WO2014180663A1 - Procede de compensation des inhomogeneites de propagation pour un signal de reflectometrie temporelle - Google Patents

Procede de compensation des inhomogeneites de propagation pour un signal de reflectometrie temporelle Download PDF

Info

Publication number
WO2014180663A1
WO2014180663A1 PCT/EP2014/058312 EP2014058312W WO2014180663A1 WO 2014180663 A1 WO2014180663 A1 WO 2014180663A1 EP 2014058312 W EP2014058312 W EP 2014058312W WO 2014180663 A1 WO2014180663 A1 WO 2014180663A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflectogram
propagation
test signal
signal
time
Prior art date
Application number
PCT/EP2014/058312
Other languages
English (en)
Inventor
Fabrice Auzanneau
Lola EL SAHMARANY
Luca INCARBONE
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP14723349.8A priority Critical patent/EP2994766B1/fr
Priority to US14/787,743 priority patent/US9995814B2/en
Publication of WO2014180663A1 publication Critical patent/WO2014180663A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Definitions

  • the present invention relates to the field of diagnostic systems and methods for cable. More precisely, the invention relates to reflectometry methods for detecting and / or locating defects impacting a cable, in particular time domain reflectometry methods.
  • the subject of the invention is a method for compensating for propagation inhomogeneities impacting a measured temporal reflectogram for a given cable from the injection, into this cable, of a test signal, called a reflectometry signal, and then the acquisition of this signal reflected on the singularities or breaks of impedance, that comprise the cable.
  • the invention applies to any type of electrical cable, in particular power transmission cables or communication cables, in fixed or mobile installations.
  • the cables concerned may be coaxial, two-wire, parallel lines, twisted pairs, cable strand or other.
  • Time Domain Reflectometry is a method commonly used in the diagnosis of cables and wired networks. This method consists in injecting a signal into a point-to-point cable or a network of cables and then measuring the returned echoes which are due to the reflections of the signal injected on the singularities of the cable. The delay and the amplitude of these echoes make it possible to obtain information on the structure or on the electrical faults present in this cable or network of cables and thus make it possible to locate, characterize and possibly predict a failure or more generally an electrical fault.
  • the measurement of the reflected signal is disturbed by various sources of noise. It distinguishes the usual measurement noise of external origin, for example from parasites due to the environment of the cable or the network, and of internal origin such as spontaneous fluctuations due to the discrete nature of phenomena at the scale microscopic, background noise, thermal noise and impulse disturbances. This noise is random in nature, it varies stochastically in time.
  • the analysis of the reflectogram and the identification of the desired defects can therefore be distorted by these undesirable peaks due to propagation inhomogeneities.
  • the invention consists in designing an optimal test signal, specifically adapted to the inhomogeneities present on a cable and which will make it possible to "clean" the reflectogram. After the injection of this test signal adapted according to the invention, the reflectogram obtained will contain no more peak, except that corresponding to the injection point. The appearance of a fault following the injection of this adapted signal will be seen very clearly and its location will be greatly facilitated. It is also possible to generate a suitable signal which gives rise to the measurement of a reflectogram either without any peak but with peaks that it is desired to appear (if it has any interest). These peaks can be peaks that you want to keep, or peaks to position pins to help the localization of defects later.
  • the subject of the invention is a method for compensating propagation inhomogeneities in a measured time reflectogram for a cable, characterized in that it comprises the following steps, performed iteratively:
  • the temporal portion of said identified time reflectogram comprises a single peak in amplitude corresponding to the first propagation inhomogeneity identified on said temporal reflectogram.
  • the temporal portion of said identified time reflectogram is equal to the entirety of said time reflectogram.
