WO2014181006A1 - Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos - Google Patents

Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos Download PDF

Info

Publication number
WO2014181006A1
WO2014181006A1 PCT/ES2014/000026 ES2014000026W WO2014181006A1 WO 2014181006 A1 WO2014181006 A1 WO 2014181006A1 ES 2014000026 W ES2014000026 W ES 2014000026W WO 2014181006 A1 WO2014181006 A1 WO 2014181006A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloid
magnetic
temperature
container
magnetic particles
Prior art date
Application number
PCT/ES2014/000026
Other languages
English (en)
French (fr)
Inventor
Guillermo RIVERO RODRÍGUEZ
Marta MULTIGNER DOMÍNGUEZ
Mariano IGLESIAS MOLINA
Patricia CARRERA BEJARANO
Luis Fernando GIACOMONE
Patricia Marcela DE LA PRESA MUÑOZ DE TORO
Original Assignee
Universidad Complutense De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense De Madrid filed Critical Universidad Complutense De Madrid
Publication of WO2014181006A1 publication Critical patent/WO2014181006A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4846Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
    • G01N25/4866Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample by using a differential method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/04Calorimeters using compensation methods, i.e. where the absorbed or released quantity of heat to be measured is compensated by a measured quantity of heating or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia

Definitions

  • the invention is part of the field of nanotechnology and the measure of effective heating of magnetic nanoparticles under the action of an electromagnetic field.
  • hyperthermia for the treatment of malignant tumors is to take advantage of the difference in thermal resistance between healthy and tumor cells by locally raising the temperature of the affected area (Connor et al. Radiology 123, 497-503 (1977)). It has been shown that hyperthermia can kill tumor tissues leaving healthy ones virtually intact (van der Zee, Annals Oncol. 13 (8): 1173-1184 (2002)). In this sense it can be said that the treatment of hyperthermia cancer is a selective treatment, unlike current cancer treatments such as chemotherapy or radiotherapy. There are several hyperthermia devices that allow heat transfer from a source to the tumor, for example microwave treatment, radio frequencies, sonic treatments or even thermal baths (Institute of Cancer Research.
  • hyperthermia based on the use of magnetic colloids that are capable of dissipating heat under the action of an electromagnetic field. These colloids are composed of stabilized biocompatible magnetic nanoparticles to prevent them from form aggregates (R. Hergt et al. IEEE Trans. Mag. 34, 3745 (1998)). This type of treatment is called magnetic or fluidomagnetic hyperthermia.
  • the objective of magnetic hyperthermia is to take advantage of the difference in thermal resistance between healthy and tumor cells and, by raising the temperature of a tumor locally by heating magnetic particles or nanoparticles in an electromagnetic field, killing the malignant cells without damaging the surrounding healthy tissue . In this way, only the tissue that contains a certain concentration of the magnetic particles will be heated, regardless of their location in the body.
  • This technique is even more localized than the rest of the hyperthermia therapies, since the magnetic nanoparticles can be biologically labeled so that they are located in the tumor or they can be injected directly into the tumor if it is accessible from the outside, as in the case of a breast or prostate tumor (Hilger et al. Nanomedicine 2, 164 (2011); Johannsen et al., Int. J.
  • the generation of energy dissipated by the magnetic material can be produced by the inversion of the magnetic moment within the domain or by mechanical rotation of the particles. In both cases the energy dissipation of the magnetic material translates into heat, increasing the temperature of its surroundings.
  • the nanoparticles In order to minimize the amount of particles introduced into the body and reduce their toxicity risks, it is necessary that the nanoparticles have the highest efficiency in heat production, that is, that they are capable of generating maximum energy with The least amount of particles.
  • the heating efficiency of each material is determined by measuring the power dissipated per unit mass of the material, which is called the specific absorption rate (SAR).
  • SAR specific absorption rate
  • SAR is determined by measuring the temperature increase per unit of time of a particular concentration of colloidal suspension particles that is under the action of an electromagnetic field (Hergt, IEEE Trans. Magn. 34, 3745 (1998) ). Because it is normally measured in non-adiabatic conditions, SAR is calculated with the slope of the temperature curve measured in the first few seconds (de la Presa et al, J. Phys. Chem C 116, 25602 (2012)). This type of measurement does not take into account the heat exchange of the magnetic colloid with the surrounding medium, so that many times the value obtained from SAR does not match the energy losses in the magnetic material.
  • SAR value is essential to understand the parameters that control the speed of heat generation and thus be able to optimize the amount of particles necessary for thermal therapy in certain field conditions and frequency.
  • This invention accurately measures the value of SAR by eliminating the contribution of heat exchange of the colloid with its surroundings, avoiding the problems of calculating the slope of the temperature increase and the approximation of the specific heat of the magnetic colloid to the specific heat of the water .
  • the present invention relates to a method for determining the specific absorption rate of magnetic particles in colloidal suspension subjected to electromagnetic fields.
  • This method comprises: subjecting a colloid of magnetic particles of known concentration, and thermally isolated from its surroundings, to an electromagnetic field; measure the temperature difference between the colloid of the previous step and a colloid of magnetic particles identical to the previous one and thermally isolated from its environment that is not subjected to an electromagnetic field; increase the temperature of the colloid of magnetic particles not subjected to an electromagnetic field to equalize the temperature of the colloid of magnetic particles thermally isolated from its surroundings and subjected to an electromagnetic field, by means of a non-inductive resistance of low thermal coefficient; and determine the power dissipated in the non-inductive resistance of low thermal coefficient.
  • the invention relates to a hyperthermia differential calorimeter device, hereinafter device of the invention, for measuring the specific absorption rate of magnetic colloids subjected to an electromagnetic field.
  • the term “magnetic colloids” refers to colloidal suspension magnetic particles.
  • the device comprises (Fig 1): two containers (1) and (2) with an internal cavity and thermally insulated from the external environment; two thermometric probes placed one (3) in the container (1) and the other (4) in containers (2); a control system (5); a load resistance R of low thermal coefficient, of the order of ⁇ 10 ppm / ° C or less, (6); a power amplification and data acquisition system (7) and an electromagnetic field generation equipment (8).
  • the containers (1) and (2) are made of a material that is electrical insulating, such as ceramics or plastics.
  • the device may include a cooling system (11) to maintain the thermal insulation of the containers (1) and (2) which, in turn, may include a vacuum system and / or a thermal bath ( Figure 2) .
  • a magnetic colloid is introduced into the internal cavity of the container (1) identical in the type of nanoparticles, concentration and volume that is introduced into the container (2). Both suspensions are in identical thermal conditions due to the thermal insulation of the containers.
  • the container (1) with the magnetic colloid is placed in the center of a coil that generates an electromagnetic field (8). Under the action of this field, the particles dissipate magnetic energy by different mechanisms producing a temperature increase in the colloidal suspension of the container (1).
  • the speed with which the temperature increases depends on intrinsic factors of the magnetic material, such as saturation magnetization, particle size, and specific heat of the suspension, but also on extrinsic factors such as concentration and intensity and frequency of the electromagnetic field. applied.
  • the temperature increase of the magnetic colloid in the vessel (1) subjected to the external electromagnetic field is measured by means of the thermometric probe (3).
  • the other thermometric probe (4), placed inside the magnetic colloid in the container (2) measures its temperature.
  • the control system (5) compares both temperatures by measuring the voltage difference between both probes.
  • the power amplification and data acquisition system (7) amplifies the difference of voltage of the probes (3) and (4) and apply this voltage to the resistance R (6) introduced in the magnetic colloid of the container (2), keeping it at the same temperature as the magnetic colloid of the container (1) . In this way, the temperature of both vials will rise at the same speed. From the power amplification and data acquisition system (7), the applied voltage data is acquired as a function of time and colloid temperatures in the containers (1) and (2).
  • the design of the invention is such that if the voltage difference between the probe (3) and (4) is zero, the power dissipated in the resistance is also equal.
  • the average power required to heat the colloidal suspension of the vessel (2) is determined by the integral of the power curve as a function of time dividing by the time interval in which the measurement is performed.
  • This average power delivered to the power circuit is what is needed to heat the colloid of the container (2) at the same speed as the colloid of magnetic particles of the container (1) subjected to the external electromagnetic field is heated.
  • the voltage difference of the probes (3) and (4) is translates into current that feeds the resistance R (6), dissipating heat and increasing the temperature of the magnetic colloid in the container (2).
  • the instantaneous power and the average power dissipated by the resistance R (6) can be obtained.
  • both colloids are in the same thermal conditions due to the thermal insulation of the containers. Because they are identical colloids, both have the same heat capacity.
  • the measured power delivered by the power amplification and data acquisition system (7) to the colloid in the container (2) is the same as that which dissipates the magnetic colloid in the container (1) when subjected to an electromagnetic field (8). That is, it directly measures the power dissipated by the magnetic colloid in the vessel (1) under the action of an electromagnetic field (8). Knowing the concentration of particles in the magnetic colloid, this invention determines exactly the SAR of the magnetic colloid under an electromagnetic field.
  • the design of the device of the invention directly measures the specific absorption rate of magnetic colloids when an electromagnetic field is applied, eliminating the contributions produced by the heat exchange of the colloid with the surrounding medium, discarding errors from the temperature increase calculation as a function of time and eliminating the approximation made in the calculation of SAR, according to the methods known so far, by replacing the specific heat of colloid with the specific heat of water.
  • the insulating containers (1) and (2) were printed on a non-conductive material with a 3D printer. Its external dimensions are such that they can be introduced into an electromagnetic field generation equipment (8), in this example they were 4.5 mm in diameter and 140 mm high, with an internal cavity of 1.5 ml.
  • a NanoTherics ® device was used, which allows the application of alternating magnetic fields of 100 - 1000 kHz and up to 200 Oe of amplitude, in this example an electromagnetic field of 90 Oe of amplitude and 110 kHz of frequency was applied.
  • the two vessels (1) and (2) were thermally insulated by an external jacket (9) connected to a vacuum pump, and an intermediate jacket (10) where water flowed from a cooling system (11) by means of pumps hydraulic (12) to keep the containers (1) and (2) at the same outside temperature.
  • a vial with 1 ml of the magnetic colloid was placed in the inner cavity of both containers, and a resistance (6) of 1 kQ was also introduced into the vial vial (2).
  • the magnetic colloid of the container (1) is identical in the type of nanoparticles, concentration and volume than that introduced into the container (2).
  • the magnetic colloid is composed of magnetite nanoparticles of 30 nm in diameter and at a concentration of 50 mg / ml.
  • the outputs of the probes (3) and (4) were connected to a high precision control system (5) that obtained the voltage difference between the probes (3) and (4) and the power amplification and acquisition system of data (7) amplified this difference by a factor of 10, for which an external resistance of a value of 5 kQ was used.
  • the amplifier used was AD620, it has high precision with a non-linearity error of 40 ppm, low offset voltage 50 ⁇ , slew rate 1, 2 V / s, common mode rejection of 100dB, so the error in data collection and amplification it is less than 0.1%.
  • the power amplification and data acquisition system (7) has an chicken platform for data acquisition.
  • the resistance R (6) was fed with the output voltage of the power amplification and data acquisition system (7), at that point, and through the PC platform, the voltage value data on the voltage was read. resistance (6) depending on the time and temperatures of the colloids in the containers (1) and (2).
  • Figure 3 shows the data obtained in this example.
  • the temperature of the magnetic colloid in the vessel (1) increases due to the application of an electromagnetic field of 90 Oe and 110 kHz.
  • the power amplification and data acquisition system (7) records this increase as a function of time and applies tension to the resistance (6) in the magnetic colloid of the vessel (2) to keep both magnetic colloids at the same temperature ( Figure 3a ).
  • the power amplification and data acquisition system (7) also records the instantaneous power delivered to the resistance in the colloid (2) ( Figure 3b).
  • the average power dissipated by the resistance (6) in the colloid (2) was obtained from the integral of the instantaneous power divided by the time interval (300 s).
  • the average power dissipated by the resistance was 0.11 W, and dividing this value by the mass of magnetic particles in the colloid of the vessel (2) (50 mg), a SAR of 2.1 W / g was obtained.

Abstract

La presente invención se refiere a un calorímetro diferencial y a un método para la determinación de la tasa de absorción específica (SAR) de coloides magnéticos sometidos a un campo electromagnético, para su aplicación en terapias mediante hipertermia magnética y en caracterización de materiales magnéticos. El calorímetro diferencial comprende dos recipientes (1) y (2) térmicamente aislados, en los que se introduce una suspensión coloidal magnética. Uno de ellos se coloca en un equipo de generación de campos electromagnéticos, y en el otro se sumerge una resistencia (6). Dos sondas termométricas (3) y (4) miden la diferencia de temperatura de ambos coloides y, con un sistema de control (5) y otro de amplificación de potencia (7) que alimenta la resistencia (6), se mantienen ambos a la misma temperatura. La potencia disipada en la resistencia es la misma que la disipada por el coloide magnético sometido al campo electromagnético.

Description

Título
Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos
Sector de la Técnica
La invención se enmarca dentro del campo de la nanotecnología y la medida de calentamiento efectivo de nanopartículas magnéticas bajo la acción de un campo electromagnético.
Su aplicación abarca las aplicaciones biomédicas que utilizan la temperatura como agente terapéutico, como por ejemplo el tratamiento de tumores por hipertermia, y el área de caracterización de materiales magnéticos.
Estado de la técnica
El objetivo de la hipertermia para el tratamiento de tumores malignos es aprovechar la diferencia en la resistencia térmica entre células sanas y tumorales elevando localmente la temperatura de la zona afectada (Connor et al. Radiology 123, 497-503 (1977)). Está demostrado que la hipertermia puede matar los tejidos tumorales dejando prácticamente intactos los sanos (van der Zee, Annals Oncol. 13(8):1173-1184 (2002)). En este sentido puede decirse que el tratamiento del cáncer por hipertermia es un tratamiento selectivo, a diferencia de los actuales tratamientos oncológicos como la quimioterapia o la radioterapia. Existen diversos dispositivos de hipertermia que permiten la transferencia de calor desde una fuente al tumor, por ejemplo tratamiento por microondas, radiofrecuencias, tratamientos sónicos o incluso los baños térmicos (Institute of Cáncer Research.
(http://www.cancer.gOv/cancertopics/factsheet/Therapy/hvperthermia#r1)). Estos dispositivos irradian directamente los tejidos elevando la temperatura de toda una parte del cuerpo y pueden inducir graves complicaciones fisiológicas. Una alternativa a estas técnicas es la hipertermia basada en el uso de coloides magnéticos que son capaces de disipar calor bajo la acción de un campo electromagnético. Estos coloides están compuestos por nanopartículas magnéticas biocompatibles estabilizadas para evitar que se formen agregados (R. Hergt et al. IEEE Trans. Mag. 34, 3745 (1998)). A este tipo de tratamiento se lo denomina hipertermia magnética o fluidomagnética.
El objetivo de la hipertermia magnética es aprovechar la diferencia en resistencia térmica entre células sanas y tumorales y, elevando localmente la temperatura de un tumor mediante el calentamiento de partículas o nanopartículas magnéticas en un campo electromagnético, matar las células malignas sin dañar el tejido sano circundante. De esta manera, sólo se calentará el tejido que contiene una determinada concentración de las partículas magnéticas, independientemente de su localización en el cuerpo. Esta técnica es aún más localizada que el resto de las terapias de hipertermia, ya que las nanopartículas magnéticas pueden marcarse biológicamente para que se localicen en el tumor o pueden inyectarse directamente en el tumor si el mismo es accesible desde el exterior, como en el caso de un tumor de mama o de próstata (Hilger et al. Nanomedicine 2, 164 (2011); Johannsen et al., Int. J. Hypertherm. 26, 790 (2010)). La generación de energía disipada por el material magnético puede producirse por la inversión del momento magnético dentro del dominio o por rotación mecánica de las partículas. En ambos casos la disipación de energía del material magnético se traduce en calor, incrementando la temperatura de su entorno.
Con el fin de minimizar la cantidad de partículas introducidas en el cuerpo y reducir los riesgos de toxicidad de las mismas, es necesario que las nanopartículas tengan la mayor eficiencia en la producción de calor, es decir, que sean capaces de generar la máxima energía con la menor cantidad de partículas.
Convencionalmente, se determina la eficiencia de calentamiento de cada material midiendo la potencia disipada por unidad de masa del material, que se denomina tasa de absorción específica (SAR, por sus siglas en inglés). La medida del SAR depende de la capacidad calorífica del medio y de la concentración de nanopartículas, y viene dada por la expresión matemática SAR = (C/cw)*(AT/At), donde C es la capacidad calorífica del coloide magnético, Cw es la concentración de las partículas en el líquido, y ΔΤ es el incremento de temperatura que se produce en el tiempo At cuando la suspensión está bajo la acción de un campo electromagnético alterno.
Actualmente, la determinación del SAR se realiza midiendo el incremento de temperatura por unidad de tiempo de una determinada concentración de partículas en suspensión coloidal que se encuentra bajo la acción de un campo electromagnético (Hergt, IEEE Trans. Magn. 34, 3745 (1998)). Debido a que normalmente se mide en condiciones no-adiabáticas, el SAR se calcula con la pendiente de la curva de temperatura medida en los primeros segundos (de la Presa et al, J. Phys. Chem C 116, 25602 (2012)). Este tipo de medida no tiene en cuenta el intercambio de calor del coloide magnético con el medio circundante, por lo que muchas veces el valor obtenido del SAR no coincide con las pérdidas de energía en el material magnético. Otras fuentes de error son el intervalo de tiempo en el que se calcula la pendiente del incremento de temperatura, que puede introducir cambios en la pendiente dependiendo de los extremos del intervalo en que se calcula, o la desviación de la linealidad de la dependencia térmica del coloide (Wang et al., IEEE Trans. Magn. 49, 255 (2013)). Además, la concentración de partículas que se utiliza para medir el SAR es normalmente baja (~ 1 - 5% en peso), lo que permite aproximar el calor específico del coloide magnético al calor específico del agua. Sin embargo, esta aproximación deja de ser válida para altas concentraciones de partículas.
La determinación precisa del valor del SAR es fundamental para entender los parámetros que controla la velocidad de generación de calor y así ser capaces de optimizar la cantidad de partículas necesarias para la terapia térmica en ciertas condiciones de campo y frecuencia. Este invento mide de forma exacta el valor del SAR eliminando la contribución del intercambio de calor del coloide con su entorno, evitando los problemas del cálculo de la pendiente del incremento de temperatura y de la aproximación del calor específico del coloide magnético al calor específico del agua.
Descripción detallada de la invención
Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos.
La presente invención se refiere a un método para la determinación de la tasa de absorción específica de partículas magnéticas en suspensión coloidal sometidas a campos electromagnéticos. Este método comprende: someter un coloide de partículas magnéticas de concentración conocida, y aislado térmicamente de su entorno, a un campo electromagnético; medir la diferencia de temperatura entre el coloide del paso anterior y un coloide de partículas magnéticas idéntico al anterior y aislado térmicamente de su entorno que no está sometido a un campo electromagnético; aumentar la temperatura del coloide de partículas magnéticas no sometido a un campo electromagnético hasta igualar la temperatura del coloide de partículas magnéticas aislado térmicamente de su entorno y sometido a un campo electromagnético, mediante una resistencia no inductiva de bajo coeficiente térmico; y determinar la potencia disipada en la resistencia no inductiva de bajo coeficiente térmico.
Así mismo, la invención se refiere a un dispositivo de calorímetro diferencial de hipertermia, en adelante dispositivo de la invención, para la medida de la tasa de absorción específica de coloides magnéticos sometidos a un campo electromagnético. En esta memoria descriptiva, el término "coloides magnéticos" se refiere a partículas magnéticas en suspensión coloidal.
El dispositivo comprende (Fig 1): dos recipientes (1) y (2) con una cavidad interior y térmicamente aislados del medio exterior; dos sondas termométricas colocadas una (3) en el recipiente (1) y la otra (4) en recipiende (2); un sistema de control (5); una resistencia R de carga de bajo coeficiente térmico, del orden de ±10 ppm/°C o menor, (6); un sistema de amplificación de potencia y adquisición de datos (7) y un equipo de generación de campos electromagnéticos (8).
Preferentemente, los recipientes (1) y (2) están fabricados con un material que sea aislante eléctrico como, por ejemplo, cerámicas o plásticos.
Además, el dispositivo puede incluir un sistema de refrigeración (11) para mantener el aislamiento térmico de los recipientes (1) y (2) que, a su vez, puede incluir un sistema de vacío y/o un baño térmico (figura 2).
Se introduce un coloide magnético en la cavidad interna del recipiente (1) idéntico en el tipo de nanopartículas, concentración y volumen que el que se introduce en el recipiente (2). Ambas suspensiones están en idénticas condiciones térmicas debido al aislamiento térmico de los recipientes.
El recipiente (1) con el coloide magnético se coloca en el centro de una bobina que genera un campo electromagnético (8). Bajo la acción de este campo, las partículas disipan energía magnética por diferentes mecanismos produciendo un incremento de temperatura en la suspensión coloidal del recipiente (1). La velocidad con que se incrementa la temperatura depende de factores intrínsecos del material magnético, como la imanación de saturación, el tamaño de partícula, y calor específico de la suspensión, pero también de factores extrínsecos como la concentración y la intensidad y frecuencia del campo electromagnético aplicado. Por medio de la sonda termométrica (3) se mide el incremento de temperatura del coloide magnético en el recipiente (1) sometido al campo electromagnético externo. La otra sonda termométrica (4), colocada dentro del coloide magnético en el recipiente (2), mide la temperatura de éste. El sistema de control (5) compara ambas temperaturas midiendo la diferencia de voltaje entre ambas sondas. Si la diferencia de voltaje es positiva, es decir, la temperatura del coloide en el recipiente (1) es mayor que la del coloide en el recipiente (2), el sistema de amplificación de potencia y adquisición de datos (7) amplifica la diferencia de voltaje de las sondas (3) y (4) y aplica este voltaje a la resistencia R (6) introducida en el coloide magnético del recipiente (2), manteniendo a éste a la misma temperatura que el coloide magnético del recipiente (1). De esta forma, la temperatura de ambos viales se elevará a la misma velocidad. Del sistema de amplificación de potencia y adquisición de datos (7) se adquieren los datos del voltaje aplicado en función del tiempo y de las temperaturas de los coloides en los recipientes (1) y (2).
La potencia que disipa la resistencia (6) en el coloide del recipiente (2) está dada por la ley de Joule con la ecuación P=V2/R, donde P es la potencia que disipa la resistencia (6), V es la diferencia de voltaje medido por el controlador (5) y amplificado por el sistema de amplificación de potencia y adquisición de datos (7) y que se aplica a los extremos de la resistencia R (6) sumergida en el coloide magnético del recipiente (2). El diseño de la invención es tal que si la diferencia de voltaje entre la sonda (3) y (4) es nula, la potencia disipada en la resistencia también lo es. La potencia media necesaria para calentar la suspensión coloidal del recipiente (2) se determina por la integral de la curva de potencia en función del tiempo dividiendo por el intervalo de tiempo en que se realiza la medida. Esta potencia media entregada para el circuito de potencia es la que se necesita para calentar el coloide del recipiente (2) a la misma velocidad que se calienta el coloide de partículas magnéticas del recipiente (1) sometido al campo electromagnético externo. Alternativamente, puede alimentarse la resistencia R (6) con un corriente I, en cuyo caso la ley de Joule queda expresada como P = l2R. En este caso, la diferencia de voltaje de las sondas (3) y (4) se traduce en corriente que alimenta la resistencia R (6), disipando calor e incrementado la temperatura del coloide magnético en el recipiente (2). De forma similar a lo anterior, puede obtenerse la potencia instantánea y la potencia media disipada por la resistencia R (6).
Ambos coloides están en las mismas condiciones térmicas debido al aislamiento térmico de los recipientes. Por tratarse de coloides idénticos, ambos tienen la misma capacidad calorífica. De esta forma, la potencia medía entregada por el sistema de amplificación de potencia y adquisición de datos (7) al coloide en el recipiente (2) es la misma que la que disipa el coloide magnético en el recipiente (1) cuando está sometido a un campo electromagnético (8). Es decir, mide directamente la potencia disipada por el coloide magnético en el recipiente (1) bajo la acción de un campo electromagnético (8). Conociendo la concentración de partículas en el coloide magnético, esta invención determina exactamente el SAR del coloide magnético bajo un campo electromagnético.
El diseño del dispositivo de la invención mide directamente la tasa de absorción específica de coloides magnéticos cuando se aplica un campo electromagnético, eliminando las contribuciones producidas por el intercambio de calor del coloide con el medio circundante, descartando los errores provenientes del cálculo de incremento de temperatura en función del tiempo y eliminando la aproximación que se realiza en el cálculo del SAR, según los métodos conocidos hasta ahora, al reemplazar el calor específico de coloide por el calor específico de agua.
Modo de realización de la invención
La presente invención se ilustra adicionalmente mediante los siguientes ejemplos, los cuales no pretenden ser limitativos de su alcance. Un ejemplo de realización de la invención lo constituye el siguiente conjunto de dispositivos:
De la Fig. 2, los recipientes aislantes (1) y (2) se imprimieron en un material no conductor con una impresora 3D. Sus dimensiones externas son tales que pueden introducirse en un equipo de generación de campos electromagnéticos (8), en este ejemplo fueron de 4.5 mm de diámetro y 140 mm de altura, con cavidad interior de 1.5 mi. Se utilizó un equipo NanoTherics ®, que permite la aplicación de campos magnéticos alternos de 100 - 1000 kHz y hasta 200 Oe de amplitud, en este ejemplo se aplicó un campo electromagnético de 90 Oe de amplitud y 110 kHz de frecuencia. Los dos recipientes (1 ) y (2) se aislaron térmicamente mediante una camisa externa (9) conectada a una bomba de vacío, y una camisa intermedia (10) por donde fluía agua desde un sistema de refrigeración (11) por medio de bombas hidráulicas (12) para mantener los recipientes (1) y (2) a la misma temperatura exterior. En la cavidad interior de ambos recipientes se colocó un vial con 1 mi del coloide magnético, y en el vial del recipiente (2) se introdujo, además, una resistencia (6) de 1 kQ.
El coloide magnético del recipiente (1) es idéntico en el tipo de nanopartículas, concentración y volumen que el que se introduce en el recipiente (2). En este ejemplo, el coloide magnético está compuesto de nanopartículas de magnetitas de 30 nm de diámetro y a una concentración de 50 mg/ml. Desde el baño térmico del sistema de refrigeración (11) se extrajo agua con las bombas hidráulicas (12) que se introdujo por la parte inferior de los recipientes (1) y (2) y fluyó por la camisa intermedia (10) hasta la parte superior de los mismos. En la parte superior se midió la temperatura con sondas termométricas de fibra óptica (13) y, finalmente, el agua regresó al baño térmico. De esta forma se controló que ambos recipientes estuvieran a la misma temperatura. La parte más externa de los recipientes (1) y (2) se conectó a un sistema de vacío (9), que aseguró el aislamiento térmico del medio circundante. De esta forma ambas suspensiones coloidales de los recipientes (1 ) y (2) estaban en idénticas condiciones térmicas.
En contacto con los coloides magnéticos, se colocaron dos sondas de temperatura de fibra óptica Optocón TS3 (3) y (4), inmunes a las emisiones de radiofrecuencia y microondas, que las hace ideales para este tipo de experimentos. Estas sondas se conectaron a un Termómetro FOTEMP4 de Optocón con 4 canales de entrada (14), salida analógica y puerto de comunicación para la adquisición de datos en tiempo real. Las dos sondas medían la temperatura de los coloides en los recipientes (1) y (2). Las sondas (13) estaban también conectadas al termómetro FOTEMP4 (14).
Las salidas de las sondas (3) y (4) se conectaron a un sistema de control (5) de alta precisión que obtuvo la diferencia de voltaje entre las sondas (3) y (4) y el sistema de amplificación de potencia y adquisición de datos (7) amplificó esta diferencia en un factor 10, para lo que se empleó una resistencia externa de un valor de 5 kQ. En este ejemplo: el amplificador utilizado fue AD620, tiene alta precisión con un error de no linealidad de 40 ppm, baja tensión de offset 50μν, slew rate 1 ,2 V/ s, rechazo en modo común de 100dB, por lo que el error en la toma de datos y amplificación es menor del 0,1 %.
El sistema de amplificación de potencia y adquisición de datos (7) tiene integrado una plataforma Arduino para la adquisición de datos.
La resistencia R (6) se alimentó con el voltaje de salida del sistema de amplificación de potencia y adquisición de datos (7), en ese punto, y por medio de la plataforma Arduino, se leyeron los datos del valor de la tensión sobre la resistencia (6) en función del tiempo y de las temperaturas de los coloides en los recipientes (1) y (2). La potencia instantánea se calculó por la ley de Joule P = V2/R, y la potencia media por la integral en el intervalo de tiempo divido dicho intervalo. La Figura 3 muestra los datos obtenidos en este ejemplo. La temperatura del coloide magnético en el recipiente (1) aumenta debido a la aplicación de un campo electromagnético de 90 Oe y 110 kHz. El sistema de amplificación de potencia y adquisición de datos (7) registra este incremento en función del tiempo y aplica tensión a la resistencia (6) en el coloide magnético del recipiente (2) para mantener ambos coloides magnéticos a la misma temperatura (figura 3a). El sistema de amplificación de potencia y adquisición de datos (7) también registra la potencia instantánea entregada a la resistencia en el coloide (2) (figura 3b).
Actualmente, el cálculo de la tasa de absorción específica del coloide magnético se realiza con la fórmula SAR = (C/Cw)*(AT/At), donde C es el calor específico del agua, Cw la concentración de Fe y ΔΤ/Δί la pendiente de la curva de incremento de temperatura (figura 3a) medida en un intervalo de tiempo. En este ejemplo se calculó la pendiente en los primeros 150 s y obtuvimos un SAR de 1 ,66 W/g.
La potencia media disipada por la resistencia (6) en el coloide (2) se obtuvo de la integral de la potencia instantánea dividido el intervalo de tiempo (300 s). La potencia media disipada por la resistencia fue de 0,11 W, y dividiendo este valor por la masa de partículas magnéticas del coloide del recipiente (2) (50 mg), se obtuvo un SAR de 2,1 W/g.
La diferencia entre los dos valores del SAR obtenidos por los dos métodos se debe a que con este invento se cancelaron las contribuciones producidas por el intercambio de calor del coloide con el medio circundante, se evitaron los errores provenientes de elegir un intervalo de incremento de temperatura en función del tiempo y se eliminó la aproximación que se realiza en el cálculo del SAR al aproximar el calor específico de coloide con el calor específico de agua. Por lo que con esta invención se midió directamente la tasa de absorción específica del coloide magnético cuando se aplicó un campo electromagnético. Descripción de las figuras
Figura 1 : Esquema del dispositivo de la invención Figura 2: Un ejemplo de la invención
Figura 3: Un ejemplo de medida

Claims

REIVINDICACIONES
1. Método para la determinación de la tasa de absorción específica de partículas magnéticas en suspensión coloidal sometidas a campos electromagnéticos que comprende:
- someter un coloide de partículas magnéticas de concentración conocida y aislado térmicamente de su entorno a un campo electromagnético;
- medir la diferencia de temperatura entre el coloide del paso anterior y un coloide de partículas magnéticas idéntico al anterior y aislado térmicamente de su entorno que no está sometido a un campo electromagnético;
- aumentar la temperatura del coloide de partículas magnéticas no sometido a un campo electromagnético hasta igualar la temperatura del coloide de partículas magnéticas aislado térmicamente de su entorno y sometido a un campo electromagnético, mediante una resistencia no inductiva de bajo coeficiente térmico;
- determinar la potencia disipada en la resistencia no inductiva de bajo coeficiente térmico.
2. Calorímetro diferencial para la medida de la tasa de absorción específica de partículas magnéticas en suspensión coloidal sometidas a campos electromagnéticos que comprende:
- un recipiente (1) aislado térmicamente de su entorno en el que se introduce un coloide de partículas magnéticas de concentración conocida y que se dispone en un campo electromagnético;
- otro recipiente (2) de iguales características que el recipiente (1) e igualmente aislado térmicamente, donde se introduce la misma cantidad del mismo coloide de partículas magnéticas que en el recipiente (1) y una resistencia no inductiva de bajo coeficiente térmico (6) sumergida en dicho coloide;
- un sistema de generación de campos electromagnéticos (8); - una sonda termométrica (3) que toma la temperatura del coloide del recipiente (1) y otra sonda termométrica (4) que toma la temperatura del coloide del recipiente (2);
- un sistema de control (5) que compara las temperaturas de los coloides magnéticos en los recipientes (1) y (2) por medio de las sondas termométricas (3) y (4);
- un sistema de amplificación de potencia y adquisición de datos (7) que aplica a la resistencia (6) la corriente o voltaje necesarios para igualar la temperatura del coloide de partículas magnéticas del recipiente (2) a la temperatura detectada en el coloide de partículas magnéticas del recipiente (1) por la sonda (3), y recoge la señal de voltaje o intensidad con la que se alimenta la resistencia (6).
3. Calorímetro diferencial según la reivindicación 2 en el que los recipientes
(1) y (2) están fabricados con un material aislante eléctrico.
4. Calorímetro diferencial según cualquiera de las reivindicaciones 2-3 que incluye un sistema de refrigeración (11) para mantener los recipientes (1) y
(2) a la misma temperatura exterior.
5. Calorímetro diferencial según la reivindicación 4 en el que el sistema de refrigeración incluye un sistema de vacío para mantener el aislamiento térmico de los recipientes (1) y (2).
6. Calorímetro diferencial según cualquiera de las reivindicaciones 4-5 en el que el sistema de refrigeración incluye un baño térmico.
PCT/ES2014/000026 2013-05-10 2014-03-03 Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos WO2014181006A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201300432 2013-05-10
ES201300432A ES2520590B2 (es) 2013-05-10 2013-05-10 Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos

Publications (1)

Publication Number Publication Date
WO2014181006A1 true WO2014181006A1 (es) 2014-11-13

Family

ID=51847034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000026 WO2014181006A1 (es) 2013-05-10 2014-03-03 Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos

Country Status (2)

Country Link
ES (1) ES2520590B2 (es)
WO (1) WO2014181006A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813789A (en) * 1988-08-01 1989-03-21 The United States Of America As Represented By The Secretary Of The Navy Near-field radio wave dosimetry
WO2004055538A1 (de) * 2002-12-18 2004-07-01 Epcos Ag Kalorimetrische messanordnung und kalorimetrisches messverfahren
ES2333762B1 (es) * 2007-12-24 2011-01-17 Consejo Superior De Investigaciones Cientificas Equipo adiabatico para medida del coeficiente de absorcion especificode un material sometido a un campo magnetico alterno y metodo para realizar dicha medida.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813789A (en) * 1988-08-01 1989-03-21 The United States Of America As Represented By The Secretary Of The Navy Near-field radio wave dosimetry
WO2004055538A1 (de) * 2002-12-18 2004-07-01 Epcos Ag Kalorimetrische messanordnung und kalorimetrisches messverfahren
ES2333762B1 (es) * 2007-12-24 2011-01-17 Consejo Superior De Investigaciones Cientificas Equipo adiabatico para medida del coeficiente de absorcion especificode un material sometido a un campo magnetico alterno y metodo para realizar dicha medida.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LACROIX, L.-M. ET AL.: "A frequency-adjustable electromagnetfor hyperthermia measurements on magnetic nanoparticles.", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 79, 29 September 2008 (2008-09-29), pages 093909, Retrieved from the Internet <URL:http://scitation.aip.org/content/aip/journal/rsi/79/9/10.1063/1.2972172> *
NATIVIDAD ET AL.: "Adiabatic magnetothermia makespossible the study of the temperature dependenceof the heat dissipated by magnetic nanoparticlesunder alternating magnetic fields.", APPLIED PHYSICSLETTERS, vol. 98, 2011, pages 243119, Retrieved from the Internet <URL:http://dx.doi.org/10.1063/1.3600633> *

Also Published As

Publication number Publication date
ES2520590B2 (es) 2015-04-30
ES2520590A1 (es) 2014-11-11

Similar Documents

Publication Publication Date Title
Chandrasekharan et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications
ES2392006T3 (es) Dispositivos de hipertermia que usan nanopartículas y nanopartículas para su uso en hipertermia
Lahiri et al. Magnetic hyperthermia study in water based magnetic fluids containing TMAOH coated Fe3O4 using infrared thermography
Jordan et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia
Kappiyoor et al. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia
Lv et al. 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field
Jordan et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia
US20140303701A1 (en) Low Temperature Hyperthermia System for Therapeutic Treatment of Invasive Agents
Kumar et al. Method to reduce non-specific tissue heating of small animals in solenoid coils
Xu et al. Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the maghemite-gelled model
Skumiel et al. Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids
Bruvera et al. An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing
Li et al. Numerical simulation of magnetic fluid hyperthermia based on multiphysics coupling and recommendation on preferable treatment conditions
Tang et al. Numerical method to evaluate the survival rate of malignant cells considering the distribution of treatment temperature field for magnetic hyperthermia
Dahake Nanoparticle heating using induction in hyperthermia
WO2014181006A1 (es) Calorímetro diferencial y método para la medida de la tasa de absorción específica de coloides magnéticos sometidos a campos electromagnéticos
Lyons et al. Temperature measurements in high thermal gradients: I. The effects of conduction
Kim et al. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation
WO2009080861A1 (es) Equipo y método adiabático para medida del coeficiente de absorción específico de un material sometido a un campo magnético alterno
Xu et al. Three-dimensional model for determining inhomogeneous thermal dosage in a liver tumor during arterial embolization hyperthermia incorporating magnetic nanoparticles
Ding et al. Magnetic hydrogel with long in situ retention time for self-regulating temperature hyperthermia
Bante-Guerra et al. Infrared thermography analysis of thermal diffusion induced by RF magnetic field on agar phantoms loaded with magnetic nanoparticles
Tonthat et al. Ultrafast heating rate of ultrasmall gold-coated iron oxide magnetic nanoparticles by ferromagnetic resonance
Mohsin et al. MRI induced heating of artificial bone implants
Henrich et al. Investigation of heat distribution during magnetic heating treatment using a polyurethane–ferrofluid phantom-model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794404

Country of ref document: EP

Kind code of ref document: A1