WO2014178560A1 - 모노폴 안테나 구조의 자기공명 영상 장치 - Google Patents

모노폴 안테나 구조의 자기공명 영상 장치 Download PDF

Info

Publication number
WO2014178560A1
WO2014178560A1 PCT/KR2014/003537 KR2014003537W WO2014178560A1 WO 2014178560 A1 WO2014178560 A1 WO 2014178560A1 KR 2014003537 W KR2014003537 W KR 2014003537W WO 2014178560 A1 WO2014178560 A1 WO 2014178560A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
resonance imaging
antenna structure
monopole antenna
monopole
Prior art date
Application number
PCT/KR2014/003537
Other languages
English (en)
French (fr)
Inventor
홍석민
해균 박쟈슈아
김영보
조장희
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2014178560A1 publication Critical patent/WO2014178560A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34038Loopless coils, i.e. linear wire antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus.
  • the length of the antenna is optimized for the image acquisition of the human brain, the monopole can acquire accurate magnetic resonance image data not only in the center of the brain but also in the upper part in the deep region of the human brain.
  • a magnetic resonance imaging apparatus having an antenna structure.
  • MRI magnetic resonance imaging
  • RF non-electromagnetic radiation
  • the ultra high field such as 7T magnetic resonance imaging
  • SNR signal-to-noise ratio
  • many applications for providing high phase contrast and the like have been studied.
  • FIG. 1 is a schematic perspective view of a magnetic resonance imaging apparatus having a surface coil antenna structure according to the prior art
  • FIG. 2 is a schematic principle diagram of each of a plurality of surface coils in the magnetic resonance imaging apparatus illustrated in FIG. 1.
  • a) and an equivalent circuit diagram (b) a plurality of surface coils 10, decoupling capacitors C1, C2, an acrylic cylinder 20, and a plurality of coaxial cables 30 are provided.
  • FIGS. 1 and 2 the operation of a magnetic resonance imaging apparatus having a surface coil antenna structure according to the related art is as follows.
  • the plurality of surface coils 10 have rectangular closed circuits, respectively, and are attached to the outer wall of the acrylic cylinder 20 at equal intervals so as to surround the subject.
  • the decoupling capacitors C1 and C2 cause resonance to induce maximum current to flow in the coil leads and reduce interference between the plurality of coils, but the coils have high sensitivity only in the adjacent portion.
  • the signals input to each channel of the plurality of coils are input with different phases, for example, 45 phase differences to form circularly polarized, and a coaxial cable for transmitting and receiving generated magnetic resonance image data.
  • a matching circuit with an impedance of 50 shall be inserted.
  • a magnetic resonance imaging apparatus having a dipole antenna antenna structure has been devised to compensate for the above problems caused by the plurality of surface coils 10 having a closed circuit.
  • FIG. 3 is a schematic configuration diagram (a) and principle diagram (b) of a magnetic resonance imaging apparatus having a dipole antenna structure according to the prior art, and include dipole antennas 50 and 55 and a coaxial cable 60. .
  • the magnetic resonance imaging apparatus of the dipole antenna structure does not form a closed circuit like the magnetic resonance imaging apparatus of the surface coil antenna structure, and the signal line and the ground line of the coaxial cable 60 between the two metal rods, the dipole antennas 50 and 55. Connect to and use.
  • the dipole antennas 50 and 55 form a magnetic field rotating around the metal bar, and electromagnetic waves are radiated in all directions in a direction perpendicular to the direction of the metal bar and the magnetic field.
  • Electromagnetic waves radiated through the dipole antennas 50 and 55 have a higher sensitivity to the region of interest away from the antenna, helping to have more penetration depth than surface coils from which electromagnetic waves are not radiated, but with a typical MRI with a frequency of 300 MHz
  • the equipment should have a length of at least 50cm in the 7T MRI, which has a limitation in that the head cannot be located at the center of the antenna when using a circular array to measure the head image data.
  • the use of dielectrics not only increases the cost of fabricating the antenna, but also causes the dielectric to come into contact with the head.
  • the dipole antennas 50 and 55 are folded, the magnetic field formed around the antenna is not orthogonal to the main magnetic field of the MRI. There is a problem in that a portion formed in parallel without the occurrence of a partial loss that does not contribute to the generation of the magnetic resonance image.
  • a monopole antenna structure that emits electromagnetic waves that can penetrate deep into the subject by maintaining high sensitivity and antenna gain to the region of interest of the subject far away from the antenna, and exhibits a high signal-to-noise ratio not only at the center of the subject's brain but also at the top. It is to provide a magnetic resonance imaging device.
  • Magnetic resonance imaging apparatus of the monopole antenna structure of the present invention for achieving the above object is a cylinder having openings on both sides; A plurality of monopole antennas attached to the outer wall of the cylinder at equal intervals to radiate electromagnetic waves to a subject in the cylinder to collect magnetic resonance image data; And a ground plate on one side of which the plurality of monopole antennas are vertically arranged in a circular shape, and a plurality of coaxial cables are connected to the other side through the through-holes, respectively, wherein the plurality of coaxial cables have signal lines each of the plurality of monopole antennas. And a ground line is connected to the ground plate.
  • the plurality of monopole antennas form a magnetic field that rotates around the antenna according to the applied current, and in a direction perpendicular to the directions of the antenna and the magnetic field. It is characterized by radiating electromagnetic waves to the subject.
  • the magnetic resonance image data of the magnetic resonance imaging apparatus of the monopole antenna structure of the present invention for achieving the above object is collected by supplying a circularly polarized magnetic field inside the subject with a phase difference of a first angle. do.
  • the first angle of the magnetic resonance imaging apparatus of the monopole antenna structure of the present invention for achieving the above object is characterized in that 40 to 50.
  • the plurality of monopole antennas of the magnetic resonance imaging apparatus of the monopole antenna structure of the present invention for achieving the above object is characterized in that the length of 18 to 22 cm.
  • the plurality of coaxial cables of the magnetic resonance imaging apparatus of the monopole antenna structure of the present invention for achieving the above object is characterized in that for transmitting the magnetic resonance image data to the MRI transceiver.
  • the MRI of the magnetic resonance imaging apparatus of the monopole antenna structure of the present invention for achieving the above object is characterized in that the 7T MRI device.
  • the structure is simple and the manufacturing cost is reduced, and the length of the antenna is optimized to suit the image acquisition of the human brain, thereby preventing the image acquisition from being disturbed due to the antenna length. Can be.
  • electromagnetic waves penetrate deep into the subject and exhibit a high signal-to-noise ratio not only in the center of the brain but also in the upper part of the brain, thereby obtaining accurate magnetic resonance image data.
  • FIG. 1 is a schematic perspective view of a magnetic resonance imaging apparatus having a surface coil antenna structure according to the prior art.
  • FIG. 2 is a schematic principle diagram (a) and an equivalent circuit diagram (b) of each of the plurality of surface coils in the magnetic resonance imaging apparatus shown in FIG. 1.
  • FIG 3 is a schematic configuration diagram (a) and principle diagram (b) of a magnetic resonance imaging apparatus of a dipole antenna structure according to the prior art.
  • FIG. 4 is a schematic perspective view (a), a plan view (b), and a configuration diagram (c) of a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention.
  • FIG. 5 is a diagram comparing the result of simulation using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention.
  • FIG. 6 is a view comparing a conventional echo scan SNR map with a conventional echo imaging apparatus using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention.
  • FIG. 7 is a view comparing an SNR plane profile obtained by slicing two parts of a brain in a horizontal direction using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention, compared with the related art.
  • FIG. 8 is a graph comparing the SNR value according to the horizontal axis distance of the brain of the SNR plane profile shown in FIG. 7 with the prior art.
  • FIG. 9 is a view comparing an SNR lateral profile obtained by slicing two parts of a brain in a longitudinal direction using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention with the prior art.
  • FIG. 10 is a graph comparing the SNR value according to the longitudinal axis distance of the brain of the SNR profile shown in FIG. 9 with the prior art.
  • FIG. 4 is a schematic perspective view (a), plan view (b), and configuration diagram (c) of a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention, and include a plurality of monopole antennas 120 and a ground plate 140. ), A cylinder 160 and a plurality of coaxial cables 180.
  • the cylinder 160 has openings on both sides and functions as a bore of the MRI apparatus, and the material is preferably acrylic.
  • the plurality of monopole antennas 120 are rod-shaped, are attached to the outer wall of the cylinder 160 at equal intervals, and emit magnetic resonance image data by radiating electromagnetic waves to a subject in the cylinder 160.
  • the ground plate 140 has a plurality of monopole antennas 120 disposed vertically on one side and a ground line of each of the plurality of coaxial cables 180 connected to the other side through a through hole to ground.
  • Signal lines of the plurality of coaxial cables 180 are connected to each of the plurality of monopole antennas 120 to transfer magnetic resonance image data collected by the plurality of monopole antennas 120 to a transceiver (not shown) of the MRI apparatus.
  • FIG. 4 describes the operation of the magnetic resonance imaging apparatus of the monopole antenna structure according to the present invention.
  • a plurality of rod-shaped monopole antennas 120 have a predetermined distance from the center of the ground plate 140 on a ground plate 140 having a predetermined area, for example, 40 cm x 40 cm. While maintaining it is disposed in a circle perpendicular to the ground plate 140.
  • eight monopole antennas 120 are attached to the outer wall of the cylinder 160 at equal intervals and are connected to each of the eight coaxial cables 180 through the ground plate 140 through the through holes. Ground wires of the two coaxial cables 180 are connected to the ground plate 140.
  • ground plate 140 is positioned perpendicular to the main magnetic field of the MRI device, and eight coaxial cables are connected to a transceiver (not shown) of the MRI device to receive magnetic resonance image data collected from eight monopole antennas 120. Send and receive
  • the radiated electromagnetic waves may penetrate deeper to the subject by maintaining high sensitivity to the ROI of the subject far from the antenna.
  • the magnetic resonance imaging apparatus is suitable for brain imaging in a 7T MRI apparatus, and magnetic resonance image data signals input to each of the eight monopole antennas 120 are input with a phase difference of a first angle and are inside the subject.
  • the first angle can be set to 40 to 50, preferably set to 45.
  • each of the eight monopole antennas 120 is the prior art shown in FIG. 3 (b) because one metal rod of the dipole antennas 50, 55 shown in FIG. 3 (a) has been replaced by a ground plate 140. To form an electromagnetic field similar to that of the dipole antennas 50 and 55.
  • the ground plate 140 due to the mirror effect of the ground plate 140, it operates as if one metal bar of the dipole antennas 50 and 55 according to the prior art is present, and has a length of 20 cm in 7T MRI, so that the length is appropriate for the head image. Is optimized.
  • the optimization of the length of the monopole antenna 120 can be adjusted to 18 to 22 cm instead of 25 cm in consideration of the dielectric constant of the cylinder 160, it is preferable to adjust to 20 cm so that the head of the subject in the center of the antenna .
  • each of the eight monopole antennas 120 has a copper tape shape having an impedance of 35 + j 25 and basically has a reflection coefficient of -10.9 dB. Therefore, unlike the surface coil according to the prior art, the monopole antenna 120 may be connected to the coaxial cable 180. When no separate matching circuit is needed.
  • the antenna gain of 3 dB compared to the dipole antenna according to the prior art it is possible to provide a larger penetration depth than the dipole antenna.
  • FIG. 5 is a view comparing a simulation result using a magnetic resonance imaging apparatus of a monopole antenna structure according to the present invention with the prior art, (a) is a surface coil antenna structure according to the prior art, and (b) is a conventional technology According to the structure of the dipole antennas 50 and 55, (c) shows a simulation result of the structure of the monopole antenna 120 according to the present invention.
  • the surface coil antenna structure according to the prior art shows strong sensitivity only near the surface coil
  • the monopole antenna according to the present invention shows strong sensitivity only near the surface coil
  • the monopole antenna according to the present invention shows strong sensitivity only near the surface coil
  • FIG. 6 is a diagram comparing a conventional echo scan SNR map using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention
  • (a), (b), ( c) is a side view, front view, and top view of a surface coil antenna structure SNR map according to the prior art
  • (d), (e), (f) is a side view, front view, and top view of a monopole antenna structure SNR map according to the present invention
  • the SNR map of the surface coil antenna structure according to the prior art shows high sensitivity only to the periphery of the brain, as shown in Figs. 6 (a), (b) and (c), the SNR map of the monopole antenna structure according to the present invention is shown. As can be seen in Figure 5 (d), (e), (f), it can be seen that the high SNR in the brain (superior aspect) as well as the center of the brain.
  • FIG. 7 is a diagram comparing an SNR plane profile obtained by slicing two parts of a brain in a horizontal direction using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention, (a), (b) is the SNR planar profile by the first and second transverse slices of the surface coil antenna structure according to the prior art, respectively, and (c) and (d) are the first and second of the monopole antenna structure according to the present invention, respectively. SNR plane profile with two transverse slices.
  • FIG. 8 is a graph comparing the SNR value according to the horizontal axis distance of the brain of the SNR plane profile shown in FIG. 7 with the prior art, wherein the dashed line and the double-dot chain line are the first and second lines of the surface coil antenna structure according to the prior art, respectively.
  • SNR curves by horizontal slices, and solid and dashed lines, respectively, are SNR curves by first and second horizontal slices of the monopole antenna structure according to the present invention.
  • the SNR value of the surface coil antenna structure according to the prior art shows a high value only in the periphery of the brain, whereas the SNR map of the monopole antenna structure according to the present invention has a higher value than that of the surface coil antenna structure in the center of the brain. It can be seen that the SNR value is about twice as large.
  • FIG. 9 is a diagram comparing an SNR lateral profile obtained by slicing two parts of a brain in a longitudinal direction using a magnetic resonance imaging apparatus having a monopole antenna structure according to the present invention, (a) Each is an SNR side profile by the longitudinal slice of the surface coil antenna structure according to the prior art, and (b) is each an SNR side profile by the longitudinal slice of the monopole antenna structure according to the present invention.
  • FIG. 10 is a graph comparing the SNR value according to the longitudinal axis distance of the brain of the SNR profile shown in FIG. 9 with the prior art, wherein the dashed line is a SNR curve due to the longitudinal slice of the surface coil antenna structure according to the prior art.
  • the solid line is the SNR curve by the longitudinal slice of the monopole antenna structure according to the present invention.
  • the SNR value of the surface coil antenna structure according to the prior art and the SNR value of the monopole antenna structure according to the present invention are almost similar, but in the R2 region (90 mm ⁇ z ⁇ ). 120 mm) shows that the monopole antenna structure has an SNR value that is twice as large as the surface coil antenna structure, and in the R3 region (145 mm ⁇ z ⁇ 180 mm), the monopole antenna structure has an SNR value that is about 5 times larger than the surface coil antenna structure. Can be.
  • the magnetic resonance imaging apparatus of the monopole antenna structure according to the present invention does not require a separate matching circuit when connected to the coaxial cable for transmitting the magnetic resonance image data, thereby simplifying the structure and reducing the manufacturing cost. Since the head is located at the center of the antenna when measuring the length, the length is optimized for the image acquisition of the human brain, thereby preventing the image acquisition from being disturbed due to the length of the antenna.
  • electromagnetic waves penetrate deep into the subject and exhibit a high signal-to-noise ratio not only in the center of the brain but also in the upper part of the brain, thereby obtaining accurate magnetic resonance image data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

본 발명은 모노폴 안테나 구조의 자기공명 영상 장치를 공개한다. 이 장치는 양측에 개구를 가진 실린더; 막대 형상으로 상기 실린더 외부벽에 등간격으로 부착되어 상기 실린더 내 피사체에 전자기파를 방사하여 자기공명 영상 데이터를 수집하는 복수개의 모노폴 안테나; 및 일측에 상기 복수개의 모노폴 안테나가 수직하게 원형으로 배치되고 관통홀을 통해 타측에 복수개의 동축 케이블이 각각 연결되는 접지판;을 구비하고, 상기 복수개의 동축 케이블은 신호선이 상기 복수개의 모노폴 안테나 각각에 연결되고 접지선이 상기 접지판에 연결되는 것을 특징으로 한다. 본 발명에 의할 경우, 별도의 정합회로가 불필요하여 구조가 간단하고 제작비용이 절감되며, 인체 두뇌의 영상 취득에 적합하게 안테나의 길이가 최적화되어 안테나 길이로 인해 영상 취득이 방해되는 것을 방지할 수 있다. 또한, 인체 두뇌의 깊은 영역에서도 높은 감도 및 안테나 이득을 유지하여 피사체의 깊은 곳까지 전자기파가 침투되고, 두뇌의 중앙뿐 아니라 상부에서도 높은 신호 대 잡음비를 나타내어 정확한 자기공명 영상 데이터를 취득할 수 있다.

Description

모노폴 안테나 구조의 자기공명 영상 장치
본 발명은 자기공명 영상 장치에 관한 것으로서, 특히 인체 두뇌의 영상 취득에 적합하게 안테나의 길이가 최적화되어 인체 두뇌의 깊은 영역에서 두뇌의 중앙뿐 아니라 상부에서도 정확한 자기공명 영상 데이터를 취득할 수 있는 모노폴 안테나 구조의 자기공명 영상 장치에 관한 것이다.
일반적으로, 자기 공명 영상(magnetic resonance imaging, MRI)이란 인체에 아무런 해가 없는 자장과 비전리 방사선인 RF(radiofrequency) 펄스를 이용하여 체내의 양성자(수소 원자핵)에 핵자기 공명을 일으켜 원자핵의 밀도 및 물리 화학적 특성을 영상화하는 의료 영상 중 하나이다.
그 중에서 7T 자기 공명 영상과 같은 초고성능 필드(ultra high field, UHF)는 인간의 뇌 영상에서 우수한 자기 공명 혈관 조영술을 이용하여 높은 신호 대 잡음비(signal-to-noise ratio, SNR), 높은 감수성 콘트라스트 및 높은 위상 콘트라스트 등을 제공하기 위한 많은 응용 프로그램이 연구되어 왔다.
그 일환으로서 깊이 위치해 있는 피사체에서 SNR 이득을 높이기 위해 표면 코일의 크기와 숫자를 증가시켜 보았으나 별다른 성과가 없었고, 최근에 연구되고 있는 다이폴 안테나가 최적의 전류 모드를 생성하기 위하여 7T MRI 뇌 영상에 적용되었으나 코일의 중심에 인체의 머리를 배치하기에는 안테나의 길이가 길어 MRI 뇌 영상 응용 프로그램에는 적합하지 않은 한계가 있었다.
도 1은 종래 기술에 따른 표면 코일(surface coil) 안테나 구조의 자기공명 영상 장치의 개략적인 사시도이고, 도 2는 도 1에 도시한 자기공명 영상 장치에서 복수개의 표면 코일 각각의 개략적인 원리도(a) 및 등가 회로도(b)로서, 복수개의 표면 코일(10), 디커플링 커패시터(C1, C2), 아크릴 실린더(20) 및 복수개의 동축 케이블(30)을 구비한다.
도 1 및 도 2를 참조하여 종래 기술에 따른 표면 코일 안테나 구조의 자기공명 영상 장치의 동작을 설명하면 다음과 같다.
종래 기술에 따른 표면 코일 안테나 구조의 자기공명 영상 장치는 복수개의 표면 코일(10)이 각각 직사각형 형상의 폐회로를 가지고 피사체를 감싸는 형태로 아크릴 실린더(20) 외부벽에 등간격으로 부착된다.
복수개의 표면 코일(10)에 전류가 인가되면 도 2(a)에서와 같이 자기장이 형성되고, 복수개의 표면 코일(10) 각각에서 형성된 자기장은 피사체에 침투하여 자기공명 영상 데이터를 생성하게 된다.
그런데, 종래 기술에 따른 표면 코일 안테나 구조의 자기공명 영상 장치는 도 2(a)에서와 같이, 표면 코일(10)을 환형으로 배열할 경우 복수개의 코일들 사이의 간섭이 발생하게 되므로, 도 2(b)에서 보는 바와 같이 coil 도선 위에 디커플링 커패시터(C1, C2)를 삽입해야 하는 한계가 있다.
이 디커플링 커패시터(C1, C2)는 공명을 일으켜 coil 도선에 최대의 전류가 흐르도록 유도하고 복수개의 코일들 간의 간섭을 감소시키지만, 코일이 인접한 부분에서만 높은 감도를 갖게 된다.
또한, 복수개의 코일의 각 채널에 입력되는 신호들은 원형 편파(circularly polarized)를 형성하기 위해서 서로 다른 위상, 예를 들어 45 씩의 위상차를 가지고 입력되고, 생성된 자기공명 영상 데이터를 송수신하는 동축 케이블(30)과 연결될 때 50 의 임피던스를 가지는 정합회로가 삽입되어야 한다.
이와 같이 복수개의 표면 코일(10)이 폐회로를 가짐으로 인해 발생하는 상기 문제점을 보완하기 위하여 다이폴 안테나 안테나 구조의 자기공명 영상 장치가 고안되었다.
도 3은 종래 기술에 따른 다이폴(dipole) 안테나 구조의 자기공명 영상 장치의 개략적인 구성도(a) 및 원리도(b)로서, 다이폴 안테나(50, 55) 및 동축 케이블(60)을 구비한다.
도 3을 참조하여 종래 기술에 따른 다이폴 안테나 구조의 자기공명 영상 장치의 동작을 설명하면 다음과 같다.
종래 기술에 따른 다이폴 안테나 구조의 자기공명 영상 장치는 표면 코일 안테나 구조의 자기공명 영상 장치처럼 폐회로를 형성하지 않고 두 금속 막대인 다이폴 안테나(50, 55) 사이에 동축 케이블(60)의 신호선과 접지선을 연결하여 사용한다.
도 3(b)에서 보는 바와 같이 다이폴 안테나(50, 55)는 금속 막대 주위를 회전하는 형태의 자기장이 형성되고 금속 막대 및 자기장의 방향과 수직한 방향으로 전자기파가 사방으로 방사된다.
다이폴 안테나(50, 55)를 통해 방사된 전자기파는 안테나에서 멀리 떨어진 관심영역까지 높은 감도를 갖게 하여 전자기파가 방사되지 않는 표면 코일에 비해서 더 많은 침투 깊이를 갖도록 도와주지만, 300MHz의 주파수를 가지는 일반적인 MRI 장비인 7T MRI에서 최소한 50cm의 길이를 가져야 하는데, 이는 머리 영상 데이터를 측정하기 위하여 원형의 배열구조를 사용할 경우 머리가 안테나의 중앙에 위치하기 어려운 한계가 있다.
종래의 다이폴 안테나 구조를 가지는 자기공명 영상 장치의 이러한 한계를 극복하기 위하여 최근에 다이폴 안테나에 유전체를 사용하여 길이를 줄인 형태나 다이폴 안테나(50, 55)를 접는 형태로 길이를 최적화 시킨 형태가 고안되었다.
하지만, 유전체의 사용은 안테나의 제작 비용을 증가시킬 뿐 아니라 머리에 유전체를 접촉시켜야 하는 문제점이 있고, 다이폴 안테나(50, 55)를 접게 되면 안테나 주위에서 형성되는 자기장이 MRI의 주자기장과 직교하지 않고 평행하게 형성되는 부분이 발생하여 자기공명 영상 생성에 기여하지 못하는 부분적 손실을 초래하게 되는 문제점이 있다.
본 발명의 목적은 자기공명 영상 데이터를 전달하는 동축 케이블과 연결될 때 별도의 정합회로가 불필요하고, 피사체의 머리 영상 데이터를 측정할 때 머리가 안테나의 중앙에 위치하게 하는 모노폴 안테나 구조의 자기공명 영상 장치를 제공하는 것이다.
또한, 안테나에서 멀리 떨어진 피사체의 관심영역까지 높은 감도 및 안테나 이득을 유지하여 피사체의 깊은 곳까지 침투할 수 있는 전자기파를 방사하고, 피사체 뇌의 중앙뿐 아니라 상부에까지 높은 신호 대 잡음비를 나타내는 모노폴 안테나 구조의 자기공명 영상 장치를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치는 양측에 개구를 가진 실린더; 막대 형상으로 상기 실린더 외부벽에 등간격으로 부착되어 상기 실린더 내 피사체에 전자기파를 방사하여 자기공명 영상 데이터를 수집하는 복수개의 모노폴 안테나; 및 일측에 상기 복수개의 모노폴 안테나가 수직하게 원형으로 배치되고 관통홀을 통해 타측에 복수개의 동축 케이블이 각각 연결되는 접지판;을 구비하고, 상기 복수개의 동축 케이블은 신호선이 상기 복수개의 모노폴 안테나 각각에 연결되고 접지선이 상기 접지판에 연결되는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치는 상기 복수개의 모노폴 안테나는 인가되는 전류에 따라 안테나 주위를 회전하는 자기장을 형성하고 상기 안테나 및 상기 자기장의 방향과 수직한 방향으로 상기 피사체에 전자기파를 방사하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치의 상기 자기공명 영상 데이터는 제1 각도의 위상차로 상기 피사체 내부에 원형 편파(circularly polarized)의 자기장을 공급하여 수집되는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치의 상기 제1 각도는 40 내지 50인 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치의 상기 복수개의 모노폴 안테나는 길이가 18 내지 22 cm인 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치의 상기 복수개의 동축 케이블은 상기 자기공명 영상 데이터를 MRI의 송수신 장치에 전달하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치의 상기 MRI는 7T MRI 장치인 것을 특징으로 한다.
본 발명에 의할 경우, 별도의 정합회로가 불필요하여 구조가 간단하고 제작비용이 절감되며, 인체 두뇌의 영상 취득에 적합하게 안테나의 길이가 최적화되어 안테나 길이로 인해 영상 취득이 방해되는 것을 방지할 수 있다.
또한, 인체 두뇌의 깊은 영역에서도 높은 감도 및 안테나 이득을 유지하여 피사체의 깊은 곳까지 전자기파가 침투되고, 두뇌의 중앙뿐 아니라 상부에서도 높은 신호 대 잡음비를 나타내어 정확한 자기공명 영상 데이터를 취득할 수 있다.
도 1은 종래 기술에 따른 표면 코일(surface coil) 안테나 구조의 자기공명 영상 장치의 개략적인 사시도이다.
도 2는 도 1에 도시한 자기공명 영상 장치에서 복수개의 표면 코일 각각의 개략적인 원리도(a) 및 등가 회로도(b)이다.
도 3은 종래 기술에 따른 다이폴(dipole) 안테나 구조의 자기공명 영상 장치의 개략적인 구성도(a) 및 원리도(b)이다.
도 4는 본 발명에 따른 모노폴(monopole) 안테나 구조의 자기공명 영상 장치의 개략적인 사시도(a), 평면도(b) 및 구성도(c)이다.
도 5는 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 시뮬레이션한 결과를 종래 기술과 비교한 도면이다.
도 6은 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 점진적 에코 스캔(gradient echo scan)한 SNR 맵(map)을 종래 기술과 비교한 도면이다.
도 7은 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 뇌의 두 부분을 가로 방향으로 슬라이스(slice)한 SNR 평면 프로파일(profile)을 종래 기술과 비교한 도면이다.
도 8은 도 7에 도시한 SNR 평면 프로파일의 뇌의 가로축 거리에 따른 SNR 값을 종래 기술과 비교한 그래프이다.
도 9는 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 뇌의 두 부분을 세로 방향으로 슬라이스(slice)한 SNR 측면 프로파일(profile)을 종래 기술과 비교한 도면이다.
도 10은 도 9에 도시한 SNR 프로파일(profile)의 뇌의 세로축 거리에 따른 SNR 값을 종래 기술과 비교한 그래프이다.
이하, 도면을 참조하여 본 발명의 모노폴 안테나 구조의 자기공명 영상 장치를 설명하면 다음과 같다.
도 4는 본 발명에 따른 모노폴(monopole) 안테나 구조의 자기공명 영상 장치의 개략적인 사시도(a), 평면도(b) 및 구성도(c)로서, 복수개의 모노폴 안테나(120), 접지판(140), 실린더(160) 및 복수개의 동축 케이블(180)을 구비한다.
도 4를 참조하여 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치 각 구성요소의 기능을 설명하면 다음과 같다.
실린더(160)는 양측에 개구를 가지고 MRI 장치의 보어(bore) 기능을 하는데, 재질은 아크릴인 것이 바람직하다.
복수개의 모노폴 안테나(120)는 막대 형상으로서, 실린더(160) 외부벽에 등간격으로 부착되어 실린더(160) 내 피사체에 전자기파를 방사하여 자기공명 영상 데이터를 수집한다.
접지판(140)은 일측에 복수개의 모노폴 안테나(120)가 수직하게 원형으로 배치되고 관통홀을 통해 타측에 복수개의 동축 케이블(180) 각각의 접지선이 연결되어 접지시킨다.
복수개의 동축 케이블(180)의 신호선은 복수개의 모노폴 안테나(120) 각각에 연결되어 복수개의 모노폴 안테나(120)에서 수집된 자기공명 영상 데이터를 MRI 장치의 송수신기(미도시)에 전달한다.
도 4를 참조하여 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치 의 동작을 설명하면 다음과 같다.
본 발명에 따른 자기공명 영상 장치는 막대 형상의 복수개의 모노폴 안테나(120)를 소정의 면적, 예를 들어 40cm x 40cm 를 가진 접지판(140) 상에 접지판(140)의 중심에서 일정거리를 유지하면서 접지판(140)과 수직하게 원형으로 배치한다.
이를 위하여 본 실시예에서는 8개의 모노폴 안테나(120)가 등간격으로 실린더(160) 외부벽에 부착되어 관통홀을 통해 접지판(140)을 관통하여 8개의 동축 케이블(180) 각각에 연결되고 8개의 동축 케이블(180)의 접지선은 접지판(140)에 연결된다.
또한, 접지판(140)은 MRI 장치의 주자기장과 수직하게 위치되며, 8개의 통축케이블은 MRI 장치의 송수신기(미도시)에 연결되어 8개의 모노폴 안테나(120)로부터 수집되는 자기공명 영상 데이터를 송수신한다.
즉, 8개의 모노폴 안테나(120)에 전류가 인가되면 금속 막대 주위를 회전하는 형태의 자기장이 형성되고 금속 막대 및 자기장의 방향과 수직한 방향으로 전자기파가 사방으로 방사된다.
상기 방사된 전자기파는 안테나에서 멀리 떨어진 피사체의 관심영역까지 높은 감도를 유지하여 피사체의 더 깊은 곳까지 침투할 수 있다.
이때, 본 발명에 따른 자기공명 영상 장치는 7T MRI 장치에서 뇌 영상 촬영에 적합하고, 8개의 모노폴 안테나(120) 각각에 입력되는 자기공명 영상 데이터 신호는 제1 각도의 위상차를 갖고 입력되어 피사체 내부에 원형 편파(circularly polarized)의 자기장을 공급하게 된다. 이때, 제1 각도는 40 내지 50로 설정 가능하며, 45로 설정하는 것이 바람직하다.
또한, 8개의 모노폴 안테나(120) 각각은 도 3(a)에 도시된 다이폴 안테나(50, 55)의 한쪽 금속 막대가 접지판(140)으로 대체되었기 때문에 도 3(b)에 도시한 종래 기술에 따른 다이폴 안테나(50, 55)와 유사한 전자기장을 형성시킨다.
즉, 접지판(140)의 거울 효과로 인하여 종래 기술에 따른 다이폴 안테나(50, 55)의 한쪽 금속 막대가 존재하는 것처럼 동작하게 되어 7T MRI에서 20cm의 길이를 갖게 되어 머리영상에 적합하게 길이가 최적화된다.
이러한 모노폴 안테나(120) 길이의 최적화는 실린더(160)의 유전율을 고려하여 25 cm 대신에 18 내지 22 cm로 조절 가능하며, 안테나의 중앙에 피사체의 머리가 위치하도록 20 cm로 조절하는 것이 바람직하다.
8개의 모노폴 안테나(120) 각각에서 형성된 전자기파는 피사체에 침투하여 자기공명 영상 데이터를 생성하고, 8개의 통축케이블을 통하여 MRI의 송수신 장치에 자기공명 영상 데이터를 전달한다.
한편, 8개의 모노폴 안테나(120) 각각은 구리 테이프 형상으로서 35 + j 25 의 임피던스를 갖게 되어 기본적으로 -10.9 dB 의 반사계수를 갖게 되므로 종래 기술에 따른 표면 코일과 달리 동축 케이블(180)과 연결될 때 별도의 정합회로가 불필요하게 된다.
또한, 종래 기술에 따른 다이폴 안테나에 비해서 3 dB의 안테나 이득을 갖게 되어 다이폴 안테나 대비 더 큰 침투 깊이를 제공할 수 있게 된다.
도 5는 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 시뮬레이션한 결과를 종래 기술과 비교한 도면으로서, (a)는 종래 기술에 따른 표면 코일 안테나 구조, (b)는 종래 기술에 따른 다이폴 안테나(50, 55) 구조, (c)는 본 발명에 따른 모노폴 안테나(120) 구조의 시뮬레이션 결과를 나타낸다.
도 5(a)에서 보는 바와 같이, 종래 기술에 따른 표면 코일 안테나 구조는 표면 코일 근처에서만 강한 감도를 나타내고, 도 5(b) 및 도 5(c)에서 보는 바와 같이, 본 발명에 따른 모노폴 안테나 구조의 B1+ 필드 패턴은 뇌의 상부(superior aspect)에서 필드 강도가 다이폴 안테나 구조보다 더 개선된 것을 볼 수 있다.
도 6은 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 점진적 에코 스캔(gradient echo scan)한 SNR 맵(map)을 종래 기술과 비교한 도면으로서, (a), (b), (c)는 종래 기술에 따른 표면 코일 안테나 구조 SNR 맵의 측면도, 정면도, 평면도이고, (d), (e), (f)는 본 발명에 따른 모노폴 안테나 구조 SNR 맵의 측면도, 정면도, 평면도를 나타낸다.
종래 기술에 따른 표면 코일 안테나 구조의 SNR 맵은 도 6(a), (b), (c)에서 보는 바와 같이, 뇌의 주변에만 높은 감도를 나타내는 반면, 본 발명에 따른 모노폴 안테나 구조의 SNR 맵은 도 5(d), (e), (f)에서 보는 바와 같이, 뇌의 중앙뿐 아니라 뇌의 상부(superior aspect)에서 높은 SNR을 나타내는 것을 알 수 있다.
도 7은 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 뇌의 두 부분을 가로 방향으로 슬라이스(slice)한 SNR 평면 프로파일(profile)을 종래 기술과 비교한 도면으로서, (a), (b)는 각각 종래 기술에 따른 표면 코일 안테나 구조의 제1 및 제2 가로 방향 슬라이스에 의한 SNR 평면 프로파일이고, (c), (d)는 각각 본 발명에 따른 모노폴 안테나 구조의 제1 및 제2 가로 방향 슬라이스에 의한 SNR 평면 프로파일이다.
도 8은 도 7에 도시한 SNR 평면 프로파일의 뇌의 가로축 거리에 따른 SNR 값을 종래 기술과 비교한 그래프로서, 일점쇄선 및 이점쇄선은 각각 종래 기술에 따른 표면 코일 안테나 구조의 제1 및 제2 가로 방향 슬라이스에 의한 SNR 곡선이고, 실선 및 점선은 각각 본 발명에 따른 모노폴 안테나 구조의 제1 및 제2 가로 방향 슬라이스에 의한 SNR 곡선이다.
도 8에서 보는 바와 같이, 종래 기술에 따른 표면 코일 안테나 구조의 SNR 값은 뇌의 주변에만 높은 값을 나타내는 반면, 본 발명에 따른 모노폴 안테나 구조의 SNR 맵은 뇌의 중앙부에서 표면 코일 안테나 구조보다 2배 정도 큰 SNR 값을 나타내는 것을 알 수 있다.
도 9는 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치를 이용하여 뇌의 두 부분을 세로 방향으로 슬라이스(slice)한 SNR 측면 프로파일(profile)을 종래 기술과 비교한 도면으로서, (a)는 각각 종래 기술에 따른 표면 코일 안테나 구조의 세로 방향 슬라이스에 의한 SNR 측면 프로파일이고, (b)는 각각 본 발명에 따른 모노폴 안테나 구조의 세로 방향 슬라이스에 의한 SNR 측면 프로파일이다.
도 10은 도 9에 도시한 SNR 프로파일(profile)의 뇌의 세로축 거리에 따른 SNR 값을 종래 기술과 비교한 그래프로서, 일점쇄선은 종래 기술에 따른 표면 코일 안테나 구조의 세로 방향 슬라이스에 의한 SNR 곡선이고, 실선은 본 발명에 따른 모노폴 안테나 구조의 세로 방향 슬라이스에 의한 SNR 곡선이다.
도 10에서 보는 바와 같이, R1 영역(z<80 mm)에서는 종래 기술에 따른 표면 코일 안테나 구조의 SNR 값과 본 발명에 따른 모노폴 안테나 구조의 SNR 값이 거의 유사하지만, R2 영역(90mm<z<120mm)에서는 모노폴 안테나 구조가 표면 코일 안테나 구조보다 2배 정도 큰 SNR 값을 나타내고, R3 영역(145mm<z<180mm)에서는 모노폴 안테나 구조가 표면 코일 안테나 구조보다 5배 정도 큰 SNR 값을 나타내는 것을 알 수 있다.
이와 같이, 본 발명에 따른 모노폴 안테나 구조의 자기공명 영상 장치는 자기공명 영상 데이터를 전달하는 동축 케이블과 연결될 때 별도의 정합회로가 불필요하여 구조가 간단하고 제작비용이 절감되며, 피사체의 머리 영상 데이터를 측정할 때 머리가 안테나의 중앙에 위치하게 됨으로써 인체 두뇌의 영상 취득에 적합하게 길이가 최적화되어 안테나의 길이로 인해 영상 취득이 방해되는 것을 방지할 수 있다.
또한, 인체 두뇌의 깊은 영역에서도 높은 감도 및 안테나 이득을 유지하여 피사체의 깊은 곳까지 전자기파가 침투되고, 두뇌의 중앙뿐 아니라 상부에서도 높은 신호 대 잡음비를 나타내어 정확한 자기공명 영상 데이터를 취득할 수 있다.
상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당 업계에서 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (7)

  1. 양측에 개구를 가진 실린더;
    막대 형상으로 상기 실린더 외부벽에 등간격으로 부착되어 상기 실린더 내 피사체에 전자기파를 방사하여 자기공명 영상 데이터를 수집하는 복수개의 모노폴 안테나; 및
    일측에 상기 복수개의 모노폴 안테나가 수직하게 원형으로 배치되고 관통홀을 통해 타측에 복수개의 동축 케이블이 각각 연결되는 접지판;을 구비하고,
    상기 복수개의 동축 케이블은 신호선이 상기 복수개의 모노폴 안테나 각각에 연결되고 접지선이 상기 접지판에 연결되는 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
  2. 제 1 항에 있어서,
    상기 복수개의 모노폴 안테나는
    인가되는 전류에 따라 안테나 주위를 회전하는 자기장을 형성하고 상기 안테나 및 상기 자기장의 방향과 수직한 방향으로 상기 피사체에 전자기파를 방사하는 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
  3. 제 2 항에 있어서,
    상기 자기공명 영상 데이터는
    제1 각도의 위상차로 상기 피사체 내부에 원형 편파(circularly polarized)의 자기장을 공급하여 수집되는 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
  4. 제 3 항에 있어서,
    상기 제1 각도는
    40 내지 50인 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
  5. 제 1 항에 있어서,
    상기 복수개의 모노폴 안테나는
    길이가 18 내지 22 cm인 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
  6. 제 1 항에 있어서,
    상기 복수개의 동축 케이블은
    상기 자기공명 영상 데이터를 MRI의 송수신 장치에 전달하는 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
  7. 제 6 항에 있어서,
    상기 MRI는
    7T MRI 장치인 것을 특징으로 하는
    모노폴 안테나 구조의 자기공명 영상 장치.
PCT/KR2014/003537 2013-05-03 2014-04-23 모노폴 안테나 구조의 자기공명 영상 장치 WO2014178560A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0050303 2013-05-03
KR1020130050303A KR101437777B1 (ko) 2013-05-03 2013-05-03 모노폴 안테나 구조의 자기공명 영상 장치

Publications (1)

Publication Number Publication Date
WO2014178560A1 true WO2014178560A1 (ko) 2014-11-06

Family

ID=51759364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003537 WO2014178560A1 (ko) 2013-05-03 2014-04-23 모노폴 안테나 구조의 자기공명 영상 장치

Country Status (2)

Country Link
KR (1) KR101437777B1 (ko)
WO (1) WO2014178560A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714454B1 (ko) 2016-04-29 2017-03-10 가천대학교 산학협력단 나선형 모노폴 안테나 구조의 자기공명 영상 장치
KR102003017B1 (ko) 2017-10-12 2019-07-23 가천대학교 산학협력단 양방향의 모노폴 안테나 구조의 자기공명 영상장치
KR102192215B1 (ko) 2019-05-08 2020-12-17 가천대학교 산학협력단 진행파 코일 기반의 자기공명 영상용 rf코일 장치
KR102287231B1 (ko) 2019-11-20 2021-08-09 가천대학교 산학협력단 지그재그 다이폴 안테나를 이용한 자기공명영상용 rf 코일

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212103A (ja) * 2000-02-01 2001-08-07 Ge Yokogawa Medical Systems Ltd 医用撮影装置
KR20010081364A (ko) * 2000-02-14 2001-08-29 지이 요꼬가와 메디칼 시스템즈 가부시끼가이샤 수신 코일과 자기공진 촬상 방법 및 그 장치
KR200292808Y1 (ko) * 2002-04-19 2002-10-25 김진경 전자석과 한 조가 된 마이크로파 발생장치
KR20080111338A (ko) * 2007-06-18 2008-12-23 가천의과학대학교 산학협력단 자기공명영상장치
KR101082322B1 (ko) * 2009-10-14 2011-11-10 충북대학교 산학협력단 마이크로파 토모그램의 데이터를 다이콤 파일로 변환하는 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170643B2 (en) 2005-11-22 2012-05-01 Bsd Medical Corporation System and method for irradiating a target with electromagnetic radiation to produce a heated region

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212103A (ja) * 2000-02-01 2001-08-07 Ge Yokogawa Medical Systems Ltd 医用撮影装置
KR20010081364A (ko) * 2000-02-14 2001-08-29 지이 요꼬가와 메디칼 시스템즈 가부시끼가이샤 수신 코일과 자기공진 촬상 방법 및 그 장치
KR200292808Y1 (ko) * 2002-04-19 2002-10-25 김진경 전자석과 한 조가 된 마이크로파 발생장치
KR20080111338A (ko) * 2007-06-18 2008-12-23 가천의과학대학교 산학협력단 자기공명영상장치
KR101082322B1 (ko) * 2009-10-14 2011-11-10 충북대학교 산학협력단 마이크로파 토모그램의 데이터를 다이콤 파일로 변환하는 방법

Also Published As

Publication number Publication date
KR101437777B1 (ko) 2014-09-17

Similar Documents

Publication Publication Date Title
JP6087834B2 (ja) 磁気共鳴イメージング装置およびアンテナ装置
US20180081008A1 (en) Modulating magnetic resonance imaging transmit field in magnetic resonance fingerprinting using single layer transmit/receive radio frequency coil
US7589530B2 (en) Coil device and nuclear magnetic resonance imaging apparatus using the same
WO2014178560A1 (ko) 모노폴 안테나 구조의 자기공명 영상 장치
CN104698411B (zh) 用于开放式磁共振成像系统的多通道射频线圈
US20150295320A1 (en) Modified folded dipole antenna arrangement
GB2465238A (en) Bore Tube Assembly
EP1456680B1 (en) Mri apparatus with low-frequency cable integrated into the patient carrier
WO2016035948A1 (ko) 유전 구조체를 포함하는 rf 코일부 및 이를 포함하는 자기공명영상 시스템
JP6511397B2 (ja) 磁気共鳴イメージング装置、アンテナ装置およびその製造方法
KR101709724B1 (ko) 자기공명영상용 다중 주파수 RF(radio frequency) 코일 어셈블리 및 자기공명영상 시스템
Woo et al. Comparison of 16-channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 Tesla MRI
US8766637B2 (en) Drum-type standing wave trap
Adriany et al. Evaluation of a 16-channel transmitter for head imaging at 10.5 T
US10234518B2 (en) Loop coil with integrated balun for MR applications
WO2017191860A1 (ko) 자기공명영상 시스템
WO2015190816A1 (ko) Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
EP1456681B1 (en) Electronic device for use in electromagnetic fields of an mri apparatus
KR101856375B1 (ko) 자기공명영상용 다이폴 안테나, rf 코일 어셈블리, 및 자기공명영상 시스템
US20220206091A1 (en) A coil assembly for mr imaging applications
WO2015194700A1 (ko) 고주파 표면 코일 및 이를 채용한 자기 공명 장치
US9972914B2 (en) Monopole array arrangement, computer-accessible medium and method for using the same
Sakthisudhan et al. Survey on RF Coils for MRI Diagnosis System
US11480637B2 (en) Local coil with segmented antenna device
Wenz et al. Dipolectric antenna for high‐field MRI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792092

Country of ref document: EP

Kind code of ref document: A1