  • the number of iterations is configured to attenuate, at a given threshold value, in the test signal, the amplitude peaks corresponding to the propagation inhomogeneities.
  • the number of iterations is configured so that the amplitude peaks corresponding to the propagation inhomogeneities are repelled at a given time distance, in said temporal reflectogram, from the peak in amplitude corresponding to the point of injection.
  • the test signal injected at the first iteration is a Gaussian signal.
  • the invention also relates to a reflectometry system comprising means adapted to implement the reflectometry method according to the invention.
  • FIG. 1 a flowchart of the steps for implementing the method according to the invention
  • FIGS. 2a, 2b, 2c three time diagrams respectively representing an example of a temporal reflectogram with inhomogeneities, the optimal test signal obtained by applying the method according to the invention and the temporal reflectogram obtained from the injection of said optimal test signal,
  • FIG. 3 a block diagram of a reflectometry system comprising means adapted to implement the method according to the invention
  • FIG. 1 schematizes, on a flowchart, the implementation steps of the method according to the invention.
  • the principle underlying the invention is to cancel, on the measured reflectogram, one after the other the reflected signals corresponding to propagation inhomogeneities.
  • the cancellation of these signals is done iteratively and results in the formation of a modified test signal adapted to the characteristics of the cable to be tested.
  • a test signal S 0 is injected into a cable.
  • This test signal may be a Gaussian type signal, that is to say a Gaussian-shaped pulse or any other compatible signal of a time domain reflectometry method.
  • a second step 102 the reflection of the test signal is measured in order to produce a first temporal reflectogram.
  • This reflectogram contains a plurality of amplitude peaks, the first of these peaks corresponding to the injection point of the test signal into the cable, the last of these peaks corresponding to a straightforward defect, for example an end of cable or a short-circuit. circuit or an electric charge.
  • the reflectogram also contains a plurality of lower amplitude peaks corresponding to propagation inhomogeneities.
  • a temporal portion of the measured reflectogram comprising at least one amplitude peak that is to be canceled or compensated is identified.
  • this temporal portion may correspond to the first peak, along the time axis of the reflectogram, which it is desired to compensate.
  • this temporal portion may also comprise several peaks to be compensated or equal to the entirety of the measured reflectogram.
  • a fourth step 104 the time portion identified in step 103 is weighted by an estimate of the reflection coefficient of the signal at the injection point in the cable and is subtracted from the test signal to form a modified test signal Si .
  • the applied weighting consists of a division by an estimate of the reflection coefficient.
  • Steps 101 to 104 are then iterated several times in order to successively modify the test signal until a final modified test signal S is obtained which is adapted to the characteristics of the cable.
  • this final modified test signal S constructed, it can be used by any known time domain reflectometry method to detect, to locate or generally to characterize frank or not frank defects impacting the cable in the future.
  • the reflectogram measured using the modified test signal according to the invention is cleaned of parasitic peaks and will contain only amplitude peaks corresponding to defects that are desired. identify.
  • the number of iterations operated is a parameter of the process. It is configured to attenuate the amplitude of the peaks that it is desired to compensate below a given threshold value. It may also be configured to repel the peaks that it is desired to compensate at a certain distance from the peak corresponding to the injection point, for example beyond the peak corresponding to the termination of the cable or portion of cable that the we want to test.
  • FIGS. 2a, 2b and 2c illustrate, on three time diagrams, the operation of the method according to the invention.
