WO2014181797A1 - 光量子計 - Google Patents

光量子計 Download PDF

Info

Publication number
WO2014181797A1
WO2014181797A1 PCT/JP2014/062254 JP2014062254W WO2014181797A1 WO 2014181797 A1 WO2014181797 A1 WO 2014181797A1 JP 2014062254 W JP2014062254 W JP 2014062254W WO 2014181797 A1 WO2014181797 A1 WO 2014181797A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux density
photon flux
wavelength
spectral
wavelength range
Prior art date
Application number
PCT/JP2014/062254
Other languages
English (en)
French (fr)
Inventor
京一 原田
明子 浦
Original Assignee
株式会社日本医化器械製作所
株式会社相馬光学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本医化器械製作所, 株式会社相馬光学 filed Critical 株式会社日本医化器械製作所
Priority to CN201480039159.2A priority Critical patent/CN105579816B/zh
Priority to EP14794594.3A priority patent/EP2995915A4/en
Priority to KR1020157034633A priority patent/KR20160042815A/ko
Publication of WO2014181797A1 publication Critical patent/WO2014181797A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy

Definitions

  • the invention of the present application relates to the measurement of photosynthetic photon flux density.
  • the photon flux density is an index representing the amount of light not by energy but by the number of photons (photons), and is the number of photons incident per unit time / unit area.
  • the wavelength range of 400 to 700 nm, which is the absorption wavelength of chlorophyll, is called photosynthetic photon flux density.
  • the photosynthetic photon flux density is measured by a photonometer.
  • the photon meter receives light to be measured by an optical sensor such as a Si photodiode, and calculates a photon flux density by performing a predetermined calculation on an output value from the optical sensor.
  • a conventional photon meter can know the total number of photons involved in photosynthesis, but cannot know the number of photons per wavelength. For example, when light of a specific wavelength is effective for the growth of a specific plant, it is useful to know how many photons are obtained at that wavelength. This kind of measurement result cannot be obtained.
  • the photon flux density is measured for each of several wavelength ranges by switching the filter, but the photon flux density of each wavelength cannot be known in the transmission band of one filter.
  • the invention according to claim 1 of the present application includes a spectroscopic element on which light to be measured is incident, a detector on which the light to be measured split by the spectroscopic element is incident, and a photoelectric output from the detector.
  • An arithmetic processing unit for processing the converted signal, and a display for displaying a result processed by the arithmetic processing unit calculates the photosynthetic photon flux density for each wavelength by processing the photoelectric conversion signal output from the detector,
  • the display is capable of displaying the spectral light synthesized photon flux density distribution of the measured light in real time in the environment where the measured light exists,
  • the arithmetic processing unit calculates a photosynthesis photon flux density for each wavelength by executing a photosynthesis photon flux density measurement program, and displays the spectral photosynthesis photon flux density distribution on the display.
  • the photosynthetic photon flux density measurement program is capable of causing a wavelength range designation input for designating a wavelength range according to a photosynthetic effective wavelength for a plant at an input unit, and for a wavelength range designated by a wavelength range designation input.
  • the photosynthetic photon flux density measurement program displays the spectral light synthesized photon flux density on the display for the wavelength range specified by the wavelength range designation input, and does not display the spectral photosynthesis photon flux density in other wavelength ranges,
  • the wavelength range designation input is capable of designating a plurality of discrete wavelength ranges.
  • the photosynthetic photon flux density measurement program is capable of calculating the photosynthetic photon flux density for each wavelength for each discrete wavelength range designated by a wavelength range designation input
  • the photosynthesis photon flux density measurement program displays the spectral photosynthesis photon flux density on the display for each discrete wavelength range specified by the wavelength range specification input, and does not display the spectral photosynthesis photon flux density of other wavelength ranges. It has the structure of being.
  • the invention according to claim 2 is the configuration according to claim 1, wherein the photosynthetic photon flux density measurement program uses the spectral absorptance of a specific plant to the measured spectrophotosynthetic photon flux density.
  • the invention according to claim 3 is the configuration according to claim 1 or 2, wherein the spectroscopic element and the detector are provided as a spectroscopic unit, and the calculation is performed.
  • the processing unit is provided as a component of the arithmetic processing unit,
  • the arithmetic processing unit is a general-purpose computer and has a configuration in which the photosynthetic photon flux density measurement program is installed.
  • the arithmetic processing unit receives the photoelectric conversion signal output from the detector via a general-purpose interface.
  • a device driver is installed,
  • the photosynthetic photon flux density measurement program has a configuration in which the photoelectric conversion signal received by the device driver is processed to calculate the photosynthesis photon flux density for each wavelength.
  • the spectral light synthesized photon flux density distribution is displayed in real time on the display, investigation of the light environment of plants, evaluation of artificial light sources for plant growth, etc. Can be suitably used. Further, since the arithmetic processing unit calculates and displays the photosynthetic photon flux density for each wavelength by executing the photosynthetic photon flux density measurement program, it is easy to change the calculation and display conditions. Further, since the spectral light synthesized photon flux density distribution can be displayed only in the designated wavelength range, only the wavelength range effective for photosynthesis can be observed, which is preferable.
  • the optical quantum meter is composed of a spectroscopic unit and an arithmetic processing unit, and the arithmetic processing unit is constituted by a general-purpose computer. It is possible to obtain an effect that the cost is reduced and the introduction is easy for the user.
  • a general-purpose interface is adopted as an interface for receiving a photoelectric conversion signal from a detector in the spectroscopic unit.
  • a general-purpose spectroscope can be employed. Therefore, if such a spectroscope is possessed, real-time spectrophotosynthesis photon flux density measurement can be performed simply by installing a software package on its own computer, and the introduction becomes easier.
  • FIG. 2 is a diagram showing a schematic diagram of a software package installed in a general-purpose computer that constitutes the arithmetic processing unit 2.
  • FIG. It is the figure which showed schematic structure of the photon flux density measurement program with which the photon meter shown in FIG. 1 is provided. It is the schematic which showed an example of the main window displayed on a display by the main module 41 of a photon flux density measurement program. It is the schematic which showed an example of the wavelength range setting window. It is the schematic which shows an example of the execution result of an absolute value calculation module. It is the schematic which shows an example of the execution result of a relative value calculation module.
  • FIG. 1 is a diagram showing a schematic configuration of an optical quantum meter according to an embodiment of the present invention.
  • the photon meter shown in FIG. 1 is a photon meter for measuring the photosynthetic photon flux density, and measures the photon flux density in the wavelength region of 400 to 700 nm.
  • One of the major features of this photon meter is that the light to be measured is dispersed to measure the photosynthesis photon flux density of each wavelength in real time. That is, as shown in FIG. 1, the photon meter mainly includes a spectroscopic unit 1 and an arithmetic processing unit 2.
  • the spectroscopic unit 1 includes a casing 11, a spectroscopic element 12 provided in the casing 11, and an incident light to be measured incident on the spectroscopic element 12. It consists of an optical system 13 and the like.
  • the incident optical system 13 is mainly composed of a light receiver 131, an optical fiber 132 that guides light to be measured from the light receiver 131, an incident slit 133 disposed on the output side of the optical fiber 132, and the like. ing.
  • the light receiver 131 is arranged at a measurement place and has a structure for receiving light by a light diffusion plate as necessary.
  • a reflective light diffusing plate is used.
  • the light to be measured may be incident on the optical fiber 132 using a transmissive light diffusing plate.
  • the optical fiber 132 is for facilitating measurement of the photon flux density while placing the light receiver 131 at an arbitrary location, and a quartz light guide fiber is used.
  • the housing 11 is provided with a mounting portion 110 to which the emission end of the optical fiber 132 is mounted, and the incident slit 133 is provided in the vicinity of the mounting portion 110.
  • a diffraction grating (grating) is used.
  • a plurality of spectral elements may be used.
  • the spectroscopic element 12 is provided as a part of the spectroscopic optical system 120.
  • a Fastie-Bert type optical system is employed, and the light from the entrance slit 133 is converted into parallel light to irradiate the spectroscopic element 12 (diffraction grating), and the spectroscopic element 12 (diffraction grating) performs spectral spectroscopy
  • It has a configuration including a concave mirror 121 for condensing and entering the light of each wavelength that is incident on each sensor element of the measurement sensor.
  • other types of spectroscopic optical systems such as a Czerny Turner type may be employed.
  • An interface unit 16 or the like for transmitting the output from the detector 14 to the arithmetic processing unit 2 is provided.
  • a linear array sensor is used as the detector 14.
  • the linear array sensor is a sensor in which photoelectric conversion elements such as photodiodes or CCDs are arranged in a line. Each sensor element photoelectrically converts each wavelength of the dispersed light and outputs an intensity, and the width of the light receiving surface and the number of elements of each element according to the resolution of the spectral element 12 and the wavelength range to be measured. Is decided.
  • a linear array sensor in which about 2048 silicon photodiodes are arranged is used as the detector 14.
  • the detector 14 is arranged at an optimal position and posture in relation to the spectroscopic element 12.
  • each sensor element is disposed at a position where light of each wavelength separated by the spectroscopic element 12 reaches.
  • the detector 14 which is a linear array sensor makes it possible to accumulate (integrate) and read out the detection values (photoelectrically converted values) of the respective sensor elements for a certain length of time. This time is called an exposure time and is about 2.5 ⁇ S to 6 S.
  • the interface unit 16 a USB interface is adopted in this embodiment, and a USB port 161 is provided.
  • the arithmetic processing unit 2 is configured by installing a dedicated software package on a general-purpose computer such as a personal computer.
  • a general-purpose computer such as a personal computer.
  • a general-purpose OS such as Windows (registered trademark of Microsoft Corporation), and any one of those sold as notebook computers, desktop computers, workstations, etc. is used. obtain.
  • the computer includes a hard disk 23, a display 24, a printer 25 and the like in addition to the CPU 21 and the memory 22.
  • the dedicated software package includes a measurement program for performing arithmetic processing including calculation of photosynthetic photon flux density, and a dedicated device driver for operating the spectroscopic unit 1 as a peripheral device of the arithmetic processing unit 2 (hereinafter, for spectroscopic unit) Driver).
  • FIG. 2 is a diagram showing a schematic diagram of a software package installed in a general-purpose computer constituting the arithmetic processing unit 2. In FIG. 2, it is assumed that the software package is provided and read by a medium such as a DVD-ROM or CD-ROM, but the software package may be compressed and downloaded via a network (for example, the Internet). is there.
  • the software package includes an installation execution file (setup.exe) 31, a folder 32 storing a photosynthetic photon flux density measurement program main body, a folder 33 storing a spectroscopic unit driver, and various manuals.
  • Folder 34 storing document files. setup.
  • a photosynthetic photon flux density measurement program hereinafter abbreviated as photon flux density measurement program
  • a spectroscopic unit driver is installed in a general-purpose computer. Since this point is the same as other application software, explanation is omitted.
  • a person (user) who intends to measure the photosynthetic photon flux density using the photon meter of the embodiment obtains the spectroscopic unit 1 and obtains the software package shown in FIG. 2 and installs it on his computer. As a result, the photon meter shown in FIG. 1 is realized.
  • the general-purpose computer as the arithmetic processing unit 2 receives a photoelectric conversion signal output from the detector 14 in the spectroscopic unit 1 via the general-purpose interface unit 26.
  • USB is adopted in this embodiment, but is not limited thereto.
  • the interface unit 16 in the spectroscopic unit 1 is a USB interface and has a USB port 261 connected to the detector 14.
  • the spectroscopic unit driver 262 is mounted on the USB controller, and the spectroscopic unit driver 262 is installed.
  • the photon flux density measurement program 4 is installed as an application to be used.
  • the USB controller is an interface unit connected to the CPU 21 via a bus such as PCI, and output data from the spectroscopic unit 1 connected by the USB cable 260 (that is, a photoelectric conversion signal output from the detector 14). Is supposed to receive.
  • the arithmetic processing unit 2 includes a storage unit such as the memory 22 and the hard disk 23 and a display 24 for displaying information.
  • the storage unit stores a measurement result obtained by calculating the output data from the spectroscopic unit 1.
  • the arithmetic processing unit 2 includes a keyboard 27 and a mouse 28 as input units. These input units give information to the CPU 21 as an arithmetic processing unit.
  • the spectroscopic unit driver 262 interrupt-transfers output data from the spectroscopic unit 1. Specifically, as described above, the detector 14 can accumulate and output a photoelectric conversion signal in each sensor element with an exposure time. The spectroscopic unit driver 262 transmits a control signal to the detector 14 via the interface unit 16 so as to output the photoelectric conversion signal of each sensor element from the output port. The detector 14 serially transmits the photoelectric conversion signal of each sensor element from the output port.
  • the sensor element to which the light with the shortest wavelength ⁇ 1 is incident is S 1
  • the sensor element to which the next short wavelength ⁇ 2 is incident is S 2, and similarly, S 3, and ising S n.
  • Each interval ⁇ of ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ n is an amount depending on the resolution of the spectroscopic element 12 and has a wavelength width comparable to the resolution.
  • Detection element outputs the output of the S 1 ⁇ S n to (I 1 ⁇ I n) serially.
  • the spectroscopic unit driver 262 receives signals transmitted via the interface units 16 and 26 and stores them in a predetermined file format in a storage area of the memory 22 secured in advance.
  • the spectroscopic unit driver 262 sends a control signal to each of the interface units 16 and 26 so that the output signal from the detector 14 is interrupt-transferred. Since such a spectroscopic unit driver can be the same as the device driver included in the attached software such as the multi-channel spectrometer S-2431 sold by Soma Optics Co., Ltd., detailed description thereof will be omitted.
  • Photon flux density measurement program installed in the arithmetic processing unit 2
  • spectral photosynthetic photon flux performs arithmetic processing on the output data of the detector 14 received by the optical splitting device driver (output I 1 ⁇ I n from each sensor element S 1 ⁇ S n)
  • This program calculates and displays the density distribution. It is an application program that runs on a general-purpose OS such as Windows.
  • FIG. 3 is a diagram showing a schematic structure of a photon flux density measurement program provided in the photon meter shown in FIG.
  • the photon flux density measurement program includes a main module 41, a data acquisition module 42, arithmetic processing modules 431 and 432, a condition setting module 44, a dedicated DLL file 45, and the like.
  • the photon flux density measurement program 4 handles measurement data in a file identified by a dedicated identifier.
  • this file is called a PPFD file.
  • the software package includes an empty (initial) PPFD file.
  • a plurality of spectral data can be recorded in the PPFD file.
  • one spectroscopic data is referred to as a spectroscopic data set.
  • One spectroscopic data is the output of each photosensor from ⁇ 1 to ⁇ n .
  • a plurality of spectral data sets (for example, up to about nine) and setting information about calculation processing for each spectral data set and display conditions of calculation processing results are recorded.
  • the main module 41 is a module for displaying on a display a window (hereinafter referred to as a main window) for performing various inputs and displaying spectral data and measurement results.
  • the data acquisition module 42 is a module that acquires output data by transmitting it from the spectroscopic unit 1.
  • the arithmetic processing modules 431 and 432 are modules that process the acquired data to obtain a spectral light quantum flux density distribution.
  • the condition setting module 44 is a module for setting conditions for arithmetic processing.
  • the dedicated DLL file 45 is a DLL file that associates these modules and other modules (including general-purpose modules included in the arithmetic processing unit 2).
  • FIG. 4 is a schematic view showing an example of a main window displayed on the display by the main module 41 of the photon flux density measurement program.
  • a tool bar 52 for performing various settings and operations necessary for measurement and display of spectral light synthesized photon flux density distribution is provided. It is displayed.
  • the toolbar 52 is provided with a button (hereinafter referred to as a data acquisition button) 521 displayed as “Spectral data acquisition”.
  • a data acquisition button 521 displayed as “Spectral data acquisition”.
  • a data acquisition module 42 that transmits and acquires spectral data (one spectral data set) from the spectral unit 1.
  • the data acquisition module 42 is a module that records the spectral data set received from the spectral unit 1 by the spectral unit driver 262 in the currently opened PPFD file.
  • the data acquisition module 42 automatically assigns an ID number to the received spectral data set and records it in the PPFD file together with the ID number.
  • the main window 5 is provided with three frames 53, 54 and 55.
  • the three frames 53, 54 and 55 are arranged vertically, and the top is a frame for displaying the measurement result in a graph (hereinafter referred to as a graph display frame).
  • the middle is a frame for displaying the measurement result as numerical data or for selecting a spectral data set (hereinafter referred to as a numerical data display frame).
  • the bottom is a thin (only one line) frame that is a frame for confirming the measurement conditions and calculation processing conditions of the selected spectral data set (hereinafter referred to as a bottom frame).
  • FIG. 4 shows a state when one spectral data set is acquired by the data acquisition module 42.
  • a third spectral data set is newly acquired.
  • the data acquisition module 42 assigns No. 1 to the spectral data set as an ID number.
  • the data acquisition module 42 calculates the total irradiance (mW / cm 2 ) and the total (400 to 700 nm) photosynthetic photon flux density when acquiring one spectral data set. And programmed to display in the numeric data display frame along with the ID number.
  • the bottom frame 55 displays the exposure time and the number of integrations when acquiring the spectral data set.
  • the photon meter of the embodiment can be set by inputting the exposure time from the input units 27 and 28 of the arithmetic processing unit 2, and the set value is displayed here.
  • the photon meter of the embodiment can measure a plurality of times and output the average value from the detector 14 in order to reduce the measurement error. The average value is calculated for each wavelength, but the number of integrations for calculating the average value can also be set from the input units 27 and 28, and this set value is also displayed in the bottom frame 55 for confirmation. .
  • a button (hereinafter referred to as a condition setting button) 522 labeled “measurement conditions” is provided in the tool bar 52.
  • the condition setting button 522 is a pull-down button, and the displayed pull-down list includes a button labeled “Wavelength range (PPFD)” (hereinafter, “wavelength range setting button”).
  • PPFD Wivelength range
  • wavelength region setting window is displayed as a new window.
  • FIG. 5 is a schematic diagram showing an example of the wavelength band setting window.
  • the wavelength range setting window 6 includes a column (overall setting column) 61 for setting the entire wavelength range for measuring the photon flux density, and each of the wavelength ranges set in the entire setting column 61.
  • a column for setting the wavelength range (each wavelength range setting column) 62 is included.
  • a lower limit value (shortest wavelength) and an upper limit value (longest wavelength) of the entire wavelength range are numerically input (unit: nm).
  • the photon flux density can be divided and displayed in six wavelength ranges, and each wavelength range setting column 62 is provided with input columns for the six wavelength ranges.
  • each input field an input field for selecting whether to perform calculation / display (in this example, a check box), a field for inputting the name of the wavelength range, and an upper limit value and a lower limit value for each wavelength range are input.
  • a column is provided.
  • An OK button 63 is provided in the wavelength band setting window 6, and the condition setting module 44 is activated when each input field is input and the OK button 63 is clicked.
  • the condition setting module 44 is programmed to store the information input in each column in a predetermined area in the PPFD file.
  • the software package includes a file (spectral data file) in which calibration data measured at the time of shipment of the spectroscopic unit 1 is recorded. That is, the software package of the embodiment is provided to the user as an accessory of the spectroscopic unit 1 to be shipped.
  • the calibration data is data in which the spectral irradiance is measured by the spectral unit 1 using a standard light source with a known spectral spectrum, and the spectral sensitivity characteristics of the detection system of the spectral unit 1 are recorded as a result. By comparing with the calibration data, the absolute value of the spectral irradiance can be calculated.
  • the calibration data is stored in a predetermined location in the storage units 22 and 23 of the arithmetic processing unit 2 when the software package is installed.
  • a button (hereinafter referred to as an absolute value button) 523 expressed as “photon flux density (absolute value)” and “photon flux density (relative value)” are expressed.
  • Button (hereinafter referred to as a relative value button) 524 is provided.
  • an absolute value calculation module 431 for calculating an absolute value and a relative value calculation module 432 for calculating a relative value are provided as arithmetic processing modules.
  • the absolute value button 523 is linked to the absolute value calculation module 431.
  • the relative value button 524 is linked to the relative value calculation module 432.
  • FIG. 6 is a schematic diagram illustrating an example of an execution result of the absolute value calculation module.
  • the absolute value calculation module 431 when executed, the spectral light synthesized photon flux density distribution is displayed in a graph in the graph display frame 53.
  • the graphs and numerical values of the spectral irradiance and photosynthetic photon flux density shown in the drawings of the specification and drawings are fictitious for convenience of explanation, and are not actually measured numerical values.
  • FIG. 7 is a schematic diagram illustrating an example of the execution result of the relative value calculation module.
  • FIG. 7 is a diagram showing a result of calculating a relative value for the same spectral data set as the execution result shown in FIG. 6. Therefore, only the vertical axis is different from FIG. 6, and the graph itself is the same. .
  • the photosynthetic photon flux density is the number density of photons per unit time and unit area.
  • ⁇ mol micromol
  • the unit is ⁇ mol / m 2 / sec. 1
  • the photosynthetic photon flux density PPFD ( ⁇ ) for each wavelength is calculated by Equation 1.
  • I ( ⁇ ) is spectral irradiance ( ⁇ W / cm 2 / nm / sec). Therefore, the total number of photosynthetic photon flux density (photosynthetic photon flux density at all wavelengths) PPFD is obtained by integrating Equation 1 at wavelengths of 400 to 700 nm. That is, the following equation 2 is obtained.
  • FIG. 8 is a flowchart showing an outline of the absolute value calculation module.
  • the absolute value calculation module is executed with an ID number for specifying a spectral data set and an operation processing condition as arguments.
  • the calculation processing condition is a wavelength region designated to calculate the photosynthetic photon flux density. This condition is preset by the condition setting module 44 as described above.
  • the absolute value calculation module first determines, for the first (lower limit) wavelength ( ⁇ 1 ), whether the wavelength is in one of the wavelength ranges specified in the calculation processing conditions. . If so, the output value of the wavelength is acquired for the specified spectral data set. The absolute value of the irradiance (spectral irradiance) at the wavelength is calculated while referring to the calibration data for the output value. Next, the absolute value calculation module substitutes the calculated irradiance into Equation 1 to calculate the photon flux density at the wavelength. The calculated photon flux density is temporarily stored in a memory variable.
  • the absolute value calculation module determines whether or not the calculation processing condition is similarly entered for the next wavelength ( ⁇ 2 ), and if so, obtains an output value from the spectral data set and similarly calculates the irradiance. Calculate the absolute value. Then, the absolute value of the photon flux density is calculated according to Equation 1 and temporarily stored in another memory variable. The absolute value calculation module repeats the same processing up to the last (upper limit) wavelength ( ⁇ n ), and sequentially stores the photon flux density in the memory variable for the wavelengths included in the calculation processing conditions.
  • the absolute value calculation module performs graph display and calculation of the sum of values for each wavelength range. That is, the absolute value calculation module reads values from each memory variable, graphs them, and displays them in the graph display frame 53 of the main window as shown in FIG. Further, the values are added in each wavelength band according to the calculation processing conditions, and are displayed in each column of the numerical data display frame 54. For example, when the wavelength range set by the name of Area 1 is 400 to 450 nm, the photosynthetic photon flux density (absolute value) is added up in this wavelength range and displayed in the display column of the wavelength range of the numerical data display frame. . When the graph display and the addition / display of the values in the respective wavelength ranges are performed, the absolute value calculation module is finished.
  • FIG. 9 is a flowchart showing an outline of the relative value calculation module. Similar to the absolute value calculation module, the relative value calculation module is also activated with an ID number for designating a spectral data set and an operation processing condition as arguments. Similarly, the relative value calculation module determines whether or not the calculation processing conditions are entered for each wavelength. If so, the output value is obtained from the spectral data set and compared with the calibration data to calculate the absolute value of the irradiance. After that, the photosynthetic photon flux density is calculated according to Equation 1 and temporarily stored in each memory variable.
  • the relative value calculation module After processing up to the last wavelength ( ⁇ n ), the relative value calculation module returns to the first wavelength ( ⁇ 1 ) and sequentially reads the values from the memory variables to identify the highest photosynthetic photon flux density. Then, the value (relative value) of the photosynthetic photon flux density of each wavelength is recalculated by comparison with this value, and updated and stored in each memory variable.
  • the relative value calculation module When the calculation of the relative value and the storage of the value are finished up to the last wavelength ( ⁇ n ), the relative value calculation module similarly performs the graphing process and the calculation / display of the total value in each wavelength region. That is, similarly, values are read out from each memory variable, graphed and displayed in the graph display frame of the main window, and the photosynthetic photon flux density (relative value) is summed up in each wavelength region, and is displayed in each column of the numerical data display frame. indicate. This completes the relative value calculation module.
  • the total value of each wavelength range in addition to displaying the total value of each wavelength as it is, the total value of other wavelength ranges is calculated and displayed as a relative value to the value of the wavelength range having the largest total value. There is also a case.
  • the tool bar 52 in the main window is provided with a button (hereinafter referred to as “irradiance button”) 529 indicated as “spectral irradiance”.
  • the photosynthetic photon flux density measurement program includes a module that calculates and displays spectral irradiance (hereinafter referred to as irradiance calculation module).
  • the irradiance calculation module calculates spectral irradiance for a specified spectral data set and displays it in the graph display area. Similar to the absolute value calculation module and relative value calculation module described above, the irradiance calculation module calculates the absolute value of the irradiance by comparing the output value of each wavelength with the calibration data, and graphs it in the graph display frame. indicate.
  • the tool bar 52 in the main window has a button (hereinafter referred to as “new creation button”) 525 displayed as “new creation” and a button (hereinafter referred to as file open) displayed as “open”. Button) 526 is provided.
  • the new creation button 525 is a button for executing a module for newly creating a PPFD file. This module is executed when a new PPFD file is created separately from the existing PPFD file and measurement results are to be obtained. For example, when a measurement result in a different light environment is to be saved as a separate file. It is also executed when you want to save the measurement results under different processing conditions in a separate file.
  • the file open button 526 is a button for opening a previously saved file, viewing the spectral light synthesized photon flux density distribution, and performing recalculation under different calculation processing conditions.
  • a button labeled “Save” is displayed. With this button, the PPFD file being executed is saved. Be able to.
  • the absolute value calculation module 431 and the relative value calculation module 432 calculate and display the photosynthetic photon flux density for the wavelength range specified by the calculation processing conditions. Since the wavelength range can be arbitrarily set by clicking the setting button, the photosynthetic photon flux density can be displayed for any wavelength range.
  • chlorophyll which is the main pigment of green plants, has a high absorption rate in blue (wavelength around 435 nm) and red (wavelength around 680 nm), but is known to have a low absorption rate for green around 500 nm. . Therefore, it may be easier to determine whether the light environment is suitable for photosynthesis if the photosynthesis photon flux density is calculated and displayed only in the wavelength range of blue or red. In this embodiment, since the total value of the photosynthetic photon flux density is displayed for the specified wavelength range, it can be confirmed how much photons are obtained in the effective wavelength range. It is also easy to compare.
  • the spectral light synthesized photon flux densities obtained by performing arithmetic processing on a plurality of spectral data sets can be displayed in a graph.
  • a button 63 labeled “Display” is provided on the menu bar 51 of the main window, and a button labeled “Overwrite” is displayed in the pull-down list displayed by clicking the button 63. It has been included.
  • this button is clicked, it is possible to input (for example, click to check) whether or not to display a plurality of spectral light synthesized photon flux densities superimposed.
  • FIG. 10 shows an example of this superimposed display, and shows an example of a state in which a plurality of spectral light synthesized photon flux densities are displayed in an overlapping manner.
  • multiple spectral data sets are specified in the numerical data display frame. For example, a plurality of spectral data sets can be specified when left-clicking (or pressing the enter key) while pressing the Ctrl key while the mouse pointer is positioned on the line displaying the spectral data sets. Then, when the absolute value button is clicked in a state where a plurality of spectral data sets are designated, calculation processing is performed for each to calculate the absolute value of the spectral light synthesized photon flux density, and as shown in FIG.
  • the absolute value calculation module 431 is programmed so as to be displayed. The same applies to the relative value calculation module 432.
  • FIG. 11 is a schematic diagram showing calculation of photon efficiency.
  • Photon efficiency is the ratio of the total number of effective photosynthetic photon flux densities to the total number of photosynthetic photon flux densities measured over the entire wavelength range.
  • Plant photosynthesis may have wavelength dependence, one of which is the wavelength dependence of the light absorption rate of the aforementioned pigment.
  • FIG. 11 (1) shows a spectral absorption distribution of a certain chlorophyll as an example.
  • the density (effective photosynthesis photon flux density) PPFD ′ is obtained by multiplying the photon by the absorptivity at each wavelength. That is, the effective photosynthetic photon flux density PPFD ′ is expressed by the following formula 3.
  • Equation 3 A ( ⁇ ) is the light absorption rate for each wavelength, and P ( ⁇ ) is the photosynthetic photon flux density for each wavelength.
  • the distribution shown in FIG. 11 (3) is obtained. is there. The value obtained by integrating this distribution indicates the size of the effective photosynthetic photon flux density of chlorophyll under this light environment. Since the photon efficiency E is the ratio of the effective photosynthesis photon flux density to the total photosynthesis photon flux density, it is obtained by the following equation (4).
  • the tool bar 52 in the main window has a button (hereinafter referred to as a registration button) 527 labeled “Spectral Absorption Rate Registration” and a button (hereinafter referred to as efficiency calculation) labeled “Calculate Photon Efficiency”.
  • a calculation button) 528 Although not shown in FIG. 3, the photosynthetic photon flux density measurement program has a registration module and an efficiency calculation module, the registration button 527 is linked to the registration module, and the efficiency calculation button 528 is a rate calculation module. Link to
  • the registration module When the registration button 527 is clicked, the registration module is activated.
  • the registration module additionally displays a window for designating a file in which the spectral absorptance is recorded.
  • the registration module performs necessary conversion on the spectral absorptance and records the spectral absorptance in the PPFD file.
  • the necessary conversion is conversion for matching the wavelength interval (spectral wavelength width) with a spectral data set or the like.
  • the registration module can register a plurality of spectral absorptances in order to enable calculation of photon efficiency for different plants, and registers it with an ID that identifies the spectral absorptances.
  • the efficiency calculation module When the efficiency calculation button 528 is clicked, the efficiency calculation module is activated.
  • the efficiency calculation module is activated in a state in which at least one spectral data set is selected in the numerical data frame 64. When no spectral data set is selected, an error message to that effect is displayed.
  • the efficiency calculation module confirms that at least one spectral data set has been selected, the efficiency calculation module displays a window for selecting the spectral absorptance, and selects one of the registered spectral absorptances. Then, the selected spectral absorptance is applied to the spectral data set, and the effective photosynthetic photon flux density is calculated according to Equation 3.
  • Equation 4 is applied to the calculated effective photosynthetic photon flux density, the photon efficiency is calculated, added to the row of the spectral data set in the numerical data frame 64, and displayed. If a plurality of spectroscopic data sets are selected, these calculation processes are performed for each, and the photon efficiency is displayed.
  • the photon meter When the photosynthetic photon flux density is measured using the photon meter of the embodiment having the above configuration, the photon meter is brought into the light environment to be measured.
  • the arithmetic processing unit 2 is a notebook personal computer, and a notebook personal computer in which a spectral unit driver and a photon flux density measurement program are installed and the spectral unit 1 are brought in. Then, the notebook personal computer is started with the power switch of the spectroscopic unit 1 turned on, and the photon flux density measurement program is activated. In this state, the light receiver 131 is placed at a place where measurement is desired, and the data acquisition button 521 is clicked on the notebook computer to measure the spectral light synthesized photon flux density at that place.
  • the spectroscopic data is processed in accordance with preset calculation processing conditions (wavelength band conditions), and the photosynthetic photon flux density is displayed on the display for a desired wavelength band.
  • the spectral light synthesized photon flux density distribution can be confirmed on the display instantaneously on the spot where the light receiver 131 is placed, and the measurement result can be obtained in real time.
  • Real time means that the photoelectric conversion signal is obtained by the detector 14 with the light receiver 131 placed and the spectral light synthesized photon flux density distribution on the display is substantially the same time zone.
  • each of the plurality of spectral data sets can be acquired.
  • the spectral light synthesized photon flux density obtained by the arithmetic processing can be displayed superimposed.
  • the photoreceiver 131 is placed at different locations, measurements are performed to acquire a spectral data set, and whether or not the spectral light synthesized photon flux density distribution varies depending on the location.
  • a spectral data set is obtained by measuring a plurality of different artificial light sources (light sources other than the sun), and the spectral light synthesized photon flux density distribution calculated for each is displayed and compared.
  • the photosynthetic photon flux density measurement program is provided to the user together with the data file of the spectral irradiance (reference spectrum) of the reference sunlight defined in JIS, and is copied to the storage unit of the computer at the time of installation.
  • the photosynthetic photon flux density measurement program includes a coincidence calculation module, which calculates the spectral irradiance by performing arithmetic processing on the spectral data set acquired for the artificial light source, and then calculates each wavelength. Is compared with the reference spectrum, and the degree of coincidence is calculated for each wavelength. The calculated degree of match is graphed and displayed in the graph display area, or is printed as a list.
  • the photon meter of the embodiment is preferably used for investigating the light environment of plants, evaluating artificial light sources for plant growth, and the like because the spectral light synthesized photon flux density distribution is displayed on the display in real time. It can. For example, when an optimal environment is realized by evaluating the light irradiation status at each point under the environment where the plant is grown from the viewpoint of the photosynthetic photon flux density for each wavelength, the spectral photosynthesis photon flux density can be checked in real time. Therefore, it is possible to change the lighting conditions and the like more quickly. Also, in the evaluation and research of artificial light sources, it is not necessary to carry out calculations for converting the irradiance of each wavelength into photosynthetic photon flux density, which can greatly contribute to the efficiency of evaluation and research.
  • the photon meter since the arithmetic processing unit calculates and displays the photosynthetic photon flux density for each wavelength by executing the photosynthetic photon flux density measurement program, it is easy to change the calculation and display conditions. . That is, the photon meter of the present invention can convert the intensity signal of each wavelength output from the detector 14 by hardware to obtain the photosynthetic photon flux density of each wavelength. What is necessary is just to comprise a circuit by operational amplifier IC etc. so that Formula 1 may be implement
  • the software may be downloaded and executed via a network in addition to being installed in the arithmetic processing unit 2 as described above. That is, the arithmetic processing unit 2 is configured to be able to access the network, and a server on which the photosynthetic photon flux measurement program is installed is provided on the network. The arithmetic processing unit 2 accesses the server and executes the photosynthetic photon flux measurement program on the server, or downloads and executes it.
  • a service such as ASP (Application Service Provider) or SaaS (Software Service Service), and a detailed description thereof will be omitted.
  • the photon meter of the embodiment can display the spectral light synthesis photon flux density distribution only for the designated wavelength range, so that only the wavelength range effective for photosynthesis can be observed. is there. At this time, since a plurality of discrete wavelength ranges can be designated, optimum measurement can be performed according to the effective wavelength ranges of various plants. In addition, since the photon meter of the embodiment can also calculate the photon efficiency, it is possible to know how efficient a specific light environment is for the growth of a specific plant, investigation of the light environment, evaluation of artificial light sources, research, etc. It is more suitable for carrying out.
  • the photon meter of the embodiment is composed of the spectroscopic unit 1 and the arithmetic processing unit 2, and since the arithmetic processing unit 2 is constituted by a general-purpose computer, the cost of the photon meter can be reduced or introduced by the user. The effect that it becomes easy is acquired. There is no need to prepare a special arithmetic processing unit 2, and the arithmetic processing unit 2 can be obtained by installing a software package in its own personal computer.
  • a general-purpose interface such as USB is adopted as an interface for receiving a photoelectric conversion signal from the detector 14 in the spectroscopic unit 1
  • a general-purpose spectroscopic unit is used. Can be used. Therefore, if such a spectroscope is possessed, real-time spectrophotosynthesis photon flux density measurement can be performed simply by installing a software package on its own computer, and the introduction becomes easier.
  • the spectroscopic unit driver is included in the software package, it is not necessary to obtain a device driver separately, and this is also convenient.
  • the spectroscopic unit driver interrupt-transfers the output data from the detector 14, but a configuration of bulk transfer may also be employed.
  • a memory is provided in the interface unit 16 in the spectroscopic unit 1, and output data is temporarily stored in a file format such as CSV.
  • the spectroscopic unit driver bulk-transfers the file on the interface unit 16.
  • a configuration in which an arithmetic processing unit is provided in the spectroscopic unit 1 may be employed. That is, a control board including a CPU as an arithmetic processing unit is mounted in the housing 11 shown in FIG. 1, and a memory and various interface units are provided on the control board.
  • the above-described photosynthetic photon flux density measurement program is installed in the memory so that it can be executed by the CPU.
  • a display is provided in the housing 11 to display the calculated spectral light quantum flux density distribution.
  • a computer is not separately required, and the optical quantum meter is configured by only one unit. Therefore, the configuration is simplified, and convenience in carrying and the like is increased.
  • the photosynthetic photon flux density is a photon flux density in a wavelength range of 400 to 700 nm, but the photon flux density may be calculated and displayed for a wavelength range outside this range.
  • the detection wavelength (spectral wavelength) in the spectroscopic unit 1 is 200 to 800 nm and includes such a wavelength range. Therefore, if such a wavelength range can be specified in the wavelength range specification input, the spectral photon flux density distribution can be similarly known, and the total amount of the photon flux density aggregated in such a wavelength range is also known. be able to.
  • a driving mechanism is provided for the spectroscopic element (diffraction grating) 12 to rotate the spectroscopic element 12.
  • a single channel configuration in which light of a wavelength is incident on a sensor may be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Engineering & Computer Science (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Botany (AREA)

Abstract

【課題】 波長毎の光合成光量子束密度をリアルタイムで知ることできる実用的な光量子計を提供する。 【解決手段】 分光ユニット1において入射光学系13により分光素子12に入射した被測定光は分光素子12で分光され、検出器14で光電変換されて各波長の光電変換信号がインタフェース部16,26を介して演算処理ユニット2に送信される。光合成光量子束密度測定プログラム4及び専用のデバイスドライバ262がインストールされた汎用コンピュータである演算処理ユニット2は、受信した分光データを演算処理して波長毎の光合成光量子束密度の分布を算出し、ディスプレイ24に表示する。

Description

光量子計
 本願の発明は、光合成光量子束密度の測定に関するものである。
 植物が生育する環境条件のうち、光は極めて重要である。光合成を行うのに適した光が得られているかどうかを知ることは、植物生理学等の学術研究を始めとして植物工場等の各種分野で必要となる。
 このような植物の育成に関連して光の強度を知る場合、以前は、照度や放射束密度といった指標が用いられていた。しかしながら、これらは、エネルギーの単位であって光合成に直接関連した指標ではない。このため、最近では、光合成光量子束密度が用いられるようになってきている。
 光量子束密度は、光の量をエネルギーではなく光量子(光子)の個数によって表した指標であり、単位時間・単位面積あたりに入射する光量子の個数である。特に、葉緑素(クロロフィル)の吸収波長である400~700nmの波長域については、光合成光量子束密度と呼ばれる。
 光合成光量子束密度は、光量子計によって測定される。光量子計は、Siフォトダイオードのような光センサで被測定光を受光し、光センサからの出力値に対して所定の演算を行って光量子束密度を算出する。
特開2012-163482号公報
http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/toushin/07091111/004.htm
 しかしながら、従来の光量子計では、光合成に関与する光量子の全体の数を知ることはできるが、波長毎の光量子の数を知ることができない。例えば、特定の植物の生育には特定の波長の光が有効である場合、その波長においてどの程度の数の光量子が得られているか知ることが有益であるが、従来の光量子計は、分光測定をするものではないので、この種の測定結果を得ることはできない。特許文献1では、フィルタを切り替えて使用することで幾つかの波長域毎に光量子束密度を測定しているが、一つのフィルタの透過帯域において各波長の光量子束密度を知ることはできない。
 波長毎の光合成光量子束密度を知ろうとした場合、分光放射照度を測定する一般的な分光器(分光測定器)を用い、各波長の放射照度を測定した後、所定の換算式を用いて各測定値(分光放射照度)を光量子束に変換する計算が必要になる。この計算は面倒で、またリアルタイムで測定結果を得ることができない。即ち、植物に光があたっている環境下に受光器をおいその場で光合成光量子束密度を知ることはできない。
 本願の発明は、このような課題に鑑みて為されたものであり、波長毎の光合成光量子束密度をリアルタイムで知ることできる実用的な光量子計を提供する意義を有する。
 上記課題を解決するため、本願の請求項1記載の発明は、被測定光が入射する分光素子と、分光素子で分光された被測定光が入射する検出器と、検出器から出力された光電変換信号を処理する演算処理部と、演算処理部が処理した結果を表示するディスプレイとを備えており、
 演算処理部は、検出器から出力された光電変換信号を処理することで波長毎の光合成光量子束密度を算出するものであり、
 ディスプレイは、被測定光が存在する環境下でリアルタイムでその被測定光の分光光合成光量子束密度分布を表示することが可能なものであり、
 前記演算処理部は、光合成光量子束密度測定プログラムを実行することにより前記波長毎の光合成光量子束密度を算出し、前記分光光合成光量子束密度分布を前記ディスプレイに表示させるものであって、光合成光量子束密度測定プログラムが記憶された記憶部を備えているか、又は光合成光量子束密度測定プログラムをネットワークを介して実行可能なものであり、
 前記演算処理部に対して情報を与える入力部を備えており、
 前記光合成光量子束密度測定プログラムは、植物にとっての光合成有効波長に応じて波長域を指定する波長域指定入力を入力部においてさせることが可能であって、波長域指定入力で指定された波長域について前記波長毎の光合成光量子束密度を算出することが可能であり、
 前記光合成光量子束密度測定プログラムは、波長域指定入力で指定された波長域について前記分光光合成光量子束密度を前記ディスプレイに表示させ、他の波長域の分光光合成光量子束密度を表示させないものであり、
 前記波長域指定入力は、互いに離散した複数の波長域を指定することが可能なものであり、
 前記光合成光量子束密度測定プログラムは、波長域指定入力で指定された離散した各波長域について前記波長毎の光合成光量子束密度を算出することが可能であり、
 前記光合成光量子束密度測定プログラムは、波長域指定入力で指定された離散した各波長域について前記分光光合成光量子束密度を前記ディスプレイに表示させ、他の波長域の分光光合成光量子束密度を表示させないものであるという構成を有する。
 また、上記課題を解決するため、請求項2記載の発明は、前記請求項1の構成において、前記光合成光量子束密度測定プログラムは、測定された分光光合成光量子束密度に特定の植物の分光吸収率を掛け合わせることで当該植物についての実効分光光合成光量子束密度を算出してディスプレイに表示することが可能であるという構成を有する。
 また、上記課題を解決するため、請求項3記載の発明は、前記請求項1又は2の構成において、前記分光素子及び前記検出器は、分光ユニットを構成するものとして設けられており、前記演算処理部は、演算処理ユニットを構成するものとして設けられており、
 演算処理ユニットは汎用コンピュータであって、前記光合成光量子束密度測定プログラムがインストールされているという構成を有する。
 また、上記課題を解決するため、請求項4記載の発明は、前記請求項3の構成において、前記演算処理ユニットには、前記検出器から出力された光電変換信号を汎用インターフェースを介して受信するデバイスドライバがインストールされており、
 前記光合成光量子束密度測定プログラムは、このデバイスドライバにより受信した光電変換信号を処理して前記波長毎の光合成光量子束密度を算出するものであるという構成を有する。
 以下に説明する通り、本願の請求項1記載の発明によれば、分光光合成光量子束密度分布がディスプレイにリアルタイムで表示されるので、植物の光環境の調査や植物育成用の人工光源の評価等に好適に用いることができる。
 また、演算処理部が光合成光量子束密度測定プログラムを実行することにより波長毎の光合成光量子束密度を算出して表示するので、算出や表示の条件の変更が容易である。
 また、指定された波長域についてのみ分光光合成光量子束密度分布を表示することができるので、光合成に有効な波長域のみ観察することができ、好適である。
 また、離散した複数の波長域を指定することができるので、色々な植物の有効波長域に応じて最適な測定を行うことができる。
 また、請求項2記載の発明によれば、上記効果に加え、実効分光光合成光量子束密度も表示できるので、特定の光環境が特定の植物の育成にどの程度効率的か知ることができ、光環境の調査や人工光源の評価、研究等を行う上でさらに好適なものとなる。
 また、請求項3記載の発明によれば、上記効果に加え、光量子計が分光ユニットと演算処理ユニットから成るものであり、演算処理ユニットが汎用コンピュータで構成されているため、光量子計のコストを安価にしたり、ユーザーにおいて導入が容易になったりする効果が得られる。
 また、請求項4記載の発明によれば、上記効果に加え、分光ユニット内の検出器からの光電変換信号を受信するインターフェースとして汎用インターフェースが採用されているので、そのようなインターフェース部を備えている限り、汎用の分光器を採用することができる。従って、そのような分光器を所持していれば、ソフトウェアパッケージを自分のコンピュータにインストールするだけでリアルタイムの分光光合成光量子束密度測定が行えることになり、さらに導入が容易となる。
本願発明の実施形態に係る光量子計の概略構成を示した図である。 演算処理ユニット2を構成する汎用コンピュータにインストールされるソフトウェアパッケージの概略図を示した図である。 図1に示す光量子計が備える光量子束密度測定プログラムの概略構造を示した図である。 光量子束密度測定プログラムのメインモジュール41によってディスプレイに表示されるメインウインドウの一例を示した概略図である。 波長域設定ウインドウの一例を示した概略図である。 絶対値算出モジュールの実行結果の一例を示す概略図である。 相対値算出モジュールの実行結果の一例を示す概略図である。 絶対値算出モジュールの概略を示したフローチャートである。 相対値算出モジュールの概略を示したフローチャートである。 複数の分光光合成光量子束密度分布が重ね合わせて表示された状態の一例を示す図である。 光量子効率の算出について示した概略図である。
 次に、本願発明を実施するための形態(以下、実施形態)について説明する。
 図1は、本願発明の実施形態に係る光量子計の概略構成を示した図である。図1に示す光量子計は、光合成光量子束密度を測定するための光量子計であり、400~700nmの波長域における光量子束密度を測定するものである。
 この光量子計の大きな特徴点の一つは、被測定光を分光して各波長の光合成光量子束密度をリアルタイムで測定するものである点である。即ち、図1に示すように、この光量子計は、分光ユニット1と、演算処理ユニット2とから主に構成されている。
 まず、分光ユニット1について説明すると、図1に示すように、分光ユニット1は、筐体11と、筐体11内に設けられた分光素子12と、分光素子12に被測定光を入射させる入射光学系13等から構成されている。入射光学系13は、この実施形態では、受光器131と、受光器131からの被測定光を導く光ファイバ132と、光ファイバ132の出射側に配置された入射スリット133等から主に構成されている。
 受光器131は、測定場所に配置されるもので、必要に応じて光拡散板により受光する構造とされる。この実施形態では、反射型の光拡散板が使用されているが、透過型の光拡散板を使用して被測定光を光ファイバ132に入射させることもある。光ファイバ132は、受光器131を任意の場所に配置しつつ光量子束密度の測定を容易にするためのもので、石英系のライトガイドファイバが使用される。図1に示すように、筐体11には、光ファイバ132の出射端を装着した装着部110が設けられており、入射スリット133は、この装着部110の付近に設けられている。
 分光素子12としては、回折格子(グレーティング)が使用されている。波長域を分担させるため、複数の分光素子を使用する場合もある。分光素子12は、分光用光学系120の一部として設けられている。この実施形態では、ファスティエバート型の光学系が採用されており、入射スリット133からの光を平行光にして分光素子12(回折格子)に照射するとともに、分光素子12(回折格子)で分光された各波長の光を測定用センサの各センサ素子に集光して入射させる凹面鏡121を備えた構成となっている。この他、ツェルニーターナー型等の他のタイプの分光用光学系を採用することも可能である。
 筐体11内には、分光素子12で分光された被測定光が入射する検出器14と、検出器14からの出力をデジタル信号に変換するADコンバータ15と、ADコンバータ15を介して送られた検出器14からの出力を演算処理ユニット2に送信するためのインターフェース部16等が設けられている。
 検出器14としては、本実施形態では、リニアアレイセンサが使用されている。リニアアレイセンサは、フォトダイオード又はCCD等の光電変換素子を一列に並べたセンサである。各センサ素子は、分光された各波長の光をそれぞれ光電変換して強度を出力するものであり、分光素子12の分解能や測定する波長域に応じて各素子の受光面の幅や素子の数が決められる。例えば、シリコンフォトダイオードを2048個程度並べたリニアアレイセンサが検出器14として使用される。
 尚、検出器14は、分光素子12との関係で最適な位置及び姿勢で配置される。即ち、分光素子12によって分光された各波長の光がそれぞれ到達する位置に各センサ素子が位置するよう配置される。
 また、リニアアレイセンサである検出器14は、各センサ素子の検出値(光電変換された値)をある長さの時間で蓄積して(積分して)読み出し可能とする。この時間は、露光時間と呼ばれ、2.5μS~6S程度である。インターフェース部16としては、この実施形態ではUSBインターフェースが採用されており、USBポート161を有している。
 一方、演算処理ユニット2は、パソコンのような汎用コンピュータに専用のソフトウェアパッケージをインストールすることで構成されたものである。具体的には、Windows(マイクロソフト社の登録商標)のような汎用OSが搭載されたコンピュータであり、ノートパソコンや、デスクトップパソコン、ワークステーション等として販売されているものの中から任意のものを使用し得る。周知のように、コンピュータは、CPU21やメモリ22の他、ハードディスク23、ディスプレイ24、プリンタ25等を備えている。
 専用のソフトウェアパッケージには、光合成光量子束密度の算出を含む演算処理を行う測定プログラムの他、分光ユニット1を演算処理ユニット2の周辺装置として動作させるための専用のデバイスドライバ(以下、分光ユニット用ドライバという)が含まれる。
 図2は、演算処理ユニット2を構成する汎用コンピュータにインストールされるソフトウェアパッケージの概略図を示した図である。
 図2では、DVD-ROMやCD-ROMのような媒体で提供されて読み込まれた状態が想定されているが、ソフトウェアパッケージは、圧縮されてネットワーク(例えばインターネット)経由でダウンロード提供される場合もある。
 図2に示すように、ソフトウェアパッケージには、インストール用の実行ファイル(setup.exe)31、光合成光量子束密度測定プログラム本体を格納したフォルダ32、分光ユニット用ドライバを格納したフォルダ33、各種マニュアル類の文書ファイルを格納したフォルダ34等から成っている。setup.exeを実行すると、光合成光量子束密度測定プログラム(以下、光量子束密度測定プログラムと略す)や分光ユニット用ドライバが汎用コンピュータにインストールされるようになっている。この点は、他のアプリケーションソフトウェアと同様なので、説明は割愛する。
 実施形態の光量子計を使用して光合成光量子束密度を測定しようとする者(ユーザー)は、分光ユニット1を入手するとともに図2に示すソフトウェアパッケージを入手し、自分のコンピュータにインストールする。この結果、図1に示す光量子計が実現される。
 尚、演算処理ユニット2としての汎用コンピュータは、分光ユニット1内の検出器14から出力された光電変換信号を汎用インターフェース部26を介して受信するようになっている。汎用インターフェース部26としては、この実施形態ではUSBが採用されているが、これに限られるものではない。
 具体的には、分光ユニット1内のインターフェース部16はUSBインターフェースであり、検出器14につながるUSBポート261を有している。一方、上記のようにソフトウェアパッケージがインストールされると、図1中に概念的に示すように、演算処理ユニット2において、USBコントローラ上に分光ユニット用ドライバ262が実装され、分光ユニット用ドライバ262を使用するアプリケーションとして光量子束密度測定プログラム4がインストールされた状態となる。USBコントローラは、PCIのようなバスを介してCPU21に接続されたインターフェース部であり、USBケーブル260で接続された分光ユニット1からの出力データ(即ち、検出器14から出力される光電変換信号)を受信するようになっている。
 この他、演算処理ユニット2は、メモリ22やハードディスク23等の記憶部や、情報を表示するディスプレイ24を備えている。記憶部は、分光ユニット1からの出力データを演算処理して得られた測定結果を記憶部するものである。また、演算処理ユニット2は、入力部としてキーボード27やマウス28を備えている。これら入力部は、演算処理部としてのCPU21に情報を与えるものである。
 分光ユニット用ドライバ262は、分光ユニット1からの出力データをインタラプト転送させるものである。具体的には、前述したように、検出器14は、各センサ素子において光電変換信号を露光時間で蓄積して出力可能とする。分光ユニット用ドライバ262は、出力ポートから各センサ素子の光電変換信号を出力するようインターフェース部16を介して検出器14に制御信号を送信する。検出器14は、各センサ素子の光電変換信号を出力ポートからシリアルに送信する。
 例えば、各センサ素子のうち、最も短い波長λの光が入射するセンサ素子をSとし、次に短い波長λが入射するセンサ素子をSとし、同様に、入射波長が短い順にS、……Sとする。λ、λ、λ……λの各間隔Δλは、分光素子12の分解能に依存する量であり、分解能と同程度の波長幅である。検出素子は、S~Sの各出力(I~I)をシリアルに出力する。分光ユニット用ドライバ262は、インターフェース部16,26を介して送信された信号を受信し、予め確保されているメモリ22の記憶領域に所定のファイル形式で保存する。尚、分光ユニット用ドライバ262は、検出器14からの出力信号がインタラプト転送されるよう各インターフェース部16,26に制御信号を送る。このような分光ユニット用ドライバは、株式会社相馬光学から販売されているマルチチャンネル分光計S-2431等の附属ソフトウェアに含まれるデバイスドライバと同様のものを使用できるので、詳細な説明は省略する。
 次に、演算処理ユニット2にインストールされている光量子束密度測定プログラムについて説明する。
 光量子束密度測定プログラムは、分光ユニット用ドライバで受信した検出器14の出力データ(各センサ素子S~Sからの出力I~I)に対して演算処理を行って分光光合成光量子束密度分布を算出、表示するプログラムである。Windowsのような汎用OS上で動作するアプリケーションプログラムである。
 図3は、図1に示す光量子計が備える光量子束密度測定プログラムの概略構造を示した図である。図3に示すように、光量子束密度測定プログラムは、メインモジュール41、データ取得モジュール42、演算処理モジュール431,432、条件設定モジュール44、専用DLLファイル45等から成っている。
 光量子束密度測定プログラム4は、専用の識別子で識別されるファイルで測定データを取り扱うようになっている。以下、このファイルをPPFDファイルと呼ぶ。図示は省略されているが、ソフトウェアパッケージには、空の(初期の)PPFDファイルが含まれる。
 この実施形態では、PPFDファイルには、複数の分光データを記録することができるようになっている。以下、一つの分光データを分光データセットと呼ぶ。一つの分光データとは、上記λ~λまでの各光センサの出力である。PPFDファイル内には、複数(例えば九つ程度まで)の分光データセットと、各分光データセットに対する演算処理や演算処理結果の表示の条件についての設定情報とが記録されるようになっている。
 メインモジュール41は、各種入力を行わせたり分光データや測定結果を表示したりするためのウインドウ(以下、メインウインドウ)をディスプレイに表示するモジュールである。データ取得モジュール42は、分光ユニット1から出力データを送信させて取得するモジュールである。演算処理モジュール431,432は、取得したデータを処理して分光光量子束密度分布を得るモジュールである。条件設定モジュール44は、演算処理の条件等を設定するモジュールである。専用DLLファイル45は、これらモジュールや他のモジュール(演算処理ユニット2が備える汎用モジュールを含む)を関連づけたDLLファイルである。
 図4は、光量子束密度測定プログラムのメインモジュール41によってディスプレイに表示されるメインウインドウの一例を示した概略図である。図4に示すように、メインウインドウでは、標準的なボタンが並んだメニューバー51の他、分光光合成光量子束密度分布の測定、表示に必要な各種の設定や動作を行わせるためのツールバー52が表示されるようになっている。
 図4に示すように、ツールバー52には「分光データ取得」と表示されたボタン(以下、データ取得ボタン)521が設けられている。データ取得ボタン521には、分光ユニット1から分光データ(一つの分光データセット)を送信させて取得するデータ取得モジュール42がリンクされている。
 データ取得モジュール42は、分光ユニット用ドライバ262によって分光ユニット1から受信した分光データセットを、現在開いているPPFDファイル内に記録するモジュールである。データ取得モジュール42は、受信した分光データセットについて自動的にID番号を付与し、ID番号とともにPPFDファイル内に記録するようになっている。
 図4に示すように、メインウインドウ5には三つのフレーム53,54,55が設けられている。三つのフレーム53,54,55は上下に並んでおり、一番上は測定結果をグラフ表示するためのフレームである(以下、グラフ表示フレームという)。中程は、測定結果を数値データで表示したり分光データセットを選択させたりするためのフレームである(以下、数値データ表示フレームという)。一番下は、細長い(一行のみの)フレームであり、選択されている分光データセットの測定条件や演算処理条件等を確認的に表示するフレームである(以下、ボトムフレームという)。
 図4には、データ取得モジュール42により一つの分光データセットが取得された際の状態が示されている。この例は、新たに3個めの分光データセットを取得した状態である。図4に示すように、データ取得モジュール42は、この分光データセットにID番号としてNo.3を付与し、尚、データ取得モジュール42は、一つの分光データセットを取得した際、全体の放射照度(mW/cm)と、全体の(400~700nmの)光合成光量子束密度とを算出し、ID番号とともに数値データ表示フレーム内に表示するようプログラミングされている。
 尚、図4に示すように、ボトムフレーム55には、当該分光データセットの取得の際の露光時間や積算回数が確認的に表示されるようになっている。実施形態の光量子計は、演算処理ユニット2の入力部27,28から露光時間を入力して設定できるようになっており、設定値がここで表示される。また、実施形態の光量子計は、測定誤差を少なくするため、複数回測定を行ってその平均値を検出器14から出力させることができるようになっている。平均値の算出は波長毎に行われるが、平均値を算出するための積算回数も入力部27,28から設定できるようになっており、この設定値もボトムフレーム55で確認的に表示される。
 また、図4に示すように、ツールバー52中には、「測定条件」と表記されたボタン(以下、条件設定ボタン)522が設けられている。条件設定ボタン522はプルダウンボタンとなっており、表示されるプルダウンリストには、「波長範囲(PPFD)」と表記されたボタン(以下、波長域設定ボタン)が含まれている。波長域設定ボタンがクリックされると、波長域設定用のウインド(以下、波長域設定ウインドウ)が新たなウインドウとして表示されるようになっている。
 図5は、波長域設定ウインドウの一例を示した概略図である。図5に示すように、波長域設定ウインドウ6には、光量子束密度を測定する全体の波長範囲を設定する欄(全体設定欄)61と、全体設定欄61で設定された波長範囲内の各波長域について設定する欄(各波長域設定欄)62とが含まれている。全体設定欄61では、全体の波長範囲の下限値(最も短い波長)と上限値(最も長い波長)とを数値で入力するようになっている(単位はnm)。
 この実施形態では、光量子束密度を六つの波長域に分けて表示できるようになっており、各波長域設定欄62には六つの波長域についての入力欄が設けられている。各入力欄には、演算・表示を行うかどうかの選択する入力欄(この例ではチェックボックス)と、波長域の名称を入力する欄と、各波長域について上限値と下限値とを入力する欄が設けられている。
 波長域設定ウインドウ6にはOKボタン63が設けられており、各入力欄が入力されてOKボタン63がクリックされると、条件設定モジュール44が起動するようになっている。条件設定モジュール44は、各欄に入力された情報をPPFDファイル内の所定の領域に記憶するようプログラミングされている。
 尚、図2では省略されているが、ソフトウェアパッケージには、分光ユニット1について出荷時に測定された校正データを記録したファイル(分光データファイル)が含まれている。即ち、実施形態のソフトウェアパッケージは、出荷される分光ユニット1の附属品としてユーザーに提供されるものとなっている。
 校正データは、分光スペクトルが既知である標準光源を使用して分光ユニット1により分光放射照度を測定し、その結果により当該分光ユニット1の検出系の分光感度特性を記録したデータである。校正データと照らし合わせることで、分光放射照度の絶対値の算出が可能となる。校正データは、ソフトウェアパッケージのインストールの際、演算処理ユニット2の記憶部22,23の所定の場所に記憶される。
 一方、図4に示すように、ツールバー52内には、「光量子束密度(絶対値)」と表記されたボタン(以下、絶対値ボタン)523と、「光量子束密度(相対値)」と表記されたボタン(以下、相対値ボタン)524とが設けられている。これに対応し、演算処理モジュールとして、絶対値を算出する絶対値算出モジュール431と、相対値を算出する相対値算出モジュール432が設けられており、絶対値ボタン523は絶対値算出モジュール431にリンクし、相対値ボタン524は相対値算出モジュール432にリンクしている。
 図6は、絶対値算出モジュールの実行結果の一例を示す概略図である。図6に示すように、絶対値算出モジュール431が実行されると、グラフ表示フレーム53内に分光光合成光量子束密度分布がグラフ表示される。尚、この明細書や図面の各図で示されている分光放射照度や光合成光量子束密度のグラフや数値は、説明のための便宜上の架空のものであり、実際に測定した数値ではない。
 図7は、相対値算出モジュールの実行結果の一例を示す概略図である。図7は、図6に実行結果を示したものと同じ分光データセットについて相対値を算出した結果の図であり、従って、縦軸のみが図6と異なり、グラフ自体は同じものとなっている。
 ここで、光合成光量子束密度の算出について説明する。光合成光量子束密度は、前述したように単位時間及び単位面積あたりの光量子の数密度であるが、通常は、μmol(マイクロモル)を使用し、μmol/m/secという単位とされる。1μmol=10-6×(アボガドロ数)=6.022137×1017である。
 各波長の光合成光量子束密度PPFD(λ)は、式1によって算出される。式1において、I(λ)は、分光放射照度(μW/cm/nm/sec)である。
Figure JPOXMLDOC01-appb-M000001

 従って、光合成光量子束密度の総数(全波長での光合成光量子束密度)PPFDは、式1を波長400~700nmにおいて積分することにより得られる。即ち、以下の式2により得られる。
Figure JPOXMLDOC01-appb-M000002
 図8は、絶対値算出モジュールの概略を示したフローチャートである。絶対値算出モジュールは、分光データセットを特定するID番号と演算処理条件を引数にして実行されるようになっている。演算処理条件とは、光合成光量子束密度を算出するよう指定された波長域である。この条件は、上述したように条件設定モジュール44により予め設定される。
 絶対値算出モジュールは、図8に示すように、まず最初の(下限値の)波長(λ)について、当該波長が演算処理条件で指定された波長域のいずれかに入っているかどうか判断する。入っていれば、指定された分光データセットについて当該波長の出力値を取得する。そして、この出力値について校正データを参照しながら、当該波長における放射照度(分光放射照度)の絶対値を算出する。次に、絶対値算出モジュールは、算出された放射照度を式1に代入し、当該波長における光量子束密度を算出する。算出された光量子束密度をメモリ変数に一時的に格納する。
 次に、絶対値算出モジュールは、次の波長(λ)について同様に演算処理条件に入っているかどうか判断し、入っていれば、分光データセットから出力値を取得し、同様に放射照度の絶対値を算出する。そして、式1に従って光量子束密度の絶対値を算出し、別のメモリ変数に一時的に格納する。
 絶対値算出モジュールは、同様の処理を最後の(上限値の)波長(λ)まで繰り返して行い、演算処理条件に入っている波長について順次メモリ変数に光量子束密度を格納する。
 その後、絶対値算出モジュールは、グラフ表示と各波長域毎の値の合算値の算出とを行う。即ち、絶対値算出モジュールは、各メモリ変数から値を読み出し、グラフ化してメインウインドウのグラフ表示フレーム53内に図6に示すように表示する。また、演算処理条件に従い、各波長域内で値を合算し、数値データ表示フレーム54の各欄に表示する。例えば、Area1の名称で設定されている波長域が400~450nmである場合、この波長域で光合成光量子束密度(絶対値)を合算し、数値データ表示フレームの当該波長域の表示欄に表示する。グラフ表示と、各波長域での値の合算・表示が行われると、絶対値算出モジュールは終了である。
 図9は、相対値算出モジュールの概略を示したフローチャートである。相対値算出モジュールも、絶対値算出モジュールと同様に、分光データセットを指定するID番号と演算処理条件を引数にして起動される。相対値算出モジュールは、同様に各波長について演算処理条件に入っているかどうか判断し、入っていれば、分光データセットから出力値を取得して校正データと比較し、放射照度の絶対値を算出した後、式1に従って光合成光量子束密度を算出して各メモリ変数に一時的に格納する。
 最後の波長(λ)まで処理をした後、相対値算出モジュールは、最初の波長(λ)に戻ってメモリ変数から値を順次読み出し、最も高い光合成光量子束密度を特定する。そして、この値との比較により各波長の光合成光量子束密度の値(相対値)を算出し直し、各メモリ変数に更新して格納する。
 最後の波長(λ)まで相対値の算出と値の格納を終えたら、相対値算出モジュールは、同様にグラフ化処理と、各波長域での合算値の算出・表示とを行う。即ち、同様に各メモリ変数から値を読み出してグラフ化してメインウインドウのグラフ表示フレームに表示するとともに、各波長域で光合成光量子束密度(相対値)を合算し、数値データ表示フレームの各欄に表示する。これにより、相対値算出モジュールは終了である。尚、各波長域の合算値としては、各波長の値を合算してそのまま表示する場合の他、合算値の最も大きな波長域の値に対する相対値として他の波長域の合算値を算出、表示する場合もある。
 また、図4に示すように、メインウインドウ中のツールバー52には、「分光放射照度」と表記されたボタン(以下、放射照度ボタン)529が設けられている。図3において図示は省略されているが、光合成光量子束密度測定プログラムは、分光放射照度を算出、表示するモジュール(以下、放射照度算出モジュール)を含んでいる。放射照度算出モジュールは、指定された分光データセットについて分光放射照度を算出してグラフ表示エリアに表示するものである。放射照度算出モジュールは、上述した絶対値算出モジュールや相対値算出モジュールと同様、各波長の出力値を校正用データと比較して放射照度の絶対値を算出し、グラフ表示フレーム内にグラフ化して表示する。
 また、図4に示すように、メインウインドウ中のツールバー52には、「新規作成」と表示されたボタン(以下、新規作成ボタン)525や、「開く」と表示されたボタン(以下、ファイルオープンボタン)526が設けられている。
 新規作成ボタン525は、PPFDファイルを新たに作成するモジュールを実行するボタンである。このモジュールは、既存のPPFDファイルとは別に新しくPPFDファイルを作成して測定結果を得たい場合に実行されるモジュールであり、例えば別の光環境下での測定結果を別のファイルで保存したい場合や、別の演算処理条件での測定結果を別のファイルで保存したい場合に実行される。
 ファイルオープンボタン526は、以前に保存したファイルを開き、分光光合成光量子束密度分布を見たり、異なる演算処理条件で再計算させたりするためのボタンである。尚、図示は省略するが、メニューバー中の「ファイル」のボタンをクリックすると、「保存」と表記されたボタンが表示されるようになっており、このボタンにより実行中のPPFDファイルを保存することができるようになっている。
 上述したように、絶対値算出モジュール431や相対値算出モジュール432は、演算処理条件で指定された波長域について光合成光量子束密度の算出と表示を行う。波長域については、設定ボタンをクリックすることで任意に設定できるので、任意の波長域について光合成光量子束密度を表示することができる。
 例えば、緑色植物の主要な色素であるクロロフィルは、青色(波長435nm前後)と赤色(波長680nm前後)において高い吸収率を持つが、500nm前後の緑色については吸収率が低いことで知られている。従って、青や赤の色の波長域についてのみ光合成光量子束密度の算出、表示をした方が、光合成に適した光環境かどうかの判断がやり易い場合もあり得る。また、この実施形態では、指定された波長域について光合成光量子束密度の合算値が表示されるので、有効な波長域においてどの程度の光量子が得られているかも確認することができ、波長域同士の比較も容易である。
 また、実施形態の光量子計では、複数の分光データセットに対して演算処理をして得た分光光合成光量子束密度を重ね合わせてグラフ表示できるようになっている。以下、この点について説明する。
 メインウインドウのメニューバー51上には、「表示」と表記されたボタン63が設けられており、このボタン63をクリックして表示されるプルダウンリストには、「重ね書き」と表記されたボタンが含まれるようになっている。このボタンをクリックすると、複数の分光光合成光量子束密度を重ね合わせて表示するかどうかの入力(例えばクリックでチェックを入れる)が行えるようになっている。図10は、この重ね合わせ表示の一例を示したもので、複数の分光光合成光量子束密度が重ね合わせて表示された状態の一例を示す図である。
 複数の分光光合成光量子密度分布を重ね合わせて表示する場合、数値データ表示フレームにおいて複数の分光データセットを指定する。例えば、分光データセットを表示している行にマウスポインタが位置している状態でCtrlキーを押しながら左クリック(又はエンターキー押下)した場合に複数の分光データセットの指定ができるようにする。そして、複数の分光データセットが指定されている状態で絶対値ボタンがクリックされた場合、それぞれについて演算処理をして分光光合成光量子束密度の絶対値を算出し、図10に示すように重ね合わせて表示するよう絶対値算出モジュール431がプログラミングされている。相対値算出モジュール432についても同様である。
 また、実施形態の光量子計は、光環境が特定の植物の光合成のためにどの程度効率的かの指標である光量子効率の測定が行えるようになっている。以下、この点について説明する。図11は、光量子効率の算出について示した概略図である。
 光量子効率は、測定された全波長域の光合成光量子束密度の総数に対する有効な光合成光量子束密度の総数の比である。植物の光合成には波長依存性がある場合があり、この一つが前述した色素の光吸収率の波長依存性である。図11(1)には、一例として、あるクロロフィルの分光吸収率分布が示されている。
 このようなクロロフィルに対し、図11(2)に示す分光光合成光量子束密度分布の光を照射した場合、光合成への作用の仕方はクロロフィルの光吸収に依存するから、光合成に寄与する光量子束の密度(実効光合成光量子束密度)PPFD’は、各波長において光量子に吸収率を掛けたものとなる。即ち、実効光合成光量子束密度PPFD’は、以下の式3で表される。
Figure JPOXMLDOC01-appb-M000003
 式3において、A(λ)は波長毎の光吸収率、P(λ)は波長毎の光合成光量子束密度である。図11(2)に示す分光光合成光量子密度分布に対し、図11(1)に示す分光吸収率を掛け合わせると、図11(3)に示すような分布となり、これが実効分光光合成光量子密度分布である。この分布を積分した値が、この光環境下でのクロロフィルの有効な光合成光量子束密度の大きさを示すことになる。
 そして、光量子効率Eは、全体の光合成光量子束密度に対する実効光合成光量子束密度の比であるから、以下の式4により求められることになる。
Figure JPOXMLDOC01-appb-M000004
 図4に示すように、メインウインドウ内のツールバー52には、「分光吸収率登録」と表記されたボタン(以下、登録ボタン)527と、「光量子効率算出」と表記されたボタン(以下、効率算出ボタン)528とが設けられている。図3では図示が省略されているが、光合成光量子束密度測定プログラムは、登録モジュールと効率算出モジュールとを有しており、登録ボタン527は登録モジュールにリンクし、効率算出ボタン528は率算出モジュールにリンクしている。
 登録ボタン527がクリックされると、登録モジュールが起動する。登録モジュールは、分光吸収率を記録したファイルを指定させるウインドウを追加して表示するようになっている。ここでファイルが指定されると、登録モジュールは、分光吸収率について必要な変換を行ってPPFDファイル内に分光吸収率を記録するようになっている。必要な変換とは、波長のインターバル(分光の波長幅)を分光データセット等と一致させる変換である。尚、登録モジュールは、異なる植物についての光量子効率の算出を可能にするため、分光吸収率を複数登録できるようになっており、分光吸収率を特定するIDとともに登録するようになっている。
 効率算出ボタン528がクリックされると、効率算出モジュールが起動する。効率算出モジュールは、数値データフレーム64において少なくとも1個の分光データセットが選択された状態で起動されるものであり、分光データセットが選択されていない場合、その旨のエラーメッセージを表示する。効率算出モジュールは、少なくとも1個の分光データセットが選択されていることを確認すると、分光吸収率を選択させるウインドウを表示し、登録された分光吸収率のうち1つを選択させる。そして、選択された分光吸収率を分光データセットに適用し、式3に従って実効光合成光量子束密度を算出する。そして、算出された実効光合成光量子束密度に対して式4を適用し、光量子効率を算出し、数値データフレーム64内の当該分光データセットの行に追加して表示する。複数の分光データセットが選択されていれば、各々についてこれらの演算処理をし、光量子効率を表示する。
 以上の構成を有する実施形態の光量子計を使用して光合成光量子束密度を測定する場合、測定したい光環境下に光量子計を持ち込む。例えば、演算処理ユニット2をノートパソコンとし、分光ユニット用ドライバと光量子束密度測定プログラムとをインストールしたノートパソコンと分光ユニット1とを持ち込む。そして、分光ユニット1の電源スイッチをオンにした状態にしてノートパソコンを立ち上げ、光量子束密度測定プログラムを起動した状態とする。この状態で、測定したい場所に受光器131を配置し、ノートパソコン上でデータ取得ボタン521をクリックし、その場所における分光光合成光量子束密度を測定する。分光データは、予め設定される演算処理条件(波長域の条件)に従って処理され、所望の波長域について光合成光量子束密度がディスプレイに表示される。受光器131を置いたその場において瞬時に分光光合成光量子束密度分布をディスプレイ上で確認することができ、リアルタイムで測定結果を得ることができる。リアルタイムとは、受光器131を置いて検出器14で光電変換信号を得るのと、ディスプレイ上で分光光合成光量子束密度分布を見るのとが実質的に同じ時間帯ということである。
 また、同じPPFDファイルを開いている状態で再度データ取得ボタンをクリックすると、測定条件が異なる別の分光データセットを追加して取得することができ、上述したように複数の分光データセットの各々について演算処理して得られた分光光合成光量子束密度を重ね合わせて表示することができる。例えば、受光器131を異なる場所に配置して測定を行って分光データセットを取得し、場所によって分光光合成光量子束密度分布が異なるかどうかを調べる例が考えられる。また、異なる複数の人工光源(太陽以外の光源)について測定して分光データセットを取得し、それぞれについて算出した分光光合成光量子束密度分布を表示して比較する例もあり得る。
 尚、人工光源の評価をする場合、太陽光とのスペクトル合致度の測定を併せて行うようにしても良い。光合成光量子束密度測定プログラムは、JISに定められている基準太陽光の分光放射照度(基準スペクトル)のデータファイルとともにユーザーに提供され、インストール時にコンピュータの記憶部にコピーされる。光合成光量子束密度測定プログラムは、合致度算出モジュールを含んでおり、合致度算出モジュールは、人工光源について取得された分光データセットに対して演算処理をして分光放射照度を算出した後、各波長について基準スペクトルとの比較をし、各波長について合致度を算出する。算出された合致度は、グラフ化されてグラフ表示エリアに表示されたり、リスト化されてプリントアウトされたりする。
 上述したように、実施形態の光量子計は、分光光合成光量子束密度分布がディスプレイにリアルタイムで表示されるので、植物の光環境の調査や植物育成用の人工光源の評価等に好適に用いることができる。例えば、植物を育成している環境下の各点における光照射の状況を波長毎の光合成光量子束密度の観点から評価して最適な環境を実現する場合、リアルタイムで分光光合成光量子束密度がチェックできるので、照明条件の変更等をより迅速に実現することができる。また、人工光源の評価や研究等においても、各波長の放射照度を光合成光量子束密度に変換する計算をいちいちする必要がないので、評価や研究等の効率アップに大きく貢献できる。
 また、実施形態の光量子計は、演算処理部が光合成光量子束密度測定プログラムを実行することにより波長毎の光合成光量子束密度を算出して表示するので、算出や表示の条件の変更が容易である。即ち、本願発明の光量子計は、検出器14から出力される各波長の強度信号をハードウェアにより変換して各波長の光合成光量子束密度とすることは可能である。式1が実現されるように、オペアンプIC等により回路を構成すれば良い。とはいえ、分光光合成光量子束密度の算出条件(例えば絶対値か相対値か等)の変更がある場合、ハードウェアよりはソフトウェアで実現する方が条件の変更に容易に対応ができ、好適である。
 尚、光合成光量子束密度がソフトウェアにより測定される場合、ソフトウェアは、上述したように演算処理ユニット2にインストールされる場合の他、ネットワーク経由でダウンロードして実行される場合もある。即ち、演算処理ユニット2はネットワークにアクセスできる構成とされ、ネットワーク上には、光合成光量子束測定プログラムが実装されたサーバが設けられる。演算処理ユニット2は、サーバにアクセスしてサーバ上で光合成光量子束測定プログラムを実行するか、又はダウンロードして実行する。このような構成についても、ASP(Application Service Provider)やSaaS(Software as a Service)といったサービスで実現されているものと同様に行えるので、詳細な説明は割愛する。
 また、前述したように、実施形態の光量子計は、指定された波長域についてのみ分光光合成光量子束密度分布を表示することができるので、光合成に有効な波長域のみ観察することができ、好適である。この際、離散した複数の波長域を指定することができるので、色々な植物の有効波長域に応じて最適な測定を行うことができる。
 また、実施形態の光量子計は、光量子効率の算出も行えるので、特定の光環境が特定の植物の育成にどの程度効率的か知ることができ、光環境の調査や人口光源の評価、研究等を行う上でさらに好適なものとなっている。
 また、実施形態の光量子計は、分光ユニット1と演算処理ユニット2から成るものであり、演算処理ユニット2が汎用コンピュータで構成されているため、光量子計のコストを安価にしたり、ユーザーにおいて導入が容易になったりする効果が得られる。演算処理ユニット2として特別のものを用意する必要がなく、自分のパソコンにソフトウェアパッケージをインストールすることで演算処理ユニット2とすることができる。
 その上、分光ユニット1内の検出器14からの光電変換信号を受信するインターフェースとしてUSBのような汎用インターフェースが採用されているので、そのような汎用インターフェース部16を備えている限り、汎用の分光器を採用することができる。従って、そのような分光器を所持していれば、ソフトウェアパッケージを自分のコンピュータにインストールするだけでリアルタイムの分光光合成光量子束密度測定が行えることになり、さらに導入が容易となる。この際、分光ユニット用ドライバがソフトウェアパッケージに含まれているので、デバイスドライバを別途入手する必要がなく、この点でも簡便である。
 尚、上記実施形態では、分光ユニット用ドライバは、検出器14からの出力データをインタラプト転送するものであったが、バルク転送する構成も採用し得る。この場合、分光ユニット1内のインターフェース部16にメモリを設け、CSVのようなファイル形式で出力データを一時的に記憶するようにする。データ取得モジュール41が動作すると、分光ユニット用ドライバはインターフェース部16上のファイルをバルク転送させる。
 また、本願発明の実施形態としては、汎用コンピュータによって演算処理ユニット2を構成する場合の他、分光ユニット1内に演算処理部を設けた構成等が採用されることもあり得る。即ち、図1に示す筐体11内に、演算処理部としてのCPUを含む制御ボードを搭載し、制御ボード上にメモリや各種インターフェース部を設ける。メモリには、上述した光合成光量子束密度測定プログラムを実装してCPUにより実行可能としておく。また、筐体11にディスプレイを設け、算出された分光光量子束密度分布を表示するようにする。このようにすると、コンピュータは別途必要とせず、一つのユニットだけで光量子計が構成されるので、構成が簡略化され、持ち運び等において利便性が増す。
 尚、光合成光量子束密度は、400~700nmの波長域での光量子束密度であるが、この範囲を外れた波長域についても光量子束密度を算出して併せて表示する場合もある。例えば、エマーソン効果として知られているように、680nmより長い近赤外線の波長を植物に照射した場合、併せて青色の光を照射すると光合成の収率が向上する。この効果を評価するため、赤外域についての光量子束密度を算出する場合がある。実施形態の光量子計では、分光ユニット1における検出波長(分光波長)は200~800nmであり、このような波長域も含んでいる。従って、波長域指定入力においてこのような波長域も指定できるようにしておけば、同様に分光光量子束密度分布を知ることができ、またそのような波長域で集計した光量子束密度の総量も知ることができる。
 また、分光ユニット1の構成としては、前述したリニアアレイセンサを使用するマルチチャンネルの構成の他、分光素子(回折格子)12に対して駆動機構を設けて分光素子12を回転させるようにして1波長の光ずつセンサに入射させるシングルチャンネルの構成が採用されることもある。
1 分光ユニット
11 筐体
12 分光素子(回折格子)
13 入射光学系
131 受光器
132 光ファイバ
133 入射スリット
14 検出器
16 インターフェース部
2 演算処理ユニット
21 CPU
22 メモリ
23 ハードディスク
24 ディスプレイ
26 インターフェース部
4 光量子束密度測定プログラム
41 メインモジュール
42 データ取得モジュール
431 絶対値算出モジュール
432 相対値算出モジュール
44 条件設定モジュール
45 専用DLLファイル
521 データ取得ボタン
522 条件設定ボタン
523 絶対値算出ボタン
524 相対値算出ボタン
53 グラフ表示フレーム
54 数値データ表示フレーム
6 波長域設定ウインドウ
61 全体設定欄
62 各波長域設定欄

Claims (4)

  1.  被測定光が入射する分光素子と、分光素子で分光された被測定光が入射する検出器と、検出器から出力された光電変換信号を処理する演算処理部と、演算処理部が処理した結果を表示するディスプレイとを備えており、
     演算処理部は、検出器から出力された光電変換信号を処理することで波長毎の光合成光量子束密度を算出するものであり、
     ディスプレイは、被測定光が存在する環境下でリアルタイムでその被測定光の分光光合成光量子束密度分布を表示することが可能なものであり、
     前記演算処理部は、光合成光量子束密度測定プログラムを実行することにより前記波長毎の光合成光量子束密度を算出し、前記分光光合成光量子束密度分布を前記ディスプレイに表示させるものであって、光合成光量子束密度測定プログラムが記憶された記憶部を備えているか、又は光合成光量子束密度測定プログラムをネットワークを介して実行可能なものであり、
     前記演算処理部に対して情報を与える入力部を備えており、
     前記光合成光量子束密度測定プログラムは、植物にとっての光合成有効波長に応じて波長域を指定する波長域指定入力を入力部においてさせることが可能であって、波長域指定入力で指定された波長域について前記波長毎の光合成光量子束密度を算出することが可能であり、
     前記光合成光量子束密度測定プログラムは、波長域指定入力で指定された波長域について前記分光光合成光量子束密度を前記ディスプレイに表示させ、他の波長域の分光光合成光量子束密度を表示させないものであり、
     前記波長域指定入力は、互いに離散した複数の波長域を指定することが可能なものであり、
     前記光合成光量子束密度測定プログラムは、波長域指定入力で指定された離散した各波長域について前記波長毎の光合成光量子束密度を算出することが可能であり、
     前記光合成光量子束密度測定プログラムは、波長域指定入力で指定された離散した各波長域について前記分光光合成光量子束密度を前記ディスプレイに表示させ、他の波長域の分光光合成光量子束密度を表示させないものであることを特徴とする光量子計。
  2.  前記光合成光量子束密度測定プログラムは、測定された分光光合成光量子束密度に特定の植物の分光吸収率を掛け合わせることで当該植物についての実効分光光合成光量子束密度を算出してディスプレイに表示することが可能であることを特徴とする請求項1記載の光量子計。
  3.  前記分光素子及び前記検出器は、分光ユニットを構成するものとして設けられており、前記演算処理部は、演算処理ユニットを構成するものとして設けられており、
     演算処理ユニットは汎用コンピュータであって、前記光合成光量子束密度測定プログラムがインストールされていることを特徴とする請求項1又は2に記載の光量子計。
  4.  前記演算処理ユニットには、前記検出器から出力された光電変換信号を汎用インターフェースを介して受信するデバイスドライバがインストールされており、
     前記光合成光量子束密度測定プログラムは、このデバイスドライバにより受信した光電変換信号を処理して前記波長毎の光合成光量子束密度を算出するものであることを特徴とする請求項3記載の光量子計。
PCT/JP2014/062254 2013-05-08 2014-05-07 光量子計 WO2014181797A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480039159.2A CN105579816B (zh) 2013-05-08 2014-05-07 量子计
EP14794594.3A EP2995915A4 (en) 2013-05-08 2014-05-07 Quantum meter
KR1020157034633A KR20160042815A (ko) 2013-05-08 2014-05-07 광량자계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-098922 2013-05-08
JP2013098922A JP5575951B1 (ja) 2013-05-08 2013-05-08 分光光合成光量子束密度分布観察方法、並びにこの方法に使用される光量子計及び光合成光量子束密度測定プログラム

Publications (1)

Publication Number Publication Date
WO2014181797A1 true WO2014181797A1 (ja) 2014-11-13

Family

ID=51579021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062254 WO2014181797A1 (ja) 2013-05-08 2014-05-07 光量子計

Country Status (5)

Country Link
EP (1) EP2995915A4 (ja)
JP (1) JP5575951B1 (ja)
KR (1) KR20160042815A (ja)
CN (1) CN105579816B (ja)
WO (1) WO2014181797A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964740A (zh) * 2015-06-19 2015-10-07 北京农业信息技术研究中心 光合有效光量子传感器自动检测、校对系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365350B2 (ja) 2015-03-04 2018-08-01 株式会社デンソー 燃料噴射弁
US11536656B2 (en) 2016-06-16 2022-12-27 Sony Group Corporation Information processing device, information processing method, and program
EP3504959A4 (en) * 2016-09-23 2019-10-16 Sony Corporation CONTROL DEVICE, CONTROL METHOD, AND CONTROL SYSTEM
USD976855S1 (en) 2020-12-03 2023-01-31 Samsung Electronics Co., Ltd. Television receiver
USD989016S1 (en) 2020-12-03 2023-06-13 Samsung Electronics Co., Ltd. Television receiver
JP2023099939A (ja) * 2022-01-04 2023-07-14 Biprogy株式会社 光量子束密度予測システム及び光量子束密度予測プログラム
JP2023131357A (ja) * 2022-03-09 2023-09-22 Biprogy株式会社 日射予測システム及び日射予測プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163482A (ja) 2011-02-08 2012-08-30 System Instruments Kk 光量子計

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534199A (ja) * 1991-08-02 1993-02-09 Matsushita Electric Ind Co Ltd 光放射測定装置
JP5033531B2 (ja) * 2007-07-30 2012-09-26 株式会社日立ハイテクノロジーズ 分光蛍光光度計
JP5161755B2 (ja) * 2008-12-25 2013-03-13 浜松ホトニクス株式会社 分光測定装置、分光測定方法、及び分光測定プログラム
KR101250745B1 (ko) * 2010-11-19 2013-04-04 박춘덕 광합성 유효 광량 측정기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163482A (ja) 2011-02-08 2012-08-30 System Instruments Kk 光量子計

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"EKO", TORIATSUKAI SETSUMEISHO KEITAIGATA BUNKO HOSHAKEI MS-720, December 2012 (2012-12-01), pages 1 - 50, XP008181788 *
FUJIWARA,K. ET AL.: "Design and Development of a Plant-Response Experimental Light-Source System with LEDs of Five Peak Wavelengths", JOURNAL OF LIGHT & VISUAL ENVIRONMENT, vol. 35, no. 2, pages 117 - 122, XP055292118 *
HIROSHI HAMAMOTO ET AL.: "The spectral ratio of red, green, and blue photon fluxes to the total flux of photosynthetic photons and the ratio of red to far-red photon fluxes of sunlight at Ayabe, Kyoto", CLIMATE IN BIOSPHERE, vol. 12, 10 August 2012 (2012-08-10), pages 46 - 51, XP055292119 *
See also references of EP2995915A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964740A (zh) * 2015-06-19 2015-10-07 北京农业信息技术研究中心 光合有效光量子传感器自动检测、校对系统及方法

Also Published As

Publication number Publication date
KR20160042815A (ko) 2016-04-20
CN105579816A (zh) 2016-05-11
JP5575951B1 (ja) 2014-08-20
EP2995915A4 (en) 2017-01-11
EP2995915A1 (en) 2016-03-16
CN105579816B (zh) 2017-05-03
JP2014219293A (ja) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5575951B1 (ja) 分光光合成光量子束密度分布観察方法、並びにこの方法に使用される光量子計及び光合成光量子束密度測定プログラム
Cogliati et al. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems
JP6677651B2 (ja) 分光測定装置および分光測定方法
Kimm et al. Quantifying high‐temperature stress on soybean canopy photosynthesis: The unique role of sun‐induced chlorophyll fluorescence
US8352205B2 (en) Multivariate optical elements for nonlinear calibration
Tubuxin et al. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves
KR101885095B1 (ko) 자외선 방어 효과의 평가 방법, 평가 장치 및 기록 매체
JP2001525931A (ja) 光スペクトル測定用装置とその方法
Zonios Noise and stray light characterization of a compact CCD spectrophotometer used in biomedical applications
Kim et al. Nonspectroscopic imaging for quantitative chlorophyll sensing
Kirkpatrick A primer on radiometry
JP2016511420A (ja) 高分解能mems応用アダマール分光法
JP4243014B2 (ja) 植物の生育度測定装置
Westover et al. Miniaturized short-wavelength infrared spectrometer for diffuse light applications
Zhang et al. Retrieval of sun-induced chlorophyll fluorescence using statistical method without synchronous irradiance data
Albert et al. Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence
US10578486B2 (en) Method of calibrating spectrum sensors in a manufacturing environment and an apparatus for effecting the same
Sandin et al. Automated and generalized integral-field spectroscopy data reduction using p3d
Firago et al. Radiometric calibration of fiber optic spectrophotometers
Jäkel et al. A CCD spectroradiometer for ultraviolet actinic radiation measurements
HOSHI et al. Digitally fabricated mobile spectrometer for multipoint continuous spectroscopic analysis of light environment in greenhouse tomato canopies
JP5819637B2 (ja) 紫外線防御効果の評価装置
Kärhä et al. A novel facility for ageing materials with narrow-band ultraviolet radiation exposure
Schläpfer MODO: an interface to MODTRAN for the simulation of imaging spectrometry at-sensor signals
Robinson et al. The field spectroscopy facility post processing toolbox user guide: Post processing spectral data in MATLAB

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039159.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014794594

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157034633

Country of ref document: KR

Kind code of ref document: A