WO2014180101A1 - 一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法 - Google Patents

一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法 Download PDF

Info

Publication number
WO2014180101A1
WO2014180101A1 PCT/CN2013/086107 CN2013086107W WO2014180101A1 WO 2014180101 A1 WO2014180101 A1 WO 2014180101A1 CN 2013086107 W CN2013086107 W CN 2013086107W WO 2014180101 A1 WO2014180101 A1 WO 2014180101A1
Authority
WO
WIPO (PCT)
Prior art keywords
blasting
excavation
blasthole
damage control
combination
Prior art date
Application number
PCT/CN2013/086107
Other languages
English (en)
French (fr)
Inventor
卢文波
胡英国
陈明
严鹏
胡浩然
朱强
张玉柱
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学 filed Critical 武汉大学
Publication of WO2014180101A1 publication Critical patent/WO2014180101A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • F42D1/18Plugs for boreholes

Definitions

  • the invention belongs to the technical field of engineering blasting, and particularly relates to a cushion blasting method based on combination of bottom bottom damage control and excavation rapid prototyping.
  • the present invention provides a simple process, strong operability, reduced blast hole bottom damage, and enhanced blasting efficiency.
  • a bedding blasting method based on combination of bottom hole damage control and excavation rapid prototyping.
  • a bedding blasting method based on combination of bottom hole damage control and excavation rapid prototyping comprising the steps of:
  • Step 1 drilling a row of vertical blastholes with a center line in the rock mass
  • Step 2 laying a buffer layer at the bottom of the blasthole, the buffer layer being loose sand, rock powder or fine sand;
  • Step 3 Pull the energy dissipation seat into the blasthole with a rope and place the bottom surface on the buffer layer;
  • Step 4 Add powder to the blasthole and block the pulverized powder.
  • the present invention can adopt the following preferred scheme:
  • the thickness of the buffer layer is 10 to 20 cm, and the thickness of the buffer layer in each blasthole is the same.
  • the buffer layer is loose sand.
  • the geometry of the energy dissipation seat can be respectively as follows: 1 inverted conical spatial structure, and the busbar of the cone and the bottom surface, the cut surface of the cylinder and the bottom surface are both at an angle of 45°, and the diameter of the bottom surface of the energy dissipation seat should be taken as a blasthole.
  • the shape is a round cake-like structure, the thickness of which is 2 to 6 cm, and the diameter thereof is 0.8 to 0.9 times the diameter of the blasthole;
  • the spatial structure of a single beveled cylinder or a double beveled cylinder, and the busbar of the cone and the bottom surface, the cut surface and the bottom surface of the cylinder are both at an angle of 45°, and the diameter of the bottom surface of the energy dissipation seat should be 0.8 to 0.9 times the diameter of the blasthole.
  • the energy dissipation seat can be prepared by cast iron, core or concrete, and the core can be a granite core or a mother rock core.
  • Figure 3 is a cross-sectional view of the blasthole before detonation
  • Figure 4 is a schematic diagram of the propagation of the blast impact in the blasthole after detonation
  • Figure 5 It is a schematic diagram of the energy accumulation effect of the explosion stress wave in the horizontal direction of the bottom of the blasthole. See Figure 3 ⁇ 4.
  • the explosion shock wave propagating vertically in the blasthole to the bottom of the blasthole After encountering the energy dissipation seat at the bottom of the hole, reflection and refraction occur on the side of the energy dissipation seat.
  • the energy dissipation seat characteristics of the cast iron material
  • the spatial structure ie, the side of the energy dissipation seat and the ground are 45 ° °
  • the explosion energy propagated vertically in the bottom of the hole is further consumed, and the damage of the bottom of the hole is reduced.
  • the interaction of adjacent blastholes will enhance the energy accumulation effect in the horizontal direction of the blasthole bottom. 5, in the realization of rock mass break between the blastholes, while reducing the undulation difference, thus ensuring the formation of the foundation surface excavation.
  • the present invention has the following characteristics and beneficial effects:
  • the invention has the advantages of simple process, low cost and easy operation, and the vertical blasting hole can be drilled directly by using the drilling equipment on the construction site.
  • Figure 1 is a schematic view showing the arrangement of a blasthole in the present invention
  • FIG. 2a is a schematic diagram showing the combination of energy dissipation and energy collection according to Embodiment 1 of the present invention
  • b, c are schematic diagrams of the combination of energy dissipation and energy gathering according to the second embodiment of the present invention.
  • d is a schematic diagram of combining energy dissipation and energy accumulation according to Embodiment 3 of the present invention.
  • Figure 3 is an enlarged schematic view of a single gun hole
  • Figure 4 is a schematic diagram of the propagation of an explosion shock in a blasthole
  • Figure 5 is a schematic diagram of the energy accumulation effect of the explosion stress wave in the horizontal direction of the bottom of the gun hole.
  • the energy dissipation structure is exemplified by an inverted conical structure.
  • the rock foundation excavation depth to be blasted is 8m
  • the conical energy dissipation seat is prepared by using a granite core, and the buffer layer material is dry loose sand.
  • the dam foundation one-time drilling and blasting method of the specific implementation is carried out in the following steps:
  • the position and size of the vertical blasthole are reasonably arranged, as shown in Figure 1:
  • the blasthole aperture is 90mm, and the blasthole depth 8.5m, the blasthole is super deep 0.5m, the blocked section is 2m long, and the blasthole spacing is 3m.
  • a buffer layer having a thickness of 20 cm is uniformly laid on the bottom of each hole.
  • the shape of the energy dissipating block to be used in this embodiment is as follows: the busbar and the bottom surface of the cone are at an angle of 45°, and the diameter of the bottom surface is 85 mm. . According to the above shape parameters, a cone-shaped energy dissipation seat is prepared by using a granite core material, and the energy dissipation seat prepared can be solid or hollow.
  • the energy dissipator is tied tightly with a nylon rope, and the energy dissipation seat is slowly pulled into the blast hole through the nylon rope, and the bottom surface thereof is placed on the buffer layer.
  • the explosive is selected from emulsion explosives. After the charge is completed, the holes are blocked by clay or sandbags. After the blockage is completed and the safety is confirmed, the explosive in the hole is detonated by the detonator.
  • the energy dissipation structure takes a single beveled cylinder or a double beveled cylinder as an example, and the rock foundation to be excavated and excavated has an excavation depth of 8 m.
  • the conical energy dissipation seat is prepared by using a granite core, and the buffer layer material is dry loose sand.
  • the dam foundation one-time drilling and blasting method of the specific implementation is carried out in the following steps:
  • the position and size of the vertical blasthole are reasonably arranged, as shown in Figure 1:
  • the blasthole aperture is 90mm, and the blasthole depth 8.5m, the blasthole is super deep 0.5m, the blocked section is 2m long, and the blasthole spacing is 3m.
  • a buffer layer having a thickness of 15 cm is uniformly laid on the bottom of each hole.
  • the shape of the energy dissipation seat to be used in this embodiment is Single beveled cylinder or double beveled cylinder, and the busbar of the cone and the bottom surface, the cut surface and the bottom surface of the cylinder are both at an angle of 45°, and the diameter of the bottom surface of the energy dissipation seat is 0.85 times that of the blasthole.
  • the energy dissipator is tied tightly with a nylon rope, and the energy dissipation seat is slowly pulled into the blast hole through the nylon rope, and the bottom surface thereof is placed on the buffer layer.
  • the explosive is selected from emulsion explosives. After the charge is completed, the holes are blocked by clay or sandbags. After the blockage is completed and the safety is confirmed, the explosive in the hole is detonated by the detonator.
  • the energy dissipation structure takes a round cake structure as an example, and the rock foundation to be excavated and excavated has an excavation depth of 8 m.
  • the conical energy dissipation seat is prepared by using a granite core, and the buffer layer material is dry loose sand.
  • the dam foundation one-time drilling and blasting method of the specific implementation is carried out in the following steps:
  • the position and size of the vertical blasthole are reasonably arranged, as shown in Figure 1:
  • the blasthole aperture is 90mm, and the blasthole depth 8.5m, the blasthole is super deep 0.5m, the blocked section is 2m long, and the blasthole spacing is 3m.
  • a buffer layer having a thickness of 10 cm is uniformly laid on the bottom of each hole.
  • the shape of the energy dissipating block to be used in this embodiment is a round cake with a thickness of 4 cm and a diameter of 0.85 of the diameter of the blasting hole. Times.
  • the energy dissipator is tied tightly with a nylon rope, and the energy dissipation seat is slowly pulled into the blast hole through the nylon rope, and the bottom surface thereof is placed on the buffer layer.
  • the explosive is selected from emulsion explosives. After the charge is completed, the holes are blocked by clay or sandbags. After the blockage is completed and the safety is confirmed, the explosive in the hole is detonated by the detonator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)