  • This reflectogram comprises a first peak 201 corresponding to the injection point of the test signal, which is here a Gaussian signal, a second peak 202 corresponding to the termination of the cable on which the signal is reflected and a plurality of secondary peaks 203 corresponding to the inhomogeneities of propagation.
  • FIG. 2b represents the modified test signal S, at the end of the execution of the method according to the invention.
  • FIG. 2c represents the temporal reflectogram obtained by injecting into the cable the modified test signal S, represented in FIG. 2b.
  • the secondary peaks 203 are strongly attenuated between the injection point 201 and the termination of the cable 202.
  • the method according to the invention can be applied more generally to compensate for any undesired amplitude peak in a temporal reflectogram. For example, in the case of a power line formed by two sections interconnected by an interface, a peak of mismatch between the two sections exists on the initial reflectogram. This peak can be compensated in the same way as the peaks related to propagation inhomogeneities by executing the method according to the invention.
  • FIG. 3 depicts a block diagram of an exemplary reflectometry system according to the invention.
  • a test lead 304 has a defect 305 at any distance from one end of the cable.
  • the reflectometry system 301 comprises an electronic component 31 1 of the integrated circuit type, such as a programmable logic circuit, for example of FPGA type, or microcontroller, adapted to perform two functions.
  • the component 31 1 makes it possible to generate a reflectometry signal s (t) to be injected into the cable 304 under test.
  • the reflectometry signal s (t) is determined according to the iterative method described in FIG. This digitally generated signal is then converted via a digital-to-analog converter 312 and then injected 302 at one end 306 of the cable.
  • the signal s (t) propagates in the cable and is reflected on the singularity generated by the defect 305.
  • the reflected signal is backpropagated to the injection point 306 and then captured 303, digitally converted via an analog-to-digital converter 313, and transmitted to component 31 1.
  • the electronic component 31 1 is further adapted to perform the steps of the method according to the invention described above in order to produce, from the signal s (t) received, a temporal reflectogram which can be transmitted to a processing unit 314. , computer type, personal digital assistant or other to display the results of measurements on a human-machine interface.
  • the measured time reflectogram is also used to modify the test signal s (t) so as to obtain an optimal signal which enables to suppress propagation inhomogeneities in the temporal reflectogram measured during a subsequent iteration.
  • the system 301 described in FIG. 1 is a non-limiting exemplary embodiment.
  • the two functions performed by the component 31 1 can be separated into two separate components or devices.
  • the system can also operate with analog signals, in this case the analog-to-digital and digital-to-analog converters are not necessary. Instead of injecting and / or measuring the signal reflected at one end of the cable under test, it is also possible to inject or measure the signal reflected at any point of the cable.
  • the reflectometry system according to the invention may also consist of portable equipment, such as a touch pad or smart phone coupled to means for connection to a cable.
  • the method according to the invention can be implemented in the electronic component 31 1 from hardware and / or software elements. It can in particular be implemented as a computer program with instructions for its execution.
  • the computer program can be recorded on a processor-readable recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Procédé de compensation des inhomogénéités de propagation dans un réflectogramme temporel mesuré pour un câble caractérisé en ce qu'il comprend les étapes suivantes, exécutées itérativement: - Injecter (101) un signal de test dans ledit câble, - Mesurer (102) la réflexion dudit signal de test pour former un réflectogramme temporel, - Identifier (103) au moins une portion temporelle dudit réflectogramme temporel comprenant au moins un pic en amplitude correspondant à une inhomogénéité de propagation, - Soustraire (104) du signal de test la portion temporelle identifiée du dit réflectogramme divisée par le coefficient de réflexion du signal au point d'injection et remplacer le signal de test par le résultat de la soustraction (104).

Description

Procédé de compensation des inhomogénéités de propagation pour un signal de réflectométrie temporelle
La présente invention concerne le domaine des systèmes et procédés de diagnostic pour câble. Plus précisément l'invention concerne les méthodes de réflectométrie permettant de détecter et/ou localiser les défauts impactant un câble, en particulier les méthodes de réflectométrie temporelle.
L'invention a pour objet un procédé de compensation des inhomogénéités de propagation impactant un réflectogramme temporel mesuré pour un câble donné à partir de l'injection, dans ce câble, d'un signal de test, dit signal de réflectométrie, puis l'acquisition de ce signal réfléchi sur les singularités ou ruptures d'impédance, que comportent le câble.
L'invention s'applique à tout type de câble électrique, en particulier des câbles de transmission d'énergie ou des câbles de communication, dans des installations fixes ou mobiles. Les câbles concernés peuvent être coaxiaux, bifilaires, en lignes parallèles, en paires torsadées, en toron de câble ou autre.
La réflectométrie dans le domaine temporel est une méthode habituellement utilisée dans le diagnostic de câbles et de réseaux filaires. Cette méthode consiste à injecter un signal dans un câble point-à-point ou un réseau de câbles puis à mesurer les échos renvoyés qui sont dus aux réflexions du signal injecté sur les singularités du câble. Le retard et l'amplitude de ces échos permettent d'obtenir des informations sur la structure ou sur les défauts électriques présents dans ce câble ou réseau de câbles et ainsi permettent de localiser, caractériser et éventuellement prédire une panne ou plus généralement un défaut électrique.
Dans la mise en œuvre d'un système de réflectométrie, il apparaît souvent que la mesure du signal réfléchi, appelée réflectogramme, est perturbée par diverses sources de bruit. On distingue le bruit de mesure habituel d'origine externe, par exemple provenant de parasites dus à l'environnement du câble ou du réseau, et d'origine interne tel que des fluctuations spontanées du fait de la nature discrète des phénomènes à l'échelle microscopique, du bruit de fond, du bruit thermique et des perturbations impulsionnelles. Ce bruit est de nature aléatoire, il varie de manière stochastique dans le temps.
Un autre bruit, dit de propagation, peut aussi se superposer à la mesure utile du réflectogramme. Il est dû aux inhomogénéités du câble, réparties aléatoirement sur sa longueur, qui provoquent localement des petites réflexions du signal et créent des petits échos indésirables sur le réflectogramme.
D'une manière plus générale, on peut trouver sur le réflectogramme mesuré des échos indésirables dus à ces inhomogénéités ou à d'autres phénomènes tels que la réflexion du signal sur une jonction ou ramification, un connecteur, une charge en fin de câble ou tout autre dispositif lié au câble, par exemple un dispositif externe tel un jeu de barres, un chemin de câble ou une goulotte. Ces échos peuvent être confondus avec des pics caractéristiques de défauts que l'on cherche à identifier par le biais de la méthode de réflectométrie ou peuvent également masquer ces échos car leur amplitude est supérieure à celle des pics de défauts recherchés.
L'analyse du réflectogramme et l'identification des défauts recherchés peut donc être faussée par ces pics indésirables dus aux inhomogénéités de propagation. L'invention consiste à concevoir un signal de test optimal, spécifiquement adapté aux inhomogénéités présentes sur un câble et qui va permettre de « nettoyer » le réflectogramme. Après l'injection de ce signal de test adapté selon l'invention, le réflectogramme obtenu ne contiendra plus aucun pic, sauf celui correspondant au point d'injection. L'apparition d'un défaut suite à l'injection de ce signal adapté se verra donc de manière très nette et sa localisation sera grandement facilitée. Il est aussi possible de générer un signal adapté qui donne lieu à la mesure d'un réflectogramme non plus sans aucun pic mais avec des pics que l'on désire voir apparaître (si cela a un quelconque intérêt). Ces pics peuvent être des pics que l'on désire conserver, ou des pics permettant de positionner des repères pour aider à la localisation de défauts par la suite.
L'invention a pour objet un procédé de compensation des inhomogénéités de propagation dans un réflectogramme temporel mesuré pour un câble caractérisé en ce qu'il comprend les étapes suivantes, exécutées itérativement:
- Injecter un signal de test dans ledit câble,
- Mesurer la réflexion dudit signal de test pour former un réflectogramme temporel,
- Identifier au moins une portion temporelle dudit réflectogramme temporel comprenant au moins un pic en amplitude correspondant à une inhomogénéité de propagation,
- Soustraire du signal de test la portion temporelle identifiée du réflectogramme divisée par le coefficient de réflexion du signal au point d'injection et remplacer le signal de test par le résultat de la soustraction,
Selon un aspect particulier de l'invention, la portion temporelle dudit réflectogramme temporel identifiée comprend un seul pic en amplitude correspondant à la première inhomogénéité de propagation identifiée sur ledit réflectogramme temporel.
Selon un aspect particulier de l'invention, la portion temporelle dudit réflectogramme temporel identifiée est égale à l'intégralité dudit réflectogramme temporel.
Selon un aspect particulier de l'invention, le nombre d'itérations est configuré pour atténuer à une valeur seuil donnée, dans le signal de test, les pics en amplitude correspondants aux inhomogénéités de propagation. Selon un aspect particulier de l'invention, le nombre d'itérations est configuré de sorte que les pics en amplitude correspondants aux inhomogénéités de propagation sont repoussés à une distance temporelle donnée, dans ledit réflectogramme temporel, du pic en amplitude correspondant au point d'injection.
Selon un aspect particulier de l'invention, le signal de test injecté à la première itération est un signal Gaussien.
L'invention a également pour objet un système de réflectométrie comprenant des moyens adaptés pour mettre en œuvre le procédé de réflectométrie selon l'invention.
D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation aux dessins annexés qui représentent :
- La figure 1 , un organigramme des étapes de mise en œuvre du procédé selon l'invention,
- Les figures 2a,2b,2c, trois diagrammes temporels représentant respectivement, un exemple de réflectogramme temporel présentant des inhomogénéités, le signal de test optimal obtenu par application du procédé selon l'invention et le réflectogramme temporel obtenu à partir de l'injection dudit signal de test optimal,
- La figure 3, un synoptique d'un système de réflectométrie comprenant des moyens adaptés pour mettre en œuvre le procédé selon l'invention
La figure 1 schématise, sur un organigramme, les étapes de mise en œuvre du procédé selon l'invention.
Le principe à la base de l'invention consiste à annuler, sur le réflectogramme mesuré, l'un après l'autre les signaux réfléchis correspondants à des inhomogénéités de propagation. L'annulation de ces signaux se fait de façon itérative et aboutit à la formation d'un signal de test modifié adapté aux caractéristiques du câble à tester.
Dans une première étape 101 , un signal de test S0 est injecté dans un câble. Ce signal de test peut être un signal de type Gaussien, c'est-à-dire une impulsion de forme Gaussienne ou tout autre signal compatible d'une méthode de réflectométrie temporelle.
Dans une deuxième étape 102, on mesure la réflexion du signal de test afin de produire un premier réflectogramme temporel. Ce réflectogramme contient une pluralité de pics en amplitude, le premier de ces pics correspondant au point d'injection du signal de test dans le câble, le dernier de ces pics correspondant à un défaut franc, par exemple une fin de câble ou un court-circuit ou encore une charge électrique. Le réflectogramme contient également une pluralité de pics d'amplitude plus faible correspondant aux inhomogénéités de propagation.
Dans une troisième étape 103, on identifie une portion temporelle du réflectogramme mesuré comprenant au moins un pic en amplitude que l'on souhaite annuler ou compenser. Selon un premier mode de réalisation, cette portion temporelle peut correspondre au premier pic, selon l'axe temporel du réflectogramme, que l'on souhaite compenser. Selon un second mode de réalisation, cette portion temporelle peut également comprendre plusieurs pics à compenser ou être égale à l'intégralité du réflectogramme mesuré.
Dans une quatrième étape 104, la portion temporelle identifiée à l'étape 103 est pondérée par une estimée du coefficient de réflexion du signal au point d'injection dans le câble puis est soustraite au signal de test afin de former un signal de test modifié S-i . La pondération appliquée consiste en une division par une estimée du coefficient de réflexion.
Les étapes 101 à 104 sont ensuite itérées plusieurs fois afin de modifier successivement le signal de test jusqu'à obtenir un signal de test modifié final S, qui est adapté aux caractéristiques du câble.
Une fois ce signal de test modifié final S, construit, il peut être utilisé par toute méthode de réflectométrie temporelle connue afin de détecter, localiser ou de façon générale caractériser des défauts francs ou non francs impactant le câble dans le futur.
Grâce à la compensation des phénomènes liés aux inhomogénéités de propagation, le réflectogramme mesuré en utilisant le signal de test modifié selon l'invention est nettoyé des pics parasites et ne contiendra plus que des pics d'amplitude correspondant à des défauts que l'on souhaite identifier.
Le nombre d'itérations opérées est un paramètre du procédé. Il est configuré de sorte à atténuer l'amplitude des pics que l'on souhaite compenser en dessous d'une valeur seuil donnée. Il peut également être configuré de sorte à repousser les pics que l'on souhaite compenser à une certaine distance du pic correspondant au point d'injection, par exemple au delà du pic correspondant à la terminaison du câble ou de la portion de câble que l'on souhaite tester.
Les figures 2a,2b,2c illustrent sur trois diagrammes temporels, le fonctionnement du procédé selon l'invention.
La figure 2a représente le réflectogramme temporel obtenu à l'étape 102 de la 1 ere itération du procédé, autrement dit le réflectogramme initial. Ce réflectogramme comporte un premier pic 201 correspondant au point d'injection du signal de test, qui est ici un signal Gaussien, un deuxième pic 202 correspondant à la terminaison du câble sur laquelle le signal se réfléchit et une pluralité de pics secondaires 203 correspondant aux inhomogénéités de propagation.
La figure 2b représente le signal de test modifié S, à l'issu de l'exécution du procédé selon l'invention.
La figure 2c représente le réflectogramme temporel obtenu en injectant dans le câble le signal de test modifié S, représenté à la figure 2b.
On voit que les pics secondaires 203 sont fortement atténués entre le point d'injection 201 et la terminaison du câble 202. Le procédé selon l'invention peut s'appliquer plus généralement pour compenser tout pic d'amplitude non désiré dans un réflectogramme temporel. Par exemple, dans le cas d'une ligne électrique formée par deux tronçons reliés entre eux par une interface, un pic de désadaptation entre les deux tronçons existe sur le réflectogramme initial. Ce pic peut être compensé de la même façon que les pics liés aux inhomogénéités de propagation en exécutant le procédé selon l'invention.
La figure 3 décrit un synoptique d'un exemple de système de réflectométrie selon l'invention.
Un câble à tester 304 présente un défaut 305 à une distance quelconque d'une extrémité du câble.
Le système de réflectométrie 301 selon l'invention comprend un composant électronique 31 1 de type circuit intégré, tel un circuit à logique programmable, par exemple de type FPGA, ou micro-contrôleur, adapté à exécuter deux fonctions. D'une part, le composant 31 1 permet de générer un signal de réflectométrie s(t) à injecter dans le câble 304 sous test. Le signal de réflectométrie s(t) est déterminé selon la méthode itérative décrite à la figure 1 . Ce signal généré numériquement est ensuite converti via un convertisseur numérique-analogique 312 puis injecté 302 à une extrémité 306 du câble. Le signal s(t) se propage dans le câble et est réfléchi sur la singularité engendrée par le défaut 305. Le signal réfléchi est rétropropagé jusqu'au point d'injection 306 puis capturé 303, converti numériquement via un convertisseur analogique-numérique 313, et transmis au composant 31 1 . Le composant électronique 31 1 est en outre adapté à exécuter les étapes du procédé selon l'invention décrit ci-dessus afin de produire, à partir du signal s(t) reçu, un réflectogramme temporel qui peut être transmis à une unité de traitement 314, de type ordinateur, assistant numérique personnel ou autre pour afficher les résultats des mesures sur une interface homme- machine. Le réflectogramme temporel mesuré est également utilisé pour modifier le signal de test s(t) de sorte à obtenir un signal optimal qui permet de supprimer les inhomogénéités de propagation dans le réflectogramme temporel mesuré au cours d'une itération ultérieure.
Le système 301 décrit à la figure 1 est un exemple de réalisation nullement limitatif. En particulier les deux fonctions exécutées par le composant 31 1 peuvent être séparées dans deux composants ou dispositifs distincts. Le système peut également fonctionner avec des signaux analogiques, dans ce cas les convertisseurs analogique-numérique et numérique-analogique ne sont pas nécessaires. Au lieu d'injecter et/ou de mesurer le signal réfléchi à une extrémité du câble sous test, il est également possible de réaliser l'injection ou la mesure du signal réfléchi en un point quelconque du câble.
Le système de réflectométrie selon l'invention peut également être constitué d'un équipement portatif, du type tablette tactile ou téléphone intelligent couplé à des moyens de connexion à un câble.
Le procédé selon l'invention peut être implémenté, dans le composant électronique 31 1 à partir d'éléments matériel et/ou logiciel. Il peut notamment être mis en œuvre en tant que programme d'ordinateur comportant des instructions pour son exécution. Le programme d'ordinateur peut être enregistré sur un support d'enregistrement lisible par un processeur.

Claims

REVENDICATIONS
Procédé de compensation des inhomogénéités de propagation dans un réflectogramme temporel mesuré pour un câble donné, caractérisé en ce qu'il comprend les étapes suivantes, exécutées itérativement:
- Injecter (101 ) un signal de test dans ledit câble,
- Mesurer (102) la réflexion dudit signal de test pour former un réflectogramme temporel,
- Identifier (103) au moins une portion temporelle dudit réflectogramme temporel comprenant au moins un pic en amplitude correspondant à une inhomogénéité de propagation,
- Soustraire (104) du signal de test la portion temporelle identifiée du dit réflectogramme, divisée par le coefficient de réflexion du signal au point d'injection et remplacer le signal de test par le résultat de la soustraction (104),
Procédé de compensation des inhomogénéités de propagation selon la revendication 1 dans lequel la portion temporelle dudit réflectogramme temporel identifiée comprend un seul pic en amplitude correspondant à la première inhomogénéité de propagation identifiée sur ledit réflectogramme temporel.
Procédé de compensation des inhomogénéités de propagation selon la revendication 1 dans lequel la portion temporelle dudit réflectogramme temporel identifiée est égale à l'intégralité dudit réflectogramme temporel.
Procédé de compensation des inhomogénéités de propagation selon l'une des revendications précédentes dans lequel le nombre d'itérations est configuré pour atténuer à une valeur seuil donnée, dans le signal de test, les pics en amplitude correspondants aux inhomogénéités de propagation.
Procédé de compensation des inhomogénéités de propagation selon l'une des revendications précédentes dans lequel le nombre d'itérations est configuré de sorte que les pics en amplitude correspondants aux inhomogénéités de propagation sont repoussés à une distance temporelle donnée, dans ledit réflectogramme temporel, du pic en amplitude correspondant au point d'injection.
Procédé de compensation des inhomogénéités de propagation selon l'une des revendications précédentes dans lequel le signal de test injecté à la première itération est un signal Gaussien.
Système de réflectométrie comprenant des moyens adaptés pour mettre en œuvre le procédé de réflectométrie selon l'une des revendications précédentes.
PCT/EP2014/058312 2013-05-07 2014-04-24 Procede de compensation des inhomogeneites de propagation pour un signal de reflectometrie temporelle WO2014180663A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14723349.8A EP2994766B1 (fr) 2013-05-07 2014-04-24 Procédé de compensation des inhomogénéités de propagation pour un signal de reflectométrie temporelle
US14/787,743 US9995814B2 (en) 2013-05-07 2014-04-24 Method for compensating for propagation inhomogeneities for a temporal reflectometry signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354159 2013-05-07
FR1354159A FR3005508B1 (fr) 2013-05-07 2013-05-07 Procede de compensation des inhomogeneites de propagation pour un signal de reflectometrie temporelle

Publications (1)

Publication Number Publication Date
WO2014180663A1 true WO2014180663A1 (fr) 2014-11-13

Family

ID=48795758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/058312 WO2014180663A1 (fr) 2013-05-07 2014-04-24 Procede de compensation des inhomogeneites de propagation pour un signal de reflectometrie temporelle

Country Status (4)

Country Link
US (1) US9995814B2 (fr)
EP (1) EP2994766B1 (fr)
FR (1) FR3005508B1 (fr)
WO (1) WO2014180663A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030246A1 (fr) * 2017-08-11 2019-02-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede, mis en œuvre par ordinateur, de reconstruction de la topologie d'un reseau de cables, utilisant un algorithme genetique
WO2020094469A1 (fr) * 2018-11-09 2020-05-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme d'analyse de defauts par reflectometrie a dynamique optimisee
RU2745432C1 (ru) * 2020-07-09 2021-03-25 федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники» Способ контроля и ремонта изоляции проводов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352059B (zh) * 2020-04-01 2020-09-29 电子科技大学 一种时域反射计的特性阻抗时域分段校准方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538103A (en) * 1982-08-30 1985-08-27 John Cappon Time domain reflectometer apparatus for identifying the location of cable defects
US5083086A (en) * 1990-07-12 1992-01-21 James G. Biddle Co. Differential arc reflectometry
US20040073395A1 (en) * 2001-07-07 2004-04-15 Furse Cynthia M. Frequency domain reflectometry system for baselining and mapping of wires and cables
EP1477820A2 (fr) * 2003-05-12 2004-11-17 Simmonds Precision Products, Inc. Détection des défauts de cable
US20070030010A1 (en) * 2005-07-25 2007-02-08 Avo Multi-Amp Corporation D/B/A Megger Connector crosstalk and return loss cancellation
WO2012032125A1 (fr) * 2010-09-10 2012-03-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et dispositif de mesure automatique des caracteristiques physiques d'un cable, en particulier de la vitesse de propagation
FR2987450A1 (fr) * 2012-02-29 2013-08-30 Commissariat Energie Atomique Procede de mesure du vieillissement de cables electriques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114717A (ja) * 2008-11-07 2010-05-20 Nec Electronics Corp 通信装置及びオフセットキャンセル方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538103A (en) * 1982-08-30 1985-08-27 John Cappon Time domain reflectometer apparatus for identifying the location of cable defects
US5083086A (en) * 1990-07-12 1992-01-21 James G. Biddle Co. Differential arc reflectometry
US20040073395A1 (en) * 2001-07-07 2004-04-15 Furse Cynthia M. Frequency domain reflectometry system for baselining and mapping of wires and cables
EP1477820A2 (fr) * 2003-05-12 2004-11-17 Simmonds Precision Products, Inc. Détection des défauts de cable
US20070030010A1 (en) * 2005-07-25 2007-02-08 Avo Multi-Amp Corporation D/B/A Megger Connector crosstalk and return loss cancellation
WO2012032125A1 (fr) * 2010-09-10 2012-03-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et dispositif de mesure automatique des caracteristiques physiques d'un cable, en particulier de la vitesse de propagation
FR2987450A1 (fr) * 2012-02-29 2013-08-30 Commissariat Energie Atomique Procede de mesure du vieillissement de cables electriques

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030246A1 (fr) * 2017-08-11 2019-02-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede, mis en œuvre par ordinateur, de reconstruction de la topologie d'un reseau de cables, utilisant un algorithme genetique
FR3070075A1 (fr) * 2017-08-11 2019-02-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede, mis en œuvre par ordinateur, de reconstruction de la topologie d'un reseau de cables, utilisant un algorithme genetique
WO2020094469A1 (fr) * 2018-11-09 2020-05-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme d'analyse de defauts par reflectometrie a dynamique optimisee
FR3088436A1 (fr) * 2018-11-09 2020-05-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme d'analyse de defauts par reflectometrie a dynamique optimisee
US11397207B2 (en) 2018-11-09 2022-07-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for analysing faults by reflectometry of optimised dynamic range
RU2745432C1 (ru) * 2020-07-09 2021-03-25 федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники» Способ контроля и ремонта изоляции проводов

Also Published As

Publication number Publication date
US9995814B2 (en) 2018-06-12
EP2994766A1 (fr) 2016-03-16
US20160109549A1 (en) 2016-04-21
EP2994766B1 (fr) 2017-01-04
FR3005508B1 (fr) 2016-09-02
FR3005508A1 (fr) 2014-11-14

Similar Documents

Publication Publication Date Title
EP3008479B1 (fr) Procede de reflectometrie pour l'identification de defauts non francs impactant un cable
EP2277271B1 (fr) Dispositif et procède de réflectométrie multiporteuse pour le diagnostic en ligne d'au moins une ligne de transmission
EP3201638B1 (fr) Procede d'analyse d'un cable, basee sur une correlation auto-adaptative, pour la detection de defauts non francs
FR3034203A1 (fr) Procede de caracterisation d'un troncon d'une ligne de transmission, en particulier troncon correspondant a un connecteur ou une serie de connecteurs reliant un equipement de mesure a un cable
EP3814789B1 (fr) Procede de caracterisation d'un defaut dans un reseau de lignes de transmission de topologie inconnue
EP2994766B1 (fr) Procédé de compensation des inhomogénéités de propagation pour un signal de reflectométrie temporelle
FR2988855A1 (fr) Procede et systeme de diagnostic d'un cable par reflectometrie distribuee a moyenne autoselective
EP3423847A1 (fr) Procede de detection de defauts non francs dans un cable, basee sur l'integrale d'un reflectogramme
EP3259608B1 (fr) Procede de caracterisation d'un defaut non franc dans un cable
FR3025320A1 (fr) Procede de determination de parametres lineiques d'une ligne de transmission
WO2020001985A1 (fr) Procede et systeme de caracterisation d'un defaut dans un reseau de lignes de transmission, par retournement temporel
EP2941653A1 (fr) Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable
FR3069646B1 (fr) Systeme de reflectometrie pour l'analyse de defauts dans au moins une ligne de transmission, le systeme comprenant un correlateur complexe
FR3070211B1 (fr) Procede, mis en œuvre par ordinateur, de reconstruction de la topologie d'un reseau de cables
EP3877773B1 (fr) Systeme d'analyse de defauts par reflectometrie a dynamique optimisee
FR3136859A1 (fr) Méthode de détection et localisation de défauts francs ou de terminaison pour un câble composé de plusieurs tronçons de câbles inhomogènes
FR3134455A1 (fr) Procédé et dispositif d’analyse de défauts par réflectométrie au moyen d’une estimation de fonction de transfert
FR3068474B1 (fr) Systeme de reflectometrie pour l'analyse de defauts dans une ligne de transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14723349

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014723349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014723349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14787743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE