WO2014181014A1 - Optical sensor, system and method for detecting the presence of ice on surfaces - Google Patents
Optical sensor, system and method for detecting the presence of ice on surfaces Download PDFInfo
- Publication number
- WO2014181014A1 WO2014181014A1 PCT/ES2014/070226 ES2014070226W WO2014181014A1 WO 2014181014 A1 WO2014181014 A1 WO 2014181014A1 ES 2014070226 W ES2014070226 W ES 2014070226W WO 2014181014 A1 WO2014181014 A1 WO 2014181014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- waveguide
- ice
- sensor
- sensor section
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims description 20
- 239000011248 coating agent Substances 0.000 claims abstract description 59
- 238000000576 coating method Methods 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000013307 optical fiber Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000005253 cladding Methods 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- RMSOEGBYNWXXBG-UHFFFAOYSA-N 1-chloronaphthalen-2-ol Chemical compound C1=CC=CC2=C(Cl)C(O)=CC=C21 RMSOEGBYNWXXBG-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 230000003628 erosive effect Effects 0.000 abstract description 3
- 230000001902 propagating effect Effects 0.000 abstract 1
- 230000008878 coupling Effects 0.000 description 16
- 238000010168 coupling process Methods 0.000 description 16
- 238000005859 coupling reaction Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D15/00—De-icing or preventing icing on exterior surfaces of aircraft
- B64D15/20—Means for detecting icing or initiating de-icing
Definitions
- the present invention relates to an optical sensor for detecting the presence of ice on surfaces.
- the presence of ice in any aerodynamic element of an aircraft or a helicopter alters the shape, weight and mass distribution of the same: when the formation of ice begins, usually at an edge of attack, a distortion occurs of laminar flow and turbulence are generated, so that the resistance is increased and the lift decreases.
- the formation of ice is therefore a risk to security, and in fact has played an important role in aviation accidents, and also affects the control of the aircraft and increases fuel consumption.
- Another field in which it is convenient to control the formation of ice on a surface is for example that of wind turbines, since the formation of ice on the blades reduces performance, can cause excessive loads, etc. Also in ships, naval structures and other underwater applications in which it may be convenient to detect the formation of ice. It may also be useful to detect the presence or absence of ice in refrigerators, cold rooms and the like, or in water pipes.
- sensors that comprise an optical fiber along which an electromagnetic wave propagates, configured and mounted so that the wave propagation is affected to some extent. , by phenomena of reflection, refraction and scattering of light (scattering), by the presence of water or ice.
- known optical sensors have different limitations that make their application not entirely satisfactory and reliable: some known sensors in general are not able to discriminate between the presence of ice and the presence of water, so in practice to know if ice is formed, additional temperature or other sensors are required; Some sensors require elements that protrude from the surface, thereby affecting the aerodynamics of the surface, or can be installed only in certain positions and therefore do not measure directly in the area of interest; in other cases the characteristics of the sensors make them not resistant to erosion.
- the present invention provides a sensor that at least partially resolves the limitations of known sensors.
- the present invention provides an optical sensor for detecting the presence of ice on surfaces, characterized in that it comprises:
- the attenuation of the optical signal along the stretch of the waveguide that is close to the exposed face of the body is significantly different if there is presence of ice on the surface, and therefore on the exposed face of the body, or if there is only presence of air or water.
- the following explains in more detail how the sensor can detect ice reliably, and more
- the waveguide is suitable for working in the spectral region where the condition n n m agu a ⁇ ter ⁇ ai ⁇ n h and io is met, in the presence of ice will produce evanescent coupling and signal loss optical, while in the presence of water or air will not, since only in the presence of ice there is an increase in the index of refraction between the material and the outside.
- these phenomena are used for the univocal detection of ice against water, efficiently and without the need for further parameters.
- the sensor can be mounted without protruding from the surface, so it is particularly appropriate in applications where it is important not to affect the aerodynamics of the surfaces, and the core area of the waveguide is protected from erosion. because it is not exposed directly.
- the index of refraction of the material meets the relation n a gua ⁇ nmateriai ⁇ n h ⁇ e io to the working wavelength ⁇ ⁇ .
- the sensor section is appropriate to be installed on the surface so that the face of the section lining material sensor is exposed through an opening in the surface; in this way the sensor can be mounted level with the surface, and does not affect its aerodynamic characteristics.
- the waveguide may comprise an optical fiber, from which the outer coating has been removed at least in the area of the sensor section intended to be exposed during use, and optionally a part of the thickness of the optical coating has also been removed.
- the core zone may be manufactured within a body of appropriate material, so that the refractive index varies in this area; that is, the rest of the waveguide on both sides of the sensor section can be configured in another way.
- optical fibers may be coupled to an input end and an output end of the waveguide that includes the sensor section. This allows the transmitter and the detector to be located at any distance from the sensor section, and following any path, thanks to the flexibility of the optical fiber, which can be particularly useful in applications in which it is convenient to minimize the space occupied by the system in the surface, such as the wing of an airplane, for example.
- the working wavelength is between 3000 and 5000 nm, preferably between 3200 and 4000 nm; and the material can be selected from crystalline quartz, vitreous quartz, indium fluoride, or compounds thereof.
- the thickness between the core zone and the face of the coating material intended to be exposed is less than 250 pm, preferably less than 50 pm; These ranges allow sensors to have small dimensions.
- the sensor may further comprise an anti-erosion coating applied on the face of the coating material of the sensor section intended to be exposed. This coating allows to extend the life of the sensor, and It will be suitable especially in conditions where the surface is subject to high friction or particularly aggressive environments.
- the invention also relates to a system for detecting the presence of ice on surfaces comprising at least one optical sensor as described, and means for comparing the intensity of a detected optical signal with at least one threshold value, and generate an alarm in case the optical signal is lower than a threshold value.
- the system may comprise calibration means for determining at least one threshold value, which may be appropriate for determining at least one threshold value once the system is installed on a surface.
- the system comprises a plurality of said optical sensors, intended to be installed in a predetermined area, at a distance from each other, and a common control unit connected to said plurality of sensors, said control unit comprising means for providing information on the distribution of ice in an area
- the invention relates to a method for detecting the presence of ice on surfaces, characterized in that
- optical coating whose index of refraction n ma ter ⁇ ai meets the relation n ag ua ⁇ n ma ter ⁇ ai ⁇ n h ⁇ e io to the working wavelength ⁇ ⁇ and a core area contained in the coating material and appropriate for the propagation of an optical signal that has the working wavelength;
- a waveguide comprising an optical coating material whose refractive index n ma teri ai fulfills the relationship
- the waveguide can be installed on the surface so that the face of the lining material of the sensor section is exposed through an opening in the surface, and preferably so that the face of the exposed lining material is level with the surface .
- the method further comprises:
- the method may further comprise determining at least one threshold value; In this case, the determination of at least one threshold value can be performed once the waveguide is installed on a surface.
- the method may comprise:
- Figure 1 is a graph showing refractive indices of water and ice as a function of wavelength
- Figure 2 schematically shows the structure of a sensor according to a first embodiment of the invention
- Figures 3 to 5 schematically show three possible embodiments of the sensor
- Figure 6 is a graph that qualitatively illustrates the attenuation of a signal transmitted along the waveguide of the sensor during an icing process.
- an optical sensor for detecting the presence of ice on a surface takes advantage of the phenomenon of evanescent coupling of electromagnetic modes guided to detect ice, and in particular to be able to discriminate between the presence of ice and the presence of Water.
- an optical signal is transmitted along a waveguide of the optical sensor;
- the sensor is designed so that if there is ice on the sensor, an evanescent coupling of at least one guided mode of the signal with the ice is produced, and that this coupling does not occur in the presence of water: since the evanescent coupling has the effect an important attenuation of the signal transmitted by the waveguide, in the presence of ice there is a significantly greater attenuation than in the presence of water, which allows to differentiate the two situations.
- a characteristic of the sensor is that it is designed to work at a working wavelength ⁇ ⁇ for which the refractive indices of water and ice meet the relationship
- Figure 1 is a graph showing the variation of the refractive index of water and ice as a function of wavelength, in an area of the spectrum between 2 pm and 100 pm (logarithmic scale).
- the sensor is therefore designed to work with a working wavelength ⁇ ⁇ that is in one of these bands IR1 to IR7.
- FIG. 2 partially and schematically shows the structure of a sensor according to an embodiment of the invention.
- the sensor 100 of Figure 2 comprises a waveguide 101 including a material of optical coating (cladding) 102 whose refractive index n m of ter ⁇ ai satisfies the relationship n n m agu a ⁇ ter ⁇ ai ⁇ n h e io at the working wavelength ⁇ ⁇ , and preferably the ratio n acute to ⁇ n mate riai ⁇
- n water is approximately 1.45 yn h ⁇ e io it is approximately 1.56, so the material chosen for the optical coating of the sensor should have a refractive index at 3394 nm that is between these two values: for example, crystalline quartz meets this condition, since at this wavelength it has a refractive index close to 1.5.
- the optical coating material 102 there is a core zone ⁇ core) 103, suitable for propagation of an optical signal at the working wavelength.
- the structure of the guide with a core and an optical coating can be formed by any known technique: for example, the core area can be formed by laser writing in a block of appropriate optical coating material, so that in this area the index of refraction vary to the extent necessary to constitute an appropriate core.
- both the core and the coating can have refractive indexes that are between that of water and ice, at the wavelength of work.
- the material In order for a signal to propagate, the material must have a certain degree of transparency at the working wavelength (very high transparency is not necessary in this application, since the distances are short and the objective of the waveguide it is not that the signal propagates with the minimum losses), and the core must have a refractive index
- Figure 2 shows schematically and only by way of illustration an electromagnetic guided mode MG of an optical signal, which propagates along the guide 101.
- the waveguide 101 is configured so that it has a section 104, which will be referred to below as a sensor section, suitable for being installed on a surface S, in contact with an external means M, in which it wants to detect the presence of ice.
- the sensor is installed in such a way that a face of the coating material 102 of the sensor section 104 is exposed to an external means M, which can be for example air, water or ice, in the same way as the surface S.
- the shape of the sensor may be suitable for the sensor to be installed within the surface S and the sensor section 104 of the waveguide 101 is exposed to the outside environment M through an opening in the surface S, and with the face of the lining mat 102 level with the surface S itself, as shown in figure 2.
- the senor can be placed on the surface, or protruding through an opening, with the exposed sensor section.
- the senor must be used in demanding environmental conditions, it may be convenient to select the optical coating mat also taking the hardness into account, so that it can resist chafing.
- the sensor 100 also comprises in figure 2 an emitter 105 capable of injecting into the waveguide 101 an optical signal with the working wavelength ⁇ ⁇ for which
- the emitter can be, for example, a laser.
- Sensor design factors such as the guide material, the type of guide used, the distance between the core 103 and the external medium M (i.e., the minimum thickness e of the optical coating in the sensor section 104), the Selected specific working wavelength, etc., determine the degree of effectiveness of the sensor, and can be adjusted according to the specific requirements of each case: for example, depending on the type of application and environment in which it is implemented, the Sensor can be designed to meet different requirements for size, environmental resistance, detection efficiency, etc.
- the senor can be mounted, as in Figure 2, level with the surface, and that the layer of optical coating material 102 present in the sensor section 104 protects the core 103 from the environment, and from abrasion, without damage the evanescent coupling on which the detection is based; All this is very useful for example in applications in aircraft fuselages and the like.
- the length that the sensor section 104 must have in order for evanescent coupling to occur in the presence of ice can be very small, for example of the order of 1 mm or a few millimeters, so the sensor hardly affects the surface on which it is install
- the length of the sensor section will also depend on the material chosen.
- the thickness e of the optical coating material 102 in the sensor section 104 may be a few microns, but it may also be considerably greater, depending on the specific working wavelength, the length of the sensor section 104, etc.
- the core 103 of the waveguide 101 can have any section, for example round or rectangular, and can also be designed as a zone with multiple cores.
- the coating material 102 may also have any shape that is appropriate to contain the core area 103 and so that the sensor can be placed in the working position; although it can also be provided that the waveguide is partially surrounded by a sheath or that it comprises another outer protective material, which serves to mount the sensor in the working position.
- the sensor comprises a body of optical coating material 102, which contains the core area 103 and which is mounted in an opening A of the surface S, so that one face of the coating 102 of the sensor section 104 is exposed .
- the opening A has been exaggerated to facilitate its identification, but usually the sensor will be mounted so that there is no clearance between the surface S and the sensor.
- the core zone 103 extends from one wall to another of the body of optical coating material 102, following a path that makes it possible for the sensor section 104 to be close to the surface S and at the same time provides sufficient space for the connections in the ends of the core zone.
- the emitter 105 and the detector 106 may be mounted directly adjacent to the material body of
- Figure 4 shows a sensor similar to that of Figure 3, but in which the emitter 105 and the detector 106 are connected to the waveguide 101 through auxiliary optical fibers, 107 and 108, which can have any suitable length to mount the emitter and the detector in positions far from the surface S in which the presence of ice must be detected.
- the sensor waveguide is an optical fiber 201.
- the optical fiber 201 comprises, as is known, a core zone 203 ⁇ core), a
- optical coating 202 (cladding), and an outer coating 209 (coating or buffer).
- Fiber 201 is selected so that optical coating 202 meets the aforementioned condition of
- the optical fiber 201 comprises a sensor section 204, in which the outer covering 209 has been removed, so that a face of the coating 202 is exposed on the surface S.
- a part of the optical coating can also be removed 202, depending on the thickness e that is to be left between the core 203 and the outside environment.
- the emitter 105 and the detector 106 are located at the ends of the optical fiber 201, which will have the length that is most suitable for each application.
- the senor is capable of detecting the presence of ice since the nucleation of the crystals occurs, without the need for a complete layer to form or for the ice to accumulate to a certain thickness; therefore, the sensor allows a very early detection.
- an anti-erosion coating applied at least on the sensor section, that is to say on the face of the optical coating that is exposed: it is enough to design this coating with the appropriate thickness for Do not prevent significant evanescent coupling in the sensor section.
- This thickness depends, among other things, on the coating material and the working wavelength chosen, the level of effectiveness required, and also the length of the sensor section; In some cases, the thickness should be substantially less than the working wavelength, especially if the sensor section is to have a reduced length.
- the senor can have the following characteristics: - optical coating material: crystalline quartz
- the transmitted signal would not suffer attenuation in the presence of outside air, while it would suffer a significant attenuation of approximately 6 dB (therefore there would only be 25% transmission) in the presence of ice.
- embodiments of the sensor according to the invention can also detect the presence of water (differentiated from the presence of air), to provide more complete information of the situation on the surface, at each instant or over time.
- the senor can identify three different situations, each of which corresponds to a certain attenuation or loss of signal strength:
- the signal when the external medium M (see figure 2) is air, the signal will practically not suffer attenuation, or in any case it will have a known (maximum) level, which depends on the characteristics of the sensor and the line between the transmitter
- the signal strength may be reduced for example to an approximate level of 80% (attenuation of approximately 1 dB);
- the intensity detected in the presence of ice can be, for example, around 20% (attenuation of approximately 7 dB).
- Figure 6 illustrates qualitatively the evolution of the signal intensity along these three stages in time, showing on the left of the figure an axis with the signal intensity, and on the right an axis with the corresponding attenuation .
- the graph is purely illustrative, since the concrete values may vary depending on the materials and the geometry of the sensor, the working wavelength, the conditions of the external environment, etc.
- one or more suitable threshold levels can be established to provide warning signs of the formation or presence of ice, and even of the presence of water.
- the thresholds will be established for each application at the most appropriate levels depending on how you want to monitor the situation, the security required, etc.
- a system capable of detecting ice at a point on a surface can be constructed, but also a system capable of monitoring and providing information about the external environment (air, water or ice) that there is at every moment on the surface, and even on the thickness of the ice.
- a user can make the decisions deemed appropriate: for example, if the system is installed in the fuselage of an aircraft, the pilot may decide to activate means to remove the ice or to prevent its accumulation.
- An automatic control of defrosting systems or the like can also be provided, depending on the signals provided by the detection system.
- an independent transmitter and detector can be used for each of the sensors; In some applications, it may also be useful to have sensors with different characteristics from each other and that work with different wavelengths, for example if any point on the surface to be controlled is more critical, it requires a higher level of accuracy, etc.
- a system with several sensors can use a common emitter and a single working wavelength.
- the calibration can be individual for each sensor, so that each sensor has different thresholds associated; the differences between the thresholds may be due to the fact that the specific characteristics of the sensors are different, but also to the willingness to monitor some points of the surface with respect to others.
- Calibration can be performed at the factory or before installing the sensors, but it may be more accurate once the sensors are installed on a surface, and even periodically re-calibrate the sensor.
- the system control unit may be equipped with the necessary functionalities.
- a "dry” calibration can be performed, that is, with air as an external medium, to set the normal level or zero level of the signal strength, and assign default percentages of this level as thresholds; or specific calibrations can also be performed in the presence of ice and / or water, to set appropriate attenuation thresholds.
- a method for detecting the presence or formation of ice may comprise, for example:
- a waveguide which can be an optical fiber or a guide of another type, which has a core area and an optical coating, of a material whose refractive index, at the working wavelength, is between the of ice and water;
- the transmitted optical signal can be continuous or pulsed, and detection can be done at appropriate time intervals.
- the procedure can be applied with a system of several waveguides installed remotely from each other, and can also comprise calibration steps, as described above. It can also be used to issue not only warnings or signals related to training or presence of ice, but also with the presence of water on the surface, properly establishing the characteristics of waveguides, working wavelength, and thresholds.
- the uses that can be given to the sensor are multiple, although explicit reference has only been made to the detection of ice and / or water in
- the sensor may be very appropriate, since these surfaces have problems similar to those of the plane wings in terms of aerodynamics.
- Another application may be the detection of ice on surfaces that are submerged, since the sensor reliably discriminates ice from water; and it can also be used to detect ice in refrigerators or in water pipes, and in general in any circumstance where you want to detect the formation of ice quickly and reliably.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
The invention relates to an optical sensor for detecting the presence of ice on surfaces, characterised in that it comprises: a waveguide having an optical coating with a refractive index that fulfills the relation nwater ≤ nmaterial < nice at a wavelength λT for which nwater < nice, and a core contained in the coating and suitable for propagating an optical signal of λT, the waveguide having a sensor segment that is installed on a surface with one face of the coating exposed; means for injecting an optical signal of λT into the waveguide; and means for detecting the optical signal transmitted by the waveguide downstream of the sensor segment. The sensor detects the formation of ice, differentiating same from the presence of water. The sensor is resistant to erosion and can be mounted without projecting from the surface.
Description
SENSOR ÓPTICO, SISTEMA, Y PROCEDIMIENTO PARA OPTICAL SENSOR, SYSTEM, AND PROCEDURE FOR
DETECTAR LA PRESENCIA DE HIELO EN SUPERFICIES DETECT THE PRESENCE OF ICE ON SURFACES
La presente invención se refiere a un sensor óptico para detectar la presencia de hielo en superficies. The present invention relates to an optical sensor for detecting the presence of ice on surfaces.
También se refiere a un sistema para detectar la presencia de hielo que comprende al menos uno de dichos sensores, y a un procedimiento para detectar la presencia de hielo en superficies. It also refers to a system for detecting the presence of ice comprising at least one of said sensors, and a method for detecting the presence of ice on surfaces.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
Existen varias aplicaciones en las que es necesario detectar la formación de hielo o la presencia de hielo sobre una superficie. There are several applications in which it is necessary to detect the formation of ice or the presence of ice on a surface.
Por ejemplo, la presencia de hielo en cualquier elemento aerodinámico de un avión o un helicóptero altera la forma, el peso y la distribución de masas del mismo: cuando se inicia la formación de hielo, generalmente en un borde de ataque, se produce una distorsión de flujo laminar y se generan turbulencias, de modo que se incrementa la resistencia y disminuye la sustentación. La formación de hielo supone por tanto un riesgo para la segundad, y de hecho ha tenido un papel importante en accidentes de aviación, y además afecta el control de la aeronave y hace aumentar el consumo de combustible. For example, the presence of ice in any aerodynamic element of an aircraft or a helicopter alters the shape, weight and mass distribution of the same: when the formation of ice begins, usually at an edge of attack, a distortion occurs of laminar flow and turbulence are generated, so that the resistance is increased and the lift decreases. The formation of ice is therefore a risk to security, and in fact has played an important role in aviation accidents, and also affects the control of the aircraft and increases fuel consumption.
Otro campo en el que conviene controlar la formación de hielo en una superficie es por ejemplo el de los aerogeneradores, ya que la formación de hielo en las palas reduce el rendimiento, puede provocar cargas excesivas, etc. También en buques, estructuras navales y otras aplicaciones submarinas en las cuales puede ser conveniente detectar la formación de hielo. También puede ser útil detectar la presencia o la ausencia de hielo en frigoríficos, cámaras frigoríficas y similares, o en conducciones de agua. Another field in which it is convenient to control the formation of ice on a surface is for example that of wind turbines, since the formation of ice on the blades reduces performance, can cause excessive loads, etc. Also in ships, naval structures and other underwater applications in which it may be convenient to detect the formation of ice. It may also be useful to detect the presence or absence of ice in refrigerators, cold rooms and the like, or in water pipes.
Para abordar este problema se han propuesto distintos tipos de sensores ópticos, por ejemplo sensores que comprenden una fibra óptica a lo largo de la cual se propaga una onda electromagnética, configurados y montados de modo que la propagación de la onda se vea afectada en alguna medida, por
fenómenos de reflexión, refracción y dispersión de la luz (scattering), por la presencia de agua o hielo. To address this problem, different types of optical sensors have been proposed, for example sensors that comprise an optical fiber along which an electromagnetic wave propagates, configured and mounted so that the wave propagation is affected to some extent. , by phenomena of reflection, refraction and scattering of light (scattering), by the presence of water or ice.
Sin embargo, los sensores ópticos conocidos tienen diferentes limitaciones que hacen que su aplicación no sea del todo satisfactoria y fiable: algunos sensores conocidos en general no son capaces de discriminar entre la presencia de hielo y la presencia de agua, por lo que en la práctica para saber si se forma hielo se requieren sensores adicionales de temperatura o de otro tipo; algunos sensores requieren elementos que sobresalen de la superficie, con lo que afectan la aerodinámica de la misma, o se pueden instalar sólo en determinadas posiciones y por tanto no miden directamente en la zona de interés; en otros casos las características de los sensores hacen que no sean resistentes a la erosión. However, known optical sensors have different limitations that make their application not entirely satisfactory and reliable: some known sensors in general are not able to discriminate between the presence of ice and the presence of water, so in practice to know if ice is formed, additional temperature or other sensors are required; Some sensors require elements that protrude from the surface, thereby affecting the aerodynamics of the surface, or can be installed only in certain positions and therefore do not measure directly in the area of interest; in other cases the characteristics of the sensors make them not resistant to erosion.
La presente invención proporciona un sensor que resuelve al menos en parte las limitaciones de los sensores conocidos. The present invention provides a sensor that at least partially resolves the limitations of known sensors.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
De acuerdo con un primer aspecto, la presente invención proporciona un sensor óptico para detectar la presencia de hielo en superficies, que se caracteriza porque comprende: According to a first aspect, the present invention provides an optical sensor for detecting the presence of ice on surfaces, characterized in that it comprises:
- una guía de ondas con un material de revestimiento óptico cuyo índice de refracción nmater¡ai cumple la relación nagua≤ nmater¡ai <
a una longitud de onda de trabajo λτ para la cual nagua < nh¡eio , y con una zona de núcleo contenida en el material de revestimiento y apropiada para la propagación de una señal óptica que tiene la longitud de onda de trabajo, presentando la guía de ondas un tramo sensor apropiado para ser instalado en una superficie en la que se debe detectar la presencia de hielo de modo que una cara del material de revestimiento del tramo sensor quede expuesta ; - a waveguide with an optical coating material whose refractive index n m of ter¡ai satisfies the relationship n n m agu a≤ ter¡ai < at a working wavelength λ τ for which n a gua <n h ¡ e io, and with a core zone contained in the coating material and suitable for the propagation of an optical signal having the wavelength of work, presenting the waveguide an appropriate sensor section to be installed on a surface on which the presence of ice must be detected so that one face of the lining material of the sensor section is exposed;
- medios para inyectar en la guía de ondas una señal óptica con una longitud de onda de trabajo λτ para la cual nagua < nh¡eio ; y - means for injecting into the waveguide an optical signal with a working wavelength λ τ for which n water <n h ¡ e io; Y
- medios para detectar la señal óptica transmitida por la guía de ondas curso abajo de dicho tramo sensor. - means for detecting the optical signal transmitted by the waveguide running down said sensor section.
Con estas características del sensor, la atenuación de la señal óptica a lo largo del tramo de la guía de ondas que está próxima a la cara expuesta del
cuerpo es significativamente diferente si hay presencia de hielo sobre la superficie, y por tanto sobre la cara expuesta del cuerpo, o si hay únicamente presencia de aire o agua. A continuación se explica con más detalle de qué manera el sensor permite detectar hielo de modo fiable, y más With these sensor characteristics, the attenuation of the optical signal along the stretch of the waveguide that is close to the exposed face of the body is significantly different if there is presence of ice on the surface, and therefore on the exposed face of the body, or if there is only presence of air or water. The following explains in more detail how the sensor can detect ice reliably, and more
particularmente diferenciar entre la presencia de hielo y la presencia de agua. particularly differentiate between the presence of ice and the presence of water.
En la propagación de la señal óptica a lo largo de la guía de ondas, existen uno o varios modos electromagnéticos guiados. In the propagation of the optical signal along the waveguide, there are one or more guided electromagnetic modes.
En la cara del tramo sensor que está expuesta, es decir, sobre la que se puede depositar agua o hielo, hay un salto en el índice de refracción: si el índice de refracción del medio exterior es mayor que el de la guía, puede surgir un acoplamiento evanescente entre los modos electromagnéticos guiados y el medio exterior, que se traduce en una pérdida de potencia de los modos guiados. On the face of the sensor section that is exposed, that is, on which water or ice can be deposited, there is a jump in the index of refraction: if the index of refraction of the external environment is greater than that of the guide, it can arise an evanescent coupling between the guided electromagnetic modes and the external environment, which translates into a loss of power of the guided modes.
Debido a que la guía de ondas es apropiada para trabajar en la región espectral donde se cumple la condición nagua≤ nmater¡ai < nh¡eio, en presencia de hielo habrá acoplamiento evanescente y se producirá la pérdida de señal óptica, mientras que en presencia de agua o aire no lo hará, ya que sólo en presencia de hielo hay un aumento del índice de refracción entre el material y el exterior. Because the waveguide is suitable for working in the spectral region where the condition n n m agu a≤ ter¡ai <n h and io is met, in the presence of ice will produce evanescent coupling and signal loss optical, while in the presence of water or air will not, since only in the presence of ice there is an increase in the index of refraction between the material and the outside.
En realizaciones de la invención se aprovechan estos fenómenos para la detección unívoca del hielo frente al agua, de manera eficiente y sin necesidad de ulteriores parámetros. Además el sensor se puede montar sin necesidad de que sobresalga de la superficie, por lo que es particularmente apropiado en aplicaciones en que es importante no afectar la aerodinámica de las superficies, y la zona de núcleo de la guía de ondas queda protegida de la erosión porque no está expuesta directamente. In embodiments of the invention, these phenomena are used for the univocal detection of ice against water, efficiently and without the need for further parameters. In addition, the sensor can be mounted without protruding from the surface, so it is particularly appropriate in applications where it is important not to affect the aerodynamics of the surfaces, and the core area of the waveguide is protected from erosion. because it is not exposed directly.
Preferiblemente, el índice de refracción del material cumple la relación nagua < nmateriai < nh¡eio a la longitud de onda de trabajo λτ. Preferably, the index of refraction of the material meets the relation n a gua <nmateriai <n h ¡ e io to the working wavelength λ τ .
En algunas realizaciones, especialmente cuando la aerodinámica de la superficie es importante, el tramo sensor es apropiado para ser instalado en la superficie de modo que la cara del material de revestimiento del tramo
sensor quede expuesta a través de una abertura en la superficie; de este modo el sensor se puede montar nivelado con la superficie, y no afecta sus características aerodinámicas. In some embodiments, especially when surface aerodynamics is important, the sensor section is appropriate to be installed on the surface so that the face of the section lining material sensor is exposed through an opening in the surface; in this way the sensor can be mounted level with the surface, and does not affect its aerodynamic characteristics.
La guía de ondas puede comprender una fibra óptica, de la cual se ha retirado el recubrimiento exterior al menos en el área del tramo sensor destinada a quedar expuesta durante el uso, y opcionalmente se ha retirado además una parte del espesor del revestimiento óptico. The waveguide may comprise an optical fiber, from which the outer coating has been removed at least in the area of the sensor section intended to be exposed during use, and optionally a part of the thickness of the optical coating has also been removed.
Alternativamente, al menos en el tramo sensor de la guía de ondas la zona de núcleo puede estar fabricada dentro de un cuerpo de material apropiado, de modo que varíe en esta zona el índice de refracción; es decir, el resto de la guía de ondas a ambos lados del tramo sensor puede estar configurado de otro modo. Alternatively, at least in the sensor section of the waveguide the core zone may be manufactured within a body of appropriate material, so that the refractive index varies in this area; that is, the rest of the waveguide on both sides of the sensor section can be configured in another way.
Por ejemplo, a un extremo de entrada y a un extremo de salida de la guía de ondas que incluye el tramo sensor pueden estar acopladas unas fibras ópticas. Esto permite situar el emisor y el detector a cualquier distancia del tramo sensor, y siguiendo cualquier camino, gracias a la flexibilidad de la fibra óptica, cosa que puede ser particularmente útil en aplicaciones en las que conviene minimizar el espacio ocupado por el sistema en la superficie, como puede ser por ejemplo el ala de un avión. For example, optical fibers may be coupled to an input end and an output end of the waveguide that includes the sensor section. This allows the transmitter and the detector to be located at any distance from the sensor section, and following any path, thanks to the flexibility of the optical fiber, which can be particularly useful in applications in which it is convenient to minimize the space occupied by the system in the surface, such as the wing of an airplane, for example.
En algunas realizaciones concretas, la longitud de onda de trabajo es de entre 3000 y 5000 nm, preferiblemente entre 3200 y 4000 nm; y el material se puede seleccionar entre cuarzo cristalino, cuarzo vitreo, fluoruro de indio, o compuestos de los mismos. In some specific embodiments, the working wavelength is between 3000 and 5000 nm, preferably between 3200 and 4000 nm; and the material can be selected from crystalline quartz, vitreous quartz, indium fluoride, or compounds thereof.
En realizaciones de la invención el espesor entre la zona de núcleo y la cara del material de revestimiento destinada a quedar expuesta es inferior a 250 pm, preferiblemente inferior a 50 pm; estos rangos permiten que los sensores tengan dimensiones reducidas. In embodiments of the invention the thickness between the core zone and the face of the coating material intended to be exposed is less than 250 pm, preferably less than 50 pm; These ranges allow sensors to have small dimensions.
El sensor puede comprender además un recubrimiento anti-erosión aplicado sobre la cara del material de revestimiento del tramo sensor destinada a quedar expuesta. Este recubrimiento permite alargar la vida útil del sensor, y
será adecuado sobre todo en condiciones en que la superficie esté sometida a fricciones elevadas o ambientes particularmente agresivos. The sensor may further comprise an anti-erosion coating applied on the face of the coating material of the sensor section intended to be exposed. This coating allows to extend the life of the sensor, and It will be suitable especially in conditions where the surface is subject to high friction or particularly aggressive environments.
De acuerdo con un segundo aspecto, la invención también se refiere a un sistema para detectar la presencia de hielo en superficies que comprende al menos un sensor óptico como se ha descrito, y medios para comparar la intensidad de una señal óptica detectada con al menos un valor umbral, y generar una alarma en caso de que la señal óptica sea inferior a un valor umbral. According to a second aspect, the invention also relates to a system for detecting the presence of ice on surfaces comprising at least one optical sensor as described, and means for comparing the intensity of a detected optical signal with at least one threshold value, and generate an alarm in case the optical signal is lower than a threshold value.
El sistema puede comprender medios de calibración para determinar al menos un valor umbral, que pueden ser apropiados para determinar al menos un valor umbral una vez que el sistema está instalado en una superficie. The system may comprise calibration means for determining at least one threshold value, which may be appropriate for determining at least one threshold value once the system is installed on a surface.
En algunas realizaciones el sistema comprende una pluralidad de dichos sensores ópticos, destinados a ser instalados en una zona predeterminada, a distancia unos de otros, y una unidad de control común conectada a dicha pluralidad de sensores, comprendiendo dicha unidad de control medios para proporcionar información sobre la distribución de hielo en una zona In some embodiments, the system comprises a plurality of said optical sensors, intended to be installed in a predetermined area, at a distance from each other, and a common control unit connected to said plurality of sensors, said control unit comprising means for providing information on the distribution of ice in an area
predeterminada, en función de las intensidades de las señales ópticas detectadas en las salidas de la pluralidad de sensores. predetermined, depending on the intensities of the optical signals detected at the outputs of the plurality of sensors.
De acuerdo con otro aspecto, la invención se refiere a un procedimiento para detectar la presencia de hielo en superficies, caracterizado porque According to another aspect, the invention relates to a method for detecting the presence of ice on surfaces, characterized in that
comprende: understands:
- seleccionar una longitud de onda de trabajo λτ para la cual nagua < nh¡eio- select a working wavelength λ τ for which n agu a <n h ¡ e io
- proporcionar una guía de ondas que comprende un material de - providing a waveguide comprising a material of
revestimiento óptico cuyo índice de refracción nmater¡ai cumple la relación nagua≤ nmater¡ai < nh¡eio a la longitud de onda de trabajo λτ y una zona de núcleo contenida en el material de revestimiento y apropiada para la propagación de una señal óptica que tiene la longitud de onda de trabajo;optical coating whose index of refraction n ma ter¡ai meets the relation n ag ua≤ n ma ter¡ai <n h ¡ e io to the working wavelength λ τ and a core area contained in the coating material and appropriate for the propagation of an optical signal that has the working wavelength;
- instalar la guía de ondas en una superficie en la que se debe detectar la presencia de hielo, de tal modo que en un tramo de la guía una cara del material de revestimiento quede expuesta, definiendo un tramo sensor de la guía; - install the waveguide on a surface where the presence of ice must be detected, so that in one section of the guide a face of the lining material is exposed, defining a sensor section of the guide;
- transmitir una señal óptica con una longitud de onda de trabajo λτ a lo largo de la guía de ondas, y
- detectar la señal óptica curso abajo del tramo sensor. - transmit an optical signal with a working wavelength λ τ along the waveguide, and - detect the optical signal down the sensor section.
Preferiblemente se proporciona una guía de ondas que comprende un material de revestimiento óptico cuyo índice de refracción nmater¡ai cumple la relación Preferably a waveguide is provided comprising an optical coating material whose refractive index n ma teri ai fulfills the relationship
nagua < nmater¡ai <
a la longitud de onda de trabajo λτ. n agu a <n ma ter¡ai < at the working wavelength λτ.
La guía de ondas se puede instalar en la superficie de modo que la cara del material de revestimiento del tramo sensor quede expuesta a través de una abertura en la superficie, y preferiblemente de modo que la cara del material de revestimiento expuesta quede nivelada con la superficie. The waveguide can be installed on the surface so that the face of the lining material of the sensor section is exposed through an opening in the surface, and preferably so that the face of the exposed lining material is level with the surface .
En algunas realizaciones, el procedimiento comprende además: In some embodiments, the method further comprises:
- comparar la intensidad de la señal detectada con al menos un valor umbral, y - compare the intensity of the detected signal with at least one threshold value, and
- determinar que hay presencia de hielo sobre el tramo sensor de la guía de ondas si la intensidad de la señal detectada es inferior a dicho valor umbral. - determine that there is ice on the sensor section of the waveguide if the intensity of the detected signal is lower than said threshold value.
El procedimiento puede comprender además determinar al menos un valor umbral; en este caso, la determinación de al menos un valor umbral se puede realizar una vez que la guía de ondas está instalada en una superficie. The method may further comprise determining at least one threshold value; In this case, the determination of at least one threshold value can be performed once the waveguide is installed on a surface.
En realizaciones útiles para monitorizar una zona de una superficie, el procedimiento puede comprender: In embodiments useful for monitoring an area of a surface, the method may comprise:
- instalar una pluralidad de guías de ondas en una zona predeterminada, a distancia unas de otras, - install a plurality of waveguides in a predetermined area, at a distance from each other,
- proporcionar una unidad de control común conectada a dicha pluralidad de guías de ondas, y - providing a common control unit connected to said plurality of waveguides, and
- proporcionar información mediante la unidad de control sobre la - provide information through the control unit on the
distribución de hielo en la zona predeterminada, en función de las distribution of ice in the predetermined area, depending on the
intensidades de las señales ópticas detectadas. intensities of the optical signals detected.
Otros objetos, ventajas y características de realizaciones de la invención se pondrán de manifiesto para el experto en la materia a partir de la descripción, o se pueden aprender con la práctica de la invención. Other objects, advantages and features of embodiments of the invention will be apparent to the person skilled in the art from the description, or can be learned with the practice of the invention.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
A continuación se describirán realizaciones particulares de la presente invención a título de ejemplo no limitativo, con referencia a los dibujos adjuntos, en los cuales: BRIEF DESCRIPTION OF THE DRAWINGS Particular embodiments of the present invention will now be described by way of non-limiting example, with reference to the accompanying drawings, in which:
La figura 1 es una gráfica que muestra los índices de refracción del agua y el hielo en función de la longitud de onda; la figura 2 muestra esquemáticamente la estructura de un sensor de acuerdo con una primera realización de la invención; las figuras 3 a 5 muestran esquemáticamente tres realizaciones posibles del sensor; y la figura 6 es una gráfica que ¡lustra cualitativamente la atenuación de una señal transmitida a lo largo de la guía de ondas del sensor durante un proceso de formación de hielo. Figure 1 is a graph showing refractive indices of water and ice as a function of wavelength; Figure 2 schematically shows the structure of a sensor according to a first embodiment of the invention; Figures 3 to 5 schematically show three possible embodiments of the sensor; and Figure 6 is a graph that qualitatively illustrates the attenuation of a signal transmitted along the waveguide of the sensor during an icing process.
EXPOSICION DETALLADA DE MODOS DE REALIZACIÓN DETAILED EXHIBITION OF MODES OF EMBODIMENT
De acuerdo con realizaciones de la presente invención, un sensor óptico para detectar la presencia de hielo en una superficie aprovecha el fenómeno de acoplamiento evanescente de modos electromagnéticos guiados para detectar hielo, y en particular para poder discriminar entre la presencia de hielo y la presencia de agua. In accordance with embodiments of the present invention, an optical sensor for detecting the presence of ice on a surface takes advantage of the phenomenon of evanescent coupling of electromagnetic modes guided to detect ice, and in particular to be able to discriminate between the presence of ice and the presence of Water.
Para ello, se transmite una señal óptica a lo largo de una guía de ondas del sensor óptico; el sensor está diseñado de modo que si sobre el sensor hay hielo se produce un acoplamiento evanescente de al menos un modo guiado de la señal con el hielo, y que este acoplamiento no ocurra en presencia de agua: puesto que el acoplamiento evanescente tiene como efecto una atenuación importante de la señal transmitida por la guía de ondas, en presencia de hielo se produce una atenuación significativamente mayor que en presencia de agua, cosa que permite diferenciar las dos situaciones. For this, an optical signal is transmitted along a waveguide of the optical sensor; The sensor is designed so that if there is ice on the sensor, an evanescent coupling of at least one guided mode of the signal with the ice is produced, and that this coupling does not occur in the presence of water: since the evanescent coupling has the effect an important attenuation of the signal transmitted by the waveguide, in the presence of ice there is a significantly greater attenuation than in the presence of water, which allows to differentiate the two situations.
A continuación se describen las características concretas de un sensor de acuerdo con algunos ejemplos no limitativos de realización.
Una característica del sensor es que se diseña para trabajar a una longitud de onda de trabajo λτ para la cual los índices de refracción del agua y del hielo cumplen la relación The specific characteristics of a sensor according to some non-limiting examples of embodiment are described below. A characteristic of the sensor is that it is designed to work at a working wavelength λ τ for which the refractive indices of water and ice meet the relationship
fragua ^ ílhielo- forge ^ ice
La figura 1 es una gráfica que muestra la variación del índice de refracción del agua y el hielo en función de la longitud de onda, en una zona del espectro entre 2 pm y 100 pm (escala logarítmica). Figure 1 is a graph showing the variation of the refractive index of water and ice as a function of wavelength, in an area of the spectrum between 2 pm and 100 pm (logarithmic scale).
Como se puede apreciar en la gráfica, aunque en general los índices de refracción del agua y del hielo son similares, en la zona del espectro entre aproximadamente 3 pm y 90 pm (infrarrojo medio y parte del infrarrojo lejano) hay siete bandas espectrales IR1 , IR2, ... IR7, donde el índice del hielo es superior al del agua. Estas bandas se han señalado en la gráfica con un valor medio aproximado, sólo a título ilustrativo y no limitativo, y corresponden a zonas alrededor de aproximadamente 3500 nm (IR1 ), aproximadamente 4640 nm (IR2), aproximadamente 5860 nm (IR3), aproximadamente 8000 nm (IR4), aproximadamente 14500 nm (IR5), aproximadamente 54000 nm (IR6), y aproximadamente 73500 nm (IR7), teniendo cada banda un ancho de banda espectral característico diferente. As can be seen in the graph, although in general the refractive indices of water and ice are similar, in the area of the spectrum between approximately 3 pm and 90 pm (middle infrared and part of the far infrared) there are seven IR1 spectral bands, IR2, ... IR7, where the index of ice is higher than that of water. These bands have been indicated in the graph with an approximate average value, for illustrative and non-limiting purposes only, and correspond to areas around approximately 3500 nm (IR1), approximately 4640 nm (IR2), approximately 5860 nm (IR3), approximately 8000 nm (IR4), approximately 14500 nm (IR5), approximately 54000 nm (IR6), and approximately 73500 nm (IR7), each band having a different characteristic spectral bandwidth.
El sensor se diseña por tanto para trabajar con una longitud de onda trabajo λτ que se encuentra en una de estas bandas IR1 a IR7. The sensor is therefore designed to work with a working wavelength λ τ that is in one of these bands IR1 to IR7.
La figura 2 muestra parcialmente y de modo muy esquemático la estructura de un sensor de acuerdo con una realización de la invención. El sensor 100 de la figura 2 comprende una guía de ondas 101 que incluye un material de revestimiento óptico (cladding) 102 cuyo índice de refracción nmater¡ai cumple la relación nagua≤ nmater¡ai < nh¡eio a la longitud de onda de trabajo λτ, y preferiblemente la relación nagua < nmateriai <
Figure 2 partially and schematically shows the structure of a sensor according to an embodiment of the invention. The sensor 100 of Figure 2 comprises a waveguide 101 including a material of optical coating (cladding) 102 whose refractive index n m of ter¡ai satisfies the relationship n n m agu a≤ ter¡ai <n h e io at the working wavelength λ τ , and preferably the ratio n acute to <n mate riai <
Por ejemplo, si se escoge una longitud de onda de trabajo λτ de 3394 nm, que está dentro del intervalo IR1 de la figura 1 , se puede ver que a esta longitud de onda nagua es aproximadamente 1 ,45 y nh¡eio es aproximadamente 1 ,56 por lo que el material elegido para el revestimiento óptico del sensor deberá tener un índice de refracción a 3394 nm que esté entre estos dos
valores: por ejemplo, el cuarzo cristalino cumple esta condición, ya que a esta longitud de onda tiene un índice de refracción próximo a 1 ,5. For example, if a working wavelength λ τ of 3394 nm is chosen, which is within the range IR1 of Figure 1, it can be seen that at this wavelength n water is approximately 1.45 yn h ¡ e io it is approximately 1.56, so the material chosen for the optical coating of the sensor should have a refractive index at 3394 nm that is between these two values: for example, crystalline quartz meets this condition, since at this wavelength it has a refractive index close to 1.5.
Dentro del material de revestimiento óptico 102 existe una zona de núcleo {core) 103, apropiada para la propagación de una señal óptica a la longitud de onda de trabajo. La estructura de la guía con un núcleo y un revestimiento óptico se puede formar mediante cualquier técnica conocida: por ejemplo se puede formar la zona de núcleo por escritura láser en un bloque de material de revestimiento óptico apropiado, de modo que en esta zona el índice de refracción varíe en la medida necesaria para constituir un núcleo apropiado. Within the optical coating material 102 there is a core zone {core) 103, suitable for propagation of an optical signal at the working wavelength. The structure of the guide with a core and an optical coating can be formed by any known technique: for example, the core area can be formed by laser writing in a block of appropriate optical coating material, so that in this area the index of refraction vary to the extent necessary to constitute an appropriate core.
Puesto que la diferencia entre el índice de refracción del núcleo y el del revestimiento es en general muy pequeña, en general tanto el núcleo como el revestimiento pueden tener índices de refracción que están entre el del agua y el del hielo, a la longitud de onda de trabajo. Since the difference between the refractive index of the core and that of the coating is generally very small, in general both the core and the coating can have refractive indexes that are between that of water and ice, at the wavelength of work.
Para que se pueda propagar una señal, el material debe tener un cierto grado de transparencia a la longitud de onda de trabajo (no es necesaria en esta aplicación una transparencia muy elevada, puesto que las distancias son cortas y el objetivo de la guía de ondas no es que la señal se propague con el mínimo de pérdidas), y el núcleo debe tener un índice de refracción In order for a signal to propagate, the material must have a certain degree of transparency at the working wavelength (very high transparency is not necessary in this application, since the distances are short and the objective of the waveguide it is not that the signal propagates with the minimum losses), and the core must have a refractive index
ligeramente supenor al del material de revestimiento óptico, aunque la diferencia puede ser muy pequeña: por ejemplo, el núcleo puede tener un índice un 0, 1 % supenor al del revestimiento, o incluso sólo un 0,01 % supenor, como es conocido para un experto en la materia. La figura 2 muestra esquemáticamente y sólo a título ilustrativo un modo electromagnético guiado MG de una señal óptica, que se propaga a lo largo de la guía 101. slightly higher than that of the optical coating material, although the difference may be very small: for example, the core may have a 0.1% higher index than the coating, or even only 0.01% higher, as is known for An expert in the field. Figure 2 shows schematically and only by way of illustration an electromagnetic guided mode MG of an optical signal, which propagates along the guide 101.
La guía de ondas 101 está configurada de modo que tiene un tramo 104, que se denominará a continuación tramo sensor, apropiado para ser instalado en una superficie S, en contacto con un medio exterior M, en la que quiere detectar la presencia de hielo. El sensor se instala de tal modo que una cara del material de revestimiento 102 del tramo sensor 104 quede expuesta a un medio exterior M, que puede ser por ejemplo aire, agua o hielo, del mismo modo que lo está la superficie S.
La forma del sensor puede ser adecuada para que el sensor se instale dentro de la superficie S y el tramo sensor 104 de la guía de ondas 101 quede expuesto al medio exterior M a través de una abertura en la superficie S, y con la cara del matenal de revestimiento 102 nivelada con la propia superficie S, como se muestra en la figura 2. The waveguide 101 is configured so that it has a section 104, which will be referred to below as a sensor section, suitable for being installed on a surface S, in contact with an external means M, in which it wants to detect the presence of ice. The sensor is installed in such a way that a face of the coating material 102 of the sensor section 104 is exposed to an external means M, which can be for example air, water or ice, in the same way as the surface S. The shape of the sensor may be suitable for the sensor to be installed within the surface S and the sensor section 104 of the waveguide 101 is exposed to the outside environment M through an opening in the surface S, and with the face of the lining mat 102 level with the surface S itself, as shown in figure 2.
En otras alternativas, sobre todo en aplicaciones en que la aerodinámica no es crítica, el sensor se puede colocar sobre la superficie, o sobresaliendo a través de una abertura, con el tramo sensor expuesto. In other alternatives, especially in applications where aerodynamics is not critical, the sensor can be placed on the surface, or protruding through an opening, with the exposed sensor section.
Si el sensor se debe usar en condiciones ambientales exigentes, puede ser conveniente seleccionar el matenal del revestimiento óptico también teniendo en cuenta la dureza, para que pueda resistir a rozaduras. If the sensor must be used in demanding environmental conditions, it may be convenient to select the optical coating mat also taking the hardness into account, so that it can resist chafing.
El sensor 100 también comprende en la figura 2 un emisor 105 capaz de inyectar en la guía de ondas 101 una señal óptica con la longitud de onda de trabajo λτ para la cual The sensor 100 also comprises in figure 2 an emitter 105 capable of injecting into the waveguide 101 an optical signal with the working wavelength λ τ for which
nagua < nh¡eio, y un detector 106 capaz de detectar la señal transmitida a lo largo de la guía de ondas 101 . El emisor puede ser, por ejemplo, un láser. n ag ua <n h ¡ e io, and a detector 106 capable of detecting the signal transmitted along the waveguide 101. The emitter can be, for example, a laser.
Gracias a la condición que se ha elegido para el índice de refracción del material del revestimiento óptico 102, cuando sobre el tramo sensor 104 se forma hielo, en la inferíase entre el tramo sensor y el hielo existirá un salto en el índice de refracción, que aumenta en dirección hacia el exterior (nmater¡ai < nmeio), y por consiguiente se producirá un acoplamiento evanescente de al menos un modo guiado con el hielo a lo largo del tramo sensor 104 de la guía de ondas, de manera que la señal óptica quedará confinada preferentemente en el hielo. Como consecuencia de este acoplamiento, la intensidad de la señal transmitida por la guía de ondas y detectada por el detector 106 será significativamente menor que la emitida por el emisor 105. Thanks to the condition that has been chosen for the index of refraction of the material of the optical coating 102, when ice is formed on the sensor section 104, there will be a jump in the refractive index between the sensor section and the ice. it increases in an outward direction (n ma terÃai <nmeio), and consequently there will be an evanescent coupling of at least one way guided with the ice along the sensor section 104 of the waveguide, so that the Optical signal will preferably be confined to ice. As a consequence of this coupling, the intensity of the signal transmitted by the waveguide and detected by the detector 106 will be significantly lower than that emitted by the transmitter 105.
En cambio, cuando sobre el tramo sensor haya aire (na¡re = 1 < nmater¡ai), o bien agua On the other hand, when there is air on the sensor section (n a ¡re = 1 <n ma ter¡ai), or water
(nagua≤ nmater¡ai), no habrá un aumento del índice de refracción en la inferíase entre el tramo sensor y el medio exterior, sino en todo caso una disminución, y por tanto no habrá acoplamiento evanescente con el medio exterior y no se perderá intensidad de señal a lo largo de la guía por este fenómeno.
Factores de diseño del sensor, tales como el material de la guía, el tipo de guía usada, la distancia entre el núcleo 103 y el medio exterior M (es decir, el mínimo espesor e del revestimiento óptico en el tramo sensor 104), la longitud de onda de trabajo concreta elegida, etc., determinan el grado de efectividad del sensor, y pueden ajustarse de acuerdo con los requerimientos concretos de cada caso: por ejemplo, en función del tipo de aplicación y entorno en el que se implemente, el sensor puede ser diseñado para cumplir diferentes requerimientos de tamaño, resistencia ambiental, eficiencia de detección, etc. (n agu a≤ ter¡ai ma n), there will be an increased refractive index in the interphase between the sensor section and the external environment, but in any case reduced, and therefore no evanescent coupling with the outside environment and no signal intensity will be lost throughout the guidance by this phenomenon. Sensor design factors, such as the guide material, the type of guide used, the distance between the core 103 and the external medium M (i.e., the minimum thickness e of the optical coating in the sensor section 104), the Selected specific working wavelength, etc., determine the degree of effectiveness of the sensor, and can be adjusted according to the specific requirements of each case: for example, depending on the type of application and environment in which it is implemented, the Sensor can be designed to meet different requirements for size, environmental resistance, detection efficiency, etc.
Hay que notar que el sensor se puede montar, como en la figura 2, nivelado con la superficie, y que la capa de material de revestimiento óptico 102 presente en el tramo sensor 104 protege el núcleo 103 del ambiente, y de la abrasión, sin perjudicar el acoplo evanescente en el que se basa la detección; todo ello es muy útil por ejemplo en aplicaciones en fuselajes de aviones y similares. It should be noted that the sensor can be mounted, as in Figure 2, level with the surface, and that the layer of optical coating material 102 present in the sensor section 104 protects the core 103 from the environment, and from abrasion, without damage the evanescent coupling on which the detection is based; All this is very useful for example in applications in aircraft fuselages and the like.
La longitud que debe tener el tramo sensor 104 para que se produzca acoplamiento evanescente en presencia de hielo puede ser muy pequeña, por ejemplo del orden de 1 mm o de unos pocos milímetros, por lo que el sensor apenas afecta la superficie en la cual se instala. The length that the sensor section 104 must have in order for evanescent coupling to occur in the presence of ice can be very small, for example of the order of 1 mm or a few millimeters, so the sensor hardly affects the surface on which it is install
En general, cuanto mayor es la diferencia entre el índice del hielo y el índice del material del revestimiento óptico, menor es la distancia necesaria para que se transfiera una proporción significativa de energía de la guía hacia el medio exterior por acoplamiento evanescente, por lo que la longitud del tramo sensor dependerá también del material elegido. In general, the greater the difference between the ice index and the index of the optical coating material, the smaller the distance necessary for a significant proportion of energy from the guide to be transferred to the outside environment by evanescent coupling, so The length of the sensor section will also depend on the material chosen.
El espesor e del material de revestimiento óptico 102 en el tramo sensor 104 puede ser de unas pocas mieras, pero también puede ser bastante mayor, dependiendo de la longitud de onda concreta de trabajo, la longitud del tramo sensor 104, etc. The thickness e of the optical coating material 102 in the sensor section 104 may be a few microns, but it may also be considerably greater, depending on the specific working wavelength, the length of the sensor section 104, etc.
El núcleo 103 de la guía de ondas 101 puede tener cualquier sección, por ejemplo redonda o rectangular, y también puede diseñarse como una zona con múltiples núcleos. El material de revestimiento 102 puede tener también cualquier forma que sea apropiada para contener la zona de núcleo 103 y
para que el sensor se pueda colocar en la posición de trabajo; aunque también se puede prever que la guía de ondas esté parcialmente rodeada por una funda o que comprenda otro material exterior de protección, que sirva para montar el sensor en la posición de trabajo. The core 103 of the waveguide 101 can have any section, for example round or rectangular, and can also be designed as a zone with multiple cores. The coating material 102 may also have any shape that is appropriate to contain the core area 103 and so that the sensor can be placed in the working position; although it can also be provided that the waveguide is partially surrounded by a sheath or that it comprises another outer protective material, which serves to mount the sensor in the working position.
En las figuras 3, 4 y 5 se muestran esquemáticamente tres posibles vanantes de realización de un sensor óptico de acuerdo con la invención. In Figs. 3, 4 and 5, three possible variations of an optical sensor according to the invention are schematically shown.
En la figura 3 el sensor comprende un cuerpo de material de revestimiento óptico 102, que contiene la zona de núcleo 103 y que está montado en una abertura A de la superficie S, de manera que una cara del revestimiento 102 del tramo sensor 104 quede expuesta. En las figuras se ha exagerado la abertura A para facilitar su identificación, pero habitualmente el sensor se montará de modo que no quede holgura entre la superficie S y el sensor. In figure 3 the sensor comprises a body of optical coating material 102, which contains the core area 103 and which is mounted in an opening A of the surface S, so that one face of the coating 102 of the sensor section 104 is exposed . In the figures, the opening A has been exaggerated to facilitate its identification, but usually the sensor will be mounted so that there is no clearance between the surface S and the sensor.
La zona de núcleo 103 se extiende de una pared a otra del cuerpo de material de revestimiento óptico 102, siguiendo una trayectoria que hace posible que en el tramo sensor 104 quede próxima a la superficie S y al mismo tiempo proporciona suficiente espacio para las conexiones en los extremos de la zona de núcleo. En esta realización, el emisor 105 y el detector 106 pueden estar montados directamente adyacentes al cuerpo de material de The core zone 103 extends from one wall to another of the body of optical coating material 102, following a path that makes it possible for the sensor section 104 to be close to the surface S and at the same time provides sufficient space for the connections in the ends of the core zone. In this embodiment, the emitter 105 and the detector 106 may be mounted directly adjacent to the material body of
revestimiento 102, como muestra la figura. coating 102, as the figure shows.
La figura 4 muestra un sensor similar al de la figura 3, pero en el cual el emisor 105 y el detector 106 están conectados a la guía de ondas 101 a través de unas fibras ópticas auxiliares, 107 y 108, que pueden tener cualquier longitud adecuada para montar el emisor y el detector en posiciones alejadas de la superficie S en la que hay que detectar la presencia de hielo. Figure 4 shows a sensor similar to that of Figure 3, but in which the emitter 105 and the detector 106 are connected to the waveguide 101 through auxiliary optical fibers, 107 and 108, which can have any suitable length to mount the emitter and the detector in positions far from the surface S in which the presence of ice must be detected.
Una realización un poco distinta del sensor se muestra en la figura 5: en este caso, la guía de ondas del sensor es una fibra óptica 201. La fibra óptica 201 comprende, como es conocido, una zona de núcleo 203 {core), un A slightly different embodiment of the sensor is shown in Figure 5: in this case, the sensor waveguide is an optical fiber 201. The optical fiber 201 comprises, as is known, a core zone 203 {core), a
revestimiento óptico 202 (cladding), y un recubrimiento exterior 209 (coating o buffer). La fibra 201 se selecciona de modo que el revestimiento óptico 202 cumpla la condición que se ha mencionado de optical coating 202 (cladding), and an outer coating 209 (coating or buffer). Fiber 201 is selected so that optical coating 202 meets the aforementioned condition of
nagua≤ nmateriai < nh¡eio a la longitud de onda de trabajo λτ, nagua≤ n mat eriai <n h ¡ e io at the working wavelength λ τ ,
y preferiblemente nagua < nmateriai < nhieio.
La fibra óptica 201 comprende un tramo sensor 204, en el cual se ha retirado el recubrimiento exterior 209, de modo que una cara del revestimiento 202 quede expuesta en la superficie S. En el tramo sensor 204 se puede retirar además una parte del revestimiento óptico 202, dependiendo del espesor e que se quiera dejar entre el núcleo 203 y el medio exterior. and preferably n AGU <n mat eryAI <io n hie. The optical fiber 201 comprises a sensor section 204, in which the outer covering 209 has been removed, so that a face of the coating 202 is exposed on the surface S. In the sensor section 204, a part of the optical coating can also be removed 202, depending on the thickness e that is to be left between the core 203 and the outside environment.
El emisor 105 y el detector 106 están situados en los extremos de la fibra óptica 201 , que tendrá la longitud que sea más adecuada para cada aplicación. The emitter 105 and the detector 106 are located at the ends of the optical fiber 201, which will have the length that is most suitable for each application.
En este caso se ha representado la fibra óptica 201 encapsulada en un bloque o cuerpo de soporte 210 de un material cualquiera, como puede ser una resina o un adhesivo, que no interviene en el funcionamiento del sensor y simplemente tiene la función de permitir montar la fibra óptica 201 y en particular el tramo sensor 204 de una manera adecuada en la superficie S. In this case, the optical fiber 201 encapsulated in a block or support body 210 of any material, such as a resin or an adhesive, which is not involved in the operation of the sensor and simply has the function of allowing the assembly of the fiber optic 201 and in particular the sensor section 204 in a suitable manner on the surface S.
Los estudios realizados indican que el sensor es capaz de detectar la presencia de hielo desde que se produce la nucleación de los cristales, sin necesidad de que se forme una capa completa o que el hielo se acumule hasta un cierto espesor; por tanto, el sensor permite una detección muy temprana. Studies have shown that the sensor is capable of detecting the presence of ice since the nucleation of the crystals occurs, without the need for a complete layer to form or for the ice to accumulate to a certain thickness; therefore, the sensor allows a very early detection.
En todas las realizaciones del sensor que se han descrito también se puede prever que haya un recubrimiento anti-erosión aplicado al menos sobre el tramo sensor, es decir sobre la cara del revestimiento óptico que queda expuesta: basta diseñar este recubrimiento con el espesor adecuado para no impedir un acoplamiento evanescente significativo en el tramo sensor. Este espesor depende entre otras cosas del material del recubrimiento y de la longitud de onda de trabajo que se escoja, del nivel de efectividad que se requiera, y también de la longitud que tenga el tramo sensor; en algunos casos convendrá que el espesor sea sustancialmente menor que la longitud de onda de trabajo, sobre todo si se quiere que el tramo sensor tenga una longitud reducida. In all the embodiments of the sensor that have been described it can also be provided that there is an anti-erosion coating applied at least on the sensor section, that is to say on the face of the optical coating that is exposed: it is enough to design this coating with the appropriate thickness for Do not prevent significant evanescent coupling in the sensor section. This thickness depends, among other things, on the coating material and the working wavelength chosen, the level of effectiveness required, and also the length of the sensor section; In some cases, the thickness should be substantially less than the working wavelength, especially if the sensor section is to have a reduced length.
En una realización, a título de ejemplo concreto y no limitativo, el sensor puede tener las siguientes características:
- material de revestimiento óptico: cuarzo cristalino In one embodiment, by way of a concrete and non-limiting example, the sensor can have the following characteristics: - optical coating material: crystalline quartz
- longitud de onda de trabajo: λτ = 3,394 m - working wavelength: λ τ = 3,394 m
- espesor del revestimiento sobre el núcleo: e = 10 pm - thickness of the coating on the core: e = 10 pm
- núcleo de sección circular, de radio r = 10 pm - circular section core, radius r = 10 pm
- longitud del tramo sensor: 10 mm - length of the sensor section: 10 mm
En un sensor de este tipo, la señal transmitida no sufriría atenuación en presencia de aire en el exterior, mientras que sufriría una importante atenuación de aproximadamente 6 dB (por tanto sólo habría un 25% de transmisión) en presencia de hielo. In such a sensor, the transmitted signal would not suffer attenuation in the presence of outside air, while it would suffer a significant attenuation of approximately 6 dB (therefore there would only be 25% transmission) in the presence of ice.
Hasta ahora se ha discutido cómo el sensor es capaz de detectar la presencia de hielo, y de discriminarla respecto a la presencia de agua. Sin embargo, realizaciones del sensor de acuerdo con la invención también pueden detectar la presencia de agua (diferenciada de la presencia de aire), para proporcionar una información más completa de la situación en la superficie, en cada instante o a lo largo del tiempo. So far it has been discussed how the sensor is able to detect the presence of ice, and discriminate against the presence of water. However, embodiments of the sensor according to the invention can also detect the presence of water (differentiated from the presence of air), to provide more complete information of the situation on the surface, at each instant or over time.
En efecto, cuando existe agua sobre el tramo sensor también se produce una cierta atenuación de la señal transmitida por la guía de ondas, pero en este caso la pérdida de intensidad se debe a fenómenos de absorción (no hay acoplo evanescente), y la pérdida es significativamente menor que en presencia de hielo. Indeed, when there is water on the sensor section there is also a certain attenuation of the signal transmitted by the waveguide, but in this case the loss of intensity is due to absorption phenomena (there is no evanescent coupling), and the loss It is significantly smaller than in the presence of ice.
En definitiva, el sensor permite identificar tres situaciones distintas, a cada una de las cuales corresponde una cierta atenuación o pérdida de intensidad de la señal: In short, the sensor can identify three different situations, each of which corresponds to a certain attenuation or loss of signal strength:
- cuando el medio exterior M (ver figura 2) es aire, la señal prácticamente no sufrirá atenuación, o en cualquier caso tendrá un nivel (máximo) conocido, que depende de las características del sensor y de la línea entre el emisor- when the external medium M (see figure 2) is air, the signal will practically not suffer attenuation, or in any case it will have a known (maximum) level, which depends on the characteristics of the sensor and the line between the transmitter
105 y el detector 106; 105 and detector 106;
- si al cabo de un tiempo se deposita agua sobre la superficie S (es decir, el medio exterior M pasa a ser agua), se producirá una cierta pérdida por absorción en la señal; en algunos casos la intensidad de la señal puede
quedar reducida por ejemplo a un nivel aproximado del 80% (atenuación de aproximadamente 1 dB); - if after a while water is deposited on the surface S (that is, the external medium M becomes water), a certain loss due to absorption in the signal will occur; in some cases the signal strength may be reduced for example to an approximate level of 80% (attenuation of approximately 1 dB);
- si posteriormente en el agua depositada se forman cristales de hielo, de modo que el medio exterior M pasa a ser hielo, se producirá acoplamiento evanescente de al menos un modo electromagnético guiado de la señal con los cristales de hielo, y la pérdida de intensidad en el tramo sensor será muy superior que en el caso del agua; en algunos casos la intensidad detectada en presencia de hielo puede llegar a ser por ejemplo de alrededor del 20% (atenuación de aproximadamente 7 dB). - if ice crystals are subsequently formed in the deposited water, so that the external medium M becomes ice, evanescent coupling of at least one electromagnetic mode guided by the signal with the ice crystals will occur, and the loss of intensity in the sensor section it will be much higher than in the case of water; In some cases, the intensity detected in the presence of ice can be, for example, around 20% (attenuation of approximately 7 dB).
La figura 6 ¡lustra cualitativamente la evolución de la intensidad de la señal a lo largo de estas tres etapas en el tiempo, mostrando a la izquierda de la figura un eje con la intensidad de la señal, y a la derecha un eje con la atenuación correspondiente. La gráfica es puramente ilustrativa, ya que los valores concretos pueden variar dependiendo de los materiales y la geometría del sensor, la longitud de onda de trabajo, las condiciones del medio exterior, etc. Figure 6 illustrates qualitatively the evolution of the signal intensity along these three stages in time, showing on the left of the figure an axis with the signal intensity, and on the right an axis with the corresponding attenuation . The graph is purely illustrative, since the concrete values may vary depending on the materials and the geometry of the sensor, the working wavelength, the conditions of the external environment, etc.
En una aplicación práctica, mediante una calibración del sensor se pueden establecer uno o más niveles de umbral adecuados para proporcionar señales de aviso de la formación o presencia de hielo, e incluso de la presencia de agua. Los umbrales se establecerán para cada aplicación en los niveles más adecuados dependiendo de cómo se quiera monitorizar la situación, de la segundad exigida, etc. In a practical application, by means of a sensor calibration one or more suitable threshold levels can be established to provide warning signs of the formation or presence of ice, and even of the presence of water. The thresholds will be established for each application at the most appropriate levels depending on how you want to monitor the situation, the security required, etc.
Además, puesto que el nivel de acoplamiento evanescente dependerá también de las características de la capa de hielo, calibrando adecuadamente el sensor se puede llegar a evaluar el espesor de la capa de hielo. In addition, since the level of evanescent coupling will also depend on the characteristics of the ice layer, by properly calibrating the sensor it is possible to evaluate the thickness of the ice layer.
Utilizando uno o más sensores ópticos de acuerdo con realizaciones de la presente invención se puede construir un sistema capaz de detectar hielo en un punto de una superficie, pero también un sistema capaz de realizar una monitorización y proporcionar información sobre el medio exterior (aire, agua o hielo) que hay en cada momento sobre la superficie, e incluso sobre el espesor del hielo.
En función de la información proporcionada por el sistema, un usuario puede tomar las decisiones que se consideren apropiadas: por ejemplo, si el sistema se instala en el fuselaje de una aeronave, el piloto puede decidir activar medios para eliminar el hielo o para evitar su acumulación. También se puede prever un control automático de sistemas de deshielo o similares, en función de las señales proporcionadas por el sistema de detección. Using one or more optical sensors according to embodiments of the present invention, a system capable of detecting ice at a point on a surface can be constructed, but also a system capable of monitoring and providing information about the external environment (air, water or ice) that there is at every moment on the surface, and even on the thickness of the ice. Depending on the information provided by the system, a user can make the decisions deemed appropriate: for example, if the system is installed in the fuselage of an aircraft, the pilot may decide to activate means to remove the ice or to prevent its accumulation. An automatic control of defrosting systems or the like can also be provided, depending on the signals provided by the detection system.
Con varios sensores instalados a distancia unos de otros y conectados a una unidad de control común es posible también realizar un sensado multipunto, y se pueden utilizar estrategias de inteligencia artificial o lógica difusa para extraer información adicional respecto a la distribución espacial del hielo en la superficie o el tipo de hielo. With several sensors installed remotely from each other and connected to a common control unit it is also possible to perform multipoint sensing, and artificial intelligence or fuzzy logic strategies can be used to extract additional information regarding the spatial distribution of ice on the surface or the type of ice.
En un sistema con varios sensores se puede emplear un emisor y un detector independientes para cada uno de los sensores; en alguna aplicación puede ser útil además que haya sensores con características distintas unos de otros y que trabajen con longitudes de onda distintas, por ejemplo si algún punto de la superficie a controlar es más crítico, requiere un mayor nivel de precisión, etc. In a system with several sensors an independent transmitter and detector can be used for each of the sensors; In some applications, it may also be useful to have sensors with different characteristics from each other and that work with different wavelengths, for example if any point on the surface to be controlled is more critical, it requires a higher level of accuracy, etc.
Alternativamente un sistema con varios sensores puede emplear un emisor común y una única longitud de onda de trabajo. Alternatively, a system with several sensors can use a common emitter and a single working wavelength.
En todos los casos, la calibración puede ser individual para cada sensor, de modo que cada sensor tenga asociados umbrales distintos; las diferencias entre los umbrales pueden ser debidas a que las características concretas de los sensores son distintas, pero también a la voluntad de realizar una monitorización de unos puntos de la superficie respecto a otros. In all cases, the calibration can be individual for each sensor, so that each sensor has different thresholds associated; the differences between the thresholds may be due to the fact that the specific characteristics of the sensors are different, but also to the willingness to monitor some points of the surface with respect to others.
La calibración se puede realizar en fábrica o antes de instalar los sensores, pero puede ser más preciso realizarla una vez que los sensores están instalados en una superficie, e incluso re-calibrar el sensor periódicamente. Para ello, la unidad de control del sistema podrá estar dotada de las funcionalidades necesarias. Calibration can be performed at the factory or before installing the sensors, but it may be more accurate once the sensors are installed on a surface, and even periodically re-calibrate the sensor. For this, the system control unit may be equipped with the necessary functionalities.
Se puede realizar una calibración "en seco", es decir con aire como medio exterior, para fijar el nivel normal o nivel cero de la intensidad de señal, y
asignar porcentajes predeterminados de este nivel como umbrales; o bien se pueden realizar calibraciones específicas también en presencia de hielo y/o agua, para fijar umbrales de atenuación apropiados. A "dry" calibration can be performed, that is, with air as an external medium, to set the normal level or zero level of the signal strength, and assign default percentages of this level as thresholds; or specific calibrations can also be performed in the presence of ice and / or water, to set appropriate attenuation thresholds.
Se comprenderá a partir de esta descripción que, en una realización concreta, un procedimiento para detectar la presencia o la formación de hielo puede comprender, por ejemplo: It will be understood from this description that, in a specific embodiment, a method for detecting the presence or formation of ice may comprise, for example:
- seleccionar una longitud de onda de trabajo para la cual el índice de refracción del agua y el índice de refracción del hielo cumplen la condición fragua ^ ^hielo, - select a working wavelength for which the refractive index of the water and the refractive index of the ice meet the forge condition ^ ^ ice,
- proporcionar una guía de ondas, que puede ser una fibra óptica o una guía de otro tipo, que tiene una zona de núcleo y un revestimiento óptico, de un material cuyo índice de refracción, a la longitud de onda de trabajo, está entre el del hielo y el del agua; - providing a waveguide, which can be an optical fiber or a guide of another type, which has a core area and an optical coating, of a material whose refractive index, at the working wavelength, is between the of ice and water;
- instalar esta guía de ondas en la superficie de tal manera que en un tramo de la guía, que constituirá el tramo sensor de la guía, el revestimiento óptico quede colocado con una cara expuesta al medio exterior a la superficie; - install this waveguide on the surface in such a way that in a section of the guide, which will constitute the sensor section of the guide, the optical coating is placed with a face exposed to the medium outside the surface;
- transmitir una señal óptica con la longitud de onda de trabajo prevista, a lo largo de la guía de ondas, - transmit an optical signal with the expected working wavelength, along the waveguide,
- detectar la señal óptica curso abajo del tramo sensor, y - detect the optical signal down the sensor section, and
- comparar la intensidad de la señal detectada con uno o varios umbrales, para determinar en función de la atenuación que se ha producido, si sobre el sensor se ha formado hielo. - compare the intensity of the detected signal with one or more thresholds, to determine depending on the attenuation that has occurred, if ice has formed on the sensor.
En todos los casos, la señal óptica transmitida puede ser continua o pulsada, y la detección puede hacerse a intervalos de tiempo apropiados. In all cases, the transmitted optical signal can be continuous or pulsed, and detection can be done at appropriate time intervals.
El procedimiento puede aplicarse con un sistema de varias guías de onda instaladas a distancia unas de otras, y puede comprender además etapas de calibración, tal como se ha descrito más arriba. También puede utilizarse para emitir no sólo avisos o señales relacionados con la formación o la presencia
de hielo, sino también con la presencia de agua sobre la superficie, estableciendo de manera adecuada las características de las guías de ondas, la longitud de onda de trabajo, y los umbrales. The procedure can be applied with a system of several waveguides installed remotely from each other, and can also comprise calibration steps, as described above. It can also be used to issue not only warnings or signals related to training or presence of ice, but also with the presence of water on the surface, properly establishing the characteristics of waveguides, working wavelength, and thresholds.
A pesar de que se han descrito aquí sólo algunas realizaciones y ejemplos particulares de la invención, el experto en la materia comprenderá que son posibles otras realizaciones alternativas y/o usos de la invención, así como modificaciones obvias y elementos equivalentes. Además, la presente invención abarca todas las posibles combinaciones de las realizaciones concretas que se han descrito. Los signos numéricos relativos a los dibujos y colocados entre paréntesis en una reivindicación son solamente para intentar aumentar la comprensión de la reivindicación, y no deben ser interpretados como limitantes del alcance de la protección de la reivindicación. El alcance de la presente invención no debe limitarse a realizaciones concretas, sino que debe ser determinado únicamente por una lectura apropiada de las Although only some particular embodiments and examples of the invention have been described herein, the person skilled in the art will understand that other alternative embodiments and / or uses of the invention are possible, as well as obvious modifications and equivalent elements. In addition, the present invention encompasses all possible combinations of the specific embodiments that have been described. The numerical signs relating to the drawings and placed in parentheses in a claim are only intended to increase the understanding of the claim, and should not be construed as limiting the scope of the claim's protection. The scope of the present invention should not be limited to specific embodiments, but should be determined only by an appropriate reading of the
reivindicaciones adjuntas. attached claims.
Por ejemplo, los usos que se puede dar al sensor son múltiples, aunque sólo se ha hecho referencia explícita a la detección de hielo y/o agua en For example, the uses that can be given to the sensor are multiple, although explicit reference has only been made to the detection of ice and / or water in
aeronaves. También en palas de aerogeneradores el sensor puede resultar muy apropiado, ya que estas superficies tienen problemáticas similares a las de las alas de avión por lo que respecta a la aerodinámica. aircraft Also in wind turbine blades the sensor may be very appropriate, since these surfaces have problems similar to those of the plane wings in terms of aerodynamics.
Otra aplicación puede ser la detección de hielo en superficies que se encuentran sumergidas, ya que el sensor discrimina de modo fiable el hielo del agua; y también puede emplearse para detectar el hielo en frigoríficos o en conducciones de agua, y en general en cualquier circunstancia en que se quiera detectar la formación de hielo de manera rápida y fiable.
Another application may be the detection of ice on surfaces that are submerged, since the sensor reliably discriminates ice from water; and it can also be used to detect ice in refrigerators or in water pipes, and in general in any circumstance where you want to detect the formation of ice quickly and reliably.
Claims
1 . Sensor óptico (100) para detectar la presencia de hielo en superficies, caracterizado porque comprende: one . Optical sensor (100) to detect the presence of ice on surfaces, characterized in that it comprises:
- una guía de ondas (101 ; 201 ) con un material de revestimiento óptico (102; 202) cuyo índice de refracción nmater¡ai cumple la relación nagua≤ nmater¡ai < rícelo a una longitud de onda de trabajo λτ para la cual nagua < nh¡eio , y con una zona de núcleo (103; 203) contenida en el material de revestimiento (102; 202) y apropiada para la propagación de una señal óptica que tiene la longitud de onda de trabajo, presentando la guía de ondas (101 ; 201 ) un tramo sensor (104; 204) apropiado para ser instalado en una superficie (S) en la que se debe detectar la presencia de hielo de modo que una cara del material de revestimiento (102; 202) del tramo sensor (104; 204) quede expuesta ; - a waveguide (101; 201) with an optical coating material (102; 202) whose refractive index n m of ter¡ai satisfies the relationship n n m agu a≤ ter¡ai <I rícelo a wavelength work λ τ for which n a gua <n h ¡ e io, and with a core zone (103; 203) contained in the cladding material (102; 202) and appropriate for the propagation of an optical signal having the working wavelength, the waveguide (101; 201) presenting a sensor section (104; 204) suitable to be installed on a surface (S) in which the presence of ice must be detected so that a face of the lining material (102; 202) of the sensor section (104; 204) is exposed;
- medios (105) para inyectar en la guía de ondas (101 ; 201 ) una señal óptica con una longitud de onda de trabajo λτ para la cual nagua < nh¡eio ; y - means (105) for injecting into the waveguide (101; 201) an optical signal with a working wavelength λ τ for which n water <n h ¡ e io; Y
- medios (106) para detectar la señal óptica transmitida por la guía de ondas (101 ; 201 ) curso abajo de dicho tramo sensor (104; 204). - means (106) for detecting the optical signal transmitted by the waveguide (101; 201) downstream of said sensor section (104; 204).
2. Sensor óptico según la reivindicación 1 , caracterizado porque el índice de refracción del material cumple la relación nagua < nmateriai < nh¡eio a la longitud de onda de trabajo λτ. 2. Optical sensor according to claim 1, characterized in that the refractive index of the material meets the relation n water <n mate riai <n h ¡ e io to the working wavelength λ τ .
3. Sensor óptico según una cualquiera de las reivindicaciones 1 ó 2, caracterizado porque el tramo sensor(104; 204) es apropiado para ser instalado en la superficie (S) de modo que la cara del material de 3. Optical sensor according to any one of claims 1 or 2, characterized in that the sensor section (104; 204) is suitable for being installed on the surface (S) so that the face of the material of
revestimiento (102; 202) del tramo sensor (104; 204) quede expuesta a través de una abertura (A) en la superficie (S). coating (102; 202) of the sensor section (104; 204) is exposed through an opening (A) in the surface (S).
4. Sensor óptico según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque la guía de ondas comprende una fibra óptica (201 ), de la cual se ha retirado el recubrimiento exterior (209) al menos en el área del tramo sensor (204) destinada a quedar expuesta durante el uso.
4. Optical sensor according to any one of claims 1 to 3, characterized in that the waveguide comprises an optical fiber (201), from which the outer covering (209) has been removed at least in the area of the sensor section (204) ) intended to be exposed during use.
5. Sensor óptico según la reivindicación 4, caracterizado porque en el tramo sensor (204) de la fibra óptica (201 ) se ha retirado además una parte del espesor del revestimiento óptico (202). 5. Optical sensor according to claim 4, characterized in that a part of the thickness of the optical coating (202) has also been removed in the sensor section (204) of the optical fiber (201).
6. Sensor óptico según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque en al menos el tramo sensor (104) de la guía de ondas6. Optical sensor according to any one of claims 1 to 3, characterized in that at least the sensor section (104) of the waveguide
(101 ) la zona de núcleo (103) está fabricada dentro de un cuerpo de material(101) the core zone (103) is manufactured within a body of material
(102) apropiado, de modo que varíe en esta zona el índice de refracción. (102) appropriate, so that the refractive index varies in this area.
7. Sensor óptico según la reivindicación 6, caracterizado porque a un extremo de entrada y a un extremo de salida de dicha guía de ondas (101 ) que incluye el tramo sensor (104) están acopladas además fibras ópticas (107, 108). 7. Optical sensor according to claim 6, characterized in that optical fibers (107, 108) are coupled to an input end and an output end of said waveguide (101) which includes the sensor section (104).
8. Sensor óptico según una cualquiera de las reivindicaciones anteriores, caracterizado porque la longitud de onda de trabajo λτ es de entre 3000 y 5000 nm, preferiblemente entre 3200 y 4000 nm. 8. Optical sensor according to any one of the preceding claims, characterized in that the working wavelength λ τ is between 3000 and 5000 nm, preferably between 3200 and 4000 nm.
9. Sensor óptico según una cualquiera de las reivindicaciones anteriores, caracterizado porque el material se selecciona entre cuarzo cristalino, cuarzo vitreo, fluoruro de indio, o compuestos de los mismos. 9. Optical sensor according to any one of the preceding claims, characterized in that the material is selected from crystalline quartz, vitreous quartz, indium fluoride, or compounds thereof.
10. Sensor óptico según una cualquiera de las reivindicaciones anteriores, caracterizado porque el espesor (e) entre la zona de núcleo (103; 203) y la cara del material de revestimiento (102; 202) destinada a quedar expuesta es inferior a 250 pm, preferiblemente inferior a 50 pm. 10. Optical sensor according to any one of the preceding claims, characterized in that the thickness (e) between the core area (103; 203) and the face of the coating material (102; 202) intended to be exposed is less than 250 pm , preferably less than 50 pm.
1 1 . Sensor óptico según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende además un recubrimiento anti-erosión aplicado sobre la cara del material de revestimiento (102; 202) del tramo sensor (104; 204) destinada a quedar expuesta. eleven . Optical sensor according to any one of the preceding claims, characterized in that it further comprises an anti-erosion coating applied on the face of the coating material (102; 202) of the sensor section (104; 204) intended to be exposed.
12. Sistema para detectar la presencia de hielo en superficies, caracterizado porque comprende al menos un sensor óptico (100) según una cualquiera de las reivindicaciones 1 a 9, y medios para comparar la intensidad de una señal óptica detectada con al menos un valor umbral, y generar una alarma en caso de que la señal óptica sea inferior a un valor umbral.
12. System for detecting the presence of ice on surfaces, characterized in that it comprises at least one optical sensor (100) according to any one of claims 1 to 9, and means for comparing the intensity of a detected optical signal with at least one threshold value , and generate an alarm in case the optical signal is lower than a threshold value.
13. Sistema según la reivindicación 12, caracterizado porque comprende medios de calibración para determinar al menos un valor umbral. 13. System according to claim 12, characterized in that it comprises calibration means for determining at least one threshold value.
14. Sistema según la reivindicación 13, caracterizado porque los medios de calibración son apropiados para determinar al menos un valor umbral una vez que el sistema está instalado en una superficie (S). 14. System according to claim 13, characterized in that the calibration means are suitable for determining at least one threshold value once the system is installed on a surface (S).
15. Sistema según una cualquiera de las reivindicaciones 12 a 14, 15. System according to any one of claims 12 to 14,
caracterizado porque comprende una pluralidad de dichos sensores ópticos (100), destinados a ser instalados en una zona predeterminada, a distancia unos de otros, y una unidad de control común conectada a dicha pluralidad de sensores (100), comprendiendo dicha unidad de control medios para proporcionar información sobre la distribución de hielo en una zona characterized in that it comprises a plurality of said optical sensors (100), intended to be installed in a predetermined area, at a distance from each other, and a common control unit connected to said plurality of sensors (100), said control unit comprising means to provide information on the distribution of ice in an area
predeterminada, en función de las intensidades de las señales ópticas detectadas en las salidas de la pluralidad de sensores (100). predetermined, depending on the intensities of the optical signals detected at the outputs of the plurality of sensors (100).
16. Procedimiento para detectar la presencia de hielo en superficies, caracterizado porque comprende: 16. Procedure for detecting the presence of ice on surfaces, characterized in that it comprises:
- seleccionar una longitud de onda de trabajo λτ para la cual nagua < nh¡eio - select a working wavelength λ τ for which n agu a <n h ¡ e io
- proporcionar una guía de ondas (101 ; 201 ) que comprende un matenal de revestimiento óptico (102; 202) cuyo índice de refracción nmater¡ai cumple la relación nagua≤ nmater¡ai < nh¡eio a la longitud de onda de trabajo λτ y una zona de núcleo (103; 203) contenida en el matenal de revestimiento y apropiada para la propagación de una señal óptica que tiene la longitud de onda de trabajo; - providing a waveguide (101; 201) comprising an optical coating matenal (102; 202) whose refractive index n m satisfies the relation n ter¡ai agu a≤ n ma ter¡ai <n h e io at the working wavelength λ τ and a core zone (103; 203) contained in the cladding mat and suitable for the propagation of an optical signal having the working wavelength;
- instalar la guía de ondas (101 ; 201 ) en una superficie (S) en la que se debe detectar la presencia de hielo, de tal modo que en un tramo de la guía una cara del material de revestimiento (102; 202) quede expuesta, definiendo un tramo sensor (104; 204) de la guía; - install the waveguide (101; 201) on a surface (S) on which the presence of ice must be detected, such that a face of the lining material (102; 202) remains on a section of the guide exposed, defining a sensor section (104; 204) of the guide;
- transmitir una señal óptica con una longitud de onda de trabajo λτ a lo largo de la guía de ondas (101 ; 201 ), y - transmit an optical signal with a working wavelength λ τ along the waveguide (101; 201), and
- detectar la señal óptica curso abajo del tramo sensor (104; 204).
- detect the optical signal downstream of the sensor section (104; 204).
17. Procedimiento según la reivindicación 16, caracterizado porque se proporciona una guía de ondas (101 ; 201 ) que comprende un material de revestimiento óptico (102; 202) cuyo índice de refracción nmater¡ai cumple la relación nagua < nmater¡ai < nh¡eio a la longitud de onda de trabajo λτ. 17. Method according to claim 16, characterized in that a waveguide (101; 201) is provided comprising an optical coating material (102; 202) whose refractive index n ma terìai fulfills the relation n a gua <n ma ter¡ai <n h ¡ e io at the working wavelength λ τ .
18. Procedimiento según una cualquiera de las reivindicaciones 16 ó 17, caracterizado porque se instala la guía de ondas (101 ; 201 ) en la superficie (S) de modo que la cara del material de revestimiento (102; 202) del tramo sensor (104; 204) quede expuesta a través de una abertura (A) en la superficie (S). 18. Method according to any one of claims 16 or 17, characterized in that the waveguide (101; 201) is installed on the surface (S) so that the face of the coating material (102; 202) of the sensor section ( 104; 204) is exposed through an opening (A) on the surface (S).
19. Procedimiento según la reivindicación 18, caracterizado porque el tramo sensor (104; 204) de la guía de ondas (101 ; 201 ) se instala en la superficie (S) de modo que la cara del material de revestimiento (102; 202) expuesta quede nivelada con la superficie (S). 19. Method according to claim 18, characterized in that the sensor section (104; 204) of the waveguide (101; 201) is installed on the surface (S) so that the face of the coating material (102; 202) exposed is level with the surface (S).
20. Procedimiento según una cualquiera de las reivindicaciones 16 a 19, caracterizado porque comprende además: 20. Method according to any one of claims 16 to 19, characterized in that it further comprises:
- comparar la intensidad de la señal detectada con al menos un valor umbral, y - compare the intensity of the detected signal with at least one threshold value, and
- determinar que hay presencia de hielo sobre el tramo sensor (104; 204) de la guía de ondas (101 ; 201 ) si la intensidad de la señal detectada es inferior a dicho valor umbral. - determine that there is ice on the sensor section (104; 204) of the waveguide (101; 201) if the intensity of the detected signal is lower than said threshold value.
21 . Procedimiento según la reivindicación 20, caracterizado porque twenty-one . Method according to claim 20, characterized in that
comprende además determinar al menos un valor umbral. It further comprises determining at least one threshold value.
22. Procedimiento según la reivindicación 21 , caracterizado porque la determinación de al menos un valor umbral se realiza una vez que la guía de ondas (101 ; 201 ) está instalada en una superficie (S). 22. Method according to claim 21, characterized in that the determination of at least one threshold value is performed once the waveguide (101; 201) is installed on a surface (S).
23. Procedimiento según una cualquiera de las reivindicaciones 16 a 22, caracterizado porque comprende:
- instalar una pluralidad de guías de ondas (101 ; 201 ) en una zona predeterminada, a distancia unas de otras, 23. Method according to any one of claims 16 to 22, characterized in that it comprises: - install a plurality of waveguides (101; 201) in a predetermined area, at a distance from each other,
- proporcionar una unidad de control común conectada a dicha pluralidad de guías de ondas (101 ; 201 ), y - providing a common control unit connected to said plurality of waveguides (101; 201), and
- proporcionar información mediante la unidad de control sobre la - provide information through the control unit on the
distribución de hielo en la zona predeterminada, en función de las distribution of ice in the predetermined area, depending on the
intensidades de las señales ópticas detectadas.
intensities of the optical signals detected.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201330658 | 2013-05-07 | ||
ES201330658A ES2530885B1 (en) | 2013-05-07 | 2013-05-07 | OPTICAL SENSOR, SYSTEM, AND PROCEDURE TO DETECT THE PRESENCE OF ICE ON SURFACES |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014181014A1 true WO2014181014A1 (en) | 2014-11-13 |
Family
ID=51866842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2014/070226 WO2014181014A1 (en) | 2013-05-07 | 2014-03-26 | Optical sensor, system and method for detecting the presence of ice on surfaces |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2530885B1 (en) |
WO (1) | WO2014181014A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021101465A1 (en) * | 2019-11-22 | 2021-05-27 | Koc Universitesi | An apparatus and a method for monitoring accretion of ice and deicing |
US11686742B2 (en) | 2020-11-20 | 2023-06-27 | Rosemount Aerospace Inc. | Laser airspeed measurement sensor incorporating reversion capability |
US11851193B2 (en) | 2020-11-20 | 2023-12-26 | Rosemount Aerospace Inc. | Blended optical and vane synthetic air data architecture |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4782331A (en) * | 1986-06-10 | 1988-11-01 | U.S. Philips Corporation | Photoelectric icing detector |
US4851817A (en) * | 1986-03-10 | 1989-07-25 | Brossia Charles E | Fiber optic probe system |
US4913519A (en) * | 1988-03-04 | 1990-04-03 | Fiberchem Inc. | Optical sensor for the detection of ice formation and other chemical species |
CA2244086A1 (en) * | 1998-08-19 | 2000-02-19 | Alexandar Djordjevich | Distributed fiberoptic ice detector (dfoid) |
US20070046478A1 (en) * | 2005-08-29 | 2007-03-01 | Crisman Everett E | System and method for detecting and discriminating between water and ice formation on objects |
-
2013
- 2013-05-07 ES ES201330658A patent/ES2530885B1/en active Active
-
2014
- 2014-03-26 WO PCT/ES2014/070226 patent/WO2014181014A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4851817A (en) * | 1986-03-10 | 1989-07-25 | Brossia Charles E | Fiber optic probe system |
US4782331A (en) * | 1986-06-10 | 1988-11-01 | U.S. Philips Corporation | Photoelectric icing detector |
US4913519A (en) * | 1988-03-04 | 1990-04-03 | Fiberchem Inc. | Optical sensor for the detection of ice formation and other chemical species |
CA2244086A1 (en) * | 1998-08-19 | 2000-02-19 | Alexandar Djordjevich | Distributed fiberoptic ice detector (dfoid) |
US20070046478A1 (en) * | 2005-08-29 | 2007-03-01 | Crisman Everett E | System and method for detecting and discriminating between water and ice formation on objects |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021101465A1 (en) * | 2019-11-22 | 2021-05-27 | Koc Universitesi | An apparatus and a method for monitoring accretion of ice and deicing |
US11686742B2 (en) | 2020-11-20 | 2023-06-27 | Rosemount Aerospace Inc. | Laser airspeed measurement sensor incorporating reversion capability |
US11851193B2 (en) | 2020-11-20 | 2023-12-26 | Rosemount Aerospace Inc. | Blended optical and vane synthetic air data architecture |
Also Published As
Publication number | Publication date |
---|---|
ES2530885B1 (en) | 2015-12-30 |
ES2530885A1 (en) | 2015-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1633626B1 (en) | Ice detection apparatus and method | |
US6052056A (en) | Substance detection system and method | |
US6430996B1 (en) | Probe and integrated ice detection and air data system | |
EP2112374B2 (en) | Crack detection system | |
WO2014181014A1 (en) | Optical sensor, system and method for detecting the presence of ice on surfaces | |
EP3620380B1 (en) | Ice detection systems for aircraft and related methods | |
US6425286B1 (en) | Electro-optic ice detection device | |
JP7041345B2 (en) | Droplet sensor | |
BR112021004166A2 (en) | system and method for detecting ice formation in a body | |
US7324001B2 (en) | System and method for detecting and discriminating between water and ice formation on objects | |
ES2969998T3 (en) | Fiber Optic Temperature Sensors in a Distributed Smoke Detection System | |
US8022842B2 (en) | Optical system and element for detecting ice and water | |
US7772993B2 (en) | Icing detector for detecting presence of ice in static air | |
CN103335985B (en) | Quasi-distributed fiber grating surface plasma resonance sensor and preparation method | |
US20230081599A1 (en) | Multi-fiber optical sensor for light aircraft | |
US7511253B2 (en) | Apparatus for detecting radiation and munition incorporating same | |
Amiropoulos et al. | Fiber optic sensor for ice detection on aerodynamic surfaces using plastic optic fiber tapers | |
Ikiades et al. | Fiber optic sensor technology for air conformal ice detection | |
FI128308B (en) | Apparatus and system for assessing or measuring the capability of situational awareness sensors | |
ES2697501T3 (en) | Improved fuel tank for aircraft and water detection device | |
CN105784196A (en) | Reflection type temperature sensing probe based on double-layered photonic crystal thin film | |
ITGE20110007A1 (en) | THERMAL MONITORING SYSTEM AND / OR TRANSMISSION INFORMATION FOR SHIPS. | |
RU2628867C1 (en) | Intelligent system for remote control of working body position inside closed space | |
JP3963355B2 (en) | Flame detector | |
CA3155321A1 (en) | Window contamination sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14795306 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14795306 Country of ref document: EP Kind code of ref document: A1 |