EP2941653A1 - Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable - Google Patents

Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable

Info

Publication number
EP2941653A1
EP2941653A1 EP13818230.8A EP13818230A EP2941653A1 EP 2941653 A1 EP2941653 A1 EP 2941653A1 EP 13818230 A EP13818230 A EP 13818230A EP 2941653 A1 EP2941653 A1 EP 2941653A1
Authority
EP
European Patent Office
Prior art keywords
cable
signal
reference signal
analyzing
weighted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13818230.8A
Other languages
German (de)
English (en)
Inventor
Lola EL SAHMARANY
Laurent Sommervogel
Fabrice Auzanneau
Nicolas GREGIS
Luca INCARBONE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2941653A1 publication Critical patent/EP2941653A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Definitions

  • the invention relates to a method for analyzing electrical cables, in particular electrical cables of great length. It applies in particular to the fields of electronics, signal processing and reflectometry.
  • Cables are ubiquitous in all electrical systems, for powering or transmitting information. These cables are subject to the same constraints as the systems they connect and may be subject to failures. It is therefore necessary to be able to analyze their state and to provide information on the detection of faults, but also their location and their type, in order to help maintenance.
  • test signals called probe signals or reflectometry signals in the following description.
  • the shape of these signals changes significantly during their propagation back and forth in a cable, these changes being the consequence of the physical phenomena of attenuation and dispersion.
  • the OTDR methods use a principle similar to that of the radar: an electrical signal, the probe signal, often of high frequency or wide band, is injected in one or more places of the cable to be tested. Said signal propagates in the cable or network and returns a portion of its energy when it encounters an electrical discontinuity.
  • An electrical discontinuity may result, for example, from a connection, the end of the cable or a fault.
  • the analysis of the signals returned to the injection point makes it possible to deduce information on the presence and the location of these discontinuities, thus possible defects.
  • An analysis in the time or frequency domain is usually performed. These methods are referred to as TDR acronyms from the expression English Time Domain Reflectometry and FDR from the English expression Frequency Domain Reflectometry.
  • a dispersive medium such as an electric cable
  • the propagation speed of an electromagnetic wave varies with the frequency.
  • all its frequency components do not propagate at the same speed.
  • the injected signal is therefore deformed during its propagation.
  • the reflected signal is therefore also deformed and this phenomenon is all the more pronounced as the path traveled by the wave is large.
  • the attenuation and distortion of the reflected signal greatly affects the quality of the measurement performed in order to detect and locate the defects impacting the cable.
  • the deformation of the reflected signal affects the location of cable faults. Indeed, for the example of a pulse signal, the effect of the deformation is a transformation of this signal into a flattened dome.
  • this localization passes by a measurement between the abscissa of the injection point and the abscissa of the echo. If the reflected signal is very deformed, a significant uncertainty exists on the measurement of the abscissa of the echo. The error that will be obtained for the location is not constant but variable depending on the distance.
  • the deformation of the reflected signal also affects the detection of a defect.
  • the energy of the received signal is lower than the energy of the signal injected, because of the attenuation.
  • the dispersion causes a temporal dilatation of the signal, which leads to a decrease in the amplitude of the echoes.
  • the more the amplitude of the echoes approaches the amplitude of the noise of measurement the less it will be easy to distinguish a singularity.
  • a first solution is to use an active cable that regenerates the injected signal during its propagation along the cable.
  • This type of solution has the main disadvantage that it is an intrusive method that requires modifying the existing infrastructure and is not suitable for any type of cable.
  • the abscissae of the points for calculating the delay between the injected signal and the reflected signal will correspond here, on the one hand, to the foot of the injected ramp and, on the other hand, to the intersection with the abscissa axis of the virtual line crossing the points at 20% and 80% of the maximum amplitude of the scattered reflected signal.
  • the main disadvantage of these methods is the limitation to a particular waveform signal.
  • the invention makes it possible to solve the aforementioned limitations of the solutions of the prior art by proposing a method for compensating the distortion, or more generally the deformation, of a signal which is backpropagated along an electric cable to be analyzed.
  • the invention operates for any type of reflectometry signal, requires no intrusion within the cable under test and does not require knowing the length L of the cable to be tested.
  • the invention implements a modification of the reference signal associated with a correlation of the modified reference signal with the reflected signal.
  • the subject of the invention is thus a method for analyzing a cable in which a first reference signal g is injected, characterized in that it consists in calculating the dynamic correlation between a measurement f of the reflection, on at least a singularity of said cable, said signal g injected and a second reference signal g p equal to the first reference signal g weighted by a modeling function of the propagation of a wave along said frequency-variable cable.
  • the weighted second reference signal g p is determined by performing at least the following steps:
  • the first weighting coefficient, variable in frequency, characteristic of the propagation of a wave along said cable is estimated by the term & ⁇ ⁇ - ⁇ ⁇ ⁇ ⁇ ) where ⁇ is the constant propagation of said cable, ⁇ ⁇ is the phase velocity of said cable, T e is the sampling period of said measurement f of the reflected signal and p is a positive integer.
  • Y is estimated from the knowledge of the linear resistance parameters R, linear inductance L, linear conductance G and linear capacitance C of said cable.
  • the spectrum Gp of said second weighted reference signal g p is further weighted by a second weighting coefficient so as to refocus the result of the dynamic correlation towards the origin.
  • said second weighting coefficient is equal to exp ( ⁇ ) where p and k are two positive integers and N is the number of signal samples used to calculate the dynamic correlation.
  • the samples of said weighted reference signal g p are assumed to be constant over a predetermined time period.
  • the method according to the invention further comprises a step of searching for at least one extremum of said dynamic correlation.
  • the method according to the invention further comprises a step of determining the distance between the origin and said extremum.
  • the invention also relates to a device for analyzing a cable comprising means adapted to implement the analysis method according to the invention, a reflectometry system comprising such a device for the analysis of a cable, a computer program comprising instructions for performing the method of analysis of a cable according to the invention, when the program is executed by a processor and a recording medium readable by a processor on which is recorded a program comprising instructions for performing the method of analysis of a cable according to the invention, when the program is executed by a processor.
  • FIG. 1 a time diagram illustrating the impact of the phenomena of dispersion and attenuation during the propagation of a signal along an electric cable
  • FIG. 2 a diagram illustrating the results obtained by implementing the method according to the invention and improving the accuracy of localization of a defect compared to the techniques of the prior art
  • FIG. 3 a diagram of a reflectometry system comprising means adapted to implement the invention.
  • the correlation operation is widely used in reflectometry because it improves the signal-to-noise ratio of the reflected signal and thus improves the accuracy of localization of an electrical fault.
  • Correlation makes it possible to measure the statistical similarity of a signal with a reference (we speak of inter-correlation), or with itself (we speak of auto-correlation). It is therefore well suited to the post-processing of supposed parsimonious signals as is the case for a reflectogram.
  • the signal g is the reference signal injected into the cable to be analyzed and the signal f is the signal reflected along the cable and measured at an acquisition point, for example identical to the injection place.
  • R 'fg (-V) f (n) g p (n + p)
  • the spectrum, or Fourier transform G p of the discrete signal g p is determined as the product of the Fourier transform G 0 of the signal injected into the cable under test with a coefficient or an attenuation function modeling the propagation along the cable under test, coefficient or function variable in frequency.
  • the spectrum obtained is re-centered by compensating the frequency offset induced by the weighting of the attenuation coefficient.
  • the following relation makes it possible to obtain a reference signal weighted by an attenuation coefficient modeling the propagation along the cable under test.
  • G p (k) G 0 (/ c) exp (-y (/ c) pr e i3 ⁇ 4 (/ c) exp (1)
  • Expression (1) defines three terms.
  • the first term G 0 (k) is the Fourier transform of the signal injected into the cable under test.
  • the third term ex ⁇ j makes it possible to compensate the delay related to the introduction of the second term in order to refocus the dynamic correlation result to the origin.
  • the method according to the invention therefore consists, initially, in determining the coefficients G p (k) of respective Fourier transforms of the reference signal adapted from the propagation constant ⁇ , the phase velocity ⁇ ⁇ , the sampling period T e and the Fourier transform of the injected signal G 0 .
  • an inverse Fourier transform is applied to the coefficients G p (k) in order to obtain the temporal samples of the adapted reference signal g p (n). Said samples can be calculated in advance and stored in a memory if it is desired to reduce the complexity and the duration of the calculations or conversely be calculated along the water in parallel with the dynamic correlation calculation if the we want to reduce the amount of memory required.
  • FIG. 2 illustrates, on an amplitude-distance diagram, the comparative results obtained respectively with a simple measurement, a linear correlation and a dynamic correlation adapted according to the invention for locating an electrical fault situated at a distance of 2000 m from the injection place.
  • the injected signal is of impulse type.
  • the diagram of FIG. 2 is a temporal reflectogram which represents three measurements made according to three different methods for locating an electrical fault in a cable under test.
  • the first curve 201 is a simple measurement of the pulse signal reflected on the defect located 2000 m from the injection point.
  • the second curve 202 is the result of a standard linear correlation of the reflected signal with the reference signal injected.
  • the third curve 203 represents the result obtained by applying the dynamic correlation using a suitable reference signal. The location of the defect is achieved by looking for the abscissa of the local maximum 21 1, 212.213 of the curve.
  • FIG. 3 schematizes, on a block diagram, an example of a reflectometry system 301 able to implement the method according to the invention.
  • a reflectometry system 301 comprises at least one integrated circuit type electronic component 31 1, such as a programmable logic circuit, for example of the FPGA or micro-controller type, a digital-to-analog converter 312 for injecting a signal of test in the test cable 303, an analog-digital converter 313 for receiving the signal reflected on the impedance discontinuities or singularities of the cable, a coupling device 314 between the analog-digital converter 313 and the digital-to-analog converter 312 and coupling means 315 between an input / output of the device 301 and the test cable 303.
  • the coupling means is adapted to inject the output signal of the digital-to-analog converter 312 into the cable 303 and to receive the reflected signal (s). .
  • the system 301 can be implemented by an electronic card on which are arranged the various elements 312,313,314 that compose it.
  • the coupling and injection means 315 is connected to an input / output included in the card.
  • a processing unit 302 of computer type, personal digital assistant or other can be used to control the reflectometry device 301 and display the results of measurements on a human-machine interface.
  • the electronic component 31 1 is adapted to implement, on the one hand, the processing steps necessary for the generation of the injection signal and, on the other hand, the implementation steps of the method according to the invention making it possible to obtain a reflectogram which is transmitted to the processing unit 302.
  • the generation of the injection signal can be implemented by a component distinct from that executing the method according to the invention for analyzing the reflected signal.
  • the method according to the invention can be implemented from hardware and / or software elements. It can in particular be implemented as a computer program with instructions for its execution.
  • the computer program can be recorded on a processor-readable recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Procédé d'analyse d'un câble dans lequel un premier signal de référence g est injecté, caractérisé en ce qu'il consiste à calculer la corrélation dynamique entre une mesure f de la réflexion, sur au moins une singularité dudit câble, dudit signal g injecté et un second signal de référence gp égal au premier signal de référence g pondéré par une fonction de modélisation de la propagation d'une onde le long dudit câble variable en fréquence.