Abstract

本发明公开了一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,包括步骤:步骤1,在岩体中钻设圆心共线的成排垂直炮孔;步骤2,在炮孔孔底铺设缓冲层,所述的缓冲层为松砂、岩粉或细沙;步骤3,采用绳索将消能座牵引进入炮孔,并使其底面置于缓冲层上;步骤4,向炮孔内加入药粉并堵塞后引爆药粉。本发明适用于大坝建基面和边坡马道保护层开挖的一次成型,具有工艺简单,成本低、开挖效果好等优点。

Description

一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法 技术领域
本发明属于工程爆破技术领域,特别涉及一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法。
背景技术
在大型土木工程中,采用爆破法开挖岩体时普遍存在开挖岩石损伤和保护围岩这一对相互矛盾,同时存在快速施工与损伤精细控制的这一需要解决的问题。中国 西南地区水能资源丰富,一大批在建和拟建的水利水电工程普遍面临岩石边坡的大规模快速开挖与边坡马道成型的矛盾、岩石基础施工进度与保护层开挖步骤繁琐的矛盾。 现有技术中,结合美国、瑞典等国家众多矿山爆破开采的工程经验,传统的深孔台阶爆破,施工效率往往很低,且对孔底保留岩体的损伤较大;基于中国西南地区锦屏、溪洛渡等大型水电工程的开挖实践,水平预裂或水平光面爆破可以取得较为令人满意的开挖效果,但施工效率较为低下。近年来的孔底设柔性垫层的小梯段孔间顺序起爆法,由于柔性垫层材料对爆破冲击波的缓冲作用有限,孔底损伤依然较大,开挖出的建基面起伏差较大,从而导致人工撬挖量较大;同时采用楔形药槽的普通聚能爆破,由于装置聚能效果有限,亦无法取得理想结果。如何控制大坝建基面、边坡马道成型的开挖质量,提高爆破作业的效率仍是目前急需解决的问题。
技术问题
针对现有技术中大坝建基面和边坡马道保护层的开挖质量难以保证的不足,本发明提供了一种工艺简单、可操作性强、减少炮孔孔底损伤、增强爆破效率的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法。
技术解决方案
为了解决上述技术问题,本发明采用如下的技术方案:
一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,包括步骤:
步骤 1 ,在岩体中钻设圆心共线的成排垂直炮孔;
步骤 2 ,在炮孔孔底铺设缓冲层,所述的缓冲层为 松砂、岩粉或细沙;
步骤 3 ,采用绳索将消能座牵引进入 炮孔,并使其底面置于缓冲层上;
步骤 4 ,向炮孔内加入药粉并堵塞后引爆药粉。
为了进一步增强本发明方法的反射聚能效果,本发明可采用如下优选方案:
( 1 )缓冲层厚度为 10 ~ 20cm ,各炮孔内缓冲层厚度相同。
( 2 )缓冲层为 松砂。
( 3 ) 消能座的几何形状可以分别是如下型式:①倒置圆锥形的空间结构,且圆锥的母线与底面、圆柱的切面与底面都呈45°角,消能座的底面的直径应取为炮孔的0.8~0.9倍;② 形状为圆饼状的结构,其厚度为 2 ~ 6cm ,其直径取为爆破孔直径的 0.8 ~ 0.9 倍;③ 单斜切圆柱或者双斜切圆柱的空间结构,且圆锥的母线与底面、圆柱的切面与底面都呈45°角,消能座的底面的直径应取为炮孔的0.8~0.9倍。
( 4 )消能座可采用铸铁、岩芯或混凝土制备,所述的岩芯可以为花岗岩岩芯或母岩岩芯。
图 3 为引爆前炮孔剖视图,图 4 为引爆后爆炸冲击在炮孔内的传播示意图,图 5 为炮孔底水平方向爆炸应力波的聚能效果示意图。见图 3~4 ,引爆后,炮孔中向炮孔底垂直方向传播的爆炸冲击波 遇到孔底的消能座后,在消能座侧面上发生反射和折射。在优选方案中,由于消能座特殊的材料特性(铸铁材料的特性)及空间结构(即,消能座的侧面与地面呈 45 °角),将诱导爆炸能量向孔底水平方向传播。由于消能座和缓冲层的破碎以及爆炸冲击波在不同材料介质边界的多次反射和折射,将进一步消耗孔底垂直方向传播的爆炸能量,减小孔底损伤。对于坝基开挖中的成排爆破孔,相邻炮孔的相互作用将增强炮孔孔底水平方向的聚能效果,见图 5 ,在实现炮孔间岩体破碎的同时减小起伏差,从而保证建基面开挖的一次成型。
有益效果
与现有技术相比,本发明具有如下特点和有益效果:
(1)本发明工艺简便,成本低廉,易于操作, 可直接利用施工现场的钻孔设备钻设垂直爆破孔。
(2)由于缓冲层和消能座的反射聚能作用,开挖效果可靠,可保证大坝建基面和边坡马道保护层开挖的一次成型,广泛用于水利水电工程、交通、矿山的行业的建基面和边坡保护层开挖工程中。
附图说明
图 1 为本发明中的炮孔布置示意图;
图 2a 为本发明实施例一的消能和聚能相结合的示意图;
b 、 c 为本发明实施例二的消能和聚能相结合的示意图;
d 为本发明实施例三的消能和聚能相结合的示意图;
图 3 为单炮孔放大示意图;
图 4 为爆炸冲击在炮孔内的传播示意图;
图 5 为炮孔底水平方向爆炸应力波的聚能效果示意图。
图中:1- 堵塞段, 2- 炸药, 3- 消能座, 4- 缓冲层, 5- 岩体, 6- 垂直方向传播的爆炸冲击, 7- 水平方向传播的爆炸冲击, 8- 爆破影响区。
本发明的实施方式
实施例一
下面将结合附图和具体实施例对本发明作进一步介绍,消能结构以倒置的圆锥形结构为例。
本具体实施中,待爆破开挖的岩质基础开挖深度为 8m ,圆锥形消能座采用花岗岩芯制备,缓冲层材料为干燥的松砂。
本具体实施的坝基一次成型钻孔爆破方法依次按以下步骤进行:
1 、在岩体中钻设圆心共线的成排垂直炮孔:
在待爆破开挖的岩质基础中,合理布设垂直炮孔的位置和尺寸,见图 1 :炮孔孔径 90mm ,炮孔深 8.5m ,炮孔超深 0.5m ,堵塞段长 2m ,炮孔间距为 3m 。
2 、铺设缓冲层:
钻孔完成后,在各孔底均匀铺设厚度为 20cm 的缓冲层。
3 、将消能座置于缓冲层上:
本具体实施中需采用的消能座形状为:圆锥的母线和底面呈 45 °角,底面直径为 85mm 。按照上述形状参数,采用花岗岩芯材料加工制备圆锥形消能座,所制备的消能座可为实心或空心。
用尼龙绳将消能座捆绑系紧上,通过尼龙绳将消能座缓缓牵引进入炮孔,并将其底面安置在缓冲层上。
4 、装药及起爆:
在炮孔中装填直径为 70mm 的药卷,药卷长度为 6m ,炸药选用乳化炸药。装药完成后,采用粘土或沙袋对炮孔进行堵塞。堵塞完毕,确认安全后,通过雷管引爆炮孔中的炸药。
实施例二
本具体实施中,消能结构以 单斜切圆柱或者双斜切圆柱 为例,待爆破开挖的岩质基础开挖深度为 8m ,圆锥形消能座采用花岗岩芯制备,缓冲层材料为干燥的松砂。
本具体实施的坝基一次成型钻孔爆破方法依次按以下步骤进行:
1 、在岩体中钻设圆心共线的成排垂直炮孔:
在待爆破开挖的岩质基础中,合理布设垂直炮孔的位置和尺寸,见图 1 :炮孔孔径 90mm ,炮孔深 8.5m ,炮孔超深 0.5m ,堵塞段长 2m ,炮孔间距为 3m 。
2 、铺设缓冲层:
钻孔完成后,在各孔底均匀铺设厚度为 15cm 的缓冲层。
3 、将消能座置于缓冲层上:
本具体实施中需采用的消能座形状为 单斜切圆柱或者双斜切圆柱,且圆锥的母线与底面、圆柱的切面与底面都呈45°角,消能座的底面直径为炮孔的0.85倍 。
用尼龙绳将消能座捆绑系紧上,通过尼龙绳将消能座缓缓牵引进入炮孔,并将其底面安置在缓冲层上。
4 、装药及起爆:
在炮孔中装填直径为 70mm 的药卷,药卷长度为 6m ,炸药选用乳化炸药。装药完成后,采用粘土或沙袋对炮孔进行堵塞。堵塞完毕,确认安全后,通过雷管引爆炮孔中的炸药。
实施例三
本具体实施中,消能结构以圆饼状结构为例,待爆破开挖的岩质基础开挖深度为 8m ,圆锥形消能座采用花岗岩芯制备,缓冲层材料为干燥的松砂。
本具体实施的坝基一次成型钻孔爆破方法依次按以下步骤进行:
1 、在岩体中钻设圆心共线的成排垂直炮孔:
在待爆破开挖的岩质基础中,合理布设垂直炮孔的位置和尺寸,见图 1 :炮孔孔径 90mm ,炮孔深 8.5m ,炮孔超深 0.5m ,堵塞段长 2m ,炮孔间距为 3m 。
2 、铺设缓冲层:
钻孔完成后,在各孔底均匀铺设厚度为 10cm 的缓冲层。
3 、将消能座置于缓冲层上:
本具体实施中需采用的消能座形状为圆饼状,其厚度为 4cm ,其直径为爆破孔直径的 0.85 倍。
用尼龙绳将消能座捆绑系紧上,通过尼龙绳将消能座缓缓牵引进入炮孔,并将其底面安置在缓冲层上。
4 、装药及起爆:
在炮孔中装填直径为 70mm 的药卷,药卷长度为 6m ,炸药选用乳化炸药。装药完成后,采用粘土或沙袋对炮孔进行堵塞。堵塞完毕,确认安全后,通过雷管引爆炮孔中的炸药。

