WO2014178365A1 - Functional glass - Google Patents

Functional glass Download PDF

Info

Publication number
WO2014178365A1
WO2014178365A1 PCT/JP2014/061831 JP2014061831W WO2014178365A1 WO 2014178365 A1 WO2014178365 A1 WO 2014178365A1 JP 2014061831 W JP2014061831 W JP 2014061831W WO 2014178365 A1 WO2014178365 A1 WO 2014178365A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
layer
resin
film
functional
Prior art date
Application number
PCT/JP2014/061831
Other languages
French (fr)
Japanese (ja)
Inventor
山本 智弘
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014178365A1 publication Critical patent/WO2014178365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/08Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of cellulosic plastic substance or gelatin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/18Cellulose, modified cellulose or cellulose derivatives, e.g. viscose
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a glass with a function provided with a function.
  • a glass substrate is generally used for the display device, and the display device can be made thin and light by thinning the glass substrate.
  • the glass substrate is easily broken and the handling property is deteriorated.
  • Patent Document 1 in order to provide a glass with anti-scattering performance that is excellent in anti-scattering effect and further excellent in transparency, high surface hardness, weather resistance, chemical resistance, durability, and heat resistance, photocuring is performed.
  • a glass with anti-scattering performance characterized by curing a photocurable resin composition containing a cage-shaped silsesquioxane resin having a property and laminating it with a resin film.
  • Patent Document 2 a thin film tempered glass excellent in impact resistance and penetration resistance can be obtained.
  • a glass plate and an organic polymer film are made of an ethylene vinyl acetate copolymer, a polyvinyl acetal resin, and A film tempered glass laminated through a transparent adhesive layer made of at least one selected from vinyl chloride resins has been reported.
  • Patent Document 3 discloses a hard-hardened hardened adhesive sheet in which a hard coat adhesive film having a specific range of Martens hardness is combined with a protective film and a release film so as to have a specific total thickness. It describes that the crack of the hard coat layer at the time of punching can be made difficult to occur while having the coat layer.
  • Patent Documents 1 and 2 a method (Patent Documents 1 and 2) performed by applying or pasting an organic resin or a double-sided adhesive seal, or photocuring Describes a technique (Patent Document 3) using an adhesive resin as an adhesive layer.
  • an adhesive layer using an organic resin or a photocurable resin that has been conventionally used has a problem that the elastic modulus of the adhesive layer is low and the surface hardness is lowered.
  • the adhesion strength of the adhesive layer is reduced in a high temperature and high humidity environment.
  • the present invention has been made in view of such circumstances, and even when the functional layer is in direct contact with the adhesive and laminated on the thin film glass, the adhesion strength is reduced due to environmental fluctuations during the wet heat durability test. It aims at providing the glass with a function which can suppress, and can improve film thickness, surface hardness, toughness, and handleability.
  • a resin film in which a functional layer is laminated and a thin film glass are laminated through an adhesive layer, and the adhesive layer has a reactive metal compound and a high hydroxyl group content. It contains a condensate with a molecular compound.
  • FIG. 1 is a cross-sectional view showing a configuration example of the glass with function 1 according to the present embodiment.
  • the glass with function 1 of this embodiment is configured by laminating an adhesive layer 3, a resin film 4, and a functional layer 5 in this order on a thin film glass 2.
  • the functional layer 5 is preferably a hard coat layer, an antireflection layer or an antiglare layer, for example.
  • the functional layer 5 can be laminated on the resin film 4 by a known method such as a gravure coater.
  • the adhesive layer 3 is an organic-inorganic hybrid adhesive layer (HB glue) containing a condensate of a reactive metal compound (inorganic compound) and a hydroxyl group-containing polymer compound (organic compound).
  • the metal component contained in the reactive metal compound tends to be strongly bonded to the material component of the glass by a chemical bond such as a covalent bond.
  • the hydroxyl group-containing polymer compound contains a hydroxyl group, the affinity with the resin film 4 can be improved and the adhesiveness can be improved.
  • the organic compound and the inorganic compound are poorly compatible, but by forming these condensates, the adhesive layer 3 having both characteristics in a single layer structure can be formed.
  • the hydroxyl group-containing polymer compound is a silanol group-containing low molecular component before sol-gel curing, it can penetrate into and penetrate into the molecule of the resin film on which the functional layer is laminated, so that the adhesive layer penetrates the film. Therefore, it does not have a thickness and can be made thinner than before.
  • the adhesion between the thin film glass 2 and the resin film 4 on which the functional layer 5 is laminated can be improved through the adhesive layer 3.
  • the interlayer adhesion strength is less likely to deteriorate due to environmental fluctuations during the durability test.
  • the hardness and toughness of glass with a function can be improved simultaneously by improving the adhesion between the thin film glass 2 and the resin film 4 on which the functional layer 5 is laminated.
  • the thickness of the resin film 4 is preferably 40 ⁇ m or less. In this case, since the resin film 4 on which the functional layer 5 is laminated becomes thin, the glass with function 1 can be made thinner.
  • the hydroxyl group-containing polymer compound is preferably a cellulose ester having a total acyl group substitution degree of 1.0 to 2.6.
  • a cellulose ester for example, triacetyl cellulose (TAC), diacetyl cellulose (DAC), cellulose acetate propionate (CAP), or the like can be used.
  • TAC triacetyl cellulose
  • DAC diacetyl cellulose
  • CAP cellulose acetate propionate
  • Such a cellulose ester is very effective as a material for improving interlayer adhesion in the glass with function 1 because it contains a hydroxyl group and improves the affinity with the resin film 4 on which the functional layer 5 is laminated.
  • Thin glass As thin film glass which comprises glass with a function, what was shape
  • the shape of the thin film glass is not particularly limited and may be a chip cut shape, but is preferably a roll shape from the viewpoint of suitability for production on a roll-to-roll basis.
  • the average thickness of the thin film glass is preferably 5 to 200 ⁇ m, and more preferably 5 to 100 ⁇ m. When the thickness is less than 5 ⁇ m, handling such as conveyance is difficult, and when the thickness exceeds 200 ⁇ m, the value of the thin film is diminished.
  • the thin film glass is not particularly limited as long as it is a multi-component oxide glass.
  • alkali-free glass, borosilicate glass, aluminosilicate glass and the like are particularly suitable as the thin film glass, and among them, alkali-free glass is most preferred.
  • the functional layer is preferably a hard coat layer, an antireflection layer, or an antiglare layer, but is not limited thereto.
  • Hard coat layer Although it does not specifically limit as a hard-coat layer, for example, a curable acrylic resin etc. can be used. In particular, a layer containing an ultraviolet curable compound (resin) that is cured by ultraviolet rays is preferable, and a glass excellent in scratch resistance can be obtained.
  • a curable acrylic resin etc.
  • a layer containing an ultraviolet curable compound (resin) that is cured by ultraviolet rays is preferable, and a glass excellent in scratch resistance can be obtained.
  • the ultraviolet curable resin layer of the hard coat layer is preferably a resin layer formed by polymerizing a component containing an ethylenically unsaturated monomer.
  • the ultraviolet curable resin layer refers to a layer mainly composed of a resin which is cured through a crosslinking reaction or the like by irradiation with an active ray such as an electron beam in addition to ultraviolet rays.
  • Typical examples of the ultraviolet curable resin include an ultraviolet curable resin and an electron beam curable resin.
  • a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used.
  • Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.
  • UV-curable acrylic urethane resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate). And can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (see, for example, JP-A-59-151110).
  • UV curable polyester acrylate resins can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers (see, for example, JP-A-59-151112). .
  • ultraviolet curable epoxy acrylate resins include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoreaction initiator added thereto (for example, JP-A-1- No. 105738).
  • a photoreaction initiator for example, JP-A-1- No. 105738.
  • the photoinitiator one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.
  • ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate (PETA), pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate (DPHA), alkyl Examples thereof include modified dipentaerythritol pentaacrylate.
  • Particularly preferred resins are dipentaerythritol hexaacrylate (DPHA), pentaerythritol triacrylate (PETA), pentaerythritol tetraacrylate (PETTA) and the like.
  • DPHA dipentaerythritol hexaacrylate
  • PETA pentaerythritol triacrylate
  • PETTA pentaerythritol tetraacrylate
  • the said photoinitiator can also be used as a photosensitizer.
  • specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.
  • the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond.
  • Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
  • Adekaoptomer KR / BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by Asahi Denka Kogyo Co., Ltd.) Or KOHEI Hard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (from Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10 , DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, large Manufactured by Seika Kogyo Co., Ltd.),
  • the UV curable resin layer can be applied by a known method.
  • the solvent for coating the ultraviolet curable resin layer for example, it can be appropriately selected from hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or a mixture thereof can be used.
  • propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether, preferably propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass.
  • the solvent contained above is used.
  • any light source that generates ultraviolet rays can be used.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the irradiation conditions vary depending on individual lamps, but the amount of light irradiated may if 20 ⁇ 10000mJ / cm 2 degrees, preferably 50 ⁇ 2000mJ / cm 2.
  • the near ultraviolet region to the visible light region it can be used by using a sensitizer having an absorption maximum in that region.
  • the UV curable resin composition is coated and dried and then irradiated with UV light from a light source.
  • the irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.
  • inorganic or organic fine particles it is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent blocking and to improve scratch resistance.
  • the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of the organic fine particles include polymethacrylic acid.
  • Methyl acrylate resin powder acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder
  • Polyamide-based resin powder, polyimide-based resin powder, or polyfluorinated ethylene-based resin powder, and the like can be added to the ultraviolet curable resin composition.
  • the average particle size of these fine particle powders is preferably 0.005 to 5 ⁇ m, more preferably 0.1 to 5.0 ⁇ m, and further preferably 0.1 to 4.0 ⁇ m added to the coating composition for forming the hard coat layer. It is particularly preferable from the viewpoint of the stability of the composition.
  • the proportion of the ultraviolet curable resin composition and the fine particle powder is 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.
  • the layer formed by curing the ultraviolet curable resin formed in this way is a hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JISB 0601.
  • An antiglare layer of about 1 ⁇ m may be used.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a refractive index lower than that of the protective film as a support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as a support. Preferably it is.
  • an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • medium refractive index layers high refractive index layers having a higher refractive index than the support.
  • the layer structure of the resin film laminated with the antireflection layer As the layer structure of the resin film laminated with the antireflection layer, the following structure can be considered, but it is not limited to this.
  • Resin film / Anti-glare layer / Low refractive index layer Resin film / Anti-glare layer / Medium refractive index layer / Low refractive index layer Resin film / Anti-glare layer / Medium refractive index layer / High refractive index layer / Low refractive index layer Resin film / Anti-glare layer / High refractive index layer (conductive layer) / Low refractive index layer Resin film / Intermediate layer / Anti-glare layer / Low refractive index layer
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • tetraisopropoxysilane tetramethoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used.
  • fluorine-containing polymer examples include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • the refractive index of the high refractive index layer is preferably adjusted to a refractive index in the range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m.
  • the means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like.
  • Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used.
  • the average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 -and PF 6- , CF 3 SO 2-, and the like. , (CF 3 SO 2 ) 2 N—, CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
  • the antiglare layer is preferably basically composed of a binder layer mainly composed of a transparent resin and fine particles in order to control the ratio of the scattering reflectance within the above range.
  • the fine particles fluorine-containing acrylic resin particles are preferable because the ratio of the scattering reflectance is easily controlled within the above range. Next, the fluorine-containing acrylic resin particles will be described.
  • Fluorine-containing acrylic resin particles are, for example, particles formed from a fluorine-containing acrylic ester or methacrylic ester polymer.
  • fluorine-containing acrylic acid ester or methacrylic acid ester examples include 1H, 1H, 3H-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 7H- Dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorononyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (Meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2-perfluorodecylethyl
  • fluorine-containing acrylic resin particles particles made of 2- (perfluorobutyl) ethyl- ⁇ -fluoroacrylate, fluorine-containing polymethyl methacrylate particles, and fluorine-containing methacrylic acid in the presence of a crosslinking agent are vinyl monomers. Particles copolymerized with are preferred, more preferably fluorine-containing polymethyl methacrylate particles.
  • the refractive index of the fluorine-containing acrylic resin particles is preferably 1.38 to 1.44.
  • the content of the fluorine-containing acrylic resin particles is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 100 parts by mass, particularly preferably 100 parts by mass of the transparent resin constituting the antiglare layer. 1 to 60 parts by mass.
  • the average particle diameter of the fluorine-containing acrylic resin particles is 1.5 to 6 ⁇ m, and preferably 2.0 to 4.0 ⁇ m.
  • silica fine particles are also preferably used.
  • the silica fine particles include product names such as Nippon Aerosil Co., Ltd., Aerosil 200, 200V, 300, Degussa, Aerosil OX50, TT600, etc., Nippon Shokubai Co., Ltd., KEP-10, KEP-50, KEP-100 and the like.
  • Colloidal silica may be used as the silica fine particles.
  • Colloidal silica is obtained by dispersing silicon dioxide in water or an organic solvent in a colloidal form, and is not particularly limited, and is spherical, acicular or beaded.
  • colloidal silica is commercially available and includes, for example, the Snowtex series of Nissan Chemical Industries, the Cataloid-S series of Catalytic Chemical Industries, and the Rebacil series of Bayer.
  • beaded colloidal silica in which primary particles of cation-modified with alumina sol or aluminum hydroxide are bonded in a bead shape by bonding the particles with divalent or higher metal ions.
  • beaded colloidal silica include Snowtex-AK series, Snowtex-PS series, Snowtex-UP series, etc., manufactured by Nissan Chemical Industries, Ltd.
  • IPS-ST-L isopropanol silica sol, particle size 40-50 nm
  • Silica concentration 30% MEK-ST-MS (methyl ethyl ketone silica sol, particle size 17-23 nm, silica concentration 35%), etc.
  • MEK-ST methyl ethyl ketone silica sol, particle size 10-15 nm, silica concentration 30%
  • MEK- ST-L methyl ethyl ketone silica sol, particle diameter 40 to 50 nm, silica concentration 30%
  • MEK-ST-UP methyl ethyl ketone silica sol, particle diameter 9 to 15 nm (chain structure), silica concentration 20%
  • the silica fine particles may be reactive silica fine particles surface-treated with an organic compound having a polymerizable unsaturated group.
  • the polymerizable unsaturated group preferably has an ethylenically unsaturated group, and further has a group represented by the following general formula (a) and a compound having a silanol group in the molecule or a compound that generates a silanol group by hydrolysis. Is preferred.
  • [—UC ( ⁇ V) —NH—] includes [—O—C ( ⁇ O) —NH—], [—O—C ( ⁇ S) —NH—], [—S. —C ( ⁇ O) —NH—], [—NH—C ( ⁇ O) —NH—], [—NH—C ( ⁇ S) —NH—], and [—S—C ( ⁇ S) — NH-].
  • These groups can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the organic compound bonded to the silica fine particles is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 1% by mass or more, based on 100% by mass of the silica fine particles.
  • Other fine particles include UV-curable resin compositions such as polystyrene resin powder, polycarbonate resin powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, or polyfluorinated ethylene resin powder. Can be added. If necessary, it may further contain particles described in JP-A No. 2000-241807.
  • the refractive index of the other particles is preferably 1.45 to 1.70, more preferably 1.45 to 1.65. Note that the refractive index of the particles is measured by measuring the turbidity by dispersing the same amount of particles in a solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes.
  • the refractive index of the solvent can be measured by measuring with an Abbe refractometer.
  • the amount of fine particles added is preferably 10 to 90% of the total mass of the antiglare layer, more preferably 20 to 80%, and particularly preferably 30 to 75%.
  • particles having an average particle diameter of 0.01 to 1 ⁇ m have a content of 100% by mass of the transparent resin constituting the antiglare layer because of the stability of the coating liquid forming the antiglare layer and the dispersibility of the dispersion.
  • the amount is preferably 0.01 to 500 parts by weight, more preferably 0.1 to 100 parts by weight with respect to parts.
  • the pencil hardness of the functional layer as described above is preferably about 2H to 6H. This is because it is an important characteristic for maintaining the quality of the visibility of the display, which is highly resistant to surface scratches.
  • the liquid film thickness (also referred to as wet film thickness) during coating is about 1 to 100 ⁇ m, preferably 0.1 to 30 ⁇ m, more preferably 0.5 to 30 ⁇ m.
  • the dry film thickness is an average film thickness of 0.1 to 30 ⁇ m, preferably 1 to 20 ⁇ m.
  • the resin film is a base material for the functional layer, and at the same time, is used for the purpose of preventing scattering when the glass breaks under impact.
  • the resin contained in the resin film is not particularly limited as long as it is an optically transparent resin.
  • cellulose resin acrylic resin, polycarbonate resin, cycloolefin resin, polyester resin, polylactic acid resin Polyvinyl alcohol resin can be used.
  • a cellulose-based resin from the viewpoint of high heat resistance, high transparency, low retardation, high surface quality, and the like.
  • the resin film preferably has a small in-plane direction retardation (retardation) Ro and thickness direction retardation (retardation) Rt.
  • nx represents the refractive index in the slow axis direction in the plane of the resin film
  • ny represents the refractive index in the direction perpendicular to the slow axis in the plane of the resin film
  • nz represents the thickness of the resin film.
  • the refractive index of a direction is shown
  • d shows the thickness (nm) of a film.
  • the measurement wavelength of the refractive index is 590 nm.
  • retardations Ro and Rt can also be obtained by the following method.
  • the obtained resin film is conditioned at 23 ° C. and 55% RH.
  • the average refractive index of the resin film after humidity adjustment is measured with an Abbe refractometer.
  • Ro is measured with KOBRA 21ADH (manufactured by Oji Scientific Instruments) when light having a measurement wavelength of 590 nm is incident on the resin film after humidity adjustment from the normal direction of the resin film.
  • can be preferably 30 ° to 50 °.
  • nx, ny, and nz are calculated from the measured Ro and R ( ⁇ ) and the above-described average refractive index and film thickness by KOBRA 21ADH (manufactured by Oji Scientific Instruments), and the measurement wavelength is 590 nm. Rt at is calculated. The retardation can be measured after tempering for about 12 hours, for example, at 23 ° C. and 55% RH.
  • a resin film prepared in advance in a film shape may be prepared and adhered to glass via an adhesive layer, or after an adhesive layer is formed on glass, the resin is directly applied or cast. It may be formed.
  • Cellulose resins suitable for the resin film of the present embodiment include cellulose ethers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cyanoethyl cellulose, triacetyl cellulose (TAC), diacetyl cellulose (DAC), and cellulose acetate.
  • cellulose esters such as propionate (CAP), cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose acetate trimellitate, and cellulose nitrate, preferably cellulose esters, particularly triacetyl cellulose (TAC).
  • the cellulose used as the raw material for the cellulose resin is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, although the cellulose resin obtained from these can be used individually or in mixture of arbitrary ratios, it is preferable to use 50 mass% or more of cotton linters.
  • the molecular weight of the cellulose ester is preferably 70000-200000 in terms of number average molecular weight, more preferably 100000-200000.
  • the cellulose ester used in the present embodiment preferably has a weight average molecular weight of Mw, a number average molecular weight of Mn, and a Mw / Mn ratio of 1.4 to 3.0, more preferably 1.4 to 2. 3.
  • the average molecular weight and molecular weight distribution of cellulose ester can be measured using high performance liquid chromatography, the number average molecular weight (Mn) and the weight average molecular weight (Mw) are calculated using this, and the ratio is calculated. be able to. Measurement conditions are as follows.
  • the total acyl group substitution degree of the cellulose ester is preferably 2.4 to 2.9, more preferably 2.6 to 2.9.
  • the total degree of acyl group substitution can be measured according to ASTM-D817-96.
  • Adhesive layer As the adhesive layer, a condensate of an inorganic reactive metal compound and an organic hydroxyl group-containing polymer compound is used. By the condensation reaction, the thin film glass and the functional layer-attached resin film can be bonded.
  • the condensation reaction may be performed by a generally known method, may be hydrolytic condensation by addition of a catalyst, or may be dehydration condensation by heating.
  • the adhesive layer of this embodiment does not have a thickness because it penetrates into the film, and can be made thinner than before.
  • the reactive polycondensable reactive metal compound that is an inorganic compound can use an acid such as hydrochloric acid, acetic acid, or citric acid as a hydrolysis catalyst, but a solid catalyst is preferably used. Further, water and another catalyst as required may be added to cause hydrolysis to accelerate the condensation reaction.
  • the hydrolysis may be complete hydrolysis in which all hydrolyzable groups are hydrolyzed, but is particularly preferably partial hydrolysis in which only a part is hydrolyzed.
  • the water added for hydrolysis is preferably used in the range of 0.5 to 10 mol per 1 mol of the reactive metal compound, and hydrolyzed with the solid catalyst. If the amount of water used for the hydrolysis is small, the hydrolysis of the alkoxy group becomes insufficient, resulting in a problem that only a few hydroxyl groups are generated. Preferably, the amount of water used is 0.5-4 moles per mole of reactive metal compound.
  • Ion exchange water is preferable for hydrolyzing the reactive metal compound, and ion-exchanged water having an electric conductivity of 10 10 M ⁇ or more is preferably used. If the electrical conductivity is lower than this, the ions contained in the ion exchange resin and the hydrolyzed water will undergo ion exchange, the pH of the hydrolyzed water will fluctuate greatly, and the hydrolyzed polycondensate generated will be present with great stability. This is not preferable.
  • the electric conductivity of ion exchange water is more preferably 10 12 M ⁇ or more, and further preferably 10 15 M ⁇ or more.
  • a hydrophobic hydrolytic polycondensable reactive metal compound when water is added to a hydrophobic hydrolytic polycondensable reactive metal compound, methanol, ethanol, acetonitrile, etc. are used so that the hydrolytic polycondensable reactive metal compound and water can be easily mixed. It is preferable that a hydrophilic organic solvent is also added.
  • a hydroxyl group-containing polymer compound for example, a cellulose derivative
  • a reactive metal compound capable of hydrolysis polycondensation are mixed, a good solvent for the cellulose derivative is preferably added so that the cellulose derivative does not precipitate. .
  • a good solvent means the organic solvent which has favorable solubility with respect to a cellulose derivative.
  • the solid catalyst as the hydrolysis catalyst is not particularly limited, and those listed below can be used.
  • Cation exchange resin Amberlite 15, Amberlite 200C, Amberlist 15 (above, Rohm &Haas); Dowex MWC-1-H, Dowex 88, Dowex HCR-W2 (above, Dow Chemical); Levacit SPC-108, Levacit SPC-118 (manufactured by Bayer); Diaion RCP-150H (Mitsubishi Kasei); Sumikaion KC-470, Duolite C26-C, Duolite C-433, Duolite-464 (The above is manufactured by Sumitomo Chemical Co., Ltd.); Nafion-H (manufactured by DuPont) and the like.
  • Anion exchange resin Amberlite IRA-400, Amberlite IRA-45 (above, manufactured by Rohm and Haas), etc.
  • Inorganic solid in which a group containing a protonic acid group is bonded to the surface Such as Zr (O 3 PCH 2 CH 2 SO 3 H) 2, Th (O 3 PCH 2 CH 2 COOH) 2.
  • Polyorganosiloxane containing protonic acid groups Polyorganosiloxane having a sulfonic acid group.
  • Heteropoly acid Cobalt tungstic acid, phosphomolybdic acid, etc.
  • Isopolyacid Niobic acid, tantalum acid, molybdic acid, etc.
  • Unitary metal oxide Alumina, chromia, zirconia, CaO, MgO, etc.
  • Composite metal oxide Silica-alumina, silica-magnesia, silica-zirconia, zeolites, etc.
  • Clay mineral Acid clay, activated clay, montmorillonite, kaolinite, etc.
  • Metal phosphate Zirconia phosphate, lanthanum phosphate, etc.
  • Metal nitrate Such as LiNO 3, Mn (NO 3) 2.
  • Inorganic solid in which a group containing an amino group is bonded to the surface Solids obtained by reacting aminopropyltriethoxysilane on silica gel.
  • a cation exchange resin is particularly preferable.
  • a suspension polymer of polystyrene or divinylbenzene as a skeleton is preferable.
  • the types of ion exchange resins are classified into a gel type and a macroporous type.
  • the gel type resin does not have pores, and it is difficult for a substance involved in the reaction to enter the inside of the resin, so that the active sites are not effectively used.
  • the macroporous resin has large pores, and a substance involved in the reaction can easily reach the active site, and the active site is effectively used.
  • the cation exchange resin used in this embodiment is a macroporous material whose pore volume is 0.1 ml / g or more as measured by a mercury injection method.
  • the acidic group attached to the resin is a sulfone group, an acrylic group, or the like, preferably an H + type, and more preferably a sulfone group.
  • ion exchange resins examples include Amberlyst 15 (manufactured by Rohm and Hers), Diaion PK-208H, PK-216H, PK-228H (manufactured by Mitsubishi Kasei), Burolite CT-175, CT -171, CT-169 (manufactured by Burolite) and the like. Of these, Burolite CT-175 (manufactured by Burolite) is particularly preferable.
  • stirring is performed to hydrolyze the reactive metal compound to obtain a hydrolyzate or a condensate thereof.
  • the stirring time (reaction time) ) Is preferably 3 minutes or more, particularly preferably 5 minutes or more.
  • reaction temperature shall be 0 degreeC or more.
  • the reaction time is too long, the molecular weight of the condensate becomes so large that haze may be increased.
  • the reaction temperature is preferably 0 to 50 ° C.
  • the particle size of the cation exchange resin used in the present embodiment is not particularly limited, but the average particle size is preferably in the range of 10 to 2000 ⁇ m.
  • the average particle size is less than 10 ⁇ m, filterability and liquid breakage may be deteriorated during the resin separation after the treatment.
  • the average particle size exceeds 2000 ⁇ m, the surface area per mass decreases, and the hydrolysis efficiency There is a problem that is low.
  • the particle diameters are uniform, a chipped or cracked particle may be partially mixed.
  • the ion exchange capacity of the ion exchange resin is preferably 0.1 milliequivalent / ml or more. If it is less than 0.1 milliequivalent / ml, the hydrolysis efficiency is lowered and productivity may be lowered.
  • the addition amount of the ion exchange resin as a solid catalyst is preferably 0.00001 to 30% by mass, more preferably 0.001 based on the reactive metal compound capable of hydrolysis polycondensation. ⁇ 20% by weight. If the amount of the ion exchange resin is too large, the condensation proceeds preferentially, and the molecular weight of the condensate becomes too large. Moreover, when there is too little quantity of an ion exchange resin, sufficient activity required for a hydrolysis cannot be obtained, and a hydrolyzate or its condensate cannot fully be obtained.
  • water and alcohol are mixed in advance, a reactive metal compound is added and mixed therein, and then the solid catalyst is added and stirred to proceed the hydrolysis. It is preferable. In addition, it is also preferable that water and alcohol are mixed in advance and the solid catalyst is added thereto, and then the reactive metal compound is further added with stirring to proceed the hydrolysis.
  • metal refers to “Chemistry of the Periodic Table” by Iwanami Shoten, Kazuo Saito, p. 71.
  • a metal according to 71 that is, a metal containing a semimetallic atom.
  • reactive metal compounds capable of hydrolytic polycondensation used in this embodiment include metal alkoxides, metal diketonates, metal alkyl acetoacetates, metal isocyanates, and reactive metal halides.
  • the metal species is an alkoxide of Si, Ti, Zr or Al, and particularly preferably an alkoxide of Si.
  • Such a reactive metal compound capable of hydrolytic polycondensation has M as the central metal, q as the number of atoms, A as the non-hydrolyzed substituent, p as the number of substituents, B as the hydrolyzable substituent,
  • r is the number of substituents, the reaction is ideally completed as shown in the following formula (1), and a metal oxide is obtained.
  • Equation (1) A p M q B r ⁇ A p M q O r / 2
  • a compound substituted with one, two, or three per atom of the metal by a non-hydrolyzed substituent may be included.
  • the amount of the metal compound having a substituent that is not hydrolyzed is preferably 50 mol% or less of the metal compound to be added.
  • a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group is preferable.
  • an alkyl group for example, methyl group, ethyl group) Group
  • cycloalkyl group eg cyclopentyl group, cyclohexyl group etc.
  • aralkyl group eg benzyl group, 2-phenethyl group etc.
  • aryl group eg phenyl group, naphthyl group etc.
  • heterocyclic group eg furan, Thiophene, pyridine etc.
  • alkoxy group eg methoxy group, ethoxy group etc.
  • aryloxy group eg phenoxy group etc.
  • acyl group halogen atom, cyano group, amino group, alkylthio group, glycidyl group, vinyl group
  • Examples of reactive metal compounds capable of polycondensation used in this embodiment include silicon compounds such as tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetraisopropoxysilane, tetra-n-butoxysilane, Examples thereof include tetra-t-butoxysilane, tetrakis (methoxyethoxy) silane, tetrakis (methoxypropoxy) silane, tetrachlorosilane, and tetraisocyanate silane.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • tetraisopropoxysilane tetra-n-butoxysilane
  • Examples thereof include tetra-t-butoxysilane, tetrakis (methoxyethoxy) silane, tetrakis (methoxypropoxy) silane, t
  • silicon compounds having substituent groups that are not hydrolyzed include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldiisopropoxysilane, and diethyldiisosilane.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium-n-butoxide, tetrachlorotitanium, titanium diisopropoxide (bis-2,4-pentanedionate), titanium diiso Propoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, titanium lactate, titanium triethanolaminate, butyl titanate dimer, etc. Can be mentioned.
  • Zirconium compounds include zirconium-n-propoxide, zirconium-n-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, etc. Is mentioned.
  • Aluminum compounds include aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-s-butoxide, aluminum-di-s-butoxide ethylacetylacetonate, aluminum-t-butoxide, almatrane, aluminum phenoxide. , Aluminum acetylacetonate, aluminum ethylacetylacetonate and the like.
  • Examples of the other metal compound include barium isopropoxide, calcium ethoxide, copper ethoxide, magnesium ethoxide, manganese methoxide, strontium isopropoxide, tin ethoxide, zinc methoxyethoxide, trimethoxyborane, Triethoxyborane, antimony ethoxide, arsenic triethoxide, bismuth t-pentoxide, chromium isopropoxide, erbium methoxyethoxide, gallium ethoxide, indium methoxyethoxide, iron ethoxide, lanthanum isopropoxide, neodymium methoxyethoxide, praseodymium methoxy Ethoxide, samarium isopropoxide, vanadium triisobutoxide oxide, yttrium isopropoxide, tetramethoxygermane, teto Ethoxygerman
  • the reactive metal compound capable of polycondensation used in this embodiment may be a compound called double metal alkoxide having two metal atoms in the molecular species.
  • double metal alkoxides include aluminum copper alkoxide, aluminum titanium alkoxide, aluminum yttrium alkoxide, aluminum zirconium alkoxide, barium titanium alkoxide, barium yttrium alkoxide, barium zirconium alkoxide, indium tin alkoxide, lithium nickel alkoxide manufactured by Gerest Co., Ltd.
  • the hydroxyl group-containing polymer compound only needs to contain a hydroxyl group in the molecule, and examples thereof include synthetic polymers such as polyvinyl alcohol, polysaccharides such as starch, cellulose, carboxymethyl cellulose, sodium alginate, and derivatives thereof. It is done. These hydroxyl group-containing polymer compounds can be used singly or in appropriate combination of two or more.
  • Synthetic polymers include, for example, vinyl-based, polystyrene-based, polyacrylic-based, polyurethane-based, alkyd-based, melamine-based, urea-based, phenol-based, polyester-based, polyglycerol-based polymer compounds having a hydroxyl group, and multi-branched shapes.
  • a high molecular compound having a hydroxyl group having can be used.
  • the polymer having a hydroxyl group may be a polymer into which a monomer having a hydroxyl group is introduced. In this case, the amount of hydroxyl groups and the introduction position of the polymer can be adjusted.
  • Examples of the monomer having a hydroxyl group include styrenes having a hydroxyl group such as 3-vinylphenol, hydroxymethylstyrene, 4-vinylbenzyl-4-hydroxybutyl ether, 4- (hydroxymethylsilylphenyl) styrene, and hydroxyethyl methacrylate.
  • An acrylic resin having a hydroxyl group such as N- (4- (4-hydroxyphenylsulfonyl) phenoxycarbonyl) methacrylamide may be used, and a vinyl monomer is preferable. Two or more kinds of these monomers having a hydroxyl group may be mixed and used.
  • Polysaccharides include starch, hydroxymethyl starch, hydroxyethyl starch, hydroxypropyl starch, glycogen, inulin, lichenin, cellulose, hemicellulose, amylopectin, heparin, heparitin sulfate, chondroitin sulfate, hyaluronic acid, keratosulfate, chitin, chitosan, agar , Carrageenan, alginic acid, fur celerane, locust bean gum, galactomannan, guar gum, syrup gum, tamarind gum, gum arabic, tragacanth gum, caraya gum, pectin, arabinogalactan, xanthan gum, gellan gum, pullulan, dextran, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxy Propyl methyl cellulose, carboxymethyl cellulose, methyl cell Over scan, ethyl cellulose, and the
  • cellulose derivatives are preferably used.
  • DAC diacetyl cellulose
  • CAP cellulose acetate propionate
  • CAB cellulose acetate butyrate
  • cellulose acetate phthalate cellulose Cellulose esters such as acetate trimellitate and cellulose nitrate are preferred.
  • the acyl group substitution degree is 1.0 to 2.6, and more preferably the acyl group substitution degree is 2.0 to 2.5.
  • the glass with a function of this embodiment is TN, IPS, FLC (Ferroelectric Liquid Crystal), AFLC (Anti-ferroelectric Liquid Crystal), OCB (Optically Compensated Bend), STN (SuperHedVN).
  • TN TN
  • IPS Fluoroelectric Liquid Crystal
  • AFLC Anti-ferroelectric Liquid Crystal
  • OCB Optically Compensated Bend
  • STN SuperHedVN
  • it is preferably used as a cover glass for a touch panel.
  • the thin film glass 2 may be bonded so as to come into contact with the touch panel 6 as shown in FIG. 2, or the function as shown in FIG.
  • the layer 5 side may be bonded to the touch panel 6.
  • the glass with a function of this embodiment is used as a cover glass for a touch panel, the surface smoothness, hardness and toughness are excellent, and the adhesion strength between layers does not decrease even in a high temperature / high humidity environment.
  • a touch panel having excellent properties can be obtained, which is very advantageous.
  • a resin film in which a functional layer is laminated and a thin film glass are laminated through an adhesive layer, and the adhesive layer has a reactive metal compound and a high hydroxyl group content. It contains a condensate with a molecular compound.
  • the soft layer as in the case of using a conventional adhesive for example, an acrylic adhesive
  • a conventional adhesive for example, an acrylic adhesive
  • the adhesive layer according to the present invention penetrates into the film, it does not have a thickness, can be made thinner than before, and can also improve hardness and adhesion strength.
  • adhesion between layers can be maintained even under high temperature and high humidity.
  • uneven pasting can be reduced, and surface smoothness can be ensured.
  • the bonding area can be increased and the glass which improved the toughness (cracking property) with the thin film can be obtained.
  • the functional layer is a hard coat layer, an antireflection layer or an antiglare layer. This is because the effect of the present invention is more exhibited when the functional layer is such a layer.
  • the resin film contains a cellulosic resin.
  • the cellulose-based resin has a strong hydrophilicity, so that the affinity between the adhesive layer containing a hydroxyl group and the resin film is further improved, and the adhesion between the thin film glass and the resin film having a functional layer is further improved.
  • the thickness of the resin film is 40 ⁇ m or less. Thereby, a thinner film can be achieved in the functional glass.
  • the hydroxyl group-containing polymer compound is preferably a cellulose ester having a total acyl group substitution degree of 1.0 to 2.6.
  • the functional layer has a pencil hardness of 2H to 6H. This is because in such a case, the effect of the present invention is more exhibited.
  • the glass with a function is preferably used as a cover glass for a touch panel.
  • a triacetyl cellulose film (Konica Minolta Tack KC4UA, manufactured by Konica Minolta Co., Ltd.) having a film thickness of 40 ⁇ m was used.
  • the resin composition of the hard coat layer is composed of 100 parts by mass of pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate PE-3A), isocyanuric acid EO-modified triacrylate (manufactured by Toagosei Co., Ltd .: Aronix M-315) 15 parts by mass and 3 parts by mass of the photopolymerization initiator were adjusted to a solid content of 50% with a methyl ethyl ketone (MEK) solvent.
  • MEK methyl ethyl ketone
  • the stirred mixed solution is applied and dried by a gravure coating method so as to have a wet film thickness of 20 ⁇ m (dry film thickness after drying is 10 ⁇ m), and irradiated with UV light of 200 mJ / cm 2 by a high-pressure mercury lamp. A laminated resin film was obtained.
  • 1-hydroxycyclohexyl phenyl ketone manufactured by Ciba Specialty Chemicals Co., Ltd .: Irgacure 1844 was used in this example and in all the following examples and comparative examples.
  • fluorine-containing epoxy compound 1 and the hollow silica-based particle dispersion were prepared as follows.
  • 1700 g of pure water is added to 500 g of this core particle dispersion and heated to 98 ° C., and while maintaining this temperature, a silicate solution (SiO 2) obtained by dealkalizing a sodium silicate aqueous solution with a cation exchange resin.
  • a dispersion of core particles on which the first silica coating layer was formed was obtained by adding 3000 g (concentration: 3.5% by mass) (step b).
  • step c 1125 g of pure water is added to 500 g of the core particle dispersion liquid on which the first silica coating layer having a solid content concentration of 13 mass% is formed by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (35.5%) is further added dropwise.
  • the pH was adjusted to 1.0 and dealumination was performed.
  • step c while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated, and SiO 2.
  • a dispersion of Al 2 O 3 porous particles was prepared (step c).
  • a mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1750 g of ethanol, and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 mass%) was added.
  • the surface of the porous particles on which the silica coating layer was formed was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer.
  • a hollow silica-based particle dispersion having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • the thickness of the first silica coating layer of the hollow silica-based particles was 3 nm, the average particle size was 45 nm, MOX / SiO 2 (molar ratio) was 0.0017, and the refractive index was 1.28.
  • the average particle diameter was measured by a dynamic light scattering method.
  • a triacetyl cellulose film (Konica Minolta Tack KC4UA, manufactured by Konica Minolta Co., Ltd.) having a film thickness of 40 ⁇ m was used.
  • the above low refractive index composition as the resin composition of the antireflection layer, it was applied and dried to a wet film thickness of 20 ⁇ m (dry film thickness after drying of 10 ⁇ m) by a gravure coating method, and 200 mJ / cm by a high-pressure mercury lamp.
  • the resin film on which the hard coat layer was laminated was obtained by irradiating the ultraviolet ray 2 .
  • a functional glass (thickness 70 ⁇ m) was obtained in the same manner as in Example 1 except that the resin film was a resin film laminated with the antireflection layer obtained above.
  • the glass with function of Example 2 is referred to as glass 2 with function.
  • Example 3> Manufacture of resin film with functional layer (antiglare layer) laminated
  • a triacetyl cellulose film Konica Minolta Tack KC4UA, manufactured by Konica Minolta Opto Co., Ltd.
  • the resin composition of the antiglare layer is composed of 100 parts by mass of pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Acrylate PE-3A), polystyrene particles, 60 parts by mass of SX-130H, and photopolymerization is started.
  • the anti-glare layer is formed by applying and drying the stirred mixed solution so as to have a wet film thickness of 20 ⁇ m (dry film thickness after drying of 10 ⁇ m) by a gravure coating method, and then irradiating with 200 mJ / cm 2 of ultraviolet light with a high-pressure mercury lamp. A laminated resin film was obtained.
  • MEK methyl ethyl ketone
  • a functional glass (thickness 70 ⁇ m) was obtained in the same manner as in Example 1 except that the resin film was a resin film laminated with the antiglare layer obtained above.
  • the glass with function of Example 3 is referred to as glass 3 with function.
  • Example 4 A functional glass (thickness: 70 ⁇ m) was obtained in the same manner as in Example 1 except that a cellulose acetate propionate film having a thickness of 40 ⁇ m was used as the resin film. Let the glass with a function of Example 4 be the glass 4 with a function.
  • Example 5 A functional glass (thickness 70 ⁇ m) was obtained in the same manner as in Example 1 except that a TAC-acrylic hybrid film (preparation method will be described later) having a thickness of 40 ⁇ m was used as the resin film.
  • the glass with a function of Example 5 be the glass 5 with a function.
  • the above respective compositions were sufficiently dissolved while stirring and heating to prepare a dope 1.
  • the acrylic resin (A) and the cellulose ester resin (B) were prepared according to a conventional method.
  • the prepared dope was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
  • the solvent of the peeled dope 1 is evaporated at 35 ° C., slit to 1 m width, and then 2.0 times in the transport direction (MD direction) by zone stretching and the width direction (TD direction) by tenter stretching.
  • the film was dried at a drying temperature of 135 ° C. while being stretched 2.0 times. At this time, the residual solvent amount when starting stretching with the tenter was 8%.
  • the amount of residual solvent of the produced film was 700 ppm, the film thickness was 40 ⁇ m, and the winding length was 4000 m.
  • Example 6 A functional glass (thickness 55 ⁇ m) was obtained in the same manner as in Example 1 except that the film thickness of the triacetyl cellulose film was changed to one having a thickness of 25 ⁇ m (Konica Minolta Tack KC2UA, manufactured by Konica Minolta Opto Co., Ltd.). Let the glass with a function of Example 6 be the glass 6 with a function.
  • Example 7 A functional glass (thickness: 45 ⁇ m) was obtained in the same manner as in Example 1, except that the film thickness of the triacetylcellulose film prepared according to a conventional method was changed to that of 15 ⁇ m.
  • the glass with function of Example 7 is referred to as glass 7 with function.
  • ⁇ Comparative example 2> A functional glass (thickness: 90 ⁇ m) was obtained in the same manner as in Example 1 except that an acrylic adhesive (UV-3610, manufactured by Toa Gosei Co., Ltd.) was used instead of the adhesive A.
  • an acrylic adhesive UV-3610, manufactured by Toa Gosei Co., Ltd.
  • the glass with a function of the comparative example 2 be the glass 9 with a function.
  • the pencil hardness was 2H or more, and the evaluations of wet heat durability adhesion were all good.
  • HB glue organic-inorganic hybrid glue
  • the pencil hardness is HB or less
  • the evaluation of wet heat durability adhesion is x. This is presumably because, when the adhesive layer was PSA or an acrylic adhesive, the adhesiveness between the adhesive layer and the thin film glass and the adhesiveness between the adhesive layer and the resin film with a functional layer could not be improved at the same time.
  • Example 1 since the adhesive used in the comparative example does not penetrate into the film unlike the adhesive structure of the present invention, the functional glass of Example 1 can be made thinner compared to Comparative Example 1. It was.
  • the present invention has wide industrial applicability in the technical field of glass used for display devices and the like.

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to a functional glass, in which a resin film on which a functional layer has been layered and a thin film glass are laminated via an adhesive layer, is characterized in that the adhesive layer comprises a condensate of a reactive metal compound and a hydroxyl group-containing polymer compound.

Description

機能付きガラスFunctional glass
 本発明は、ガラスに機能を付与した機能付きガラスに関するものである。 The present invention relates to a glass with a function provided with a function.
 近年、表示装置の大型化が進む一方でモバイル化も進んでおり、薄型かつ軽量の表示装置が必要とされている。表示装置には、一般的にガラス基板が使用されており、このガラス基板を薄膜化することで、表示装置を薄型・軽量にすることができる。しかし、ガラス基板を薄膜化すると、ガラス基板が割れやすくなり、ハンドリング性が悪くなる。 In recent years, the size of display devices has been increasing, and mobile devices have also been increasing. Thin and lightweight display devices are required. A glass substrate is generally used for the display device, and the display device can be made thin and light by thinning the glass substrate. However, when the glass substrate is thinned, the glass substrate is easily broken and the handling property is deteriorated.
 そこで、特許文献1では、飛散防止効果に優れ、さらに透明性、高表面硬度性、耐候性、耐薬品性、耐久性及び耐熱性に優れた飛散防止性能付きガラスを提供するために、光硬化性を有するかご型のシルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて、樹脂フィルムと積層させたことを特徴とする飛散防止性能付きガラスを提案している。 Therefore, in Patent Document 1, in order to provide a glass with anti-scattering performance that is excellent in anti-scattering effect and further excellent in transparency, high surface hardness, weather resistance, chemical resistance, durability, and heat resistance, photocuring is performed. Has proposed a glass with anti-scattering performance characterized by curing a photocurable resin composition containing a cage-shaped silsesquioxane resin having a property and laminating it with a resin film.
 また、特許文献2においては、耐衝撃性、耐貫通性に優れた厚さの薄いフィルム強化ガラスが得られるとして、ガラス板と有機ポリマーフィルムを、エチレン酢酸ビニル共重合体、ポリビニルアセタール系樹脂及び塩化ビニル樹脂から選ばれる少なくとも1種からなる透明接着剤層を介して積層したフィルム強化ガラスが報告されている。 In Patent Document 2, a thin film tempered glass excellent in impact resistance and penetration resistance can be obtained. A glass plate and an organic polymer film are made of an ethylene vinyl acetate copolymer, a polyvinyl acetal resin, and A film tempered glass laminated through a transparent adhesive layer made of at least one selected from vinyl chloride resins has been reported.
 一方、特許文献3には、特定範囲のマルテンス硬さを有するハードコート粘着フィルムに、特定の総厚さとなるよう保護フィルム、剥離フィルムを組み合わせた飛散防止粘着シートとすることで、高硬度のハードコート層を有しながらも、打ち抜き加工時のハードコート層のクラックを生じ難くできること等が記載されている。 On the other hand, Patent Document 3 discloses a hard-hardened hardened adhesive sheet in which a hard coat adhesive film having a specific range of Martens hardness is combined with a protective film and a release film so as to have a specific total thickness. It describes that the crack of the hard coat layer at the time of punching can be made difficult to occur while having the coat layer.
 このように、表示装置に用いる基材ガラスにおいて、飛散防止シートやハードコート層を設け、ガラスを強化する技術は既にいくつか検討されている。 As described above, several techniques for reinforcing a glass by providing a scattering prevention sheet and a hard coat layer in a base glass used in a display device have already been studied.
 しかしながら、近年、そういった基材ガラスに対する薄膜化および硬度や平滑性の要求はさらに高まっている。特にディスプレイ画面を指で触ったり、ペンで押圧することによって入力できるタッチパネルが普及しているが、そのようなタッチパネルではとりわけ靱性(柔軟性)等も要求され、従来の基材ガラスでは十分ではない側面もあった。 However, in recent years, demands for thinning, hardness, and smoothness of such base glass have further increased. In particular, touch panels that can be input by touching the display screen with a finger or pressing with a pen are widespread, but such touch panels particularly require toughness (flexibility), and conventional base glass is not sufficient. There was also a side.
 また、従来の薄膜ガラスと機能層を貼り付ける手法としては、例えば、上記特許文献には、有機樹脂や両面粘着シールを塗布または貼り付けることによって行う手法(特許文献1および2)や、光硬化性樹脂を接着層として使用する手法(特許文献3)等が記載されている。 Moreover, as a method of pasting a conventional thin film glass and a functional layer, for example, in the above patent document, a method (Patent Documents 1 and 2) performed by applying or pasting an organic resin or a double-sided adhesive seal, or photocuring Describes a technique (Patent Document 3) using an adhesive resin as an adhesive layer.
 ところが、従来用いられていたような有機樹脂や光硬化性樹脂を用いた接着層では、接着層の弾性率が低く、表面硬度を低下させるという問題があった。また、高温・高湿環境下においては接着層の密着強度が低下するという問題もあった。 However, an adhesive layer using an organic resin or a photocurable resin that has been conventionally used has a problem that the elastic modulus of the adhesive layer is low and the surface hardness is lowered. In addition, there is a problem that the adhesion strength of the adhesive layer is reduced in a high temperature and high humidity environment.
特開2010-125719号公報JP 2010-125719 A 特開2002-79610号公報JP 2002-79610 A 特開2010-275385号公報JP 2010-275385 A
 本発明はかかる事情に鑑みてなされたものであって、機能層を直接接着剤と接触させて薄膜ガラス上に積層した構成であっても、湿熱耐久試験時の環境変動による密着強度の低下を抑えるとともに、薄膜化、表面硬度、靱性、ハンドリング性を向上させることができる機能付きガラスを提供することを目的とする。 The present invention has been made in view of such circumstances, and even when the functional layer is in direct contact with the adhesive and laminated on the thin film glass, the adhesion strength is reduced due to environmental fluctuations during the wet heat durability test. It aims at providing the glass with a function which can suppress, and can improve film thickness, surface hardness, toughness, and handleability.
 本発明者は、鋭意検討した結果、下記構成を有する機能付きガラスによって、前記課題が解決することを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of intensive studies, the present inventor has found that the above problem can be solved by a glass with a function having the following configuration, and has further completed the present invention based on such knowledge.
 すなわち、本発明の一局面に係る機能付きガラスは、機能層が積層された樹脂フィルムと薄膜ガラスとが接着層を介して積層されており、前記接着層が、反応性金属化合物と水酸基含有高分子化合物との縮合物を含んでいることを特徴とする。 That is, in the glass with function according to one aspect of the present invention, a resin film in which a functional layer is laminated and a thin film glass are laminated through an adhesive layer, and the adhesive layer has a reactive metal compound and a high hydroxyl group content. It contains a condensate with a molecular compound.
本発明の実施態様に係る機能付きガラスの一構成例を示す断面図である。It is sectional drawing which shows one structural example of the glass with a function which concerns on the embodiment of this invention. 本発明の実施態様に係る機能付きガラスをタッチパネルに使用する場合の一構成例を示す断面図である。It is sectional drawing which shows one structural example in the case of using the glass with a function which concerns on the embodiment of this invention for a touchscreen. 本発明の実施態様に係る機能付きガラスをタッチパネルに使用する場合の別の構成例を示す断面図である。It is sectional drawing which shows another structural example in the case of using the glass with a function which concerns on the embodiment of this invention for a touchscreen.
 以下、本発明に係る実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described in detail, but the present invention is not limited thereto.
 〔機能付きガラスについて〕
 図1は、本実施形態に係る機能付きガラス1の一構成例を示す断面図である。本実施形態の機能付きガラス1は、薄膜ガラス2上に、接着層3、樹脂フィルム4および機能層5がこの順で積層されて構成されている。
[About glass with functions]
FIG. 1 is a cross-sectional view showing a configuration example of the glass with function 1 according to the present embodiment. The glass with function 1 of this embodiment is configured by laminating an adhesive layer 3, a resin film 4, and a functional layer 5 in this order on a thin film glass 2.
 機能層5は、例えば、ハードコート層、反射防止層または防眩層であることが好ましい。機能層5は樹脂フィルム4上に、例えば、グラビアコーター等の公知の方法によって積層することができる。 The functional layer 5 is preferably a hard coat layer, an antireflection layer or an antiglare layer, for example. The functional layer 5 can be laminated on the resin film 4 by a known method such as a gravure coater.
 接着層3は、反応性金属化合物(無機系の化合物)と水酸基含有高分子化合物(有機系の化合物)との縮合物を含む、有機-無機ハイブリッド型の接着層(HB糊)である。反応性金属化合物に含まれる金属成分は、共有結合などの化学結合により、ガラスの材料成分と強固に結びつきやすい。また、水酸基含有高分子化合物は水酸基を含んでいるため、樹脂フィルム4との親和性を向上させて、接着性を向上させることができる。また、有機系の化合物と無機系の化合物とは相溶性に乏しいが、これらの縮合物を構成することで、単層構造で双方の特性を有する接着層3を構成することができる。さらに、水酸基含有高分子化合物はゾルゲル硬化前のシラノール基含有低分子成分であるため、機能層が積層された樹脂フィルムの分子内に入り込み浸透することができるため、前記接着層は、フィルムに浸透するため厚みを有さず、従来よりも薄膜化を図ることができる。 The adhesive layer 3 is an organic-inorganic hybrid adhesive layer (HB glue) containing a condensate of a reactive metal compound (inorganic compound) and a hydroxyl group-containing polymer compound (organic compound). The metal component contained in the reactive metal compound tends to be strongly bonded to the material component of the glass by a chemical bond such as a covalent bond. Moreover, since the hydroxyl group-containing polymer compound contains a hydroxyl group, the affinity with the resin film 4 can be improved and the adhesiveness can be improved. Further, the organic compound and the inorganic compound are poorly compatible, but by forming these condensates, the adhesive layer 3 having both characteristics in a single layer structure can be formed. Furthermore, since the hydroxyl group-containing polymer compound is a silanol group-containing low molecular component before sol-gel curing, it can penetrate into and penetrate into the molecule of the resin film on which the functional layer is laminated, so that the adhesive layer penetrates the film. Therefore, it does not have a thickness and can be made thinner than before.
 そして、上記の有機-無機ハイブリッド型の接着層3を用いることにより、この接着層3を介して薄膜ガラス2と機能層5が積層された樹脂フィルム4との密着性を向上させることができる。これにより、耐久試験時の環境変動によっても層間密着強度が劣化しにくくなる。また、薄膜ガラス2と機能層5が積層された樹脂フィルム4との密着性向上により、機能付きガラスの硬度および靱性を同時に高めることができる。 Then, by using the organic-inorganic hybrid adhesive layer 3 described above, the adhesion between the thin film glass 2 and the resin film 4 on which the functional layer 5 is laminated can be improved through the adhesive layer 3. As a result, the interlayer adhesion strength is less likely to deteriorate due to environmental fluctuations during the durability test. Moreover, the hardness and toughness of glass with a function can be improved simultaneously by improving the adhesion between the thin film glass 2 and the resin film 4 on which the functional layer 5 is laminated.
 上記した樹脂フィルム4の厚さは、40μm以下であることが望ましい。この場合、機能層5が積層された樹脂フィルム4が薄くなるため、機能付きガラス1をより薄膜化することができる。 The thickness of the resin film 4 is preferably 40 μm or less. In this case, since the resin film 4 on which the functional layer 5 is laminated becomes thin, the glass with function 1 can be made thinner.
 また、上記の水酸基含有高分子化合物は、総アシル基置換度が1.0~2.6のセルロースエステルであることが望ましい。このようなセルロースエステルとしては、例えば、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)等を用いることができる。このようなセルロースエステルは、水酸基を含有し、機能層5が積層された樹脂フィルム4との親和性が向上するため、機能付きガラス1における層間密着性を向上させる材料として非常に有効である。 The hydroxyl group-containing polymer compound is preferably a cellulose ester having a total acyl group substitution degree of 1.0 to 2.6. As such a cellulose ester, for example, triacetyl cellulose (TAC), diacetyl cellulose (DAC), cellulose acetate propionate (CAP), or the like can be used. Such a cellulose ester is very effective as a material for improving interlayer adhesion in the glass with function 1 because it contains a hydroxyl group and improves the affinity with the resin film 4 on which the functional layer 5 is laminated.
 〔機能付きガラスの各層について〕
 (薄膜ガラス)
 機能付きガラスを構成する薄膜ガラスとしては、各種成形法によって成形されたものを使用することができる。例えばロールアウト法、リドロー法、ダウンドロー法、フロート法等によって成形された薄膜ガラスを使用できる。
[About each layer of glass with function]
(Thin glass)
As thin film glass which comprises glass with a function, what was shape | molded by various shaping | molding methods can be used. For example, a thin film glass formed by a rollout method, a redraw method, a downdraw method, a float method, or the like can be used.
 薄膜ガラスの形状については特に限定はなく、チップカット形状であってもよいが、ロール・トゥ・ロールでの生産の適性の観点から、ロール状であることが好ましい。 The shape of the thin film glass is not particularly limited and may be a chip cut shape, but is preferably a roll shape from the viewpoint of suitability for production on a roll-to-roll basis.
 薄膜ガラスの平均厚さは、5~200μmであることが好ましく、5~100μmであることがより好ましい。厚さが5μm未満では、搬送などの取り扱いが難しく、厚さが200μmを超えると、薄膜の価値が薄れてしまう。 The average thickness of the thin film glass is preferably 5 to 200 μm, and more preferably 5 to 100 μm. When the thickness is less than 5 μm, handling such as conveyance is difficult, and when the thickness exceeds 200 μm, the value of the thin film is diminished.
 薄膜ガラスは、多成分系酸化物ガラスであれば特に限定はない。例えば、無アルカリガラス、硼珪酸ガラス、アルミノシリケートガラス等が薄膜ガラスとして特に好適であり、その中でも無アルカリガラスは最も好ましい。 The thin film glass is not particularly limited as long as it is a multi-component oxide glass. For example, alkali-free glass, borosilicate glass, aluminosilicate glass and the like are particularly suitable as the thin film glass, and among them, alkali-free glass is most preferred.
 (機能層)
 上述したように、本実施形態において、機能層は、ハードコート層、反射防止層又は防眩層であることが好ましいが、それらに限定はされない。
(Functional layer)
As described above, in the present embodiment, the functional layer is preferably a hard coat layer, an antireflection layer, or an antiglare layer, but is not limited thereto.
 〔ハードコート層〕
 ハードコート層としては、特に限定はされないが、例えば、硬化性アクリル樹脂等を用いることができる。特に、紫外線により硬化する紫外線硬化化合物(樹脂)を含有する層であることが好ましく、耐擦り傷性に優れたガラスを得ることができる。
[Hard coat layer]
Although it does not specifically limit as a hard-coat layer, For example, a curable acrylic resin etc. can be used. In particular, a layer containing an ultraviolet curable compound (resin) that is cured by ultraviolet rays is preferable, and a glass excellent in scratch resistance can be obtained.
 ハードコート層の紫外線硬化樹脂層は、エチレン性不飽和モノマーを含む成分を重合させて形成した樹脂層であることが好ましい。ここで、紫外線硬化樹脂層は、紫外線の外に電子線のような活性線照射により架橋反応などを経て硬化する樹脂を主たる成分とする層をいう。紫外線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることができる。 The ultraviolet curable resin layer of the hard coat layer is preferably a resin layer formed by polymerizing a component containing an ethylenically unsaturated monomer. Here, the ultraviolet curable resin layer refers to a layer mainly composed of a resin which is cured through a crosslinking reaction or the like by irradiation with an active ray such as an electron beam in addition to ultraviolet rays. Typical examples of the ultraviolet curable resin include an ultraviolet curable resin and an electron beam curable resin. However, a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used. Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.
 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、若しくはプレポリマーを反応させて得られた生成物に更に2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151110号等を参照)。 In general, UV-curable acrylic urethane resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate). And can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (see, for example, JP-A-59-151110).
 紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号を参照)。 UV curable polyester acrylate resins can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers (see, for example, JP-A-59-151112). .
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることができる(例えば、特開平1-105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種若しくは2種以上を選択して使用することができる。 Specific examples of ultraviolet curable epoxy acrylate resins include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoreaction initiator added thereto (for example, JP-A-1- No. 105738). As the photoinitiator, one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.
 また、紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート(PETA)、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。 Specific examples of ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate (PETA), pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate (DPHA), alkyl Examples thereof include modified dipentaerythritol pentaacrylate.
 特に、好ましい樹脂は、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールトリアクリレート(PETA)、ペンタエリスリトールテトラアクリレート(PETTA)等である。 Particularly preferred resins are dipentaerythritol hexaacrylate (DPHA), pentaerythritol triacrylate (PETA), pentaerythritol tetraacrylate (PETTA) and the like.
 これらの樹脂は通常公知の光増感剤と共に使用される。また上記光反応開始剤も光増感剤としても使用できる。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、エポキシアクリレート系の光反応剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は該組成物の通常1~10質量%添加することができ、2.5~6質量%であることが好ましい。 These resins are usually used together with known photosensitizers. Moreover, the said photoinitiator can also be used as a photosensitizer. Specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Further, when using an epoxy acrylate photoreactive agent, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.
 樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。 Examples of the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond. Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
 例えば、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、旭電化工業株式会社製)、或いはコーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業株式会社製)、或いはセイカビームPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、或いはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、或いはRC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、大日本インキ化学工業株式会社製)、或いはオーレックスNo.340クリヤ(中国塗料株式会社製)、或いはサンラッドH-601(三洋化成工業株式会社製)、或いはSP-1509、SP-1507(昭和高分子株式会社製)、或いはRCC-15C(グレース・ジャパン株式会社製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成株式会社製)或いはこの他の市販のものから適宜選択して利用できる。 For example, as an ultraviolet curable resin, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by Asahi Denka Kogyo Co., Ltd.) Or KOHEI Hard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (from Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10 , DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, large Manufactured by Seika Kogyo Co., Ltd.), or KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB Corporation), or RC-5015, RC-5016, RC-5020, RC-5031, RC- 5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.) or Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601 (manufactured by Sanyo Chemical Industries, Ltd.), SP-1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.), or RCC-15C (Grace Japan Ltd.) (Manufactured by the company), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.) or other commercially available products.
 紫外線硬化樹脂層は公知の方法で塗設することができる。紫外線硬化樹脂層を塗設する際の溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、或いはこれらを混合し利用できる。好ましくは、プロピレングリコールモノ(炭素数1~4のアルキル基)アルキルエーテルできはプロピレングリコールモノ(炭素数1~4のアルキル基)アルキルエーテルエステルを5質量%以上、更に好ましくは5~80質量%以上含有する溶媒が用いられる。 The UV curable resin layer can be applied by a known method. As the solvent for coating the ultraviolet curable resin layer, for example, it can be appropriately selected from hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or a mixture thereof can be used. . Preferably, propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether, preferably propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass. The solvent contained above is used.
 紫外線硬化性樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20~10000mJ/cm程度あればよく、好ましくは、50~2000mJ/cmである。近紫外線領域~可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用できる。 As a light source for forming a cured film layer by photocuring reaction of an ultraviolet curable resin, any light source that generates ultraviolet rays can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual lamps, but the amount of light irradiated may if 20 ~ 10000mJ / cm 2 degrees, preferably 50 ~ 2000mJ / cm 2. In the near ultraviolet region to the visible light region, it can be used by using a sensitizer having an absorption maximum in that region.
 紫外線硬化性樹脂組成物は塗布乾燥された後、紫外線を光源より照射するが、照射時間は0.5秒~5分がよく、紫外線硬化性樹脂の硬化効率、作業効率とから3秒~2分がより好ましい。 The UV curable resin composition is coated and dried and then irradiated with UV light from a light source. The irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.
 こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機或いは有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができ、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等を挙げることができ、紫外線硬化性樹脂組成物に加えることができる。これらの微粒子粉末の平均粒径としては、0.005~5μmが好ましく0.1~5.0μm、さらには0.1~4.0μmであることがハードコート層を形成する塗布組成物に添加した際の組成物の安定性から特に好ましい。 It is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent blocking and to improve scratch resistance. Examples of the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of the organic fine particles include polymethacrylic acid. Methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder Polyamide-based resin powder, polyimide-based resin powder, or polyfluorinated ethylene-based resin powder, and the like can be added to the ultraviolet curable resin composition. The average particle size of these fine particle powders is preferably 0.005 to 5 μm, more preferably 0.1 to 5.0 μm, and further preferably 0.1 to 4.0 μm added to the coating composition for forming the hard coat layer. It is particularly preferable from the viewpoint of the stability of the composition.
 紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1~30質量部となるように配合することが望ましい。 Desirably, the proportion of the ultraviolet curable resin composition and the fine particle powder is 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.
 この様にして形成された紫外線硬化樹脂を硬化させた層は、JISB 0601に規定される中心線平均粗さRaが膜厚1~50nmのハードコート層であっても、Raが0.1~1μm程度の防眩層であってもよい。 The layer formed by curing the ultraviolet curable resin formed in this way is a hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JISB 0601. An antiglare layer of about 1 μm may be used.
 〔反射防止層〕
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体である保護フィルムよりも屈折率の低い低屈折率層、もしくは支持体である保護フィルムよりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
(Antireflection layer)
The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is composed of a low refractive index layer having a refractive index lower than that of the protective film as a support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as a support. Preferably it is. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
 反射防止層を積層した樹脂フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 As the layer structure of the resin film laminated with the antireflection layer, the following structure can be considered, but it is not limited to this.
 樹脂フィルム/防眩層/低屈折率層
 樹脂フィルム/防眩層/中屈折率層/低屈折率層
 樹脂フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層
 樹脂フィルム/防眩層/高屈折率層(導電性層)/低屈折率層
 樹脂フィルム/中間層/防眩層/低屈折率層
Resin film / Anti-glare layer / Low refractive index layer Resin film / Anti-glare layer / Medium refractive index layer / Low refractive index layer Resin film / Anti-glare layer / Medium refractive index layer / High refractive index layer / Low refractive index layer Resin film / Anti-glare layer / High refractive index layer (conductive layer) / Low refractive index layer Resin film / Intermediate layer / Anti-glare layer / Low refractive index layer
 ・低屈折率層
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。
Low Refractive Index Layer The low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm. The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機ケイ素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。 Note that the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR) General formula (OSi-1): Si (OR) 4
 前記一般式で表される有機ケイ素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトライソプロポキシシラン等が好ましく用いられる。 In the organic silicon compound represented by the general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetraisopropoxysilane and the like are preferably used.
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。またフッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる熱硬化性および/または光硬化性を有する化合物を含有しても良い。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物などである。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。その他、溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。 In addition, a solvent, and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used. Examples of the fluorine-containing polymer include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units. In addition, you may add a solvent, a silane coupling agent, a hardening | curing agent, surfactant, etc. as needed.
 ・高屈折率層
 高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。金属酸化また、用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
High refractive index layer The refractive index of the high refractive index layer is preferably adjusted to a refractive index in the range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本実施形態においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。 The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In this embodiment, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate. It is particularly preferable to use as the main component. In particular, it is preferable to contain zinc antimonate particles.
 これら金属酸化物微粒子の一次粒子の平均粒子径は10nm~200nmの範囲であり、10~150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。 The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%~5質量%、より好ましくは0.5質量%~3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。また高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。 The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined. The high refractive index layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。 The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced.
 また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF-、PF-等の無機イオン系、CFSO-、(CFSON-、CFCO-等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10~400質量部が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部である。 Moreover, you may contain an ionic compound. Examples of the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 -and PF 6- , CF 3 SO 2-, and the like. , (CF 3 SO 2 ) 2 N—, CF 3 CO 2 —, etc. The ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
 〔防眩層〕
 本実施形態において、防眩層は、散乱反射率の割合を前記範囲にコントロールするため、基本的には透明樹脂を主成分とするバインダー層と微粒子から構成されるのが好ましい。微粒子としては散乱反射率の割合を前記範囲にコントロールしやすい事からフッ素含有アクリル樹脂粒子が好ましい。次にフッ素含有アクリル樹脂粒子について説明する。
[Anti-glare layer]
In the present embodiment, the antiglare layer is preferably basically composed of a binder layer mainly composed of a transparent resin and fine particles in order to control the ratio of the scattering reflectance within the above range. As the fine particles, fluorine-containing acrylic resin particles are preferable because the ratio of the scattering reflectance is easily controlled within the above range. Next, the fluorine-containing acrylic resin particles will be described.
 フッ素含有アクリル樹脂粒子としては、例えばフッ素含有のアクリル酸エステル或いはメタクリル酸エステルのポリマーから形成された粒子である。 Fluorine-containing acrylic resin particles are, for example, particles formed from a fluorine-containing acrylic ester or methacrylic ester polymer.
 フッ素含有のアクリル酸エステル或いはメタクリル酸エステルの具体例としては、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H-ヘキサデカフルオロノニル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-パーフルオロデシルエチル(メタ)アクリレート、3-パーフルオロブチル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル(メタ)アクリレート、2-(パーフルオロ-3-メチルブチル)エチル(メタ)アクリレート、2-(パーフルオロ-5-メチルヘキシル)エチル(メタ)アクリレート、2-(パーフルオロ-7-メチルオクチル)エチル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、トリフルオロエチルメタクリレート、テトラフルオロプロピルメタクリレート、パーフルオロオクチルエチルアクリレート、2-(パーフルオロブチル)エチル-α-フルオロアクリレートが挙げられる。 Specific examples of fluorine-containing acrylic acid ester or methacrylic acid ester include 1H, 1H, 3H-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 7H- Dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorononyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (Meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2-perfluorodecylethyl (Meth) acrylate, 3-par Fluorobutyl-2-hydroxypropyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylate, 3-perfluorooctyl-2-hydroxypropyl (meth) acrylate, 2- (perfluoro-3-methylbutyl) ) Ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7-methyloctyl) ethyl (meth) acrylate, 3- (perfluoro-3-methylbutyl) ) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro-7-methyloctyl) -2-hydroxypropyl (meth) ) Acrylate, 1H-1 (Trifluoromethyl) trifluoroethyl (meth) acrylate, 1H, 1H, 3H-hexafluorobutyl (meth) acrylate, trifluoroethyl methacrylate, tetrafluoropropyl methacrylate, perfluorooctylethyl acrylate, 2- (perfluorobutyl) And ethyl-α-fluoroacrylate.
 また、フッ素含有アクリル樹脂粒子の中でも、2-(パーフルオロブチル)エチル-α-フルオロアクリレートからなる粒子、フッ素含有ポリメチルメタクリレート粒子、フッ素含有メタアクリル酸を架橋剤の存在下にビニル単量体と共重合させた粒子が好ましく、更に好ましくはフッ素含有ポリメチルメタクリレート粒子である。 Further, among the fluorine-containing acrylic resin particles, particles made of 2- (perfluorobutyl) ethyl-α-fluoroacrylate, fluorine-containing polymethyl methacrylate particles, and fluorine-containing methacrylic acid in the presence of a crosslinking agent are vinyl monomers. Particles copolymerized with are preferred, more preferably fluorine-containing polymethyl methacrylate particles.
 市販品としては、根上工業(株)製:MF-0043、日本ペイント製:S-4000、FS-701等が挙げられる。なお、これらのフッ素含有アクリル樹脂粒子は、単独で用いてもよいが、2種以上を組み合わせて用いてもよい。これらのフッ素含有アクリル樹脂粒子の状態は、粉体或いはエマルジョン等、どのような状態で加えられてもよい。また、特開2004-83707号公報の段落0028~0055に記載のフッ素含有架橋粒子を用いてもよい。 Commercially available products include Negami Kogyo Co., Ltd .: MF-0043, Nippon Paint: S-4000, FS-701, and the like. These fluorine-containing acrylic resin particles may be used alone or in combination of two or more. These fluorine-containing acrylic resin particles may be added in any state such as powder or emulsion. Further, fluorine-containing crosslinked particles described in paragraphs 0028 to 0055 of JP-A-2004-83707 may be used.
 フッ素含有アクリル樹脂粒子の屈折率は、1.38~1.44であることが好ましい。フッ素含有アクリル樹脂粒子の含有量としては、防眩層を構成する透明樹脂100質量部に対して、0.01~500質量部が好ましく、更に好ましくは0.1~100質量部、特に好ましくは1~60質量部である。 The refractive index of the fluorine-containing acrylic resin particles is preferably 1.38 to 1.44. The content of the fluorine-containing acrylic resin particles is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 100 parts by mass, particularly preferably 100 parts by mass of the transparent resin constituting the antiglare layer. 1 to 60 parts by mass.
 フッ素含有アクリル樹脂粒子の平均粒径は、1.5~6μmであり、2.0~4.0μmであることが好ましい。またフッ素含有アクリル樹脂粒子以外では、シリカ微粒子も好ましく用いられる。シリカ微粒子としては、日本アエロジル製、アエロジル200、200V、300、デグサ製、アエロジルOX50、TT600等、日本触媒社製、KEP-10、KEP-50、KEP-100等の商品名が挙げられる。シリカ微粒子は、コロイダルシリカを用いてもよい。コロイダルシリカとは、二酸化ケイ素をコロイド状に水または有機溶媒に分散させたものであり、特に限定はされないが球状、針状または数珠状である。このようなコロイダルシリカは市販されており、例えば、日産化学工業社のスノーテックスシリーズ、触媒化成工業社のカタロイド-Sシリーズ、バイエル社のレバシルシリーズ等が挙げられる。また、アルミナゾルや水酸化アルミニウムでカチオン変性したコロイダルシリカやシリカの一次粒子を2価以上の金属イオンで粒子間を結合し数珠状に連結した数珠状コロイダルシリカも好ましく用いられる。数珠状コロイダルシリカは日産化学工業社のスノーテックス-AKシリーズ、スノーテックス-PSシリーズ、スノーテックス-UPシリーズ等が挙げられ、具体的にはIPS-ST-L(イソプロパノールシリカゾル、粒子径40~50nm、シリカ濃度30%)、MEK-ST-MS(メチルエチルケトンシリカゾル、粒子径17~23nm、シリカ濃度35%)等、MEK-ST(メチルエチルケトンシリカゾル、粒子径10~15nm、シリカ濃度30%)、MEK-ST-L(メチルエチルケトンシリカゾル、粒子径40~50nm、シリカ濃度30%)、MEK-ST-UP(メチルエチルケトンシリカゾル、粒子径9~15nm(鎖状構造)、シリカ濃度20%)等が挙げられる。シリカ微粒子は重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ微粒子で有っても良い。重合性不飽和基は、好ましくはエチレン性不飽和基を有し、更に下記一般式(a)に示す基及び分子内にシラノール基を有する化合物又は加水分解によってシラノール基を生成する化合物であることが好ましい。 The average particle diameter of the fluorine-containing acrylic resin particles is 1.5 to 6 μm, and preferably 2.0 to 4.0 μm. Besides the fluorine-containing acrylic resin particles, silica fine particles are also preferably used. Examples of the silica fine particles include product names such as Nippon Aerosil Co., Ltd., Aerosil 200, 200V, 300, Degussa, Aerosil OX50, TT600, etc., Nippon Shokubai Co., Ltd., KEP-10, KEP-50, KEP-100 and the like. Colloidal silica may be used as the silica fine particles. Colloidal silica is obtained by dispersing silicon dioxide in water or an organic solvent in a colloidal form, and is not particularly limited, and is spherical, acicular or beaded. Such colloidal silica is commercially available and includes, for example, the Snowtex series of Nissan Chemical Industries, the Cataloid-S series of Catalytic Chemical Industries, and the Rebacil series of Bayer. Also, beaded colloidal silica in which primary particles of cation-modified with alumina sol or aluminum hydroxide are bonded in a bead shape by bonding the particles with divalent or higher metal ions. Examples of beaded colloidal silica include Snowtex-AK series, Snowtex-PS series, Snowtex-UP series, etc., manufactured by Nissan Chemical Industries, Ltd. Specifically, IPS-ST-L (isopropanol silica sol, particle size 40-50 nm) , Silica concentration 30%), MEK-ST-MS (methyl ethyl ketone silica sol, particle size 17-23 nm, silica concentration 35%), etc. MEK-ST (methyl ethyl ketone silica sol, particle size 10-15 nm, silica concentration 30%), MEK- ST-L (methyl ethyl ketone silica sol, particle diameter 40 to 50 nm, silica concentration 30%), MEK-ST-UP (methyl ethyl ketone silica sol, particle diameter 9 to 15 nm (chain structure), silica concentration 20%) and the like. The silica fine particles may be reactive silica fine particles surface-treated with an organic compound having a polymerizable unsaturated group. The polymerizable unsaturated group preferably has an ethylenically unsaturated group, and further has a group represented by the following general formula (a) and a compound having a silanol group in the molecule or a compound that generates a silanol group by hydrolysis. Is preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 [-U-C(=V)-NH-]の具体的には、[-O-C(=O)-NH-]、[-O-C(=S)-NH-]、[-S-C(=O)-NH-]、[-NH-C(=O)-NH-]、[-NH-C(=S)-NH-]、及び[-S-C(=S)-NH-]の6種である。これらの基は、1種単独で又は2種以上を組合わせて用いることができる。中でも、熱安定性の観点から、[-O-C(=O)-NH-]基と、[-O-C(=S)-NH-]基及び[-S-C(=O)-NH-]基の少なくとも1つとを併用することが好ましい。 Specifically, [—UC (═V) —NH—] includes [—O—C (═O) —NH—], [—O—C (═S) —NH—], [—S. —C (═O) —NH—], [—NH—C (═O) —NH—], [—NH—C (═S) —NH—], and [—S—C (═S) — NH-]. These groups can be used individually by 1 type or in combination of 2 or more types. Among them, from the viewpoint of thermal stability, [—O—C (═O) —NH—] group, [—O—C (═S) —NH—] group and [—S—C (═O) — It is preferable to use in combination with at least one of the NH— groups.
 シリカ微粒子への有機化合物の結合量は、シリカ微粒子を100質量%として、好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上、特に好ましくは1質量%以上である。 The amount of the organic compound bonded to the silica fine particles is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 1% by mass or more, based on 100% by mass of the silica fine particles.
 その他の微粒子として、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物も加えることができる。必要に応じて更に特開2000-241807号公報に記載の粒子を含んでもよい。その他の粒子の屈折率は、1.45~1.70であることが好ましく、より好ましくは1.45~1.65である。なお、粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定できる。 Other fine particles include UV-curable resin compositions such as polystyrene resin powder, polycarbonate resin powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, or polyfluorinated ethylene resin powder. Can be added. If necessary, it may further contain particles described in JP-A No. 2000-241807. The refractive index of the other particles is preferably 1.45 to 1.70, more preferably 1.45 to 1.65. Note that the refractive index of the particles is measured by measuring the turbidity by dispersing the same amount of particles in a solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes. The refractive index of the solvent can be measured by measuring with an Abbe refractometer.
 微粒子の添加量は、防眩層の全質量の10~90%であることが好ましく、より好ましくは20~80%であり、特に好ましくは30~75%である。また、平均粒径が0.01~1μmの粒子は、防眩層を形成する塗工液の安定性及び分散液の分散性から、含有量としては、防眩層を構成する透明樹脂100質量部に対して、0.01~500質量部が好ましく、更に好ましくは0.1~100質量部である。また、防眩層は後述する透明樹脂と前記微粒子とを含有する場合には、含有質量比で、透明樹脂:微粒子=99:1~70:30である事が好ましい。 The amount of fine particles added is preferably 10 to 90% of the total mass of the antiglare layer, more preferably 20 to 80%, and particularly preferably 30 to 75%. In addition, particles having an average particle diameter of 0.01 to 1 μm have a content of 100% by mass of the transparent resin constituting the antiglare layer because of the stability of the coating liquid forming the antiglare layer and the dispersibility of the dispersion. The amount is preferably 0.01 to 500 parts by weight, more preferably 0.1 to 100 parts by weight with respect to parts. Further, when the antiglare layer contains a transparent resin described later and the fine particles, it is preferable that the content ratio is transparent resin: fine particles = 99: 1 to 70:30.
 (機能層の性質・製法)
 なお、上述したような機能層の鉛筆硬度は2H~6H程度であることが好ましい。それは、表面の押され傷耐性に強くディスプレイの視認性の品質を保つ上で重要な特性であるからである。
(Functional layer properties and manufacturing method)
The pencil hardness of the functional layer as described above is preferably about 2H to 6H. This is because it is an important characteristic for maintaining the quality of the visibility of the display, which is highly resistant to surface scratches.
 ハードコート層や防眩層または反射防止層を、後述するような樹脂フィルムに塗布する方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押し出しコーター、エアードクターコーター等公知の方法を用いることができる。塗布の際の液膜厚(ウェット膜厚ともいう)で1~100μm程度で、0.1~30μmが好ましく、より好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μmである。 As a method for applying a hard coat layer, an antiglare layer or an antireflection layer to a resin film as described later, a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater, an air doctor coater, etc. are known. This method can be used. The liquid film thickness (also referred to as wet film thickness) during coating is about 1 to 100 μm, preferably 0.1 to 30 μm, more preferably 0.5 to 30 μm. The dry film thickness is an average film thickness of 0.1 to 30 μm, preferably 1 to 20 μm.
 (樹脂フィルム)
 本実施形態において、樹脂フィルムは機能層の基材であると同時に、ガラスが衝撃を受けて割れる際の飛散防止の目的で使用される。
(Resin film)
In the present embodiment, the resin film is a base material for the functional layer, and at the same time, is used for the purpose of preventing scattering when the glass breaks under impact.
 樹脂フィルムに含まれる樹脂としては、光学的に透明な樹脂であれば特に限定はなく、例えば、セルロース系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、シクロオレフィン系樹脂、ポリエステル系樹脂、ポリ乳酸系樹脂、ポリビニルアルコール系樹脂などを用いることができる。中でも、高耐熱、高透明、低位相差、高面品質などの観点から、セルロース系樹脂を用いることが好ましい。 The resin contained in the resin film is not particularly limited as long as it is an optically transparent resin. For example, cellulose resin, acrylic resin, polycarbonate resin, cycloolefin resin, polyester resin, polylactic acid resin Polyvinyl alcohol resin can be used. Among these, it is preferable to use a cellulose-based resin from the viewpoint of high heat resistance, high transparency, low retardation, high surface quality, and the like.
 樹脂フィルムは、面内方向位相差(リタデーション)Roと厚み方向位相差(リタデーション)Rtが両方とも小さいことが好ましい。 The resin film preferably has a small in-plane direction retardation (retardation) Ro and thickness direction retardation (retardation) Rt.
 なお、リタデーションRoおよびRtは以下の式で表される。 Retardation Ro and Rt are expressed by the following equations.
  Ro=(nx-ny)×d
  Rt={(nx+ny)/2-nz}×d
 ただし、式中、nxは樹脂フィルムの面内の遅相軸方向の屈折率を示し、nyは樹脂フィルムの面内で遅相軸に直交する方向の屈折率を示し、nzは樹脂フィルムの厚み方向の屈折率を示し、dはフィルムの厚み(nm)を示す。また、屈折率の測定波長は590nmである。
Ro = (nx−ny) × d
Rt = {(nx + ny) / 2−nz} × d
In the formula, nx represents the refractive index in the slow axis direction in the plane of the resin film, ny represents the refractive index in the direction perpendicular to the slow axis in the plane of the resin film, and nz represents the thickness of the resin film. The refractive index of a direction is shown, d shows the thickness (nm) of a film. The measurement wavelength of the refractive index is 590 nm.
 また、リタデーションRoおよびRtは、以下の方法によっても求めることができる。 Further, the retardations Ro and Rt can also be obtained by the following method.
 1)得られた樹脂フィルムを、23℃55%RHで調湿する。調湿後の樹脂フィルムの平均屈折率を、アッベ屈折計にて測定する。 1) The obtained resin film is conditioned at 23 ° C. and 55% RH. The average refractive index of the resin film after humidity adjustment is measured with an Abbe refractometer.
 2)調湿後の樹脂フィルムに、樹脂フィルム法線方向から測定波長590nmの光を入射させたときのRoを、KOBRA 21ADH(王子計測機器(株)製)にて測定する。 2) Ro is measured with KOBRA 21ADH (manufactured by Oji Scientific Instruments) when light having a measurement wavelength of 590 nm is incident on the resin film after humidity adjustment from the normal direction of the resin film.
 3)KOBRA 21ADH(王子計測機器(株)製)により、樹脂フィルム法線方向に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリタデーション値R(θ)を測定する。θは、好ましくは30°~50°としうる。 3) Retardation value R (θ) when light having a measurement wavelength of 590 nm is incident from the angle θ (incident angle (θ)) with respect to the normal direction of the resin film by KOBRA 21ADH (manufactured by Oji Scientific Instruments). ). θ can be preferably 30 ° to 50 °.
 4)測定されたRoおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA 21ADH(王子計測機器(株)製)により、nx、nyおよびnzを算出して、測定波長590nmでのRtを算出する。リタデーションの測定は、23℃55%RH条件下で例えば12時間程度調質処理を行った後に行うことができる。 4) nx, ny, and nz are calculated from the measured Ro and R (θ) and the above-described average refractive index and film thickness by KOBRA 21ADH (manufactured by Oji Scientific Instruments), and the measurement wavelength is 590 nm. Rt at is calculated. The retardation can be measured after tempering for about 12 hours, for example, at 23 ° C. and 55% RH.
 樹脂フィルムは、予めフィルム状に形成したものを準備し、接着層を介してガラスに接着してもよいし、ガラス上に接着層を形成した上に、樹脂を直接塗布や流延することによって形成してもよい。 A resin film prepared in advance in a film shape may be prepared and adhered to glass via an adhesive layer, or after an adhesive layer is formed on glass, the resin is directly applied or cast. It may be formed.
 <セルロース系樹脂>
 本実施形態の樹脂フィルムに好適なセルロース系樹脂としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、シアノエチルセルロースなどのセルロースエーテル類と、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート(CAB)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、硝酸セルロース等のセルロースエステル類が挙げられるが、好ましくはセルロースエステル類、特に、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)である。あるいは、特開2002-179701号公報の段落番号[0010]~[0027]記載の芳香族カルボン酸エステルが用いられ、特に特開2002-17979号公報の段落番号[0028]~[0036]のセルロースアシレートが好ましく用いられる。
<Cellulosic resin>
Cellulose resins suitable for the resin film of the present embodiment include cellulose ethers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cyanoethyl cellulose, triacetyl cellulose (TAC), diacetyl cellulose (DAC), and cellulose acetate. Examples include cellulose esters such as propionate (CAP), cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose acetate trimellitate, and cellulose nitrate, preferably cellulose esters, particularly triacetyl cellulose (TAC). ), Diacetylcellulose (DAC), and cellulose acetate propionate (CAP). Alternatively, aromatic carboxylic acid esters described in paragraph numbers [0010] to [0027] of JP-A No. 2002-179701 are used, and in particular, celluloses of paragraph numbers [0028] to [0036] of JP-A No. 2002-17979. Acylate is preferably used.
 セルロース系樹脂の原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。また、これらから得られたセルロース系樹脂は、それぞれを単独あるいは任意の割合で混合使用することができるが、綿花リンターを50質量%以上使用することが好ましい。 The cellulose used as the raw material for the cellulose resin is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, although the cellulose resin obtained from these can be used individually or in mixture of arbitrary ratios, it is preferable to use 50 mass% or more of cotton linters.
 セルロースエステルの分子量が大きいと弾性率が大きくなるが、分子量を上げ過ぎるとセルロースエステルの溶解液の粘度が高くなり過ぎるため生産性が低下する。セルロースエステルの分子量は数平均分子量で70000~200000のものが好ましく、100000~200000のものが更に好ましい。本実施形態で用いるセルロースエステルは、重量平均分子量をMwとし、数平均分子量をMnとして、Mw/Mn比が1.4~3.0であることが好ましく、更に好ましくは1.4~2.3である。 When the molecular weight of the cellulose ester is large, the elastic modulus is increased. However, when the molecular weight is excessively increased, the viscosity of the solution of the cellulose ester becomes too high, and the productivity is lowered. The molecular weight of the cellulose ester is preferably 70000-200000 in terms of number average molecular weight, more preferably 100000-200000. The cellulose ester used in the present embodiment preferably has a weight average molecular weight of Mw, a number average molecular weight of Mn, and a Mw / Mn ratio of 1.4 to 3.0, more preferably 1.4 to 2. 3.
 セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて測定することができるので、これを用いて数平均分子量(Mn)、重量平均分子量(Mw)を算出し、その比を計算することができる。なお、測定条件は以下の通りである。 Since the average molecular weight and molecular weight distribution of cellulose ester can be measured using high performance liquid chromatography, the number average molecular weight (Mn) and the weight average molecular weight (Mw) are calculated using this, and the ratio is calculated. be able to. Measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1,000,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw = 1,000,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 セルロースエステルの総アシル基置換度は2.4~2.9のものが好ましく用いられ、更に好ましくは2.6~2.9である。総アシル基置換度はASTM-D817-96に準じて測定することができる。 The total acyl group substitution degree of the cellulose ester is preferably 2.4 to 2.9, more preferably 2.6 to 2.9. The total degree of acyl group substitution can be measured according to ASTM-D817-96.
 さらに、アクリル樹脂とセルロースエステル樹脂を含有し、アクリル樹脂とセルロースエステル樹脂の含有質量比が、アクリル樹脂:セルロースエステル樹脂=95:5~50:50であるフィルムを使用してもよい。 Further, a film containing an acrylic resin and a cellulose ester resin and having a mass ratio of the acrylic resin and the cellulose ester resin of acrylic resin: cellulose ester resin = 95: 5 to 50:50 may be used.
 (接着層)
 接着層としては、無機系の反応性金属化合物と有機系の水酸基含有高分子化合物との縮合物が用いられる。縮合反応により、薄膜ガラスと機能層付樹脂フィルムとの接着が可能となる。縮合反応は、一般的に知られている方法で行えばよく、触媒添加による加水分解縮合でもよく、加熱による脱水縮合でもよい。なお、上述したように、本実施形態の接着層は、フィルムに浸透するため厚みを有さず、従来よりも薄膜化を図ることができる。
(Adhesive layer)
As the adhesive layer, a condensate of an inorganic reactive metal compound and an organic hydroxyl group-containing polymer compound is used. By the condensation reaction, the thin film glass and the functional layer-attached resin film can be bonded. The condensation reaction may be performed by a generally known method, may be hydrolytic condensation by addition of a catalyst, or may be dehydration condensation by heating. As described above, the adhesive layer of this embodiment does not have a thickness because it penetrates into the film, and can be made thinner than before.
 <加水分解触媒>
 無機化合物である加水分解重縮合可能な反応性金属化合物は、加水分解触媒として塩酸・酢酸・クエン酸などの酸を用いることも可能であるが、固体触媒を用いることが好ましい。更に水と必要に応じて他の触媒を加えて加水分解を起こさせて縮合反応を促進してよい。加水分解は、加水分解可能な基が全て加水分解される完全加水分解であってもよいが、特に好ましくは、一部のみが加水分解される部分加水分解である。
<Hydrolysis catalyst>
The reactive polycondensable reactive metal compound that is an inorganic compound can use an acid such as hydrochloric acid, acetic acid, or citric acid as a hydrolysis catalyst, but a solid catalyst is preferably used. Further, water and another catalyst as required may be added to cause hydrolysis to accelerate the condensation reaction. The hydrolysis may be complete hydrolysis in which all hydrolyzable groups are hydrolyzed, but is particularly preferably partial hydrolysis in which only a part is hydrolyzed.
 加水分解のために添加する水は、反応性金属化合物1モルに対し0.5~10モルの範囲で用い、前記固体触媒で加水分解することが好ましい。加水分解に使用する水の量が少ないと、アルコキシ基の加水分解が不十分となり、わずかしか水酸基が生成しないといった問題が生じる。好ましくは、使用する水の量は、反応性金属化合物1モルに対し0.5~4モルである。 The water added for hydrolysis is preferably used in the range of 0.5 to 10 mol per 1 mol of the reactive metal compound, and hydrolyzed with the solid catalyst. If the amount of water used for the hydrolysis is small, the hydrolysis of the alkoxy group becomes insufficient, resulting in a problem that only a few hydroxyl groups are generated. Preferably, the amount of water used is 0.5-4 moles per mole of reactive metal compound.
 また、水としてイオン交換水を用いることも好ましい。イオン交換水は、上記反応性金属化合物の加水分解を行うために好ましく、電気伝導度が1010MΩ以上であるイオン交換水を用いることが好ましい。この電気伝導度よりも低い場合、イオン交換樹脂と加水分解水に含まれているイオンがイオン交換を起こし、加水分解水のpHが大きく変動し、せっかく生成した加水分解重縮合物が安定に存在し得ず、好ましくない。なお、イオン交換水の電気伝導度は1012MΩ以上であることがより好ましく、さらに好ましくは1015MΩ以上である。 It is also preferable to use ion exchange water as water. Ion-exchanged water is preferable for hydrolyzing the reactive metal compound, and ion-exchanged water having an electric conductivity of 10 10 MΩ or more is preferably used. If the electrical conductivity is lower than this, the ions contained in the ion exchange resin and the hydrolyzed water will undergo ion exchange, the pH of the hydrolyzed water will fluctuate greatly, and the hydrolyzed polycondensate generated will be present with great stability. This is not preferable. The electric conductivity of ion exchange water is more preferably 10 12 MΩ or more, and further preferably 10 15 MΩ or more.
 また、疎水的な加水分解重縮合可能な反応性金属化合物に水を添加する場合には、加水分解重縮合可能な反応性金属化合物と水が混和し易いように、メタノール、エタノール、アセトニトリルのような親水性の有機溶媒も添加されていることが好ましい。また、水酸基含有高分子化合物(例えばセルロース誘導体)と加水分解重縮合可能な反応性金属化合物とを混合する際に、セルロース誘導体が析出しないよう、セルロース誘導体の良溶媒も添加されていることが好ましい。なお、良溶媒とは、セルロース誘導体に対して良好な溶解性を有する有機溶媒を言う。 In addition, when water is added to a hydrophobic hydrolytic polycondensable reactive metal compound, methanol, ethanol, acetonitrile, etc. are used so that the hydrolytic polycondensable reactive metal compound and water can be easily mixed. It is preferable that a hydrophilic organic solvent is also added. In addition, when a hydroxyl group-containing polymer compound (for example, a cellulose derivative) and a reactive metal compound capable of hydrolysis polycondensation are mixed, a good solvent for the cellulose derivative is preferably added so that the cellulose derivative does not precipitate. . In addition, a good solvent means the organic solvent which has favorable solubility with respect to a cellulose derivative.
 加水分解触媒としての固体触媒は、特に限定されるものではなく、以下に挙げるものを使用することができる。 The solid catalyst as the hydrolysis catalyst is not particularly limited, and those listed below can be used.
 (1)陽イオン交換樹脂:
 アンバーライト15、アンバーライト200C、アンバーリスト15(以上、ローム・アンド・ハース社製);ダウエックスMWC-1-H、ダウエックス88、ダウエックスHCR-W2(以上、ダウ・ケミカル社製);レバチットSPC-108、レバチットSPC-118(以上、バイエル社製);ダイヤイオンRCP-150H(三菱化成社製);スミカイオンKC-470、デュオライトC26-C、デュオライトC-433、デュオライト-464(以上、住友化学工業社製);ナフィオン-H(デュポン社製)など。
(1) Cation exchange resin:
Amberlite 15, Amberlite 200C, Amberlist 15 (above, Rohm &Haas); Dowex MWC-1-H, Dowex 88, Dowex HCR-W2 (above, Dow Chemical); Levacit SPC-108, Levacit SPC-118 (manufactured by Bayer); Diaion RCP-150H (Mitsubishi Kasei); Sumikaion KC-470, Duolite C26-C, Duolite C-433, Duolite-464 (The above is manufactured by Sumitomo Chemical Co., Ltd.); Nafion-H (manufactured by DuPont) and the like.
 (2)陰イオン交換樹脂:
 アンバーライトIRA-400、アンバーライトIRA-45(以上、ローム・アンド・ハース社製)など。
(2) Anion exchange resin:
Amberlite IRA-400, Amberlite IRA-45 (above, manufactured by Rohm and Haas), etc.
 (3)プロトン酸基を含有する基が表面に結合されている無機固体:
 Zr(OPCHCHSOH)、Th(OPCHCHCOOH)など。
(3) Inorganic solid in which a group containing a protonic acid group is bonded to the surface:
Such as Zr (O 3 PCH 2 CH 2 SO 3 H) 2, Th (O 3 PCH 2 CH 2 COOH) 2.
 (4)プロトン酸基を含有するポリオルガノシロキサン:
 スルホン酸基を有するポリオルガノシロキサンなど。
(4) Polyorganosiloxane containing protonic acid groups:
Polyorganosiloxane having a sulfonic acid group.
 (5)ヘテロポリ酸:
 コバルトタングステン酸、リンモリブデン酸など。
(5) Heteropoly acid:
Cobalt tungstic acid, phosphomolybdic acid, etc.
 (6)イソポリ酸:
 ニオブ酸、タンタル酸、モリブデン酸など。
(6) Isopolyacid:
Niobic acid, tantalum acid, molybdic acid, etc.
 (7)単元系金属酸化物:
 アルミナ、クロミア、ジルコニア、CaO、MgOなど。
(7) Unitary metal oxide:
Alumina, chromia, zirconia, CaO, MgO, etc.
 (8)複合系金属酸化物:
 シリカ-アルミナ、シリカ-マグネシア、シリカ-ジルコニア、ゼオライト類など。
(8) Composite metal oxide:
Silica-alumina, silica-magnesia, silica-zirconia, zeolites, etc.
 (9)粘土鉱物:
 酸性白土、活性白土、モンモリロナイト、カオリナイトなど。
(9) Clay mineral:
Acid clay, activated clay, montmorillonite, kaolinite, etc.
 (10)金属硫酸塩:
 LiSO、MgSOなど。
(10) Metal sulfate:
LiSO 4 , MgSO 4 and the like.
 (11)金属リン酸塩:
 リン酸ジルコニア、リン酸ランタンなど。
(11) Metal phosphate:
Zirconia phosphate, lanthanum phosphate, etc.
 (12)金属硝酸塩:
 LiNO、Mn(NOなど。
(12) Metal nitrate:
Such as LiNO 3, Mn (NO 3) 2.
 (13)アミノ基を含有する基が表面に結合されている無機固体:
 シリカゲル上にアミノプロピルトリエトキシシランを反応させて得られた固体など。
(13) Inorganic solid in which a group containing an amino group is bonded to the surface:
Solids obtained by reacting aminopropyltriethoxysilane on silica gel.
 (14)アミノ基を含有するポリオルガノシロキサン:
 アミノ変性シリコーン樹脂など。
(14) Polyorganosiloxane containing amino groups:
Amino-modified silicone resin.
 これらの中で、本実施形態では、特に陽イオン交換樹脂が好ましい。陽イオン交換樹脂の種類としては、まず、骨格はポリスチレン又はジビニルベンゼンの懸濁重合高分子体が好ましい。イオン交換樹脂のタイプは、ゲル型とマクロポーラス型に分かれるが、ゲル型樹脂は空孔を有さず、反応に関与する物質が樹脂内部に進入しにくく、活性点が有効に利用され難い。マクロポーラス型樹脂は大きな空孔を有しており、反応に関与する物質が容易に活性点に到達することができ、活性点が有効に利用される。このため、本実施形態で用いる陽イオン交換樹脂としては、空孔体積が水銀注入法による測定で0.1ml/g以上を示すマクロポーラスであることが好ましい。また、樹脂についている酸性基としてはスルホン基、アクリル基等で、H+型であることが好ましく、スルホン基がより好ましい。これらを満たすイオン交換樹脂の例としては、アンバーリスト15(ローム・アンド・ハーズ社製)、ダイアイオンPK-208H,PK-216H,PK-228H(以上三菱化成製)、ビュロライトCT-175,CT-171,CT-169(以上ビュロライト社製)等を例示することができる。これらの中で、特にビュロライトCT-175(ビュロライト社製)が好ましい。 Among these, in the present embodiment, a cation exchange resin is particularly preferable. As a kind of cation exchange resin, first, a suspension polymer of polystyrene or divinylbenzene as a skeleton is preferable. The types of ion exchange resins are classified into a gel type and a macroporous type. However, the gel type resin does not have pores, and it is difficult for a substance involved in the reaction to enter the inside of the resin, so that the active sites are not effectively used. The macroporous resin has large pores, and a substance involved in the reaction can easily reach the active site, and the active site is effectively used. For this reason, it is preferable that the cation exchange resin used in this embodiment is a macroporous material whose pore volume is 0.1 ml / g or more as measured by a mercury injection method. In addition, the acidic group attached to the resin is a sulfone group, an acrylic group, or the like, preferably an H + type, and more preferably a sulfone group. Examples of ion exchange resins that satisfy these requirements include Amberlyst 15 (manufactured by Rohm and Hers), Diaion PK-208H, PK-216H, PK-228H (manufactured by Mitsubishi Kasei), Burolite CT-175, CT -171, CT-169 (manufactured by Burolite) and the like. Of these, Burolite CT-175 (manufactured by Burolite) is particularly preferable.
 本実施形態おいては、上記イオン交換樹脂の添加後、撹拌し、上記反応性金属化合物を加水分解させて加水分解物またはその縮合物を得るものであるが、この場合、撹拌時間(反応時間)は3分以上、特に5分以上とすることが好ましい。また、反応温度は0℃以上とすることが好ましい。しかし、反応時間は長過ぎると縮合物の分子量が大きく成り過ぎヘイズ上昇の可能性があるため、3時間以内の反応時間が好ましい。また、反応温度が高い場合においても、同様であり、反応温度としては0~50℃での実施が好ましい。 In this embodiment, after the addition of the ion exchange resin, stirring is performed to hydrolyze the reactive metal compound to obtain a hydrolyzate or a condensate thereof. In this case, the stirring time (reaction time) ) Is preferably 3 minutes or more, particularly preferably 5 minutes or more. Moreover, it is preferable that reaction temperature shall be 0 degreeC or more. However, if the reaction time is too long, the molecular weight of the condensate becomes so large that haze may be increased. The same applies to the case where the reaction temperature is high, and the reaction temperature is preferably 0 to 50 ° C.
 本実施形態で用いる陽イオン交換樹脂の粒径としては、特に制限はないが、平均粒径が10~2000μmの範囲が好ましい。平均粒径が10μm未満の場合は、処理後の樹脂分離の際濾過性や液切れが劣化することがあり、また平均粒径が2000μmを超えると、質量当たりの表面積が低下し、加水分解効率が低いという問題がある。粒径は揃っていたほうが好ましいが、欠けたり割れたりした粒子が一部混入していてもよい。 The particle size of the cation exchange resin used in the present embodiment is not particularly limited, but the average particle size is preferably in the range of 10 to 2000 μm. When the average particle size is less than 10 μm, filterability and liquid breakage may be deteriorated during the resin separation after the treatment. When the average particle size exceeds 2000 μm, the surface area per mass decreases, and the hydrolysis efficiency There is a problem that is low. Although it is preferable that the particle diameters are uniform, a chipped or cracked particle may be partially mixed.
 また、イオン交換樹脂のイオン交換容量は、0.1ミリ等量/ml以上が好ましい。0.1ミリ等量/ml未満では、加水分解効率が低下し、生産性の低下を来たすことがある。 The ion exchange capacity of the ion exchange resin is preferably 0.1 milliequivalent / ml or more. If it is less than 0.1 milliequivalent / ml, the hydrolysis efficiency is lowered and productivity may be lowered.
 本実施形態において、固体触媒であるイオン交換樹脂の添加量は、加水分解重縮合可能な反応性金属化合物に対して、0.00001~30質量%であることが好ましく、より好ましくは0.001~20質量%である。イオン交換樹脂の量が多過ぎると、縮合が優先的に進行してしまい、縮合物の分子量が大きく成り過ぎる。また、イオン交換樹脂の量が少な過ぎると、加水分解に必要な十分な活性が得られず、加水分解物またはその縮合物を十分得ることができない。 In the present embodiment, the addition amount of the ion exchange resin as a solid catalyst is preferably 0.00001 to 30% by mass, more preferably 0.001 based on the reactive metal compound capable of hydrolysis polycondensation. ~ 20% by weight. If the amount of the ion exchange resin is too large, the condensation proceeds preferentially, and the molecular weight of the condensate becomes too large. Moreover, when there is too little quantity of an ion exchange resin, sufficient activity required for a hydrolysis cannot be obtained, and a hydrolyzate or its condensate cannot fully be obtained.
 本実施形態における固体触媒を用いた加水分解の方法は、予め水とアルコールを混合しておき、ここに反応性金属化合物を添加混合した後、固体触媒を添加して攪拌して加水分解を進めることが好ましい。また、予め水とアルコールを混合し、ここに固体触媒を添加した後、更にここに反応性金属化合物を攪拌しながら添加して加水分解を進めることも好ましい。 In the hydrolysis method using the solid catalyst in the present embodiment, water and alcohol are mixed in advance, a reactive metal compound is added and mixed therein, and then the solid catalyst is added and stirred to proceed the hydrolysis. It is preferable. In addition, it is also preferable that water and alcohol are mixed in advance and the solid catalyst is added thereto, and then the reactive metal compound is further added with stirring to proceed the hydrolysis.
 <反応性金属化合物>
 本実施形態において、金属とは、「周期表の化学」岩波書店 斎藤一夫著 p.71記載の金属、すなわち、半金属性原子を含む金属である。
<Reactive metal compound>
In the present embodiment, the term “metal” refers to “Chemistry of the Periodic Table” by Iwanami Shoten, Kazuo Saito, p. 71. A metal according to 71, that is, a metal containing a semimetallic atom.
 本実施形態で用いられる加水分解重縮合が可能な反応性金属化合物としては、例えば金属アルコキシド、金属ジケトネート、金属アルキルアセトアセテート、金属イソシアネート、反応性の金属ハロゲン化物が挙げられる。好ましくは、金属種が、Si、Ti、ZrまたはAlのアルコキシドであり、特に好ましくは、Siのアルコキシドである。 Examples of reactive metal compounds capable of hydrolytic polycondensation used in this embodiment include metal alkoxides, metal diketonates, metal alkyl acetoacetates, metal isocyanates, and reactive metal halides. Preferably, the metal species is an alkoxide of Si, Ti, Zr or Al, and particularly preferably an alkoxide of Si.
 このような加水分解重縮合可能な反応性金属化合物は、中心金属をM、その原子数をq、加水分解されない置換基をA、その置換基数をp、加水分解可能な置換基をB、その置換基数をrとすると、理想的には下記の式(1)のように反応が完結し、金属酸化物が得られる。 Such a reactive metal compound capable of hydrolytic polycondensation has M as the central metal, q as the number of atoms, A as the non-hydrolyzed substituent, p as the number of substituents, B as the hydrolyzable substituent, When r is the number of substituents, the reaction is ideally completed as shown in the following formula (1), and a metal oxide is obtained.
 式(1) A → A/2 Equation (1) A p M q B r → A p M q O r / 2
 加水分解重縮合可能な反応性金属化合物としては、式(1)で示されているAにおいて、p=0であるような、全てが加水分解可能な置換基で置換されていることが好ましいが、基材フィルムの透湿度を低減する観点から、加水分解されない置換基によって該金属1原子当たり1つまたは2つ、或いは3つ置換されている化合物が含まれていても良い。このような加水分解されない置換基を有する金属化合物の添加量としては、添加される金属化合物の50モル%以下が好ましい。また、上記添加量の範囲で2種以上の異なる種類の金属アルコキシドを併用しても良い。 The hydrolyzable polycondensable reactive metal compound, in A p M q B r shown in equation (1), such that p = 0, all being substituted with hydrolyzable substituents However, from the viewpoint of reducing the moisture permeability of the base film, a compound substituted with one, two, or three per atom of the metal by a non-hydrolyzed substituent may be included. . The amount of the metal compound having a substituent that is not hydrolyzed is preferably 50 mol% or less of the metal compound to be added. Moreover, you may use together 2 or more types of different types of metal alkoxide in the range of the said addition amount.
 このような加水分解されない置換基としては、置換または無置換のアルキル基、または置換または無置換のアリール基が好ましく、該アルキル基またはアリール基の置換基としては、アルキル基(例えばメチル基、エチル基等)、シクロアルキル基(例えばシクロペンチル基、シクロヘキシル基等)、アラルキル基(例えばベンジル基、2-フェネチル基等)、アリール基(例えばフェニル基、ナフチル基等)、複素環基(例えばフラン、チオフェン、ピリジン等)、アルコキシ基(例えばメトキシ基、エトキシ基等)、アリールオキシ基(例えばフェノキシ基等)、アシル基、ハロゲン原子、シアノ基、アミノ基、アルキルチオ基、グリシジル基、ビニル基、フッ素原子含有アルキル基またはフッ素原子含有アリール基等が挙げられる。 As such a non-hydrolyzed substituent, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group is preferable. As the substituent of the alkyl group or aryl group, an alkyl group (for example, methyl group, ethyl group) Group), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), aralkyl group (eg benzyl group, 2-phenethyl group etc.), aryl group (eg phenyl group, naphthyl group etc.), heterocyclic group (eg furan, Thiophene, pyridine etc.), alkoxy group (eg methoxy group, ethoxy group etc.), aryloxy group (eg phenoxy group etc.), acyl group, halogen atom, cyano group, amino group, alkylthio group, glycidyl group, vinyl group, fluorine Examples thereof include an atom-containing alkyl group and a fluorine atom-containing aryl group.
 本実施形態で用いられる重縮合が可能な反応性金属化合物としては、ケイ素化合物として、例えば、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトラ-t-ブトキシシラン、テトラキス(メトキシエトキシ)シラン、テトラキス(メトキシプロポキシ)シラン、テトラクロロシラン、テトライソシアナートシラン等が挙げられる。 Examples of reactive metal compounds capable of polycondensation used in this embodiment include silicon compounds such as tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetraisopropoxysilane, tetra-n-butoxysilane, Examples thereof include tetra-t-butoxysilane, tetrakis (methoxyethoxy) silane, tetrakis (methoxypropoxy) silane, tetrachlorosilane, and tetraisocyanate silane.
 また、加水分解されない置換基を有するケイ素化合物として、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジイソプロポキシシラン、ジエチルジブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジブトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、ジクロロジメチルシラン、ジクロロジエチルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリブトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリブトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、(3-アクリロキシプロピル)トリメトキシシラン、アセトキシトリエトキシシラン、(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、(3,3,3-トリフルオロプロピル)トリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン、(3,3,3-トリフルオロプロピル)トリクロロシラン、ペンタフルオロフェニルプロピルトリクロロシラン、(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリクロロシラン、メチルトリイソシアナートシラン、フェニルトリイソシアナートシラン、ビニルトリイソシアナートシラン等が挙げられる。また、これらの化合物が部分的に縮合した、多摩化学製シリケート40、シリケート45、シリケート48、Mシリケート51のような、数量体のケイ素化合物でもよい。 Examples of silicon compounds having substituent groups that are not hydrolyzed include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldiisopropoxysilane, and diethyldiisosilane. Butoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldiisopropoxysilane, diphenyldibutoxysilane, 3-glycidoxypropylmethyldimethoxysilane, dichlorodimethylsilane, dichlorodiethylsilane, methyltrimethoxysilane, methyltriethoxysilane , Methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri Propoxysilane, ethyltributoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, phenyltributoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltributoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, ( 3-acryloxypropyl) trimethoxysilane, acetoxytriethoxysilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane, (3,3, -Trifluoropropyl) trimethoxysilane, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, (3,3,3-trifluoropropyl) triethoxysilane, pentafluorophenylpropyltrimethoxysilane, (heptadecafluoro-1, 1,2,2-tetrahydrodecyl) triethoxysilane, (3,3,3-trifluoropropyl) trichlorosilane, pentafluorophenylpropyltrichlorosilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) tri Examples include chlorosilane, methyl triisocyanate silane, phenyl triisocyanate silane, and vinyl triisocyanate silane. In addition, quantified silicon compounds such as silicate 40, silicate 45, silicate 48, and M silicate 51 manufactured by Tama Chemical, which are partially condensed with these compounds, may be used.
 また、チタン化合物としては、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタン-n-ブトキシド、テトラクロロチタン、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート、チタンラクテート、チタントリエタノールアミネート、ブチルチタネートダイマー等が挙げられる。 Examples of titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium-n-butoxide, tetrachlorotitanium, titanium diisopropoxide (bis-2,4-pentanedionate), titanium diiso Propoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, titanium lactate, titanium triethanolaminate, butyl titanate dimer, etc. Can be mentioned.
 また、ジルコニウム化合物としては、ジルコニウム-n-プロポキシド、ジルコニウム-n-ブトキシド、ジルコニウムトリ-n-ブトキシドアセチルアセトネート、ジルコニウムジ-n-ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート、等が挙げられる。 Zirconium compounds include zirconium-n-propoxide, zirconium-n-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, etc. Is mentioned.
 また、アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウム-n-ブトキシド、アルミニウム-s-ブトキシド、アルミニウム-ジ-s-ブトキシドエチルアセチルアセトナート、アルミニウム-t-ブトキシド、アルマトラン、アルミニウムフェノキシド、アルミニウムアセチルアセトナート、アルミニウムエチルアセチルアセトナート等が挙げられる。 Aluminum compounds include aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-s-butoxide, aluminum-di-s-butoxide ethylacetylacetonate, aluminum-t-butoxide, almatrane, aluminum phenoxide. , Aluminum acetylacetonate, aluminum ethylacetylacetonate and the like.
 また、その他の金属からなる化合物としては、例えば、バリウムイソプロポキシド、カルシウムエトキシド、銅エトキシド、マグネシウムエトキシド、マンガンメトキシド、ストロンチウムイソプロポキシド、錫エトキシド、亜鉛メトキシエトキシド、トリメトキシボラン、トリエトキシボラン、アンチモンエトキシド、ヒ素トリエトキシド、ビスマスt-ペントキシド、クロムイソプロポキシド、エルビウムメトキシエトキシド、ガリウムエトキシド、インジウムメトキシエトキシド、鉄エトキシド、ランタンイソプロポキシド、ネオジウムメトキシエトキシド、プラセオジムメトキシエトキシド、サマリウムイソプロポキシド、バナジウムトリイソブトキシドオキシド、イットリウムイソプロポキシド、テトラメトキシゲルマン、テトラエトキシゲルマン、テトライソプロポキシゲルマン、テトラ-n-ブトキシゲルマン、セリウム-t-ブトキシド、ハフニウムエトキシド、ハフニウム-n-ブトキシド、テルルエトキシド、モリブデンエトキシド、ニオブエトキシド、ニオブ-n-ブトキシド、タンタルメトキシド、タンタルエトキシド、タンタル-n-ブトキシド、タングステン(V)エトキシド、タングステン(VI)エトキシド、タングステン(VI)フェノキシド等が挙げられる。 Examples of the other metal compound include barium isopropoxide, calcium ethoxide, copper ethoxide, magnesium ethoxide, manganese methoxide, strontium isopropoxide, tin ethoxide, zinc methoxyethoxide, trimethoxyborane, Triethoxyborane, antimony ethoxide, arsenic triethoxide, bismuth t-pentoxide, chromium isopropoxide, erbium methoxyethoxide, gallium ethoxide, indium methoxyethoxide, iron ethoxide, lanthanum isopropoxide, neodymium methoxyethoxide, praseodymium methoxy Ethoxide, samarium isopropoxide, vanadium triisobutoxide oxide, yttrium isopropoxide, tetramethoxygermane, teto Ethoxygermane, tetraisopropoxygermane, tetra-n-butoxygermane, cerium-t-butoxide, hafnium ethoxide, hafnium-n-butoxide, tellurium ethoxide, molybdenum ethoxide, niobium ethoxide, niobium-n-butoxide, tantalum Examples include methoxide, tantalum ethoxide, tantalum-n-butoxide, tungsten (V) ethoxide, tungsten (VI) ethoxide, tungsten (VI) phenoxide, and the like.
 また、本実施形態で用いられる重縮合が可能な反応性金属化合物としては、分子種内に2つの金属原子を持つダブル金属アルコキシドと呼ばれる化合物でも良い。このようなダブル金属アルコキシドとしては、例えば、ゲレスト社製のアルミニウム銅アルコキシド、アルミニウムチタンアルコキシド、アルミニウムイットリウムアルコキシド、アルミニウムジルコニウムアルコキシド、バリウムチタンアルコキシド、バリウムイットリウムアルコキシド、バリウムジルコニウムアルコキシド、インジウム錫アルコキシド、リチウムニッケルアルコキシド、リチウムニオブアルコキシド、リチウムタンタルアルコキシド、マグネシウムアルミニウムアルコキシド、マグネシウムチタンアルコキシド、マグネシウムジルコニウムアルコキシド、ストロンチウムチタンアルコキシド、ストロンチウムジルコニウムアルコキシド等が挙げられるが、少なくとも、ケイ素、アルミニウム、チタニウム、ジルコニウムのいずれかの金属が含まれているものが好ましい。 The reactive metal compound capable of polycondensation used in this embodiment may be a compound called double metal alkoxide having two metal atoms in the molecular species. Examples of such double metal alkoxides include aluminum copper alkoxide, aluminum titanium alkoxide, aluminum yttrium alkoxide, aluminum zirconium alkoxide, barium titanium alkoxide, barium yttrium alkoxide, barium zirconium alkoxide, indium tin alkoxide, lithium nickel alkoxide manufactured by Gerest Co., Ltd. Lithium niobium alkoxide, lithium tantalum alkoxide, magnesium aluminum alkoxide, magnesium titanium alkoxide, magnesium zirconium alkoxide, strontium titanium alkoxide, strontium zirconium alkoxide, etc., but at least silicon, aluminum, titanium, zirconium Preferably one that contains any metal.
 <水酸基含有高分子化合物>
 水酸基含有高分子化合物は、分子内に水酸基を含有していればよく、例えば、ポリビニルアルコール等の合成高分子や、デンプン、セルロース、カルボキシメチルセルロース、アルギン酸ナトリウムなどの多糖類とそれらの誘導体などが挙げられる。これらの水酸基含有高分子化合物は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
<Hydroxyl-containing polymer compound>
The hydroxyl group-containing polymer compound only needs to contain a hydroxyl group in the molecule, and examples thereof include synthetic polymers such as polyvinyl alcohol, polysaccharides such as starch, cellulose, carboxymethyl cellulose, sodium alginate, and derivatives thereof. It is done. These hydroxyl group-containing polymer compounds can be used singly or in appropriate combination of two or more.
 合成高分子には、例えば、水酸基を有するビニル系、ポリスチレン系、ポリアクリル系、ポリウレタン系、アルキド系、メラミン系、尿素系、フェノール系、ポリエステル系、ポリグリセリン系高分子化合物、また多分岐形状を有する水酸基を有する高分子化合物を用いることができる。また、水酸基を有する高分子は、水酸基をもつ単量体を導入した重合体であってもよい。この場合、高分子の有する水酸基の量や導入位置が調整可能となる。 Synthetic polymers include, for example, vinyl-based, polystyrene-based, polyacrylic-based, polyurethane-based, alkyd-based, melamine-based, urea-based, phenol-based, polyester-based, polyglycerol-based polymer compounds having a hydroxyl group, and multi-branched shapes. A high molecular compound having a hydroxyl group having can be used. Further, the polymer having a hydroxyl group may be a polymer into which a monomer having a hydroxyl group is introduced. In this case, the amount of hydroxyl groups and the introduction position of the polymer can be adjusted.
 水酸基を有する単量体としては、3-ビニルフェノール、ヒドロキシメチルスチレン、4-ビニルベンジル-4-ヒドロキシブチルエーテル、4-(ヒドロキシメチルシリルフェニル)スチレン、などの水酸基を有するスチレン類や、ヒドロキシエチルメタクリレートなどの水酸基を有するアクリル樹脂や、N-(4-(4-ヒドロキシフェニルスルホニル)フェノキシカルボニル)メタクリルアミドなどの水酸基を有するアクリルアミド樹脂などが使用でき、好ましくはビニル系モノマーである。これらの水酸基を有する単量体は、2種類以上を混合して用いてもよい。 Examples of the monomer having a hydroxyl group include styrenes having a hydroxyl group such as 3-vinylphenol, hydroxymethylstyrene, 4-vinylbenzyl-4-hydroxybutyl ether, 4- (hydroxymethylsilylphenyl) styrene, and hydroxyethyl methacrylate. An acrylic resin having a hydroxyl group such as N- (4- (4-hydroxyphenylsulfonyl) phenoxycarbonyl) methacrylamide may be used, and a vinyl monomer is preferable. Two or more kinds of these monomers having a hydroxyl group may be mixed and used.
 多糖類としては、デンプン、ヒドロキシメチルデンプン、ヒドロキシエチルデンプン、ヒドロキシプロピルデンプン、グリコーゲン、イヌリン、リケニン、セルロース、ヘミセルロース、アミロペクチン、ヘパリン、ヘパリチン硫酸、コンドロイチン硫酸、ヒアルロン酸、ケラト硫酸、キチン、キトサン、寒天、カラギーナン、アルギン酸、ファーセレラン、ローカストビーンガム、ガラクトマンナン、グアガム、サイリュウガム、タマリンドガム、アラビアガム、トラガカントガム、カラヤガム、ペクチン、アラビノガラクタン、キサンタンガム、ジェランガム、プルラン、デキストラン、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、及びこれらのカチオン化物等が挙げられる。 Polysaccharides include starch, hydroxymethyl starch, hydroxyethyl starch, hydroxypropyl starch, glycogen, inulin, lichenin, cellulose, hemicellulose, amylopectin, heparin, heparitin sulfate, chondroitin sulfate, hyaluronic acid, keratosulfate, chitin, chitosan, agar , Carrageenan, alginic acid, fur celerane, locust bean gum, galactomannan, guar gum, syrup gum, tamarind gum, gum arabic, tragacanth gum, caraya gum, pectin, arabinogalactan, xanthan gum, gellan gum, pullulan, dextran, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxy Propyl methyl cellulose, carboxymethyl cellulose, methyl cell Over scan, ethyl cellulose, and the cationic compound, and the like.
 本実施形態で用いられる水酸基含有高分子化合物としては、セルロース誘導体が好ましく用いられ、中でもジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート(CAB)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、硝酸セルロース等のセルロースエステル類が好ましい。更に好ましくは、アシル基置換度が1.0~2.6であり、より好ましくは、アシル基置換度が2.0~2.5である。 As the hydroxyl group-containing polymer compound used in the present embodiment, cellulose derivatives are preferably used. Among them, diacetyl cellulose (DAC), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose Cellulose esters such as acetate trimellitate and cellulose nitrate are preferred. More preferably, the acyl group substitution degree is 1.0 to 2.6, and more preferably the acyl group substitution degree is 2.0 to 2.5.
 (タッチパネル用カバーガラス)
 本実施形態の機能付きガラスは、TN、IPS、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti-ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA、HAN(Hybrid Aligned Nematic)といった様々な表示モードの液晶表示装置のセル基板として用いることができるが、中でも、タッチパネル用カバーガラスとして好適に用いられる。
(Cover glass for touch panel)
The glass with a function of this embodiment is TN, IPS, FLC (Ferroelectric Liquid Crystal), AFLC (Anti-ferroelectric Liquid Crystal), OCB (Optically Compensated Bend), STN (SuperHedVN). In particular, it is preferably used as a cover glass for a touch panel.
 本実施形態の機能付きガラスをタッチパネル用カバーガラスとして用いる際は、図2に示すように薄膜ガラス2がタッチパネル6と接触するように貼り合わせてもよいし、あるいは、図3に示すように機能層5側をタッチパネル6と貼り合わせてもよい。 When using the glass with a function of this embodiment as a cover glass for a touch panel, the thin film glass 2 may be bonded so as to come into contact with the touch panel 6 as shown in FIG. 2, or the function as shown in FIG. The layer 5 side may be bonded to the touch panel 6.
 本実施形態の機能付きガラスがタッチパネル用カバーガラスとして用いられる場合、表面平滑性、硬度、靱性に優れ、かつ高温・高湿環境下でも層間の密着強度が低下しないため、ハンドリング性および強度や耐久性に優れたタッチパネルを得ることができ、非常に有利である。 When the glass with a function of this embodiment is used as a cover glass for a touch panel, the surface smoothness, hardness and toughness are excellent, and the adhesion strength between layers does not decrease even in a high temperature / high humidity environment. A touch panel having excellent properties can be obtained, which is very advantageous.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一局面に係る機能付きガラスは、機能層が積層された樹脂フィルムと薄膜ガラスとが接着層を介して積層されており、前記接着層が、反応性金属化合物と水酸基含有高分子化合物との縮合物を含んでいることを特徴とする。 That is, in the glass with function according to one aspect of the present invention, a resin film in which a functional layer is laminated and a thin film glass are laminated through an adhesive layer, and the adhesive layer has a reactive metal compound and a high hydroxyl group content. It contains a condensate with a molecular compound.
 このような構成によって、まず、従来の接着剤(例えば、アクリル系接着剤)使用時のような軟層をなくし、フィルム変形を抑えることができる。また、本発明に係る接着層は、フィルムに浸透するため厚みを有さず、従来よりさらなる薄膜化を図ることができ、かつ硬度および密着強度も向上させることができる。特に、高温・高湿下においても層間の密着を維持することができる。さらに、貼りムラを軽減させることができ、表面平滑性を確保することができる。また、従来の接着剤を使用する場合と比べて、貼合面積を増やすことができ、非常に薄膜で靱性(割れ性)を向上させたガラスを得ることができる。 With such a configuration, first, the soft layer as in the case of using a conventional adhesive (for example, an acrylic adhesive) can be eliminated, and film deformation can be suppressed. Moreover, since the adhesive layer according to the present invention penetrates into the film, it does not have a thickness, can be made thinner than before, and can also improve hardness and adhesion strength. In particular, adhesion between layers can be maintained even under high temperature and high humidity. Furthermore, uneven pasting can be reduced, and surface smoothness can be ensured. Moreover, compared with the case where the conventional adhesive agent is used, the bonding area can be increased and the glass which improved the toughness (cracking property) with the thin film can be obtained.
 さらに、前記機能付きガラスにおいて、前記機能層が、ハードコート層、反射防止層又は防眩層であることが望ましい。機能層がそのような層である場合に、本発明の効果がより発揮されるからである。 Furthermore, in the glass with a function, it is desirable that the functional layer is a hard coat layer, an antireflection layer or an antiglare layer. This is because the effect of the present invention is more exhibited when the functional layer is such a layer.
 また、前記機能付きガラスにおいて、前記樹脂フィルムがセルロース系樹脂を含有することが望ましい。セルロース系樹脂は親水性が強いため、水酸基を含有する接着層と樹脂フィルムとの親和性がさらに向上し、薄膜ガラスと機能層を有する樹脂フィルムとの密着性がさらに向上するからである。 Moreover, in the glass with a function, it is desirable that the resin film contains a cellulosic resin. This is because the cellulose-based resin has a strong hydrophilicity, so that the affinity between the adhesive layer containing a hydroxyl group and the resin film is further improved, and the adhesion between the thin film glass and the resin film having a functional layer is further improved.
 さらに、前記機能付きガラスにおいて、前記樹脂フィルムの厚さが40μm以下であることが好ましい。それにより、機能付きガラスにおいてより薄膜化を図ることができる。 Furthermore, in the glass with a function, it is preferable that the thickness of the resin film is 40 μm or less. Thereby, a thinner film can be achieved in the functional glass.
 また、前記機能付きガラスにおいて、前記水酸基含有高分子化合物が、総アシル基置換度が1.0~2.6のセルロースエステルであることが望ましい。そのような構成とすることにより、上述した本発明の効果がより確実に得られる。 In the functional glass, the hydroxyl group-containing polymer compound is preferably a cellulose ester having a total acyl group substitution degree of 1.0 to 2.6. By setting it as such a structure, the effect of this invention mentioned above is acquired more reliably.
 さらに、前記機能付きガラスにおいて、前記機能層の鉛筆硬度が2H~6Hであることが好ましい。そのような場合に、本発明の効果がより発揮されるからである。 Furthermore, in the glass with function, it is preferable that the functional layer has a pencil hardness of 2H to 6H. This is because in such a case, the effect of the present invention is more exhibited.
 さらに、前記機能付きガラスはタッチパネル用カバーガラスとして好ましく用いられる。 Furthermore, the glass with a function is preferably used as a cover glass for a touch panel.
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。なお、以下での説明において、「部」あるいは「%」の表示は、特に断りがない限り、「質量部」あるいは「質量%」を表すものとする。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples. In the following description, “parts” or “%” indicates “parts by mass” or “mass%” unless otherwise specified.
 <実施例1>
 〔機能付きガラスの製造〕
 (接着剤Aの調製)
 下記の比率で材料を混合し、室温で2時間攪拌した後、濾過によって固体触媒を分離して、接着剤Aを調製した。
<Example 1>
[Manufacture of functional glass]
(Preparation of adhesive A)
The materials were mixed at the following ratios and stirred at room temperature for 2 hours, and then the solid catalyst was separated by filtration to prepare an adhesive A.
 アセトン                      100質量部
 テトラメトキシシラン(TMOS)           10質量部
 アンバーリスト15(固体触媒)             2質量部
 セルロースエステル(DAC)             10質量部
Acetone 100 parts by mass Tetramethoxysilane (TMOS) 10 parts by mass Amberlyst 15 (solid catalyst) 2 parts by mass Cellulose ester (DAC) 10 parts by mass
 (機能層(ハードコート層)を積層させた樹脂フィルムの製造)
 樹脂フィルムとして、40μmの膜厚を有するトリアセチルセルロースフィルム(コニカミノルタタックKC4UA、コニカミノルタ(株)製)を用いた。ハードコート層の樹脂組成物は、ペンタエリスリトールトリアクリレート(共栄社化学(株)製:ライトアクリレートPE-3A)100質量部、イソシアヌル酸EO変性トリアクリレート(東亜合成(株)製:アロニックスM-315)15質量部、及び光重合開始剤3質量部を、メチルエチルケトン(MEK)溶媒にて固形分50%とした。攪拌した混合溶液をグラビアコーティング法によりウェット膜厚20μm(乾燥後のドライ膜厚10μm)になるように塗布、乾燥させて、高圧水銀灯により200mJ/cmの紫外線を照射させて、ハードコート層が積層された樹脂フィルムとした。
(Manufacture of resin film with functional layer (hard coat layer) laminated)
As the resin film, a triacetyl cellulose film (Konica Minolta Tack KC4UA, manufactured by Konica Minolta Co., Ltd.) having a film thickness of 40 μm was used. The resin composition of the hard coat layer is composed of 100 parts by mass of pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate PE-3A), isocyanuric acid EO-modified triacrylate (manufactured by Toagosei Co., Ltd .: Aronix M-315) 15 parts by mass and 3 parts by mass of the photopolymerization initiator were adjusted to a solid content of 50% with a methyl ethyl ketone (MEK) solvent. The stirred mixed solution is applied and dried by a gravure coating method so as to have a wet film thickness of 20 μm (dry film thickness after drying is 10 μm), and irradiated with UV light of 200 mJ / cm 2 by a high-pressure mercury lamp. A laminated resin film was obtained.
 なお、光重合開始剤としては、本実施例及び以下の全ての実施例および比較例において、1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ(株)製:イルガキュアー184)を用いた。 As a photopolymerization initiator, 1-hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals Co., Ltd .: Irgacure 184) was used in this example and in all the following examples and comparative examples.
 (積層体の製造)
 日本電気硝子(株)製の厚さ30μmの薄膜ガラスを準備し、ガラスの片面と上記樹脂フィルムの機能層を積層させていない側とが、向かい合う形になるように間に接着剤Aを挟む形でラミネーターで貼合したのち、オーブンで加熱圧着し、機能付きガラスを得た。加熱圧着後、接着剤Aは樹脂フィルムに浸透し、接着層の厚みはなくなったため、非常に薄型の機能付きガラス(厚み70μm)とすることができた。実施例1の機能付きガラスを、機能付きガラス1とする。
(Manufacture of laminates)
A 30 μm-thick thin film glass manufactured by Nippon Electric Glass Co., Ltd. is prepared, and adhesive A is sandwiched between them so that one side of the glass and the side on which the functional layer of the resin film is not laminated face each other. After bonding in a shape with a laminator, it was heat-pressed in an oven to obtain a functional glass. After thermocompression bonding, the adhesive A penetrated into the resin film and the thickness of the adhesive layer disappeared, so that a very thin glass with a function (thickness 70 μm) could be obtained. The glass with function of Example 1 is referred to as glass 1 with function.
 <実施例2>
 (機能層(反射防止層)を積層させた樹脂フィルムの製造)
 まず、以下の組成を有する低屈折率層組成物を調製した。
<Example 2>
(Manufacture of resin film with functional layer (antireflection layer) laminated)
First, a low refractive index layer composition having the following composition was prepared.
 (低屈折率層組成物)
 (カチオン重合性化合物)
 〔1-(3-エチル-3-オキセタニル)メチル〕エーテル 4.5質量部
 3-グリシドキシプロピルトリメトキシシラン      2.5質量部
 含フッ素エポキシ化合物1                 2質量部
 (光カチオン重合開始剤)
 4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート      0.2質量部
 (ロードシル2074、ローディアジャパン株式会社製)
 (シリカ粒子)
 中空シリカ系粒子分散液                 35質量部
 (添加剤)
 シリコーン化合物(FZ-2207、東レダウコーニング株式会社製)の
10%プロピレングリコールモノメチルエーテル液     0.9質量部
 (溶媒)
 メチルイソブチルケトン                 30質量部
 メチルエチルケトン                   90質量部
(Low refractive index layer composition)
(Cationically polymerizable compound)
[1- (3-Ethyl-3-oxetanyl) methyl] ether 4.5 parts by mass 3-glycidoxypropyltrimethoxysilane 2.5 parts by mass Fluorine-containing epoxy compound 1 2 parts by mass (photocation polymerization initiator)
4-Methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluorophenyl) borate 0.2 parts by mass (Lordsil 2074, produced by Rhodia Japan)
(Silica particles)
Hollow silica particle dispersion 35 parts by mass (additive)
0.9 parts by mass of 10% propylene glycol monomethyl ether solution of a silicone compound (FZ-2207, manufactured by Toray Dow Corning Co., Ltd.) (solvent)
Methyl isobutyl ketone 30 parts by weight Methyl ethyl ketone 90 parts by weight
 なお、含フッ素エポキシ化合物1および中空シリカ系粒子分散液は以下のようにして調製した。 In addition, the fluorine-containing epoxy compound 1 and the hollow silica-based particle dispersion were prepared as follows.
 (含フッ素エポキシ化合物1の調製)
 1,3-ジヒドロキシヘキサフルオロイソプロピルベンゼン81.03gとエピクロロヒドリン185gを混合し、水酸化ナトリウム16.27gと水40mlを加え、撹拌下で加熱還流させた。130℃で3時間反応後、自然冷却し、生成した塩化ナトリウムを吸引濾過により除去した。得られた濾液をクロロホルム-水により抽出し、有機層を乾燥、濾過、濃縮することにより、含フッ素エポキシ化合物1を95.7g得た。
(Preparation of fluorine-containing epoxy compound 1)
81.03 g of 1,3-dihydroxyhexafluoroisopropylbenzene and 185 g of epichlorohydrin were mixed, 16.27 g of sodium hydroxide and 40 ml of water were added, and the mixture was heated to reflux with stirring. After reacting at 130 ° C. for 3 hours, the mixture was naturally cooled, and the produced sodium chloride was removed by suction filtration. The obtained filtrate was extracted with chloroform-water, and the organic layer was dried, filtered and concentrated to obtain 95.7 g of fluorine-containing epoxy compound 1.
 (中空シリカ系粒子分散液の調製)
 平均粒径5nm、SiO濃度20質量%のシリカゾル100gと、純水1900gとの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiOとして0.98質量%のケイ酸ナトリウム水溶液9000gと、Alとして1.02質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して、固形分濃度20質量%のSiO・Al核粒子分散液を調製した(工程a)。
(Preparation of hollow silica-based particle dispersion)
A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor is 10.5. In the mother liquor, 9000 g of 0.98 mass% sodium silicate aqueous solution as SiO 2 and 9000 g of 1.02 mass% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added. Added. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 · Al 2 O 3 core particle dispersion with a solid content concentration of 20% by mass (step a).
 この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO濃度3.5質量%)3000gを添加して、第1シリカ被覆層を形成した核粒子の分散液を得た(工程b)。 1700 g of pure water is added to 500 g of this core particle dispersion and heated to 98 ° C., and while maintaining this temperature, a silicate solution (SiO 2) obtained by dealkalizing a sodium silicate aqueous solution with a cation exchange resin. A dispersion of core particles on which the first silica coating layer was formed was obtained by adding 3000 g (concentration: 3.5% by mass) (step b).
 ついで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。ついで、pH3の塩酸水溶液10Lと純水5Lを加えながら、限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO・Al多孔質粒子の分散液を調製した(工程c)。 Next, 1125 g of pure water is added to 500 g of the core particle dispersion liquid on which the first silica coating layer having a solid content concentration of 13 mass% is formed by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (35.5%) is further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Next, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated, and SiO 2. A dispersion of Al 2 O 3 porous particles was prepared (step c).
 上記多孔質粒子分散液1500gと、純水500g、エタノール1750g、及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO28質量%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。ついで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ系粒子分散液を調製した。 A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1750 g of ethanol, and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 mass%) was added. The surface of the porous particles on which the silica coating layer was formed was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer. Subsequently, a hollow silica-based particle dispersion having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
 この中空シリカ系粒子の第1シリカ被覆層の厚さは3nm、平均粒径は45nm、MOX/SiO(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径は動的光散乱法により測定した。 The thickness of the first silica coating layer of the hollow silica-based particles was 3 nm, the average particle size was 45 nm, MOX / SiO 2 (molar ratio) was 0.0017, and the refractive index was 1.28. Here, the average particle diameter was measured by a dynamic light scattering method.
 (機能層(反射防止層)を積層させた樹脂フィルム)
 樹脂フィルムとして、40μmの膜厚を有するトリアセチルセルロースフィルム(コニカミノルタタックKC4UA、コニカミノルタ(株)製)を用いた。反射防止層の樹脂組成物として上記低屈折率組成物を用い、グラビアコーティング法によりウェット膜厚20μm(乾燥後のドライ膜厚10μm)になるように塗布、乾燥させて、高圧水銀灯により200mJ/cmの紫外線を照射させて、ハードコート層が積層された樹脂フィルムとした。
(Resin film with a functional layer (antireflection layer) laminated)
As the resin film, a triacetyl cellulose film (Konica Minolta Tack KC4UA, manufactured by Konica Minolta Co., Ltd.) having a film thickness of 40 μm was used. Using the above low refractive index composition as the resin composition of the antireflection layer, it was applied and dried to a wet film thickness of 20 μm (dry film thickness after drying of 10 μm) by a gravure coating method, and 200 mJ / cm by a high-pressure mercury lamp. The resin film on which the hard coat layer was laminated was obtained by irradiating the ultraviolet ray 2 .
 樹脂フィルムを、上記で得られた反射防止層が積層された樹脂フィルムとした以外は、実施例1と同様にして、機能付きガラス(厚み70μm)を得た。実施例2の機能付きガラスを、機能付きガラス2とする。 A functional glass (thickness 70 μm) was obtained in the same manner as in Example 1 except that the resin film was a resin film laminated with the antireflection layer obtained above. The glass with function of Example 2 is referred to as glass 2 with function.
 <実施例3>
 (機能層(防眩層)を積層させた樹脂フィルムの製造)
 樹脂フィルムとして、40μmの膜厚を有するトリアセチルセルロースフィルム(コニカミノルタタックKC4UA、コニカミノルタオプト(株)製)を用いた。防眩層の樹脂組成物は、ペンタエリスリトールトリアクリレート(共栄社化学(株)製:ライトアクリレートPE-3A)100質量部、ポリスチレン粒子、綜研化学製;SX-130Hを60質量部、及び光重合開始剤3質量部を、メチルエチルケトン(MEK)溶媒にて固形分50%とした。攪拌した混合溶液をグラビアコーティング法によりウェット膜厚20μm(乾燥後のドライ膜厚10μm)になるように塗布、乾燥させて、高圧水銀灯により200mJ/cmの紫外線を照射させて、防眩層が積層された樹脂フィルムとした。
<Example 3>
(Manufacture of resin film with functional layer (antiglare layer) laminated)
As the resin film, a triacetyl cellulose film (Konica Minolta Tack KC4UA, manufactured by Konica Minolta Opto Co., Ltd.) having a thickness of 40 μm was used. The resin composition of the antiglare layer is composed of 100 parts by mass of pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Acrylate PE-3A), polystyrene particles, 60 parts by mass of SX-130H, and photopolymerization is started. 3 parts by mass of the agent was adjusted to a solid content of 50% with methyl ethyl ketone (MEK) solvent. The anti-glare layer is formed by applying and drying the stirred mixed solution so as to have a wet film thickness of 20 μm (dry film thickness after drying of 10 μm) by a gravure coating method, and then irradiating with 200 mJ / cm 2 of ultraviolet light with a high-pressure mercury lamp. A laminated resin film was obtained.
 樹脂フィルムを、上記で得られた防眩層が積層された樹脂フィルムとした以外は、実施例1と同様にして、機能付きガラス(厚み70μm)を得た。実施例3の機能付きガラスを、機能付きガラス3とする。 A functional glass (thickness 70 μm) was obtained in the same manner as in Example 1 except that the resin film was a resin film laminated with the antiglare layer obtained above. The glass with function of Example 3 is referred to as glass 3 with function.
 <実施例4>
 樹脂フィルムとして、40μmの膜厚を有するセルロースアセテートプロピオネートフィルムを用いた以外は、実施例1と同様にして、機能付きガラス(厚み70μm)を得た。実施例4の機能付きガラスを、機能付きガラス4とする。
<Example 4>
A functional glass (thickness: 70 μm) was obtained in the same manner as in Example 1 except that a cellulose acetate propionate film having a thickness of 40 μm was used as the resin film. Let the glass with a function of Example 4 be the glass 4 with a function.
 <実施例5>
 樹脂フィルムとして、40μmの膜厚を有するTAC-アクリルハイブリッドフィルム(調製方法は後述)を用いた以外は、実施例1と同様にして、機能付きガラス(厚み70μm)を得た。実施例5の機能付きガラスを、機能付きガラス5とする。
<Example 5>
A functional glass (thickness 70 μm) was obtained in the same manner as in Example 1 except that a TAC-acrylic hybrid film (preparation method will be described later) having a thickness of 40 μm was used as the resin film. Let the glass with a function of Example 5 be the glass 5 with a function.
 〔TAC-アクリルハイブリッドフィルムの調製)
 (ドープの調製)
アクリル樹脂(A)重量平均分子量Mw 30万(共重合成分 MMA:メチルメタクリレート モノマー質量比 70%  ACMO:アクリロイルモルホリンモノマー質量比30%)             90質量部
 セルロースエステル樹脂(B)重量平均分子量Mw 30万 (アセチル置換度 2、87)                    10質量部
 紫外線吸収剤:2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659、株式会社ADEKA製のLA31)   3.0質量部
 マット剤:R972V(日本アエロジル社製、シリカ粒子、平均粒径=16nm)                       0.30質量部
 剥離助剤:エレカットS412(竹本油脂社製)    0.50質量部
 メチレンクロライド                  300質量部
 エタノール                       40質量部
[Preparation of TAC-acrylic hybrid film]
(Preparation of dope)
Acrylic resin (A) weight average molecular weight Mw 300,000 (copolymerization component MMA: methyl methacrylate monomer mass ratio 70% ACMO: acryloylmorpholine monomer mass ratio 30%) 90 parts by mass Cellulose ester resin (B) weight average molecular weight Mw 300,000 ( Acetyl substitution degree 2,87) 10 parts by mass UV absorber: 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol ] (Molecular weight 659, LA31 made by ADEKA Corporation) 3.0 parts by weight Matting agent: R972V (manufactured by Nippon Aerosil Co., Ltd., silica particles, average particle size = 16 nm) 0.30 parts by weight Peeling aid: ELECUT S412 (Takemoto Yushi 0.50 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass
 上記各組成物を、攪拌及び加熱しながら十分に溶解し、ドープ1を調製した。なお、アクリル樹脂(A)及びセルロースエステル樹脂(B)は常法に従って作成した。 The above respective compositions were sufficiently dissolved while stirring and heating to prepare a dope 1. The acrylic resin (A) and the cellulose ester resin (B) were prepared according to a conventional method.
 (フィルムの製膜)
 上記調製したドープを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。
(Film formation)
The prepared dope was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
 次いで、剥離したドープ1のウェブを35℃で溶媒を蒸発させ、1m幅にスリットし、その後、ゾーン延伸で搬送方向(MD方向)に2.0倍、テンター延伸で幅手方向(TD方向)に2.0倍延伸しながら、135℃の乾燥温度で乾燥させた。この時、テンターによる延伸を開始したときの残留溶媒量は、8%であった。 Next, the solvent of the peeled dope 1 is evaporated at 35 ° C., slit to 1 m width, and then 2.0 times in the transport direction (MD direction) by zone stretching and the width direction (TD direction) by tenter stretching. The film was dried at a drying temperature of 135 ° C. while being stretched 2.0 times. At this time, the residual solvent amount when starting stretching with the tenter was 8%.
 テンターで延伸した後、130℃で5分間の緩和処理を施した後、120℃、140℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施した後、コアに巻き取り、TAC-アクリルハイブリッドフィルムを作製した。 After stretching with a tenter, it was relaxed at 130 ° C for 5 minutes, and then dried while being transported by a large number of rolls at 120 ° C and 140 ° C, and slitted to a width of 1.5 m. Was subjected to a knurling process having a width of 10 mm and a height of 5 μm, and then wound around a core to prepare a TAC-acrylic hybrid film.
 作製したフィルムの残留溶剤量は700ppmであり、膜厚は40μm、巻長は4000mであった。 The amount of residual solvent of the produced film was 700 ppm, the film thickness was 40 μm, and the winding length was 4000 m.
 <実施例6>
 トリアセチルセルロースフィルムの膜厚を25μmのもの(コニカミノルタタックKC2UA、コニカミノルタオプト(株)製)に変更した以外は、実施例1と同様にして、機能付きガラス(厚み55μm)を得た。実施例6の機能付きガラスを、機能付きガラス6とする。
<Example 6>
A functional glass (thickness 55 μm) was obtained in the same manner as in Example 1 except that the film thickness of the triacetyl cellulose film was changed to one having a thickness of 25 μm (Konica Minolta Tack KC2UA, manufactured by Konica Minolta Opto Co., Ltd.). Let the glass with a function of Example 6 be the glass 6 with a function.
 <実施例7>
 常法に従って作成したトリアセチルセルロースフィルムの膜厚が15μmのものに変更した以外は、実施例1と同様にして、機能付きガラス(厚み45μm)を得た。実施例7の機能付きガラスを、機能付きガラス7とする。
<Example 7>
A functional glass (thickness: 45 μm) was obtained in the same manner as in Example 1, except that the film thickness of the triacetylcellulose film prepared according to a conventional method was changed to that of 15 μm. The glass with function of Example 7 is referred to as glass 7 with function.
 <比較例1>
 接着剤Aの代わりにアクリル系粘着シート(PSA;Pressure Sensitive Adhesive 、感圧接着剤;日東電工(株)製、LUCIACS(登録商標) CS9622)を用いた以外は、実施例1と同様にして、機能付きガラス(厚み120μm)を得た。比較例1の機能付きガラスを、機能付きガラス8とする。
<Comparative Example 1>
Except for using an acrylic pressure-sensitive adhesive sheet (PSA; Pressure Sensitive Adhesive, pressure-sensitive adhesive; manufactured by Nitto Denko Corporation, LUCIACS (registered trademark) CS9622) instead of the adhesive A, A glass with a function (thickness 120 μm) was obtained. The glass with function of Comparative Example 1 is referred to as glass 8 with function.
 <比較例2>
 接着剤Aの代わりにアクリル系接着剤(東亜合成(株)製、UV-3610)を用いた以外は、実施例1と同様にして、機能付きガラス(厚み90μm)を得た。比較例2の機能付きガラスを、機能付きガラス9とする。
<Comparative example 2>
A functional glass (thickness: 90 μm) was obtained in the same manner as in Example 1 except that an acrylic adhesive (UV-3610, manufactured by Toa Gosei Co., Ltd.) was used instead of the adhesive A. Let the glass with a function of the comparative example 2 be the glass 9 with a function.
 <機能付きガラスの評価>
 上記で作製した機能付きガラス1~9について、湿熱耐久密着性および鉛筆硬度を評価した。結果を表1に示す。
<Evaluation of functional glass>
With respect to the functional glasses 1 to 9 produced above, wet heat durability adhesion and pencil hardness were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、湿熱耐久密着性および鉛筆硬度についての評価の手法および評価基準は以下の通りである。 The evaluation methods and evaluation criteria for wet heat durability adhesion and pencil hardness are as follows.
 (湿熱耐久密着性)
 60℃90%の環境下で500時間保持した後の樹脂フィルムとガラスの密着性を評価した。引っ張りせん断強度試験にて、引っ張り応力を加える事で接着層の層間のズレが発生したものを×、ズレが発生しなかったものを○とした。
(Wet heat durability adhesion)
The adhesion between the resin film and the glass after being held for 500 hours in an environment of 60 ° C. and 90% was evaluated. In the tensile shear strength test, when the tensile stress was applied, the case where the gap between the adhesive layers was generated was evaluated as x, and the case where the gap was not generated was evaluated as ◯.
 (鉛筆硬度)
 JIS K5600の規格に沿って試験評価を行った。
(Pencil hardness)
Test evaluation was performed in accordance with the standard of JIS K5600.
 表1より、実施例1~7の機能付きガラス1~7については、鉛筆硬度が2H以上であり、湿熱耐久密着性の評価も全て○であった。これは、ガラスと機能層付フィルムとの接着層として、本発明に係る有機-無機ハイブリッド糊(HB糊)を用いたことにより、接着層が材質の異なるガラスと樹脂との双方に対して良好な接着性を示し、密着性が向上したためと考えられる。 As shown in Table 1, for the functional glasses 1 to 7 of Examples 1 to 7, the pencil hardness was 2H or more, and the evaluations of wet heat durability adhesion were all good. This is because the organic-inorganic hybrid glue (HB glue) according to the present invention is used as the adhesive layer between the glass and the film with the functional layer, so that the adhesive layer is good for both glass and resin having different materials. This is considered to be due to improved adhesion and improved adhesion.
 これに対して、比較例1~2の機能付きガラス8および9では、鉛筆硬度はHB以下、湿熱耐久密着性の評価は×となっている。これは、上記接着層がPSAまたはアクリル系接着剤では、接着層と薄膜ガラスとの接着性、接着層と機能層付樹脂フィルムとの接着性を同時に向上させることがでなかったためと考えられる。 On the other hand, in the functional glasses 8 and 9 of Comparative Examples 1 and 2, the pencil hardness is HB or less, and the evaluation of wet heat durability adhesion is x. This is presumably because, when the adhesive layer was PSA or an acrylic adhesive, the adhesiveness between the adhesive layer and the thin film glass and the adhesiveness between the adhesive layer and the resin film with a functional layer could not be improved at the same time.
 さらに、比較例で用いた接着剤は、本発明の接着造のようにフィルムに浸透することがないため、比較例1と比較すると実施例1の機能付きガラスの方が薄型とすることができた。 Furthermore, since the adhesive used in the comparative example does not penetrate into the film unlike the adhesive structure of the present invention, the functional glass of Example 1 can be made thinner compared to Comparative Example 1. It was.
 この出願は、2013年4月30日に出願された日本国特許出願特願2013-95454を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2013-95454 filed on Apr. 30, 2013, the contents of which are included in this application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、表示装置などに使用されるガラスの技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of glass used for display devices and the like.

Claims (7)

  1.  機能層が積層された樹脂フィルムと薄膜ガラスとが接着層を介して積層されており、
     前記接着層が、反応性金属化合物と水酸基含有高分子化合物との縮合物を含んでいることを特徴とする、機能付きガラス。
    The resin film laminated with the functional layer and the thin glass are laminated via the adhesive layer,
    The functional glass, wherein the adhesive layer contains a condensate of a reactive metal compound and a hydroxyl group-containing polymer compound.
  2.  前記機能層が、ハードコート層、反射防止層又は防眩層である、請求項1に記載の機能付きガラス。 The functional glass according to claim 1, wherein the functional layer is a hard coat layer, an antireflection layer or an antiglare layer.
  3.  前記樹脂フィルムがセルロース系樹脂を含有する、請求項1または2に記載の機能付きガラス。 The glass with a function according to claim 1 or 2, wherein the resin film contains a cellulose resin.
  4.  前記樹脂フィルムの厚さが40μm以下である、請求項1~3のいずれかに記載の機能付きガラス。 The functional glass according to any one of claims 1 to 3, wherein the resin film has a thickness of 40 µm or less.
  5.  前記水酸基含有高分子化合物が、総アシル基置換度が1.0~2.6のセルロースエステルである、請求項1~4のいずれかに記載の機能付きガラス。 The functional glass according to any one of claims 1 to 4, wherein the hydroxyl group-containing polymer compound is a cellulose ester having a total acyl group substitution degree of 1.0 to 2.6.
  6.  前記機能層の鉛筆硬度が2H~6Hである、請求項1~5のいずれかに記載の機能付きガラス。 The functional glass according to any one of claims 1 to 5, wherein the functional layer has a pencil hardness of 2H to 6H.
  7.  タッチパネル用カバーガラスである、請求項1~6のいずれかに記載の機能付きガラス。 The glass with a function according to any one of claims 1 to 6, which is a cover glass for a touch panel.
PCT/JP2014/061831 2013-04-30 2014-04-28 Functional glass WO2014178365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095454 2013-04-30
JP2013095454 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178365A1 true WO2014178365A1 (en) 2014-11-06

Family

ID=51843492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061831 WO2014178365A1 (en) 2013-04-30 2014-04-28 Functional glass

Country Status (1)

Country Link
WO (1) WO2014178365A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070480A1 (en) * 2016-10-14 2018-04-19 株式会社クラレ Glass laminate
CN108000988A (en) * 2016-10-31 2018-05-08 南昌欧菲光学技术有限公司 Cover-plate glass stepped construction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233043A (en) * 2005-02-25 2006-09-07 Konica Minolta Opto Inc Method for preparing dope for optical film, method for producing optical film by using the preparation method, optical film, and polarizing plate using the optical film
JP2007253356A (en) * 2006-03-20 2007-10-04 Suzuka Fuji Xerox Co Ltd Bonded structure, bonding method, and adhesive film
JP2010275385A (en) * 2009-05-27 2010-12-09 Dic Corp Anti-scattering adhesive sheet
JP2011107686A (en) * 2009-10-22 2011-06-02 Sumitomo Chemical Co Ltd Optical laminate and method of manufacturing the same
WO2014084046A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Glass with phase differentiation function, organic el display, and liquid crystal display
WO2014084044A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Glass with circular polarization function, organic el display and liquid crystal display
WO2014084045A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Glass with polarization function and liquid crystal display provided therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233043A (en) * 2005-02-25 2006-09-07 Konica Minolta Opto Inc Method for preparing dope for optical film, method for producing optical film by using the preparation method, optical film, and polarizing plate using the optical film
JP2007253356A (en) * 2006-03-20 2007-10-04 Suzuka Fuji Xerox Co Ltd Bonded structure, bonding method, and adhesive film
JP2010275385A (en) * 2009-05-27 2010-12-09 Dic Corp Anti-scattering adhesive sheet
JP2011107686A (en) * 2009-10-22 2011-06-02 Sumitomo Chemical Co Ltd Optical laminate and method of manufacturing the same
WO2014084046A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Glass with phase differentiation function, organic el display, and liquid crystal display
WO2014084044A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Glass with circular polarization function, organic el display and liquid crystal display
WO2014084045A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Glass with polarization function and liquid crystal display provided therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070480A1 (en) * 2016-10-14 2018-04-19 株式会社クラレ Glass laminate
JPWO2018070480A1 (en) * 2016-10-14 2019-08-08 株式会社クラレ Glass laminate
JP7010832B2 (en) 2016-10-14 2022-02-10 株式会社クラレ Glass laminate
CN108000988A (en) * 2016-10-31 2018-05-08 南昌欧菲光学技术有限公司 Cover-plate glass stepped construction

Similar Documents

Publication Publication Date Title
JP6024586B2 (en) Glass with polarization function and liquid crystal display device having the same
JP4736562B2 (en) Polarizing plate and display device
KR101222363B1 (en) Film and method for producing same, polarizing plate using same, and liquid crystal display
JP5119920B2 (en) Cellulose ester film, polarizing plate for horizontal electric field drive display device using the same, and horizontal electric field drive display device
JP5218411B2 (en) Optical film, polarizing plate and liquid crystal display device
JP5476843B2 (en) Optical laminate, polarizing plate, and image display device
JP5167812B2 (en) Optical film processing method, optical film processing apparatus, and optical film manufacturing method
JPWO2007058093A1 (en) Optical film processing method, optical film processing apparatus, and optical film manufacturing method
JPWO2007034643A1 (en) Method for forming uneven pattern film
WO2014084044A1 (en) Glass with circular polarization function, organic el display and liquid crystal display
WO2014084045A1 (en) Glass with polarization function and liquid crystal display provided therewith
WO2014084046A1 (en) Glass with phase differentiation function, organic el display, and liquid crystal display
JP6332268B2 (en) Glass laminate
WO2014178365A1 (en) Functional glass
JP2006215096A (en) Antireflection film, polarizing plate using the same and image display unit
WO2014171503A1 (en) Glass laminate, thin-film glass having transparent resin layer, liquid crystal display device, and organic el display device
JP2005272756A (en) Cellulose ester film, polarizer, and liquid crystal display
JP2009229501A (en) Optical film and method of manufacturing same, a polarizing plate, and display
JP2005275391A (en) Antireflection film and manufacturing method, polarizing plate, and liquid crystal display device using the same
JP4856880B2 (en) Antireflection film, polarizing plate and image display device
JP2005208477A (en) Antireflection film, polarizing plate and picture display device
JPWO2008056525A1 (en) Application method of antistatic layer, antistatic film, polarizing plate and display device
JP2007272095A (en) Optical functional film, polarizing plate, liquid crystal display device and flat panel display
JPWO2008126563A1 (en) Antiglare film, method for producing the same, polarizing plate using antiglare film, and display device
JP2011008275A (en) Anti-reflective film, polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP