WO2014181539A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2014181539A1
WO2014181539A1 PCT/JP2014/002436 JP2014002436W WO2014181539A1 WO 2014181539 A1 WO2014181539 A1 WO 2014181539A1 JP 2014002436 W JP2014002436 W JP 2014002436W WO 2014181539 A1 WO2014181539 A1 WO 2014181539A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffraction grating
optical device
diffraction
emits
Prior art date
Application number
PCT/JP2014/002436
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 小松
嘉高 佐藤
竜也 平井
Original Assignee
カラーリンク・ジャパン 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カラーリンク・ジャパン 株式会社 filed Critical カラーリンク・ジャパン 株式会社
Publication of WO2014181539A1 publication Critical patent/WO2014181539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the present invention relates to an optical device.
  • Patent Document 1 Japanese translations of PCT publication No. 2004-529375
  • the above-described apparatus has a problem that the configuration is complicated because a moving member for moving the optical component is required.
  • a diffractive portion that diffracts and emits linearly polarized laser light, and at least part of the + 1st order light and at least part of the ⁇ 1st order light emitted from the diffractive part are provided.
  • An optical device is provided that includes a direction changing unit that converts the light into a parallel direction and emits the light.
  • the incident-side modulation unit that modulates the polarization direction of the linearly polarized laser beam in multiple directions, and the light modulated by the incident-side modulation unit are divided into the first direction, and the first A first birefringence unit that emits light and second light, an emission-side modulation unit that modulates polarization directions of the first light and the second light emitted from the first birefringence unit in multiple directions,
  • An optical device is provided that includes a second birefringence unit that divides the light modulated by the emission-side modulation unit in a second direction different from the first direction and emits the light traveling in parallel with each other.
  • FIG. 1 is an overall configuration diagram of a projector 10 provided with an optical device 24.
  • FIG. 2 is a cross-sectional view of an optical device 24.
  • FIG. 3 is a schematic sectional view of a diffraction grating 42.
  • FIG. 4 is a plan view of a liquid crystal layer 62.
  • FIG. 6 is a photograph of experimental results showing the relationship between polarized light incident on the diffraction grating of the optical device 24 and diffracted light.
  • 3 is an exploded perspective view of the optical device 24.
  • FIG. It is a graph which shows the relationship between the wavelength of the light which injects into a diffraction grating, and the intensity
  • FIG. 6 is an exploded perspective view of an optical device 124 according to another embodiment. It is sectional drawing explaining the form which changed arrangement
  • FIG. 6 is an exploded perspective view of an optical device 224 according to another embodiment. It is a whole block diagram of the optical apparatus 324 which changed a part. It is a whole block diagram of the optical apparatus 424 which changed a part. It is a whole block diagram of the optical apparatus 524 which changed a part. It is the schematic of the experimental apparatus which investigated speckle noise reduction. It is the result of the experiment which proves the reduction of speckle noise. 6 is a perspective view of a diffraction grating 724 in which a part of the diffraction grating 42 is changed. FIG.
  • FIG. 1 is an overall configuration diagram of the projector 10 provided with the optical device 24.
  • the projector 10 generates an image with the laser light emitted from the laser light sources 12, 14, and 16 and projects the image on the screen 30.
  • the projector 10 includes laser light sources 12, 14, 16, dichroic mirrors 18, 20, a MEMS mirror 22, an optical device 24, a projection unit 26, and a control unit 28.
  • the laser light source 12 emits red light RL that is linearly polarized laser light having a vertical polarization direction toward the MEMS mirror 22.
  • the laser light source 14 emits green light GL, which is linearly polarized laser light having a vertical polarization direction, toward the dichroic mirror 18.
  • the laser light source 16 emits blue light BL, which is linearly polarized laser light having a vertical direction as a polarization direction, toward the dichroic mirror 20.
  • the dichroic mirrors 18 and 20 include a dielectric multilayer film as an example.
  • the dichroic mirrors 18 and 20 may be dichroic prisms.
  • the dichroic mirror 18 is disposed on the path of the green light GL emitted from the laser light source 14.
  • the dichroic mirror 18 reflects the green light GL and transmits light of other wavelengths. Accordingly, the dichroic mirror 18 transmits the red light RL emitted from the laser light source 12.
  • the dichroic mirror 18 reflects the green light GL emitted from the laser light source 14 toward the MEMS mirror 22.
  • the dichroic mirror 20 is disposed on the path of the blue light BL emitted from the laser light source 16.
  • the dichroic mirror 20 reflects the blue light BL and transmits light of other wavelengths. Accordingly, the dichroic mirror 20 transmits the red light RL emitted from the laser light source 12.
  • the dichroic mirror 20 transmits the green light GL emitted from the laser light source 14 and reflected by the dichroic mirror 18.
  • the dichroic mirror 20 reflects the blue light BL emitted from the laser light source 16 toward the MEMS mirror 22.
  • the MEMS mirror 22 is disposed on the path of the red light RL emitted from the laser light source 12, the green light GL reflected by the dichroic mirror 18, and the blue light BL reflected by the dichroic mirror 20.
  • the MEMS mirror 22 moves in a two-dimensional plane.
  • the MEMS mirror 22 projects an image on the screen 30 by reflecting light while moving.
  • the optical device 24 diffracts red light RL, green light GL, and blue light BL, which are linearly polarized light, to reduce speckle noise. Details of the optical device 24 will be described later.
  • the projection unit 26 enlarges the light that forms an image and is emitted from the optical device 24, and projects the image onto the screen 30.
  • the control unit 28 performs overall control of the projector 10.
  • An example of the control unit 28 is an arithmetic device such as a CPU (Central Processing Unit).
  • the control unit 28 switches the laser light sources 12, 14, 16 on and off.
  • the control unit 28 controls the reflection and position of the MEMS mirror 22 to generate an image.
  • the control unit 28 turns on one of the laser light sources 12, 14, and 16 to emit laser light.
  • the control unit 28 turns on the laser light source 12 and emits red light RL.
  • the red light RL passes through the dichroic mirrors 18 and 20 and reaches the MEMS mirror 22.
  • the control unit 28 controls the reflection and position of the MEMS mirror 22 in correspondence with the red image to be projected.
  • the MEMS mirror 22 reflects the red light RL toward the optical device 24.
  • the optical device 24 converts the red light RL into a state where speckle noise can be reduced, and emits the red light RL to the projection unit 26.
  • the projection unit 26 magnifies and projects an image composed of the red light RL onto the screen 30.
  • control unit 28 sequentially turns on the laser light sources 14 and 16 and controls the reflection and position of the MEMS mirror 22 to project an image composed of the green light GL and the blue light BL onto the screen 30. To do. Thereby, the projector 10 can project a color image with reduced speckle noise.
  • FIG. 2 is a cross-sectional view of the optical device 24.
  • the direction indicated by the arrow in FIG. 2 is the forward direction in which the light L0 incident on the optical device 24 travels.
  • the light L00 incident on the optical device 24 is linearly polarized light whose polarization direction is the vertical direction emitted from the laser light sources 12, 14, and 16 and reflected by the MEMS mirror 22.
  • the incident linearly polarized light may not be in the vertical direction.
  • the direction of the optical device 24 can be freely set with respect to the polarization direction of the incident linearly polarized light.
  • the optical device 24 includes a substrate 40, a diffraction grating 42, a substrate 44, a diffraction grating 46, a quarter wavelength plate 48, a substrate 50, a diffraction grating 52, and a substrate 54. , A diffraction grating 56 and a substrate 58.
  • the substrate 40 to the substrate 58 are bonded together, but a part or all of the substrate 40 to the substrate 58 may be separated.
  • An example of the substrates 40, 44, 50, 54, and 58 is an optically isotropic glass substrate.
  • An example of the substrates 40, 44, 50, 54, and 58 has a planar shape and a rectangular shape when viewed from the light traveling direction.
  • the thickness of the substrates 40, 44, 50, 54, 58 is, for example, 0.21 mm.
  • the substrates 40, 44, 50, 54, and 58 are arranged in this order from the incident side to the outgoing side of the light L00 reflected by the MEMS mirror 22.
  • the substrates 40, 44, 50, 54, and 58 are disposed substantially perpendicular to the traveling direction of the incident light L00.
  • the diffraction gratings 42, 46, 52, and 56 is a liquid crystal polarization diffraction grating in which the alignment direction of liquid crystal molecules periodically changes in a plane. That is, the diffraction gratings 42, 46, 52, and 56 diffract polarized light based on the polarization state. For example, the diffraction gratings 42, 46, 52, and 56 increase the intensity of one diffracted light (for example, + 1st order light) based on the polarization state and increase the intensity of the other diffracted light (for example, ⁇ 1st order light). Reduce strength.
  • the diffraction gratings 42, 46, 52, and 56 modulate the polarization state.
  • the diffraction gratings 42, 46, 52, and 56 modulate linearly polarized light into circularly polarized light.
  • the diffraction gratings 42, 46, 52, and 56 modulate clockwise circularly polarized light into counterclockwise circularly polarized light or counterclockwise circularly polarized light into clockwise circularly polarized light.
  • the diffraction grating 42 is an example of a diffraction part.
  • the diffraction grating 42 is disposed between the substrate 40 and the substrate 44.
  • the diffraction grating 42 is disposed on the most light incident side among the diffraction gratings 42, 46, 52, and 56.
  • the diffraction grating 42 diffracts and emits incident linearly polarized laser light.
  • the diffraction grating 46 is an example of a direction changing unit.
  • the diffraction grating 46 is disposed between the substrate 44 and the substrate 50 and on the incident side surface of the quarter-wave plate 48.
  • the diffraction grating 46 is disposed on the emission side with respect to the diffraction grating 42.
  • the diffraction grating 46 emits circularly polarized light obtained by converting at least part of the + 1st order light emitted from the diffraction grating 42 and at least part of the ⁇ 1st order light in parallel directions.
  • the quarter-wave plate 48 is provided between the substrate 44 and the substrate 50 and on the exit side surface of the diffraction grating 46.
  • the quarter wavelength plate 48 is disposed between the diffraction gratings 42 and 46 and the diffraction gratings 52 and 56.
  • the quarter wavelength plate 48 modulates the polarization state of the incident polarized light. For example, the quarter wave plate 48 modulates incident linearly polarized light into circularly polarized light, and modulates incident circularly polarized light into linearly polarized light. Therefore, the quarter wave plate 48 emits the circularly polarized light emitted from the diffraction grating 46 as linearly polarized light.
  • the diffraction grating 52 is an example of a second diffraction part.
  • the diffraction grating 52 is provided between the substrate 50 and the substrate 54 and on the emission side of the diffraction grating 46 and the quarter wavelength plate 48.
  • the diffraction grating 52 is disposed on the incident side of the diffraction grating 56.
  • the diffraction grating 52 diffracts and emits the linearly polarized light emitted from the quarter-wave plate 48 in a direction different from the diffraction direction of the diffraction grating 42.
  • the diffraction grating 56 is an example of a second direction conversion unit.
  • the diffraction grating 56 is disposed between the substrate 54 and the substrate 58 and on the emission side of the diffraction grating 52. In other words, the diffraction grating 56 is disposed on the most output side of the diffraction gratings 42, 46, 52, 56.
  • the diffraction grating 56 converts at least a part of the + 1st order light diffracted by the diffraction grating 52 and at least a part of the ⁇ 1st order light into circularly polarized light that travels in parallel directions and emits it. Further, the diffraction grating 56 emits the emitted light so that they overlap each other.
  • FIG. 3 is a schematic cross-sectional view of the diffraction grating 42.
  • FIG. 4 is a plan view of the liquid crystal layer 62.
  • the diffraction gratings 46, 52, and 56 have the same configuration as the diffraction grating 42.
  • the diffraction grating 42 includes an alignment layer 60 formed on the substrate 40 and a liquid crystal layer 62 formed on the alignment layer 60.
  • the alignment of the molecules 64 of the liquid crystal layer 62 arranged in the normal direction of the substrate 40 is in the same direction.
  • FIG. 4 shows the alignment direction of the molecules 64 of the liquid crystal layer 62 in the same layer, that is, in the same layer from the substrate 40. As shown in FIG.
  • the orientation of the molecules 64 of the liquid crystal layer 62 changes gradually and periodically in a plane, that is, in the same layer.
  • the direction in which the molecules 64 having the same orientation are arranged in a plan view as viewed from the normal direction of the substrate 40 is a direction in which the stripe extends.
  • the direction in which the orientation of the molecules 64 changes is defined as the direction of the stripe periodicity. Therefore, the direction in which the stripe extends is orthogonal to the direction of the periodicity of the stripe.
  • the liquid crystal layer 62 diffracts the incident polarized light.
  • the diffracted light for example, the 0th order light and the ⁇ 1st order light are arranged along the direction of the periodicity of the stripe.
  • the diffraction grating 42 shown in FIGS. 3 and 4 is manufactured by irradiating the liquid crystal layer 62 with different polarized light, for example, clockwise circularly polarized light and counterclockwise circularly polarized light from different directions and aligning them with a holography device or the like. be able to. Thereby, the diffraction grating 42 can modulate the polarization state of the polarized light and diffract the polarized light.
  • FIG. 5 is a photograph of experimental results showing the relationship between the polarized light incident on the diffraction gratings 42, 46, 52, and 56 of the optical device 24 and the diffracted light.
  • the diffraction grating shown in FIG. 5 corresponds to any one of the diffraction gratings 42, 46, 52, and 56.
  • the upper diagram of FIG. 5 is a diagram of the diffracted light projected on a plane substantially perpendicular to the traveling direction of the light. In the upper diagram of FIG. 5, the larger the white circle, the greater the intensity of the corresponding diffracted light.
  • the lower diagram of FIG. 5 is a plan view showing the path of diffracted light diffracted by the diffraction grating. In the lower diagram of FIG.
  • the thicker the line the greater the intensity of the diffracted light.
  • the diffraction grating maximizes the intensity of the ⁇ 1st order light and increases the intensity of the + 1st order light. Is substantially zero.
  • the diffraction grating makes the intensity of ⁇ first-order light substantially equal and reduces the intensity of zero-order light.
  • the diffraction grating maximizes the intensity of the + 1st order light and makes the intensity of the ⁇ 1st order light substantially zero.
  • FIG. 6 is an exploded perspective view of the optical device 24.
  • a direction parallel to both the front direction and the vertical direction is defined as a horizontal direction.
  • the substrates 40, 44, 50, 54, and 58 are omitted.
  • the diffraction grating 42 has a grating pattern PG1 having stripes parallel to the horizontal direction.
  • the direction in which the dotted line extends in the plane of the diffraction grating 42 in FIG. 6 is the direction in which the stripe extends. That is, the grating pattern PG1 of the diffraction grating 42 has periodicity along the vertical direction.
  • the diffraction grating 46 is preferably the same as the diffraction grating 42.
  • An example in which the diffraction grating 42 and the diffraction grating 46 are the same is a form having the same function.
  • the diffraction grating 42 and the diffraction grating 46 diffract polarized light of the same polarization state in the same direction when light of the same wavelength is incident. Therefore, when the diffraction grating 42 and the diffraction grating 46 are formed of different materials, the fact that the diffraction grating 42 and the diffraction grating 46 are the same includes a case where the structure such as the thickness is different if the functions are the same. It is.
  • Another example in which the diffraction grating 42 and the diffraction grating 46 are the same is a form in which the grating patterns PG1 and PG2 have the same structure and the stripes of the grating patterns PG1 and PG2 are arranged in parallel to each other.
  • An example of a form in which the lattice patterns have the same structure here is a form in which the stripe periods of the lattice patterns PG1 and PG2 and the thicknesses of the lattice patterns PG1 and PG2 are the same.
  • the same stripe period means that the molecules 64 of the liquid crystal layer 62 constituting the lattice patterns PG1 and PG2 are made of the same material, and the alignment patterns of the molecules 64 are the same.
  • the positions of the diffraction grating 42 and the diffraction grating 46 are the direction in which the stripes extend or the direction of the periodicity of the stripes. It may be shifted to. That is, for example, when viewed from the incident side, the alignment directions of the molecules 64 of the liquid crystal layer 62 of the lattice patterns PG1 and PG2 overlapping in the same region may not be parallel to each other.
  • the lattice patterns PG1 and PG2 have the same structure and the stripes are arranged in parallel to each other, one lattice pattern PG1 with respect to the other lattice pattern PG2, with the normal direction as the rotation axis, You may arrange
  • the alignment directions of the molecules 64 of the liquid crystal layer 62 are the same.
  • the alignment directions of the molecules 64 of the liquid crystal layer 62 are mirror images, that is, when the molecules 64 of the liquid crystal layer 62 are projected on the same surface, Includes symmetric relationships.
  • the diffraction grating 52 has a grating pattern PG3 having stripes parallel to the vertical direction.
  • the diffraction grating 52 has the same grating pattern PG3 as the grating patterns PG1 and PG2 of the diffraction gratings 42 and 46, and has a grating pattern PG3 of a stripe orthogonal to the stripes of the grating patterns PG1 and PG2 of the diffraction gratings 42 and 46. .
  • light L00 which is linearly polarized laser light
  • the diffraction grating 42 Since the grating pattern PG1 of the diffraction grating 42 has periodicity in the vertical direction, the diffraction grating 42 diffracts the light L00 in the vertical direction. Thereby, the diffraction grating 42 emits the 0th-order light L10 traveling forward, the + 1st-order light L11 traveling obliquely upward, and the ⁇ 1st-order light L12 traveling obliquely downward.
  • the zero-order light L10 is linearly polarized light with the vertical direction as the polarization direction.
  • the ⁇ first-order lights L11 and L12 are emitted as circularly polarized light.
  • the ⁇ first-order lights L11 and L12 are circularly polarized lights that are reverse to each other.
  • the ⁇ nth-order light (n ⁇ 2) has a weak intensity and is less affected by speckle noise, and therefore will not be described.
  • the linearly polarized light L30 and L31 emitted from the quarter-wave plate 48 is incident on the diffraction grating 52.
  • the diffraction grating 52 diffracts incident light.
  • the grating pattern PG3 of the diffraction grating 52 has periodicity in the horizontal direction
  • the diffraction grating 52 diffracts and emits the incident linearly polarized light L30 and L31 in the horizontal direction. Therefore, the diffraction grating 52 emits the zero-order light L40 and the ⁇ first-order lights L41 and L42 obtained by diffracting the linearly polarized light L30 having the vertical direction into the polarization direction in the horizontal direction.
  • the diffraction grating 52 includes zero-order light L40 that travels forward while maintaining the polarization state, circularly-polarized + first-order light L41 that travels in the diagonally left direction, and circularly polarized light that travels forward and diagonally to the right.
  • the direction of the circularly polarized light of the + 1st order light L41 is opposite to the direction of the circularly polarized light of the ⁇ 1st order light L42.
  • the diffraction grating 52 emits 0th-order light L43 and ⁇ first-order light L44 and L45 obtained by diffracting linearly polarized light L31 whose polarization direction is the horizontal direction in the horizontal direction.
  • the diffraction grating 52 includes a zero-order light L43 that travels forward while maintaining a polarization state, a circularly-polarized + 1st-order light L44 that travels in the diagonally left direction, and a circularly polarized light that travels in the diagonally forward right direction.
  • a zero-order light L43 that travels forward while maintaining a polarization state
  • a circularly-polarized + 1st-order light L44 that travels in the diagonally left direction
  • a circularly polarized light that travels in the diagonally forward right direction.
  • the direction of the circularly polarized light of the + 1st order light L44 is opposite to the direction of the circularly polarized light of the ⁇ 1st order light L45.
  • the diffraction grating 52 and the diffraction grating 56 have the same grating patterns PG3 and PG4 and are arranged in parallel to each other.
  • the diffraction grating 56 diffracts a part of the + 1st order light L41 and L44 incident while traveling in the left oblique direction, and proceeds forward in the same direction as the traveling direction of the linearly polarized light L30 and L31 incident on the diffraction grating 52. -Emitted as primary light L52, L56.
  • the ⁇ 1st order lights L52 and L56 are circularly polarized light in the reverse directions of the + 1st order lights L41 and L44, respectively.
  • the diffraction grating 56 diffracts part of the ⁇ 1st order light L42 and L45 incident while traveling in the right oblique direction, and travels forward in the same direction as the linearly polarized light L30 and L31 incident on the diffraction grating 52. Emitted as first-order light L53 and L57.
  • the + 1st order lights L53 and L57 are circularly polarized light in the reverse directions of the ⁇ 1st order lights L42 and L45, respectively.
  • the diffraction grating 56 diffracts 0th-order light L40 and L43, which are linearly polarized light whose vertical or horizontal direction is the polarization direction, and travels as ⁇ first-order light L50, L51, L54, and L55 that travel diagonally forward. Exit. Since the ⁇ primary lights L50, L51, L54, and L55 have low intensity, the description thereof is omitted. As a result, the optical device 24 divides the incident light L00 in the horizontal direction and the vertical direction so that the intensity is weaker than that of the light L00, and four ⁇ 1 traveling in parallel while overlapping each other. The secondary lights L52, L53, L56, and L57 are emitted.
  • FIG. 7 is a graph showing the relationship between the wavelength of light incident on the diffraction grating and the intensity of the 0th-order light emitted by the diffraction grating.
  • a diffraction grating having a grating pattern having a periodicity of 3 ⁇ m between stripes was used.
  • the zero-order light can be weakened most. Therefore, a diffraction grating having a spacing of 3 ⁇ m between stripes can weaken the 0th order light of green light, which is highly sensitive to human eyes, and can reduce light spots.
  • FIG. 8 is a diagram for explaining variation in light emitted from the optical device 24.
  • a region surrounded by a thin dotted line is one pixel PX.
  • the light reflected by the stopped MEMS mirror 22 reaches one pixel PX.
  • the optical device 24 divides the light reflected by the MEMS mirror 22 into four light beams traveling in parallel and emits the light.
  • four squares indicated by bold lines indicate the arrival areas of four light beams having high intensity among the divided lights.
  • two lights arranged on the diagonal line of the pixel PX are circularly polarized light around the same direction.
  • the four lights are emitted by the diffraction grating 56 so as to overlap each other. It is preferable that the four lights fall within an area obtained by enlarging the pixel PX by 110%.
  • the substrates 40, 44, 50, 54, and 58 are glass substrates having a thickness of 0.21 mm. In this case, the total thickness of the optical device 24 is about 1.1 mm.
  • the periodicity of the stripes of the grating patterns PG1 to PG4 of the diffraction gratings 42, 46, 52, and 56 is 5.4 ⁇ m.
  • the diffraction gratings 42, 46, 52, and 56 emit ⁇ first-order light obtained by diffracting light having a wavelength of 532 nm at a diffraction angle of 5.6666 degrees.
  • the optical device 24 can store the four divided lights in an area where the pixel PX is enlarged by 110% under the condition that the size of the screen 30 is 12 inches and the resolution is 1280 ⁇ 720. .
  • the optical device 24 divides the light L00, which is an incident linearly polarized laser beam, into point-symmetric positions with the incident region as the center, has polarization directions that are symmetrical to each other, and is divided.
  • the ⁇ 1 st order light L52, L53, L56, L57 having high intensity is emitted so as to travel in parallel with each other. In this way, the optical device 24 can weaken the intensity by dividing the light and making the polarization directions symmetrical to each other.
  • the optical device 24 causes the ⁇ primary lights L52, L53, L56, and L57 to travel in parallel by causing the ⁇ primary lights L52, L53, L56, and L57 divided in a point-symmetric manner with the incident region as the center to travel in parallel. It is possible to suppress the formation of one pixel that is far away from each other. As a result, the optical device 24 can reduce speckle noise while suppressing image deterioration. Furthermore, since the optical device 24 does not need to drive the diffraction gratings 42, 46, 52, and 56, the configuration can be simplified.
  • FIG. 9 is an exploded perspective view of an optical device 124 according to another embodiment.
  • the optical device 124 includes a diffraction grating 142 and a diffraction grating 146.
  • the diffraction grating 142 and the diffraction grating 146 have the same configuration as the diffraction grating 42 and the diffraction grating 46 described above, and are arranged in the same direction.
  • a substrate is provided on each surface of the diffraction grating 142 and the diffraction grating 146.
  • the diffraction gratings 142 and 146 diffract a part of the light L00 and emit it as ⁇ 1st order light L22 and + 1st order light L23, which are circularly polarized light traveling forward. Note that the rotation directions of the circularly polarized light of the ⁇ 1st order light L22 and the + 1st order light L23 emitted from the diffraction grating 146 are opposite to each other.
  • the optical device 124 can reduce speckle noise by dividing the light L00 in the periodic direction of the grating pattern of the diffraction grating 142. Further, in the optical device 124, since the diffraction grating 146 emits the divided ⁇ first-order lights L22 and L23 in parallel, it is possible to suppress the separation of the ⁇ first-order lights L22 and L23, thereby suppressing image deterioration. .
  • FIGS. 10, 11 and 12 are cross-sectional views for explaining a form in which the arrangement of the diffraction gratings 42 and 46 with respect to the substrates 40 and 44 is changed.
  • 10 to 12 are diagrams of the substrates 40 and 44 and the diffraction gratings 42 and 46, but the substrates 50 and 54 and the diffraction gratings 52 and 56 may be similarly changed.
  • the diffraction gratings 42 and 46 may be disposed on the incident side of the substrates 40 and 44, respectively.
  • the diffraction grating 42 may be disposed on the emission side of the substrate 40, and the diffraction grating 46 may be disposed on the incident side of the substrate 44.
  • the diffraction grating 42 may be arranged on the incident side of the substrate 40 and the diffraction grating 46 may be arranged on the emission side of the substrate 44.
  • 13 and 14 are diagrams for explaining the orientation direction of the molecules 64 of the liquid crystal layer 62 of the diffraction gratings 42 and 46 as viewed from the incident side.
  • 13 and 14 are diagrams of the diffraction gratings 42 and 46, but the same applies to the diffraction gratings 52 and 56.
  • FIG. 13 and 14 show the diffraction gratings 42 and 46 shifted for the sake of explanation. Actually, in FIGS. 13 and 14, the four corners of the diffraction grating 42 and the four corners of the diffraction grating 46 are arranged to coincide with each other.
  • the molecules 64 of the liquid crystal layer 62 of the diffraction grating 42 may be parallel to the molecules 64 of the liquid crystal layer 62 of the diffraction grating 46.
  • an optical apparatus can be manufactured by bonding together diffraction gratings and substrates having the same structure.
  • the molecules 64 of the liquid crystal layer 62 of the diffraction grating 42 are line-symmetric with respect to the molecules 64 of the liquid crystal layer 62 of the diffraction grating 46 and the direction of the periodicity of the stripes, ie, mirror images. It may be related.
  • the diffraction gratings 42 and 46 are arranged on different sides of the substrates 40 and 44, that is, on the incident side and the emission side, or on the emission side and the incident side, respectively. It is valid. Thereby, an optical apparatus can be manufactured by bonding together diffraction gratings and substrates having the same structure.
  • the orientation direction of the molecules 64 of the liquid crystal layer 62 of the diffraction gratings 42 and 46 may be changed as appropriate.
  • the orientation direction of the molecules of the diffraction gratings 42 and 46 may be a line-symmetrical direction with the direction of the periodicity of the stripe as the symmetry axis.
  • FIG. 15 is an exploded perspective view of an optical device 224 according to another embodiment.
  • Linearly polarized light L00 with the vertical direction as the polarization direction is incident on the optical device 224.
  • the optical device 224 is an example of a quarter-wave plate 240, a birefringent member 242 that is an example of an incident-side modulator, a quarter-wave plate 244, and an exit-side modulator.
  • the birefringent members 242, 246 are made of, for example, a material such as quartz.
  • the quarter-wave plate 240 is disposed on the most incident side in the optical device 224.
  • the quarter-wave plate 240 modulates the incident light L00, which is linearly polarized laser light, into circularly polarized light L60 and emits it.
  • the birefringent member 242 is disposed on the exit side of the quarter wavelength plate 240.
  • the birefringent member 242 has an optical axis inclined from the front, for example, an optical axis inclined by 45 ° in a side view.
  • the optical axis here is a slow axis or a fast axis.
  • the optical axis is parallel to the side surface normal to the horizontal direction.
  • the birefringent member 242 divides the incident circularly polarized light L60 in the vertical direction and emits ordinary light L70 and extraordinary light L71.
  • the ordinary light L70 is linearly polarized light whose polarization direction is a horizontal direction orthogonal to the optical axis.
  • the extraordinary light L71 is linearly polarized light whose polarization direction is parallel to the optical axis, that is, the vertical direction parallel to the side surface.
  • the quarter wavelength plate 244 is disposed on the exit side of the birefringent member 242.
  • the quarter-wave plate 244 modulates the ordinary light L70 and the extraordinary light L71, which are incident linearly polarized laser light, into a circularly polarized light L80 and a circularly polarized light L81 and emits the modulated light.
  • the circularly polarized light L80 and the circularly polarized light L81 are circularly polarized lights that are reverse to each other.
  • the birefringent member 246 has an optical axis tilted from the front, for example, an optical axis tilted by 45 ° in plan view.
  • the optical axis is parallel to the upper and lower surfaces whose normal is the vertical direction.
  • the birefringent member 246 divides the circularly polarized light L80 and the circularly polarized light L81 in the left-right direction, and emits ordinary light L90, extraordinary light L91, ordinary light L92, and extraordinary light L93 that travel parallel to each other. That is, the birefringent member 246 divides light in a horizontal direction that is different from the direction in which the birefringent member 242 divides.
  • Ordinary lights L90 and L92 are linearly polarized light whose polarization direction is the horizontal direction orthogonal to the optical axis.
  • the extraordinary lights L91 and L93 are linearly polarized light whose polarization direction is parallel to the optical axis, that is, the vertical direction parallel to the top and bottom surfaces.
  • the optical device 224 divides the ordinary light L90, the extraordinary light L91, the ordinary light L92, and the extraordinary light L93 so that they are not arranged in a straight line. Accordingly, the optical device 224 can reduce variations in the positions of the ordinary light L90, the extraordinary light L91, the ordinary light L92, and the extraordinary light L93, and thus can suppress image degradation while reducing speckle noise.
  • the birefringent members 242 and 246 are exemplified as the incident-side modulation unit and the emission-side modulation unit.
  • the incident-side modulation unit and the emission-side modulation unit have many polarization directions of linearly polarized light that is incident. Any configuration that modulates in the direction may be used. Therefore, the incident-side modulation unit and the emission-side modulation unit may be configured to emit circularly polarized light and natural light obtained by modulating the polarization direction of incident linearly polarized light in multiple directions.
  • the stripes of the grating patterns PG1 and PG2 of the diffraction gratings 42 and 46 do not have to be orthogonal to the stripes of the grating pattern PG3, and need only intersect.
  • the relationship between the direction of the grating pattern of the diffraction grating and the polarization direction of linearly polarized light may be changed as appropriate.
  • the polarization direction of the linearly polarized light L00 may be inclined or parallel to the periodic direction of the grating pattern PG1.
  • the ⁇ first-order light is diffracted and emitted along the periodic direction of the grating pattern PG1.
  • FIG. 16 is an overall configuration diagram of the optical device 324 with a part thereof changed.
  • the optical device 324 includes an optical member 325 and a polarization switch 370.
  • the optical member 325 has the same configuration as the optical device 24.
  • the polarization switch 370 is disposed on the optical path of light emitted as laser light.
  • the polarization switch 370 is provided on the emission side of the optical member 325.
  • the polarization switch 370 switches the polarization state of the light emitted from the optical member 325 in a time division manner.
  • the polarization switch 370 includes a pair of transparent electrodes 372 and 376 and a liquid crystal member 374 disposed between the pair of transparent electrodes 372 and 376.
  • the pair of transparent electrodes 372 and 376 cover substantially the entire surface on the incident side and the surface on the emission side of the liquid crystal member 374.
  • the voltage applied to the pair of transparent electrodes 372 and 376 is controlled by the control unit 28.
  • the liquid crystal member 374 functions as, for example, a half-wave plate depending on the applied voltage.
  • the control unit 28 switches the voltage applied to the transparent electrodes 372 and 376 every switching period T.
  • An example of the switching period T is 20 msec.
  • the voltage may be an alternating current with a switching period T, or a direct current with which the voltage switches discontinuously in the switching period T.
  • the alignment direction of the liquid crystal molecules of the liquid crystal member 374 changes every switching period T.
  • the polarization switch 370 emits counterclockwise circular polarized light at a certain time, and emits clockwise circular polarized light as it is after a switching period T from that time.
  • speckle noise is formed in a different position for every switching period T, the influence of the speckle noise on the viewer can be reduced.
  • FIG. 17 is an overall configuration diagram of the optical device 424 with a part thereof changed.
  • the optical device 424 includes an optical member 325 and a polarization conversion unit 480.
  • the polarization conversion unit 480 is arranged on the optical path of L00, which is laser light, and converts incident light into light having different polarization states and traveling in the same direction.
  • An example of the same direction is a direction substantially parallel to each other, preferably a direction parallel to each other.
  • the polarization conversion unit 480 is disposed on the output side of the optical member 325.
  • the polarization conversion unit 480 includes a polarization beam splitter 482, a quarter wavelength plate 484, a reflection member 486, a quarter wavelength plate 488, and a reflection member 490.
  • the central surface 483 of the polarization beam splitter 482 transmits a component in one vibration direction and reflects a component in another vibration direction in the light incident from the optical member 325.
  • one vibration direction and the other vibration direction are orthogonal to each other.
  • the central surface 483 transmits a vibration component in a horizontal direction (for example, a direction parallel to the paper surface) among vibration components included in the circularly polarized light, and the vertical surface (for example, the paper surface).
  • the vibration component in the direction perpendicular to the surface is reflected.
  • the central surface 483 emits the transmitted light to the quarter-wave plate 484 as linearly polarized light having the horizontal direction as the polarization direction, and reflects the reflected light as 1 linearly polarized light having the vertical direction as the polarization direction.
  • the light is emitted to the / 4 wavelength plate 488.
  • the quarter-wave plates 484 and 488 convert the polarization direction of the transmitted light.
  • the quarter wave plates 484 and 488 function as half wave plates.
  • the quarter wavelength plates 484 and 488 convert the polarization direction of the linearly polarized light when the light transmitted twice is linearly polarized light.
  • the quarter-wave plate 484 rotates linearly polarized light whose horizontal direction is the polarization direction by 90 °, converts it into linearly polarized light whose vertical direction is the polarization direction, and emits it to the central plane 483.
  • the 1 ⁇ 4 wavelength plate 488 rotates the linearly polarized light whose vertical direction is the polarization direction by 90 °, converts it into the linearly polarized light whose horizontal direction is the polarization direction, and emits it to the central plane 483.
  • the light transmitted through the central surface 483 of the polarizing beam splitter 482 is returned to the linearly polarized light whose polarization direction is rotated by 90 ° by the quarter wavelength plate 484 and whose vertical direction is the polarization direction. Reflected by the surface 483.
  • the light reflected by the central surface 483 of the polarizing beam splitter 482 is rotated by 90 ° by the quarter wavelength plate 488 and returned as linearly polarized light having the horizontal direction as the polarization direction. Therefore, the light passes through the surface 483.
  • the polarization conversion unit 480 converts the incident light into light having different polarization states and traveling in parallel with each other, and outputs the light. It should be noted that the polarization conversion unit 480 converts the light incident on the polarization beam splitter 482 into linearly polarized light having different polarization directions and traveling parallel to each other, and outputs the linearly polarized light.
  • the optical device 424 converts the polarized light beams having different polarization directions into parallel polarized light beams that travel in parallel with each other and emits the polarized light beams. Thereby, the optical device 424 further disperses the speckle noise, so that the influence of the speckle noise can be reduced.
  • FIG. 18 is an overall configuration diagram of the optical device 524 with a part thereof changed.
  • the optical device 524 includes an optical member 325, a polarization conversion unit 480, and a polarization switch 370.
  • the optical member 325, the polarization conversion unit 480, and the polarization switch 370 are arranged in this order along the light traveling direction.
  • FIG. 19 is a schematic diagram of an experimental apparatus for examining speckle noise reduction.
  • a green laser device 692 that emits green laser light was used as a light source.
  • Laser light was emitted to the optical device 624 by the green laser device 692.
  • the laser light has a beam diameter of 2 mm at a wavelength of 532 nm.
  • the light that passed through the optical device 624 and was projected onto the pseudo-diffusing sphere 694 was photographed with a digital single-lens reflex camera (D40 manufactured by Nikon Corporation).
  • the gradation distribution in the plane of the photographed image was calculated by image processing software.
  • the gradation distribution was calculated as a 10 mm ⁇ 10 mm square around the center of the pseudo-diffusing sphere 694 as an evaluation area.
  • the gradation distribution was calculated from each of the images captured three times by each optical device 624. From the calculated gradation distribution, the average gradation of the gradation distribution in the evaluation area, the standard deviation of the gradation distribution in the evaluation area, and the speckle contrast were calculated.
  • optical device 624 an optical device 24, an optical device 324, an optical device 424, and an optical device 524 were used.
  • the pitch of the diffraction grating of the optical device 24 and the optical member 325 was set to 5.2 ⁇ m.
  • the same experiment was performed for a configuration without an optical device (described as “no element” in the table).
  • FIG. 20 shows the results of an experiment that proves the reduction of speckle noise.
  • the optical device 24 can reduce the average speckle contrast by about 26% compared to the case where there is no element such as an optical device.
  • the optical device 24 can reduce speckle noise while not requiring voltage control unlike the polarization switch 370 and suppressing the enlargement of the polarization conversion unit 480.
  • the optical devices 324, 424, and 524 combined with the optical device 24 and at least one of the polarization switch 370 or the polarization conversion unit 480 can reduce the average speckle contrast by at least 34% compared to the case without the element.
  • the optical device 524 that combines the optical device 24, the polarization switch 370, and the polarization conversion unit 480 can reduce the average speckle contrast by 58%.
  • optical devices 324, 424, and 524 may be changed as appropriate. For example, they may be arranged in the following arrangement order.
  • Polarization switch 370 ⁇ optical member 325 ⁇ polarization converter 480 Optical member 325 ⁇ polarization switch 370 ⁇ polarization converter 480 Polarization conversion unit 480 ⁇ polarization switch 370 ⁇ optical member 325 Polarization conversion unit 480 ⁇ optical member 325 ⁇ polarization switch 370 Polarization switch 370 ⁇ optical member 325
  • FIG. 21 is a perspective view of a diffraction grating 724 in which a part of the diffraction grating 42 is changed.
  • the diffraction grating 724 includes a plate-like transparent electrode 766, a liquid crystal layer 767, and a plurality of linear transparent electrodes 768.
  • the plate-like transparent electrode 766 is provided on one surface of the liquid crystal layer 767, for example, the incident side surface.
  • the plate-like transparent electrode 766 covers substantially the entire surface of the liquid crystal layer 767.
  • the horizontal length of the linear transparent electrode 768 has the same length as one side of the plate-shaped transparent electrode 766 in the horizontal direction.
  • the length of the linear transparent electrode 768 in the vertical direction is shorter than the length of one side of the plate-shaped transparent electrode 766 in the vertical direction.
  • the linear transparent electrode 768 has a shape obtained by dividing the plate-like transparent electrode 766 in the vertical direction.
  • the linear transparent electrodes 768 are arranged in parallel with each other at equal intervals along the vertical direction. Thereby, the linear transparent electrodes 768 are electrically insulated from each other.
  • the plate-like transparent electrode 766 and the linear transparent electrode 768 are connected to the control unit 28 which is an example of an electrode control unit.
  • the control unit 28 controls the voltage applied to the plate-like transparent electrode 766 and the linear transparent electrode 768.
  • the liquid crystal layer 767 has a different refractive index depending on an applied voltage. Accordingly, the liquid crystal layer 767 has a refractive index difference between the regions, and functions as a diffraction grating.
  • control unit 28 can have the same function as when the period of the grating in the diffraction grating is changed by changing the period of the linear transparent electrode 768 to which the same voltage is applied.
  • the control unit 28 sets the period of the grating of the diffraction grating 724 when the same voltage is applied at intervals of one line from the top, such as the first line, the third line, and the fifth line.
  • the grating period of the diffraction grating 724 when applied at intervals of two lines such as the fifth line and the sixth line can be halved. Thereby, the diffraction grating 724 can realize different configurations of the diffraction function under the control of the control unit 28.
  • the diffraction grating 724 can control the dispersion of light that causes speckle noise even when light of different wavelengths is incident. Therefore, speckle noise can be reduced while reducing the influence of light wavelength. Can be reduced. Note that the same configuration as that of the diffraction grating 724 may be applied to diffraction gratings other than the diffraction grating 42.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

The present invention solves the problem of a complicated configuration which results when a movement member for moving optical components is required in an optical device with which spectral noise is reduced by moving the optical components. This optical device is equipped with a diffraction part (42) that diffracts and then emits linearly polarized laser light (L00), and a direction changing part (46) that changes the direction of at least a portion of the +1 order light (L11) and at least a portion of the -1 order light (L12) emitted from the diffraction part, so as to be in a parallel direction, and then emits this light. Furthermore, the optical device is equipped with: an incident-side modulation part that changes the polarization direction of the linearly polarized laser light to multiple directions; a first birefringence part that divides the light (modulated by the incident-side modulation part) in a first direction, thereby emitting first light and second light; an emission-side modulation part that changes the polarization direction of the first light and the second light, emitted from the first birefringence part, to multiple directions; and a second birefringence part that divides the light (modulated by the emission-side modulation part) in a second direction different from the first direction, and emits this light as advancing parallel light.

Description

光学装置Optical device
 本発明は、光学装置に関する。 The present invention relates to an optical device.
 レーザ光を光源とする装置において、光学部品を移動させることによってスペックルノイズを低減する光学装置が知られている(例えば、特許文献1参照)。
 [特許文献1] 特表2004-529375号公報
In an apparatus using laser light as a light source, an optical apparatus that reduces speckle noise by moving an optical component is known (for example, see Patent Document 1).
[Patent Document 1] Japanese translations of PCT publication No. 2004-529375
 しかしながら、上述の装置では、光学部品を移動させる移動部材が必要となるので、構成が複雑になるといった課題がある。 However, the above-described apparatus has a problem that the configuration is complicated because a moving member for moving the optical component is required.
 本発明の第1の態様においては、直線偏光のレーザ光を回折して出射する回折部と、前記回折部から出射された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に変換して出射する方向変換部とを備える光学装置を提供する。 In the first aspect of the present invention, a diffractive portion that diffracts and emits linearly polarized laser light, and at least part of the + 1st order light and at least part of the −1st order light emitted from the diffractive part are provided. An optical device is provided that includes a direction changing unit that converts the light into a parallel direction and emits the light.
 本発明の第2の態様においては、直線偏光のレーザ光の偏光方向を多方向に変調する入射側変調部と、前記入射側変調部が変調した光を第1方向に分割して、第1光及び第2光を出射する第1複屈折部と、前記第1複屈折部から出射された前記第1光及び前記第2光の偏光方向を多方向に変調する出射側変調部と、前記出射側変調部が変調した光を前記第1方向とは異なる第2方向で分割して、且つ、互いに平行に進行する光として出射する第2複屈折部とを備える光学装置を提供する。 In the second aspect of the present invention, the incident-side modulation unit that modulates the polarization direction of the linearly polarized laser beam in multiple directions, and the light modulated by the incident-side modulation unit are divided into the first direction, and the first A first birefringence unit that emits light and second light, an emission-side modulation unit that modulates polarization directions of the first light and the second light emitted from the first birefringence unit in multiple directions, An optical device is provided that includes a second birefringence unit that divides the light modulated by the emission-side modulation unit in a second direction different from the first direction and emits the light traveling in parallel with each other.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
光学装置24が設けられたプロジェクタ10の全体構成図である。1 is an overall configuration diagram of a projector 10 provided with an optical device 24. FIG. 光学装置24の断面図である。2 is a cross-sectional view of an optical device 24. FIG. 回折格子42の概略断面図である。3 is a schematic sectional view of a diffraction grating 42. FIG. 液晶層62の平面図である。4 is a plan view of a liquid crystal layer 62. FIG. 光学装置24の回折格子に入射する偏光と、回折した光の関係を示す実験結果の写真である。6 is a photograph of experimental results showing the relationship between polarized light incident on the diffraction grating of the optical device 24 and diffracted light. 光学装置24の分解斜視図である。3 is an exploded perspective view of the optical device 24. FIG. 回折格子に入射する光の波長と、回折格子が出射する0次光の強度との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the light which injects into a diffraction grating, and the intensity | strength of the 0th-order light which a diffraction grating radiate | emits. 光学装置24から出射される光のばらつきを説明する図である。It is a figure explaining the dispersion | variation in the light radiate | emitted from the optical apparatus 24. FIG. 別の実施形態による光学装置124の分解斜視図である。FIG. 6 is an exploded perspective view of an optical device 124 according to another embodiment. 基板40、44に対する回折格子42、46の配置を変更した形態を説明する断面図である。It is sectional drawing explaining the form which changed arrangement | positioning of the diffraction gratings 42 and 46 with respect to the board | substrates 40 and 44. FIG. 基板40、44に対する回折格子42、46の配置を変更した形態を説明する断面図である。It is sectional drawing explaining the form which changed arrangement | positioning of the diffraction gratings 42 and 46 with respect to the board | substrates 40 and 44. FIG. 基板40、44に対する回折格子42、46の配置を変更した形態を説明する断面図である。It is sectional drawing explaining the form which changed arrangement | positioning of the diffraction gratings 42 and 46 with respect to the board | substrates 40 and 44. FIG. 入射側から見た回折格子42、46の液晶層62の分子64の配向方向を説明する図である。It is a figure explaining the orientation direction of the molecule | numerator 64 of the liquid crystal layer 62 of the diffraction gratings 42 and 46 seen from the incident side. 入射側から見た回折格子42、46の液晶層62の分子64の配向方向を説明する図である。It is a figure explaining the orientation direction of the molecule | numerator 64 of the liquid crystal layer 62 of the diffraction gratings 42 and 46 seen from the incident side. 別の実施形態による光学装置224の分解斜視図である。FIG. 6 is an exploded perspective view of an optical device 224 according to another embodiment. 一部を変更した光学装置324の全体構成図である。It is a whole block diagram of the optical apparatus 324 which changed a part. 一部を変更した光学装置424の全体構成図であるIt is a whole block diagram of the optical apparatus 424 which changed a part. 一部を変更した光学装置524の全体構成図である。It is a whole block diagram of the optical apparatus 524 which changed a part. スペックルノイズ低減を調べた実験装置の概略図である。It is the schematic of the experimental apparatus which investigated speckle noise reduction. スペックルノイズの低減を証明する実験の結果である。It is the result of the experiment which proves the reduction of speckle noise. 回折格子42の一部を変更した回折格子724の斜視図である。6 is a perspective view of a diffraction grating 724 in which a part of the diffraction grating 42 is changed. FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、光学装置24が設けられたプロジェクタ10の全体構成図である。図1に矢印で示す上下及び前をプロジェクタ10の上下方向及び前方とする。プロジェクタ10は、レーザ光源12、14、16から出射されたレーザ光によって画像を生成して、スクリーン30に投影する。 FIG. 1 is an overall configuration diagram of the projector 10 provided with the optical device 24. The up and down and front directions indicated by arrows in FIG. The projector 10 generates an image with the laser light emitted from the laser light sources 12, 14, and 16 and projects the image on the screen 30.
 図1に示すように、プロジェクタ10は、レーザ光源12、14、16と、ダイクロイックミラー18、20と、MEMSミラー22と、光学装置24と、投影部26と、制御部28とを備える。 As shown in FIG. 1, the projector 10 includes laser light sources 12, 14, 16, dichroic mirrors 18, 20, a MEMS mirror 22, an optical device 24, a projection unit 26, and a control unit 28.
 レーザ光源12は、MEMSミラー22に向けて、上下方向を偏光方向とする直線偏光のレーザ光である赤色光RLを出射する。レーザ光源14は、ダイクロイックミラー18に向けて、上下方向を偏光方向とする直線偏光のレーザ光である緑色光GLを出射する。レーザ光源16は、ダイクロイックミラー20に向けて、上下方向を偏光方向とする直線偏光のレーザ光である青色光BLを出射する。 The laser light source 12 emits red light RL that is linearly polarized laser light having a vertical polarization direction toward the MEMS mirror 22. The laser light source 14 emits green light GL, which is linearly polarized laser light having a vertical polarization direction, toward the dichroic mirror 18. The laser light source 16 emits blue light BL, which is linearly polarized laser light having a vertical direction as a polarization direction, toward the dichroic mirror 20.
 ダイクロイックミラー18、20は、一例として、誘電体多層膜を含む。ダイクロイックミラー18、20は、ダイクロイックプリズムであってもよい。 The dichroic mirrors 18 and 20 include a dielectric multilayer film as an example. The dichroic mirrors 18 and 20 may be dichroic prisms.
 ダイクロイックミラー18は、レーザ光源14が出射する緑色光GLの進路上に配置されている。ダイクロイックミラー18は、緑色光GLを反射して、その他の波長の光を透過する。従って、ダイクロイックミラー18は、レーザ光源12が出射した赤色光RLを透過する。一方、ダイクロイックミラー18は、レーザ光源14が出射した緑色光GLをMEMSミラー22に向けて反射する。 The dichroic mirror 18 is disposed on the path of the green light GL emitted from the laser light source 14. The dichroic mirror 18 reflects the green light GL and transmits light of other wavelengths. Accordingly, the dichroic mirror 18 transmits the red light RL emitted from the laser light source 12. On the other hand, the dichroic mirror 18 reflects the green light GL emitted from the laser light source 14 toward the MEMS mirror 22.
 ダイクロイックミラー20は、レーザ光源16が出射する青色光BLの進路上に配置されている。ダイクロイックミラー20は、青色光BLを反射して、その他の波長の光を透過する。従って、ダイクロイックミラー20は、レーザ光源12が出射した赤色光RLを透過する。また、ダイクロイックミラー20は、レーザ光源14が出射してダイクロイックミラー18によって反射された緑色光GLを透過する。一方、ダイクロイックミラー20は、レーザ光源16が出射した青色光BLをMEMSミラー22に向けて反射する。 The dichroic mirror 20 is disposed on the path of the blue light BL emitted from the laser light source 16. The dichroic mirror 20 reflects the blue light BL and transmits light of other wavelengths. Accordingly, the dichroic mirror 20 transmits the red light RL emitted from the laser light source 12. The dichroic mirror 20 transmits the green light GL emitted from the laser light source 14 and reflected by the dichroic mirror 18. On the other hand, the dichroic mirror 20 reflects the blue light BL emitted from the laser light source 16 toward the MEMS mirror 22.
 MEMSミラー22は、レーザ光源12から出射された赤色光RL、ダイクロイックミラー18によって反射された緑色光GL、ダイクロイックミラー20によって反射された青色光BLの進路上に配置されている。MEMSミラー22は、2次元面内で移動する。MEMSミラー22は、移動しつつ光を反射することにより、スクリーン30上に画像を投影する。 The MEMS mirror 22 is disposed on the path of the red light RL emitted from the laser light source 12, the green light GL reflected by the dichroic mirror 18, and the blue light BL reflected by the dichroic mirror 20. The MEMS mirror 22 moves in a two-dimensional plane. The MEMS mirror 22 projects an image on the screen 30 by reflecting light while moving.
 光学装置24は、直線偏光である赤色光RL、緑色光GL、青色光BLを回折して、スペックルノイズを低減する。光学装置24の詳細は、後述する。 The optical device 24 diffracts red light RL, green light GL, and blue light BL, which are linearly polarized light, to reduce speckle noise. Details of the optical device 24 will be described later.
 投影部26は、画像を形成する光であって、光学装置24から出射された光を拡大して、スクリーン30へと画像を投影する。 The projection unit 26 enlarges the light that forms an image and is emitted from the optical device 24, and projects the image onto the screen 30.
 制御部28は、プロジェクタ10の制御全般を司る。制御部28の一例は、CPU(Central Processing Unit)等の演算装置である。制御部28は、レーザ光源12、14、16のオン・オフを切り替える。制御部28は、MEMSミラー22の反射及び位置を制御して、画像を生成する。 The control unit 28 performs overall control of the projector 10. An example of the control unit 28 is an arithmetic device such as a CPU (Central Processing Unit). The control unit 28 switches the laser light sources 12, 14, 16 on and off. The control unit 28 controls the reflection and position of the MEMS mirror 22 to generate an image.
 上述したプロジェクタ10では、制御部28が、レーザ光源12、14、16のいずれかをオンにして、レーザ光を出射させる。例えば、制御部28が、レーザ光源12をオンにして、赤色光RLを出射させる。赤色光RLは、ダイクロイックミラー18、20を透過して、MEMSミラー22に達する。投影する赤色の画像に対応させて、制御部28は、MEMSミラー22の反射及び位置を制御する。これにより、MEMSミラー22は、赤色光RLを光学装置24の方向へと反射する。光学装置24は、スペックルノイズを低減できる状態に赤色光RLを変換して、投影部26へと出射する。投影部26は、赤色光RLによって構成される画像をスクリーン30へ拡大して投影する。同様に、制御部28は、レーザ光源14、16を順次オン状態するとともに、MEMSミラー22の反射及び位置を制御することによって、緑色光GL及び青色光BLによって構成される画像をスクリーン30に投影する。これにより、プロジェクタ10は、スペックルノイズを低減したカラー画像を投影することができる。 In the projector 10 described above, the control unit 28 turns on one of the laser light sources 12, 14, and 16 to emit laser light. For example, the control unit 28 turns on the laser light source 12 and emits red light RL. The red light RL passes through the dichroic mirrors 18 and 20 and reaches the MEMS mirror 22. The control unit 28 controls the reflection and position of the MEMS mirror 22 in correspondence with the red image to be projected. As a result, the MEMS mirror 22 reflects the red light RL toward the optical device 24. The optical device 24 converts the red light RL into a state where speckle noise can be reduced, and emits the red light RL to the projection unit 26. The projection unit 26 magnifies and projects an image composed of the red light RL onto the screen 30. Similarly, the control unit 28 sequentially turns on the laser light sources 14 and 16 and controls the reflection and position of the MEMS mirror 22 to project an image composed of the green light GL and the blue light BL onto the screen 30. To do. Thereby, the projector 10 can project a color image with reduced speckle noise.
 図2は、光学装置24の断面図である。図2に矢印で前と示す方向を、光学装置24に入射する光L0の進行方向である前方とする。光学装置24に入射する光L00は、レーザ光源12、14、16から出射されてMEMSミラー22によって反射された上下方向を偏光方向とする直線偏光である。尚、入射する直線偏光は、上下方向でなくてもよい。換言すれば、光学装置24の向きは、入射する直線偏光の偏光方向に対して、自由に設定できる。 FIG. 2 is a cross-sectional view of the optical device 24. The direction indicated by the arrow in FIG. 2 is the forward direction in which the light L0 incident on the optical device 24 travels. The light L00 incident on the optical device 24 is linearly polarized light whose polarization direction is the vertical direction emitted from the laser light sources 12, 14, and 16 and reflected by the MEMS mirror 22. The incident linearly polarized light may not be in the vertical direction. In other words, the direction of the optical device 24 can be freely set with respect to the polarization direction of the incident linearly polarized light.
 図2に示すように、光学装置24は、基板40と、回折格子42と、基板44と、回折格子46と、1/4波長板48と、基板50と、回折格子52と、基板54と、回折格子56と、基板58とを有する。図2においては、基板40から基板58までを貼り合わせているが、基板40から基板58までの一部または全てを離間させてもよい。 As shown in FIG. 2, the optical device 24 includes a substrate 40, a diffraction grating 42, a substrate 44, a diffraction grating 46, a quarter wavelength plate 48, a substrate 50, a diffraction grating 52, and a substrate 54. , A diffraction grating 56 and a substrate 58. In FIG. 2, the substrate 40 to the substrate 58 are bonded together, but a part or all of the substrate 40 to the substrate 58 may be separated.
 基板40、44、50、54、58の一例は、光学的に等方なガラス基板である。基板40、44、50、54、58の一例は、平面状で且つ光の進行方向から見て四角形状である。基板40、44、50、54、58の厚みは、例えば、0.21mmである。基板40、44、50、54、58の順で、MEMSミラー22によって反射された光L00の入射側から出射側に沿って配列されている。基板40、44、50、54、58は、入射する光L00の進行方向に対して略垂直に配置されている。 An example of the substrates 40, 44, 50, 54, and 58 is an optically isotropic glass substrate. An example of the substrates 40, 44, 50, 54, and 58 has a planar shape and a rectangular shape when viewed from the light traveling direction. The thickness of the substrates 40, 44, 50, 54, 58 is, for example, 0.21 mm. The substrates 40, 44, 50, 54, and 58 are arranged in this order from the incident side to the outgoing side of the light L00 reflected by the MEMS mirror 22. The substrates 40, 44, 50, 54, and 58 are disposed substantially perpendicular to the traveling direction of the incident light L00.
 回折格子42、46、52、56の一例は、液晶分子の配向方向が平面内で周期的に変化する液晶偏光回折格子である。即ち、回折格子42、46、52、56は、偏光状態に基づいて偏光を回折する。例えば、回折格子42、46、52、56は、偏光状態に基づいて、一の回折光(例えば、+1次光)の強度を大きくして、他の回折光(例えば、-1次光)の強度を小さくする。また、回折格子42、46、52、56は、偏光状態を変調する。例えば、回折格子42、46、52、56は、直線偏光を円偏光に変調する。また、回折格子42、46、52、56は、右回りの円偏光を左回りの円偏光、または、左回りの円偏光を右回りの円偏光に変調する。 An example of the diffraction gratings 42, 46, 52, and 56 is a liquid crystal polarization diffraction grating in which the alignment direction of liquid crystal molecules periodically changes in a plane. That is, the diffraction gratings 42, 46, 52, and 56 diffract polarized light based on the polarization state. For example, the diffraction gratings 42, 46, 52, and 56 increase the intensity of one diffracted light (for example, + 1st order light) based on the polarization state and increase the intensity of the other diffracted light (for example, −1st order light). Reduce strength. The diffraction gratings 42, 46, 52, and 56 modulate the polarization state. For example, the diffraction gratings 42, 46, 52, and 56 modulate linearly polarized light into circularly polarized light. The diffraction gratings 42, 46, 52, and 56 modulate clockwise circularly polarized light into counterclockwise circularly polarized light or counterclockwise circularly polarized light into clockwise circularly polarized light.
 回折格子42は、回折部の一例である。回折格子42は、基板40と、基板44との間に配置されている。換言すれば、回折格子42は、回折格子42、46、52、56のうち、最も光の入射側に配置されている。回折格子42は、入射する直線偏光のレーザ光を回折して出射する。 The diffraction grating 42 is an example of a diffraction part. The diffraction grating 42 is disposed between the substrate 40 and the substrate 44. In other words, the diffraction grating 42 is disposed on the most light incident side among the diffraction gratings 42, 46, 52, and 56. The diffraction grating 42 diffracts and emits incident linearly polarized laser light.
 回折格子46は、方向変換部の一例である。回折格子46は、基板44と基板50との間であって、1/4波長板48の入射側の面に配置されている。回折格子46は、回折格子42よりも出射側に配置されている。回折格子46は、回折格子42から出射された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に変換した円偏光を出射する。 The diffraction grating 46 is an example of a direction changing unit. The diffraction grating 46 is disposed between the substrate 44 and the substrate 50 and on the incident side surface of the quarter-wave plate 48. The diffraction grating 46 is disposed on the emission side with respect to the diffraction grating 42. The diffraction grating 46 emits circularly polarized light obtained by converting at least part of the + 1st order light emitted from the diffraction grating 42 and at least part of the −1st order light in parallel directions.
 1/4波長板48は、基板44と基板50との間であって、回折格子46の出射側の面に設けられている。1/4波長板48は、回折格子42、46と、回折格子52、56との間に配置されている。1/4波長板48は、入射する偏光の偏光状態を変調する。例えば、1/4波長板48は、入射する直線偏光を円偏光に変調して、また、入射する円偏光を直線偏光に変調する。従って、1/4波長板48は、回折格子46が出射した円偏光を直線偏光にして出射する。 The quarter-wave plate 48 is provided between the substrate 44 and the substrate 50 and on the exit side surface of the diffraction grating 46. The quarter wavelength plate 48 is disposed between the diffraction gratings 42 and 46 and the diffraction gratings 52 and 56. The quarter wavelength plate 48 modulates the polarization state of the incident polarized light. For example, the quarter wave plate 48 modulates incident linearly polarized light into circularly polarized light, and modulates incident circularly polarized light into linearly polarized light. Therefore, the quarter wave plate 48 emits the circularly polarized light emitted from the diffraction grating 46 as linearly polarized light.
 回折格子52は、第2回折部の一例である。回折格子52は、基板50と基板54との間であって、回折格子46及び1/4波長板48の出射側に設けられている。回折格子52は、回折格子56の入射側に配置されている。回折格子52は、1/4波長板48から出射された直線偏光を回折格子42の回折方向と異なる方向に回折して出射する。 The diffraction grating 52 is an example of a second diffraction part. The diffraction grating 52 is provided between the substrate 50 and the substrate 54 and on the emission side of the diffraction grating 46 and the quarter wavelength plate 48. The diffraction grating 52 is disposed on the incident side of the diffraction grating 56. The diffraction grating 52 diffracts and emits the linearly polarized light emitted from the quarter-wave plate 48 in a direction different from the diffraction direction of the diffraction grating 42.
 回折格子56は、第2方向変換部の一例である。回折格子56は、基板54と基板58との間であって、回折格子52の出射側に配置されている。換言すれば、回折格子56は、回折格子42、46、52、56のうち、最も出射側に配置されている。回折格子56は、回折格子52によって回折された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に進行する円偏光に変換して出射する。また、回折格子56は、出射する光が互いに重なるように出射する。 The diffraction grating 56 is an example of a second direction conversion unit. The diffraction grating 56 is disposed between the substrate 54 and the substrate 58 and on the emission side of the diffraction grating 52. In other words, the diffraction grating 56 is disposed on the most output side of the diffraction gratings 42, 46, 52, 56. The diffraction grating 56 converts at least a part of the + 1st order light diffracted by the diffraction grating 52 and at least a part of the −1st order light into circularly polarized light that travels in parallel directions and emits it. Further, the diffraction grating 56 emits the emitted light so that they overlap each other.
 図3は、回折格子42の概略断面図である。図4は、液晶層62の平面図である。尚、回折格子46、52、56も回折格子42と同様の構成である。図3に示すように、回折格子42は、基板40上に形成された配向層60と、配向層60上に形成された液晶層62とを有する。基板40の法線方向において配列された液晶層62の分子64の配向は、互いに同じ方向である。図4は、基板40から同じ距離、即ち、同じ層における液晶層62の分子64の配向方向を示す。図4に示すように、液晶層62の分子64の配向は、平面内で、即ち同じ層において徐々に且つ周期的に変化する。ここで、基板40の法線方向から見た平面視において、同じ配向を有する分子64が配列された方向を、ストライプが延びる方向とする。また、平面視において、分子64の配向が変化する方向をストライプの周期性の方向とする。従って、ストライプが延びる方向は、ストライプの周期性の方向と直交する。これにより、液晶層62は、入射した偏光を回折する。尚、回折された光、例えば、0次光及び±1次光は、ストライプの周期性の方向に沿って配列される。図3及び図4に示す回折格子42は、ホログラフィ装置等によって、液晶層62に異なる偏光、例えば、右回りの円偏光及び左回りの円偏光を異なる方向から照射して配向させることによって製造することができる。これにより、回折格子42は、偏光の偏光状態を変調するとともに、偏光を回折することができる。 FIG. 3 is a schematic cross-sectional view of the diffraction grating 42. FIG. 4 is a plan view of the liquid crystal layer 62. The diffraction gratings 46, 52, and 56 have the same configuration as the diffraction grating 42. As shown in FIG. 3, the diffraction grating 42 includes an alignment layer 60 formed on the substrate 40 and a liquid crystal layer 62 formed on the alignment layer 60. The alignment of the molecules 64 of the liquid crystal layer 62 arranged in the normal direction of the substrate 40 is in the same direction. FIG. 4 shows the alignment direction of the molecules 64 of the liquid crystal layer 62 in the same layer, that is, in the same layer from the substrate 40. As shown in FIG. 4, the orientation of the molecules 64 of the liquid crystal layer 62 changes gradually and periodically in a plane, that is, in the same layer. Here, the direction in which the molecules 64 having the same orientation are arranged in a plan view as viewed from the normal direction of the substrate 40 is a direction in which the stripe extends. Further, in the plan view, the direction in which the orientation of the molecules 64 changes is defined as the direction of the stripe periodicity. Therefore, the direction in which the stripe extends is orthogonal to the direction of the periodicity of the stripe. Thereby, the liquid crystal layer 62 diffracts the incident polarized light. The diffracted light, for example, the 0th order light and the ± 1st order light are arranged along the direction of the periodicity of the stripe. The diffraction grating 42 shown in FIGS. 3 and 4 is manufactured by irradiating the liquid crystal layer 62 with different polarized light, for example, clockwise circularly polarized light and counterclockwise circularly polarized light from different directions and aligning them with a holography device or the like. be able to. Thereby, the diffraction grating 42 can modulate the polarization state of the polarized light and diffract the polarized light.
 図5は、光学装置24の回折格子42、46、52、56に入射する偏光と、回折させた光の関係を示す実験結果の写真である。図5に示す回折格子は、回折格子42、46、52、56のうち、いずれか1枚に対応する。図5の上図は、光の進行方向と略垂直な面における投影された回折光の図である。図5の上図において、白丸が大きいほど対応する回折光の強度が大きいことを示す。図5の下図は、回折格子が回折した回折光の進路を示す平面図である。図5の下図において、線が太いほど回折光の強度が大きいことを示す。図5に示すように、光学装置24の回折格子に入射した光が、右回りの円偏光であった場合、回折格子は、-1次光の強度を最も大きくして、+1次光の強度を略0にする。光学装置24の回折格子に入射した光が、直線偏光であった場合、回折格子は、±1次光の強度を略等しくするとともに、0次光の強度を小さくする。光学装置24の回折格子に入射した光が、左回りの円偏光であった場合、回折格子は、+1次光の強度を最も大きくして、-1次光の強度を略0にする。 FIG. 5 is a photograph of experimental results showing the relationship between the polarized light incident on the diffraction gratings 42, 46, 52, and 56 of the optical device 24 and the diffracted light. The diffraction grating shown in FIG. 5 corresponds to any one of the diffraction gratings 42, 46, 52, and 56. The upper diagram of FIG. 5 is a diagram of the diffracted light projected on a plane substantially perpendicular to the traveling direction of the light. In the upper diagram of FIG. 5, the larger the white circle, the greater the intensity of the corresponding diffracted light. The lower diagram of FIG. 5 is a plan view showing the path of diffracted light diffracted by the diffraction grating. In the lower diagram of FIG. 5, the thicker the line, the greater the intensity of the diffracted light. As shown in FIG. 5, when the light incident on the diffraction grating of the optical device 24 is clockwise circularly polarized light, the diffraction grating maximizes the intensity of the −1st order light and increases the intensity of the + 1st order light. Is substantially zero. When the light incident on the diffraction grating of the optical device 24 is linearly polarized light, the diffraction grating makes the intensity of ± first-order light substantially equal and reduces the intensity of zero-order light. When the light incident on the diffraction grating of the optical device 24 is counterclockwise circularly polarized light, the diffraction grating maximizes the intensity of the + 1st order light and makes the intensity of the −1st order light substantially zero.
 図6は、光学装置24の分解斜視図である。図6において、前方及び上下方向の両方に平行な方向を水平方向とする。尚、図6では、基板40、44、50、54、58を省略している。 FIG. 6 is an exploded perspective view of the optical device 24. In FIG. 6, a direction parallel to both the front direction and the vertical direction is defined as a horizontal direction. In FIG. 6, the substrates 40, 44, 50, 54, and 58 are omitted.
 図6に示すように、回折格子42は、水平方向に平行なストライプを有する格子パターンPG1を有する。尚、図6の回折格子42の面内に記載の点線の延びる方向は、ストライプの延びる方向である。即ち、回折格子42の格子パターンPG1は、上下方向に沿って周期性を有する。 As shown in FIG. 6, the diffraction grating 42 has a grating pattern PG1 having stripes parallel to the horizontal direction. The direction in which the dotted line extends in the plane of the diffraction grating 42 in FIG. 6 is the direction in which the stripe extends. That is, the grating pattern PG1 of the diffraction grating 42 has periodicity along the vertical direction.
 回折格子46は、回折格子42と同じであることが好ましい。回折格子42及び回折格子46が同じである一例は、互いに同じ機能を有する形態である。この場合、回折格子42及び回折格子46は、同じ波長の光が入射した場合、同じ方向に同じ偏光状態の偏光を回折させる。従って、回折格子42及び回折格子46が互いに異なる材料で形成されている場合、回折格子42及び回折格子46が同じであることは、機能が同じであれば厚み等の構造が異なる場合も含む概念である。回折格子42及び回折格子46が同じである他の例は、互いの格子パターンPG1及び格子パターンPG2が同じ構造を有し、格子パターンPG1及び格子パターンPG2のストライプを互いに平行に配置する形態である。ここでいう格子パターンが同じ構造を有する形態の一例は、格子パターンPG1、PG2のストライプの周期、及び、格子パターンPG1、PG2の厚みが同じである形態のことである。尚、ストライプの周期が同じであるとは、格子パターンPG1、PG2を構成する液晶層62の分子64が同じ材料からなり、当該分子64の配向方向のパターンが同じであることを意味する。ここで、格子パターンPG1、PG2の構造が互いに同じで、且つ、互いにストライプが平行に配置されていれば、回折格子42及び回折格子46の位置は、ストライプの延びる方向またはストライプの周期性の方向にずれていてもよい。即ち、例えば、入射側から見て、同じ領域で重なっている格子パターンPG1、PG2の液晶層62の分子64の配向方向が互いに平行でなくてもよい。また、格子パターンPG1、PG2の構造が互いに同じで、且つ、互いにストライプが平行に配置されていれば、一方の格子パターンPG1を他方の格子パターンPG2に対して、法線方向を回転軸として、180°回転させた状態で配置してもよい。この場合、液晶層62の分子64の配向方向が同じとは、互いの液晶層62の分子64の配向方向が鏡像の関係、即ち、同じ面に液晶層62の分子64を投影した場合、線対称の関係を含む。 The diffraction grating 46 is preferably the same as the diffraction grating 42. An example in which the diffraction grating 42 and the diffraction grating 46 are the same is a form having the same function. In this case, the diffraction grating 42 and the diffraction grating 46 diffract polarized light of the same polarization state in the same direction when light of the same wavelength is incident. Therefore, when the diffraction grating 42 and the diffraction grating 46 are formed of different materials, the fact that the diffraction grating 42 and the diffraction grating 46 are the same includes a case where the structure such as the thickness is different if the functions are the same. It is. Another example in which the diffraction grating 42 and the diffraction grating 46 are the same is a form in which the grating patterns PG1 and PG2 have the same structure and the stripes of the grating patterns PG1 and PG2 are arranged in parallel to each other. . An example of a form in which the lattice patterns have the same structure here is a form in which the stripe periods of the lattice patterns PG1 and PG2 and the thicknesses of the lattice patterns PG1 and PG2 are the same. Note that the same stripe period means that the molecules 64 of the liquid crystal layer 62 constituting the lattice patterns PG1 and PG2 are made of the same material, and the alignment patterns of the molecules 64 are the same. Here, if the structures of the grating patterns PG1 and PG2 are the same and the stripes are arranged in parallel to each other, the positions of the diffraction grating 42 and the diffraction grating 46 are the direction in which the stripes extend or the direction of the periodicity of the stripes. It may be shifted to. That is, for example, when viewed from the incident side, the alignment directions of the molecules 64 of the liquid crystal layer 62 of the lattice patterns PG1 and PG2 overlapping in the same region may not be parallel to each other. Further, if the lattice patterns PG1 and PG2 have the same structure and the stripes are arranged in parallel to each other, one lattice pattern PG1 with respect to the other lattice pattern PG2, with the normal direction as the rotation axis, You may arrange | position in the state rotated 180 degrees. In this case, the alignment directions of the molecules 64 of the liquid crystal layer 62 are the same. When the alignment directions of the molecules 64 of the liquid crystal layer 62 are mirror images, that is, when the molecules 64 of the liquid crystal layer 62 are projected on the same surface, Includes symmetric relationships.
 回折格子52は、上下方向に平行なストライプを有する格子パターンPG3を有する。回折格子52は、回折格子42、46の格子パターンPG1、PG2と同じ格子パターンPG3を有し、且つ、回折格子42、46の格子パターンPG1、PG2のストライプと直交するストライプの格子パターンPG3を有する。 The diffraction grating 52 has a grating pattern PG3 having stripes parallel to the vertical direction. The diffraction grating 52 has the same grating pattern PG3 as the grating patterns PG1 and PG2 of the diffraction gratings 42 and 46, and has a grating pattern PG3 of a stripe orthogonal to the stripes of the grating patterns PG1 and PG2 of the diffraction gratings 42 and 46. .
 回折格子56は、回折格子52の格子パターンPG3と同じ格子パターンPG4であって、格子パターンPG3と平行に配置された格子パターンPG4を有する。 The diffraction grating 56 has the same grating pattern PG4 as the grating pattern PG3 of the diffraction grating 52, and has a grating pattern PG4 arranged in parallel with the grating pattern PG3.
 次に、光学装置24の動作について説明する。 Next, the operation of the optical device 24 will be described.
 まず、直線偏光のレーザ光である光L00が、回折格子42に入射する。回折格子42の格子パターンPG1は、上下方向に周期性を有するので、回折格子42は光L00を上下方向に回折する。これにより、回折格子42は、前方に進行する0次光L10と、斜め上方に進行する+1次光L11と、斜め下方に進行する-1次光L12とを出射する。0次光L10は上下方向を偏光方向とする直線偏光である。回折格子42は液晶偏光回折格子なので、±1次光L11、L12を円偏光として出射する。±1次光L11、L12は、互いに逆回りの円偏光である。尚、±n次光(n≧2)は強度が弱くスペックルノイズによる影響も小さいので、説明を省略する。 First, light L00, which is linearly polarized laser light, enters the diffraction grating 42. Since the grating pattern PG1 of the diffraction grating 42 has periodicity in the vertical direction, the diffraction grating 42 diffracts the light L00 in the vertical direction. Thereby, the diffraction grating 42 emits the 0th-order light L10 traveling forward, the + 1st-order light L11 traveling obliquely upward, and the −1st-order light L12 traveling obliquely downward. The zero-order light L10 is linearly polarized light with the vertical direction as the polarization direction. Since the diffraction grating 42 is a liquid crystal polarization diffraction grating, the ± first-order lights L11 and L12 are emitted as circularly polarized light. The ± first-order lights L11 and L12 are circularly polarized lights that are reverse to each other. The ± nth-order light (n ≧ 2) has a weak intensity and is less affected by speckle noise, and therefore will not be described.
 回折格子42が出射した光L10、L11、L12は、回折格子46に入射する。回折格子46の格子パターンPG2は、上下方向に周期性を有するので、回折格子46は入射した光L10、L11、L12を上下方向に回折する。ここで、回折格子42及び回折格子46は、互いに同じ格子パターンPG1、PG2であって、互いに平行に配置された格子パターンPG1、PG2を有する。従って、回折格子46は、斜め上方に進行しつつ入射した+1次光L11の一部を回折して、回折格子42に入射した光L00の進行方向と同じ前方に進行する-1次光L22として出射する。尚、-1次光L22は、+1次光L11の逆回りの円偏光である。また、回折格子46は、斜め下方に進行しつつ入射した-1次光L12の一部を回折して、回折格子42に入射した光L00の進行方向と同じ前方に進行する+1次光L23として出射する。尚、+1次光L23は、-1次光L12の逆回りの円偏光である。これにより、回折格子46は、-1次光L22及び+1次光L23を互いに平行な進行方向を有する光として出射する。尚、回折格子46は、回折格子42が出射した0次光L10を上下方向に回折した光L20、L21を出射するが、当該光L20、L21の強度は弱いので説明を省略する。 The lights L10, L11, and L12 emitted from the diffraction grating 42 enter the diffraction grating 46. Since the grating pattern PG2 of the diffraction grating 46 has periodicity in the vertical direction, the diffraction grating 46 diffracts incident light L10, L11, L12 in the vertical direction. Here, the diffraction grating 42 and the diffraction grating 46 have the same grating patterns PG1 and PG2 and are arranged in parallel to each other. Therefore, the diffraction grating 46 diffracts a part of the + 1st order light L11 incident while traveling obliquely upward, and becomes the −1st order light L22 traveling forward in the same direction as the traveling direction of the light L00 incident on the diffraction grating 42. Exit. The −1st order light L22 is circularly polarized light in the reverse direction of the + 1st order light L11. Further, the diffraction grating 46 diffracts a part of the −1st order light L12 incident while traveling obliquely downward, and as the + 1st order light L23 traveling forward in the same direction as the travel direction of the light L00 incident on the diffraction grating 42. Exit. Incidentally, the + 1st order light L23 is circularly polarized light in the reverse direction of the −1st order light L12. Thereby, the diffraction grating 46 emits the −1st order light L22 and the + 1st order light L23 as light having traveling directions parallel to each other. The diffraction grating 46 emits light L20 and L21 obtained by diffracting the 0th-order light L10 emitted from the diffraction grating 42 in the vertical direction. However, the intensity of the light L20 and L21 is weak, and thus the description thereof is omitted.
 回折格子46が出射した光L22、L23は、1/4波長板48に入射する。光L22、L23は、互いに逆回りの円偏光なので、1/4波長板48は、光L22、L23を互いに偏光方向が直交する直線偏光L30、L31として出射する。例えば、1/4波長板48は、-1次光L22を上下方向に平行な偏光方向を有する直線偏光L30として出射する。また、1/4波長板48は、+1次光L23を水平方向に平行な偏光方向を有する直線偏光L31として出射する。 The lights L22 and L23 emitted from the diffraction grating 46 enter the quarter-wave plate 48. Since the lights L22 and L23 are circularly polarized light opposite to each other, the quarter-wave plate 48 emits the lights L22 and L23 as linearly polarized lights L30 and L31 whose polarization directions are orthogonal to each other. For example, the quarter wavelength plate 48 emits the −1st order light L22 as linearly polarized light L30 having a polarization direction parallel to the vertical direction. The quarter-wave plate 48 emits the + 1st order light L23 as linearly polarized light L31 having a polarization direction parallel to the horizontal direction.
 1/4波長板48が出射した直線偏光L30、L31は、回折格子52に入射する。回折格子52は、入射した光を回折する。ここで、回折格子52の格子パターンPG3は、水平方向に周期性を有するので、回折格子52は、入射する直線偏光L30、L31を水平方向に回折して出射する。従って、回折格子52は、上下方向を偏光方向とする直線偏光L30を、0次光L40と、水平方向に回折させた±1次光L41、L42とを出射する。より具体的には、回折格子52は、偏光状態を維持したまま前方に進行する0次光L40と、左斜め方向に進行する円偏光の+1次光L41と、右斜め前方に進行する円偏光の-1次光L42とを出射する。尚、+1次光L41の円偏光の向きは、-1次光L42の円偏光の向きと逆である。一方、回折格子52は、水平方向を偏光方向とする直線偏光L31を、0次光L43と、水平方向に回折させた±1次光L44、L45とを出射する。より具体的には、回折格子52は、偏光状態を維持したまま前方に進行する0次光L43と、左斜め方向に進行する円偏光の+1次光L44と、右斜め前方に進行する円偏光の-1次光L45とを出射する。尚、+1次光L44の円偏光の向きは、-1次光L45の円偏光の向きと逆である。 The linearly polarized light L30 and L31 emitted from the quarter-wave plate 48 is incident on the diffraction grating 52. The diffraction grating 52 diffracts incident light. Here, since the grating pattern PG3 of the diffraction grating 52 has periodicity in the horizontal direction, the diffraction grating 52 diffracts and emits the incident linearly polarized light L30 and L31 in the horizontal direction. Therefore, the diffraction grating 52 emits the zero-order light L40 and the ± first-order lights L41 and L42 obtained by diffracting the linearly polarized light L30 having the vertical direction into the polarization direction in the horizontal direction. More specifically, the diffraction grating 52 includes zero-order light L40 that travels forward while maintaining the polarization state, circularly-polarized + first-order light L41 that travels in the diagonally left direction, and circularly polarized light that travels forward and diagonally to the right. Of the first-order light L42. The direction of the circularly polarized light of the + 1st order light L41 is opposite to the direction of the circularly polarized light of the −1st order light L42. On the other hand, the diffraction grating 52 emits 0th-order light L43 and ± first-order light L44 and L45 obtained by diffracting linearly polarized light L31 whose polarization direction is the horizontal direction in the horizontal direction. More specifically, the diffraction grating 52 includes a zero-order light L43 that travels forward while maintaining a polarization state, a circularly-polarized + 1st-order light L44 that travels in the diagonally left direction, and a circularly polarized light that travels in the diagonally forward right direction. Of the first-order light L45. The direction of the circularly polarized light of the + 1st order light L44 is opposite to the direction of the circularly polarized light of the −1st order light L45.
 回折格子52が出射した光L40、L41、L42、L43、L44、L45は、回折格子56に入射する。回折格子56の格子パターンPG4は、水平方向に周期性を有するので、回折格子56は入射した光L40、L41、L42、L43、L44、L45を水平方向に回折する。回折格子52及び回折格子56は、互いに同じ格子パターンPG3、PG4であって、互いに平行に配置された格子パターンPG3、PG4を有する。従って、回折格子56は、左斜め方向に進行しつつ入射した+1次光L41、L44の一部を回折して、回折格子52に入射した直線偏光L30、L31の進行方向と同じ前方に進行する-1次光L52、L56として出射する。-1次光L52、L56は、それぞれ+1次光L41、L44の逆回りの円偏光である。また、回折格子56は、右斜め方向に進行しつつ入射した-1次光L42、L45の一部を回折して、回折格子52に入射した直線偏光L30、L31の進行方向と同じ前方に進行する+1次光L53、L57として出射する。+1次光L53、L57は、それぞれ-1次光L42、L45の逆回りの円偏光である。尚、回折格子56は、上下方向または水平方向を偏光方向とする直線偏光である0次光L40、L43を回折して、左右斜め前方に進行する±1次光L50、L51、L54、L55として出射する。当該±1次光L50、L51、L54、L55は、強度が小さいので説明を省略する。これにより、光学装置24は、入射した光L00を、水平方向及び上下方向に分割して、光L00よりも強度を弱くして、且つ、互いに重なりつつ、互いに平行に進行する4個の±1次光L52、L53、L56、L57として出射する。 The lights L40, L41, L42, L43, L44, and L45 emitted from the diffraction grating 52 enter the diffraction grating 56. Since the grating pattern PG4 of the diffraction grating 56 has periodicity in the horizontal direction, the diffraction grating 56 diffracts incident light L40, L41, L42, L43, L44, and L45 in the horizontal direction. The diffraction grating 52 and the diffraction grating 56 have the same grating patterns PG3 and PG4 and are arranged in parallel to each other. Therefore, the diffraction grating 56 diffracts a part of the + 1st order light L41 and L44 incident while traveling in the left oblique direction, and proceeds forward in the same direction as the traveling direction of the linearly polarized light L30 and L31 incident on the diffraction grating 52. -Emitted as primary light L52, L56. The −1st order lights L52 and L56 are circularly polarized light in the reverse directions of the + 1st order lights L41 and L44, respectively. The diffraction grating 56 diffracts part of the −1st order light L42 and L45 incident while traveling in the right oblique direction, and travels forward in the same direction as the linearly polarized light L30 and L31 incident on the diffraction grating 52. Emitted as first-order light L53 and L57. The + 1st order lights L53 and L57 are circularly polarized light in the reverse directions of the −1st order lights L42 and L45, respectively. The diffraction grating 56 diffracts 0th-order light L40 and L43, which are linearly polarized light whose vertical or horizontal direction is the polarization direction, and travels as ± first-order light L50, L51, L54, and L55 that travel diagonally forward. Exit. Since the ± primary lights L50, L51, L54, and L55 have low intensity, the description thereof is omitted. As a result, the optical device 24 divides the incident light L00 in the horizontal direction and the vertical direction so that the intensity is weaker than that of the light L00, and four ± 1 traveling in parallel while overlapping each other. The secondary lights L52, L53, L56, and L57 are emitted.
 図7は、回折格子に入射する光の波長と、回折格子が出射する0次光の強度との関係を示すグラフである。尚、図7の実験では、ストライプ間の間隔が3μmの周期性を有する格子パターンの回折格子を用いた。図7に示すように、ストライプ間の間隔が3μmの回折格子に532nmの波長の光が入射した場合、0次光を最も弱めることができることがわかる。従って、ストライプ間の間隔が3μmの回折格子は人間の眼の感度の高い、緑色の光の0次光を弱めることができ、光の斑を低減できる。 FIG. 7 is a graph showing the relationship between the wavelength of light incident on the diffraction grating and the intensity of the 0th-order light emitted by the diffraction grating. In the experiment of FIG. 7, a diffraction grating having a grating pattern having a periodicity of 3 μm between stripes was used. As shown in FIG. 7, it can be seen that when the light having a wavelength of 532 nm is incident on a diffraction grating having an interval between stripes of 3 μm, the zero-order light can be weakened most. Therefore, a diffraction grating having a spacing of 3 μm between stripes can weaken the 0th order light of green light, which is highly sensitive to human eyes, and can reduce light spots.
 図8は、光学装置24から出射される光のばらつきを説明する図である。図8において、細い点線で囲まれた領域が、1画素PXである。1画素PXには、停止したMEMSミラー22が反射した光が、達する。ここで、光学装置24は、MEMSミラー22が反射した光を4個の平行に進行する光に分割して、出射する。図8において、太線で示す4個の四角が、分割された光のうち、強度の大きい4個の光の到達領域を示す。4個の光のうち、画素PXの対角線上に配置された2個の光は、互いに同じ方向回りの円偏光である。4個の光は、回折格子56によって互いに重なるように出射される。4個の光は、画素PXを110%拡大した領域の内部に収まることが好ましい。 FIG. 8 is a diagram for explaining variation in light emitted from the optical device 24. In FIG. 8, a region surrounded by a thin dotted line is one pixel PX. The light reflected by the stopped MEMS mirror 22 reaches one pixel PX. Here, the optical device 24 divides the light reflected by the MEMS mirror 22 into four light beams traveling in parallel and emits the light. In FIG. 8, four squares indicated by bold lines indicate the arrival areas of four light beams having high intensity among the divided lights. Of the four lights, two lights arranged on the diagonal line of the pixel PX are circularly polarized light around the same direction. The four lights are emitted by the diffraction grating 56 so as to overlap each other. It is preferable that the four lights fall within an area obtained by enlarging the pixel PX by 110%.
 分割された4個の光が画素PXを110%拡大した領域に収まる具体例について説明する。基板40、44、50、54、58は、0.21mmの厚みを有するガラス基板とする。この場合、光学装置24の全体の厚みは、約1.1mmとなる。回折格子42、46、52、56の格子パターンPG1からPG4のストライプの周期性は、5.4μmとする。この場合、回折格子42、46、52、56は、532nmの波長の光を5.6566degの回折角度で回折させた±1次光を出射する。このように構成した場合、スクリーン30のサイズが12inch、解像度が1280×720の条件下で、光学装置24は、画素PXを110%拡大した領域に、分割した4個の光を収めることができる。 A specific example will be described in which the four divided lights fall within a region where the pixel PX is enlarged by 110%. The substrates 40, 44, 50, 54, and 58 are glass substrates having a thickness of 0.21 mm. In this case, the total thickness of the optical device 24 is about 1.1 mm. The periodicity of the stripes of the grating patterns PG1 to PG4 of the diffraction gratings 42, 46, 52, and 56 is 5.4 μm. In this case, the diffraction gratings 42, 46, 52, and 56 emit ± first-order light obtained by diffracting light having a wavelength of 532 nm at a diffraction angle of 5.6666 degrees. When configured in this manner, the optical device 24 can store the four divided lights in an area where the pixel PX is enlarged by 110% under the condition that the size of the screen 30 is 12 inches and the resolution is 1280 × 720. .
 上述したように、光学装置24は、入射する直線偏光のレーザ光である光L00を、入射した領域を中心とする点対称の位置に分割し、互いに対称な偏光方向を有し、且つ、分割された光のうちで強度の強い±1次光L52、L53、L56、L57が互いに平行に進行するように出射する。このように光学装置24は、光を分割することにより且つ互いに対称な偏光方向とすることにより強度を弱めることができる。また、光学装置24は、入射した領域を中心とする点対称に分割した±1次光L52、L53、L56、L57を平行に進行させることによって、±1次光L52、L53、L56、L57が互いに大きく離れて1個の画素を形成することを抑制できる。この結果、光学装置24は、画像の劣化を抑制しつつ、スペックルノイズを低減することができる。更に、光学装置24は、回折格子42、46、52、56を駆動させる必要がないので、構成を簡略化できる。 As described above, the optical device 24 divides the light L00, which is an incident linearly polarized laser beam, into point-symmetric positions with the incident region as the center, has polarization directions that are symmetrical to each other, and is divided. Among the emitted light, the ± 1 st order light L52, L53, L56, L57 having high intensity is emitted so as to travel in parallel with each other. In this way, the optical device 24 can weaken the intensity by dividing the light and making the polarization directions symmetrical to each other. Further, the optical device 24 causes the ± primary lights L52, L53, L56, and L57 to travel in parallel by causing the ± primary lights L52, L53, L56, and L57 divided in a point-symmetric manner with the incident region as the center to travel in parallel. It is possible to suppress the formation of one pixel that is far away from each other. As a result, the optical device 24 can reduce speckle noise while suppressing image deterioration. Furthermore, since the optical device 24 does not need to drive the diffraction gratings 42, 46, 52, and 56, the configuration can be simplified.
 図9は、別の実施形態による光学装置124の分解斜視図である。図9に示すように、光学装置124は、回折格子142と、回折格子146とを有する。回折格子142及び回折格子146は、上述した回折格子42及び回折格子46と同じ構成を有し、同じ向きに配置されている。尚、上述した実施形態と同様に、回折格子142及び回折格子146のそれぞれの面には、基板が設けられている。 FIG. 9 is an exploded perspective view of an optical device 124 according to another embodiment. As shown in FIG. 9, the optical device 124 includes a diffraction grating 142 and a diffraction grating 146. The diffraction grating 142 and the diffraction grating 146 have the same configuration as the diffraction grating 42 and the diffraction grating 46 described above, and are arranged in the same direction. As in the above-described embodiment, a substrate is provided on each surface of the diffraction grating 142 and the diffraction grating 146.
 光学装置124においても、回折格子142、146に直線偏光のレーザ光である光L00が入射する。この場合、回折格子142、146は、光L00の一部を回折して、前方に進行する円偏光である-1次光L22及び+1次光L23として出射する。尚、回折格子146が出射する-1次光L22及び+1次光L23の円偏光の回転方向は互いに逆向きである。これにより、光学装置124は、回折格子142の格子パターンが有する周期性の方向に光L00を分割することにより、スペックルノイズを低減することができる。また、光学装置124では、回折格子146が、分割した±1次光L22、L23を平行に出射することにより、±1次光L22、L23が離れることを抑制できるので、画像の劣化を抑制できる。 Also in the optical device 124, light L00 which is linearly polarized laser light is incident on the diffraction gratings 142 and 146. In this case, the diffraction gratings 142 and 146 diffract a part of the light L00 and emit it as −1st order light L22 and + 1st order light L23, which are circularly polarized light traveling forward. Note that the rotation directions of the circularly polarized light of the −1st order light L22 and the + 1st order light L23 emitted from the diffraction grating 146 are opposite to each other. Thereby, the optical device 124 can reduce speckle noise by dividing the light L00 in the periodic direction of the grating pattern of the diffraction grating 142. Further, in the optical device 124, since the diffraction grating 146 emits the divided ± first-order lights L22 and L23 in parallel, it is possible to suppress the separation of the ± first-order lights L22 and L23, thereby suppressing image deterioration. .
 図10、図11、図12は、基板40、44に対する回折格子42、46の配置を変更した形態を説明する断面図である。尚、図10から図12は、基板40、44及び回折格子42、46の図であるが、基板50、54及び回折格子52、56についても同様に変更してよい。図10に示すように、回折格子42、46をそれぞれ基板40、44の入射側に配置してもよい。図11に示すように、回折格子42を基板40の出射側に配置して、回折格子46を基板44の入射側に配置してもよい。図12に示すように、回折格子42を基板40の入射側に、回折格子46を基板44の出射側に配置してもよい。 FIGS. 10, 11 and 12 are cross-sectional views for explaining a form in which the arrangement of the diffraction gratings 42 and 46 with respect to the substrates 40 and 44 is changed. 10 to 12 are diagrams of the substrates 40 and 44 and the diffraction gratings 42 and 46, but the substrates 50 and 54 and the diffraction gratings 52 and 56 may be similarly changed. As shown in FIG. 10, the diffraction gratings 42 and 46 may be disposed on the incident side of the substrates 40 and 44, respectively. As shown in FIG. 11, the diffraction grating 42 may be disposed on the emission side of the substrate 40, and the diffraction grating 46 may be disposed on the incident side of the substrate 44. As shown in FIG. 12, the diffraction grating 42 may be arranged on the incident side of the substrate 40 and the diffraction grating 46 may be arranged on the emission side of the substrate 44.
 図13、図14は、入射側から見た回折格子42、46の液晶層62の分子64の配向方向を説明する図である。尚、図13、図14は、回折格子42、46の図であるが、回折格子52、56についても同様である。図13、図14は、説明上、回折格子42、46をずらして図示している。実際には、図13、図14において、回折格子42の四隅と、回折格子46の四隅は、一致するように配置されている。 13 and 14 are diagrams for explaining the orientation direction of the molecules 64 of the liquid crystal layer 62 of the diffraction gratings 42 and 46 as viewed from the incident side. 13 and 14 are diagrams of the diffraction gratings 42 and 46, but the same applies to the diffraction gratings 52 and 56. FIG. 13 and 14 show the diffraction gratings 42 and 46 shifted for the sake of explanation. Actually, in FIGS. 13 and 14, the four corners of the diffraction grating 42 and the four corners of the diffraction grating 46 are arranged to coincide with each other.
 図13に示すように、回折格子42の液晶層62の分子64を、回折格子46の液晶層62の分子64と平行にしてもよい。例えば、図2、及び、図10に示すように、基板40、44の同じ側、即ち、入射側または出射側に回折格子42、46の両方を配置する形態に有効である。これにより、同じ構造の回折格子及び基板を貼り合わせて光学装置を製造することができる。 As shown in FIG. 13, the molecules 64 of the liquid crystal layer 62 of the diffraction grating 42 may be parallel to the molecules 64 of the liquid crystal layer 62 of the diffraction grating 46. For example, as shown in FIG. 2 and FIG. 10, it is effective for a configuration in which both of the diffraction gratings 42 and 46 are arranged on the same side of the substrates 40 and 44, that is, the incident side or the outgoing side. Thereby, an optical apparatus can be manufactured by bonding together diffraction gratings and substrates having the same structure.
 一方、図14に示すように、回折格子42の液晶層62の分子64を、回折格子46の液晶層62の分子64とストライプの周期性の方向を対称軸とする線対称、即ち、鏡像の関係にしてもよい。例えば、図11、及び、図12に示すように、基板40、44の異なる側、即ち、入射側と出射側、または、出射側と入射側に回折格子42、46のそれぞれを配置する形態に有効である。これにより、同じ構造の回折格子及び基板を貼り合わせて光学装置を製造することができる。 On the other hand, as shown in FIG. 14, the molecules 64 of the liquid crystal layer 62 of the diffraction grating 42 are line-symmetric with respect to the molecules 64 of the liquid crystal layer 62 of the diffraction grating 46 and the direction of the periodicity of the stripes, ie, mirror images. It may be related. For example, as shown in FIGS. 11 and 12, the diffraction gratings 42 and 46 are arranged on different sides of the substrates 40 and 44, that is, on the incident side and the emission side, or on the emission side and the incident side, respectively. It is valid. Thereby, an optical apparatus can be manufactured by bonding together diffraction gratings and substrates having the same structure.
 尚、回折格子42、46の液晶層62の分子64の配向方向は、適宜変更してよい。例えば、図13、図14において、回折格子42、46の分子の配向方向をストライプの周期性の方向を対称軸とする線対称の方向にしてもよい。 The orientation direction of the molecules 64 of the liquid crystal layer 62 of the diffraction gratings 42 and 46 may be changed as appropriate. For example, in FIG. 13 and FIG. 14, the orientation direction of the molecules of the diffraction gratings 42 and 46 may be a line-symmetrical direction with the direction of the periodicity of the stripe as the symmetry axis.
 図15は、別の実施形態による光学装置224の分解斜視図である。光学装置224には、上下方向を偏光方向とする直線偏光の光L00が入射する。図15に示すように、光学装置224は、1/4波長板240と、入射側変調部の一例である複屈折部材242と、1/4波長板244と、出射側変調部の一例である複屈折部材246とを備える。複屈折部材242、246は、例えば、水晶等の材料によって構成される。 FIG. 15 is an exploded perspective view of an optical device 224 according to another embodiment. Linearly polarized light L00 with the vertical direction as the polarization direction is incident on the optical device 224. As shown in FIG. 15, the optical device 224 is an example of a quarter-wave plate 240, a birefringent member 242 that is an example of an incident-side modulator, a quarter-wave plate 244, and an exit-side modulator. A birefringent member 246. The birefringent members 242, 246 are made of, for example, a material such as quartz.
 1/4波長板240は、光学装置224において、最も入射側に配置されている。1/4波長板240は、入射する直線偏光のレーザ光である光L00を円偏光L60に変調させて、出射する。 The quarter-wave plate 240 is disposed on the most incident side in the optical device 224. The quarter-wave plate 240 modulates the incident light L00, which is linearly polarized laser light, into circularly polarized light L60 and emits it.
 複屈折部材242は、1/4波長板240の出射側に配置されている。複屈折部材242は、側面視において、前方から傾斜した光軸、例えば、45°傾斜した光学軸を有する。ここでいう、光学軸は、遅相軸または進相軸のことである。光学軸は、水平方向を法線とする側面と平行である。複屈折部材242は、入射する円偏光L60を上下方向に分割して、常光L70及び異常光L71を出射する。常光L70は、光学軸と直交する水平方向を偏光方向とする直線偏光である。一方、異常光L71は、光学軸と平行、即ち、側面と平行な上下方向を偏光方向とする直線偏光である。 The birefringent member 242 is disposed on the exit side of the quarter wavelength plate 240. The birefringent member 242 has an optical axis inclined from the front, for example, an optical axis inclined by 45 ° in a side view. The optical axis here is a slow axis or a fast axis. The optical axis is parallel to the side surface normal to the horizontal direction. The birefringent member 242 divides the incident circularly polarized light L60 in the vertical direction and emits ordinary light L70 and extraordinary light L71. The ordinary light L70 is linearly polarized light whose polarization direction is a horizontal direction orthogonal to the optical axis. On the other hand, the extraordinary light L71 is linearly polarized light whose polarization direction is parallel to the optical axis, that is, the vertical direction parallel to the side surface.
 1/4波長板244は、複屈折部材242の出射側に配置されている。1/4波長板244は、入射する直線偏光のレーザ光である常光L70及び異常光L71を円偏光L80及び円偏光L81に変調させて、出射する。円偏光L80及び円偏光L81は、互いに逆回りの円偏光である。 The quarter wavelength plate 244 is disposed on the exit side of the birefringent member 242. The quarter-wave plate 244 modulates the ordinary light L70 and the extraordinary light L71, which are incident linearly polarized laser light, into a circularly polarized light L80 and a circularly polarized light L81 and emits the modulated light. The circularly polarized light L80 and the circularly polarized light L81 are circularly polarized lights that are reverse to each other.
 複屈折部材246は、平面視において、前方から傾斜した光軸、例えば、45°傾斜した光学軸を有する。光学軸は、上下方向を法線とする上下面と平行である。複屈折部材246は、円偏光L80及び円偏光L81をそれぞれ左右方向に分割して、互いに平行に進行する常光L90、異常光L91、常光L92、異常光L93を出射する。即ち、複屈折部材246は、複屈折部材242が分割する方向と異なる方向である水平方向で光を分割する。常光L90、L92は、光学軸と直交する水平方向を偏光方向とする直線偏光である。一方、異常光L91、L93は、光学軸と平行、即ち、上下面と平行な上下方向を偏光方向とする直線偏光である。 The birefringent member 246 has an optical axis tilted from the front, for example, an optical axis tilted by 45 ° in plan view. The optical axis is parallel to the upper and lower surfaces whose normal is the vertical direction. The birefringent member 246 divides the circularly polarized light L80 and the circularly polarized light L81 in the left-right direction, and emits ordinary light L90, extraordinary light L91, ordinary light L92, and extraordinary light L93 that travel parallel to each other. That is, the birefringent member 246 divides light in a horizontal direction that is different from the direction in which the birefringent member 242 divides. Ordinary lights L90 and L92 are linearly polarized light whose polarization direction is the horizontal direction orthogonal to the optical axis. On the other hand, the extraordinary lights L91 and L93 are linearly polarized light whose polarization direction is parallel to the optical axis, that is, the vertical direction parallel to the top and bottom surfaces.
 このように、光学装置224は、常光L90、異常光L91、常光L92、及び、異常光L93が、一直線上に配置されないように分割する。これにより、光学装置224は、常光L90、異常光L91、常光L92、及び、異常光L93の位置のばらつきを小さくすることができるので、スペックルノイズを低減しつつ、画像の劣化を抑制できる。 As described above, the optical device 224 divides the ordinary light L90, the extraordinary light L91, the ordinary light L92, and the extraordinary light L93 so that they are not arranged in a straight line. Accordingly, the optical device 224 can reduce variations in the positions of the ordinary light L90, the extraordinary light L91, the ordinary light L92, and the extraordinary light L93, and thus can suppress image degradation while reducing speckle noise.
 尚、実施形態では、入射側変調部及び出射側変調部として、複屈折部材242、246を例に上げたが、入射側変調部及び出射側変調部は、入射する直線偏光の偏光方向を多方向に変調する構成であればよい。従って、入射側変調部及び出射側変調部は、入射する直線偏光の偏光方向を多方向に変調した円偏光及び自然光を出射する構成であってもよい。 In the embodiment, the birefringent members 242 and 246 are exemplified as the incident-side modulation unit and the emission-side modulation unit. However, the incident-side modulation unit and the emission-side modulation unit have many polarization directions of linearly polarized light that is incident. Any configuration that modulates in the direction may be used. Therefore, the incident-side modulation unit and the emission-side modulation unit may be configured to emit circularly polarized light and natural light obtained by modulating the polarization direction of incident linearly polarized light in multiple directions.
 上述した各実施形態における各構成の配置、形状、個数等の数値、機能は適宜変更してよい。また、各実施形態、及び、各実施形態の一部を組み合わせてもよい。 Numerals and functions such as the arrangement, shape, number, etc. of each component in each embodiment described above may be changed as appropriate. Moreover, you may combine each embodiment and a part of each embodiment.
 例えば、回折格子42、46の格子パターンPG1、PG2のストライプは、格子パターンPG3のストライプと直交してなくてもよく、交差していればよい。 For example, the stripes of the grating patterns PG1 and PG2 of the diffraction gratings 42 and 46 do not have to be orthogonal to the stripes of the grating pattern PG3, and need only intersect.
 回折格子の格子パターンの方向と、直線偏光の偏光方向の関係は適宜変更してよい。例えば、直線偏光L00の偏光方向は、格子パターンPG1の周期性の方向に対して、傾斜していてもよく、平行であってもよい。この場合、±1次光は、格子パターンPG1の周期性の方向に沿って、回折されて出射される。尚、他の回折格子の格子パターンについても同様である。 The relationship between the direction of the grating pattern of the diffraction grating and the polarization direction of linearly polarized light may be changed as appropriate. For example, the polarization direction of the linearly polarized light L00 may be inclined or parallel to the periodic direction of the grating pattern PG1. In this case, the ± first-order light is diffracted and emitted along the periodic direction of the grating pattern PG1. The same applies to the grating patterns of other diffraction gratings.
 図16は、一部を変更した光学装置324の全体構成図である。光学装置324は光学部材325と、偏光スイッチ370とを備えている。光学部材325は、光学装置24と同様の構成を有する。 FIG. 16 is an overall configuration diagram of the optical device 324 with a part thereof changed. The optical device 324 includes an optical member 325 and a polarization switch 370. The optical member 325 has the same configuration as the optical device 24.
 偏光スイッチ370は、レーザ光として出射された光の光路上に配置されている。例えば、偏光スイッチ370は、光学部材325の出射側に設けられている。偏光スイッチ370は、光学部材325から出射された光の偏光状態を時分割で切り換える。 The polarization switch 370 is disposed on the optical path of light emitted as laser light. For example, the polarization switch 370 is provided on the emission side of the optical member 325. The polarization switch 370 switches the polarization state of the light emitted from the optical member 325 in a time division manner.
 偏光スイッチ370は、一対の透明電極372、376と、一対の透明電極372、376の間に配置された液晶部材374とを有する。一対の透明電極372、376は、液晶部材374の入射側の面及び出射側の面の略全面を覆う。一対の透明電極372、376は、制御部28によって印加される電圧が制御される。液晶部材374は、印加される電圧によって、例えば1/2波長板として機能する。 The polarization switch 370 includes a pair of transparent electrodes 372 and 376 and a liquid crystal member 374 disposed between the pair of transparent electrodes 372 and 376. The pair of transparent electrodes 372 and 376 cover substantially the entire surface on the incident side and the surface on the emission side of the liquid crystal member 374. The voltage applied to the pair of transparent electrodes 372 and 376 is controlled by the control unit 28. The liquid crystal member 374 functions as, for example, a half-wave plate depending on the applied voltage.
 例えば、制御部28は、切換周期T毎に透明電極372、376に印加する電圧を切り換える。切換周期Tの一例は、20msecである。尚、電圧は、切換周期Tの交流であってもよく、切換周期Tで電圧が不連続に切り換わる直流であってもよい。これにより、液晶部材374の液晶分子の配向方向が切換周期T毎に変化する。ここで、右回りの円偏光が入射した場合、偏光スイッチ370は、ある時刻で左回りの円偏光を出射して、当該時刻から切換周期T後には右回りの円偏光をそのまま出射する。これにより、スペックルノイズが、切換周期T毎に異なる位置に形成されるので、スペックルノイズの観者への影響を低減できる。 For example, the control unit 28 switches the voltage applied to the transparent electrodes 372 and 376 every switching period T. An example of the switching period T is 20 msec. The voltage may be an alternating current with a switching period T, or a direct current with which the voltage switches discontinuously in the switching period T. Thereby, the alignment direction of the liquid crystal molecules of the liquid crystal member 374 changes every switching period T. Here, when clockwise circular polarized light is incident, the polarization switch 370 emits counterclockwise circular polarized light at a certain time, and emits clockwise circular polarized light as it is after a switching period T from that time. Thereby, since speckle noise is formed in a different position for every switching period T, the influence of the speckle noise on the viewer can be reduced.
 図17は、一部を変更した光学装置424の全体構成図である。光学装置424は、光学部材325と、偏光変換部480とを備えている。偏光変換部480は、レーザ光であるL00の光路上に配置され、入射した光を互いに異なる偏光状態の光であって、互いに同じ方向に進行する光に変換する。互いに同じ方向の一例は、互いに略平行な方向であって、好ましくは互いに平行な方向である。例えば、偏光変換部480は、光学部材325の出射側に配置される。偏光変換部480は、偏光ビームスプリッタ482と、1/4波長板484と、反射部材486と、1/4波長板488と、反射部材490とを有する。 FIG. 17 is an overall configuration diagram of the optical device 424 with a part thereof changed. The optical device 424 includes an optical member 325 and a polarization conversion unit 480. The polarization conversion unit 480 is arranged on the optical path of L00, which is laser light, and converts incident light into light having different polarization states and traveling in the same direction. An example of the same direction is a direction substantially parallel to each other, preferably a direction parallel to each other. For example, the polarization conversion unit 480 is disposed on the output side of the optical member 325. The polarization conversion unit 480 includes a polarization beam splitter 482, a quarter wavelength plate 484, a reflection member 486, a quarter wavelength plate 488, and a reflection member 490.
 偏光ビームスプリッタ482の中央の面483は、光学部材325から入射する光のうち、一の振動方向の成分を透過して、他の振動方向の成分を反射する。例えば、一の振動方向と他の振動方向は、互いに直交する。例えば、中央の面483は、円偏光が入射した場合、円偏光に含まれる振動成分のうち、水平方向(例えば、紙面に平行な方向)の振動成分を透過して、上下方向(例えば、紙面に鉛直な方向)の振動成分を反射する。従って、中央の面483は、水平方向を偏光方向とする直線偏光として、透過した光を1/4波長板484へ出射して、上下方向を偏光方向とする直線偏光として、反射した光を1/4波長板488へ出射する。1/4波長板484、488は、透過する光の偏光方向を変換する。ここで、1/4波長板484、488を透過する光は、反射部材486、490によって反射されるので、1/4波長板484、488を2回透過する。従って、1/4波長板484、488は、1/2波長板として機能する。これにより、1/4波長板484、488は、2回透過する光が直線偏光の場合、当該直線偏光の偏光方向を変換する。例えば、1/4波長板484は、水平方向を偏光方向とする直線偏光を90°回転させて、上下方向を偏光方向とする直線偏光に変換して中央の面483へ出射する。一方、1/4波長板488は、上下方向を偏光方向とする直線偏光を90°回転させて、水平方向を偏光方向とする直線偏光に変換して中央の面483へ出射する。 The central surface 483 of the polarization beam splitter 482 transmits a component in one vibration direction and reflects a component in another vibration direction in the light incident from the optical member 325. For example, one vibration direction and the other vibration direction are orthogonal to each other. For example, when circularly polarized light is incident, the central surface 483 transmits a vibration component in a horizontal direction (for example, a direction parallel to the paper surface) among vibration components included in the circularly polarized light, and the vertical surface (for example, the paper surface). The vibration component in the direction perpendicular to the surface is reflected. Therefore, the central surface 483 emits the transmitted light to the quarter-wave plate 484 as linearly polarized light having the horizontal direction as the polarization direction, and reflects the reflected light as 1 linearly polarized light having the vertical direction as the polarization direction. The light is emitted to the / 4 wavelength plate 488. The quarter- wave plates 484 and 488 convert the polarization direction of the transmitted light. Here, since the light transmitted through the quarter- wave plates 484 and 488 is reflected by the reflecting members 486 and 490, the light passes through the quarter- wave plates 484 and 488 twice. Accordingly, the quarter wave plates 484 and 488 function as half wave plates. Thereby, the quarter wavelength plates 484 and 488 convert the polarization direction of the linearly polarized light when the light transmitted twice is linearly polarized light. For example, the quarter-wave plate 484 rotates linearly polarized light whose horizontal direction is the polarization direction by 90 °, converts it into linearly polarized light whose vertical direction is the polarization direction, and emits it to the central plane 483. On the other hand, the ¼ wavelength plate 488 rotates the linearly polarized light whose vertical direction is the polarization direction by 90 °, converts it into the linearly polarized light whose horizontal direction is the polarization direction, and emits it to the central plane 483.
 従って、偏光ビームスプリッタ482の中央の面483を透過した光は、1/4波長板484によって、偏光方向が90°回転されて、上下方向を偏光方向とする直線偏光となって戻ってくるので、当該面483によって反射される。一方、偏光ビームスプリッタ482の中央の面483に反射された光は、1/4波長板488によって、偏光方向が90°回転されて、水平方向を偏光方向とする直線偏光となって戻ってくるので、当該面483を透過する。これにより、偏光変換部480は、入射した光を互いに異なる偏光状態の光であって、互いに平行に進行する光に変換して出射する。尚、偏光変換部480は、偏光ビームスプリッタ482に入射する光が直線偏光の場合であっても、偏光方向が互いに異なり、互いに平行に進行する直線偏光に変換して出射する。 Therefore, the light transmitted through the central surface 483 of the polarizing beam splitter 482 is returned to the linearly polarized light whose polarization direction is rotated by 90 ° by the quarter wavelength plate 484 and whose vertical direction is the polarization direction. Reflected by the surface 483. On the other hand, the light reflected by the central surface 483 of the polarizing beam splitter 482 is rotated by 90 ° by the quarter wavelength plate 488 and returned as linearly polarized light having the horizontal direction as the polarization direction. Therefore, the light passes through the surface 483. As a result, the polarization conversion unit 480 converts the incident light into light having different polarization states and traveling in parallel with each other, and outputs the light. It should be noted that the polarization conversion unit 480 converts the light incident on the polarization beam splitter 482 into linearly polarized light having different polarization directions and traveling parallel to each other, and outputs the linearly polarized light.
 このように、光学装置424は、互いに偏光方向の異なる偏光であって、互いに平行に進行する偏光に変換して出射する。これにより、光学装置424は、スペックルノイズを更に分散するので、スペックルノイズの影響を低減できる。 As described above, the optical device 424 converts the polarized light beams having different polarization directions into parallel polarized light beams that travel in parallel with each other and emits the polarized light beams. Thereby, the optical device 424 further disperses the speckle noise, so that the influence of the speckle noise can be reduced.
 図18は、一部を変更した光学装置524の全体構成図である。光学装置524は、光学部材325と、偏光変換部480と、偏光スイッチ370とを備える。光学装置524では、光の進行方向に沿って、光学部材325、偏光変換部480、偏光スイッチ370の順で配置されている。 FIG. 18 is an overall configuration diagram of the optical device 524 with a part thereof changed. The optical device 524 includes an optical member 325, a polarization conversion unit 480, and a polarization switch 370. In the optical device 524, the optical member 325, the polarization conversion unit 480, and the polarization switch 370 are arranged in this order along the light traveling direction.
 次に、上述した各実施形態のスペックルノイズ低減の効果を証明するために実施した実験について説明する。 Next, an experiment conducted to prove the effect of speckle noise reduction of each embodiment described above will be described.
 図19は、スペックルノイズ低減を調べた実験装置の概略図である。本実験では、光源として緑色のレーザ光を出射するグリーンレーザ装置692を用いた。グリーンレーザ装置692によって光学装置624へレーザ光を出射した。レーザ光は、532nmの波長で2mmのビーム径を有する。光学装置624を通過して擬似拡散球694に投影した光をデジタル一眼レフカメラ(ニコン社製D40)にて撮影した。撮影した画像の平面内での階調分布を画像処理ソフトによって算出した。階調分布は、擬似拡散球694の中心の周り10mm×10mmの正方形を評価エリアとして算出した。階調分布は、各光学装置624において、3回ずつ撮像した画像のそれぞれから算出した。算出した階調分布から、評価エリアの階調分布の平均階調、評価エリアの階調分布の標準偏差、及び、スペックルコントラストを算出した。尚、スペックルコントラストは次式で算出した。
 スペックルコントラスト=(評価エリアの標準偏差)/(評価エリアの平均階調)
 更に、3回のスペックルコントラストの平均である平均スペックルコントラストを算出した。
FIG. 19 is a schematic diagram of an experimental apparatus for examining speckle noise reduction. In this experiment, a green laser device 692 that emits green laser light was used as a light source. Laser light was emitted to the optical device 624 by the green laser device 692. The laser light has a beam diameter of 2 mm at a wavelength of 532 nm. The light that passed through the optical device 624 and was projected onto the pseudo-diffusing sphere 694 was photographed with a digital single-lens reflex camera (D40 manufactured by Nikon Corporation). The gradation distribution in the plane of the photographed image was calculated by image processing software. The gradation distribution was calculated as a 10 mm × 10 mm square around the center of the pseudo-diffusing sphere 694 as an evaluation area. The gradation distribution was calculated from each of the images captured three times by each optical device 624. From the calculated gradation distribution, the average gradation of the gradation distribution in the evaluation area, the standard deviation of the gradation distribution in the evaluation area, and the speckle contrast were calculated. The speckle contrast was calculated by the following equation.
Speckle contrast = (Standard deviation of evaluation area) / (Average gradation of evaluation area)
Further, an average speckle contrast, which is an average of three speckle contrasts, was calculated.
 尚、光学装置624として、光学装置24、光学装置324、光学装置424、光学装置524を用いた。尚、光学装置24及び光学部材325の回折格子のピッチは、5.2μmとした。また、比較用として、光学装置がない形態(表中に素子なしと記載)に対しても同じ実験を行った。 Note that as the optical device 624, an optical device 24, an optical device 324, an optical device 424, and an optical device 524 were used. In addition, the pitch of the diffraction grating of the optical device 24 and the optical member 325 was set to 5.2 μm. For comparison, the same experiment was performed for a configuration without an optical device (described as “no element” in the table).
 図20は、スペックルノイズの低減を証明する実験の結果である。図20に示すように、光学装置24は、光学装置等の素子がない場合に比べて、26%程度平均スペックルコントラストを低減できることがわかる。換言すれば、偏光スイッチ370のように電圧の制御を必要とせず、且つ、偏光変換部480のような大型化を抑制しつつ、光学装置24は、スペックルノイズを低減できる。 FIG. 20 shows the results of an experiment that proves the reduction of speckle noise. As shown in FIG. 20, it can be seen that the optical device 24 can reduce the average speckle contrast by about 26% compared to the case where there is no element such as an optical device. In other words, the optical device 24 can reduce speckle noise while not requiring voltage control unlike the polarization switch 370 and suppressing the enlargement of the polarization conversion unit 480.
 更に、光学装置24と偏光スイッチ370または偏光変換部480の少なくとも一方と組み合わせた光学装置324、424、524は、素子なしの場合に比べて、平均スペックルコントラストを少なくとも34%低減できることがわかる。特に、光学装置24、偏光スイッチ370及び偏光変換部480を組み合わせた光学装置524は、平均スペックルコントラストを58%低減できることがわかる。 Furthermore, it can be seen that the optical devices 324, 424, and 524 combined with the optical device 24 and at least one of the polarization switch 370 or the polarization conversion unit 480 can reduce the average speckle contrast by at least 34% compared to the case without the element. In particular, it can be seen that the optical device 524 that combines the optical device 24, the polarization switch 370, and the polarization conversion unit 480 can reduce the average speckle contrast by 58%.
 上述した光学装置324、424、524における配置は適宜変更してよい。例えば、次の配列順序で配置してもよい。
 偏光スイッチ370→光学部材325→偏光変換部480
 光学部材325→偏光スイッチ370→偏光変換部480
 偏光変換部480→偏光スイッチ370→光学部材325
 偏光変換部480→光学部材325→偏光スイッチ370
 偏光スイッチ370→光学部材325
The arrangement of the optical devices 324, 424, and 524 described above may be changed as appropriate. For example, they may be arranged in the following arrangement order.
Polarization switch 370 → optical member 325 → polarization converter 480
Optical member 325 → polarization switch 370 → polarization converter 480
Polarization conversion unit 480 → polarization switch 370 → optical member 325
Polarization conversion unit 480 → optical member 325 → polarization switch 370
Polarization switch 370 → optical member 325
 図21は、回折格子42の一部を変更した回折格子724の斜視図である。回折格子724は、板状透明電極766と、液晶層767と、複数の線状透明電極768とを備える。 FIG. 21 is a perspective view of a diffraction grating 724 in which a part of the diffraction grating 42 is changed. The diffraction grating 724 includes a plate-like transparent electrode 766, a liquid crystal layer 767, and a plurality of linear transparent electrodes 768.
 板状透明電極766は、液晶層767の一面、例えば、入射側の面に設けられている。板状透明電極766は、液晶層767の一面の略全面を覆う。線状透明電極768の水平方向の長さは、板状透明電極766の水平方向の一辺と同じ長さを有する。線状透明電極768の上下方向の長さは、板状透明電極766の上下方向の一辺の長さよりも短い。換言すれば、線状透明電極768は、板状透明電極766を上下方向で分割した形状を有する。線状透明電極768は、上下方向に沿って、互いに平行に且つ等間隔で配列されている。これにより、線状透明電極768は、互いに電気的に絶縁される。 The plate-like transparent electrode 766 is provided on one surface of the liquid crystal layer 767, for example, the incident side surface. The plate-like transparent electrode 766 covers substantially the entire surface of the liquid crystal layer 767. The horizontal length of the linear transparent electrode 768 has the same length as one side of the plate-shaped transparent electrode 766 in the horizontal direction. The length of the linear transparent electrode 768 in the vertical direction is shorter than the length of one side of the plate-shaped transparent electrode 766 in the vertical direction. In other words, the linear transparent electrode 768 has a shape obtained by dividing the plate-like transparent electrode 766 in the vertical direction. The linear transparent electrodes 768 are arranged in parallel with each other at equal intervals along the vertical direction. Thereby, the linear transparent electrodes 768 are electrically insulated from each other.
 板状透明電極766及び線状透明電極768は、電極制御部の一例である制御部28に接続されている。制御部28は、板状透明電極766及び線状透明電極768に印加する電圧を制御する。液晶層767は、印加される電圧によって屈折率が異なる。これにより、液晶層767は、領域間で屈折率差が生じて、回折格子として機能する。 The plate-like transparent electrode 766 and the linear transparent electrode 768 are connected to the control unit 28 which is an example of an electrode control unit. The control unit 28 controls the voltage applied to the plate-like transparent electrode 766 and the linear transparent electrode 768. The liquid crystal layer 767 has a different refractive index depending on an applied voltage. Accordingly, the liquid crystal layer 767 has a refractive index difference between the regions, and functions as a diffraction grating.