Claims (9)

1 、一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于,包括步骤:
步骤 1 ,在岩体中钻设圆心共线的成排垂直炮孔;
步骤 2 ,在炮孔孔底铺设缓冲层,所述的缓冲层为 松砂、岩粉或细沙;
步骤 3 ,采用绳索将消能座牵引进入 炮孔,并使其底面置于缓冲层上;
步骤 4 ,向炮孔内加入药粉并堵塞后引爆药粉。
2 、如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于: 所述的缓冲层厚度为 10 ~ 20cm 。
3 、如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于: 各炮孔内铺设的缓冲层厚度相同。
4 、如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于: 所述的缓冲层为松砂。
5 、 如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于:所述消能座为倒置圆锥形,且圆锥的母线与底面、圆柱的切面与底面都呈45度角,消能座的底面直径为炮孔的0.8~0.9倍。
6 、如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于: 所述消能座为圆饼状,其厚度为2~6cm ,其直径为爆破孔直径的0.8~0.9倍。
7 、如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于:所述消能座为单斜切圆柱或者双斜切圆柱,且圆锥的母线与底面、圆柱的切面与底面都呈45度角,消能座的底面直径为炮孔的0.8~0.9倍。
8 、如权利要求 1 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于:所述消能座采用铸铁、岩芯或混凝土制备。
9 、 如权利要求 8 所述的基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法,其特征在于:所述的岩芯为花岗岩岩芯或母岩岩芯。
PCT/CN2013/086107 2013-05-10 2013-10-29 一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法 WO2014180101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310170450.0A CN103267455B (zh) 2013-05-10 2013-05-10 结合炮孔孔底消能和聚能的坝基一次成型钻孔爆破方法
CN201310170450.0 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014180101A1 true WO2014180101A1 (zh) 2014-11-13

Family

ID=49011098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086107 WO2014180101A1 (zh) 2013-05-10 2013-10-29 一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法

Country Status (2)

Country Link
CN (1) CN103267455B (zh)
WO (1) WO2014180101A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108166446A (zh) * 2018-03-22 2018-06-15 黄河勘测规划设计有限公司 江河边岸孔管式消能护坡
CN114636358A (zh) * 2022-03-25 2022-06-17 中南大学 一种精确控制采空区边界的爆破系统和爆破方法
CN116007462A (zh) * 2023-02-15 2023-04-25 武汉大学 一种用于水下爆破的孔底缓冲消能方法
CN117669081A (zh) * 2023-12-04 2024-03-08 陕西省水利电力勘测设计研究院 一种拱坝基础开挖设计方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267455B (zh) * 2013-05-10 2015-04-01 武汉大学 结合炮孔孔底消能和聚能的坝基一次成型钻孔爆破方法
CN103968721B (zh) * 2014-05-26 2015-07-15 武汉大学 适用于倾斜炮孔的提高建基面爆破开挖平整度的孔底聚-消能装置
CN104215137A (zh) * 2014-09-28 2014-12-17 武汉大学 坝基及岩石基础爆破开挖方法
CN104446168A (zh) * 2014-10-23 2015-03-25 武汉大学 一种高波阻抗混凝土、制备方法及其应用
CN104654941B (zh) * 2015-03-02 2016-03-30 武汉大学 一种基于混装炸药车的坝基快速开挖爆破成型方法
RU2594236C1 (ru) * 2015-05-27 2016-08-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Способ взрывного разрушения массива разнопрочных горных пород рассредоточенными и укороченными скважинными зарядами с кумулятивным эффектом
CN105135959A (zh) * 2015-08-21 2015-12-09 武汉大学 一种孔底空气间隔聚-消能装置及其安装使用方法
CN105258582B (zh) * 2015-11-05 2017-06-23 中国水利水电第十六工程局有限公司 一种用于建基面爆破开挖平整的炸药柱及开挖技术
CN105605995A (zh) * 2016-01-25 2016-05-25 广东爆破工程有限公司 一种缓边坡岩石爆破开挖方法
CN105526834A (zh) * 2016-02-29 2016-04-27 武汉大学 一种用于钻孔爆破的炮孔堵塞结构的施工方法及用于方法的混凝土块结构
CN106949797B (zh) * 2017-03-27 2018-08-10 武汉大学 用于竖直孔爆破的冲击塑形复合球状消能结构
CN110873546B (zh) * 2019-11-28 2022-09-09 中国水利水电第七工程局有限公司 基于爆炸能量调控的建基面先锋槽开挖方法
CN111102893B (zh) * 2020-01-07 2020-12-01 武汉大学 一种锥型能量调控装置及基于该装置的曲面基础竖直孔爆破开挖方法
CN113108659A (zh) * 2021-04-19 2021-07-13 太原理工大学 一种用于控制露天矿爆破根底的装药结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060290A1 (en) * 2002-01-03 2003-07-24 Nxco International Limited Activated stemming device
CN101334255A (zh) * 2000-02-29 2008-12-31 罗克泰克有限公司 弹药筒
CN101545747A (zh) * 2009-05-03 2009-09-30 张志呈 定向卸压隔振爆破装药结构
CN103267455A (zh) * 2013-05-10 2013-08-28 武汉大学 结合炮孔孔底消能和聚能的坝基一次成型钻孔爆破方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040075612A (ko) * 2003-02-22 2004-08-30 김일환 발파용 라이너 및 이를 이용한 발파방법
CN101368812B (zh) * 2008-09-25 2011-12-21 中国核工业华兴建设有限公司 核岛负挖环廊预裂爆破方法
CN101936689B (zh) * 2010-08-30 2012-12-12 中铁十九局集团第五工程有限公司 一种隔振装药炮眼及装药方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334255A (zh) * 2000-02-29 2008-12-31 罗克泰克有限公司 弹药筒
WO2003060290A1 (en) * 2002-01-03 2003-07-24 Nxco International Limited Activated stemming device
CN101545747A (zh) * 2009-05-03 2009-09-30 张志呈 定向卸压隔振爆破装药结构
CN103267455A (zh) * 2013-05-10 2013-08-28 武汉大学 结合炮孔孔底消能和聚能的坝基一次成型钻孔爆破方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108166446A (zh) * 2018-03-22 2018-06-15 黄河勘测规划设计有限公司 江河边岸孔管式消能护坡
CN114636358A (zh) * 2022-03-25 2022-06-17 中南大学 一种精确控制采空区边界的爆破系统和爆破方法
CN116007462A (zh) * 2023-02-15 2023-04-25 武汉大学 一种用于水下爆破的孔底缓冲消能方法
CN117669081A (zh) * 2023-12-04 2024-03-08 陕西省水利电力勘测设计研究院 一种拱坝基础开挖设计方法

Also Published As

Publication number Publication date
CN103267455A (zh) 2013-08-28
CN103267455B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2014180101A1 (zh) 一种基于孔底损伤控制和开挖快速成型相结合的垫层爆破方法
AU2017405652B2 (en) Method for stepwise construction of preferential gas migration pathway at stope in coal seam
CN103234403B (zh) 一种公路隧道静态爆破施工方法
WO2019085052A1 (zh) 一种充填采煤回收遗留煤柱并控制隔水关键层稳定的方法
CN104457465B (zh) 一种深埋隧洞爆破开挖效应控制方法
CN105781572B (zh) 深部矿山硬岩巷道应力吸附层结构化支护方法
CN108661643A (zh) 一种采煤工作面末采回撤通道切顶卸压护巷方法
CN102691299B (zh) 一种高地应力坝基开挖施工工艺
WO2013102309A1 (zh) 一种长壁工作面无煤柱开采方法
CN103711507B (zh) 一种多钢绞线组合支护装置控制大松动圈巷道变形的方法
CN106225618B (zh) 一种半无限岩体中爆破扩裂的方法
CN104564085B (zh) 城市超浅埋条件下超大断面隧道开挖综合施工方法
CN102635388A (zh) 煤层预裂爆破与水力压裂联作增透方法
CN104406470B (zh) 西部白垩系软岩地区大直径冻结井筒深孔掏槽爆破方法
CN104594919A (zh) 软岩巷道可缓冲渐变式双强壳体支护体系及其施工方法
CN104482817B (zh) 一种深埋隧洞应力解除预裂爆破方法
CN102692164A (zh) 纵向结构面结构性强岩爆区应力卸载注水钻爆法
CN103277129A (zh) 一种防止采煤工作面上隅角瓦斯超限技术
CN106522243A (zh) 含裂隙岩土地层预应力锚索注浆锚固施工方法
CN104390538A (zh) 一种基于掌子面切槽的应力解除爆破方法
CN103122633A (zh) 电熔式压力型可回收锚杆技术
CN106437712B (zh) 煤矿周边城市强矿震减灾方法
CN204457810U (zh) 软岩巷道可缓冲渐变式双强壳体支护体系
Yang et al. Research on the technology of small coal pillars of gob‐side entry retained in deep mines based on the roof cutting for pressure unloading in the lower key stratum
CN103670423B (zh) 一种在层状千枚岩岩体上开挖隧道的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884316

Country of ref document: EP

Kind code of ref document: A1