Description

Procédé d'analyse d'un câble par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit câble
L'invention concerne un procédé d'analyse de câbles électriques, en particulier de câbles électriques de grande longueur. Elle s'applique notamment aux domaines de l'électronique, du traitement du signal et de la réflectométrie.
Les câbles sont omniprésents dans tous les systèmes électriques, pour l'alimentation ou la transmission d'information. Ces câbles sont soumis aux mêmes contraintes que les systèmes qu'ils relient et peuvent être sujets à des défaillances. Il est donc nécessaire de pouvoir analyser leur état et d'apporter des informations sur la détection de défauts, mais aussi leur localisation et leur type, afin d'aider à la maintenance.
Les méthodes de réflectométrie usuelles permettent ce type de tests.
Elles utilisent des signaux de test, appelés signaux de sonde ou signaux de réflectométrie dans la suite de la description. La forme de ces signaux change significativement lors de leur propagation aller-retour dans un câble, ces changements étant la conséquence des phénomènes physiques d'atténuation et de dispersion.
Les méthodes de réflectométrie utilisent un principe proche de celui du radar : un signal électrique, le signal de sonde, souvent de haute fréquence ou large bande, est injecté en un ou plusieurs endroits du câble à tester. Ledit signal se propage dans le câble ou le réseau et renvoie une partie de son énergie lorsqu'il rencontre une discontinuité électrique. Une discontinuité électrique peut résulter, par exemple, d'un branchement, de la fin du câble ou d'un défaut. L'analyse des signaux renvoyés au point d'injection permet d'en déduire des informations sur la présence et la localisation de ces discontinuités, donc des défauts éventuels. Une analyse dans le domaine temporel ou fréquentiel est habituellement réalisée. Ces méthodes sont désignées par les acronymes TDR venant de l'expression anglo-saxonne « Time Domain Reflectometry » et FDR venant de l'expression anglo-saxonne « Frequency Domain Reflectometry ».
Un problème réside dans le fait que dans un milieu dispersif, comme un câble électrique, la vitesse de propagation d'une onde électromagnétique varie avec la fréquence. Ainsi, pour un signal quelconque injecté dans ce câble, par exemple une impulsion, toutes ses composantes fréquentielles ne se propagent pas à la même vitesse. Le signal injecté est donc déformé lors de sa propagation. Le signal réfléchi est donc également déformé et ce phénomène est d'autant plus prononcé que le trajet parcouru par l'onde est grand. L'atténuation et la déformation du signal réfléchi nuit grandement à la qualité de la mesure effectuée dans l'optique de détecter et localiser les défauts impactant le câble.
Plus précisément cette déformation a deux effets négatifs pour l'analyse.
Tout d'abord, la déformation du signal réfléchi affecte la localisation des défauts du câble. En effet, pour l'exemple d'un signal impulsionnel, l'effet de la déformation est une transformation de ce signal en un dôme aplati. Or, lorsque l'on souhaite localiser une singularité ou un défaut, cette localisation passe par une mesure entre l'abscisse du point d'injection et l'abscisse de l'écho. Si le signal réfléchi est très déformé, une incertitude importante existe sur la mesure de l'abscisse de l'écho. L'erreur que l'on obtiendra ainsi pour la localisation n'est pas constante mais variable en fonction de la distance.
En outre, la déformation du signal réfléchi affecte également la détection d'un défaut. En effet, l'énergie du signal reçu est inférieure à l'énergie du signal injecté, à cause de l'atténuation. De plus, la dispersion entraine une dilatation temporelle du signal, ce qui entraîne de facto la diminution de l'amplitude des échos. Or, plus l'amplitude des échos s'approche de l'amplitude du bruit de mesure, moins il sera facile de distinguer une singularité. Il existe différentes solutions connues permettant de pallier les inconvénients engendrés par le phénomène de dispersion dans un câble électrique, notamment un câble de grande longueur.
Une première solution consiste à utiliser un câble actif qui permet de régénérer le signal injecté au cours de sa propagation le long du câble. Ainsi, à intervalle régulier le long du câble il est possible d'augmenter l'amplitude du signal afin de compenser son atténuation. Ce type de solution présente l'inconvénient principal qu'il s'agit d'une méthode intrusive qui nécessite de modifier les infrastructures existantes et qui n'est pas adaptée à tout type de câble.
Une autre solution consiste à choisir une forme d'onde particulière pour le signal à injecter de sorte que l'effet négatif de la dispersion soit minimisé. Le document de thèse "Time domain transmission line measurements with the speedy delivery puise, Joseph Zachary Zugelter, thesis, the University of Texas at Austin, December 2010" propose de choisir le signal à injecter sous une forme particulière invariante en milieu dispersif. Dans le même domaine, la demande de brevet française du Demandeur publiée sous le numéro FR 2946149 propose d'injecter un signal de type « rampe ». Les abscisses des points pour calculer le retard entre le signal injecté et le signal réfléchi correspondront ici d'une part au pied de la rampe injectée et d'autre part à l'intersection avec l'axe des abscisses de la droite virtuelle qui traverse les points à 20% et 80% de l'amplitude maximum du signal réfléchi dispersé. L'inconvénient principal de ces méthodes réside dans la limitation à un signal de forme d'onde particulière.
On connaît encore le document de thèse « reflectometric analysis of transmission line networks, Carine Neus, Brussels March 201 1 » qui propose une solution de compensation directe du signal réfléchi à partir de la connaissance de la constante de propagation du câble et de sa longueur. La solution proposée consiste à transposer le signal réfléchi reçu dans le domaine fréquentiel et à le multiplier par l'inverse d'un terme caractéristique de la propagation de l'onde le long du câble. Cette solution présente l'inconvénient de nécessiter la connaissance précise de la longueur du câble, information qui n'est pas toujours disponible et qui est parfois l'objectif même de l'analyse par réflectométrie.
L'invention permet de résoudre les limitations précitées des solutions de l'art antérieur en proposant une méthode pour compenser la distorsion, ou plus généralement la déformation, d'un signal rétropropagé le long d'un câble électrique à analyser.
L'invention fonctionne pour tout type de signal de réflectométrie, ne nécessite aucune intrusion au sein du câble sous test et ne nécessite pas de connaître la longueur L du câble à tester.
Aucune modification du signal injecté ou réfléchi n'est nécessaire. L'invention met en œuvre une modification du signal de référence associée à une corrélation du signal de référence modifié avec le signal réfléchi.
L'invention a ainsi pour objet un procédé d'analyse d'un câble dans lequel un premier signal de référence g est injecté, caractérisé en ce qu'il consiste à calculer la corrélation dynamique entre une mesure f de la réflexion, sur au moins une singularité dudit câble, dudit signal g injecté et un second signal de référence gp égal au premier signal de référence g pondéré par une fonction de modélisation de la propagation d'une onde le long dudit câble variable en fréquence.
Selon un aspect particulier de l'invention, le second signal de référence gp pondéré est déterminé en exécutant au moins les étapes suivantes :
- Construire, dans le domaine fréquentiel, le spectre GP dudit second signal de référence pondéré gp en effectuant le produit entre le spectre G0 dudit premier signal de référence g et un premier coefficient de pondération, variable en fréquence, caractéristique de la propagation d'une onde le long dudit câble,
- Appliquer une transformée fréquentielle inverse audit spectre GP dudit second signal de référence pondéré afin d'obtenir le signal de référence pondéré gp.
Selon un aspect particulier de l'invention, le premier coefficient de pondération, variable en fréquence, caractéristique de la propagation d'une onde le long dudit câble, est estimé par le terme &χρ {-γρΤε νφ ) où γ est la constante de propagation dudit câble, νφ est la vitesse de phase dudit câble, Te est la période d'échantillonnage de ladite mesure f du signal réfléchi et p est un entier positif.
Selon un aspect particulier de l'invention, la constante de propagation
Y est estimée à partir de la connaissance des paramètres de résistance linéique R, d'inductance linéique L, de conductance linéique G et de capacité linéique C dudit câble.
Selon un aspect particulier de l'invention, le spectre Gp dudit second signal de référence pondéré gp est en outre pondéré par un second coefficient de pondération de sorte à recentrer le résultat de la corrélation dynamique vers l'origine.
Selon un aspect particulier de l'invention, ledit second coefficient de pondération est égal à exp (^ ) où p et k sont deux entiers positifs et N est le nombre d'échantillons de signal utilisé pour calculer la corrélation dynamique.
Selon un aspect particulier de l'invention, la corrélation dynamique est calculée à l'aide de la relation suivante#' 5 (p) = Σηΐο '1 f(n)gP(n + P)> où N est le nombre d'échantillons du signal considéré.
Selon un aspect particulier de l'invention, les échantillons dudit signal de référence pondéré gp sont supposés constants sur une durée temporelle prédéterminée. Dans une variante de réalisation, le procédé selon l'invention comporte en outre une étape de recherche d'au moins un extremum de ladite corrélation dynamique.
Dans une variante de réalisation, le procédé selon l'invention comporte en outre une étape de détermination de la distance entre l'origine et ledit extremum.
L'invention a également pour objet un dispositif pour l'analyse d'un câble comprenant des moyens adaptés pour mettre en œuvre le procédé d'analyse selon l'invention, un système de réflectométrie comprenant un tel dispositif pour l'analyse d'un câble, un programme d'ordinateur comportant des instructions pour l'exécution du procédé d'analyse d'un câble selon l'invention, lorsque le programme est exécuté par un processeur et un support d'enregistrement lisible par un processeur sur lequel est enregistré un programme comportant des instructions pour l'exécution du procédé d'analyse d'un câble selon l'invention, lorsque le programme est exécuté par un processeur.
D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation aux dessins annexés qui représentent :
- La figure 1 , un diagramme temporel illustrant l'impact des phénomènes de dispersion et d'atténuation lors de la propagation d'un signal le long d'un câble électrique,
- La figure 2, un diagramme illustrant les résultats obtenus par mise en œuvre du procédé selon l'invention et l'amélioration de la précision de localisation d'un défaut comparativement aux techniques de l'art antérieur,
- La figure 3, un schéma d'un système de réflectométrie comprenant des moyens aptes à mettre en œuvre l'invention. L'opération de corrélation est largement utilisée en réflectométrie car elle permet d'améliorer le rapport signal sur bruit du signal réfléchi et donc d'améliorer la précision de localisation d'un défaut électrique. La corrélation permet de mesurer la ressemblance statistique d'un signal avec une référence (on parle d'inter-corrélation), ou bien avec lui-même (on parle d'auto-corrélation). Elle se prête donc bien au post-traitement de signaux supposés parcimonieux comme cela est le cas pour un réflectogramme.
La corrélation discrète Rfg entre deux signaux f et g réels et causaux s'écrit à l'aide de la relation suivante :
Les signaux mis en jeu ici sont supposés périodiques et continus. On parle dans ce cas de corrélation circulaire. Cela implique que le débordement d'indice de n+p est calculé modulo N. Lorsque le signal considéré n'est pas périodique (cas d'une impulsion par exemple), on utilise plutôt la définition de la corrélation linéaire ci-dessous :
Les relations précitées sont données dans le domaine discret, c'est-à-dire que les signaux f et g sont échantillonnées à une fréquence Fe=1 /(N.Te). Autrement dit les échantillons de signal sont prélevés aux instants temporels t=nTe avec n un entier positif.
Dans le cadre d'un système de réflectométrie temporelle, le signal g est le signal de référence injecté dans le câble à analyser et le signal f est le signal réfléchi le long du câble et mesuré en un point d'acquisition, par exemple identique au point d'injection.
La figure 1 illustre, sur un diagramme amplitude-distance, le résultat de l'opération de corrélation linéaire Rfg pour un signal de référence impulsionnel se propageant le long d'un câble de 7000 m sur lequel ont été opérées différentes coupures tous les 500 m. On remarque que la déformation du résultat de la corrélation linéaire est d'autant plus importante que le défaut électrique est éloigné du point d'injection, rendant très difficile la mesure précise de la localisation du défaut pour des distances supérieures à 3000 m du point d'injection.
Pour améliorer la précision des mesures de réflectométrie permettant la détection et la localisation d'un défaut, l'invention consiste à modifier l'opération de corrélation classique en une opération de corrélation dynamique pour laquelle le signal g utilisé comme référence est modifié de sorte à prendre en compte les déformations, en l'absence de défauts, que subit le signal injecté lors de sa propagation le long du câble à tester.
La formule de l'opération de corrélation linéaire est remplacée par la formule de corrélation adaptative suivante :
N-p-l
R 'fg (-V) = f(n)gp(n + p)
n=0
Les coefficients du signal de référence modifié gp sont calculés à partir d'une modélisation de la propagation le long du câble à tester. Cette modélisation peut être réalisée à partir de l'équation bien connue des télégraphistes. Elle vise à refléter l'atténuation du signal lors de sa propagation de long d'un câble parfait, c'est-à-dire sans défaut.
Dans un premier temps, on détermine le spectre, ou transformée de Fourier Gp du signal discret gp comme le produit de la transformée de Fourier G0 du signal injecté dans le câble sous test avec un coefficient ou une fonction d'atténuation modélisant la propagation le long du câble sous test, coefficient ou fonction variable en fréquence.
Dans un second temps, on recentre le spectre obtenu en compensant le décalage en fréquence induit par la pondération du coefficient d'atténuation. Par exemple, la relation suivante permet d'obtenir un signal de référence pondéré par un coefficient d'atténuation modélisant la propagation le long du câble sous test.
Gp (k) = G0 (/c)exp (-y(/c)prei¾ (/c)exp (1 )
L'expression (1 ) permet de définir trois termes. Le premier terme G0(k) est la transformée de Fourier du signal injecté dans le câble sous test.
Le deuxième terme &χρ (-γρΤε νφ ) permet de modéliser l'effet de la propagation de l'onde le long du câble en termes d'atténuation et de dispersion, γ est la constante de propagation encore appelée exposant linéique de propagation. Il s'agit d'un nombre complexe γ =a+j , où a est le coefficient d'affaiblissement linéique et β le déphasage linéique. La constante de propagation γ dépend de la fréquence du signal et des caractéristiques du câble. Elle peut être estimée à partir d'un modèle de propagation, par exemple à partir de la connaissance des paramètres de résistance linéique R, d'inductance linéique L, de conductance linéique G et de capacité linéique C du câble. Un tel modèle de propagation est par exemple décrit dans l'ouvrage « Physique Appliquée, G. Pinson, chapitre Ligne de transmission ». νφ est la vitesse de phase qui dépend également de la fréquence du signal. Te est la période d'échantillonnage du signal.
Le troisième terme ex ^^j permet de compenser le retard lié à l'introduction du deuxième terme afin de recentrer le résultat de corrélation dynamique vers l'origine. Le procédé selon l'invention consiste donc, dans un premier temps, à déterminer les coefficients Gp(k) des transformées de Fourier respectives du signal de référence adapté à partir de la constante de propagation γ, de la vitesse de phase νφ, de la période d'échantillonnage Te et de la transformée de Fourier du signal injecté G0. Dans un deuxième temps, on applique une transformée de Fourier inverse aux coefficients Gp(k) afin d'obtenir les échantillons temporels du signal de référence adapté gp(n). Lesdits échantillons peuvent être calculés à l'avance et stockés dans une mémoire si l'on souhaite diminuer la complexité et la durée des calculs ou à l'inverse être calculés au fil de l'eau en parallèle du calcul de corrélation dynamique si l'on souhaite diminuer le volume de mémoire nécessaire.
A partir du signal de référence modifié gp, on calcule la corrélation dynamique R'fg p) = f(n)9p (n + P) et on en déduit la localisation du ou des défauts dans le câble sous test.
Dans une variante de réalisation de l'invention, il est possible de diminuer le nombre de coefficients du signal de référence modifié gp à calculer et/ou à stocker en supposant que, sur un horizon temporel donné, l'atténuation du signal est constante.
La figure 2 illustre, sur un diagramme amplitude-distance, les résultats comparatifs obtenus respectivement avec une mesure simple, une corrélation linéaire et une corrélation dynamique adaptée selon l'invention pour la localisation d'un défaut électrique situé à une distance de 2000 m du point d'injection.
Dans l'exemple de la figure 2, le signal injecté est de type impulsionnel. Le diagramme de la figure 2 est un réflectogramme temporel qui représente trois mesures réalisées selon trois méthodes différentes pour localiser un défaut électrique dans un câble sous test. La première courbe 201 est une mesure simple du signal impulsionnel réfléchi sur le défaut situé à 2000 m du point d'injection. La deuxième courbe 202 est le résultat d'une corrélation linéaire standard du signal réfléchi avec le signal de référence injecté. Enfin la troisième courbe 203 représente le résultat obtenu par application de la corrélation dynamique utilisant un signal de référence adapté. La localisation du défaut est réalisée en recherchant l'abscisse du maximum local 21 1 ,212,213 de la courbe. On remarque que pour les deux premières courbes 201 ,202, une erreur de l'ordre de 13% est réalisée sur la position précise 21 1 ,212 du défaut à localiser. L'utilisation du procédé selon l'invention illustré par la troisième courbe 203 permet d'améliorer la précision de la localisation en diminuant l'erreur relative à 3,7%. En outre l'amplitude du pic de corrélation 213 est augmentée par rapport aux deux premières courbes ce qui permet également d'améliorer la détection du défaut.
La figure 3 schématise, sur un synoptique, un exemple de système de réflectométrie 301 apte à mettre en œuvre le procédé selon l'invention.
Un système de réflectométrie 301 , ou réflectomètre, comporte au moins un composant électronique 31 1 de type circuit intégré, tel un circuit à logique programmable, par exemple de type FPGA ou micro-contrôleur, un convertisseur numérique-analogique 312 pour injecter un signal de test dans le câble à tester 303, un convertisseur analogique-numérique 313 pour recevoir le signal réfléchi sur les discontinuités d'impédance ou singularités du câble, un dispositif de couplage 314 entre le convertisseur analogique- numérique 313 et le convertisseur numérique-analogique 312 et un moyen de couplage 315 entre une entrée/sortie du dispositif 301 et le câble à tester 303. Le moyen de couplage est adapté à injecter le signal de sortie du convertisseur numérique-analogique 312 dans le câble 303 et à recevoir le ou les signaux réfléchis.
Le système 301 peut être mis en œuvre par une carte électronique sur laquelle sont disposés les différents éléments 312,313,314 qui le composent. Le moyen de couplage et d'injection 315 est connecté à une entrée/sortie que comporte la carte.
En outre, une unité de traitement 302, de type ordinateur, assistant numérique personnel ou autre peut être utilisée pour piloter le dispositif de réflectométrie 301 et afficher les résultats des mesures sur une interface homme-machine. Le composant électronique 31 1 est adapté à mettre en œuvre d'une part les étapes de traitement nécessaires à la génération du signal d'injection et d'autre part les étapes de mise en œuvre du procédé selon l'invention permettant d'obtenir un réflectogramme qui est transmis à l'unité de traitement 302.
Dans une variante de l'invention, la génération du signal d'injection peut être implémentée par un composant distinct de celui exécutant le procédé selon l'invention d'analyse du signal réfléchi.
Le procédé selon l'invention peut être implémenté à partir d'éléments matériels et/ou logiciels. Il peut notamment être mis en œuvre en tant que programme d'ordinateur comportant des instructions pour son exécution. Le programme d'ordinateur peut être enregistré sur un support d'enregistrement lisible par un processeur.

Claims

REVENDICATIONS
1 . Procédé d'analyse d'un câble dans lequel un premier signal de référence g est injecté, caractérisé en ce qu'il comprend le calcul de la corrélation dynamique entre une mesure f de la réflexion, sur au moins une singularité dudit câble, dudit signal g injecté et un second signal de référence gp égal au premier signal de référence g pondéré par une fonction de modélisation, variable en fréquence, de la propagation d'une onde le long dudit câble en l'absence de défauts.
2. Procédé d'analyse d'un câble selon la revendication 1 dans lequel le second signal de référence gp pondéré est déterminé en exécutant au moins les étapes suivantes :
- Construire, dans le domaine fréquentiel, le spectre Gp dudit second signal de référence pondéré gp en effectuant le produit entre le spectre G0 dudit premier signal de référence g et un premier coefficient de pondération, variable en fréquence, caractéristique de la propagation d'une onde le long dudit câble,
- Appliquer une transformée fréquentielle inverse audit spectre Gp dudit second signal de référence pondéré afin d'obtenir le signal de référence pondéré gp.
3. Procédé d'analyse d'un câble selon la revendication 2 dans lequel le premier coefficient de pondération, variable en fréquence, caractéristique de la propagation d'une onde le long dudit câble, est estimé par le terme
£χρ (-γρΤε νφ ) où y est la constante de propagation dudit câble, νφ est la vitesse de phase dudit câble, Te est la période d'échantillonnage de ladite mesure f du signal réfléchi et p est un entier positif.
4. Procédé d'analyse d'un câble selon la revendication 3 dans lequel la constante de propagation γ est estimée à partir de la connaissance des paramètres de résistance linéique R, d'inductance linéique L, de conductance linéique G et de capacité linéique C dudit câble.
5. Procédé d'analyse d'un câble selon l'une quelconque des revendications 2,3 ou 4 dans lequel le spectre GP dudit second signal de référence pondéré gp est en outre pondéré par un second coefficient de pondération de sorte à recentrer le résultat de la corrélation dynamique vers l'origine.
6. Procédé d'analyse d'un câble selon la revendication 5 dans lequel ledit second coefficient de pondération est égal à exp (^^) où p et k sont deux entiers positifs et N est le nombre d'échantillons de signal utilisé pour calculer la corrélation dynamique.
7. Procédé d'analyse d'un câble selon l'une quelconque des revendications précédentes dans lequel la corrélation dynamique est calculée à l'aide de la relation suivante#' 5 (p) = Σ Ζο '1 f n)gp(n + p), où N est le nombre d'échantillons du signal considéré, n étant un entier positif.
8. Procédé d'analyse d'un câble selon l'une quelconque des revendications précédentes dans lequel les échantillons dudit signal de référence pondéré gp sont supposés constants sur une durée temporelle prédéterminée.
9. Procédé d'analyse d'un câble selon l'une quelconque des revendications précédentes dans lequel ledit procédé comporte en outre une étape de recherche d'au moins un extremum de ladite corrélation dynamique.
10. Procédé d'analyse d'un câble selon la revendication 9 dans lequel ledit procédé comporte en outre une étape de détermination de la distance entre l'origine et ledit extremum.
1 1 . Dispositif (31 1 ) pour l'analyse d'un câble (303) comprenant des moyens adaptés pour mettre en œuvre le procédé d'analyse selon l'une quelconque des revendications 1 à 10.
12. Système de réflectométrie (301 ) comprenant un dispositif (31 1 ) pour l'analyse d'un câble (303) selon la revendication 1 1 .
13. Programme d'ordinateur comportant des instructions pour l'exécution du procédé d'analyse d'un câble selon l'une quelconque des revendications 1 à 10, lorsque le programme est exécuté par un processeur.
14. Support d'enregistrement lisible par un processeur sur lequel est enregistré un programme comportant des instructions pour l'exécution du procédé d'analyse d'un câble selon l'une quelconque des revendications 1 à 10, lorsque le programme est exécuté par un processeur.
EP13818230.8A 2013-01-04 2013-12-30 Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable Withdrawn EP2941653A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350048A FR3000805A1 (fr) 2013-01-04 2013-01-04 Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable
PCT/EP2013/078099 WO2014106611A1 (fr) 2013-01-04 2013-12-30 Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable

Publications (1)

Publication Number Publication Date
EP2941653A1 true EP2941653A1 (fr) 2015-11-11

Family

ID=47902285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13818230.8A Withdrawn EP2941653A1 (fr) 2013-01-04 2013-12-30 Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable

Country Status (4)

Country Link
US (1) US20150338450A1 (fr)
EP (1) EP2941653A1 (fr)
FR (1) FR3000805A1 (fr)
WO (1) WO2014106611A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10185020B1 (en) * 2015-12-22 2019-01-22 Keysight Technologies, Inc. Method of compensating loss and dispersion of transmission line for time domain reflectometry
KR102014582B1 (ko) * 2016-10-31 2019-08-26 한국전력공사 반사파 처리 장치
CN110830081B (zh) * 2019-11-13 2021-11-09 中国工程物理研究院应用电子学研究所 一种信号同轴电缆传输畸变补偿方法
FR3117603B1 (fr) * 2020-12-15 2022-12-16 Commissariat Energie Atomique Méthode et système de réflectométrie multi-porteuses avec prise en compte de l’atténuation et de la distorsion du signal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852086C1 (de) * 1998-11-16 2000-07-20 Temobil Deutsche Telekom Mobil Verfahren zur Korrektur der frequenz- und längenabhängigen Leitungsdämpfung bei FDR-Messungen an Hochfrequenzkabeln
KR100486972B1 (ko) * 2002-07-09 2005-05-03 신용준 시간-주파수 영역 반사파 처리 방법
JP2006208060A (ja) * 2005-01-26 2006-08-10 Nec Corp 伝送遅延評価システムおよび伝送遅延評価方法
CN1863244B (zh) * 2005-10-28 2013-10-02 华为技术有限公司 传输线路的时域反射测试方法及装置
GB2458653B (en) * 2008-03-25 2012-11-21 Radiodetection Ltd Time-domain reflectometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014106611A1 *

Also Published As

Publication number Publication date
WO2014106611A1 (fr) 2014-07-10
FR3000805A1 (fr) 2014-07-11
US20150338450A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
EP3201638B1 (fr) Procede d'analyse d'un cable, basee sur une correlation auto-adaptative, pour la detection de defauts non francs
WO2016156259A1 (fr) Procede de caracterisation d'un tronçon d'une ligne de transmission, en particulier tronçon correspondant a un connecteur ou une serie de connecteurs reliant un equipement de mesure a un cable
EP3440472B1 (fr) Procede de detection de defauts non francs dans un cable par fusion de donnees
EP3008479A1 (fr) Procede de reflectometrie pour l'identification de defauts non francs impactant un cable
EP2614379B1 (fr) Procede et dispositif de mesure des caracteristiques physiques d'un cable, en particulier de la vitesse de propagation
EP3555645B1 (fr) Procede de calcul d'un reflectogramme pour l'analyse de defauts dans une ligne de transmission
FR2988855A1 (fr) Procede et systeme de diagnostic d'un cable par reflectometrie distribuee a moyenne autoselective
EP3423847A1 (fr) Procede de detection de defauts non francs dans un cable, basee sur l'integrale d'un reflectogramme
EP2941653A1 (fr) Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable
EP2994766B1 (fr) Procédé de compensation des inhomogénéités de propagation pour un signal de reflectométrie temporelle
FR3095700A1 (fr) Procédé de détection de défauts non francs dans un câble par analyse en composantes principales
FR3080453A1 (fr) Procede et systeme de controle non destructif d'une piece mecanique
WO2016188740A1 (fr) Procede d'analyse d'un cable, impliquant un traitement d'amplification de la signature d'un defaut non franc
WO2020001985A1 (fr) Procede et systeme de caracterisation d'un defaut dans un reseau de lignes de transmission, par retournement temporel
FR3116346A1 (fr) Méthode de caractérisation d’une ligne de transmission par son profil d’impédance caractéristique
Schuet Wiring Diagnostics Via $\ell_1 $-Regularized Least Squares
FR3069646B1 (fr) Systeme de reflectometrie pour l'analyse de defauts dans au moins une ligne de transmission, le systeme comprenant un correlateur complexe
FR3134455A1 (fr) Procédé et dispositif d’analyse de défauts par réflectométrie au moyen d’une estimation de fonction de transfert
EP3877773B1 (fr) Systeme d'analyse de defauts par reflectometrie a dynamique optimisee
FR3138840A1 (fr) Méthode de détermination d’une impédance minimale d’un défaut détectable au moyen d’une analyse d’un câble par réflectométrie
FR3136859A1 (fr) Méthode de détection et localisation de défauts francs ou de terminaison pour un câble composé de plusieurs tronçons de câbles inhomogènes
EP4350366A1 (fr) Méthode d'évaluation d'une ligne de transmission par analyse automatique d'un réflectogramme
FR2965625A1 (fr) Procede et dispositif d'estimation de la reponse impulsionnelle d'un reseau de cables par deconvolution myope
EP2666026A1 (fr) Procede et dispositif d'estimation de la reponse impulsionnelle d'un reseau de cables par deconvolution myope

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180703