 更に、制御部28は、同じ電圧を印加する線状透明電極768の周期を変更することによって、回折格子における格子の周期を変更した場合と同じ機能を持たすことができる。例えば、制御部28は、同じ電圧を上から1本目、3本目、5本目等のように1本間隔で印加した場合の回折格子724の格子の周期を、同じ電圧を1本目、2本目、5本目、6本目等のように2本間隔で印加した場合の回折格子724の格子の周期を半分にすることができる。これにより、回折格子724は、制御部28の制御によって、回折機能の異なる構成を実現できる。この結果、回折格子724は、異なる波長の光が入射した場合でも、スペックルノイズの原因となる光のばらつきを制御することができるので、光の波長の影響を低減しつつ、スペックルノイズを低減できる。尚、回折格子724と同様の構成を回折格子42以外の回折格子に適用してもよい。 Furthermore, the control unit 28 can have the same function as when the period of the grating in the diffraction grating is changed by changing the period of the linear transparent electrode 768 to which the same voltage is applied. For example, the control unit 28 sets the period of the grating of the diffraction grating 724 when the same voltage is applied at intervals of one line from the top, such as the first line, the third line, and the fifth line. The grating period of the diffraction grating 724 when applied at intervals of two lines such as the fifth line and the sixth line can be halved. Thereby, the diffraction grating 724 can realize different configurations of the diffraction function under the control of the control unit 28. As a result, the diffraction grating 724 can control the dispersion of light that causes speckle noise even when light of different wavelengths is incident. Therefore, speckle noise can be reduced while reducing the influence of light wavelength. Can be reduced. Note that the same configuration as that of the diffraction grating 724 may be applied to diffraction gratings other than the diffraction grating 42.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 10 プロジェクタ、    12 レーザ光源、    14 レーザ光源、    16 レーザ光源、    18 ダイクロイックミラー、    20 ダイクロイックミラー、    22 MEMSミラー、    24 光学装置、    26 投影部、    28 制御部、    30 スクリーン、    40 基板、    42 回折格子、    44 基板、    46 回折格子、    48 1/4波長板、    50 基板、    52 回折格子、    54 基板、    56 回折格子、    58 基板、    60 配向層、    62 液晶層、    64 分子、    124 光学装置、    142 回折格子、    146 回折格子、    224 光学装置、    240 1/4波長板、    242 複屈折部材、    244 1/4波長板、    246 複屈折部材、    324 光学装置、    325 光学部材、    370 偏光スイッチ、    372 透明電極、    374 液晶部材、    376 透明電極、    424 光学装置、    480 偏光変換部、    482 偏光ビームスプリッタ、    483 面、    484 1/4波長板、    486 反射部材、    488 1/4波長板、    490 反射部材、    524 光学装置、    624 光学装置、    692 グリーンレーザ装置、    694 擬似拡散球、    724 回折格子、    766 板状透明電極、    767 液晶層、    768 線状透明電極 10 projectors, 12 laser light sources, 14 laser light sources, 16 laser light sources, 18 dichroic mirrors, 20 dichroic mirrors, 22 MEMS mirrors, 24 optical devices, 26 projection units, 40 control units, screens, 42 control units. Substrate, 46 diffraction grating, 48 1/4 wavelength plate, 50 substrate, 52 diffraction grating, 54 substrate, 56 diffraction grating, 58 substrate, 60 orientation layer, 62 liquid crystal layer, 64 molecule, device, 124 Diffraction grating, 224 optical device, 240 1/4 wavelength plate, 242 birefringent member, 244 1/4 wavelength plate, 244 quarter wavelength plate, 246 birefringent member, 324 optical device, 325 optical member, 370 polarization switch, 372 transparent electrode, liquid crystal 37 4 Electrode, 424 optical device, 480 polarization converter, 482 polarizing beam splitter, 483 surface, 484 quarter wavelength plate, 486 reflective member, 488 quarter wavelength plate, 490 reflective member, optical device 524, 69 Green laser device, 694 pseudo-diffusing sphere, 724 diffraction grating, 766 plate-shaped transparent electrode, 767 the liquid crystal layer, 768 linear transparent electrodes

Claims (14)

  1.  直線偏光のレーザ光を回折して出射する回折部と、
     前記回折部から出射された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に変換して出射する方向変換部と
    を備える光学装置。
    A diffraction unit that diffracts and emits linearly polarized laser light;
    An optical device comprising: a direction changing unit that converts at least a part of the + 1st order light emitted from the diffraction unit and at least a part of the −1st order light into parallel directions and emits the converted light.
  2.  前記方向変換部の出射側に設けられ、前記方向変換部が出射した光を直線偏光にする1/4波長板と、
     前記1/4波長板から出射された前記直線偏光を前記回折部の回折方向と異なる方向に回折して出射する第2回折部と、
     前記第2回折部によって回折された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に変換して出射する第2方向変換部と
    を更に備える請求項1に記載の光学装置。
    A quarter-wave plate that is provided on the exit side of the direction conversion unit and converts the light emitted by the direction conversion unit into linearly polarized light;
    A second diffractive part that diffracts and emits the linearly polarized light emitted from the quarter-wave plate in a direction different from the diffraction direction of the diffractive part;
    2. The second direction conversion unit further comprising: a second direction conversion unit that converts at least a part of the + 1st order light diffracted by the second diffraction unit and at least a part of the −1st order light into parallel directions and outputs the parallel direction. Optical device.
  3.  前記回折部は、第1回折格子を含み、
     前記方向変換部は、前記第1回折格子と同じ機能を有する第2回折格子を含む
    請求項1または2に記載の光学装置。
    The diffraction part includes a first diffraction grating,
    The optical device according to claim 1, wherein the direction changing unit includes a second diffraction grating having the same function as the first diffraction grating.
  4.  前記回折部は、第1回折格子を含み、
     前記方向変換部は、前記第1回折格子の第1格子パターンと同じ構造を有し、且つ、平行に配置された第2格子パターンを有する第2回折格子を含む
    請求項1から3のいずれか1項に記載の光学装置。
    The diffraction part includes a first diffraction grating,
    4. The device according to claim 1, wherein the direction changing unit includes a second diffraction grating having the same structure as the first grating pattern of the first diffraction grating and having a second grating pattern arranged in parallel. 5. The optical device according to item 1.
  5.  前記方向変換部の出射側に設けられ、前記方向変換部が出射した光を直線偏光にする1/4波長板と、
     前記1/4波長板から出射された前記直線偏光を前記回折部の回折方向と異なる方向に回折して出射する第3回折格子を含む第2回折部と、
     前記第3回折格子と同じ機能を有する第4回折格子を含み、前記第2回折部によって回折された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に変換して出射する第2方向変換部と
    を更に備える請求項3または4に記載の光学装置。
    A quarter-wave plate that is provided on the exit side of the direction conversion unit and converts the light emitted by the direction conversion unit into linearly polarized light;
    A second diffractive portion including a third diffraction grating that diffracts and emits the linearly polarized light emitted from the quarter-wave plate in a direction different from the diffraction direction of the diffractive portion;
    A fourth diffraction grating having the same function as the third diffraction grating, wherein at least a part of the + 1st order light and at least a part of the −1st order light diffracted by the second diffraction part are converted into parallel directions. The optical device according to claim 3, further comprising a second direction conversion unit that emits light.
  6.  前記方向変換部の出射側に設けられ、前記方向変換部が出射した光を直線偏光にする1/4波長板と、
     前記1/4波長板から出射された前記直線偏光を前記回折部の回折方向と異なる方向に回折して出射する第2回折部と、
     前記第2回折部によって回折された+1次光の少なくとも一部と-1次光の少なくとも一部とを平行な方向に変換して出射する第2方向変換部と
    を更に備え、
     前記第2回折部は、前記第1格子パターンと交差する第3格子パターンを有する第3回折格子を含み、
     前記第2方向変換部は、前記第3格子パターンと同じ構造を有し、且つ、平行に配置された第4格子パターンを有する第4回折格子を含む
    請求項4に記載の光学装置。
    A quarter-wave plate that is provided on the exit side of the direction conversion unit and converts the light emitted by the direction conversion unit into linearly polarized light;
    A second diffractive part that diffracts and emits the linearly polarized light emitted from the quarter-wave plate in a direction different from the diffraction direction of the diffractive part;
    A second direction converter that converts at least a part of the + 1st order light diffracted by the second diffractive part and at least a part of the −1st order light into parallel directions and emits the converted light;
    The second diffraction part includes a third diffraction grating having a third grating pattern intersecting with the first grating pattern,
    5. The optical device according to claim 4, wherein the second direction changing unit includes a fourth diffraction grating having the same structure as the third grating pattern and having a fourth grating pattern arranged in parallel.
  7.  前記第1格子パターンは、前記第3格子パターンと直交する
    請求項6に記載の光学装置。
    The optical device according to claim 6, wherein the first grating pattern is orthogonal to the third grating pattern.
  8.  前記第1回折格子及び前記第2回折格子は、偏光を回折する液晶部を有する
    請求項3から7のいずれか1項に記載の光学装置。
    The optical device according to claim 3, wherein the first diffraction grating and the second diffraction grating have a liquid crystal unit that diffracts polarized light.
  9.  前記方向変換部、または、前記第2方向変換部は、出射する光が互いに重なるように回折させる
    請求項2に記載の光学装置。
    The optical device according to claim 2, wherein the direction changing unit or the second direction changing unit diffracts the emitted light so as to overlap each other.
  10.  直線偏光のレーザ光の偏光方向を多方向に変調する入射側変調部と、
     前記入射側変調部が変調した光を第1方向に分割して、第1光及び第2光を出射する第1複屈折部と、
     前記第1複屈折部から出射された前記第1光及び前記第2光の偏光方向を多方向に変調する出射側変調部と、
     前記出射側変調部が変調した光を前記第1方向とは異なる第2方向で分割して、且つ、互いに平行に進行する光として出射する第2複屈折部と
    を備える光学装置。
    An incident-side modulator that modulates the polarization direction of linearly polarized laser light in multiple directions;
    A first birefringence unit that divides light modulated by the incident side modulation unit in a first direction and emits first light and second light;
    An emission-side modulation unit that modulates the polarization directions of the first light and the second light emitted from the first birefringence unit in multiple directions;
    An optical device comprising: a second birefringence unit that divides the light modulated by the emission side modulation unit in a second direction different from the first direction and emits the light traveling in parallel with each other.
  11.  前記レーザ光の光路上に配置され、入射する光の偏光状態を時分割で切り換える偏光スイッチを更に備える
    請求項1から10のいずれか1項に記載の光学装置。
    The optical device according to any one of claims 1 to 10, further comprising a polarization switch that is disposed on an optical path of the laser light and switches a polarization state of incident light in a time division manner.
  12.  前記レーザ光の光路上に配置され、入射した光を互いに異なる偏光状態の光であって、互いに同じ方向に進行する光に変換する偏光変換部を更に備える
    請求項1から11のいずれか1項に記載の光学装置。
    12. The apparatus according to claim 1, further comprising a polarization conversion unit that is disposed on an optical path of the laser light and converts incident light into light having different polarization states and traveling in the same direction. An optical device according to 1.
  13.  前記液晶部は、
     平面状の液晶部材と、
     一の方向に延び、前記液晶部材の一方の面に互いに平行に設けられた複数の第1透明電極と、
     前記液晶部材を挟み前記複数の第1透明電極の反対側に設けられた第2透明電極と
    を有する請求項8に記載の光学装置。
    The liquid crystal part
    A planar liquid crystal member;
    A plurality of first transparent electrodes extending in one direction and provided in parallel to one surface of the liquid crystal member;
    The optical device according to claim 8, further comprising a second transparent electrode provided on an opposite side of the plurality of first transparent electrodes with the liquid crystal member interposed therebetween.
  14.  前記複数の第1透明電極及び前記第2透明電極へ印加する電圧を制御する電極制御部を更に備え、
     前記電極制御部は、前記複数の第1透明電極を個別に制御する
    請求項13に記載の光学装置。
    An electrode controller that controls a voltage applied to the plurality of first transparent electrodes and the second transparent electrodes;
    The optical device according to claim 13, wherein the electrode control unit individually controls the plurality of first transparent electrodes.
PCT/JP2014/002436 2013-05-08 2014-05-08 Optical device WO2014181539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-098421 2013-05-08
JP2013098421A JP2016136165A (en) 2013-05-08 2013-05-08 Optical device

Publications (1)

Publication Number Publication Date
WO2014181539A1 true WO2014181539A1 (en) 2014-11-13

Family

ID=51867027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002436 WO2014181539A1 (en) 2013-05-08 2014-05-08 Optical device

Country Status (2)

Country Link
JP (1) JP2016136165A (en)
WO (1) WO2014181539A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065975A1 (en) * 2017-09-28 2019-04-04 国立研究開発法人産業技術総合研究所 Circularl polarization-type polarization diversity element, scanning element using same, and lidar
WO2020075711A1 (en) * 2018-10-12 2020-04-16 富士フイルム株式会社 Optical laminate, light-guiding element, and ar display device
WO2022220184A1 (en) * 2021-04-12 2022-10-20 富士フイルム株式会社 Optical alignment layer exposure method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232504B2 (en) * 2018-12-26 2023-03-03 株式会社SteraVision optical switching element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433521A (en) * 1987-07-29 1989-02-03 Canon Kk Liquid crystal optical modulator
JPH01271930A (en) * 1988-04-21 1989-10-31 Ricoh Co Ltd Optical pickup device
JPH04130289A (en) * 1990-09-21 1992-05-01 Canon Inc Doppler speed meter
JP2003233094A (en) * 2002-02-13 2003-08-22 Citizen Watch Co Ltd Light deflecting element and its driving method
WO2006137326A1 (en) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 2-dimensional image display device, illumination light source, and exposure illumination device
JP2007178281A (en) * 2005-12-28 2007-07-12 Sendai Nikon:Kk Tilt sensor and encoder
US20080049284A1 (en) * 2006-08-28 2008-02-28 Samsung Electronics Co., Ltd. Laser display apparatus
JP2010156841A (en) * 2008-12-26 2010-07-15 Olympus Corp Illumination device and projection type display device having the same
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433521A (en) * 1987-07-29 1989-02-03 Canon Kk Liquid crystal optical modulator
JPH01271930A (en) * 1988-04-21 1989-10-31 Ricoh Co Ltd Optical pickup device
JPH04130289A (en) * 1990-09-21 1992-05-01 Canon Inc Doppler speed meter
JP2003233094A (en) * 2002-02-13 2003-08-22 Citizen Watch Co Ltd Light deflecting element and its driving method
WO2006137326A1 (en) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 2-dimensional image display device, illumination light source, and exposure illumination device
JP2007178281A (en) * 2005-12-28 2007-07-12 Sendai Nikon:Kk Tilt sensor and encoder
US20080049284A1 (en) * 2006-08-28 2008-02-28 Samsung Electronics Co., Ltd. Laser display apparatus
JP2010156841A (en) * 2008-12-26 2010-07-15 Olympus Corp Illumination device and projection type display device having the same
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065975A1 (en) * 2017-09-28 2019-04-04 国立研究開発法人産業技術総合研究所 Circularl polarization-type polarization diversity element, scanning element using same, and lidar
JPWO2019065975A1 (en) * 2017-09-28 2020-12-10 国立研究開発法人産業技術総合研究所 Circularly polarized polarization diversity element, scanning element using this, and lidar
JP7209969B2 (en) 2017-09-28 2023-01-23 国立研究開発法人産業技術総合研究所 Circular polarization type polarization diversity element, scanning element and lidar using the same
US11635501B2 (en) 2017-09-28 2023-04-25 National Institute Of Advanced Industrial Science And Technology Circular polarization-type polarization diversity element, scanning element using same, and lidar
WO2020075711A1 (en) * 2018-10-12 2020-04-16 富士フイルム株式会社 Optical laminate, light-guiding element, and ar display device
JPWO2020075711A1 (en) * 2018-10-12 2021-10-07 富士フイルム株式会社 Optical laminates, light guide elements and AR display devices
JP7261810B2 (en) 2018-10-12 2023-04-20 富士フイルム株式会社 Optical laminate, light guide element and AR display device
WO2022220184A1 (en) * 2021-04-12 2022-10-20 富士フイルム株式会社 Optical alignment layer exposure method

Also Published As

Publication number Publication date
JP2016136165A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP4784262B2 (en) Illumination device and image display device
US9341855B2 (en) Polarization converter by patterned polarization grating
CN110998418B (en) Phase modulator, illumination system, and projector
JP2004151133A (en) Optical device of illumination in image display and image display
TWI570500B (en) A light source device, a lighting device, and a projector
JPWO2012140845A1 (en) Incoherent device and optical apparatus using the same
WO2014181539A1 (en) Optical device
JP7387753B2 (en) Dual modulation laser projection system and method
KR20100030399A (en) Light generating apparatus and method for controlling the same
JP2002014419A5 (en)
JP6926526B2 (en) projector
JP5428822B2 (en) Lighting device and projector
JP6544520B2 (en) Lighting device and projector
JP5725138B2 (en) Lighting device and projector
JP2007033676A (en) Polarized light converting optical element, optical modulation module, and projection type image display apparatus
US8827457B2 (en) Projector
JP2010078900A (en) Projector
JP2017116674A (en) Illumination device and projector
CN111373305A (en) Polarization beam splitter, surface light source device, and display device
TWI546610B (en) Projection device and fabrication method of a polarization grating
JP2006023378A (en) Projector
JP7363411B2 (en) Light source device and projector
JP2022146144A (en) Lighting unit and projector
JP2022155645A (en) Optical modulator and projector
JP2021096321A (en) Light source device and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP