral 1Cba represents a cross-sectional area into which a vapor flow is introduced during mixing.
  • FIG. 23 is a plan view of the plate-like component 101C of FIG. 21D.
  • a refrigerant liquid channel 101Ce a refrigerant vapor channel 101Cf, a refrigerant flow merging channel 101Cg, and a refrigerant flow outlet 106C are formed in the plate-like component 101C.
  • the plate-like member 101C is sandwiched between the plate-like member 102C and the plate-like member 103C, and is a spacer for securing a flow path of the refrigerant vapor to the steam flow introducing portion 1Cb of each unit steam injector 10C. It plays the role of
  • the plate-like member 102C is also formed with a through groove 1Cc interposed between the liquid flow introduction portion 1Ca and the vapor flow introduction portion 1Cb.
  • a through groove 1Cc is also formed in the plate-like component 101C.
  • the through groove 1Cc is formed so as to be interposed between the refrigerant liquid channel 102Ce and the refrigerant vapor channel 102Cf.
  • This through groove 1Cc forms an air layer as a heat insulating layer that insulates between the liquid flow introducing portion 1Ca and the vapor flow introducing portion 1Cb and between the refrigerant liquid flow channel 102Ce and the refrigerant vapor flow channel 102Cf. Accordingly, since the liquid flow is prevented or suppressed from being heated by the vapor flow before mixing, the reduction of the condensation effect in the mixing unit 2C is prevented or suppressed.
  • the through groove 1Cc may be evacuated.
  • FIG. 24A to 24D are schematic views for explaining the internal configuration of the steam injector according to the fourth modification.
  • FIG. 24A shows the steam injector 100D
  • FIGS. 24B, 24C, and 24D show the plate-like component member 102D, the nozzle 110D, and the plate-like component member 103D, which are the components thereof.
  • the steam injector 100D has a configuration in which a plurality of sets of plate-like component members 102D and 103D are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
  • FIGS. 25A to 25E are schematic views for explaining the configuration of the plate-like constituent members and nozzles of FIGS. 24B and 24C.
  • 25A shows a plate-like component 102D
  • FIGS. 25B, 25C, and 25D show cross sections taken along the lines AA, BB, and CC in FIG. 25A, respectively
  • FIG. 25E shows the nozzle 110D. Yes.
  • the cross hatched area indicates a groove.
  • the plate-like component 103D has the same configuration as the plate-like member 102D.
  • the plate-shaped component 102D includes a refrigerant liquid flow channel 102De, a refrigerant vapor flow channel 102Df, a refrigerant flow merging flow channel 102Dg so as to penetrate the plate-shaped structural member 102D.
  • a refrigerant flow outlet 106D is formed.
  • the plate-like component 102D has grooves for constituting the mixing portion 2D, the throat portion 3D, and the diffuser portion 4D of the unit steam injector 10D.
  • the plate-like component 102D has a groove 102Dh for fitting the nozzle 110D.
  • a unit steam injector 10D is formed by joining the plate-like component 102D and the plate-like component 103D with the nozzle 110D fitted in the groove 102Dh. At this time, the nozzle 110D fits into a groove similar to the groove 102Dh formed on the plate-like component 103D side.
  • Each unit steam injector 10D includes an introduction part, a mixing part 2D, a throat part 3D, and a diffuser part 4D.
  • the introduction part has a nozzle-like liquid flow introduction part 1Da and a vapor flow introduction part 1Db.
  • the liquid flow introduction unit 1Da introduces the liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow channel 102De.
  • the vapor flow introduction unit 1Db is formed so as to surround the liquid flow introduction unit 1Da, and introduces the vapor flow supplied via the refrigerant vapor channel 102Df.
  • the specific configuration and operation of the unit steam injector 10D are substantially the same as those of the unit steam injector 10 ′, and the internal cross-sectional area of the throat portion 3D is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
  • the liquid flow introduction portion 1Da of the introduction portion is formed by the nozzle 110D, and the refrigerant of the mixing portion 2D
  • a groove surrounding the periphery of the nozzle 110D in the steam flow path 102Df becomes the steam flow introduction portion 1Db.
  • the steam injector 100D has a mechanism that allows the nozzle 110D to move in the groove 102Dh and to be fixed at a desired position. By moving the position of the nozzle 110D with respect to the longitudinal direction of the groove 102Dh, the cross-sectional area ratio between the liquid flow introduction part 1Da and the vapor flow introduction part 1Db in the introduction part can be changed.
  • FIG. 26A to 26E are schematic views for explaining the internal configuration of the steam injector according to the fifth modification.
  • FIG. 26A shows a steam injector 100E
  • FIGS. 26B, 26C, 26D, and 26E show plate-like components 102E, 103E, 104E, and 101E that are constituent elements thereof.
  • the steam injector 100E has a configuration in which a plurality of sets of plate-like constituent members 102E, 103E, 104E, and 101E are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
  • FIG. 27 is a plan view of the plate-like component 103E of FIG. 26C.
  • region where the cross hatching was given has shown the groove
  • the plate-like component 104E has the same configuration as the plate-like member 103E.
  • the plate-like component 103E includes a refrigerant liquid channel 103Ee, a refrigerant vapor channel 103Ef, a refrigerant flow merge channel 103Eg, and a refrigerant flow so as to penetrate the plate-like member 103E.
  • a discharge port 106E is formed.
  • the plate-like component 103E has grooves for constituting the introduction part 1E, the mixing part 2E, the throat part 3E, and the diffuser part 4E of the unit steam injector 10E. Further, a wedge-shaped through-hole penetrating the plate-like component 103E is formed in the plate-like member 103E so as to constitute the steam flow introduction portion 1Ec.
  • FIG. 28 is a plan view of the plate-like component 102E of FIG. 26B.
  • the plate-like component 101E has the same configuration as the plate-like member 102E.
  • a refrigerant liquid channel 102Ee, a refrigerant vapor channel 102Ef, a refrigerant flow merging channel 102Eg, and a refrigerant flow outlet 106E are formed in the plate-like component 102E.
  • the plate-like component 102E constitutes a groove that constitutes the steam flow introduction part 1Ec, a groove that constitutes the throat part 3E, and a flow path 102Eh that allows the refrigerant vapor to escape, communicating with the refrigerant vapor flow path 102Ef. And a groove for the purpose.
  • steam may not be provided.
  • a unit steam injector 10E is formed by joining the plate-like constituent members 102E, 103E, 104E, and 101E.
  • the plate-like component member 104E and the plate-like component member 101E are also formed with similar through holes and grooves, which communicate when joined.
  • Each unit steam injector 10E includes an introduction part 1E, a mixing part 2E, a throat part 3E, and a diffuser part 4E.
  • the introduction part 1E has a nozzle-like liquid flow introduction part 1Ea and vapor flow introduction parts 1Eb, 1Ec.
  • the liquid flow introduction unit 1Ea introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 103Ee.
  • the vapor flow introduction part 1Eb is formed on both sides of the liquid flow introduction part 1Ea, and introduces the vapor flow supplied via the refrigerant vapor flow path 103Ef.
  • the steam flow introducing portion 1Ec is formed above and below the liquid flow introducing portion 1Ea, and is a groove constituting the steam flow introducing portion 1Ec formed in the plate-like constituent members 102E and 101E from the refrigerant vapor flow path (see FIG. 28). ), The steam flow supplied through the through holes (see FIG. 27) constituting the steam flow introduction part 1Ec formed in the plate-like constituent members 103E and 104E is introduced. That is, in each unit steam injector 10E, the steam flow is introduced from the left and right sides of the liquid flow introduction portion 1Ea and from the upper and lower sides.
  • the other specific configuration and operation of the unit steam injector 10E are substantially the same as those of the unit steam injector 10 ′, and the internal cross-sectional area of the throat portion 3E is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
  • the refrigerant vapor is introduced from the vapor flow introduction portions 1Eb and 1Ec formed on the four sides of the liquid flow introduction portion 1Ea, so that the refrigerant vapor can be introduced more efficiently.
  • FIG. 29 is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 6.
  • the steam injector 200 includes constituent members 201, 202, 203, 204, and 205. By laminating and joining the constituent members 201, 202, 203, 204, and 205, nine unit steam injectors 10G extending along the stacking direction of the constituent members 201, 202, 203, 204, and 205 are formed.
  • the Each unit steam injector 10G includes an introduction part 1G, a mixing part 2G, a throat part 3G, and a diffuser part 4G.
  • the introduction part 1G has a nozzle-like liquid flow introduction part 1Ga and a vapor flow introduction part 1Gb.
  • These constituent members are made of metal, for example, and are joined by diffusion bonding.
  • the constituent member 201 has a refrigerant liquid flow path 200e which is a through hole having a rectangular cross section.
  • the constituent member 201 includes a refrigerant liquid flow path 200e and a communication hole 200e1 communicating with the liquid flow introducing portion 1Ga of the introducing portion 1G formed by the constituent member 205 that is a nozzle.
  • the constituent member 202 is formed with a mixing portion 2G which is a conical through hole. Further, when the constituent members 201, 202, and 205 are joined, the constituent member 201 and the constituent member 202 form a refrigerant vapor channel 200 f.
  • the component member 205 is inserted into the mixing unit 2G, and the steam flow introduction unit 1Gb is formed in the gap between the component member 205 and the mixing unit 2G.
  • the component member 203 is formed with a diffuser portion 4G which is a conical through hole.
  • the throat portion 3G is formed at the position of the joining surface between the constituent member 202 and the constituent member 203.
  • the refrigerant flow merge channel 200g and the refrigerant flow discharge port 206 are formed.
  • the other specific configuration and operation of the unit steam injector 10G are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3G is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
  • the unit steam injector may be formed so as to extend along the stacking direction of the constituent members to be stacked and joined.
  • FIG. 30 is a block diagram of a heat pump device according to Embodiment 3 of the present invention.
  • the heat pump apparatus 1000 includes a steam injector 100 according to the second embodiment, a compressor 20, a condenser 30, an evaporator 40, and a gas-liquid separator 50. These elements are connected by piping as a flow path for circulating the refrigerant.
  • the compressor 20 compresses the refrigerant vapor supplied from the gas-liquid separator 50 with the electric power P from the outside.
  • the condenser 30 radiates the heat of the compressed refrigerant vapor as heat H1 and condenses the refrigerant vapor to obtain a refrigerant liquid.
  • the evaporator 40 evaporates the refrigerant by applying heat H2 absorbed from the outside to the refrigerant liquid supplied from the gas-liquid separator 50.
  • the vapor injector 100 introduces the refrigerant vapor flow supplied from the evaporator 40 and the refrigerant liquid flow supplied from the condenser 30 into the refrigerant flow discharge port 106 (FIG. 9). (Refer to).
  • the gas-liquid separator 50 separates the liquid and vapor of the refrigerant contained in the discharged refrigerant flow, supplies the refrigerant vapor to the compressor 20, and supplies the refrigerant liquid to the evaporator 40.
  • the heat pump apparatus 1000 In this heat pump apparatus 1000, the energy lost as a vortex in the expansion valve in the heat pump apparatus using the expansion valve can be recovered by the steam injector 100. Furthermore, in this heat pump apparatus 1000, since the burden on the compressor 20 is reduced by the steam injector 100, the amount of electric power P to be applied from the outside in order to realize a desired operation state can be reduced. As a result, the heat pump apparatus 1000 functions as a high-efficiency heat pump apparatus with improved COP.
  • the heat pump device 1000 can be used for various devices using the heat pump device such as an air conditioner, a refrigeration device, and a hot water supply device, thereby realizing a high efficiency device.
  • FIG. 31 is a block diagram of a heat pump apparatus according to Embodiment 4 of the present invention.
  • the heat pump device 2000 includes a steam injector 100 according to the second embodiment, a compressor 20, a condenser 30, an evaporator 40, a gas-liquid separator 50, an expansion valve 60, And a pump 70. These elements are connected by piping as a flow path for circulating the refrigerant.
  • the steam injector 100 introduces a refrigerant vapor flow supplied from the compressor 20 and a refrigerant liquid flow supplied in a state where the pressure is increased by the pump 70 from the gas-liquid separator 50. Then, the refrigerant flow whose pressure is increased is discharged from the refrigerant flow discharge port 106.
  • the condenser 30 is supplied with the refrigerant flow whose pressure is increased from the vapor injector 100, dissipates the heat as heat H1, and condenses the refrigerant flow.
  • the gas-liquid separator 50 separates the liquid and vapor of the refrigerant contained in the refrigerant flow from the condenser 30, supplies the refrigerant vapor to the expansion valve 60, and supplies the refrigerant liquid to the pump 70.
  • the expansion valve 60 uses the refrigerant vapor as a low-temperature and low-pressure refrigerant liquid.
  • the evaporator 40 evaporates the refrigerant by applying heat H2 absorbed from the outside to the refrigerant liquid that has been reduced in temperature and pressure by the expansion valve 60.
  • the compressor 20 compresses the refrigerant vapor supplied from the evaporator 40 with electric power P from the outside.
  • the vapor injector 100 assists the compression of the refrigerant by the compressor 20 and supplies the refrigerant with a desired pressure to the condenser 30.
  • the heat pump device 2000 functions as a high-efficiency heat pump device with improved COP.
  • the heat pump device 2000 can be used for various devices using the heat pump device such as an air conditioner, a refrigeration device, and a hot water supply device, thereby realizing a high efficiency device.
  • the steam injector 100 can be replaced with the steam injectors according to the first to fifth modifications and the steam injector 10 according to the first embodiment.

Abstract

A steam injector provided with: an introduction part which introduces a liquid flow of a refrigerant and a steam flow of the refrigerant; a mixing part which has a shape with an interior cross-sectional area decreasing in the direction of movement of the liquid flow, and forms a refrigerant flow by mixing the jet-like liquid flow and the steam flow therein; a throat part which is formed on the output side of the mixing part; and a diffuser part which has a shape with an interior cross-sectional area increasing from the throat part in the direction of the movement of the refrigerant flow, and discharges the refrigerant flow with an increased pressure from a discharge section, wherein the interior cross-sectional area of the throat part is a cross-sectional area smaller than a critical cross-sectional area at which the discharge pressure of the refrigerant flow discharged from the discharge section of the diffuser part nonlinearly increases when the interior cross-sectional area of the throat part is reduced.

Description

蒸気インジェクタおよびヒートポンプ装置Steam injector and heat pump device
 本発明は、蒸気インジェクタおよびこれを用いたヒートポンプ装置に関するものである。 The present invention relates to a steam injector and a heat pump device using the same.
 従来、エジェクタを用いた冷凍サイクルが開示されている(例えば特許文献1、非特許文献1参照)。この冷凍サイクルでは、膨張弁を用いた冷凍サイクルにおいては膨張弁で渦として損失していたエネルギーを、エジェクタによりコンプレッサの仕事として回収することにより、COPを向上させた高効率冷凍サイクルが実現されているとされている。 Conventionally, a refrigeration cycle using an ejector has been disclosed (see, for example, Patent Document 1 and Non-Patent Document 1). In this refrigeration cycle, the energy that was lost as a vortex in the expansion valve in the refrigeration cycle is recovered as work of the compressor by the ejector, thereby realizing a high-efficiency refrigeration cycle with improved COP. It is said that there is.
 一方、小型の蒸気インジェクタとして、スロート部の内径が6.0mmのものが開示されている(例えば非特許文献2参照)。この蒸気インジェクタによれば、入力された蒸気の圧力と比較してより高い吐出圧が得られている。 On the other hand, a small steam injector having a throat portion with an inner diameter of 6.0 mm is disclosed (for example, see Non-Patent Document 2). According to this steam injector, a higher discharge pressure is obtained compared to the input steam pressure.
特許第3219108号公報Japanese Patent No. 3219108
 ところで、上述した冷凍サイクル等のヒートポンプ装置への応用を考慮すると、COP等で表されるエネルギー効率の向上のために、吐出圧がより高い蒸気インジェクタが求められている。 By the way, in consideration of application to a heat pump apparatus such as the above-described refrigeration cycle, a steam injector having a higher discharge pressure is required in order to improve energy efficiency represented by COP or the like.
 本発明は、上記に鑑みてなされたものであって、吐出圧がより高い蒸気インジェクタおよびこれを用いたヒートポンプ装置を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a steam injector having a higher discharge pressure and a heat pump device using the same.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る蒸気インジェクタは、冷媒の液流と前記冷媒の蒸気流とを導入する導入部と、前記液流の進行方向に向かって内部断面積が縮小する形状を有し、内部において噴流状の前記液流と前記蒸気流とを混合して冷媒流を形成する混合部と、前記混合部の出力側に形成されたスロート部と、前記スロート部から前記冷媒流の進行方向に向かって内部断面積が拡大する形状を有し、圧力が高められた前記冷媒流を吐出部から吐出するディフューザ部と、を備え、前記スロート部の内部断面積は、前記スロート部の内部断面積を減少させたときに前記ディフューザ部の吐出部から吐出される前記冷媒流の吐出圧が非線形的に増加する臨界断面積より小さい断面積であることを特徴とする。 In order to solve the above-described problems and achieve the object, a steam injector according to one aspect of the present invention includes an introduction unit that introduces a refrigerant liquid flow and the refrigerant vapor flow, and a traveling direction of the liquid flow. And a throat formed on the output side of the mixing unit, the mixing unit forming a refrigerant flow by mixing the liquid flow and the vapor flow in the form of a jet, And a diffuser part that has a shape in which an internal cross-sectional area expands from the throat part toward the traveling direction of the refrigerant flow, and discharges the refrigerant flow with increased pressure from the discharge part, and the throat The internal cross-sectional area of the part is smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow discharged from the discharge part of the diffuser part increases nonlinearly when the internal cross-sectional area of the throat part is decreased. It is characterized by being That.
 本発明の一態様に係る蒸気インジェクタは、前記スロート部の内部断面積は、前記スロート部の内部断面積の変化に対する前記冷媒流の吐出圧の変化を表す曲線の1階微分係数が0より小さい、または2階微分係数が0より大きい内部断面積であることを特徴とする。 In the steam injector according to one aspect of the present invention, the first-order differential coefficient of the curve representing the change in the discharge pressure of the refrigerant flow with respect to the change in the inner cross-sectional area of the throat portion is less than zero. Or an internal cross-sectional area having a second-order differential coefficient larger than 0.
 本発明の一態様に係る蒸気インジェクタは、前記スロート部の内部断面積をA、前記導入部における前記液流の質量流量、流速をそれぞれmw0、uw0、前記導入部における前記蒸気流の質量流量、流速をそれぞれms0、us0、前記スロート部における前記冷媒流の質量流量、流速をそれぞれm、u、前記混合部、前記スロート部、前記ディフューザ部における圧力損失係数をそれぞれζ、ζ、ζ、前記液流の密度をρ、前記冷媒流の前記吐出部における吐出圧をPとすると、以下の式(1)が成り立つことを特徴とする。
Figure JPOXMLDOC01-appb-M000002
In the steam injector according to one aspect of the present invention, the internal cross-sectional area of the throat portion is A 1 , the mass flow rate and the flow rate of the liquid flow in the introduction portion are m w0 and u w0 , and the vapor flow in the introduction portion is The mass flow rate and flow velocity are m s0 and u s0 , respectively, and the mass flow rate and flow velocity of the refrigerant flow in the throat portion are m 1 and u 1 , respectively, and the pressure loss coefficients in the mixing portion, the throat portion, and the diffuser portion are N, zeta T, zeta D, density [rho w of the liquid flow, when the discharge pressure and P D at the discharge portion of the refrigerant flow, wherein the following formula is valid (1).
Figure JPOXMLDOC01-appb-M000002
 本発明の一態様に係る蒸気インジェクタは前記スロート部の内部断面は円形であり、該内部断面の直径は2mm以下であることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that the inner section of the throat portion is circular, and the diameter of the inner section is 2 mm or less.
 本発明の一態様に係る蒸気インジェクタは、前記内部断面の直径は1mm以下であることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that a diameter of the internal cross section is 1 mm or less.
 本発明の一態様に係る蒸気インジェクタは、前記混合部において、前記液流が導入される領域の断面積をAW0、前記蒸気流が導入される領域の断面積をAs0とすると、As0/Aw0は、7以上30以下であることを特徴とする。 In the steam injector according to an aspect of the present invention, when the cross-sectional area of the region where the liquid flow is introduced is A W0 and the cross-sectional area of the region where the steam flow is introduced is A s0 in the mixing unit, A s0 / A w0 is 7 or more and 30 or less.
 本発明の一態様に係る蒸気インジェクタは、前記As0/Aw0は、10以上20以下であることを特徴とする。 The steam injector according to an aspect of the present invention is characterized in that the A s0 / A w0 is 10 or more and 20 or less.
 本発明の一態様に係る蒸気インジェクタは、前記混合部の内部から外気に連通するように形成されたドレイン管をさらに備えることを特徴とする。 The steam injector according to one aspect of the present invention further includes a drain pipe formed so as to communicate with the outside air from the inside of the mixing unit.
 本発明の一態様に係る蒸気インジェクタは、前記ドレイン管には逆止弁が設けられていることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that the drain pipe is provided with a check valve.
 本発明の一態様に係る蒸気インジェクタは、前記冷媒は水または代替フロンであることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that the refrigerant is water or alternative chlorofluorocarbon.
 本発明の一態様に係る蒸気インジェクタは、上記蒸気インジェクタである複数の単位蒸気インジェクタと、前記各単位蒸気インジェクタの各導入部に前記冷媒の液流および蒸気流のそれぞれを供給するための液流路および蒸気流路と、を備えることを特徴とする。 A steam injector according to an aspect of the present invention includes a plurality of unit steam injectors that are the steam injectors, and a liquid flow for supplying each of the refrigerant liquid flow and the vapor flow to each introduction portion of each unit steam injector. A passage and a steam passage.
 本発明の一態様に係る蒸気インジェクタは、当該蒸気インジェクタは、一組の構成部材が接合して形成されており、前記一組の構成部材のそれぞれには、前記導入部、前記混合部、前記スロート部、および前記ディフューザ部を複数に分割した形状の溝または穴が形成されており、前記導入部、前記混合部、前記スロート部、および前記ディフューザ部は、前記一組の構成部材を接合したときに前記溝または前記穴によって形成されることを特徴とする。 In the steam injector according to one aspect of the present invention, the steam injector is formed by joining a set of constituent members, and each of the set of constituent members includes the introduction portion, the mixing portion, and the A throat portion and a groove or hole having a shape obtained by dividing the diffuser portion into a plurality of portions are formed, and the introduction portion, the mixing portion, the throat portion, and the diffuser portion are joined to the set of constituent members. Sometimes formed by the groove or the hole.
 本発明の一態様に係る蒸気インジェクタは、前記一組の構成部材は、板状であって、積層した状態で互いに接合されており、前記複数の単位蒸気インジェクタのうち少なくとも2以上が、前記板状構成部材の主表面に沿って配列していることを特徴とする。 In the steam injector according to one aspect of the present invention, the set of constituent members is plate-shaped and joined to each other in a stacked state, and at least two of the plurality of unit steam injectors are the plate. It arrange | positions along the main surface of a shape-shaped structural member.
 本発明の一態様に係る蒸気インジェクタは、前記板状構成部材の主表面に沿って配列した前記単位蒸気インジェクタの各前記導入部を連通する流路が形成されていることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that a flow path that communicates each of the introduction portions of the unit steam injectors arranged along the main surface of the plate-like component is formed.
 本発明の一態様に係る蒸気インジェクタは、前記一組の構成部材は、板状であって、積層した状態で互いに接合されており、前記複数の単位蒸気インジェクタのうち少なくとも2以上が、前記板状構成部材の積層方向に沿って配列していることを特徴とする。 In the steam injector according to one aspect of the present invention, the set of constituent members is plate-shaped and joined to each other in a stacked state, and at least two of the plurality of unit steam injectors are the plate. It arrange | positions along the lamination direction of a shape-shaped structural member.
 本発明の一態様に係る蒸気インジェクタは、前記板状構成部材の積層方向に沿って配列した前記単位蒸気インジェクタの各前記導入部を連通する流路が形成されていることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that a flow path that communicates the introduction portions of the unit steam injectors arranged in the stacking direction of the plate-like constituent members is formed.
 本発明の一態様に係る蒸気インジェクタは、前記一組の構成部材は、積層した状態で互いに接合されており、前記複数の単位蒸気インジェクタは、前記構成部材の積層方向に沿って延在していることを特徴とする。 In the steam injector according to one aspect of the present invention, the pair of constituent members are joined to each other in a stacked state, and the plurality of unit steam injectors extend along the stacking direction of the constituent members. It is characterized by being.
 本発明の一態様に係る蒸気インジェクタは、前記一組の構成部材は拡散接合により接合していることを特徴とする。 The steam injector according to one aspect of the present invention is characterized in that the set of constituent members are joined by diffusion joining.
 本発明の一態様に係るヒートポンプ装置は、冷媒を圧縮する圧縮器と、前記冷媒を凝縮する凝縮器と、前記冷媒を蒸発させる蒸発器と、前記冷媒の蒸気流と、前記冷媒の液流とが導入され、圧力が高められた冷媒流を前記ディフューザ部の吐出部から吐出する上記蒸気インジェクタと、を備えることを特徴とする。 A heat pump device according to an aspect of the present invention includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant, an evaporator that evaporates the refrigerant, a vapor flow of the refrigerant, and a liquid flow of the refrigerant. And the steam injector for discharging the refrigerant flow whose pressure is increased from the discharge portion of the diffuser portion.
 本発明によれば、吐出圧がより高い蒸気インジェクタおよびこれを用いたヒートポンプ装置を実現できるという効果を奏する。 According to the present invention, there is an effect that a steam injector having a higher discharge pressure and a heat pump device using the same can be realized.
図1は、実施の形態1に係る蒸気インジェクタの模式的な構成図である。FIG. 1 is a schematic configuration diagram of a steam injector according to the first embodiment. 図2は、図1の導入部および混合部の要部拡大図である。FIG. 2 is an enlarged view of a main part of the introduction part and the mixing part of FIG. 図3は、蒸気インジェクタの作動特性予測モデルを説明する図である。FIG. 3 is a diagram for explaining an operational characteristic prediction model of a steam injector. 図4は、スロート部の内径と吐出圧との関係を示す図である。FIG. 4 is a diagram illustrating the relationship between the inner diameter of the throat portion and the discharge pressure. 図5は、図4に示す曲線の1階微分係数を示す図である。FIG. 5 is a diagram showing first-order differential coefficients of the curve shown in FIG. 図6は、図4に示す曲線の2階微分係数を示す図である。FIG. 6 is a diagram illustrating the second derivative of the curve shown in FIG. 図7は、導入部における蒸気流の圧力と吐出圧との関係を示す図である。FIG. 7 is a diagram illustrating the relationship between the pressure of the steam flow and the discharge pressure in the introduction section. 図8は、安定動作時および不安定動作時における導入される蒸気流の圧力およびドレイン管内の圧力を示す図である。FIG. 8 is a diagram showing the pressure of the steam flow introduced and the pressure in the drain pipe during the stable operation and the unstable operation. 図9は、実施の形態2に係る蒸気インジェクタの模式的な斜視図である。FIG. 9 is a schematic perspective view of the steam injector according to the second embodiment. 図10は、図9の板状構成部材の平面図である。10 is a plan view of the plate-like component shown in FIG. 図11は、図9の蒸気インジェクタの要部断面図である。11 is a cross-sectional view of a main part of the steam injector of FIG. 図12は、冷媒の流れを説明する図である。FIG. 12 is a diagram for explaining the flow of the refrigerant. 図13は、導入部の別の態様を説明する要部断面図である。FIG. 13 is a cross-sectional view of a main part for explaining another aspect of the introduction part. 図14Aは、変形例1に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 14A is a schematic diagram for explaining the internal configuration of the steam injector according to the first modification. 図14Bは、変形例1に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 14B is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification. 図14Cは、変形例1に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 14C is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification. 図14Dは、変形例1に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 14D is a schematic diagram illustrating the internal configuration of the steam injector according to the first modification. 図15は、図14Bの板状構成部材の平面図である。FIG. 15 is a plan view of the plate-like component of FIG. 14B. 図16は、図14Dの板状構成部材の平面図である。FIG. 16 is a plan view of the plate-like component shown in FIG. 14D. 図17は、図14Bの板状構成部材の斜視図である。FIG. 17 is a perspective view of the plate-like component shown in FIG. 14B. 図18Aは、変形例2に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 18A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 2. 図18Bは、変形例2に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 18B is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification. 図18Cは、変形例2に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 18C is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification. 図18Dは、変形例2に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 18D is a schematic diagram illustrating the internal configuration of the steam injector according to the second modification. 図19は、図18Bの板状構成部材の平面図である。FIG. 19 is a plan view of the plate-shaped component shown in FIG. 18B. 図20は、図18Dの板状構成部材の平面図である。FIG. 20 is a plan view of the plate-like component shown in FIG. 18D. 図21Aは、変形例3に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 21A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 3. 図21Bは、変形例3に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 21B is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 3. 図21Cは、変形例3に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 21C is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 3. 図21Dは、変形例3に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 21D is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 3. 図22は、図21Bの板状構成部材の平面図である。FIG. 22 is a plan view of the plate-like component shown in FIG. 21B. 図23は、図21Dの板状構成部材の平面図である。FIG. 23 is a plan view of the plate-like component shown in FIG. 21D. 図24Aは、変形例4に係る蒸気インジェクタの構成を説明する模式図である。FIG. 24A is a schematic diagram illustrating a configuration of a steam injector according to Modification 4. 図24Bは、変形例4に係る蒸気インジェクタの構成を説明する模式図である。FIG. 24B is a schematic diagram illustrating a configuration of a steam injector according to Modification 4. 図24Cは、変形例4に係る蒸気インジェクタの構成を説明する模式図である。FIG. 24C is a schematic diagram illustrating a configuration of a steam injector according to Modification 4. 図24Dは、変形例4に係る蒸気インジェクタの構成を説明する模式図である。FIG. 24D is a schematic diagram illustrating a configuration of a steam injector according to Modification 4. 図25Aは、図24Bの板状構成部材構成を説明する模式図である。FIG. 25A is a schematic diagram illustrating the configuration of the plate-like component member of FIG. 24B. 図25Bは、図24Bの板状構成部材の構成を説明する模式図である。FIG. 25B is a schematic diagram illustrating the configuration of the plate-shaped component member of FIG. 24B. 図25Cは、図24Bの板状構成部材の構成を説明する模式図である。FIG. 25C is a schematic diagram illustrating the configuration of the plate-shaped component member of FIG. 24B. 図25Dは、図24Bの板状構成部材の構成を説明する模式図である。FIG. 25D is a schematic diagram illustrating the configuration of the plate-shaped component member of FIG. 24B. 図25Eは、図24Cのノズルの構成を説明する模式図である。FIG. 25E is a schematic diagram illustrating the configuration of the nozzle of FIG. 24C. 図26Aは、変形例5に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 26A is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 5. 図26Bは、変形例5に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 26B is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5. 図26Cは、変形例5に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 26C is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5. 図26Dは、変形例5に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 26D is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5. 図26Eは、変形例5に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 26E is a schematic diagram illustrating the internal configuration of the steam injector according to Modification 5. 図27は、図26Cの板状構成部材の平面図である。FIG. 27 is a plan view of the plate-shaped component shown in FIG. 26C. 図28は、図26Bの板状構成部材の平面図である。FIG. 28 is a plan view of the plate-like component shown in FIG. 26B. 図29は、変形例6に係る蒸気インジェクタの内部構成を説明する模式図である。FIG. 29 is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 6. 図30は、実施の形態3に係るヒートポンプ装置のブロック図である。FIG. 30 is a block diagram of a heat pump device according to the third embodiment. 図31は、実施の形態4に係るヒートポンプ装置のブロック図である。FIG. 31 is a block diagram of a heat pump device according to the fourth embodiment.
 以下に、図面を参照して本発明に係る蒸気インジェクタおよびヒートポンプ装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する構成要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法や寸法の比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Embodiments of a steam injector and a heat pump device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in each drawing, the same code | symbol is attached | subjected suitably to the same or corresponding component. In addition, it should be noted that the drawings are schematic, and the dimensions and ratios of elements are different from actual ones. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.
 本発明者らは、吐出圧がより高い蒸気インジェクタを実現するために鋭意検討したところ、スロート部の面積が所定値以下になると、吐出されるジェット液流の吐出圧が急激に増大することを初めて発見し、本発明に想到したものである。 The present inventors diligently studied to realize a steam injector having a higher discharge pressure.When the area of the throat portion becomes a predetermined value or less, the discharge pressure of the jet liquid flow to be discharged rapidly increases. It was discovered for the first time and arrived at the present invention.
(実施の形態1)
 図1は、実施の形態1に係る蒸気インジェクタの模式的な構成図である。図1に示すように、蒸気インジェクタ10は、導入部1と、混合部2と、スロート部3と、ディフューザ部4と、ドレイン管5と、逆止弁6とを備えている。以下、蒸気インジェクタ10の構成および動作について説明する。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a steam injector according to the first embodiment. As shown in FIG. 1, the steam injector 10 includes an introduction part 1, a mixing part 2, a throat part 3, a diffuser part 4, a drain pipe 5, and a check valve 6. Hereinafter, the configuration and operation of the steam injector 10 will be described.
 導入部1は、冷媒の液流W1を導入するノズル状の液流導入部1aと、液流導入部1aの両側に形成された、冷媒の蒸気流S1を導入する蒸気流導入部1bとを有する。液流W1はノズル状の液流導入部1aによって噴流状となって導入される。なお、用いる冷媒は、水や代替フロン等、ヒートポンプ装置で使用できる冷媒であれば特に限定はされない。 The introduction unit 1 includes a nozzle-like liquid flow introduction unit 1a that introduces the refrigerant liquid flow W1, and a vapor flow introduction unit 1b that is formed on both sides of the liquid flow introduction unit 1a and introduces the refrigerant vapor flow S1. Have. The liquid flow W1 is introduced in the form of a jet by the nozzle-shaped liquid flow introducing portion 1a. In addition, if the refrigerant | coolant to be used is a refrigerant | coolant which can be used with a heat pump apparatus, such as water and a substitute Freon, it will not specifically limit.
 混合部2は、図1の紙面下方である液流の進行方向に向かって内部断面積が縮小する形状を有している。本実施の形態1では混合部2は断面円形であるが、断面が矩形などの他の形状でもよい。混合部2は、内部において液流と蒸気流とを混合し、気液混合状態にある冷媒流を形成する部分である。ここで、蒸気流は液流によって急激に冷却されて凝縮し、その体積が大幅に減少するため、混合部2内部では負圧が生じる。これによって導入される蒸気流の流速も高まる。 The mixing unit 2 has a shape in which the internal cross-sectional area decreases in the liquid flow traveling direction, which is the lower side of the paper surface of FIG. In the first embodiment, the mixing unit 2 has a circular cross section, but may have another shape such as a rectangular cross section. The mixing unit 2 is a part that mixes the liquid flow and the vapor flow inside to form a refrigerant flow in a gas-liquid mixed state. Here, the vapor flow is rapidly cooled and condensed by the liquid flow, and its volume is greatly reduced, so that a negative pressure is generated inside the mixing unit 2. This also increases the flow rate of the steam flow introduced.
 図2は、図1の導入部1および混合部2の要部拡大図である。図2に示すように、蒸気流導入部1bから導入された蒸気流S1は、液流導入部1aから導入された噴流状の液流W1の外周側から液流W1と合流し、混合される。なお、符号C1は、混合部2において、液流W1を導入し蒸気流S1と混合する領域を示している。この領域C1の断面積をAw0とする。また、符号C2は、蒸気流S1を導入し液流W1と混合する領域を示している。この領域C2の断面積をAs0とする FIG. 2 is an enlarged view of a main part of the introduction unit 1 and the mixing unit 2 of FIG. As shown in FIG. 2, the vapor flow S1 introduced from the vapor flow introduction portion 1b joins and mixes with the liquid flow W1 from the outer peripheral side of the jet-like liquid flow W1 introduced from the liquid flow introduction portion 1a. . In addition, the code | symbol C1 has shown the area | region which introduce | transduces the liquid flow W1 and mixes with the vapor flow S1 in the mixing part 2. FIG. The cross-sectional area of this region C1 is Aw0 . Reference C2 indicates a region where the steam flow S1 is introduced and mixed with the liquid flow W1. The cross-sectional area of this region C2 is assumed to be As0 .
 図1に戻る。スロート部3は、混合部2の出力側であってかつディフューザ部4の入力側に形成されている。本実施の形態1ではスロート部3は断面円形であるが、断面が矩形などの他の形状でもよい。スロート部3は混合部2からディフューザ部4にわたる部分で内部断面積が最も小さい部分である。したがって、冷媒流はスロート部3を通過する際に流速が最も高くなる。 Return to Figure 1. The throat section 3 is formed on the output side of the mixing section 2 and on the input side of the diffuser section 4. In the first embodiment, the throat portion 3 has a circular cross section, but may have another shape such as a rectangular cross section. The throat portion 3 is a portion extending from the mixing portion 2 to the diffuser portion 4 and having the smallest internal cross-sectional area. Therefore, the refrigerant flow has the highest flow velocity when passing through the throat portion 3.
 ディフューザ部4は、スロート部3から冷媒流の進行方向に向かって内部断面積が拡大する形状を有している。本実施の形態1ではディフューザ部4は断面円形であるが、断面が矩形などの他の形状でもよい。ディフューザ部4の内部断面積は冷媒流の進行方向に向かって拡大しているため、冷媒流は進行するにつれて流速が低くなるとともに圧力が高められる。その結果、ディフューザ部4は、圧力が高められた冷媒流を、吐出部4aから冷媒流F1として吐出する。 The diffuser portion 4 has a shape in which the internal cross-sectional area increases from the throat portion 3 toward the traveling direction of the refrigerant flow. In the first embodiment, the diffuser portion 4 has a circular cross section, but may have another shape such as a rectangular cross section. Since the internal cross-sectional area of the diffuser portion 4 increases in the direction of travel of the coolant flow, the flow velocity decreases and the pressure increases as the coolant flow proceeds. As a result, the diffuser unit 4 discharges the refrigerant flow whose pressure is increased from the discharge unit 4a as the refrigerant flow F1.
 ドレイン管5は、混合部2の内部から外部に連通するように形成されている。ドレイン管5には逆止弁6が設けられている。ドレイン管5は、混合部2内の余分な蒸気を排気する機能を有する。このように余分な蒸気を排気することによって蒸気インジェクタ10の動作の安定性が高くなる。なお、蒸気インジェクタ10の動作時には、上述したように混合部2内部で負圧が生じる。逆止弁6は、負圧によって混合部2内部に外気が流入しないように機能することによって、蒸気インジェクタ10の動作の安定性を高める。 The drain pipe 5 is formed so as to communicate from the inside of the mixing unit 2 to the outside. The drain pipe 5 is provided with a check valve 6. The drain pipe 5 has a function of exhausting excess steam in the mixing unit 2. By exhausting excess steam in this way, the operation stability of the steam injector 10 is enhanced. During the operation of the steam injector 10, a negative pressure is generated inside the mixing unit 2 as described above. The check valve 6 functions to prevent outside air from flowing into the mixing unit 2 due to negative pressure, thereby increasing the stability of the operation of the steam injector 10.
 蒸気インジェクタ10は、たとえば、2以上の構成部材(たとえば板状の構成部材)からなる一組の構成部材のそれぞれに、導入部1、混合部2、スロート部3、ディフューザ部4、およびドレイン管5を複数に分割した形状の溝または穴を形成し、溝または穴を形成した一組の構成部材を接合することによって形成しても良い。このとき、導入部1、混合部2、スロート部3、ディフューザ部4、およびドレイン管5のそれぞれは、一組の構成部材を接合したときに、各構成部材に形成された溝または穴が組み合わさることによって形成される。なお、構成部材の構成材料はたとえば樹脂材料などでもよいが、構成部材を金属製等とし、一組の構成部材の接合を拡散接合等により行うことによって、冷媒流F1の吐出圧が高くてもそれに耐えうる十分な接合強度が得られる。構成部材を構成する金属材料としては、ステンレス材料等の断熱性が高いものが好ましい。 The steam injector 10 includes, for example, an introduction unit 1, a mixing unit 2, a throat unit 3, a diffuser unit 4, and a drain pipe in each of a set of two or more structural members (for example, plate-shaped structural members). A groove or hole having a shape obtained by dividing 5 into a plurality of parts may be formed, and a set of constituent members formed with the groove or hole may be joined. At this time, each of the introduction portion 1, the mixing portion 2, the throat portion 3, the diffuser portion 4, and the drain pipe 5 is formed by combining grooves or holes formed in the respective constituent members when a set of constituent members are joined. Formed by. The constituent material of the constituent member may be, for example, a resin material, but the constituent member is made of metal or the like, and the pair of constituent members are joined by diffusion joining or the like, so that the discharge pressure of the refrigerant flow F1 is high. Sufficient bonding strength that can withstand it can be obtained. As a metal material which comprises a structural member, what has high heat insulation, such as stainless steel material, is preferable.
 ここで、本実施の形態1に係る蒸気インジェクタ10では、スロート部3の内部断面積は、所定の臨界断面積よりも小さく設定されている。これによって、ディフューザ部4の吐出部4aから吐出される冷媒流の吐出圧が高くなっている。 Here, in the steam injector 10 according to the first embodiment, the internal cross-sectional area of the throat portion 3 is set smaller than a predetermined critical cross-sectional area. Thereby, the discharge pressure of the refrigerant flow discharged from the discharge part 4a of the diffuser part 4 is increased.
 以下、冷媒流の吐出圧が高くなる原理を、蒸気インジェクタの作動特性予測モデル(非特許文献3参照)に基づいて説明する。図3は、蒸気インジェクタの作動特性予測モデルを説明する図である。図3において、符号「0」は液流W1と蒸気流S1とを混合する領域の始点を示している(図2の領域C1、C2参照)。符号「1」はスロート部3を示す。符号「D」はディフューザ部4の吐出部4aを示している。これらの符号は以下の式において適宜変数の添え字として使用する。 Hereinafter, the principle of increasing the discharge pressure of the refrigerant flow will be described based on the operating characteristic prediction model of the steam injector (see Non-Patent Document 3). FIG. 3 is a diagram for explaining an operational characteristic prediction model of a steam injector. In FIG. 3, the symbol “0” indicates the start point of the region where the liquid flow W1 and the vapor flow S1 are mixed (see the regions C1 and C2 in FIG. 2). Reference numeral “1” indicates the throat portion 3. Reference sign “D” indicates the discharge section 4 a of the diffuser section 4. These symbols are used as subscripts of variables as appropriate in the following equations.
 このモデルでは、まず、蒸気流S1はスロート部3で全量凝縮すると仮定する。また、蒸気流S1は臨界流となって混合部2に導入されると仮定し、臨界圧力から蒸気流S1の流速を算出する。さらに、流動構造や冷媒流の界面挙動は考慮しないこととする。 In this model, first, it is assumed that the vapor flow S1 is fully condensed in the throat section 3. Further, assuming that the vapor flow S1 becomes a critical flow and is introduced into the mixing unit 2, the flow velocity of the vapor flow S1 is calculated from the critical pressure. Furthermore, the flow structure and the interfacial behavior of the refrigerant flow are not considered.
 まず、混合部2(「0」-「1」間)の液流W1、蒸気流S1、冷媒流F1に対して質量保存則の式、エネルギー保存則の式、運動量保存側の式を適用する。さらに、ディフューザ部4(「1」-「D」間)の冷媒流F1にベルヌイの式を適用する。これによって下記の式(1)が導かれる。なお、ここでは冷媒を水とした。すなわち、液流および蒸気流に関するパラメータの値としては、水流、水蒸気流の値を使用した。 First, the equation of conservation of mass, the equation of conservation of energy, and the equation of conservation of momentum are applied to the liquid flow W1, the vapor flow S1, and the refrigerant flow F1 in the mixing section 2 (between “0” and “1”). . Further, Bernoulli's equation is applied to the refrigerant flow F1 in the diffuser section 4 (between “1” and “D”). This leads to the following formula (1). Here, the refrigerant is water. That is, the values of the water flow and the water vapor flow were used as the parameter values relating to the liquid flow and the vapor flow.
Figure JPOXMLDOC01-appb-M000003

 ここで、式(1)では、スロート部3の内部断面積をA、導入部1における液流W1の質量流量、流速をそれぞれmw0、uw0、導入部1における蒸気流S1の質量流量、流速をそれぞれms0、us0、スロート部3における冷媒流F1の質量流量、流速をそれぞれm、u、混合部2、スロート部3、ディフューザ部4における圧力損失係数をそれぞれζ、ζ、ζ、液流W1の密度をρ、冷媒流F1の吐出部4aにおける吐出圧をPとしている。また、式(1)を導出する際には、Aw0を7.54×10-7とし、As0を5.42×10-6とした。このとき、As0/Aw0は約7.2である。また、導入部1における液流W1の温度Tw0を20℃とし、ζを0.37とした。
Figure JPOXMLDOC01-appb-M000003

Here, in Equation (1), the internal cross-sectional area of the throat portion 3 is A 1 , the mass flow rate of the liquid flow W1 in the introduction portion 1 and the flow velocity are m w0 and u w0 , respectively, and the mass flow rate of the vapor flow S1 in the introduction portion 1 , M s0 , u s0 , respectively, the mass flow rate of the refrigerant flow F1 in the throat part 3, the flow speeds m 1 , u 1 , the mixing part 2, the throat part 3, and the pressure loss coefficients in the diffuser part 4 respectively ζ N , ζ T, ζ D, density [rho w liquid flow W1, the discharge pressure in the discharge section 4a of the refrigerant flow F1 is set to P D. Further, when the formula (1) was derived, A w0 was set to 7.54 × 10 −7 m 2, and A s0 was set to 5.42 × 10 −6 m 2 . At this time, A s0 / A w0 is about 7.2. Moreover, the temperature Tw0 of the liquid flow W1 in the introduction part 1 was set to 20 ° C., and ζ s was set to 0.37.
 式(1)において、ζを0.05、ζを0.1、ζを0.15とし、mw0を1.27×10-2kg/sとし、導入部1における蒸気流S1の圧力Pを0.10MPa、0.13MPa、または0.15MPaとした場合に、スロート部3の内径Dを6.0mmから300μmまで変化させたときの吐出圧Pの変化を算出した。ここで、1気圧は0.1024MPaである。なお、スロート部3は断面円形とする。このとき、内部断面積Aに対して、π(D/2)=Aが成り立つ。 In the formula (1), ζ N is 0.05, ζ T is 0.1, ζ D is 0.15, m w0 is 1.27 × 10 −2 kg / s, and the steam flow S1 in the introduction portion 1 0.10MPa pressure P s of, when a 0.13MPa or 0.15 MPa,, was calculated change in the discharge pressure P D when the inner diameter D T of the throat portion 3 is varied from 6.0mm to 300μm . Here, 1 atmosphere is 0.1024 MPa. The throat portion 3 has a circular cross section. At this time, π (D T / 2) 2 = A 1 holds for the internal cross-sectional area A 1 .
 図4は、スロート部3の内径Dと吐出圧Pとの関係を示す図である。図5は、図4に示す曲線の1階微分係数を示す図である。図6は、図4に示す曲線の2階微分係数を示す図である。図4~6を導出する際には、Dの値を0.01mm刻みで変化させて計算を行った。図4に示すように、いずれの圧力Pの値についても、内径Dを6.0mmから減少させても、吐出圧Pは略一定であった。しかし、いずれの圧力Pの値についても、内径Dが約1.0mmを臨界値として、内径Dが臨界値より小さい値(たとえば600μm)では吐出圧Pが非線形的に急激に増加することが式(1)の解析から確認された。また、図5に示すように、図4に示す内径Dと圧力Pとの関係を示す曲線の1階微分係数は、内径Dが1.0mmよりも大きいときはほぼ0である。しかし、約1.0mmを臨界値として、内径Dが臨界値より小さい値では0より小さくなり、その後急激に減少する。さらに、図6に示すように、図4に示す内径Dと圧力Pとの関係を示す曲線の2階微分係数は、内径Dが1.0mmよりも大きいときはほぼ0である。しかし、約1.0mmを臨界値として、内径Dが臨界値より小さい値では0より大きくなり、その後急激に増大する。 Figure 4 is a diagram showing the relationship between the inner diameter D T and the discharge pressure P D of the throat portion 3. FIG. 5 is a diagram showing first-order differential coefficients of the curve shown in FIG. FIG. 6 is a diagram illustrating the second derivative of the curve shown in FIG. In deriving FIGS. 4 to 6, the calculation was performed by changing the value of DT in steps of 0.01 mm. As shown in FIG. 4, for the value of any of the pressure P s, also to reduce the inner diameter D T of 6.0 mm, the discharge pressure P D was substantially constant. However, for the value of any of the pressure P s, the inner diameter D T of about 1.0mm as the critical value, the critical value less than the inner diameter D T is (for example 600 .mu.m) in the discharge pressure P D is nonlinearly rapidly increased It was confirmed from the analysis of the formula (1). Further, as shown in FIG. 5, first-order differential coefficient of a curve showing the relationship between the inner diameter D T and the pressure P s shown in FIG. 4 is substantially zero when the inner diameter D T is greater than 1.0 mm. However, when the critical value is about 1.0 mm and the inner diameter DT is smaller than the critical value, it becomes smaller than 0 and then decreases rapidly. Furthermore, as shown in FIG. 6, second order derivative of the curve showing the relationship between the inner diameter D T and the pressure P s shown in FIG. 4 is substantially zero when the inner diameter D T is greater than 1.0 mm. However, when the critical value is about 1.0 mm and the inner diameter DT is smaller than the critical value, it becomes larger than 0 and then increases rapidly.
 そこで、本実施の形態1に係る蒸気インジェクタ10では、スロート部3の内径D、または内部断面積Aを、吐出圧Pが増加する臨界値(内径または断面積)より小さい内径または断面積とすることによって、従来なし得なかった高い吐出圧を実現している。このような臨界値より小さい内径または断面積では、スロート部3の内径Dまたは内部断面積Aの変化に対する、吐出圧Pの変化を表す曲線(すなわち、図4に示す曲線)の1階微分係数が0より小さくなっている。また、2階微分係数は0より大きくなっている。したがって、このような1階または2階の微分係数が0から変化する内径Dまたは内部断面積Aとすることによって、高い吐出圧Pが実現される。 Therefore, the steam injector 10 according to the first embodiment, the inner diameter D T of the throat portion 3 or the internal cross-sectional area A 1,, threshold discharge pressure P D is increased (inner diameter or cross-sectional area) smaller than the inner diameter or cross-sectional By setting the area, a high discharge pressure, which could not be achieved conventionally, is realized. In such small inner diameter or cross-sectional area than the critical value, the first curve representing relative changes in the internal diameter D T or internal cross-sectional area A 1 of the throat portion 3, a change in the discharge pressure P D (i.e., the curve shown in FIG. 4) The rank differential coefficient is smaller than 0. Further, the second order differential coefficient is larger than zero. Therefore, a high discharge pressure P D is realized by setting the inner diameter D T or the inner sectional area A 1 where the differential coefficient of the first or second floor changes from 0.
 なお、上記の図4、5、6では、内径Dが臨界値よりも大きい場合は、吐出圧Pは略一定であり、その変化を示す曲線の1階および2階の微分係数はほぼ0である。したがって、臨界値は、1階または2階の微分係数が0から変化する値として定義することができる。一方、内径Dが臨界値よりも小さい場合に、吐出圧Pが略一定ではなく、その変化を示す曲線の1階および2階微分係数が0ではない場合もある。そのような場合は、2階微分係数が、内径Dまたは内部断面積Aの減少に応じて10%以上上昇する値を、臨界値として定義してもよい。たとえば、内径Dを1.0mmから0.9mmに減少させたときに、2階微分係数が1.0から1.1に、10%上昇した場合には、内径Dの臨界値は1.0mmと定義してもよい。 In the above 4, 5 and 6, when the inner diameter D T is greater than the critical value, the discharge pressure P D is substantially constant, the first floor and second floor of the derivative of the curve showing the change almost 0. Therefore, the critical value can be defined as a value at which the first- or second-order differential coefficient changes from zero. On the other hand, when the inner diameter D T is smaller than the critical value, rather than the discharge pressure P D is substantially constant, even if the first-order and second-order differential coefficient of the curve showing the change is not zero. In such a case, a value at which the second-order differential coefficient increases by 10% or more in accordance with a decrease in the inner diameter D T or the inner cross-sectional area A 1 may be defined as a critical value. For example, when the inner diameter DT is decreased from 1.0 mm to 0.9 mm and the second-order differential coefficient is increased by 10% from 1.0 to 1.1, the critical value of the inner diameter DT is 1 It may be defined as 0.0 mm.
 また、吐出圧Pが増加する臨界値(内径または断面積)は、式(1)に含まれる各パラメータの値によって変化する。したがって、各パラメータの値を勘案して、スロート部3の内径Dまたは内部断面積Aを臨界値より小さくなるように設定すれば、本発明の効果としての高い吐出圧Pを得ることができる。たとえば、冷媒が水ではなく他の冷媒の場合は、水に関するパラメータを、使用する冷媒に関するパラメータに置き換えて、スロート部3の内径Dまたは内部断面積Aを設定すればよい。 The critical value of the discharge pressure P D is increased (inner diameter or cross-sectional area) is changed by the value of each parameter included in the formula (1). Therefore, in consideration of the value of each parameter, by setting the inner diameter D T or internal cross-sectional area A 1 of the throat portion 3 to be less than the critical value, to obtain a high discharge pressure P D as the effect of the present invention Can do. For example, when the refrigerant is not water but another refrigerant, the parameter relating to water may be replaced with the parameter relating to the refrigerant to be used to set the inner diameter D T or the internal sectional area A 1 of the throat portion 3.
 つぎに、式(1)において、スロート部3の内部断面積Aを2.83×10-7(内径Dとしては600μm)とし、mw0を1.27×10-2kg/s、1.43×10-2kg/s、または1.59×10-2kg/sとした場合に、導入部1における蒸気流S1の圧力Pを変化させたときの吐出圧Pの変化を算出した。 Next, in the formula (1), the internal cross-sectional area A 1 of the throat portion 3 is 2.83 × 10 −7 m 2 (the inner diameter DT is 600 μm), and m w0 is 1.27 × 10 −2 kg / s, 1.43 × 10 −2 kg / s, or 1.59 × 10 −2 kg / s, the discharge pressure P D when the pressure P s of the steam flow S1 in the introduction unit 1 is changed The change of was calculated.
 図7は、導入部1における蒸気流S1の圧力Pと吐出圧Pとの関係を示す図である。図7に示すように、圧力Pを高めるほど吐出圧Pを高くすることができることを式(1)の解析から確認した。 Figure 7 is a diagram showing the relationship between the pressure P s and the discharge pressure P D of the vapor stream S1 in the introductory part 1. As shown in FIG. 7, it was confirmed from the analysis of equation (1) that it is possible to increase the discharge pressure P D as increasing the pressure P s.
 つぎに、樹脂材料を用いて蒸気インジェクタを実際に作製し、その動作を実証する実験を行った。作製した蒸気インジェクタは、7種類である。すなわち、図1に示す実施の形態1の構成のもので、As0/Aw0を36.2としたもの(サンプル1)、逆止弁を設けない以外はサンプル1と同じ構成のもの(サンプル2)、逆止弁およびドレイン管を設けない以外はサンプル1と同じ構成のもの(サンプル3)である。また、図1に示す実施の形態1の構成のもので、As0/Aw0を7.2としたもの(サンプル4)、逆止弁を設けない以外はサンプル1と同じ構成のもの(サンプル5)、逆止弁およびドレイン管を設けない以外はサンプル1と同じ構成のもの(サンプル6)である。また、図1に示す実施の形態1の構成に、さらにAs0/Aw0を可変にできる機構を設けたもの(サンプル7)である。このような可変機構は、液流導入部1aの混合部2への突出量を変更できるように構成することで実現できる。 Next, a steam injector was actually fabricated using a resin material, and an experiment was performed to verify its operation. There are seven types of produced steam injectors. That is, the configuration of the first embodiment shown in FIG. 1, with A s0 / A w0 set to 36.2 (sample 1), and the same configuration as sample 1 except that no check valve is provided (sample) 2) The sample has the same configuration as sample 1 (sample 3) except that the check valve and drain pipe are not provided. Also, the configuration of the first embodiment shown in FIG. 1 with A s0 / A w0 set to 7.2 (sample 4), the same configuration as sample 1 except that no check valve is provided (sample) 5) The same configuration as that of sample 1 (sample 6) except that the check valve and the drain pipe are not provided. Further, the configuration of the first embodiment shown in FIG. 1 is further provided with a mechanism capable of making A s0 / A w0 variable (sample 7). Such a variable mechanism is realizable by comprising so that the protrusion amount to the mixing part 2 of the liquid flow introduction part 1a can be changed.
 なお、サンプル1~7の共通の構成としては、混合部2の長さを22.5mmとし、混合部2の、スロート部3の反対側の内径を3.4mmとし、液流W1を導入する断面積Aw0を1.94m(内径としては1.57mm)とし、スロート部3の内径Dを600μmとし、ディフューザ部4の長さを14.4mmとし、ディフューザ部4の吐出部4aの内径を2.0mmとした。また、ドレイン管5については内径を0.45mmとした。 In addition, as a common configuration of the samples 1 to 7, the length of the mixing unit 2 is 22.5 mm, the inner diameter of the mixing unit 2 opposite to the throat unit 3 is 3.4 mm, and the liquid flow W1 is introduced. the cross-sectional area a w0 and 1.94 M 2 (as the inner diameter of 1.57 mm), and an inner diameter D T of the throat portion 3 and 600 .mu.m, the diffuser section 4 a length and 14.4 mm, the discharge portion 4a of the diffuser portion 4 The inner diameter was 2.0 mm. The drain tube 5 has an inner diameter of 0.45 mm.
 また、本実験においても、冷媒として水を用い、以下のように実験条件を調整可能な実験系を用いた。まず、導入部における蒸気流の圧力Pは0.11MPa~0.15MPaの範囲で調整可能である。また、導入部において、液流の温度Tw0は11.9℃~26℃の範囲、蒸気流の温度Ts0は101.4℃~111.2℃の範囲で調整可能である。また、導入部における液流の流速mw0は1.59ml/s~2.20ml/s(なお、液流の密度はたとえば958kg/mである)の範囲で調整可能である。また、導入する液流または蒸気流の溶存酸素量DOまたはDOは0.8mg/l~8.0mg/lの範囲で調整可能である。 Also in this experiment, water was used as a refrigerant, and an experimental system capable of adjusting the experimental conditions as follows was used. First, the pressure P s of the vapor flow in the introduction part can be adjusted in the range of 0.11 MPa to 0.15 MPa. Further, in the introduction portion, the liquid flow temperature T w0 can be adjusted in the range of 11.9 ° C. to 26 ° C., and the vapor flow temperature T s0 can be adjusted in the range of 101.4 ° C. to 111.2 ° C. In addition, the flow velocity m w0 of the liquid flow in the introduction section can be adjusted in the range of 1.59 ml / s to 2.20 ml / s (note that the density of the liquid flow is, for example, 958 kg / m 3 ). In addition, the dissolved oxygen amount DO w or DO s of the liquid flow or vapor flow to be introduced can be adjusted in the range of 0.8 mg / l to 8.0 mg / l.
(実験1)
 サンプル3(As0/Aw0=36.2、ドレイン管および逆止弁無し)の蒸気インジェクタを用いて、はじめに、Tw0=12.6℃の液流を導入したところ、蒸気インジェクタ内の混合部およびスロート部に水の液体が静的に蓄積した。この状態で、つぎに、P=0.11MPa、Ts0=102.3℃の蒸気流を導入した。すると、混合部において液体の流動が生じ、ディフューザ部の吐出部から冷媒流が吐出され、蒸気インジェクタの動作が確認された。
(Experiment 1)
Using the steam injector of sample 3 (A s0 / A w0 = 36.2, without drain pipe and check valve), when a liquid flow of T w0 = 12.6 ° C was first introduced, mixing in the steam injector The water liquid statically accumulated in the throat and throat. Next, a steam flow of P s = 0.11 MPa and T s0 = 102.3 ° C. was introduced in this state. Then, the flow of the liquid occurred in the mixing part, the refrigerant flow was discharged from the discharge part of the diffuser part, and the operation of the steam injector was confirmed.
(実験2)
 サンプル4(As0/Aw0=7.2、ドレイン管および逆止弁有り)の蒸気インジェクタを用いて、はじめに、Tw0=24.5℃、mw0=1.59ml/s、DO=1.64mg/lの液流を導入し、つぎに、蒸気流を導入した。すると、混合部において液体の流動が生じ、ディフューザ部の吐出部から冷媒流が吐出され、蒸気インジェクタの動作が確認されたが、動作が不安定になる場合があった。
(Experiment 2)
Using the steam injector of sample 4 (A s0 / A w0 = 7.2, with drain pipe and check valve), first, T w0 = 24.5 ° C., m w0 = 1.59 ml / s, DO w = A liquid flow of 1.64 mg / l was introduced and then a vapor flow was introduced. Then, the flow of the liquid occurs in the mixing unit, the refrigerant flow is discharged from the discharge unit of the diffuser unit, and the operation of the steam injector is confirmed, but the operation may become unstable.
 図8は、安定動作時および不安定動作時における導入される蒸気流の圧力およびドレイン管内の圧力を示す図である。横軸は測定開始時からの経過時間である。図8において、Pinはドレイン管内の圧力を示し、Pは蒸気流の圧力を示している。また、「Stable」は蒸気インジェクタが安定動作状態にあることを意味し、「Unstable」は蒸気インジェクタが不安定動作状態にあることを意味する。 FIG. 8 is a diagram showing the pressure of the steam flow introduced and the pressure in the drain pipe during the stable operation and the unstable operation. The horizontal axis is the elapsed time from the start of measurement. In FIG. 8, P in denotes the pressure in the drain pipe, P s represents the pressure of the steam flow. “Stable” means that the steam injector is in a stable operation state, and “Unstable” means that the steam injector is in an unstable operation state.
 図8に示すように、安定動作時にはPinがPよりも低く、混合部内が負圧になっていた。一方、不安定動作時にはPがPinよりも低く、混合部内が正圧となっており、かつPの値が不安定であり、安定した蒸気流の導入が行われない状態であることが確認された。 As shown in FIG. 8, during stable operation P in is less than P s, the mixing portion had become negative pressure. On the other hand, during unstable operation lower than P s is P in, mixing portion has a positive pressure, and is unstable the values of P s, that the introduction of a stable vapor stream is in a state not performed Was confirmed.
(実験3-1、3-2、3-3)
 サンプル7(As0/Aw0可変、ドレイン管および逆止弁有り)の蒸気インジェクタを用いて、はじめに、Tw0=21.7℃、mw0=1.91ml/s、DO=2.4mg/lの液流を導入し、つぎに、P=0.13MPa、DO=3.5mg/lの蒸気流を導入する実験を行った。なお、As0/Aw0については、4.4、15.1、または38.3に設定した。
(Experiment 3-1, 3-2, 3-3)
Using the steam injector of sample 7 (A s0 / A w0 variable, with drain pipe and check valve), first, T w0 = 21.7 ° C., m w0 = 1.91 ml / s, DO w = 2.4 mg / L liquid flow was introduced, and then an experiment was conducted in which a vapor flow of P s = 0.13 MPa and DO s = 3.5 mg / l was introduced. Note that A s0 / A w0 was set to 4.4, 15.1, or 38.3.
 すると、蒸気インジェクタは、As0/Aw0=4.4およびAs0/Aw0=38.3の場合は動作せず、As0/Aw0=15.1の場合はディフューザ部の吐出部から高い吐出圧の冷媒流が吐出され、蒸気インジェクタの動作が確認された。 Then, the steam injector does not operate in the case of A s0 / A w0 = 4.4 and A s0 / A w0 = 38.3, and in the case of A s0 / A w0 = 15.1, from the discharge unit of the diffuser unit A refrigerant flow with a high discharge pressure was discharged, and the operation of the steam injector was confirmed.
 本発明者らがさらに実験を行ったところ、As0/Aw0の値としては、7以上30以下の範囲にある場合が蒸気インジェクタの動作上好ましく、10以上20以下である場合が、安定動作上さらに好ましい。 As a result of further experiments by the present inventors, the value of A s0 / A w0 is preferably in the range of 7 to 30 in terms of the operation of the steam injector, and is stable operation in the case of 10 to 20 inclusive. Even more preferable.
(実施の形態2)
 つぎに、本発明の実施の形態2について説明する。本実施の形態2に係る蒸気インジェクタは、実施の形態1に係る蒸気インジェクタ10と同様の構成を有する単位蒸気インジェクタを複数備えるものである。本実施の形態2に係る蒸気インジェクタは、小型であり吐出圧が高い複数の単位蒸気インジェクタを複数備え、各単位蒸気インジェクタが吐出する、吐出圧が高くされた冷媒流のすべてを合流させて吐出することにより、小型でありながら高い吐出圧および吐出量を実現したものである。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. The steam injector according to the second embodiment includes a plurality of unit steam injectors having the same configuration as that of the steam injector 10 according to the first embodiment. The steam injector according to the second embodiment includes a plurality of unit steam injectors that are small and have a high discharge pressure. The unit steam injectors discharge and discharge all the refrigerant flows that have been increased in discharge pressure. By doing so, a high discharge pressure and a high discharge amount are realized while being small.
 図9は、実施の形態2に係る蒸気インジェクタの模式的な斜視図である。この蒸気インジェクタ100は、複数(本実施の形態2では5)の板状構成部材101、102、103、104、105で構成されている。これらの一組の板状構成部材101、102、103、104、105は、積層した状態で互いに接合されている。板状構成部材101、105は積層構造の蒸気インジェクタ100の最上層または最下層を構成している。 FIG. 9 is a schematic perspective view of the steam injector according to the second embodiment. The steam injector 100 is composed of a plurality (5 in the second embodiment) of plate-like constituent members 101, 102, 103, 104, and 105. The set of plate-like constituent members 101, 102, 103, 104, and 105 are joined to each other in a stacked state. The plate-like constituent members 101 and 105 constitute the uppermost layer or the lowermost layer of the steam injector 100 having a laminated structure.
 板状構成部材101には、外部から冷媒の液流W1を供給する冷媒液供給口101aと冷媒の蒸気流S1を外部に排出する冷媒蒸気排出口101bとが形成されている。板状構成部材105には、液流W1を外部に排出する冷媒液排出口105aと外部から蒸気流S1を供給する冷媒蒸気供給口105bとが形成されている。また、蒸気インジェクタ100の側面には冷媒流F1を吐出する冷媒流吐出口106が形成されている。 The plate-like component 101 is formed with a refrigerant liquid supply port 101a for supplying the refrigerant liquid flow W1 from the outside and a refrigerant vapor discharge port 101b for discharging the refrigerant vapor flow S1 to the outside. The plate-like component 105 is formed with a refrigerant liquid discharge port 105a for discharging the liquid flow W1 to the outside and a refrigerant vapor supply port 105b for supplying the vapor flow S1 from the outside. In addition, a refrigerant flow discharge port 106 for discharging the refrigerant flow F <b> 1 is formed on the side surface of the vapor injector 100.
 図10は、板状構成部材102の平面図である。図10において、斜線部は板状構成部材102の主表面であり、板状構成部材102の主表面には複数の溝および穴が形成されている。これらの溝および穴は、板状構成部材101の、板状構成部材102と対向する主表面、板状構成部材102、103、104の両主表面、および板状構成部材105の、板状構成部材104と対向する主表面にも形成されている。これらの溝および穴は、後述する単位蒸気インジェクタの導入部、混合部、スロート部、およびディフューザ部を2分割した形状の溝または穴を含む。板状構成部材101、102、103、104、105の対向する主表面が接合することによって、これらの溝または穴が組み合わさって、複数の単位蒸気インジェクタ、および単位蒸気インジェクタに対して、冷媒液および冷媒蒸気の供給または排出を行うための流路が形成される。 FIG. 10 is a plan view of the plate-like component 102. In FIG. 10, the hatched portion is the main surface of the plate-like component member 102, and a plurality of grooves and holes are formed on the main surface of the plate-like component member 102. These grooves and holes are the plate-like components of the plate-like component member 101, the main surface of the plate-like member 102 facing the plate-like component member 102, the two main surfaces of the plate- like component members 102, 103, and 104, It is also formed on the main surface facing the member 104. These grooves and holes include a groove or hole having a shape obtained by dividing an introduction portion, a mixing portion, a throat portion, and a diffuser portion of a unit steam injector, which will be described later. When the opposing main surfaces of the plate-like constituent members 101, 102, 103, 104, 105 are joined, these grooves or holes are combined to form a refrigerant liquid for the plurality of unit steam injectors and the unit steam injectors. And a flow path for supplying or discharging the refrigerant vapor.
 具体的には、図10に示すように、板状構成部材102には、冷媒液供給口102aと、冷媒蒸気排出口102bと、冷媒液排出口102cと、冷媒蒸気供給口102dとが形成されている。また、板状構成部材102と板状構成部材103との接合により、3つの単位蒸気インジェクタ10´と、冷媒液流路102eと、冷媒蒸気流路102fと、冷媒流合流流路102gとが形成される。冷媒液供給口102aは図9に示す冷媒液供給口101aと連通している。冷媒蒸気排出口102bは図9に示す冷媒蒸気排出口101bと連通している。冷媒液排出口102cは図9に示す冷媒液排出口105aと連通している。冷媒蒸気供給口102dは図9に示す冷媒蒸気供給口105bと連通している。また、冷媒液供給口102aと冷媒液排出口102cとは、冷媒液流路102eを介して連通している。冷媒蒸気排出口102bと冷媒蒸気供給口102dとは、冷媒蒸気流路102fとを介して連通している。 Specifically, as shown in FIG. 10, the plate-like component 102 is formed with a refrigerant liquid supply port 102a, a refrigerant vapor discharge port 102b, a refrigerant liquid discharge port 102c, and a refrigerant vapor supply port 102d. ing. Further, by joining the plate-like member 102 and the plate-like member 103, three unit vapor injectors 10 ', a refrigerant liquid channel 102e, a refrigerant vapor channel 102f, and a refrigerant flow merge channel 102g are formed. Is done. The refrigerant liquid supply port 102a communicates with the refrigerant liquid supply port 101a shown in FIG. The refrigerant vapor outlet 102b communicates with the refrigerant vapor outlet 101b shown in FIG. The refrigerant liquid outlet 102c communicates with the refrigerant liquid outlet 105a shown in FIG. The refrigerant vapor supply port 102d communicates with the refrigerant vapor supply port 105b shown in FIG. The refrigerant liquid supply port 102a and the refrigerant liquid discharge port 102c communicate with each other via the refrigerant liquid flow path 102e. The refrigerant vapor discharge port 102b and the refrigerant vapor supply port 102d communicate with each other via a refrigerant vapor channel 102f.
 単位蒸気インジェクタ10´は、板状構成部材101、102の主表面に沿って配列している。また、単位蒸気インジェクタ10´は、1組の板状構成部材101、102、103、104、105を接合することによって各板状構成部材間に形成されるので、板状構成部材101、102、103、104、105の積層方向にも沿って配列している。蒸気インジェクタ100では、主表面に沿って3個、積層方向に沿って4個の単位蒸気インジェクタが形成されている。したがって、蒸気インジェクタ100は、合計で12個の単位蒸気インジェクタが集積されたものである。なお、主表面または積層方向に沿って配列される単位蒸気インジェクタの数をそれぞれN、Mとすると、蒸気インジェクタ100の場合はN=3、M=4であるが、Nが1でMが2以上、Nが2以上でMが1、またはN、Mとも2以上であってもよい。 The unit steam injectors 10 ′ are arranged along the main surfaces of the plate-like constituent members 101 and 102. Further, since the unit steam injector 10 ′ is formed between the respective plate-shaped components by joining a set of plate-shaped components 101, 102, 103, 104, 105, the plate-shaped components 101, 102, They are also arranged along the stacking direction of 103, 104, and 105. In the steam injector 100, three unit steam injectors are formed along the main surface and four along the stacking direction. Therefore, the steam injector 100 is a total of 12 unit steam injectors. When the number of unit steam injectors arranged along the main surface or the stacking direction is N and M, respectively, in the case of the steam injector 100, N = 3 and M = 4, but N is 1 and M is 2 As described above, N may be 2 or more, M may be 1, or N and M may be 2 or more.
 各単位蒸気インジェクタ10´は、実施の形態1に係る蒸気インジェクタ10と同様に、導入部1と、混合部2と、スロート部3と、ディフューザ部4とを備えている。 Each unit steam injector 10 ′ includes an introduction part 1, a mixing part 2, a throat part 3, and a diffuser part 4, similarly to the steam injector 10 according to the first embodiment.
 導入部1は、ノズル状の液流導入部1aと、蒸気流導入部1bとを有する。液流導入部1aは、外部から、冷媒液供給口101a、冷媒液供給口102aおよび冷媒液流路102eを介して供給された冷媒の液流W1を導入する。蒸気流導入部1bは、液流導入部1aの両側に形成され、冷媒蒸気供給口105b、冷媒蒸気供給口102dおよび冷媒蒸気流路102fを介して供給された蒸気流S1を導入する。液流W1はノズル状の液流導入部1aによって噴流状となって導入される。なお、用いる冷媒は、水や代替フロン等、ヒートポンプ装置で使用できる冷媒であれば特に限定はされない。 The introduction part 1 has a nozzle-like liquid flow introduction part 1a and a vapor flow introduction part 1b. The liquid flow introduction unit 1a introduces a refrigerant liquid flow W1 supplied from the outside through the refrigerant liquid supply port 101a, the refrigerant liquid supply port 102a, and the refrigerant liquid channel 102e. The vapor flow introducing portion 1b is formed on both sides of the liquid flow introducing portion 1a, and introduces the vapor flow S1 supplied via the refrigerant vapor supply port 105b, the refrigerant vapor supply port 102d, and the refrigerant vapor channel 102f. The liquid flow W1 is introduced in the form of a jet by the nozzle-shaped liquid flow introducing portion 1a. In addition, if the refrigerant | coolant to be used is a refrigerant | coolant which can be used with a heat pump apparatus, such as water and a substitute Freon, it will not specifically limit.
 図11は、蒸気インジェクタ100の要部断面図であって、図10のA-A線に対応する断面における断面を示している。このように、液流導入部1aおよび蒸気流導入部1bは板状構成部材101と板状構成部材102とを接合したときに、対向する主表面に形成された溝が組み合わさることによって形成される。 FIG. 11 is a cross-sectional view of a main part of the steam injector 100, showing a cross section corresponding to the line AA in FIG. Thus, the liquid flow introducing portion 1a and the vapor flow introducing portion 1b are formed by combining the grooves formed on the opposing main surfaces when the plate-like component member 101 and the plate-like component member 102 are joined. The
 図10に戻る。実施の形態1と同様に、混合部2は、図10の紙面右方である液流の進行方向に向かって内部断面積が縮小する形状を有している。なお、本実施の形態2では混合部2は断面矩形であるが、実施の形態1の場合と同様に断面が円形でもよいし、他の形状でもよい。混合部2は、内部において液流と蒸気流とを混合し、気液混合状態にある冷媒流を形成する。混合部2内部では負圧が生じ、これによって導入される蒸気流の流速も高まる。 Return to FIG. Similar to the first embodiment, the mixing unit 2 has a shape in which the internal cross-sectional area decreases in the liquid flow progression direction, which is the right side of the drawing in FIG. In the second embodiment, the mixing unit 2 has a rectangular cross section. However, the cross section may be circular as in the case of the first embodiment, or another shape. The mixing unit 2 mixes the liquid flow and the vapor flow inside to form a refrigerant flow in a gas-liquid mixed state. A negative pressure is generated inside the mixing unit 2, and the flow velocity of the steam flow introduced thereby increases.
 図10に示すように、蒸気流導入部1bから導入された蒸気流S1は、液流導入部1aから導入された噴流状の液流W1の外周側から液流W1と合流し、混合される。 As shown in FIG. 10, the vapor flow S1 introduced from the vapor flow introduction portion 1b joins and mixes with the liquid flow W1 from the outer peripheral side of the jet-like liquid flow W1 introduced from the liquid flow introduction portion 1a. .
 実施の形態1と同様に、スロート部3は、混合部2の出力側であってかつディフューザ部4の入力側に形成されている。本実施の形態2ではスロート部3は断面矩形であるが、実施の形態1の場合と同様に断面が円形でもよいし、他の形状でもよい。冷媒流はスロート部3を通過する際に流速が最も高くなる。 As in the first embodiment, the throat section 3 is formed on the output side of the mixing section 2 and on the input side of the diffuser section 4. In the second embodiment, the throat portion 3 has a rectangular cross section, but the cross section may be circular as in the case of the first embodiment, or another shape. The refrigerant flow has the highest flow velocity when passing through the throat portion 3.
 実施の形態1と同様に、ディフューザ部4は、スロート部3から冷媒流の進行方向に向かって内部断面積が拡大する形状を有している。本実施の形態2ではディフューザ部4は断面矩形であるが、実施の形態1の場合と同様に断面が円形でもよいし、他の形状でもよい。ディフューザ部4では、冷媒流は流速が低くなるとともに圧力が高められる。その結果、ディフューザ部4は、圧力が高められた冷媒流を、吐出部4aから冷媒流F1として吐出する。 As in the first embodiment, the diffuser portion 4 has a shape in which the internal cross-sectional area increases from the throat portion 3 toward the traveling direction of the refrigerant flow. In the second embodiment, the diffuser section 4 has a rectangular cross section, but the cross section may be circular as in the case of the first embodiment, or another shape. In the diffuser section 4, the refrigerant flow is increased in pressure while the flow velocity is decreased. As a result, the diffuser unit 4 discharges the refrigerant flow whose pressure is increased from the discharge unit 4a as the refrigerant flow F1.
 冷媒流合流流路102gは、各単位蒸気インジェクタ10´のディフューザ部の吐出部に連通しており、吐出された各冷媒流F1を合流させる。冷媒流吐出口106は合流された冷媒流F1を蒸気インジェクタ100の外部に吐出する。 The refrigerant flow merging flow path 102g communicates with the discharge portion of the diffuser portion of each unit vapor injector 10 ', and merges the discharged refrigerant flows F1. The refrigerant flow outlet 106 discharges the merged refrigerant flow F <b> 1 to the outside of the vapor injector 100.
 図12は、冷媒の流れを説明する図である。図12に示すように、冷媒の液流W1は、冷媒液供給口101aから供給された後、板状構成部材102に形成された冷媒液供給口から、板状構成部材101と板状構成部材102との接合により形成された各単位蒸気インジェクタに供給される。各単位蒸気インジェクタに供給されなかった液流は冷媒液排出口から排出され、板状構成部材103に形成された冷媒液供給口から、板状構成部材102と板状構成部材103との接合により形成された各単位蒸気インジェクタに供給される。すなわち、隣接する板状構成部材の冷媒液供給口と冷媒液排出口とは連通しており、板状構成部材の積層方向に沿って配列した単位蒸気インジェクタの各導入部を連通する流路を形成している。以下、同様に、各板状構成部材の接合により形成された各単位蒸気インジェクタに液流が供給され、未使用の液流は板状構成部材105の冷媒液排出口105aから外部に排出される。 FIG. 12 is a diagram for explaining the flow of the refrigerant. As shown in FIG. 12, the refrigerant liquid flow W <b> 1 is supplied from the refrigerant liquid supply port 101 a, and then is supplied from the refrigerant liquid supply port formed in the plate-like component 102 to the plate-like component 101 and the plate-like component. The unit steam injectors formed by joining with 102 are supplied. The liquid flow that has not been supplied to each unit vapor injector is discharged from the refrigerant liquid discharge port, and is joined to the plate-shaped component member 102 and the plate-shaped component member 103 from the refrigerant liquid supply port formed in the plate-shaped component member 103. It is supplied to each unit steam injector formed. In other words, the refrigerant liquid supply port and the refrigerant liquid discharge port of the adjacent plate-shaped component members are in communication with each other, and a flow path that communicates each introduction portion of the unit steam injectors arranged along the stacking direction of the plate-shaped component members. Forming. Hereinafter, similarly, a liquid flow is supplied to each unit steam injector formed by joining the respective plate-shaped component members, and an unused liquid flow is discharged to the outside from the refrigerant liquid discharge port 105a of the plate-shaped component member 105. .
 同様に、冷媒の蒸気流S1は、冷媒蒸気供給口105bから供給された後、板状構成部材104に形成された冷媒蒸気供給口から、板状構成部材105と板状構成部材104との接合により形成された各単位蒸気インジェクタに供給される。各単位蒸気インジェクタに供給されなかった蒸気流は冷媒蒸気排出口から排出され、板状構成部材103に形成された冷媒蒸気供給口から、板状構成部材104と板状構成部材103との接合により形成された各単位蒸気インジェクタに供給される。以下、同様に、各板状構成部材の接合により形成された各単位蒸気インジェクタに蒸気流が供給され、未使用の蒸気流は板状構成部材101の冷媒蒸気排出口101bから外部に排出される。 Similarly, the refrigerant vapor flow S <b> 1 is supplied from the refrigerant vapor supply port 105 b and then joined to the plate-like component member 105 and the plate-like component member 104 from the refrigerant vapor supply port formed in the plate-like component member 104. Is supplied to each unit steam injector formed. The vapor flow that has not been supplied to each unit vapor injector is discharged from the refrigerant vapor discharge port, and the plate-like component member 104 and the plate-like component member 103 are joined from the refrigerant vapor supply port formed in the plate-like component member 103. It is supplied to each unit steam injector formed. Hereinafter, similarly, a steam flow is supplied to each unit steam injector formed by joining each plate-shaped component, and the unused steam flow is discharged to the outside from the refrigerant vapor discharge port 101b of the plate-shaped component 101. .
 この蒸気インジェクタ100は、上述したように12個の単位蒸気インジェクタが集積されたものであり、各単位蒸気インジェクタが吐出する冷媒流のすべてを合流させた冷媒流を吐出する。ここで、単位蒸気インジェクタ10´は、実施の形態1に係る蒸気インジェクタ10と同様の構成を有しており、スロート部3の内部断面積が冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されている。これによって、単位蒸気インジェクタ10´は、蒸気インジェクタ10と同様にディフューザ部4の吐出部4aから吐出される冷媒流の吐出圧が高くなっている。したがって、この蒸気インジェクタ100は、小型でありながら、吐出圧が高く、かつ吐出量が多いものである。 This steam injector 100 is an assembly of twelve unit steam injectors as described above, and discharges a refrigerant flow that combines all of the refrigerant flows discharged by each unit steam injector. Here, the unit steam injector 10 ′ has the same configuration as the steam injector 10 according to the first embodiment, and the internal cross-sectional area of the throat portion 3 is a critical interruption in which the discharge pressure of the refrigerant flow increases nonlinearly. It is set smaller than the area. As a result, the unit steam injector 10 ′ has a higher discharge pressure of the refrigerant flow discharged from the discharge section 4 a of the diffuser section 4 in the same manner as the steam injector 10. Therefore, the steam injector 100 has a small discharge pressure, a high discharge pressure, and a large discharge amount.
 なお、図13は、導入部の別の態様を説明する要部断面図である。図13に示すように、導入部1´は、図10に示す導入部1と置き換えて使用できるものであって、液流導入部1aと、蒸気流導入部1bとの間に介在する断熱層1cを有するものである。断熱層1cはたとえば2つの壁部の間に空気を充填させた層または真空とした層として構成することができる。 In addition, FIG. 13 is a principal part sectional view for explaining another aspect of the introduction part. As shown in FIG. 13, the introduction part 1 ′ can be used in place of the introduction part 1 shown in FIG. 10, and is a heat insulating layer interposed between the liquid flow introduction part 1a and the vapor flow introduction part 1b. 1c. The heat insulation layer 1c can be configured, for example, as a layer filled with air between two wall portions or a vacuum layer.
 導入部1において液流W1が蒸気流S1によって加熱されると、混合部2における蒸気流S1を液流W1によって急激に冷却して凝縮する効果が減少する。これに対して、導入部1´においては、断熱層1cによって、液流W1が蒸気流S1によって加熱されることが防止または抑制されるので、上記凝縮効果の減少が防止または抑制される。 When the liquid flow W1 is heated by the vapor flow S1 in the introduction part 1, the effect of rapidly cooling and condensing the vapor flow S1 in the mixing part 2 by the liquid flow W1 decreases. On the other hand, in the introduction part 1 ′, the heat insulating layer 1 c prevents or suppresses the liquid flow W <b> 1 from being heated by the vapor flow S <b> 1, thereby preventing or suppressing the decrease in the condensation effect.
 なお、上記板状構成部材101、102、103、104、105の構成材料はたとえば樹脂材料などでもよいが、これらを金属製等とし、一組の板状構成部材の接合を拡散接合等により行うことによって、冷媒流F1の吐出量が多く、吐出圧が高くてもそれに耐えうる十分な接合強度が得られる。板状構成部材を構成する金属材料としては、ステンレス材料等の断熱性が高いものが好ましい。 The plate-like constituent members 101, 102, 103, 104, and 105 may be made of, for example, a resin material. These are made of metal or the like, and a set of plate-like constituent members are joined by diffusion bonding or the like. As a result, the discharge amount of the refrigerant flow F1 is large, and a sufficient bonding strength can be obtained even if the discharge pressure is high. As a metal material which comprises a plate-shaped structural member, what has high heat insulation, such as stainless steel material, is preferable.
 また、実施の形態1に係る蒸気インジェクタ10と同様に、上記単位蒸気インジェクタ10´において、混合部2の内部から外気に連通するように形成されたドレイン管をさらに備えるようにしてもよい。ドレイン管により、混合部2内の余分な蒸気を排気することによって単位蒸気インジェクタ10´の動作の安定性が高くなる。また、ドレイン管には逆止弁が設けられていてもよい。逆止弁は、単位蒸気インジェクタ10´の動作時に生じる負圧によって混合部2内部に外気が流入しないように機能することによって、単位蒸気インジェクタ10´の動作の安定性を高める。 Also, similarly to the steam injector 10 according to the first embodiment, the unit steam injector 10 ′ may further include a drain pipe formed so as to communicate with the outside air from the inside of the mixing unit 2. The operation of the unit steam injector 10 ′ becomes more stable by exhausting excess steam in the mixing unit 2 by the drain pipe. The drain pipe may be provided with a check valve. The check valve functions to prevent the outside air from flowing into the mixing unit 2 due to the negative pressure generated during the operation of the unit steam injector 10 ', thereby improving the operation stability of the unit steam injector 10'.
 以下、実施の形態2の変形例1~6に係る蒸気インジェクタについて説明する。 Hereinafter, steam injectors according to Modifications 1 to 6 of Embodiment 2 will be described.
(変形例1)
 図14A~14Dは、変形例1に係る蒸気インジェクタの内部構成を説明する模式図である。図14Aは蒸気インジェクタ100Aを示し、図14B、14C、14Dはその構成要素である板状構成部材102A、103A、101Aを示している。蒸気インジェクタ100Aは、複数の板状構成部材102A、103Aの組の間に板状構成部材101Aを配置したものが複数組積層された構成を有する。これらの板材構成部材は、たとえば金属製であり、拡散接合により接合される。
(Modification 1)
14A to 14D are schematic views illustrating the internal configuration of the steam injector according to the first modification. FIG. 14A shows a steam injector 100A, and FIGS. 14B, 14C, and 14D show plate-like constituent members 102A, 103A, and 101A that are constituent elements thereof. The steam injector 100A has a configuration in which a plurality of sets of plate-like component members 101A arranged between a plurality of plate- like component members 102A and 103A are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
 図15は、図14Bの板状構成部材102Aの平面図である。図15において、クロスハッチが施された領域は溝を示している。なお、板状構成部材103Aも板状構成部材102Aと同様の構成を有している。図15に示すように、板状構成部材102Aには、板状構成部材102Aを貫通するように、冷媒液流路102Aeと、冷媒蒸気流路102Afと、冷媒流合流流路102Agと、冷媒流吐出口106Aとが形成されている。また、板状構成部材102Aは、単位蒸気インジェクタ10Aの導入部1A、混合部2A、スロート部3A、およびディフューザ部4Aを構成するための溝を有している。板状構成部材102Aと板状構成部材103Aとの接合により単位蒸気インジェクタ10Aが形成される。なお、板状構成部材102Aと板状構成部材103Aとは、互いの溝が組み合うように積層させても良いし、一方の板状構成部材の溝が形成された主表面と、一方の板状構成部材の溝が形成されていない主表面とが対向するように積層させても良い。 FIG. 15 is a plan view of the plate-like component 102A of FIG. 14B. In FIG. 15, the area | region where the cross hatching was given has shown the groove | channel. The plate-like component 103A has the same configuration as the plate-like member 102A. As shown in FIG. 15, the plate-like component 102A includes a refrigerant liquid channel 102Ae, a refrigerant vapor channel 102Af, a refrigerant flow merge channel 102Ag, and a refrigerant flow so as to penetrate the plate-like member 102A. A discharge port 106A is formed. Further, the plate-like component 102A has grooves for constituting the introduction part 1A, the mixing part 2A, the throat part 3A, and the diffuser part 4A of the unit steam injector 10A. A unit steam injector 10A is formed by joining the plate-like member 102A and the plate-like member 103A. The plate-like component 102A and the plate-like member 103A may be laminated so that the grooves are combined with each other, the main surface on which the groove of one plate-like component is formed, and one plate-like member You may laminate | stack so that the main surface in which the groove | channel of a structural member is not formed may oppose.
 各単位蒸気インジェクタ10Aは、導入部1Aと、混合部2Aと、スロート部3Aと、ディフューザ部4Aとを備えている。導入部1Aは、ノズル状の液流導入部1Aaと、蒸気流導入部1Abとを有する。液流導入部1Aaは、外部から、冷媒液流路102Aeを介して供給された冷媒の液流を導入する。蒸気流導入部1Abは、液流導入部1Aaの両側に形成され、冷媒蒸気流路102Afを介して供給された蒸気流を導入する。単位蒸気インジェクタ10Aの具体的構成および動作は単位蒸気インジェクタ10´と略同様であり、スロート部3Aの内部断面積が冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されていることにより、吐出圧が高くなっている。 Each unit steam injector 10A includes an introduction part 1A, a mixing part 2A, a throat part 3A, and a diffuser part 4A. The introduction unit 1A includes a nozzle-like liquid flow introduction unit 1Aa and a vapor flow introduction unit 1Ab. The liquid flow introduction unit 1Aa introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 102Ae. The vapor flow introduction part 1Ab is formed on both sides of the liquid flow introduction part 1Aa, and introduces the vapor flow supplied via the refrigerant vapor flow path 102Af. The specific configuration and operation of the unit steam injector 10A are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3A is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
 図16は、図14Dの板状構成部材101Aの平面図である。図16に示すように、板状構成部材101Aには、冷媒液流路101Aeと、冷媒蒸気流路101Afと、冷媒流合流流路101Agと、冷媒流吐出口106Aとが形成されている。板状構成部材101Aは、板状構成部材102Aと板状構成部材103Aとの間に挟まれて、各単位蒸気インジェクタ10Aの蒸気流導入部1Abへの冷媒蒸気の流路を確保するためのスペーサの役目を果たしている。 FIG. 16 is a plan view of the plate-like component 101A shown in FIG. 14D. As shown in FIG. 16, in the plate-shaped component 101A, a refrigerant liquid channel 101Ae, a refrigerant vapor channel 101Af, a refrigerant flow merging channel 101Ag, and a refrigerant flow discharge port 106A are formed. The plate-shaped component 101A is sandwiched between the plate-shaped component 102A and the plate-shaped component 103A, and a spacer for securing a flow path of the refrigerant vapor to the vapor flow introducing portion 1Ab of each unit vapor injector 10A. It plays the role of
 図17は、図14Bの板状構成部材102Aの斜視図であって、溝の構成を理解しやすくするために板状構成部材102Aを切断して示している。 FIG. 17 is a perspective view of the plate-like component 102A shown in FIG. 14B, in which the plate-like member 102A is cut for easy understanding of the groove configuration.
(変形例2)
 図18A~18Dは、変形例2に係る蒸気インジェクタの内部構成を説明する模式図である。図18Aは蒸気インジェクタ100Bを示し、図18B、18C、18Dはその構成要素である板状構成部材102B、103B、101Bを示している。蒸気インジェクタ100Bは、複数の板状構成部材102B、103Bの組の間に板状構成部材101Bを配置したものが複数組積層された構成を有する。これらの板材構成部材は、たとえば金属製であり、拡散接合により接合される。
(Modification 2)
18A to 18D are schematic diagrams for explaining the internal configuration of the steam injector according to the second modification. FIG. 18A shows a steam injector 100B, and FIGS. 18B, 18C, and 18D show plate-like constituent members 102B, 103B, and 101B that are constituent elements thereof. The steam injector 100B has a configuration in which a plurality of sets of plate-like component members 101B arranged between a plurality of plate- like component members 102B and 103B are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
 図19は、図18Bの板状構成部材102Bの平面図である。図19において、クロスハッチが施された領域は溝を示している。なお、板状構成部材103Bも板状構成部材102Bと同様の構成を有している。図19に示すように、板状構成部材102Bには、板状構成部材102Bを貫通するように、冷媒液流路102Beと、冷媒蒸気流路102Bfと、冷媒流合流流路102Bgと、冷媒流吐出口106Bとが形成されている。また、板状構成部材102Bは、単位蒸気インジェクタ10Bの導入部1B、混合部2B、スロート部3B、およびディフューザ部4Bを構成するための溝を有している。板状構成部材102Bと板状構成部材103Bとの接合により単位蒸気インジェクタ10Bが形成される。なお、板状構成部材102Bと板状構成部材103Bとは、互いの溝が組み合うように積層させても良いし、一方の板状構成部材の溝が形成された主表面と、一方の板状構成部材の溝が形成されていない主表面とが対向するように積層させても良い。 FIG. 19 is a plan view of the plate-like component 102B of FIG. 18B. In FIG. 19, the area | region where the cross hatching was given has shown the groove | channel. The plate-like component 103B has the same configuration as the plate-like member 102B. As shown in FIG. 19, the plate-like component 102B includes a refrigerant liquid channel 102Be, a refrigerant vapor channel 102Bf, a refrigerant flow merge channel 102Bg, and a refrigerant flow so as to penetrate the plate-like member 102B. A discharge port 106B is formed. Further, the plate-like component 102B has grooves for constituting the introduction part 1B, the mixing part 2B, the throat part 3B, and the diffuser part 4B of the unit steam injector 10B. A unit steam injector 10B is formed by joining the plate-like member 102B and the plate-like member 103B. In addition, the plate-like component member 102B and the plate-like component member 103B may be laminated so that the grooves are combined with each other, the main surface on which the groove of one plate-like component member is formed, and one plate-like member You may laminate | stack so that the main surface in which the groove | channel of a structural member is not formed may oppose.
 各単位蒸気インジェクタ10Bは、導入部1Bと、混合部2Bと、スロート部3Bと、ディフューザ部4Bとを備えている。導入部1Bは、ノズル状の液流導入部1Baと、蒸気流導入部1Bbとを有する。液流導入部1Baは、外部から、冷媒液流路102Beを介して供給された冷媒の液流を導入する。蒸気流導入部1Bbは、液流導入部1Baの両側に形成され、冷媒蒸気流路102Bfを介して供給された蒸気流を導入する。単位蒸気インジェクタ10Bの具体的構成および動作は単位蒸気インジェクタ10´と略同様であり、スロート部3Bの内部断面積が、冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されていることにより、吐出圧が高くなっている。 Each unit steam injector 10B includes an introduction part 1B, a mixing part 2B, a throat part 3B, and a diffuser part 4B. The introduction part 1B has a nozzle-like liquid flow introduction part 1Ba and a vapor flow introduction part 1Bb. The liquid flow introduction unit 1Ba introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 102Be. The vapor flow introduction part 1Bb is formed on both sides of the liquid flow introduction part 1Ba, and introduces the vapor flow supplied via the refrigerant vapor flow path 102Bf. The specific configuration and operation of the unit steam injector 10B are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3B is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is high.
 図20は、図18Dの板状構成部材101Bの平面図である。図20に示すように、板状構成部材101Bには、冷媒液流路101Beと、冷媒蒸気流路101Bfと、冷媒流合流流路101Bgと、冷媒流吐出口106Bとが形成されている。板状構成部材101Bは、板状構成部材102Bと板状構成部材103Bとの間に挟まれて、各単位蒸気インジェクタ10Bの蒸気流導入部1Bbへの冷媒蒸気の流路を確保するためのスペーサの役目を果たしている。 FIG. 20 is a plan view of the plate-like component 101B shown in FIG. 18D. As shown in FIG. 20, a refrigerant liquid channel 101Be, a refrigerant vapor channel 101Bf, a refrigerant flow merging channel 101Bg, and a refrigerant flow outlet 106B are formed in the plate-like component 101B. The plate-like member 101B is sandwiched between the plate-like member 102B and the plate-like member 103B, and a spacer for securing a flow path of the refrigerant vapor to the vapor flow introduction portion 1Bb of each unit vapor injector 10B. It plays the role of
 ここで、板状構成部材102Bには、さらに、液流導入部1Baと、蒸気流導入部1Bbとの間に介在する貫通溝1Bcが形成されている。このような貫通溝1Bcは板状構成部材101Bにも形成されている。さらに、この貫通溝1Bcは冷媒液流路102Beと冷媒蒸気流路102Bfとの間にも介在するように形成されている。この貫通溝1Bcは、液流導入部1Baと、蒸気流導入部1Bbとの間、および冷媒液流路102Beと冷媒蒸気流路102Bfとの間を断熱する断熱層としての空気層を形成する。これによって、混合前に液流が蒸気流によって加熱されることが防止または抑制されるので、混合部2Bにおける凝縮効果の減少が防止または抑制される。なお、貫通溝1Bc内は真空としてもよい。 Here, the plate-like component 102B is further formed with a through groove 1Bc interposed between the liquid flow introduction portion 1Ba and the vapor flow introduction portion 1Bb. Such a through groove 1Bc is also formed in the plate-like component 101B. Further, the through groove 1Bc is formed so as to be interposed between the refrigerant liquid channel 102Be and the refrigerant vapor channel 102Bf. This through groove 1Bc forms an air layer as a heat insulating layer that insulates between the liquid flow introducing portion 1Ba and the vapor flow introducing portion 1Bb and between the refrigerant liquid flow channel 102Be and the refrigerant vapor flow channel 102Bf. Accordingly, the liquid flow is prevented or suppressed from being heated by the vapor flow before mixing, so that the reduction of the condensation effect in the mixing unit 2B is prevented or suppressed. The through groove 1Bc may be evacuated.
(変形例3)
 図21A~21Dは、変形例3に係る蒸気インジェクタの内部構成を説明する模式図である。図21Aは蒸気インジェクタ100Cを示し、図21B、21C、21Dはその構成要素である板状構成部材102C、103C、101Cを示している。蒸気インジェクタ100Cは、複数の板状構成部材102C、103Cの組の間に板状構成部材101Cを配置したものが複数組積層された構成を有する。これらの板材構成部材は、たとえば金属製であり、拡散接合により接合される。
(Modification 3)
21A to 21D are schematic views for explaining the internal configuration of the steam injector according to the third modification. FIG. 21A shows a steam injector 100C, and FIGS. 21B, 21C, and 21D show plate-like constituent members 102C, 103C, and 101C that are constituent elements thereof. The steam injector 100C has a configuration in which a plurality of plate-like component members 101C arranged between a plurality of plate- like component members 102C and 103C are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
 図22は、図21Bの板状構成部材102Cの平面図である。図22において、クロスハッチが施された領域は溝を示している。なお、板状構成部材103Cも板状構成部材102Cと同様の構成を有している。図22に示すように、板状構成部材102Cには、板状構成部材102Cを貫通するように、冷媒液流路102Ceと、冷媒蒸気流路102Cfと、冷媒流合流流路102Cgと、冷媒流吐出口106Cとが形成されている。また、板状構成部材102Cは、単位蒸気インジェクタ10Cの導入部1C、混合部2C、スロート部3C、およびディフューザ部4Cを構成するための溝を有している。板状構成部材102Cと板状構成部材103Cとの接合により単位蒸気インジェクタ10Cが形成される。なお、板状構成部材102Cと板状構成部材103Cとは、互いの溝が組み合うように積層させても良いし、一方の板状構成部材の溝が形成された主表面と、一方の板状構成部材の溝が形成されていない主表面とが対向するように積層させても良い。 FIG. 22 is a plan view of the plate-like component 102C of FIG. 21B. In FIG. 22, the area | region where the cross hatching was given has shown the groove | channel. The plate-like component 103C has the same configuration as the plate-like member 102C. As shown in FIG. 22, the plate-like component 102C includes a refrigerant liquid channel 102Ce, a refrigerant vapor channel 102Cf, a refrigerant flow merge channel 102Cg, and a refrigerant flow so as to penetrate the plate-like member 102C. A discharge port 106C is formed. Further, the plate-like component member 102C has grooves for constituting the introduction part 1C, the mixing part 2C, the throat part 3C, and the diffuser part 4C of the unit steam injector 10C. A unit steam injector 10C is formed by joining the plate-like member 102C and the plate-like member 103C. The plate-like component member 102C and the plate-like component member 103C may be laminated so that the grooves are combined with each other, the main surface on which the groove of one plate-like component member is formed, and one plate-like member You may laminate | stack so that the main surface in which the groove | channel of a structural member is not formed may oppose.
 各単位蒸気インジェクタ10Cは、導入部1Cと、混合部2Cと、スロート部3Cと、ディフューザ部4Cとを備えている。導入部1Cは、ノズル状の液流導入部1Caと、蒸気流導入部1Cbとを有する。液流導入部1Caは、外部から、冷媒液流路102Ceを介して供給された冷媒の液流を導入する。蒸気流導入部1Cbは、液流導入部1Caの両側に形成され、冷媒蒸気流路102Cfを介して供給された蒸気流を導入する。単位蒸気インジェクタ10Cの具体的構成および動作は単位蒸気インジェクタ10´と略同様であり、スロート部3Cの内部断面積が冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されていることにより、吐出圧が高くなっている。なお、この単位蒸気インジェクタ10Cでは、液流の進行方向の側面から蒸気流が混合される。図22において、符号1Caaは混合する際に液流が導入される断面積を示し、符号1Cbaは混合する際に蒸気流が導入される断面積を示している。 Each unit steam injector 10C includes an introduction part 1C, a mixing part 2C, a throat part 3C, and a diffuser part 4C. The introduction part 1C has a nozzle-like liquid flow introduction part 1Ca and a vapor flow introduction part 1Cb. The liquid flow introduction unit 1Ca introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 102Ce. The vapor flow introduction part 1Cb is formed on both sides of the liquid flow introduction part 1Ca, and introduces the vapor flow supplied via the refrigerant vapor flow path 102Cf. The specific configuration and operation of the unit steam injector 10C are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3C is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased. In the unit steam injector 10C, the steam flow is mixed from the side surface in the liquid flow traveling direction. In FIG. 22, reference numeral 1Caa represents a cross-sectional area into which a liquid flow is introduced when mixing, and reference numeral 1Cba represents a cross-sectional area into which a vapor flow is introduced during mixing.
 図23は、図21Dの板状構成部材101Cの平面図である。図23に示すように、板状構成部材101Cには、冷媒液流路101Ceと、冷媒蒸気流路101Cfと、冷媒流合流流路101Cgと、冷媒流吐出口106Cとが形成されている。板状構成部材101Cは、板状構成部材102Cと板状構成部材103Cとの間に挟まれて、各単位蒸気インジェクタ10Cの蒸気流導入部1Cbへの冷媒蒸気の流路を確保するためのスペーサの役目を果たしている。 FIG. 23 is a plan view of the plate-like component 101C of FIG. 21D. As shown in FIG. 23, a refrigerant liquid channel 101Ce, a refrigerant vapor channel 101Cf, a refrigerant flow merging channel 101Cg, and a refrigerant flow outlet 106C are formed in the plate-like component 101C. The plate-like member 101C is sandwiched between the plate-like member 102C and the plate-like member 103C, and is a spacer for securing a flow path of the refrigerant vapor to the steam flow introducing portion 1Cb of each unit steam injector 10C. It plays the role of
 ここで、板状構成部材102Cにも、板状構成部材102Bと同様に、液流導入部1Caと、蒸気流導入部1Cbとの間に介在する貫通溝1Ccが形成されている。このような貫通溝1Ccは板状構成部材101Cにも形成されている。さらに、この貫通溝1Ccは冷媒液流路102Ceと冷媒蒸気流路102Cfとの間にも介在するように形成されている。この貫通溝1Ccは、液流導入部1Caと、蒸気流導入部1Cbとの間、および冷媒液流路102Ceと冷媒蒸気流路102Cfとの間を断熱する断熱層としての空気層を形成する。これによって、混合前に液流が蒸気流によって加熱されることが防止または抑制されるので、混合部2Cにおける凝縮効果の減少が防止または抑制される。なお、貫通溝1Cc内は真空としてもよい。 Here, similarly to the plate-like component 102B, the plate-like member 102C is also formed with a through groove 1Cc interposed between the liquid flow introduction portion 1Ca and the vapor flow introduction portion 1Cb. Such a through groove 1Cc is also formed in the plate-like component 101C. Further, the through groove 1Cc is formed so as to be interposed between the refrigerant liquid channel 102Ce and the refrigerant vapor channel 102Cf. This through groove 1Cc forms an air layer as a heat insulating layer that insulates between the liquid flow introducing portion 1Ca and the vapor flow introducing portion 1Cb and between the refrigerant liquid flow channel 102Ce and the refrigerant vapor flow channel 102Cf. Accordingly, since the liquid flow is prevented or suppressed from being heated by the vapor flow before mixing, the reduction of the condensation effect in the mixing unit 2C is prevented or suppressed. The through groove 1Cc may be evacuated.
(変形例4)
 図24A~24Dは、変形例4に係る蒸気インジェクタの内部構成を説明する模式図である。図24Aは蒸気インジェクタ100Dを示し、図24B、24C、24Dはその構成要素である板状構成部材102D、ノズル110D、板状構成部材103Dを示している。蒸気インジェクタ100Dは、複数の板状構成部材102D、103Dの組が複数組積層された構成を有する。これらの板材構成部材は、たとえば金属製であり、拡散接合により接合される。
(Modification 4)
24A to 24D are schematic views for explaining the internal configuration of the steam injector according to the fourth modification. FIG. 24A shows the steam injector 100D, and FIGS. 24B, 24C, and 24D show the plate-like component member 102D, the nozzle 110D, and the plate-like component member 103D, which are the components thereof. The steam injector 100D has a configuration in which a plurality of sets of plate- like component members 102D and 103D are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
 図25A~25Eは、図24B、24Cの板状構成部材およびノズルの構成を説明する模式図である。図25Aは板状構成部材102Dを示し、図25B、25C、25Dはそれぞれ図25AにおけるA-A線断面、B-B線断面、C-C線断面を示し、図25Eはノズル110Dを示している。図25A~25Dにおいて、クロスハッチが施された領域は溝を示している。なお、板状構成部材103Dも板状構成部材102Dと同様の構成を有している。 FIGS. 25A to 25E are schematic views for explaining the configuration of the plate-like constituent members and nozzles of FIGS. 24B and 24C. 25A shows a plate-like component 102D, FIGS. 25B, 25C, and 25D show cross sections taken along the lines AA, BB, and CC in FIG. 25A, respectively, and FIG. 25E shows the nozzle 110D. Yes. In FIGS. 25A to 25D, the cross hatched area indicates a groove. The plate-like component 103D has the same configuration as the plate-like member 102D.
 図25A~25Dに示すように、板状構成部材102Dには、板状構成部材102Dを貫通するように、冷媒液流路102Deと、冷媒蒸気流路102Dfと、冷媒流合流流路102Dgと、冷媒流吐出口106Dとが形成されている。また、板状構成部材102Dは、単位蒸気インジェクタ10Dの混合部2D、スロート部3D、およびディフューザ部4Dを構成するための溝を有している。さらに、板状構成部材102Dは、ノズル110Dを嵌めるための溝102Dhを有している。ノズル110Dを溝102Dhに嵌めた状態で板状構成部材102Dと板状構成部材103Dとの接合により単位蒸気インジェクタ10Dが形成される。このとき、ノズル110Dは板状構成部材103D側に形成された、溝102Dhと同様の溝にも嵌まる。 As shown in FIGS. 25A to 25D, the plate-shaped component 102D includes a refrigerant liquid flow channel 102De, a refrigerant vapor flow channel 102Df, a refrigerant flow merging flow channel 102Dg so as to penetrate the plate-shaped structural member 102D. A refrigerant flow outlet 106D is formed. In addition, the plate-like component 102D has grooves for constituting the mixing portion 2D, the throat portion 3D, and the diffuser portion 4D of the unit steam injector 10D. Furthermore, the plate-like component 102D has a groove 102Dh for fitting the nozzle 110D. A unit steam injector 10D is formed by joining the plate-like component 102D and the plate-like component 103D with the nozzle 110D fitted in the groove 102Dh. At this time, the nozzle 110D fits into a groove similar to the groove 102Dh formed on the plate-like component 103D side.
 各単位蒸気インジェクタ10Dは、導入部と、混合部2Dと、スロート部3Dと、ディフューザ部4Dとを備えている。導入部は、ノズル状の液流導入部1Daと、蒸気流導入部1Dbとを有する。液流導入部1Daは、外部から、冷媒液流路102Deを介して供給された冷媒の液流を導入する。蒸気流導入部1Dbは、液流導入部1Daを取り囲むように形成され、冷媒蒸気流路102Dfを介して供給された蒸気流を導入する。単位蒸気インジェクタ10Dの具体的構成および動作は単位蒸気インジェクタ10´と略同様であり、スロート部3Dの内部断面積が冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されていることにより、吐出圧が高くなっている。 Each unit steam injector 10D includes an introduction part, a mixing part 2D, a throat part 3D, and a diffuser part 4D. The introduction part has a nozzle-like liquid flow introduction part 1Da and a vapor flow introduction part 1Db. The liquid flow introduction unit 1Da introduces the liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow channel 102De. The vapor flow introduction unit 1Db is formed so as to surround the liquid flow introduction unit 1Da, and introduces the vapor flow supplied via the refrigerant vapor channel 102Df. The specific configuration and operation of the unit steam injector 10D are substantially the same as those of the unit steam injector 10 ′, and the internal cross-sectional area of the throat portion 3D is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased.
 ここで、ノズル110Dを溝102Dhに嵌めた状態で板状構成部材102Dと板状構成部材103Dとを接合したとき、ノズル110Dによって導入部の液流導入部1Daが形成され、混合部2Dの冷媒蒸気流路102Dfにおいてノズル110Dの周囲を囲む溝が蒸気流導入部1Dbとなる。蒸気インジェクタ100Dは、ノズル110Dが溝102Dh内を移動し、かつ所望の位置に固定されることができるような機構を有している。ノズル110Dの位置を溝102Dhの長手方向に対して移動させることによって、導入部における液流導入部1Daと蒸気流導入部1Dbとの断面積比を変化させることができる。 Here, when the plate-like component 102D and the plate-like component 103D are joined with the nozzle 110D fitted in the groove 102Dh, the liquid flow introduction portion 1Da of the introduction portion is formed by the nozzle 110D, and the refrigerant of the mixing portion 2D A groove surrounding the periphery of the nozzle 110D in the steam flow path 102Df becomes the steam flow introduction portion 1Db. The steam injector 100D has a mechanism that allows the nozzle 110D to move in the groove 102Dh and to be fixed at a desired position. By moving the position of the nozzle 110D with respect to the longitudinal direction of the groove 102Dh, the cross-sectional area ratio between the liquid flow introduction part 1Da and the vapor flow introduction part 1Db in the introduction part can be changed.
(変形例5)
 図26A~26Eは、変形例5に係る蒸気インジェクタの内部構成を説明する模式図である。図26Aは蒸気インジェクタ100Eを示し、図26B、26C、26D、26Eはその構成要素である板状構成部材102E、103E、104E、101Eを示している。蒸気インジェクタ100Eは、複数の板状構成部材102E、103E、104E、101Eの組が複数組積層された構成を有する。これらの板材構成部材は、たとえば金属製であり、拡散接合により接合される。
(Modification 5)
26A to 26E are schematic views for explaining the internal configuration of the steam injector according to the fifth modification. FIG. 26A shows a steam injector 100E, and FIGS. 26B, 26C, 26D, and 26E show plate- like components 102E, 103E, 104E, and 101E that are constituent elements thereof. The steam injector 100E has a configuration in which a plurality of sets of plate-like constituent members 102E, 103E, 104E, and 101E are stacked. These plate member constituent members are made of metal, for example, and are joined by diffusion bonding.
 図27は、図26Cの板状構成部材103Eの平面図である。図27において、クロスハッチが施された領域は溝を示している。なお、板状構成部材104Eも板状構成部材103Eと同様の構成を有している。図27に示すように、板状構成部材103Eには、板状構成部材103Eを貫通するように、冷媒液流路103Eeと、冷媒蒸気流路103Efと、冷媒流合流流路103Egと、冷媒流吐出口106Eとが形成されている。また、板状構成部材103Eは、単位蒸気インジェクタ10Eの導入部1E、混合部2E、スロート部3E、およびディフューザ部4Eを構成するための溝を有している。さらに、板状構成部材103Eには、蒸気流導入部1Ecを構成するための、板状構成部材103Eを貫通する楔型の貫通孔が形成されている。 FIG. 27 is a plan view of the plate-like component 103E of FIG. 26C. In FIG. 27, the area | region where the cross hatching was given has shown the groove | channel. The plate-like component 104E has the same configuration as the plate-like member 103E. As shown in FIG. 27, the plate-like component 103E includes a refrigerant liquid channel 103Ee, a refrigerant vapor channel 103Ef, a refrigerant flow merge channel 103Eg, and a refrigerant flow so as to penetrate the plate-like member 103E. A discharge port 106E is formed. Further, the plate-like component 103E has grooves for constituting the introduction part 1E, the mixing part 2E, the throat part 3E, and the diffuser part 4E of the unit steam injector 10E. Further, a wedge-shaped through-hole penetrating the plate-like component 103E is formed in the plate-like member 103E so as to constitute the steam flow introduction portion 1Ec.
 図28は、図26Bの板状構成部材102Eの平面図である。なお、板状構成部材101Eも板状構成部材102Eと同様の構成を有している。図28に示すように、板状構成部材102Eには、冷媒液流路102Eeと、冷媒蒸気流路102Efと、冷媒流合流流路102Egと、冷媒流吐出口106Eとが形成されている。また、板状構成部材102Eは、冷媒蒸気流路102Efと連通する、蒸気流導入部1Ecを構成するための溝と、スロート部3Eを構成する溝と、冷媒蒸気を逃がす流路102Ehを構成するための溝とを有している。なお、冷媒蒸気を逃がす流路102Ehを構成するための溝は無くても良い。 FIG. 28 is a plan view of the plate-like component 102E of FIG. 26B. The plate-like component 101E has the same configuration as the plate-like member 102E. As shown in FIG. 28, a refrigerant liquid channel 102Ee, a refrigerant vapor channel 102Ef, a refrigerant flow merging channel 102Eg, and a refrigerant flow outlet 106E are formed in the plate-like component 102E. Further, the plate-like component 102E constitutes a groove that constitutes the steam flow introduction part 1Ec, a groove that constitutes the throat part 3E, and a flow path 102Eh that allows the refrigerant vapor to escape, communicating with the refrigerant vapor flow path 102Ef. And a groove for the purpose. In addition, the groove | channel for comprising the flow path 102Eh which escapes refrigerant | coolant vapor | steam may not be provided.
 板状構成部材102E、103E、104E、および101Eの接合により単位蒸気インジェクタ10Eが形成される。なお、接合したときに、板状構成部材103Eに形成された、蒸気流導入部1Ecを構成するための貫通孔と、板状構成部材102Eに形成された、蒸気流導入部1Ecを構成するための溝とは連通する。なお、板状構成部材104E、板状構成部材101Eにも同様の貫通孔と溝とが形成されており、これらは接合したときに連通する。 A unit steam injector 10E is formed by joining the plate-like constituent members 102E, 103E, 104E, and 101E. In addition, in order to configure the steam flow introducing portion 1Ec formed in the plate-shaped component 102E and the through hole for configuring the steam flow introducing portion 1Ec formed in the plate-shaped component 103E when joined. It communicates with the groove. The plate-like component member 104E and the plate-like component member 101E are also formed with similar through holes and grooves, which communicate when joined.
 各単位蒸気インジェクタ10Eは、導入部1Eと、混合部2Eと、スロート部3Eと、ディフューザ部4Eとを備えている。導入部1Eは、ノズル状の液流導入部1Eaと、蒸気流導入部1Eb、1Ecとを有する。液流導入部1Eaは、外部から、冷媒液流路103Eeを介して供給された冷媒の液流を導入する。蒸気流導入部1Ebは、液流導入部1Eaの両側に形成され、冷媒蒸気流路103Efを介して供給された蒸気流を導入する。 Each unit steam injector 10E includes an introduction part 1E, a mixing part 2E, a throat part 3E, and a diffuser part 4E. The introduction part 1E has a nozzle-like liquid flow introduction part 1Ea and vapor flow introduction parts 1Eb, 1Ec. The liquid flow introduction unit 1Ea introduces a liquid flow of the refrigerant supplied from the outside via the refrigerant liquid flow path 103Ee. The vapor flow introduction part 1Eb is formed on both sides of the liquid flow introduction part 1Ea, and introduces the vapor flow supplied via the refrigerant vapor flow path 103Ef.
 さらに、蒸気流導入部1Ecは、液流導入部1Eaの上下に形成され、冷媒蒸気流路から、板状構成部材102E、101Eに形成された蒸気流導入部1Ecを構成する溝(図28参照)を通り、板状構成部材103E、104Eに形成された蒸気流導入部1Ecを構成する貫通孔(図27参照)をさらに通って供給された蒸気流を導入する。すなわち、各単位蒸気インジェクタ10Eでは、液流導入部1Eaの左右両側、および上下両側の四方から、蒸気流が導入される。なお、板状構成部材102E、101Eに形成された蒸気流導入部1Ecを構成する溝を通ったが板状構成部材103E、104Eに形成された蒸気流導入部1Ecを構成する貫通孔を通らなかった冷媒蒸気は流路102Ehから冷媒流吐出口106Eに逃がされる。 Further, the steam flow introducing portion 1Ec is formed above and below the liquid flow introducing portion 1Ea, and is a groove constituting the steam flow introducing portion 1Ec formed in the plate-like constituent members 102E and 101E from the refrigerant vapor flow path (see FIG. 28). ), The steam flow supplied through the through holes (see FIG. 27) constituting the steam flow introduction part 1Ec formed in the plate-like constituent members 103E and 104E is introduced. That is, in each unit steam injector 10E, the steam flow is introduced from the left and right sides of the liquid flow introduction portion 1Ea and from the upper and lower sides. In addition, although it passed the groove | channel which comprises the steam flow introduction part 1Ec formed in plate-shaped structural member 102E, 101E, it does not pass the through-hole which comprises the steam flow introduction part 1Ec formed in plate-shaped structural member 103E, 104E. The refrigerant vapor is released from the flow path 102Eh to the refrigerant flow outlet 106E.
 単位蒸気インジェクタ10Eのその他の具体的構成および動作は単位蒸気インジェクタ10´と略同様であり、スロート部3Eの内部断面積が冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されていることにより、吐出圧が高くなっている。この単位蒸気インジェクタ10Eでは、液流導入部1Eaの四方に形成された蒸気流導入部1Eb、1Ecから冷媒蒸気を導入するので、より効率的に冷媒蒸気を導入することができる。 The other specific configuration and operation of the unit steam injector 10E are substantially the same as those of the unit steam injector 10 ′, and the internal cross-sectional area of the throat portion 3E is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased. In this unit vapor injector 10E, the refrigerant vapor is introduced from the vapor flow introduction portions 1Eb and 1Ec formed on the four sides of the liquid flow introduction portion 1Ea, so that the refrigerant vapor can be introduced more efficiently.
(変形例6)
 図29は、変形例6に係る蒸気インジェクタの内部構成を説明する模式図である。この蒸気インジェクタ200は、構成部材201、202、203、204、205で構成されている。構成部材201、202、203、204、205を積層して接合することによって、構成部材201、202、203、204、205の積層方向に沿って延在する9個の単位蒸気インジェクタ10Gが形成される。各単位蒸気インジェクタ10Gは、導入部1Gと、混合部2Gと、スロート部3Gと、ディフューザ部4Gとを備えている。導入部1Gは、ノズル状の液流導入部1Gaと、蒸気流導入部1Gbとを有する。これらの構成部材は、たとえば金属製であり、拡散接合により接合される。
(Modification 6)
FIG. 29 is a schematic diagram illustrating an internal configuration of a steam injector according to Modification 6. The steam injector 200 includes constituent members 201, 202, 203, 204, and 205. By laminating and joining the constituent members 201, 202, 203, 204, and 205, nine unit steam injectors 10G extending along the stacking direction of the constituent members 201, 202, 203, 204, and 205 are formed. The Each unit steam injector 10G includes an introduction part 1G, a mixing part 2G, a throat part 3G, and a diffuser part 4G. The introduction part 1G has a nozzle-like liquid flow introduction part 1Ga and a vapor flow introduction part 1Gb. These constituent members are made of metal, for example, and are joined by diffusion bonding.
 構成部材201は、断面矩形状の貫通孔である冷媒液流路200eを有している。また、構成部材201は、冷媒液流路200eと、ノズルである構成部材205によって形成される導入部1Gの液流導入部1Gaと連通する連通孔200e1と、を有する。構成部材202には円錐状の貫通孔である混合部2Gが形成されている。また、構成部材201、202、205が接合したときに、構成部材201と構成部材202とによって冷媒蒸気流路200fが形成される。また、構成部材205が混合部2Gに挿通され、構成部材205と混合部2Gとの隙間に蒸気流導入部1Gbが形成される。 The constituent member 201 has a refrigerant liquid flow path 200e which is a through hole having a rectangular cross section. In addition, the constituent member 201 includes a refrigerant liquid flow path 200e and a communication hole 200e1 communicating with the liquid flow introducing portion 1Ga of the introducing portion 1G formed by the constituent member 205 that is a nozzle. The constituent member 202 is formed with a mixing portion 2G which is a conical through hole. Further, when the constituent members 201, 202, and 205 are joined, the constituent member 201 and the constituent member 202 form a refrigerant vapor channel 200 f. In addition, the component member 205 is inserted into the mixing unit 2G, and the steam flow introduction unit 1Gb is formed in the gap between the component member 205 and the mixing unit 2G.
 また、構成部材203には円錐状の貫通孔であるディフューザ部4Gが形成されている。構成部材202と構成部材203とが接合したときに、構成部材202と構成部材203との接合面の位置にスロート部3Gが形成される。また、構成部材203と構成部材204とが接合したときに、冷媒流合流流路200gと、冷媒流吐出口206とが形成される。 Further, the component member 203 is formed with a diffuser portion 4G which is a conical through hole. When the constituent member 202 and the constituent member 203 are joined, the throat portion 3G is formed at the position of the joining surface between the constituent member 202 and the constituent member 203. Further, when the constituent member 203 and the constituent member 204 are joined, the refrigerant flow merge channel 200g and the refrigerant flow discharge port 206 are formed.
 単位蒸気インジェクタ10Gのその他の具体的構成および動作は単位蒸気インジェクタ10´と略同様であり、スロート部3Gの内部断面積が冷媒流の吐出圧が非線形的に増加する臨界断面積よりも小さく設定されていることにより、吐出圧が高くなっている。このように、単位蒸気インジェクタは、積層して接合する構成部材の積層方向に沿って延在するように形成されてもよい。 The other specific configuration and operation of the unit steam injector 10G are substantially the same as those of the unit steam injector 10 ', and the internal cross-sectional area of the throat portion 3G is set smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow increases nonlinearly. As a result, the discharge pressure is increased. Thus, the unit steam injector may be formed so as to extend along the stacking direction of the constituent members to be stacked and joined.
(実施の形態3)
 図30は、本発明の実施の形態3に係るヒートポンプ装置のブロック図である。図30に示すように、ヒートポンプ装置1000は、実施の形態2に係る蒸気インジェクタ100と、圧縮器20と、凝縮器30と、蒸発器40と、気液分離器50とを備えている。これらの要素は、冷媒を循環させる流路としての配管によって接続されている。
(Embodiment 3)
FIG. 30 is a block diagram of a heat pump device according to Embodiment 3 of the present invention. As shown in FIG. 30, the heat pump apparatus 1000 includes a steam injector 100 according to the second embodiment, a compressor 20, a condenser 30, an evaporator 40, and a gas-liquid separator 50. These elements are connected by piping as a flow path for circulating the refrigerant.
 ヒートポンプ装置1000の動作を説明する。圧縮器20は、外部からの電力Pによって、気液分離器50から供給された冷媒蒸気を圧縮する。一方、凝縮器30は圧縮された冷媒蒸気の熱を熱H1として放熱するとともに冷媒蒸気を凝縮し、冷媒液とする。蒸発器40は、気液分離器50から供給された冷媒液に外部から吸熱した熱H2を与えて冷媒を蒸発させる。 The operation of the heat pump device 1000 will be described. The compressor 20 compresses the refrigerant vapor supplied from the gas-liquid separator 50 with the electric power P from the outside. On the other hand, the condenser 30 radiates the heat of the compressed refrigerant vapor as heat H1 and condenses the refrigerant vapor to obtain a refrigerant liquid. The evaporator 40 evaporates the refrigerant by applying heat H2 absorbed from the outside to the refrigerant liquid supplied from the gas-liquid separator 50.
 蒸気インジェクタ100は、蒸発器40から供給された冷媒の蒸気流と、凝縮器30から供給された冷媒の液流とが導入され、圧力が高められた冷媒流を冷媒流吐出口106(図9参照)から吐出する。気液分離器50は、吐出された冷媒流に含まれる冷媒の液体と蒸気とを分離し、冷媒蒸気を圧縮器20に供給するとともに、冷媒液を蒸発器40に供給する。 The vapor injector 100 introduces the refrigerant vapor flow supplied from the evaporator 40 and the refrigerant liquid flow supplied from the condenser 30 into the refrigerant flow discharge port 106 (FIG. 9). (Refer to). The gas-liquid separator 50 separates the liquid and vapor of the refrigerant contained in the discharged refrigerant flow, supplies the refrigerant vapor to the compressor 20, and supplies the refrigerant liquid to the evaporator 40.
 このヒートポンプ装置1000では、膨張弁を用いたヒートポンプ装置においては膨張弁で渦として損失していたエネルギーを蒸気インジェクタ100により回収できる。さらに、このヒートポンプ装置1000では、蒸気インジェクタ100によって圧縮器20の負担が軽減されるので、所望の動作状態を実現するために外部から与えるべき電力Pの電力量を低減することができる。これによって、このヒートポンプ装置1000は、COPを向上させた高効率ヒートポンプ装置として機能する。このヒートポンプ装置1000は、空気調和装置、冷凍装置、給湯装置など、ヒートポンプ装置を使用する各種装置に使用することができ、これによって高効率装置が実現される。 In this heat pump apparatus 1000, the energy lost as a vortex in the expansion valve in the heat pump apparatus using the expansion valve can be recovered by the steam injector 100. Furthermore, in this heat pump apparatus 1000, since the burden on the compressor 20 is reduced by the steam injector 100, the amount of electric power P to be applied from the outside in order to realize a desired operation state can be reduced. As a result, the heat pump apparatus 1000 functions as a high-efficiency heat pump apparatus with improved COP. The heat pump device 1000 can be used for various devices using the heat pump device such as an air conditioner, a refrigeration device, and a hot water supply device, thereby realizing a high efficiency device.
(実施の形態4)
 図31は、本発明の実施の形態4に係るヒートポンプ装置のブロック図である。図31に示すように、ヒートポンプ装置2000は、実施の形態2に係る蒸気インジェクタ100と、圧縮器20と、凝縮器30と、蒸発器40と、気液分離器50と、膨張弁60と、ポンプ70とを備えている。これらの要素は、冷媒を循環させる流路としての配管によって接続されている。
(Embodiment 4)
FIG. 31 is a block diagram of a heat pump apparatus according to Embodiment 4 of the present invention. As shown in FIG. 31, the heat pump device 2000 includes a steam injector 100 according to the second embodiment, a compressor 20, a condenser 30, an evaporator 40, a gas-liquid separator 50, an expansion valve 60, And a pump 70. These elements are connected by piping as a flow path for circulating the refrigerant.
 このヒートポンプ装置2000では、蒸気インジェクタ100は、圧縮器20から供給された冷媒の蒸気流と、気液分離器50からポンプ70で圧力が高められた状態で供給された冷媒の液流とが導入され、圧力が高められた冷媒流を冷媒流吐出口106から吐出する。凝縮器30は、蒸気インジェクタ100から圧力が高められた冷媒流を供給され、その熱を熱H1として放熱するとともに冷媒流を凝縮する。気液分離器50は、凝縮器30からの冷媒流に含まれる冷媒の液体と蒸気とを分離し、冷媒蒸気を膨張弁60に供給するとともに、冷媒液をポンプ70に供給する。膨張弁60は、冷媒蒸気を低温、低圧の冷媒液とする。蒸発器40は、膨張弁60によって低温、低圧にされた冷媒液に外部から吸熱した熱H2を与えて冷媒を蒸発させる。圧縮器20は、外部からの電力Pによって、蒸発器40から供給された冷媒蒸気を圧縮する。 In this heat pump device 2000, the steam injector 100 introduces a refrigerant vapor flow supplied from the compressor 20 and a refrigerant liquid flow supplied in a state where the pressure is increased by the pump 70 from the gas-liquid separator 50. Then, the refrigerant flow whose pressure is increased is discharged from the refrigerant flow discharge port 106. The condenser 30 is supplied with the refrigerant flow whose pressure is increased from the vapor injector 100, dissipates the heat as heat H1, and condenses the refrigerant flow. The gas-liquid separator 50 separates the liquid and vapor of the refrigerant contained in the refrigerant flow from the condenser 30, supplies the refrigerant vapor to the expansion valve 60, and supplies the refrigerant liquid to the pump 70. The expansion valve 60 uses the refrigerant vapor as a low-temperature and low-pressure refrigerant liquid. The evaporator 40 evaporates the refrigerant by applying heat H2 absorbed from the outside to the refrigerant liquid that has been reduced in temperature and pressure by the expansion valve 60. The compressor 20 compresses the refrigerant vapor supplied from the evaporator 40 with electric power P from the outside.
 このヒートポンプ装置2000では、蒸気インジェクタ100は圧縮器20による冷媒の圧縮を補助して凝縮器30に所望の圧力の冷媒を供給するようにしている。その結果、所望の動作状態を実現するために外部から与えるべき電力Pの電力量を低減することができる。これによって、このヒートポンプ装置2000は、COPを向上させた高効率ヒートポンプ装置として機能する。このヒートポンプ装置2000は、空気調和装置、冷凍装置、給湯装置など、ヒートポンプ装置を使用する各種装置に使用することができ、これによって高効率装置が実現される。 In this heat pump device 2000, the vapor injector 100 assists the compression of the refrigerant by the compressor 20 and supplies the refrigerant with a desired pressure to the condenser 30. As a result, it is possible to reduce the amount of power P to be applied from the outside in order to realize a desired operation state. Thus, the heat pump device 2000 functions as a high-efficiency heat pump device with improved COP. The heat pump device 2000 can be used for various devices using the heat pump device such as an air conditioner, a refrigeration device, and a hot water supply device, thereby realizing a high efficiency device.
 なお、上記実施の形態3、4のヒートポンプ装置1000、2000において、蒸気インジェクタ100は、その変形例1~5の蒸気インジェクタや実施の形態1に係る蒸気インジェクタ10に置き換えることができる。 In the heat pump apparatuses 1000 and 2000 according to the third and fourth embodiments, the steam injector 100 can be replaced with the steam injectors according to the first to fifth modifications and the steam injector 10 according to the first embodiment.
 なお、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 The present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 1、1´、1A、1B、1C、1E、1G 導入部
 1a、1Aa、1Ba、1Ca、1Da、1Ea、1Ga 液流導入部
 1b、1Ab、1Bb、1Cb、1Db、1Eb、1Ec、1Gb 蒸気流導入部
 1Bc、1Cc 貫通溝
 2、2A、2B、2C、2D、2E、2G 混合部
 3、3A、3B、3C、3D、3E、3G スロート部
 4、4A、4B、4C、4D、4E、4G ディフューザ部
 4a 吐出部
 5 ドレイン管
 6 逆止弁
 10、100、100A、100B、100C、100D、100E、200 蒸気インジェクタ
 10´、10A、10B、10C、10D、10E、10G 単位蒸気インジェクタ
 20 圧縮器
 30 凝縮器
 40 蒸発器
 50 気液分離器
 60 膨張弁
 70 ポンプ
 101、101A、101B、101C、101E、102、102A、102B、102C、102D、102E、103、103A、103B、103C、103D、103E、104、104E、105 板状構成部材
 101a、102a 冷媒液供給口
 101b、102b 冷媒蒸気排出口
 102c、105a 冷媒液排出口
 102d、105b 冷媒蒸気供給口
 101Ae、101Be、101Ce、102e、102Ae、102Be、102Ce、102De、102Ee、103Ee、200e 冷媒液流路
 101Af、101Bf、101Cf、102f、102Af、102Bf、102Cf、102Df、102Ef、103Ef、200f 冷媒蒸気流路
 101Ag、101Bg、101Cg、102g、102Ag、102Bg、102Cg、102Dg、102Eg、103Eg、200g 冷媒流合流流路
 102Dh 溝
 102Eh 流路
 106、106A、106B、106C、106D、106E、206 冷媒流吐出口
 110D ノズル
 201、202、203、204、205 構成部材
 200e1 連通孔
 1000、2000 ヒートポンプ装置
 C1、C2 領域
 F1 冷媒流
 H1、H2 熱
 P 電力
 S1 蒸気流
 W1 液流
1, 1 ', 1A, 1B, 1C, 1E, 1G Introducing section 1a, 1Aa, 1Ba, 1Ca, 1Da, 1Ea, 1Ga Liquid flow introducing section 1b, 1Ab, 1Bb, 1Cb, 1Db, 1Eb, 1Ec, 1Gb Steam flow Introduction part 1Bc, 1Cc Through groove 2, 2A, 2B, 2C, 2D, 2E, 2G Mixing part 3, 3A, 3B, 3C, 3D, 3E, 3G Throat part 4, 4A, 4B, 4C, 4D, 4E, 4G Diffuser section 4a Discharge section 5 Drain pipe 6 Check valve 10, 100, 100A, 100B, 100C, 100D, 100E, 200 Steam injector 10 ', 10A, 10B, 10C, 10D, 10E, 10G Unit steam injector 20 Compressor 30 Condenser 40 Evaporator 50 Gas-liquid separator 60 Expansion valve 70 Pump 101, 101A, 101B, 101C, 101E, 102, 102A, 102B, 102C, 102D, 102E, 103, 103A, 103B, 103C, 103D, 103E, 104, 104E, 105 Plate-shaped component 101a, 102a Refrigerant liquid supply port 101b, 102b Refrigerant vapor discharge port 102c, 105a Refrigerant liquid discharge port 102d, 105b Refrigerant vapor supply port 101Ae, 101Be, 101Ce, 102e, 102Ae, 102Be, 102Ce, 102De, 102Ee, 103Ee, 200e Refrigerant liquid flow channel 101Af, 101Bf, 101Cf, 102f, 102Af, 102Bf, 102Cf, 102Df, 102Ef, 103Ef, 200f Refrigerant vapor channel 101Ag, 101Bg, 101Cg, 102g, 102Ag, 102Bg, 102Cg, 102Dg, 102Eg, 03Eg, 200g Refrigerant flow confluence channel 102Dh Groove 102Eh flow channel 106, 106A, 106B, 106C, 106D, 106E, 206 Refrigerant flow outlet 110D Nozzle 201, 202, 203, 204, 205 Component 200e1 Communication hole 1000, 2000 Heat pump Device C1, C2 Region F1 Refrigerant flow H1, H2 Heat P Electric power S1 Vapor flow W1 Liquid flow

Claims (19)

  1.  冷媒の液流と前記冷媒の蒸気流とを導入する導入部と、
     前記液流の進行方向に向かって内部断面積が縮小する形状を有し、内部において噴流状の前記液流と前記蒸気流とを混合して冷媒流を形成する混合部と、
     前記混合部の出力側に形成されたスロート部と、
     前記スロート部から前記冷媒流の進行方向に向かって内部断面積が拡大する形状を有し、圧力が高められた前記冷媒流を吐出部から吐出するディフューザ部と、
     を備え、
     前記スロート部の内部断面積は、前記スロート部の内部断面積を減少させたときに前記ディフューザ部の吐出部から吐出される前記冷媒流の吐出圧が非線形的に増加する臨界断面積より小さい断面積であることを特徴とする蒸気インジェクタ。
    An introduction part for introducing a liquid flow of the refrigerant and a vapor flow of the refrigerant;
    A mixing section that has a shape in which an internal cross-sectional area decreases toward the traveling direction of the liquid flow, and mixes the liquid flow in the form of a jet and the vapor flow to form a refrigerant flow;
    A throat section formed on the output side of the mixing section;
    A diffuser portion that discharges the refrigerant flow from the discharge portion with an increased internal cross-sectional area from the throat portion toward the traveling direction of the refrigerant flow;
    With
    The internal cross-sectional area of the throat portion is smaller than the critical cross-sectional area where the discharge pressure of the refrigerant flow discharged from the discharge portion of the diffuser portion increases nonlinearly when the internal cross-sectional area of the throat portion is decreased. A steam injector characterized by its area.
  2.  前記スロート部の内部断面積は、前記スロート部の内部断面積の変化に対する前記冷媒流の吐出圧の変化を表す曲線の1階微分係数が0より小さい、または2階微分係数が0より大きい内部断面積であることを特徴とする請求項1に記載の蒸気インジェクタ。 The internal cross-sectional area of the throat portion is an interior in which a first-order differential coefficient of a curve representing a change in the discharge pressure of the refrigerant flow with respect to a change in the internal cross-sectional area of the throat portion is less than 0 or a second-order differential coefficient is greater than 0. The steam injector according to claim 1, which has a cross-sectional area.
  3.  前記スロート部の内部断面積をA、前記導入部における前記液流の質量流量、流速をそれぞれmw0、uw0、前記導入部における前記蒸気流の質量流量、流速をそれぞれms0、us0、前記スロート部における前記冷媒流の質量流量、流速をそれぞれm、u、前記混合部、前記スロート部、前記ディフューザ部における圧力損失係数をそれぞれζ、ζ、ζ、前記液流の密度をρ、前記冷媒流の前記吐出部における吐出圧をPとすると、以下の式(1)が成り立つことを特徴とする請求項1または2に記載の蒸気インジェクタ。
    Figure JPOXMLDOC01-appb-M000001
    The internal cross-sectional area of the throat portion is A 1 , the mass flow rate and flow velocity of the liquid flow in the introduction portion are m w0 and u w0 , respectively, and the mass flow rate and flow velocity of the vapor flow in the introduction portion are m s0 and u s0 , respectively. , Mass flow rate and flow velocity of the refrigerant flow in the throat portion are m 1 and u 1 , respectively, and pressure loss coefficients in the mixing portion, the throat portion, and the diffuser portion are ζ N , ζ T , ζ D , and the liquid flow, respectively. density [rho w of, when the discharge pressure in the discharge portion of the refrigerant flow to P D, the steam injector according to claim 1 or 2, characterized in that the following equation holds (1).
    Figure JPOXMLDOC01-appb-M000001
  4.  前記スロート部の内部断面は円形であり、該内部断面の直径は2mm以下であることを特徴とする請求項1~3のいずれか一つに記載の蒸気インジェクタ。 The steam injector according to any one of claims 1 to 3, wherein an inner section of the throat portion is circular, and a diameter of the inner section is 2 mm or less.
  5.  前記内部断面の直径は1mm以下であることを特徴とする請求項4に記載の蒸気インジェクタ。 The steam injector according to claim 4, wherein a diameter of the internal cross section is 1 mm or less.
  6.  前記混合部において、前記液流が導入される領域の断面積をAW0、前記蒸気流が導入される領域の断面積をAs0とすると、As0/Aw0は、7以上30以下であることを特徴とする請求項1~5のいずれか一つに記載の蒸気インジェクタ。 In the mixing unit, A s0 / A w0 is 7 or more and 30 or less, where A W0 is a cross-sectional area of the region where the liquid flow is introduced and A s0 is a cross-sectional area of the region where the vapor flow is introduced. The steam injector according to any one of claims 1 to 5, wherein:
  7.  前記As0/Aw0は、10以上20以下であることを特徴とする請求項6に記載の蒸気インジェクタ。 The steam injector according to claim 6, wherein the A s0 / A w0 is 10 or more and 20 or less.
  8.  前記混合部の内部から外気に連通するように形成されたドレイン管をさらに備えることを特徴とする請求項1~7のいずれか一つに記載の蒸気インジェクタ。 The steam injector according to any one of claims 1 to 7, further comprising a drain pipe formed so as to communicate with the outside air from the inside of the mixing unit.
  9.  前記ドレイン管には逆止弁が設けられていることを特徴とする請求項8に記載の蒸気インジェクタ。 The steam injector according to claim 8, wherein the drain pipe is provided with a check valve.
  10.  前記冷媒は水または代替フロンであることを特徴とする請求項1~9のいずれか一つに記載の蒸気インジェクタ。 The steam injector according to any one of claims 1 to 9, wherein the refrigerant is water or alternative chlorofluorocarbon.
  11.  請求項1~10のいずれか一つに記載の蒸気インジェクタである複数の単位蒸気インジェクタと、
     前記各単位蒸気インジェクタの各導入部に前記冷媒の液流および蒸気流のそれぞれを供給するための液流路および蒸気流路と、
     を備えることを特徴とする蒸気インジェクタ。
    A plurality of unit steam injectors which are steam injectors according to any one of claims 1 to 10;
    A liquid flow path and a vapor flow path for supplying each of the liquid flow and the vapor flow of the refrigerant to each introduction portion of each unit vapor injector;
    A steam injector comprising:
  12.  当該蒸気インジェクタは、一組の構成部材が接合して形成されており、
     前記一組の構成部材のそれぞれには、前記導入部、前記混合部、前記スロート部、および前記ディフューザ部を複数に分割した形状の溝または穴が形成されており、前記導入部、前記混合部、前記スロート部、および前記ディフューザ部は、前記一組の構成部材を接合したときに前記溝または前記穴によって形成されることを特徴とする請求項11に記載の蒸気インジェクタ。
    The steam injector is formed by joining a set of components,
    Each of the set of component members is formed with a groove or a hole having a shape obtained by dividing the introduction part, the mixing part, the throat part, and the diffuser part into a plurality of parts, and the introduction part, the mixing part The steam injector according to claim 11, wherein the throat portion and the diffuser portion are formed by the groove or the hole when the pair of constituent members are joined.
  13.  前記一組の構成部材は、板状であって、積層した状態で互いに接合されており、
     前記複数の単位蒸気インジェクタのうち少なくとも2以上が、前記板状構成部材の主表面に沿って配列していることを特徴とする請求項12に記載の蒸気インジェクタ。
    The set of component members is plate-shaped and joined together in a stacked state,
    The steam injector according to claim 12, wherein at least two or more of the plurality of unit steam injectors are arranged along a main surface of the plate-like component.
  14.  前記板状構成部材の主表面に沿って配列した前記単位蒸気インジェクタの各前記導入部を連通する流路が形成されていることを特徴とする請求項13に記載の蒸気インジェクタ。 The steam injector according to claim 13, wherein a flow path is formed to communicate each of the introduction portions of the unit steam injectors arranged along the main surface of the plate-like component.
  15.  前記一組の構成部材は、板状であって、積層した状態で互いに接合されており、
     前記複数の単位蒸気インジェクタのうち少なくとも2以上が、前記板状構成部材の積層方向に沿って配列していることを特徴とする請求項12~14のいずれか一つに記載の蒸気インジェクタ。
    The set of component members is plate-shaped and joined together in a stacked state,
    The steam injector according to any one of claims 12 to 14, wherein at least two or more of the plurality of unit steam injectors are arranged along a stacking direction of the plate-like constituent members.
  16.  前記板状構成部材の積層方向に沿って配列した前記単位蒸気インジェクタの各前記導入部を連通する流路が形成されていることを特徴とする請求項15に記載の蒸気インジェクタ。 The steam injector according to claim 15, wherein a flow path is formed to communicate each of the introduction portions of the unit steam injectors arranged along the laminating direction of the plate-like constituent members.
  17.  前記一組の構成部材は、積層した状態で互いに接合されており、
     前記複数の単位蒸気インジェクタは、前記構成部材の積層方向に沿って延在していることを特徴とする請求項12に記載の蒸気インジェクタ。
    The set of component members are joined together in a stacked state,
    The steam injector according to claim 12, wherein the plurality of unit steam injectors extend along a stacking direction of the constituent members.
  18.  前記一組の構成部材は拡散接合により接合していることを特徴とする請求項11~17のいずれか一つに記載の蒸気インジェクタ。 The steam injector according to any one of claims 11 to 17, wherein the set of constituent members is joined by diffusion joining.
  19.  冷媒を圧縮する圧縮器と、
     前記冷媒を凝縮する凝縮器と、
     前記冷媒を蒸発させる蒸発器と、
     前記冷媒の蒸気流と、前記冷媒の液流とが導入され、圧力が高められた冷媒流を前記ディフューザ部の吐出部から吐出する請求項1~18のいずれか一つに記載の蒸気インジェクタと、
     を備えることを特徴とするヒートポンプ装置。
    A compressor for compressing the refrigerant;
    A condenser for condensing the refrigerant;
    An evaporator for evaporating the refrigerant;
    The vapor injector according to any one of claims 1 to 18, wherein the refrigerant flow and the liquid flow of the refrigerant are introduced, and a refrigerant flow having an increased pressure is discharged from a discharge portion of the diffuser portion. ,
    A heat pump device comprising:
PCT/JP2014/062271 2013-05-08 2014-05-07 Steam injector and heat pump device WO2014181804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/889,606 US20160187032A1 (en) 2013-05-08 2014-05-07 Steam injector and heat pump device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-098872 2013-05-08
JP2013098872A JP6195235B2 (en) 2013-05-08 2013-05-08 Steam injector and heat pump device
JP2013-098752 2013-05-08
JP2013098752A JP6160993B2 (en) 2013-05-08 2013-05-08 Steam injector and heat pump device

Publications (1)

Publication Number Publication Date
WO2014181804A1 true WO2014181804A1 (en) 2014-11-13

Family

ID=51867282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062271 WO2014181804A1 (en) 2013-05-08 2014-05-07 Steam injector and heat pump device

Country Status (2)

Country Link
US (1) US20160187032A1 (en)
WO (1) WO2014181804A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266609A (en) * 2021-06-02 2021-08-17 傅朝清 Hydrothermal solution injection multi-unit vapor compression device and heat pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123700U (en) * 1983-02-10 1984-08-20 株式会社日立製作所 Executor
JPH01196000A (en) * 1988-02-01 1989-08-07 Toshiba Corp Steam injector
JPH04347400A (en) * 1991-05-22 1992-12-02 Toshiba Corp Steam injector system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835961A (en) * 1986-04-30 1989-06-06 United Technologies Corporation Fluid dynamic pump
EP0514914B1 (en) * 1991-05-22 1997-09-03 Kabushiki Kaisha Toshiba Steam injector system
JP5575225B2 (en) * 2010-03-31 2014-08-20 三菱電機株式会社 Ejector, driving fluid foaming method, and refrigeration cycle apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123700U (en) * 1983-02-10 1984-08-20 株式会社日立製作所 Executor
JPH01196000A (en) * 1988-02-01 1989-08-07 Toshiba Corp Steam injector
JPH04347400A (en) * 1991-05-22 1992-12-02 Toshiba Corp Steam injector system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266609A (en) * 2021-06-02 2021-08-17 傅朝清 Hydrothermal solution injection multi-unit vapor compression device and heat pump

Also Published As

Publication number Publication date
US20160187032A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
CN105492855B (en) Cascade type collector, heat exchanger and air-conditioning device
CN105164491B (en) Laminated header, heat exchanger, and air conditioner
CN105164489B (en) Cascade type collector, heat exchanger and air-conditioning device
JP6091641B2 (en) Heat exchanger and air conditioner
CN105209845B (en) Laminated header, heat exchanger, and air conditioner
KR102031021B1 (en) Layered header, heat exchanger, and air-conditioning device
WO2015004719A1 (en) Laminated header, heat exchanger, air conditioning device, and method for connecting plate-shaped body and pipe of laminated header
JP6207624B2 (en) Heat exchanger and air conditioner
US9377226B2 (en) Evaporator and turbo chiller including the same
CN101944702B (en) Dual fluid nozzle atomizing and cooling closed system for high-power solid laser
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
JP6116702B2 (en) Laminated header, heat exchanger, heat exchanger manufacturing method, and air conditioner
JP6080982B2 (en) Laminated header, heat exchanger, and air conditioner
US20090114374A1 (en) Heat removal method and heat removal apparatus
KR20130088803A (en) Multilayer heat exchanger and heat exchange system
JPWO2014184913A1 (en) Laminated header, heat exchanger, and air conditioner
WO2022036835A1 (en) Air conditioner
CN109269136A (en) Air-conditioning system
WO2014181804A1 (en) Steam injector and heat pump device
JP6195235B2 (en) Steam injector and heat pump device
WO2020082740A1 (en) Two-control jet enthalpy-increasing outdoor unit and multi-split air conditioning system
JP2009150574A (en) Distributor, and heat exchanger and air conditioner loading the same
CN109682134A (en) Gas-liquid separator and heat pump system
JP6160993B2 (en) Steam injector and heat pump device
WO2016084339A1 (en) Evaporator unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14889606

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14794572

Country of ref document: EP

Kind code of ref document: A1