WO2014178157A1 - Liquid crystal display device and display device substrate - Google Patents

Liquid crystal display device and display device substrate Download PDF

Info

Publication number
WO2014178157A1
WO2014178157A1 PCT/JP2013/083912 JP2013083912W WO2014178157A1 WO 2014178157 A1 WO2014178157 A1 WO 2014178157A1 JP 2013083912 W JP2013083912 W JP 2013083912W WO 2014178157 A1 WO2014178157 A1 WO 2014178157A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
liquid crystal
substrate
layer
black matrix
Prior art date
Application number
PCT/JP2013/083912
Other languages
French (fr)
Japanese (ja)
Inventor
智之 海田
福吉 健蔵
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201380076122.2A priority Critical patent/CN105164577B/en
Priority to JP2014510994A priority patent/JP6197788B2/en
Priority to KR1020157033562A priority patent/KR102103905B1/en
Publication of WO2014178157A1 publication Critical patent/WO2014178157A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • the present invention relates to a liquid crystal display device including a copper wiring and a substrate for a display device.
  • a liquid crystal display device including a copper wiring and a substrate for a display device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-307303 discloses a technique for forming a copper wiring with an alkaline oxidizing solution.
  • Patent Document 2 Japanese Patent Laid-Open Publication No. 2011-135061 discloses a technology in which a copper wiring is used as a wiring of an active element formed using an oxide semiconductor.
  • Patent Documents 1 and 2 do not disclose a technique for suppressing the reflected color of the copper wiring using a coloring material or a pigment to optimize the display color.
  • the present invention has been made in view of the above situation, and it is an object of the present invention to provide a liquid crystal display device and a substrate for a display device, which suppress the reflected color of copper wiring using coloring materials or pigments and optimize the display color. To aim.
  • a liquid crystal display device is formed by facing a display device substrate and an array substrate and bonding them through a liquid crystal layer.
  • the display device substrate includes a black matrix having a plurality of pixel openings and a transparent resin layer on a transparent substrate.
  • the array substrate includes a plurality of active elements corresponding to each of the plurality of pixel openings, and a copper wire electrically connected to the plurality of active elements.
  • the liquid crystal display device overlaps with at least a part of the copper wiring in plan view from the viewer side, and exhibits low transmittance in a light wavelength region with high reflectance of copper and a light wavelength region with low reflectance of copper.
  • a color adjustment layer having a transmittance characteristic exhibiting high transmittance.
  • a liquid crystal display device includes a transparent substrate, a display substrate having a plurality of pixel openings and a black matrix provided on the transparent substrate, a transparent resin layer, a liquid crystal layer, and a plurality of the plurality.
  • the combined array substrate overlaps with at least a portion of the copper wiring in a plan view viewed from an observer, and exhibits low transmittance in a light wavelength range with high reflectance of copper and light with low reflectance of the copper You may comprise the color-adjustment layer which has the transmittance
  • a liquid crystal display device includes a transparent substrate, a substrate for a display device having a plurality of pixel openings and a black matrix layer provided on the transparent substrate, and a transparent resin layer, a liquid crystal layer, A plurality of active elements corresponding to each of a plurality of pixel openings, and a copper wire electrically connected to the plurality of active elements are provided to face the display device substrate via the liquid crystal layer.
  • the color adjustment layer may have a transmittance characteristic that exhibits a low transmittance in the region and a high transmittance in the light wavelength region where the reflectance of the copper is low.
  • the copper wiring may include portions located in the plurality of pixel openings in a plan view. At least a part of the pattern of the color adjustment layer overlaps the portion of the pattern of the copper wiring which does not overlap with the black matrix in plan view.
  • the color adjustment layer may be formed between the transparent substrate and the transparent resin layer.
  • the liquid crystal display device may further include an adhesion improving resin layer between the transparent substrate and the black matrix.
  • the pattern of the black matrix and the pattern of the adhesion improving resin layer may have the same shape in plan view.
  • At least a part of the color adjustment layer may be provided in at least one of between the transparent substrate and the black matrix and between the black matrix and the transparent resin layer.
  • the display device substrate may further include a red filter, a green filter, and a blue filter assigned to each of the plurality of pixel openings.
  • the black matrix may contain an organic pigment as a main component of the light-shielding coloring material.
  • the liquid crystal display device may have a display unit and a frame unit surrounding the display unit in plan view.
  • the frame portion may contain carbon as a main component of the light-shielding color material.
  • the display device substrate is bonded to the array substrate provided with the copper wiring, with the liquid crystal layer interposed therebetween.
  • the display device substrate includes, on a transparent substrate, a black matrix having a plurality of pixel openings, a red filter, a green filter, a blue filter, and a transparent resin layer assigned to each of the plurality of pixel openings.
  • the display device substrate overlaps with at least a part of the copper wiring in a plan view from the viewer side, and exhibits low transmittance in a light wavelength region where the reflectance of copper is high and a light wavelength where the reflectance of copper is low. It further comprises a color adjustment layer having a transmittance characteristic showing high transmittance in the region.
  • the display device substrate is a display device substrate that faces the array substrate provided with a copper wiring and is bonded via a liquid crystal layer, and has a transparent substrate and a plurality of pixel openings.
  • a black matrix provided on a substrate, a red filter, a green filter, a blue filter, a transparent resin layer, and a copper filter provided in a plan view as viewed from an observer allocated to each of the plurality of pixel openings.
  • the color adjustment layer has a transmittance characteristic that overlaps a part and exhibits low transmittance in a light wavelength region with high copper reflectance and high transmittance in a light wavelength region with low copper reflectance.
  • the display device substrate is a display device substrate that faces the array substrate provided with a copper wiring and is bonded via a liquid crystal layer, and has a transparent substrate and a plurality of pixel openings. It is laminated on a black matrix layer provided on a substrate, a red filter, a green filter, a blue filter, a transparent resin layer, and a black resin layer assigned to each of the plurality of pixel openings, and viewed from the observer Transmittance showing at least a part of the copper wiring in a plan view and exhibiting low transmittance in a light wavelength region with high reflectance of copper and high transmittance in a light wavelength region with low reflectance of copper
  • a color adjustment layer having characteristics may be provided.
  • the color adjustment layer may be formed closer to the liquid crystal layer than the black matrix, the red filter, the green filter and the blue filter.
  • the display device substrate may further include an adhesion improving resin layer between the transparent substrate and the black matrix.
  • At least a part of the color adjustment layer may be formed on the interface between the transparent substrate and the black matrix in substantially the same pattern as the black matrix.
  • the red filter, the green filter, and the blue filter are formed on the transparent substrate.
  • a black matrix is formed on the red filter, the green filter, and the blue filter.
  • the color adjustment layer may have a transmittance of about 30% to 80% of light at a wavelength of 620 nm.
  • the adhesion improving resin layer may be a translucent resin layer.
  • the adhesion improving resin layer may have a light transmittance of about 30% to 95% at a wavelength of about 550 nm.
  • the adhesion improving resin layer may contain carbon.
  • the color adjustment layer may contain an aluminum phthalocyanine pigment as a main component.
  • the black matrix may contain an organic pigment as a main component of the light-shielding coloring material.
  • the display device substrate may be provided with a display portion and a frame portion surrounding the display portion in plan view.
  • the frame portion may contain carbon as a main component of the light-shielding color material.
  • a liquid crystal display device and a substrate for a display device in which a color material or a pigment is used to suppress a reflection color of a copper wiring and optimize a display color.
  • the display unit of the liquid crystal display device is one pixel (or picture element)
  • the display unit may be one sub-pixel, or a plurality of pixels (pixel number) may constitute the display unit, or any pixel or pixel defined arbitrarily may constitute the display unit. May be A pixel is assumed to be a polygon having at least two parallel sides.
  • the lateral direction of the pixel is parallel to the alignment direction of the right eye and the left eye of the observer.
  • the direction perpendicular to the horizontal direction of the pixel is the vertical direction of the pixel.
  • each embodiment is described taking a liquid crystal display device as an example, the same applies to other display devices such as an organic EL display device.
  • liquid crystal display device having liquid crystal molecules of which the initial alignment is vertical alignment and having a normally black characteristic
  • the liquid crystal display device according to the present embodiment includes polarizing plates in a cross nicol relationship of approximately 90 degrees on the front and back surfaces of the liquid crystal display panel.
  • the description of the polarizing plate and the retardation plate provided in the liquid crystal display device is omitted.
  • the liquid crystal display device according to the present embodiment includes liquid crystal molecules having negative dielectric anisotropy.
  • FIG. 1 is a plan view showing an example of the array substrate of the liquid crystal display device according to the present embodiment as viewed from an observer.
  • the liquid crystal display device 1 includes an active element 3, a source line 4, a gate line 5, an auxiliary capacitance line 6, and an extended line 33 a in the pixel opening 2.
  • the active element 3 is, for example, a thin film transistor.
  • the active element 3 includes, for example, a transparent channel layer 31 formed of an oxide semiconductor, a source electrode 32, a gate electrode, and a drain electrode 33.
  • the oxide semiconductor may be composed of indium, gallium and zinc.
  • the active element 3 is provided at the corner of the pixel opening 2. In the example of FIG. 1, the active element 3 is disposed at the upper left of the pixel opening 2.
  • the source line 4 is disposed on the side of the pixel opening 2 and extends in the vertical direction. Source line 4 is electrically connected to source electrode 32 of active element 3.
  • the gate lines 5 are disposed on the upper side and the lower side of the pixel opening 2 and extend in the lateral direction. Gate line 5 is electrically connected to the gate electrode of active element 3.
  • the storage capacitance line 6 extends in the lateral direction, and is disposed to cross substantially the central portion of the pixel opening 2.
  • the pixel electrode 7 is a conductive oxide film provided on the array substrate of the liquid crystal display device 1 and is, for example, a transparent conductive film (ITO, Indium Tin Oxide).
  • the pixel electrode 7 is provided in the pixel opening 2.
  • the pixel electrode 7 is supplied with a liquid crystal drive voltage from, for example, the contact hole 8 at the central portion of the pixel via the drain electrode 33 of the active element 3 and the extended line 33 a of the drain electrode 33.
  • the pixel electrode 7 may have an auxiliary capacitance for driving liquid crystal with the auxiliary capacitance line 6.
  • a transparent substrate such as glass
  • a plurality of active elements 3, extended wires 33a, source lines 4, gate lines 5, storage capacitance lines 6, and pixel electrodes 7 are formed on a transparent substrate such as glass.
  • An array substrate having pixels is formed on a transparent substrate such as glass.
  • the source line 4 in the first layer, the source line 4, the source electrode 32 and the drain electrode 33 of the active element 3, and the extension 33 a are disposed, and in the second layer below the first layer, the active element
  • the active element The gate electrode 3, the gate line 5, and the storage capacitance line 6 are disposed.
  • the source line 4 has, for example, a two-layer structure in which copper is formed on titanium.
  • the gate line 5, the storage capacitance line 6, and the extension line 33a also have a two-layer structure in which copper is formed on, for example, titanium.
  • FIG. 2 is a plan view showing an example of the color filter substrate of the liquid crystal display device 1 according to the present embodiment as viewed from an observer.
  • FIG. 2 corresponds to a portion of the color filter substrate overlapping the pixel opening 2 shown in FIG.
  • the black matrix BM black matrix layer formed on the color filter substrate (substrate for display device) is formed at a position covering the source line 4, the gate line 5 and the active element 3 shown in FIG. Ru.
  • the color adjustment layer 18 is disposed to overlap the black matrix BM, the auxiliary capacitance line 6, and the extended line 33a in plan view.
  • the color adjustment layer 18 may be disposed below the black matrix BM.
  • the color adjustment layer 18 may be formed to be in direct contact with the black matrix BM (black matrix layer).
  • BM black matrix layer
  • As a structure of the black matrix a two-layer structure constituted by the color adjustment layer 18 and the black matrix layer may be adopted.
  • FIG. 3 is a view showing an example of the first cross section of the liquid crystal display device 1 and corresponds to the A-A ′ cross section of FIG. 1 and FIG. 2 described above.
  • the liquid crystal display device 1 includes a liquid crystal panel 9.
  • the liquid crystal panel 9 includes an array substrate 10, a liquid crystal layer 11, and a color filter substrate 12.
  • the array substrate 10 and the color filter substrate 12 face each other through the liquid crystal layer 11.
  • the array substrate 10 includes a transparent substrate 13, insulating layers (transparent resin) 14 a to 14 c, active elements 3, extended wires 33 a, pixel electrodes 15, and an alignment film 16.
  • a glass plate is used as the transparent substrate 13.
  • An insulating layer 14 a is formed on the first plane (surface facing the liquid crystal layer 11) of the transparent substrate 13.
  • the gate electrode 34 of the active element 3 is formed on the insulating layer 14 a.
  • An insulating layer 14 b is formed on the insulating layer 14 a on which the gate electrode 34 is formed.
  • the source electrode 32 and the drain electrode 33 of the active element 3 and the extended wire 33 a of the drain electrode 33 are formed on the insulating layer 14 b.
  • An insulating layer 14c is formed on the insulating layer 14b on which the source electrode 32, the drain electrode 33, and the extended wire 33a are formed.
  • the pixel electrode 15 is formed on the insulating layer 14c.
  • the alignment film 16 of the array substrate 10 is located near the liquid crystal layer 11.
  • a second plane (opposite to the first plane) of the transparent substrate 13 of the array substrate 10 faces the inside of the liquid crystal display device 1.
  • the color filter substrate 12 includes a transparent substrate 17, a color adjustment layer 18, a black matrix BM, a color filter 19, an overcoat layer (transparent resin layer) 20, a counter electrode (common electrode) 21, and an alignment film 22. And
  • glass is used as the transparent substrate 11.
  • a color adjustment layer 18 is formed on the first plane (surface facing the liquid crystal layer 11) of the transparent substrate 17.
  • a black matrix BM is formed on the color adjustment layer 18.
  • a color filter 19 is formed on the color adjustment layer 18 and the transparent substrate 17 on which the black matrix BM is formed. In the color filter 19, one of a red filter RF, a green filter GF, and a blue filter BF is disposed for each pixel.
  • An overcoat layer 20 is formed on the color filter 19.
  • the counter electrode 21 is formed on the overcoat layer 20.
  • An alignment film 22 is formed on the counter electrode 21.
  • the alignment film 22 of the color filter substrate 12 is located near the liquid crystal layer 11.
  • the second plane (surface opposite to the first plane) of the transparent substrate 17 of the color filter substrate 12 is a surface facing the viewer.
  • the liquid crystal molecules of the liquid crystal layer 11 have an initial vertical alignment, and have negative dielectric anisotropy.
  • the transistor structure of the active element 3 is illustrated as a bottom gate structure as an example.
  • the transistor structure of the active element 3 may be a top gate structure, a double gate structure, a dual gate structure, or a bottom contact structure.
  • FIG. 4 is a view showing an example of the second cross section of the liquid crystal display device 1, and corresponds to the B-B 'cross section of FIG. 1 and FIG. 2 described above.
  • Source line 4 and extended line 33 a are formed on insulating layer 14 b of array substrate 10.
  • An insulating layer 14c is formed on the insulating layer 14b in which the source line 4 and the extended line 33a are formed.
  • An overcoat layer 20 is formed on the color filter 19.
  • the metal wires such as the source electrode 32, the drain electrode 33, the gate electrode 34, the source line 4, the gate line 5, the auxiliary capacitance line 6, and the extended line 33a are titanium layers 23 and copper layers 24. It has a two-layer structure including (copper wiring).
  • the oxide of the transparent channel layer 31 (channel layer) of the active element 3 is gallium (Ga), indium (In), zinc (Zn), hafnium (Hf), tin (Sn), yttrium (Y), germanium (Ge) And two or more mixed oxides selected from The transparent channel layer 31 formed of two or more or three or more complex oxides is in an amorphous state.
  • heat treatment is performed within a range of approximately 250 ° C. or more and 500 ° C. or less to crystallize the complex oxide, thereby forming each of the transistors.
  • the electrical properties can be stabilized and homogenized.
  • the heat treatment condition of the complex oxide is preferably a high temperature range of about 500 ° C. or higher.
  • the heat resistance of copper which is a metal that forms the source electrode 32, the drain electrode 33, the gate electrode 34, the source line 4, the gate line 5, the storage line 6, the extended line 33a, and the like is limited. Heat treatment can be performed in a short time at 500 ° C. or higher by an RTA (Rapid Thermal Anneal) method.
  • the transparent channel layer 31 is the above complex oxide
  • the metal wiring such as the source electrode 32, the drain electrode 33, and the gate electrode 34 is a two-layer structure of the titanium layer 23 and the copper layer 24.
  • Titanium can be substituted for refractory metals such as molybdenum or tungsten.
  • the gate line 4 and the extended line 33a shown in FIG. 4 are formed on the insulating layer 14b by, for example, a titanium layer 23 having a thickness of about 8 nm and a copper layer 24 having a thickness of about 250 nm.
  • the insulating layers 14a to 14c may be formed of, for example, silicon nitride, silicon oxide, or a mixture of these materials.
  • the insulating layers 14a to 14c may be, for example, two layers of silicon nitride and a transparent resin.
  • FIG. 5 is a graph showing an example of the reflectance of copper.
  • the vertical axis of this graph represents reflectance (%).
  • the horizontal axis represents the wavelength (nm) of light.
  • the reflectivity of copper is low in the low wavelength region of light and high in the high wavelength region of light.
  • the reflectivity of copper has a high reflectivity on the long wavelength side after about 550 nm.
  • the conventional liquid crystal display device for example, since the extended wire 33a from the active element 3 is located at the pixel opening 2, when the extended wire 33a is copper, the redness inherent to light reflection of copper is displayed in the display color. Join. Also in the case where the storage capacitance line 6 is copper, redness inherent to light reflection of copper is similarly added to the display color.
  • copper may contain less than about 3% foreign metals or impurities.
  • dissimilar metals examples include magnesium, aluminum, indium and tin. The smaller the added amount of such dissimilar metals, the more preferable is the reflectivity of copper.
  • the color adjustment layer 18 is formed as shown in FIG.
  • the color adjustment layer 18 and the black matrix BM have a two-layer configuration.
  • the pattern of the color adjustment layer 18 is formed in substantially the same shape as the storage capacitance line 6, the extended line 33a, and the like in plan view.
  • FIG. 6 is a graph showing an example of the light transmission characteristic of the color adjustment layer 18.
  • the vertical axis of this graph represents the transmittance (%).
  • the horizontal axis represents the wavelength (nm) of light.
  • the transmittance of the color adjustment layer 18 is high in the wavelength range of low light and low in the wavelength range of high light. Therefore, the characteristics of the reflectance color of copper shown in FIG. 5 and the characteristics of the transmittance of the color adjustment layer 18 shown in FIG. 6 have an inverse correlation with changes in the wavelength of light.
  • the transmittance of the color adjustment layer 18 is high transmittance in the range of about 430 nm to less than 550 nm.
  • the transmittance of the color adjustment layer 18 has a feature of absorbing light in a range of about 550 nm to 700 nm, and is low in transmission. This transmittance characteristic is generally close to that of a color filter called cyan.
  • the blue filter which is usually employed for color filters, also has an absorption band in a wavelength range of about 500 nm to less than 550 nm. Copper thin films are less reflective in the short wavelength range than in the green light wavelength range. For this reason, in the case where a color adjustment layer containing a blue color material or an adhesion improving resin layer is formed as a main color material, the green reflection component becomes too low, which is suitable for compensating for the red inherent to light reflection of copper. Absent.
  • the main color material is a color material having a mass ratio of 50% or more to the total amount of color materials dispersed or added to the color adjustment layer or the adhesion improving resin layer. However, even when the blue color material is included in the color adjustment layer, the transmittance in the red wavelength region of the color adjustment layer is approximately 30% or more or 40% or less to make the color substantially cyan. Can.
  • the transmittance characteristics of the color adjustment layer 18 may be inversely correlated with the reflectance characteristics of the copper wiring instead of the reflectance of copper.
  • a red filter RF, a green filter GF, and a blue filter BF are provided in the respective pixel openings 2 in FIGS. 2 to 4 in plan view.
  • the color filter 19 including the red filter RF, the green filter GF, and the blue filter BF may be omitted.
  • a backlight unit including color LED light sources emitting red, green, and blue light is an array of the liquid crystal display device 1
  • the backside of the substrate 10 is provided.
  • the liquid crystal layer 11 for each pixel and the color LED light source of each color are time-division driven to realize color display.
  • the color filter 19 is also omitted when an organic EL display that emits red, green, and blue light is used.
  • the color material or film thickness of the color adjustment layer 18 will be described later.
  • the transmittance characteristics of the color adjustment layer 18 according to the second and third embodiments described later have less absorption in the light wavelength range of 550 nm to 700 nm than the transmittance characteristics of FIG. 6 described above. It may be a high transmittance. Therefore, in the second and third embodiments described later, the film thickness of the color adjustment layer 18 can be reduced.
  • the color adjustment layer 18 may contain an ultraviolet absorber.
  • an ultraviolet light absorber When an ultraviolet light absorber is added to the color adjustment layer 18, the rereflection of ultraviolet light in the liquid crystal panel 9 can be alleviated, and fluctuation of the threshold voltage Vth of a transistor using an oxide semiconductor can be prevented.
  • a ultraviolet absorber a benzotriazole type compound, a benzophenone series compound, a salicylic acid type compound, a coumarin type compound etc. are used, for example.
  • light stabilizers such as hindered amine compounds or quenchers (for example, singlet oxygen quenchers) may be added.
  • having absorption in the visible light region of about light wavelength 550 nm or more and 700 nm or less means that the transmittance of about 430 nm or more and less than 550 nm which is shorter than light wavelength 550 nm is about 550 nm or more Mean transmittance characteristics above a transmittance of 700 nm or less and mean S-shaped transmittance characteristics.
  • a complementary cyan filter can be used as the color adjustment layer 18.
  • another color filter that cancels out the redness that is a reflected color of copper may be used. Four representative transmission characteristics are shown in FIG. 6 above.
  • the transmittance of the color adjustment layer 18 may be included in the range of about 30% to about 80% of the light wavelength.
  • the transmittance of the color adjustment layer 18 may be in the range of approximately 30% to 80%.
  • the color adjustment layer 18 When the color adjustment layer 18 is formed on the black matrix BM closer to the liquid crystal layer 11, the color adjustment layer 18 reduces the amount of addition of the coloring material to achieve a transmittance of about 40% to 80%. It is also good.
  • the transmittance of 40% or more is 0.4 or less in optical density conversion.
  • the transmittance near about 620 nm of the color adjustment layer 18 is too low, for example, less than about 30%, the reflected color becomes too bluish past reddish. If the transmittance around 620 nm of the color adjustment layer 18 is high, for example, more than about 85%, the correction of the copper reflection color may be insufficient, and redness may remain in the reflection color.
  • the adhesion improving resin layer to be described later is formed on the interface between the transparent substrate 17 and the black matrix BM, so that it is possible to give priority to a neutral reflection color in the visible range. Therefore, the transmittance when the representative light wavelength is approximately 550 nm may be in the range of approximately 30% to 95%.
  • the transmittance refers to the transparent non-alkali glass used in the liquid crystal display device 1.
  • the reflectance is based on the reflectance of a magnesium oxide standard white plate.
  • the liquid crystal display device 1 provided with the copper wiring for transmitting the electric signal to the plurality of active elements 3, it is possible to suppress the appearance of the reflected color of copper.
  • the reflected light from the copper wiring includes internally reflected light of emitted light from the backlight unit or rereflected light of external light which is incident on the display surface of the liquid crystal display device 1.
  • the effects of the change in display color based on the reflected color of the copper wiring, and the reflected light from inside the liquid crystal display device 1 using the copper wiring and re-reflected light in the liquid crystal panel 9 are eliminated.
  • the influence of the constituent members of the liquid crystal panel 9 such as a polarization plate can be eliminated.
  • the present embodiment it is possible to improve the quality of black display (display when the liquid crystal drive voltage is off) of the liquid crystal display device 1 having a slight reddishness depending on the optical conditions such as the cell gap of the liquid crystal panel 9. .
  • a color material or a pigment can be used to suppress the reflected color of the copper wiring, and the display color can be optimized.
  • the copper wiring with high conductivity, it is possible to realize the liquid crystal display device 1 with high speed and without response unevenness.
  • FIG. 7 is a cross-sectional view showing an example of a liquid crystal display device 1A according to the present embodiment.
  • the overcoat layer 20a is formed on the color filter 19.
  • the color adjustment layer 18a is formed on the overcoat layer 20a.
  • Overcoat layer 20b is formed on overcoat layer 20a in which color adjustment layer 18a was formed.
  • the counter electrode 21 is formed on the overcoat layer 20b.
  • At least a part of the pattern of the color adjustment layer 18 a overlaps a portion of the pattern of the copper wiring 24 not overlapping the black matrix BM in a plan view (located in a portion not overlapping the black matrix BM).
  • the color adjustment layer 18a (the pattern of the color adjustment layer 18a) is positioned so as to overlap the extended wire 33a which is a copper wiring.
  • the color adjustment layer 18 a overlaps the storage capacitance line 6 which is a portion not overlapping with the black matrix BM in plan view.
  • the color adjustment layer 18 is formed at the interface between the transparent substrate 17 and the black matrix BM.
  • the color adjustment layer 18 a is formed at a position overlapping with the black matrix BM via the color filter 19 and the overcoat layer 20 a in plan view. Further, the color adjustment layer 18a is formed in the pixel opening 2 at a position facing the color filter 19 (green filter GF in FIG. 7) via the overcoat layer 20a in plan view.
  • the color adjustment layer 18 a is disposed to cover the source line 4 and the extended line 33 a in a plan view as viewed from the observer.
  • the main role of the color adjustment layers 18 and 18a is to reduce redness based on reflected light and re-reflected light including oblique directions from copper wiring included in the wire 33a and the source line 4 or the like.
  • the color adjustment layers 18 and 18a may be colored using a cyan pigment. Further, the color adjustment layers 18 and 18a can suppress the reflected light of the black matrix BM to the outside of the liquid crystal panel 9A by adding a carbon coloring material of approximately 18% by mass or less.
  • the position of the color adjustment layer 18a can be brought closer to the positions of the copper interconnections such as the extended wire 33a and the source line 4, so that re-reflected light from the copper interconnection can be efficiently suppressed. .
  • FIG. 8 is a cross-sectional view showing an example of a liquid crystal display device 1B according to the present embodiment.
  • the color adjustment layer 18 is formed at the interface between the transparent substrate 17 and the black matrix BM in the color filter substrate 12.
  • the color adjustment layer 18 b is formed on the copper interconnection included in the source line 4 in the array substrate 10 B and the copper interconnection included in the extended wire 33 a.
  • the insulating layer 14d is formed on the insulating layer 14c.
  • the color adjustment layer 18 b is formed on the insulating layer 14 d.
  • An insulating layer 14e is formed on the insulating layer 14d on which the color adjustment layer 18b is formed.
  • the pixel electrode 15 is formed on the insulating layer 14e.
  • An alignment film 16 is formed on the insulating layer 14 e on which the pixel electrode 15 is formed.
  • the color adjustment layer 18b in the array substrate 10B is formed to overlap the source line 4 and the extended line 33a via the insulating layers 14c and 14d in plan view, that is, in the direction perpendicular to the display surface.
  • Through holes are formed in the insulating layers 14 c and 14 d, and the pixel electrode 15 may be electrically connected to the extended line 33 a of the drain electrode 33.
  • the color adjustment layer 18 b is formed at a position closest to the copper wiring in the film thickness direction as compared with the above embodiment. Therefore, it is possible to prevent the reflected light component in the oblique direction from being emitted from the display surface.
  • the alignment process for the alignment films 16 and 22 uses photo-alignment, but mechanical alignment such as rubbing may be used.
  • the alignment direction of the alignment films 16 and 22 is inclined at an angle of about 15 degrees with respect to the optical axis of the polarizing plate. In the following, the description of the polarizing plate and the retardation plate is omitted.
  • the liquid crystal molecules may have negative dielectric anisotropy or may have positive dielectric anisotropy.
  • FIG. 9 is a plan view showing an example of the array substrate 10C of the liquid crystal display device 1C according to the present embodiment as viewed from the observer.
  • the array substrate 10C includes the source line 4, the gate line 5, and the storage capacitance line 61.
  • the source line 4 is disposed on the side of the pixel opening 2 and extends in the vertical direction. Source line 4 is electrically connected to source electrode 32 of active element 3.
  • the gate line 5 is disposed on the lower side of the pixel opening 2 and extends in the lateral direction. Gate line 5 is electrically connected to gate electrode 34 of active element 3.
  • the storage capacitance line 61 is disposed on the upper side of the pixel opening 2 and extends in the lateral direction.
  • the storage capacitance line 61 is formed of a titanium layer 23 having a thickness of about 8 nm and a copper layer 24 having a thickness of about 250 nm, as in the first embodiment.
  • the common electrode 25 is formed in a layer above the source line 4.
  • a comb-like pixel electrode 26 is formed in a layer above the common electrode 25.
  • the pixel electrode 26 is formed as a comb-like pattern having an axis in the longitudinal direction, as shown in FIG.
  • the active element 3 is formed at the lower left of the pixel.
  • the transparent channel layer 31 of the active element 3 may be, for example, IGZO (registered trademark, indium oxide, gallium oxide, mixed oxide of zinc oxide) having a film thickness of about 30 nm.
  • the common electrode 25 is electrically connected to the storage capacitance line 61 via the contact hole 81.
  • the common electrode 25 and the pixel electrode 26 may have an auxiliary capacitance via an insulating layer.
  • FIG. 10 is a cross-sectional view showing an example of the liquid crystal display device 1C, and corresponds to the C-C 'cross section of FIG. 9 described above.
  • the array substrate 10C and the color filter substrate 12C face each other via the liquid crystal layer 11.
  • the array substrate 10C includes a common electrode 25 and a pixel electrode 26 which are transparent conductive films (ITO).
  • ITO transparent conductive films
  • the insulating layer 14a is formed on the first plane (the surface facing the liquid crystal layer 11) of the transparent substrate 13 of the array substrate 10C.
  • Source line 4 is formed on insulating layer 14a.
  • An insulating layer 14 b is formed on the insulating layer 14 a on which the source line 4 is formed.
  • the common electrode 25 is formed on the insulating layer 14 b.
  • An insulating layer 14c is formed on the insulating layer 14b on which the common electrode 25 is formed.
  • a comb-like pixel electrode 26 is formed on the insulating layer 14c.
  • An alignment film 16 is formed on the insulating layer 14c on which the pixel electrode 26 is formed.
  • the alignment film 16 of the array substrate 10C is located near the liquid crystal layer 11.
  • the second plane (opposite to the first plane) of the transparent substrate 13 of the array substrate 10C faces the inside of the liquid crystal display device 1C.
  • the adhesion improving resin layer 27 is formed on the first flat surface (surface facing the liquid crystal layer 11) of the color filter substrate 12C (surface facing the liquid crystal layer 11) and at the boundary between the pixels in a plan view.
  • a black matrix BM is formed on the adhesion improving resin layer 27.
  • the color adjustment layer 18 c is formed on the black matrix BM.
  • a color filter 19 is formed on the transparent substrate 17 on which the adhesion improving resin layer 27, the black matrix BM, and the color adjustment layer 18c are formed.
  • An overcoat layer 20 and an alignment film 22 are formed on the color filter 19.
  • the alignment film 22 of the color filter substrate 12C is located near the liquid crystal layer 11.
  • the second plane (opposite to the first plane) of the transparent substrate 17 of the color filter substrate 12C is a surface facing the viewer.
  • the adhesion improving resin layer 27 may be a translucent resin.
  • the adhesion improving resin layer 27 may be a translucent resin containing carbon.
  • the black matrix BM is sandwiched between the color adjustment layer 18 c having a film thickness of about 0.3 ⁇ m and the adhesion improving resin layer 27.
  • the black matrix BM is formed of, for example, a thin film of about 1.5 ⁇ m or less in order to not adversely affect the alignment of the liquid crystal.
  • the black matrix BM has high light shielding properties, and has a high content of light shielding coloring materials such as carbon.
  • the black matrix BM contains about 40% or more and 60% or less of carbon by mass ratio of solid ratio. Therefore, peeling is likely to occur in a photolithography process including exposure and development.
  • the ratio of the coloring material or the pigment contained in the color adjustment layer 18c or the adhesion improving resin layer 27 according to the present embodiment may be about 35% or less. Thus, it is possible to eliminate the peeling of the black matrix BM containing high concentration of carbon at the time of development.
  • the coloring material contained in the adhesion improving resin layer 27 may be a combination of pigments exhibiting cyan.
  • the color adjustment layer 18 c may be configured to sandwich the upper surface and the lower surface of the black matrix BM.
  • FIG. 11 is a plan view showing an example of the color filter substrate according to the present embodiment as viewed from an observer.
  • a red filter RF a green filter GF, a blue filter BF, and a black matrix BM are shown.
  • FIG. 12 is a cross-sectional view showing an example of a liquid crystal display device 1D according to the present embodiment.
  • FIG. 13 is a cross-sectional view showing an example of a color filter substrate 12D according to the present embodiment.
  • the color filter substrate 12D of the liquid crystal display device 1D includes a display unit 28 and a frame unit 29.
  • a color filter 19 is formed on a first plane (surface facing the liquid crystal layer 11) of the transparent substrate 17 of the color filter substrate 12D.
  • a black matrix BM is formed on the color filters 19 and at the boundaries of the pixels in plan view.
  • the color adjustment layer 18 c is formed on the black matrix BM.
  • An overcoat layer 20 and an alignment film 22 are formed on the color filter 19 on which the black matrix Bm and the color adjustment layer 18c are formed.
  • the alignment film 22 of the color filter substrate 12D is located near the liquid crystal layer 11.
  • the second plane (opposite to the first plane) of the transparent substrate 17 of the color filter substrate 12D is a surface facing the viewer.
  • a light shielding resist 2 As a light shielding member used for the black matrix BM, a light shielding resist 2 described later is used.
  • the light shielding resist 2 is formed by mixing and dispersing plural kinds of organic pigments in a transparent resin, and has a light shielding property in a visible region.
  • the color adjustment layer 18c is more absorptive in the light wavelength range of approximately 550 nm to 700 nm than the light wavelength range of approximately 400 nm or more and less than 550 nm.
  • the position of the black matrix BM is arranged closest to the liquid crystal layer 11 except the overcoat layer 20 and the alignment film 22 among the components of the color filter substrate 12D.
  • IPS In-Plane-Switching
  • driving system horizontal electric field system using liquid crystal molecules in horizontal alignment
  • the liquid crystal display device 1D of the IPS drive system even when the operation propagation distance in the horizontal direction of the liquid crystal molecules is long and the adjacent pixels are in the off state (no drive voltage application), Affected, prone to light leakage.
  • making the position of the black matrix BM close to the liquid crystal layer 11 can suppress light leakage due to crosstalk when driving adjacent pixels.
  • a high definition liquid crystal display device of about 300 ppi (pixels per inch) or 400 ppi or more it is easy to give an adjacent pixel light leakage in an oblique direction which is unlikely to occur in a large pixel.
  • the black matrix BM is formed by mixing and dispersing a plurality of organic pigments in a transparent resin, and has a light shielding property in the visible range of light.
  • the black matrix BM is formed at a position close to the liquid crystal layer 11, the dielectric constant of the black matrix containing the carbon coloring material is high. For this reason, in the vicinity of the black matrix BM containing a carbon coloring material, the equipotential line of the drive voltage applied to the liquid crystal layer 11 is distorted, and light leakage is likely to occur. Therefore, in the color filter substrate 1D according to the present embodiment, it is preferable to use the main material of the light-shielding color material as the organic pigment.
  • FIG. 14 is a plan view showing an example of the black matrix BM and the color filter 19 according to this embodiment as viewed from the alignment film 22. As shown in FIG.
  • the frame portion 29 is composed of two layers of a light shielding layer of a carbon colorant having an optical density of about 4.5 and a pigment colorant having an optical density of about 1.0.
  • the black matrix BM is formed on the color filter 19 (red filter RF, green filter GF, blue filter BF) in a single layer configuration of the light shielding layer containing a pigment coloring material.
  • the alignment mark necessary for alignment of the color filter 19 or the light shielding layer of the pigment coloring material is formed of the same material as the light shielding layer of the carbon coloring material in the same process when forming the light shielding layer of the carbon coloring material.
  • the frame portion 29 needs to sufficiently block the light from the backlight provided on the back surface of the liquid crystal display device 1D, and for example, an optical density of 4 or more is required. Since the black matrix BM in which the light-shielding color material is a pigment transmits infrared rays in the near-infrared region, alignment marks formed of carbon colorants can be aligned using near-infrared light and a near-infrared camera. Alignment marks formed using a carbon colorant are difficult to transmit near infrared light.
  • the spectral characteristics of the pigment applied to the layer constituting at least one of the color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 according to the present embodiment are generally that the bottom of the spectral curve is floating. And, it may have a broad high transmittance called cyan. Pigments having such spectral characteristics are produced, for example, by combining organic pigments. On the other hand, a color adjustment layer of spectral characteristics which is called blue and has a high transmittance portion on the short wavelength side is not suitable. It is preferable that the transmission areas of the layers constituting at least one of the color adjustment layers 18, 18a, 18b, and 18c and the adhesion improving resin layer 27 cover (belong to) approximately two transmission areas of blue and green.
  • the layer constituting at least one of the color adjustment layers 18, 18a, 18b, and 18c and the adhesion improving resin layer 27 has a light wavelength corresponding to a green transmission peak and a visible light range of about 550 nm to 700 nm, that is, copper It is desirable to have absorption performance in the region of high reflectivity of In other words, it is desirable that the half value of the color adjustment layers 18, 18a, 18b, and 18c (for example, the light wavelength corresponding to the half transmittance of the peak transmittance) be longer than about 550 nm.
  • the layer constituting at least one of the color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 may contain a small amount of carbon having an optical density of about 0.4 or less as a coloring material.
  • the adhesion improving resin layer 27 contains a small amount of carbon having an optical density of about 0.4 or less, coloring due to interference color or the like due to light reflection of the black matrix BM seen from the transparent substrate 17 can be suppressed. , Neutral reflection color can be displayed.
  • Aluminum phthalocyanine, copper phthalocyanine, zinc phthalocyanine or the like is used as a coloring material of the layer constituting at least one of the color adjustment layers 18, 18a, 18b, 18c and the adhesion improving resin layer 27. These phthalocyanine pigments can be adjusted in color tone by the amount of bromine (Br) and chlorine (Cl) having a phthalocyanine structure.
  • the aluminum phthalocyanine pigment is used as a coloring material for reproducing a cyan color because it has a broad transmission range exceeding the wavelength range of light of about 400 nm to 550 nm.
  • the aluminum phthalocyanine pigment for example, the pigment described in Japanese Patent No. 3837037 can be applied.
  • the above coloring materials are added as main coloring materials of the color adjustment layers 18, 18a, 18b and 18c in a range of about 5% by mass to 35% by mass with respect to mass% of solid ratio including transparent resin Good.
  • the wavelength of light to be adjusted is in the visible range. From the viewpoint of copper reflection color suppression, it is desirable that the light to be adjusted has, for example, an optical wavelength of about 620 nm and an optical density of less than about 0.5. For example, when the light to be adjusted has an optical wavelength of about 620 nm and an optical density of about 0.5 or more, the color of the added coloring material is too strong to cause an adverse effect.
  • a small amount of blue pigment is added to the layer constituting at least one of the color adjustment layers 18, 18a, 18b, 18c and the adhesion improving resin layer 27 in order to provide absorption performance in the area of high reflectivity of copper.
  • blue pigments include C.I. I. Pigment blue 15: 3, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. Pigment green 7, C.I. I. Pigment green 36, C.I. I. Pigment green 58 can be used.
  • These auxiliary pigments can be added to adjust the color of the above-mentioned phthalocyanine pigments.
  • the color adjustment layers 18, 18a, 18b, and 18c are formed, for example, with a film thickness of about 0.1 ⁇ m or more and 0.8 ⁇ m or less by a well-known photolithography method.
  • the color adjustment layers 18, 18a, 18b, and 18c are thicker than about 0.8 ⁇ m, the total film thickness of the color adjustment layers 18, 18a, 18b, and 18c and the black matrix BM becomes too thick, which adversely affects the alignment of liquid crystals. .
  • the color adjustment layer 18, 18a, 18b, 18c is thicker than approximately 0.8 ⁇ m, and the transmittance of the layer constituting at least one of the color adjustment layer 18, 18a, 18b, 18c and the adhesion improving resin layer 27 is high.
  • the iridescent interference of light is likely to occur between the transparent substrate 17 and the black matrix BM, and the display quality is degraded.
  • a thin film thickness of about 0.1 ⁇ m or less it is difficult to ensure film thickness accuracy.
  • the resin, the heavy synthesis monomer, the photopolymerization initiator, the solvent and the like used for the photosensitive resin composition will be described later.
  • the red filter RF of the color filter 19, the green filter GF, and the pigment used for the blue filter BF will also be described later.
  • the transmittances of the color adjustment layers 18, 18a, 18b and 18c are controlled by adjusting the amount of addition of the solvent, adjusting the film ratio of the main coloring material aluminum phthalocyanine, and adjusting the pigment ratio of the pigment described later It can be adjusted by addition.
  • representative transmittance characteristics 1a, 1b, 1c, 1d of the color adjustment layer formed using the color adjustment layer photosensitive resist 1 are shown.
  • the transmittance characteristics 1a, 1b, 1c and 1d as shown in FIG. 6 can be adjusted by adjusting the concentration of the colorant or the film thickness of the color adjustment layer.
  • the color adjustment layer photosensitive resist 2 is prepared by As a coloring material, C.I. I. Pigment blue 15: 3 single pigment (33 parts by mass). B. Other Elements in Color Adjustment Layer Photosensitive Resist 2 Alkali soluble resin, C.I. Multifunctional monomer, D.I. The photopolymerization initiator is the same as that of the above-mentioned color adjustment layer photosensitive resist 1.
  • FIG. 15 is a graph showing an example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 2.
  • FIG. 15 representative transmittance characteristics 2a, 2b, 2c and 2d of the color adjustment layer formed using the color adjustment layer photosensitive resist 2 are shown.
  • the transmittance characteristics 2a, 2b, 2c and 2d as shown in FIG. 15 can be adjusted by adjusting the concentration of the colorant or the thickness of the color adjustment layer.
  • FIG. 16 is a graph showing an example of the light transmission characteristics of the color adjustment layer formed using the color adjustment layer photosensitive resist 3.
  • FIG. 16 typical transmittance characteristics 3a, 3b, 3c and 3d of the color adjustment layer formed using the color adjustment layer photosensitive resist 3 are shown.
  • the transmittance characteristics 3a, 3b, 3c, 3d as shown in FIG. 16 can be adjusted by adjusting the concentration of the coloring material or the film thickness of the color adjustment layer.
  • the color control layer photosensitive resist 4 is prepared by As a coloring material, aluminum phthalocyanine, C.I. I. Pigment blue 15: 4, C.I. I. A mixture of pigment yellow 138 is used as 35 parts by mass.
  • B. Other Elements in Color Adjustment Layer Photosensitive Resist 4 Alkali soluble resin, C.I. Multifunctional monomer, D.I.
  • the photopolymerization initiator is the same as that of the above-mentioned color adjustment layer photosensitive resist 1.
  • FIG. 17 is a graph showing an example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 4.
  • FIG. 17 representative transmittance characteristics 4a, 4b, 4c, 4d of the color adjustment layer formed using the color adjustment layer photosensitive resist 4 are shown.
  • the transmittance characteristics 4a, 4b, 4c and 4d as shown in FIG. 17 can be adjusted by adjusting the concentration of the coloring material or the film thickness of the color adjustment layer.
  • the resin, the initiator, the monomer and the like are selected from various materials described later.
  • the color adjustment layers 18, 18a, 18b and 18c are made of a light-shielding coloring material carbon in an amount of 10% by mass or less based on the solid ratio of all coloring materials You may add.
  • the reflected light from the surface of the black matrix BM becomes approximately 0.5% or less in a wide range of visible range. It can be suppressed.
  • the film thickness after hardening of the adhesion improving resin layer 27 is approximately 0.3 ⁇ m.
  • the effective optical density is about 0.3.
  • the color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 of the present embodiment are a light shielding coloring material in a photosensitive resin composition containing at least a resin, a polymerizable monomer, a photopolymerization initiator and a solvent. Or it is made by adding a pigment.
  • the color filter 19 including the red filter RF, the green filter GF, and the blue filter BF may be colored by adding a pigment described later to the photosensitive resin composition.
  • alkyl acrylate or alkyl methacrylate such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclic cyclohexyl acrylate or methacrylate, hydroxyethyl acrylate or methacrylate
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, novolac type epoxy resin, polycarboxylic acid glycidyl ester, polyol polyglycidyl ester, aliphatic or alicyclic epoxy resin, amine epoxy resin, triphenolmethane type epoxy
  • ordinary photopolymerizable resins such as epoxy (meth) acrylates obtained by reacting an epoxy resin such as a dihydroxybenzene type epoxy resin and (meth) acrylic acid, and a cardo resin.
  • photopolymerizable monomer for example, ethylene glycol (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, hexane di (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, glycerin tetra (meth) acrylate, tetratrimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (
  • photopolymerizable monomer for example, various modified (meth) acrylates, urethane (meth) acrylates and the like can also be used.
  • the content of the photopolymerizable monomer is preferably about 5% by weight or more and 20% by weight or less in the solid content of the photosensitive resin composition.
  • the content of the photopolymerizable monomer is more preferably in the range of about 10% by weight or more and 15% by weight or less.
  • the sensitivity of the photosensitive resin composition and the development rate can be adjusted to a level suitable for production.
  • the content of the photopolymerizable monomer is less than about 5% by weight, the sensitivity of the black photosensitive resin composition is insufficient.
  • ⁇ Photoinitiator> As the photopolymerization initiator, a conventionally known compound may be suitably used. As a photoinitiator, it is preferable that an oxime ester compound is used. The oxime ester compound can realize high sensitivity when it is used for a black photosensitive resin composition which does not transmit light.
  • oxime ester compound examples include 2- (O-benzoyloxime) -1- [4- (phenylthio) phenyl] -1,2-octanedione, 1- (O-acetyloxime) -1- [9 -Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone (both manufactured by BASF Japan Ltd.) and the like are used.
  • the content of the photopolymerization initiator is preferably about 0.5% by weight or more and 10.0% by weight or less in the solid content of the photosensitive resin composition, and more preferably about 1.0% by weight or more It is the range of 5.0 weight% or less.
  • the content of the photopolymerization initiator is less than about 1% by weight, the sensitivity of the photosensitive resin composition is insufficient.
  • the content of the photopolymerization initiator is more than about 10% by weight, the pattern line width of the black matrix becomes too thick.
  • photoinitiators can be used together with said photoinitiator.
  • photopolymerization initiators include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl)- Acetophenone compounds such as butan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin compounds such as benzyl dimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-pheny Benzophenone compounds such as benzophenone, hydroxybenzophenone, acrylated benzophenone
  • photopolymerization initiators may be used alone or in combination of two or more at any ratio as required.
  • the content of the other photopolymerization initiator is preferably about 0.1% by weight or more and 1% by weight or less, more preferably about 0.2% by weight or more, of the solid content of the photosensitive resin composition. .5% by weight or less.
  • solvent methanol, ethanol, ethyl cellosolve, ethyl cellosolve acetate, diglyme, cyclohexanone, ethylbenzene, xylene, isoamyl acetate, n-amyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol mono Ethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, triethylene glycol, Polyethylene glycol monomethyl ether, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether, triethylene glycol, polyethylene glycol mono
  • ⁇ Light-shielding color material As the light-shielding coloring material according to the present embodiment, carbon black (also referred to as carbon in each embodiment) is preferable. As the carbon black, lamp black, acetylene black, thermal black, channel black, furnace black or the like may be used.
  • red pigments used to form the red filter RF include C.I. I. Pigment Red 7, 9, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 97, 122, 123, 146, 149, 168, 177 178, 179, 180, 184, 185, 187, 192, 200, 202, 208, 210, 215, 216, 217, 220, 224, 226, 227, 228, 240, 246, 254, 255, 264 272, 279, etc. may be used.
  • a red pigment and at least one of a yellow pigment and an orange pigment may be used in combination.
  • C.I. I. Pigment Orange 36, 43, 51, 55, 59, 61, 71, 73, and the like may be used as an orange pigment.
  • green pigment for forming a green filter GF for example, C.I. I. Pigment Green 7, 10, 36, 37, 58, etc. may be used.
  • a green pigment and a yellow pigment may be used in combination to adjust the hue of the green filter GF.
  • a yellow pigment a yellow pigment that can be used in combination to adjust the hue of the red filter RF may be appropriately used.
  • blue pigments for forming the blue filter BF examples include C.I. I. Pigment blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, etc. may be used.
  • a blue pigment and a purple pigment may be used in combination.
  • Specific examples of the purple pigment include C.I. I. Pigment Violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50, etc. may be used.
  • the pigments listed above may be used as coloring materials for the color adjustment layers 18, 18a, 18b and 18c.
  • C.I. I. Pigment Yellow 139 to Y139 C.I. I. Pigment blue 15: 6 is B15: 6
  • C.I. I. Pigment Violet 23 may be abbreviated as V23.
  • the main material of the light shielding color material is carbon.
  • the frame portion 29 mainly made of carbon as a light shielding color material has a high relative dielectric constant. Therefore, it is desirable that the frame portion 29 be formed at a position far from the liquid crystal layer in the film thickness direction.
  • a mixture having the following composition is uniformly mixed by stirring, and is stirred by a bead mill disperser to form a black paste.
  • the composition of the mixture is expressed in parts by weight.
  • a resist refers to a photosensitive coloring composition containing carbon or an organic pigment.
  • the main coloring material (pigment) in the black resist 1 or the color resist is a color exceeding 50% with respect to the total mass ratio (%) of the coloring material (pigment) contained in the resist Means wood.
  • carbon accounts for 100% of the coloring material, and carbon is the main coloring material.
  • the black resist 1 mainly composed of carbon
  • an organic pigment such as red, yellow, blue or the like is added with a total mass ratio of 10% or less as a standard. It is also good.
  • the target coating film thickness can be adjusted by the addition amount of solvent such as cyclohexanone.
  • the fifth embodiment is a liquid crystal display device 1D of a driving method called IPS or FFS (Fringe Field Switching).
  • the liquid crystal display device 1D of the IPS driving method includes liquid crystal molecules in the initial horizontal alignment, and causes the liquid crystal molecules to rotate on the plane in which the pixel electrodes 26 of the array substrate 10C are arranged. Therefore, it is desirable that the black matrix BM have a low relative dielectric constant so as not to affect the rotational movement of liquid crystal molecules.
  • carbon may not be used, or the amount of carbon added may be reduced, and the light shielding resist may contain a combination of a plurality of organic pigments.
  • the pigment is dispersed in a resin or solution to make a pigment paste (dispersion liquid).
  • a resin or solution for example, in order to disperse the yellow pigment Y139 alone in a resin or a solution, the following materials are mixed with 7 parts (by mass) of the yellow pigment Y139.
  • Acrylic resin solution (solid content 20%) 40 parts Dispersant 0.5 part Cyclohexanone 23.0 parts Note that other pigments such as red, purple and blue are also dispersed in the same resin or solution to make a pigment dispersion paste It may be done.
  • composition ratio for producing the light-shielding resist 2 is illustrated based on said pigment dispersion paste.
  • black is displayed (displayed when the liquid crystal drive voltage is in the off state), and is affected by other liquid crystal panel components such as a polarizing plate or according to optical conditions such as a cell gap of a liquid crystal cell.
  • the display may be slightly reddish. The observer prefers a black (slightly bluish) black display to a reddish black display.
  • the display device substrate according to each of the above-described embodiments can eliminate the redness that is generated based on the copper wiring as described above.
  • the above embodiments may also be applied to, for example, a liquid crystal display device provided with a wiring formed of another material other than copper wiring, such as aluminum wiring.
  • the liquid crystal display device may be any liquid crystal drive system of vertical alignment and vertical electric field VA (Virtical Alignment) and horizontal alignment and horizontal electric field IPS, and may be another liquid crystal drive system.
  • ECB Electro Mechanical Controlled Birefringence
  • FFS Fluorescence FFF
  • OCB Optically Compensated Bend
  • the display device substrate board according to each of the above embodiments can be applied to a liquid crystal display device and an organic EL display device including copper wiring.
  • 1, 1A to 1D liquid crystal display device, 2: pixel opening, 3: active element, 31: transparent channel layer, 32: source electrode, 33: drain electrode, 33a: extended wire, 34: gate electrode, 4: source Line 5 5 gate line 6 61 auxiliary capacitance line 7 pixel electrode 8 81 contact hole BM black matrix 9, 9A 9C liquid crystal panel 10 10B array substrate 11 Liquid crystal layer 12, 12A, 12C, 12D: color filter substrate (substrate for display device) 13, transparent substrate, 14a to 14e: insulating layer, 15, 26: pixel electrode, 16, 22: alignment film, 17: transparent Substrate, 18, 18a to 18c: color adjustment layer, 19: color filter, RF: red filter, GF: green filter, BF: blue filter, 20, 20a, 20b: overcoat layer (transparent tree Layer), 21 ... counter electrode, 23 ... titanium layer, 24 ... copper layer (copper wire), 25 ... common electrode, 27 ... adhesion improving resin layer, 28 ... display unit, 29 ... frame

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

 This liquid crystal display device (1) is formed by arranging a display device substrate (12) and an array substrate (10) so as to face each other, and affixing the display device substrate (12) and the array substrate (10) to each other with a liquid crystal layer (11) interposed therebetween. A liquid crystal display device in which the display device substrate (12) has, provided on a transparent substrate (17): a black matrix (BM) having a plurality of pixel openings (2); and a transparent resin layer (20). The array substrate (10) is provided with: a plurality of active elements (3) corresponding to each of the pixel openings (2); and copper wiring (24) electrically connected to the active elements (3). The liquid crystal display device is provided with a color adjustment layer (18) having transmittance characteristics exhibiting a low transmittance with respect to a light wavelength region corresponding to a high reflectivity in copper, and a high transmittance with respect to a light wavelength region corresponding to a low reflectivity in copper, the color adjustment layer (18) overlapping with at least a part of the copper wiring (24) in plan view from the observer side.

Description

液晶表示装置及び表示装置用基板Liquid crystal display device and substrate for display device
 本発明は、銅配線を含む液晶表示装置及び表示装置用基板に関する。
 本願は、2013年4月30日に日本に出願された特願2013-095723号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid crystal display device including a copper wiring and a substrate for a display device.
Priority is claimed on Japanese Patent Application No. 2013-096,723, filed on Apr. 30, 2013, the content of which is incorporated herein by reference.
 液晶表示装置又は有機EL表示装置では、画質を向上させる目的で、TFT(薄膜トランジスタ)などのアクティブ素子と電気的に接続される配線として、アルミニウム配線ではなく銅配線を用いる技術が検討されている。 In the liquid crystal display device or the organic EL display device, in order to improve the image quality, a technology using copper interconnections instead of aluminum interconnections as interconnections electrically connected to active elements such as TFTs (thin film transistors) has been studied.
 例えば、特許文献1(日本国特開平10-307303号公報)は、銅配線をアルカリ性の酸化性溶液で形成する技術を開示している。特許文献2(日本国特開2011-135061号公報)は、酸化物半導体を用いて形成されたアクティブ素子の配線に、銅配線を用いる技術を開示している。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 10-307303) discloses a technique for forming a copper wiring with an alkaline oxidizing solution. Patent Document 2 (Japanese Patent Laid-Open Publication No. 2011-135061) discloses a technology in which a copper wiring is used as a wiring of an active element formed using an oxide semiconductor.
日本国特開平10-307303号公報Japanese Patent Application Laid-Open No. 10-307303 日本国特開2011-135061号公報Japanese Patent Application Laid-Open No. 2011-135061
 銅配線を備える液晶表示装置においては、この銅配線によって光が反射され、表示品質が低下する場合がある。上記の特許文献1,2においては、色材又は顔料を用いて銅配線の反射色を抑制し、表示色を最適化する技術が開示されていない。 In a liquid crystal display device provided with a copper wiring, light may be reflected by the copper wiring, and the display quality may be degraded. The above-mentioned Patent Documents 1 and 2 do not disclose a technique for suppressing the reflected color of the copper wiring using a coloring material or a pigment to optimize the display color.
 本発明は、上記実情に鑑みてなされたものであり、色材又は顔料を用いて銅配線の反射色を抑制し、表示色を最適化する液晶表示装置及び表示装置用基板を提供することを目的とする。 The present invention has been made in view of the above situation, and it is an object of the present invention to provide a liquid crystal display device and a substrate for a display device, which suppress the reflected color of copper wiring using coloring materials or pigments and optimize the display color. To aim.
 本発明の第1の態様において、液晶表示装置は、表示装置用基板とアレイ基板とを対向させ、液晶層を介して、貼り合わせることによって形成される。表示装置用基板は、透明基板の上に、複数の画素開口部を持つブラックマトリクスと、透明樹脂層とを備える。アレイ基板は、複数の画素開口部のそれぞれに対応する複数のアクティブ素子と、複数のアクティブ素子と電気的に接続される銅配線とを備える。液晶表示装置は、観察者側からの平面視で、銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すとともに銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層をさらに備える。
 また、液晶表示装置は、透明基板と、複数の画素開口部を持つとともに前記透明基板の上に設けられたブラックマトリクスと、透明樹脂層とを備える表示装置用基板と、液晶層と、前記複数の画素開口部のそれぞれに対応する複数のアクティブ素子と、前記複数のアクティブ素子と電気的に接続される銅配線とを備え、前記液晶層を介して前記表示装置用基板に対向するように貼り合わされたアレイ基板と、観察者から見た平面視で前記銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すともに前記銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層とを具備してもよい。
 また、液晶表示装置は、透明基板と、複数の画素開口部を持つとともに前記透明基板の上に設けられたブラックマトリクス層と、透明樹脂層とを備える表示装置用基板と、液晶層と、前記複数の画素開口部のそれぞれに対応する複数のアクティブ素子と、前記複数のアクティブ素子と電気的に接続される銅配線とを備え、前記液晶層を介して前記表示装置用基板に対向するように貼り合わされたアレイ基板と、前記表示装置用基板の前記ブラックマトリクス層に積層され、ブラックマトリクスを構成し、平面視で前記銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すともに前記銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層とを具備してもよい。
In the first aspect of the present invention, a liquid crystal display device is formed by facing a display device substrate and an array substrate and bonding them through a liquid crystal layer. The display device substrate includes a black matrix having a plurality of pixel openings and a transparent resin layer on a transparent substrate. The array substrate includes a plurality of active elements corresponding to each of the plurality of pixel openings, and a copper wire electrically connected to the plurality of active elements. The liquid crystal display device overlaps with at least a part of the copper wiring in plan view from the viewer side, and exhibits low transmittance in a light wavelength region with high reflectance of copper and a light wavelength region with low reflectance of copper. And a color adjustment layer having a transmittance characteristic exhibiting high transmittance.
In addition, a liquid crystal display device includes a transparent substrate, a display substrate having a plurality of pixel openings and a black matrix provided on the transparent substrate, a transparent resin layer, a liquid crystal layer, and a plurality of the plurality. A plurality of active elements corresponding to each of the pixel openings and a copper wire electrically connected to the plurality of active elements, and pasted so as to face the display device substrate through the liquid crystal layer The combined array substrate overlaps with at least a portion of the copper wiring in a plan view viewed from an observer, and exhibits low transmittance in a light wavelength range with high reflectance of copper and light with low reflectance of the copper You may comprise the color-adjustment layer which has the transmittance | permeability characteristic which shows the high transmittance | permeability in a wavelength range.
Further, a liquid crystal display device includes a transparent substrate, a substrate for a display device having a plurality of pixel openings and a black matrix layer provided on the transparent substrate, and a transparent resin layer, a liquid crystal layer, A plurality of active elements corresponding to each of a plurality of pixel openings, and a copper wire electrically connected to the plurality of active elements are provided to face the display device substrate via the liquid crystal layer. It is laminated on the bonded array substrate and the black matrix layer of the display device substrate to constitute a black matrix, and at least a part of the copper wiring is overlapped in a plan view, and the light wavelength is high in copper reflectance The color adjustment layer may have a transmittance characteristic that exhibits a low transmittance in the region and a high transmittance in the light wavelength region where the reflectance of the copper is low.
 上記第1の態様において、銅配線は、平面視で、複数の画素開口部に位置する部分を含むとしてもよい。色調整層のパターンの少なくとも一部は、平面視で、銅配線のパターンのうちのブラックマトリクスと重ならない部分の上に重なる。 In the first aspect, the copper wiring may include portions located in the plurality of pixel openings in a plan view. At least a part of the pattern of the color adjustment layer overlaps the portion of the pattern of the copper wiring which does not overlap with the black matrix in plan view.
 上記第1の態様において、色調整層は、透明基板と透明樹脂層との間に形成されてもよい。 In the first aspect, the color adjustment layer may be formed between the transparent substrate and the transparent resin layer.
 上記第1の態様において、液晶表示装置は、透明基板とブラックマトリクスとの間に、密着改善樹脂層をさらに備えてもよい。ブラックマトリクスのパターンと密着改善樹脂層のパターンとは、平面視で、同じ形状を持つとしてもよい。 In the first aspect, the liquid crystal display device may further include an adhesion improving resin layer between the transparent substrate and the black matrix. The pattern of the black matrix and the pattern of the adhesion improving resin layer may have the same shape in plan view.
 上記第1の態様において、色調整層の少なくとも一部は、透明基板とブラックマトリクスとの間、と、ブラックマトリクスと透明樹脂層との間、の少なくとも1つに、備えられる、としてもよい。 In the first aspect, at least a part of the color adjustment layer may be provided in at least one of between the transparent substrate and the black matrix and between the black matrix and the transparent resin layer.
 上記第1の態様において、表示装置用基板は、複数の画素開口部のそれぞれに割り当てられる赤フィルタ、緑フィルタ、青フィルタをさらに備えてもよい。 In the first aspect, the display device substrate may further include a red filter, a green filter, and a blue filter assigned to each of the plurality of pixel openings.
 上記第1の態様において、ブラックマトリクスは、遮光性色材の主材として有機顔料を含むとしてもよい。 In the first aspect, the black matrix may contain an organic pigment as a main component of the light-shielding coloring material.
 上記第1の態様において、液晶表示装置は、平面視で、表示部と、表示部を囲む額縁部とを備えてもよい。額縁部は、遮光性色材の主材としてカーボンを含むとしてもよい。 In the first aspect, the liquid crystal display device may have a display unit and a frame unit surrounding the display unit in plan view. The frame portion may contain carbon as a main component of the light-shielding color material.
 本発明の第2の態様において、表示装置用基板は、銅配線を備えるアレイ基板と対向し、かつ、液晶層を介して貼り合わされる。表示装置用基板は、透明基板の上に、複数の画素開口部を持つブラックマトリクス及び複数の画素開口部のそれぞれに割り当てられる赤フィルタ、緑フィルタ、青フィルタと、透明樹脂層とを具備する。表示装置用基板は、観察者側からの平面視で、銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すとともに銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層をさらに備える。
 また、表示装置用基板は、銅配線を備えるアレイ基板と対向し、かつ、液晶層を介して貼り合わされる表示装置用基板であって、透明基板と、複数の画素開口部を持つとともに前記透明基板の上に設けられたブラックマトリクスと、前記複数の画素開口部のそれぞれに割り当てられる赤フィルタ、緑フィルタ、青フィルタと、透明樹脂層と、観察者から見た平面視で前記銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すとともに前記銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層とを具備してもよい。
 また、表示装置用基板は、銅配線を備えるアレイ基板と対向し、かつ、液晶層を介して貼り合わされる表示装置用基板であって、透明基板と、複数の画素開口部を持つとともに前記透明基板の上に設けられたブラックマトリクス層と、前記複数の画素開口部のそれぞれに割り当てられる赤フィルタ、緑フィルタ、青フィルタと、透明樹脂層と、前記ブラックマトリクス層に積層され、観察者から見た平面視で前記銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すとともに前記銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層とを具備してもよい。
In the second aspect of the present invention, the display device substrate is bonded to the array substrate provided with the copper wiring, with the liquid crystal layer interposed therebetween. The display device substrate includes, on a transparent substrate, a black matrix having a plurality of pixel openings, a red filter, a green filter, a blue filter, and a transparent resin layer assigned to each of the plurality of pixel openings. The display device substrate overlaps with at least a part of the copper wiring in a plan view from the viewer side, and exhibits low transmittance in a light wavelength region where the reflectance of copper is high and a light wavelength where the reflectance of copper is low. It further comprises a color adjustment layer having a transmittance characteristic showing high transmittance in the region.
In addition, the display device substrate is a display device substrate that faces the array substrate provided with a copper wiring and is bonded via a liquid crystal layer, and has a transparent substrate and a plurality of pixel openings. A black matrix provided on a substrate, a red filter, a green filter, a blue filter, a transparent resin layer, and a copper filter provided in a plan view as viewed from an observer allocated to each of the plurality of pixel openings. The color adjustment layer has a transmittance characteristic that overlaps a part and exhibits low transmittance in a light wavelength region with high copper reflectance and high transmittance in a light wavelength region with low copper reflectance. You may
In addition, the display device substrate is a display device substrate that faces the array substrate provided with a copper wiring and is bonded via a liquid crystal layer, and has a transparent substrate and a plurality of pixel openings. It is laminated on a black matrix layer provided on a substrate, a red filter, a green filter, a blue filter, a transparent resin layer, and a black resin layer assigned to each of the plurality of pixel openings, and viewed from the observer Transmittance showing at least a part of the copper wiring in a plan view and exhibiting low transmittance in a light wavelength region with high reflectance of copper and high transmittance in a light wavelength region with low reflectance of copper A color adjustment layer having characteristics may be provided.
 上記第2の態様において、色調整層は、ブラックマトリクスと赤フィルタと緑フィルタと青フィルタとよりも液晶層の近くに形成されてもよい。 In the second aspect, the color adjustment layer may be formed closer to the liquid crystal layer than the black matrix, the red filter, the green filter and the blue filter.
 上記第2の態様において、表示装置用基板は、透明基板とブラックマトリクスとの間に、密着改善樹脂層をさらに備えてもよい。 In the second aspect, the display device substrate may further include an adhesion improving resin layer between the transparent substrate and the black matrix.
 上記第2の態様において、色調整層の少なくとも一部は、透明基板とブラックマトリクスとの境界面に、ブラックマトリクスとほぼ同じパターンで形成されてもよい。 In the second aspect, at least a part of the color adjustment layer may be formed on the interface between the transparent substrate and the black matrix in substantially the same pattern as the black matrix.
 上記第2の態様において、透明基板の上に、赤フィルタ、緑フィルタ、青フィルタが形成される。赤フィルタ、緑フィルタ、青フィルタの上に、ブラックマトリクスが形成される。 In the second aspect, the red filter, the green filter, and the blue filter are formed on the transparent substrate. A black matrix is formed on the red filter, the green filter, and the blue filter.
 上記第2の態様において、色調整層は、およそ光の波長620nmでの透過率が、およそ30%以上、80%以下である、としてもよい。 In the second aspect, the color adjustment layer may have a transmittance of about 30% to 80% of light at a wavelength of 620 nm.
 上記第2の態様において、密着改善樹脂層は半透明樹脂層としてもよい。 In the second aspect, the adhesion improving resin layer may be a translucent resin layer.
 上記第2の態様において、密着改善樹脂層は、およそ光の波長550nmでの透過率が、およそ30%以上、95%以下である、としてもよい。 In the second aspect, the adhesion improving resin layer may have a light transmittance of about 30% to 95% at a wavelength of about 550 nm.
 上記第2の態様において、密着改善樹脂層はカーボンを含む、としてもよい。 In the second aspect, the adhesion improving resin layer may contain carbon.
 上記第2の態様において、色調整層は、主な主材として、アルミニウムフタロシアン顔料を含む、としてもよい。 In the second aspect, the color adjustment layer may contain an aluminum phthalocyanine pigment as a main component.
 上記第2の態様において、ブラックマトリクスは、遮光性色材の主材として有機顔料を含む、としてもよい。 In the second aspect, the black matrix may contain an organic pigment as a main component of the light-shielding coloring material.
 上記第2の態様において、表示装置用基板は、平面視で、表示部と、表示部を囲む額縁部とを備えてもよい。額縁部は、遮光性色材の主材としてカーボンを含むとしてもよい。 In the second aspect, the display device substrate may be provided with a display portion and a frame portion surrounding the display portion in plan view. The frame portion may contain carbon as a main component of the light-shielding color material.
 本発明の態様においては、色材又は顔料を用いて銅配線の反射色を抑制し、表示色を最適化する液晶表示装置及び表示装置用基板を提供することができる。 In the aspect of the present invention, it is possible to provide a liquid crystal display device and a substrate for a display device in which a color material or a pigment is used to suppress a reflection color of a copper wiring and optimize a display color.
第1の実施形態に係る液晶表示装置のアレイ基板を観察者から見た一例を示す平面図である。It is a top view which shows an example which looked at the array substrate of the liquid crystal display concerning a 1st embodiment from an observer. 第1の実施形態に係る液晶表示装置のカラーフィルタ基板を観察者から見た一例を示す平面図である。It is a top view which shows an example which looked at the color filter substrate of the liquid crystal display concerning a 1st embodiment from an observer. 第1の実施形態に係る液晶表示装置の第1の断面の一例を示す図である。It is a figure which shows an example of the 1st cross section of the liquid crystal display device which concerns on 1st Embodiment. 第2の実施形態に係る液晶表示装置の第2の断面の一例を示す図である。It is a figure which shows an example of the 2nd cross section of the liquid crystal display device which concerns on 2nd Embodiment. 銅の反射率の一例を示すグラフである。It is a graph which shows an example of the reflectance of copper. 色調整層の光透過特性の例を示すグラフである。It is a graph which shows the example of the light transmission characteristic of a color adjustment layer. 第2の実施形態に係る液晶表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the liquid crystal display device which concerns on 2nd Embodiment. 第3の実施形態に係る液晶表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the liquid crystal display device which concerns on 3rd Embodiment. 第4の実施形態に係る液晶表示装置のアレイ基板を観察者から見た一例を示す平面図である。It is a top view which shows an example which looked at the array substrate of the liquid crystal display concerning a 4th embodiment from an observer. 第4の実施形態に係る液晶表示装置の一例を示す断面図である。It is a sectional view showing an example of a liquid crystal display concerning a 4th embodiment. 第5の実施形態に係るカラーフィルタ基板を観察者から見た一例を示す平面図である。It is a top view showing an example which looked at a color filter substrate concerning a 5th embodiment from an observer. 第5の実施形態に係る液晶表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the liquid crystal display device which concerns on 5th Embodiment. 第5の実施形態に係るカラーフィルタ基板の一例を示す断面図である。It is sectional drawing which shows an example of the color filter substrate which concerns on 5th Embodiment. 第5の実施形態に係るブラックマトリクス及びカラーフィルタを配向膜側から見た一例を示す平面図である。It is a top view which shows an example which looked at the black matrix and color filter which concern on 5th Embodiment from the alignment film side. 第6の実施形態に係る色調整層感光性レジスト2を用いて形成された色調整層の光透過特性の例を示すグラフである。It is a graph which shows the example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 2 which concerns on 6th Embodiment. 第6の実施形態に係る色調整層感光性レジスト3を用いて形成された色調整層の光透過特性の例を示すグラフである。It is a graph which shows the example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 3 which concerns on 6th Embodiment. 第6の実施形態に係る色調整層感光性レジスト4を用いて形成された色調整層の光透過特性の例を示すグラフである。It is a graph which shows the example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 4 which concerns on 6th Embodiment.
 以下、図面を参照しながら本発明の実施形態について説明する。なお、以下の説明において、同一又は実質的に同一の機能及び構成要素については、同一符号を付し、説明を省略するか又は必要な場合のみ説明を行う。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same or substantially the same functions and components will be denoted by the same reference numerals, and the description will be omitted or will be described only when necessary.
 各実施形態においては、特徴的な部分についてのみ説明し、通常の液晶表示装置の構成要素と差異のない部分については説明を省略する。 In each embodiment, only characteristic parts will be described, and description of parts that are not different from the components of a normal liquid crystal display device will be omitted.
 各実施形態においては、液晶表示装置の表示単位が1画素(又は絵素)である場合を説明する。しかしながら、表示単位は、1サブピクセルでもよいし、他にも、複数のピクセル数(画素数)が表示単位を構成してもよいし、任意に定義されたピクセルや画素が表示単位を構成してもよい。画素は、少なくとも2つの平行な辺を持つ多角形であるとする。 In each embodiment, the case where the display unit of the liquid crystal display device is one pixel (or picture element) will be described. However, the display unit may be one sub-pixel, or a plurality of pixels (pixel number) may constitute the display unit, or any pixel or pixel defined arbitrarily may constitute the display unit. May be A pixel is assumed to be a polygon having at least two parallel sides.
 平面視で、画素の横方向は、観察者の右目と左目との並び方向と平行とする。 In a plan view, the lateral direction of the pixel is parallel to the alignment direction of the right eye and the left eye of the observer.
 平面視で、画素の横方向と垂直な方向は、画素の縦方向とする。 In plan view, the direction perpendicular to the horizontal direction of the pixel is the vertical direction of the pixel.
 各実施形態は、液晶表示装置を例として説明するが、有機EL表示装置のような他の表示装置についても同様である。 Although each embodiment is described taking a liquid crystal display device as an example, the same applies to other display devices such as an organic EL display device.
[第1の実施形態]
 本実施形態においては、例えば、初期配向が垂直配向の液晶分子を備え、ノーマリーブラックの特性を持つ液晶表示装置について説明する。本実施形態に係る液晶表示装置は、液晶表示パネルの表面及び裏面に、およそ90度のクロスニコルの関係にある偏光板を備える。本実施形態においては、液晶表示装置に備えられる偏光板及び位相差板の説明を省略する。本実施形態に係る液晶表示装置は、負の誘電率異方性を持つ液晶分子を備えるとする。
First Embodiment
In the present embodiment, for example, a liquid crystal display device having liquid crystal molecules of which the initial alignment is vertical alignment and having a normally black characteristic will be described. The liquid crystal display device according to the present embodiment includes polarizing plates in a cross nicol relationship of approximately 90 degrees on the front and back surfaces of the liquid crystal display panel. In the present embodiment, the description of the polarizing plate and the retardation plate provided in the liquid crystal display device is omitted. The liquid crystal display device according to the present embodiment includes liquid crystal molecules having negative dielectric anisotropy.
 図1は、本実施形態に係る液晶表示装置のアレイ基板を観察者から見た一例を示す平面図である。 FIG. 1 is a plan view showing an example of the array substrate of the liquid crystal display device according to the present embodiment as viewed from an observer.
 液晶表示装置1は、画素開口部2において、アクティブ素子3と、ソース線4と、ゲート線5と、補助容量線6と、延線33aとを備える。 The liquid crystal display device 1 includes an active element 3, a source line 4, a gate line 5, an auxiliary capacitance line 6, and an extended line 33 a in the pixel opening 2.
 アクティブ素子3は、例えば、薄膜トランジスタである。アクティブ素子3は、例えば、酸化物半導体によって形成される透明チャネル層31、ソース電極32、ゲート電極、ドレイン電極33を備える。酸化物半導体は、インジウム、ガリウム、亜鉛から構成されてもよい。本実施形態において、アクティブ素子3は、画素開口部2のコーナー部に備えられる。図1の例では、アクティブ素子3は、画素開口部2の左上に配置されている。 The active element 3 is, for example, a thin film transistor. The active element 3 includes, for example, a transparent channel layer 31 formed of an oxide semiconductor, a source electrode 32, a gate electrode, and a drain electrode 33. The oxide semiconductor may be composed of indium, gallium and zinc. In the present embodiment, the active element 3 is provided at the corner of the pixel opening 2. In the example of FIG. 1, the active element 3 is disposed at the upper left of the pixel opening 2.
 ソース線4は、画素開口部2の側辺部に配置されており、縦方向に延びる。ソース線4は、アクティブ素子3のソース電極32に対して電気的に接続される。 The source line 4 is disposed on the side of the pixel opening 2 and extends in the vertical direction. Source line 4 is electrically connected to source electrode 32 of active element 3.
 ゲート線5は、画素開口部2の上辺部及び下辺部に配置されており、横方向に延びる。ゲート線5は、アクティブ素子3のゲート電極に対して電気的に接続される。 The gate lines 5 are disposed on the upper side and the lower side of the pixel opening 2 and extend in the lateral direction. Gate line 5 is electrically connected to the gate electrode of active element 3.
 補助容量線6は、横方向に延び、画素開口部2のほぼ中央部を横切るように配置される。 The storage capacitance line 6 extends in the lateral direction, and is disposed to cross substantially the central portion of the pixel opening 2.
 画素電極7は、液晶表示装置1のアレイ基板に設けられた導電性酸化膜であり、例えば、透明導電膜(ITO、Indium Tin Oxide)とする。画素電極7は、画素開口部2に備えられる。画素電極7は、アクティブ素子3のドレイン電極33及びドレイン電極33の延線33aを介して、例えば、画素中央部のコンタクトホール8から、液晶駆動電圧を供給される。画素電極7は、補助容量線6との間で、液晶駆動のための補助容量を持つとしてもよい。 The pixel electrode 7 is a conductive oxide film provided on the array substrate of the liquid crystal display device 1 and is, for example, a transparent conductive film (ITO, Indium Tin Oxide). The pixel electrode 7 is provided in the pixel opening 2. The pixel electrode 7 is supplied with a liquid crystal drive voltage from, for example, the contact hole 8 at the central portion of the pixel via the drain electrode 33 of the active element 3 and the extended line 33 a of the drain electrode 33. The pixel electrode 7 may have an auxiliary capacitance for driving liquid crystal with the auxiliary capacitance line 6.
 例えば、ガラスなどの透明基板の上に、複数のアクティブ素子3、延線33a、ソース線4、ゲート線5、補助容量線6、画素電極7が形成され、これにより、例えば、1920×1080の画素を持つアレイ基板が形成される。 For example, on a transparent substrate such as glass, a plurality of active elements 3, extended wires 33a, source lines 4, gate lines 5, storage capacitance lines 6, and pixel electrodes 7 are formed. An array substrate having pixels is formed.
 観察者から見ると、第1の層に、ソース線4、アクティブ素子3のソース電極32及びドレイン電極33、延線33aが配置され、第1の層の下の第2の層に、アクティブ素子3のゲート電極、ゲート線5、補助容量線6が配置される。 From the viewpoint of the observer, in the first layer, the source line 4, the source electrode 32 and the drain electrode 33 of the active element 3, and the extension 33 a are disposed, and in the second layer below the first layer, the active element The gate electrode 3, the gate line 5, and the storage capacitance line 6 are disposed.
 ソース線4は、例えば、チタンの上に、銅を形成した2層構造とする。本実施形態においては、ゲート線5、補助容量線6、延線33aも、例えば、チタンの上に、銅を形成した2層構造とする。 The source line 4 has, for example, a two-layer structure in which copper is formed on titanium. In the present embodiment, the gate line 5, the storage capacitance line 6, and the extension line 33a also have a two-layer structure in which copper is formed on, for example, titanium.
 図2は、本実施形態に係る液晶表示装置1のカラーフィルタ基板を観察者から見た一例を示す平面図である。この図2は、カラーフィルタ基板のうち、上記の図1に示されている画素開口部2に重なる部分に相当する。 FIG. 2 is a plan view showing an example of the color filter substrate of the liquid crystal display device 1 according to the present embodiment as viewed from an observer. FIG. 2 corresponds to a portion of the color filter substrate overlapping the pixel opening 2 shown in FIG.
 カラーフィルタ基板(表示装置用基板)に形成されるブラックマトリクスBM(ブラックマトリクス層)は、平面視で、上記図1に示されるソース線4、ゲート線5、アクティブ素子3を覆う位置に形成される。 The black matrix BM (black matrix layer) formed on the color filter substrate (substrate for display device) is formed at a position covering the source line 4, the gate line 5 and the active element 3 shown in FIG. Ru.
 色調整層18は、平面視で、ブラックマトリクスBM、補助容量線6、及び延線33aの上で重なるように配置される。 The color adjustment layer 18 is disposed to overlap the black matrix BM, the auxiliary capacitance line 6, and the extended line 33a in plan view.
 なお、色調整層18は、ブラックマトリクスBMの下に配置されてもよい。色調整層18は、ブラックマトリクスBM(ブラックマトリクス層)に直接接するように形成されてもよい。ブラックマトリクスの構造として、色調整層18及びブラックマトリクス層によって構成された2層構造が採用されてもよい。 The color adjustment layer 18 may be disposed below the black matrix BM. The color adjustment layer 18 may be formed to be in direct contact with the black matrix BM (black matrix layer). As a structure of the black matrix, a two-layer structure constituted by the color adjustment layer 18 and the black matrix layer may be adopted.
 図3は、液晶表示装置1の第1の断面の一例を示す図であり、上記の図1及び図2のA-A’断面に相当する。 FIG. 3 is a view showing an example of the first cross section of the liquid crystal display device 1 and corresponds to the A-A ′ cross section of FIG. 1 and FIG. 2 described above.
 液晶表示装置1は、液晶パネル9を備える。液晶パネル9は、アレイ基板10と、液晶層11と、カラーフィルタ基板12とを備える。アレイ基板10とカラーフィルタ基板12とは、液晶層11を介して、向き合っている。 The liquid crystal display device 1 includes a liquid crystal panel 9. The liquid crystal panel 9 includes an array substrate 10, a liquid crystal layer 11, and a color filter substrate 12. The array substrate 10 and the color filter substrate 12 face each other through the liquid crystal layer 11.
 アレイ基板10は、透明基板13と、絶縁層(透明樹脂)14a~14cと、アクティブ素子3と、延線33aと、画素電極15と、配向膜16とを備える。 The array substrate 10 includes a transparent substrate 13, insulating layers (transparent resin) 14 a to 14 c, active elements 3, extended wires 33 a, pixel electrodes 15, and an alignment film 16.
 透明基板13としては、例えば、ガラス板が用いられる。 For example, a glass plate is used as the transparent substrate 13.
 透明基板13の第1の平面(液晶層11に向く面)の上には、絶縁層14aが形成される。絶縁層14aの上には、アクティブ素子3のゲート電極34が形成される。ゲート電極34の形成された絶縁層14aの上には、絶縁層14bが形成される。絶縁層14bの上には、アクティブ素子3のソース電極32及びドレイン電極33、ドレイン電極33の延線33aが形成される。ソース電極32、ドレイン電極33、延線33aの形成された絶縁層14bの上には、絶縁層14cが形成される。絶縁層14cの上には、画素電極15が形成される。 An insulating layer 14 a is formed on the first plane (surface facing the liquid crystal layer 11) of the transparent substrate 13. The gate electrode 34 of the active element 3 is formed on the insulating layer 14 a. An insulating layer 14 b is formed on the insulating layer 14 a on which the gate electrode 34 is formed. The source electrode 32 and the drain electrode 33 of the active element 3 and the extended wire 33 a of the drain electrode 33 are formed on the insulating layer 14 b. An insulating layer 14c is formed on the insulating layer 14b on which the source electrode 32, the drain electrode 33, and the extended wire 33a are formed. The pixel electrode 15 is formed on the insulating layer 14c.
 アレイ基板10の配向膜16は、液晶層11の近くに位置する。アレイ基板10の透明基板13の第2の平面(第1の平面とは反対の面)は、液晶表示装置1の内部に面している。 The alignment film 16 of the array substrate 10 is located near the liquid crystal layer 11. A second plane (opposite to the first plane) of the transparent substrate 13 of the array substrate 10 faces the inside of the liquid crystal display device 1.
 カラーフィルタ基板12は、透明基板17と、色調整層18と、ブラックマトリクスBMと、カラーフィルタ19と、オーバーコート層(透明樹脂層)20と、対向電極(共通電極)21と、配向膜22とを備える。 The color filter substrate 12 includes a transparent substrate 17, a color adjustment layer 18, a black matrix BM, a color filter 19, an overcoat layer (transparent resin layer) 20, a counter electrode (common electrode) 21, and an alignment film 22. And
 透明基板11としては、例えば、ガラスが用いられる。 For example, glass is used as the transparent substrate 11.
 透明基板17の第1の平面(液晶層11に向く面)の上には、色調整層18が形成される。色調整層18の上には、ブラックマトリクスBMが形成される。色調整層18及びブラックマトリクスBMの形成された透明基板17の上には、カラーフィルタ19が形成される。カラーフィルタ19は、画素ごとに、赤フィルタRF、緑フィルタGF、青フィルタBFのいずれかが配置される。カラーフィルタ19の上には、オーバーコート層20が形成される。オーバーコート層20の上には、対向電極21が形成される。対向電極21の上には、配向膜22が形成される。 A color adjustment layer 18 is formed on the first plane (surface facing the liquid crystal layer 11) of the transparent substrate 17. A black matrix BM is formed on the color adjustment layer 18. A color filter 19 is formed on the color adjustment layer 18 and the transparent substrate 17 on which the black matrix BM is formed. In the color filter 19, one of a red filter RF, a green filter GF, and a blue filter BF is disposed for each pixel. An overcoat layer 20 is formed on the color filter 19. The counter electrode 21 is formed on the overcoat layer 20. An alignment film 22 is formed on the counter electrode 21.
 カラーフィルタ基板12の配向膜22は、液晶層11の近くに位置する。カラーフィルタ基板12の透明基板17の第2の平面(第1の平面とは反対の面)は、観察者に向く面である。 The alignment film 22 of the color filter substrate 12 is located near the liquid crystal layer 11. The second plane (surface opposite to the first plane) of the transparent substrate 17 of the color filter substrate 12 is a surface facing the viewer.
 液晶層11の液晶分子は、本実施形態においては、初期垂直配向であり、負の誘電率異方性を持つ。 In the present embodiment, the liquid crystal molecules of the liquid crystal layer 11 have an initial vertical alignment, and have negative dielectric anisotropy.
 図3で、アクティブ素子3のトランジスタ構造は、ボトムゲート構造を例に示している。しかしながら、アクティブ素子3のトランジスタ構造は、トップゲート構造、ダブルゲート構造、デュアルゲート構造、又は、ボトムコンタクト構造などでもよい。 In FIG. 3, the transistor structure of the active element 3 is illustrated as a bottom gate structure as an example. However, the transistor structure of the active element 3 may be a top gate structure, a double gate structure, a dual gate structure, or a bottom contact structure.
 図4は、液晶表示装置1の第2の断面の一例を示す図であり、上記の図1及び図2のB-B’断面に相当する。 FIG. 4 is a view showing an example of the second cross section of the liquid crystal display device 1, and corresponds to the B-B 'cross section of FIG. 1 and FIG. 2 described above.
 アレイ基板10の絶縁層14bの上に、ソース線4と延線33aとが形成される。ソース線4と延線33aとの形成された絶縁層14bの上に、絶縁層14cが形成される。 Source line 4 and extended line 33 a are formed on insulating layer 14 b of array substrate 10. An insulating layer 14c is formed on the insulating layer 14b in which the source line 4 and the extended line 33a are formed.
 カラーフィルタ19の上には、オーバーコート層20が形成される。 An overcoat layer 20 is formed on the color filter 19.
 上記の図1~図4において、ソース電極32、ドレイン電極33、ゲート電極34、ソース線4、ゲート線5、補助容量線6、延線33aなどのメタル配線は、チタン層23と銅層24(銅配線)とを含む2層構造とする。 In FIGS. 1 to 4 described above, the metal wires such as the source electrode 32, the drain electrode 33, the gate electrode 34, the source line 4, the gate line 5, the auxiliary capacitance line 6, and the extended line 33a are titanium layers 23 and copper layers 24. It has a two-layer structure including (copper wiring).
 アクティブ素子3の透明チャネル層31(チャネル層)の酸化物は、ガリウム(Ga)、インジウム(In)、亜鉛(Zn)、ハフニウム(Hf)、錫(Sn)、イットリウム(Y)、ゲルマニウム(Ge)から選択される2種以上の混合酸化物とする。2種以上又は3種以上の複合酸化物で形成された透明チャネル層31は、非晶質の状態となる。透明チャネル層31形成後、又は、透明チャネル層31のパターン形成後に、およそ250℃以上、500℃以下の範囲内の熱処理が行われ、複合酸化物が結晶化されることにより、トランジスタのそれぞれの電気特性を安定化かつ均質化することができる。レーザ光でのアニールを同一基板に形成された複数のトランジスタ(透明チャネル層31)の一部に実施することで、複数のトランジスタの間で、例えば、しきい値電圧Vthなど電気特性を変えることができる。複合酸化物の熱処理条件は、およそ500℃以上の高温域が好ましい。ソース電極32、ドレイン電極33、ゲート電極34、ソース線4、ゲート線5、補助容量線6、延線33aなどを形成するメタルである銅の耐熱性で制限を受ける。RTA(Rapid Thermal Anneal)手法により、500℃以上で熱処理を短時間で行うことができる。 The oxide of the transparent channel layer 31 (channel layer) of the active element 3 is gallium (Ga), indium (In), zinc (Zn), hafnium (Hf), tin (Sn), yttrium (Y), germanium (Ge) And two or more mixed oxides selected from The transparent channel layer 31 formed of two or more or three or more complex oxides is in an amorphous state. After forming the transparent channel layer 31 or after forming the pattern of the transparent channel layer 31, heat treatment is performed within a range of approximately 250 ° C. or more and 500 ° C. or less to crystallize the complex oxide, thereby forming each of the transistors. The electrical properties can be stabilized and homogenized. By performing annealing with laser light on a part of a plurality of transistors (transparent channel layer 31) formed on the same substrate, it is possible to change electric characteristics such as threshold voltage Vth among the plurality of transistors. Can. The heat treatment condition of the complex oxide is preferably a high temperature range of about 500 ° C. or higher. The heat resistance of copper, which is a metal that forms the source electrode 32, the drain electrode 33, the gate electrode 34, the source line 4, the gate line 5, the storage line 6, the extended line 33a, and the like is limited. Heat treatment can be performed in a short time at 500 ° C. or higher by an RTA (Rapid Thermal Anneal) method.
 上記のように、アクティブ素子3は、透明チャネル層31を上記の複合酸化物とし、ソース電極32、ドレイン電極33、ゲート電極34などの金属配線をチタン層23と銅層24の2層構成としている。チタンは、モリブデン又はタングステンなどのような高融点金属に代替できる。 As described above, in the active element 3, the transparent channel layer 31 is the above complex oxide, and the metal wiring such as the source electrode 32, the drain electrode 33, and the gate electrode 34 is a two-layer structure of the titanium layer 23 and the copper layer 24. There is. Titanium can be substituted for refractory metals such as molybdenum or tungsten.
 図4に示されるゲート線4及び延線33aは、絶縁層14bの上に、例えば、およそ膜厚8nmのチタン層23とおよそ膜厚250nmの銅層24とによって形成される。絶縁層14a~14cは、例えば、窒化シリコン、酸化シリコン、又は、これら材料の混合物で形成されてもよい。絶縁層14a~14cは、例えば、窒化シリコンと透明樹脂の2層としてもよい。 The gate line 4 and the extended line 33a shown in FIG. 4 are formed on the insulating layer 14b by, for example, a titanium layer 23 having a thickness of about 8 nm and a copper layer 24 having a thickness of about 250 nm. The insulating layers 14a to 14c may be formed of, for example, silicon nitride, silicon oxide, or a mixture of these materials. The insulating layers 14a to 14c may be, for example, two layers of silicon nitride and a transparent resin.
 従来の液晶表示装置に対して銅配線を用いた場合、銅配線によって光反射が発生する。 When copper wiring is used for the conventional liquid crystal display device, light reflection occurs due to the copper wiring.
 図5は、銅の反射率の一例を示すグラフである。このグラフの縦軸は反射率(%)を表す。横軸は光の波長(nm)を表す。銅の反射率は、光の波長が低い波長域で低く、光の波長が高い波長域で高い。例えば、銅の反射率は、およそ550nm以降の長波長側で高い反射率を持つ。従来の液晶表示装置において、例えば、アクティブ素子3からの延線33aは、画素開口部2に位置するため、この延線33aが銅の場合に、表示色に銅の光反射固有の赤味が加わる。補助容量線6が銅の場合も、同様に、表示色に銅の光反射固有の赤味が加わる。 FIG. 5 is a graph showing an example of the reflectance of copper. The vertical axis of this graph represents reflectance (%). The horizontal axis represents the wavelength (nm) of light. The reflectivity of copper is low in the low wavelength region of light and high in the high wavelength region of light. For example, the reflectivity of copper has a high reflectivity on the long wavelength side after about 550 nm. In the conventional liquid crystal display device, for example, since the extended wire 33a from the active element 3 is located at the pixel opening 2, when the extended wire 33a is copper, the redness inherent to light reflection of copper is displayed in the display color. Join. Also in the case where the storage capacitance line 6 is copper, redness inherent to light reflection of copper is similarly added to the display color.
 本実施形態において、銅は、およそ3%未満の異種金属又は不純物を含有してもよい。銅に添加されてもよい異種金属としては、例えば、マグネシウム、アルミニウム、インジウム、錫がある。このような異種金属の添加量が少ないほど、銅の反射率は好ましい状態となる。 In this embodiment, copper may contain less than about 3% foreign metals or impurities. Examples of dissimilar metals that may be added to copper include magnesium, aluminum, indium and tin. The smaller the added amount of such dissimilar metals, the more preferable is the reflectivity of copper.
 これに対して、本実施形態においては、上記の図2に示されるように色調整層18が形成される。この色調整層18とブラックマトリクスBMとは、2層構成を持つ。 On the other hand, in the present embodiment, the color adjustment layer 18 is formed as shown in FIG. The color adjustment layer 18 and the black matrix BM have a two-layer configuration.
 本実施形態に係る液晶表示装置1の画素において、色調整層18のパターンの少なくとも一部は、平面視で、補助容量線6、延線33aなどとほぼ同じ形状で形成される。 In the pixel of the liquid crystal display device 1 according to the present embodiment, at least a part of the pattern of the color adjustment layer 18 is formed in substantially the same shape as the storage capacitance line 6, the extended line 33a, and the like in plan view.
 図6は、色調整層18の光透過特性の例を示すグラフである。このグラフの縦軸は透過率(%)を表す。横軸は光の波長(nm)を表す。 FIG. 6 is a graph showing an example of the light transmission characteristic of the color adjustment layer 18. The vertical axis of this graph represents the transmittance (%). The horizontal axis represents the wavelength (nm) of light.
 本実施形態において、色調整層18の透過率は、光の波長が低い波長域において高く、光の波長が高い波長域において低い。したがって、上記図5で示される銅の反射率色の特性と、図6で示される色調整層18の透過率の特性とは、光の波長の変化に対して逆の相関を持つ。例えば、色調整層18の透過率は、およそ光波長430nm以上、550nm未満の範囲で高透過率である。色調整層18の透過率は、およそ550nm以上、700nm以下の範囲で光を吸収する特徴を持ち、低透過である。この透過率特性は、一般に、シアンと呼称されるカラーフィルタの透過率特性に近い。カラーフィルタで通常採用される青フィルタは、およそ500nm以上、550nm未満の波長域にも吸収域を持つ。銅の薄膜は、緑の光波長域よりも短波長域で反射が弱くなる。このため、主な色材として青色色材を含む色調整層又は密着改善樹脂層が形成される場合には、緑色の反射成分が低くなりすぎ、銅の光反射固有の赤の補償には適さない。ここで、主な色材とは、色調整層又は密着改善樹脂層に分散又は添加される色材総量に対する質量比率が50%以上の色材とする。しかしながら、青色色材を色調整層に含める場合であっても、色調整層の赤の波長領域での透過率を、およそ30%以上又は40%以下とすることにより、ほぼシアン色とすることができる。 In the present embodiment, the transmittance of the color adjustment layer 18 is high in the wavelength range of low light and low in the wavelength range of high light. Therefore, the characteristics of the reflectance color of copper shown in FIG. 5 and the characteristics of the transmittance of the color adjustment layer 18 shown in FIG. 6 have an inverse correlation with changes in the wavelength of light. For example, the transmittance of the color adjustment layer 18 is high transmittance in the range of about 430 nm to less than 550 nm. The transmittance of the color adjustment layer 18 has a feature of absorbing light in a range of about 550 nm to 700 nm, and is low in transmission. This transmittance characteristic is generally close to that of a color filter called cyan. The blue filter, which is usually employed for color filters, also has an absorption band in a wavelength range of about 500 nm to less than 550 nm. Copper thin films are less reflective in the short wavelength range than in the green light wavelength range. For this reason, in the case where a color adjustment layer containing a blue color material or an adhesion improving resin layer is formed as a main color material, the green reflection component becomes too low, which is suitable for compensating for the red inherent to light reflection of copper. Absent. Here, the main color material is a color material having a mass ratio of 50% or more to the total amount of color materials dispersed or added to the color adjustment layer or the adhesion improving resin layer. However, even when the blue color material is included in the color adjustment layer, the transmittance in the red wavelength region of the color adjustment layer is approximately 30% or more or 40% or less to make the color substantially cyan. Can.
 なお、色調整層18の透過率特性は、銅の反射率に代えて、銅配線の反射率特性と逆相関としてもよい。 The transmittance characteristics of the color adjustment layer 18 may be inversely correlated with the reflectance characteristics of the copper wiring instead of the reflectance of copper.
 図2~図4のそれぞれの画素開口部2には、平面視で、赤フィルタRF、緑フィルタGF、青フィルタBFが備えられる。これらの赤フィルタRF、緑フィルタGF、青フィルタBFを備えるカラーフィルタ19は、省略されてもよい。赤フィルタRF、緑フィルタGF、青フィルタBFを含むカラーフィルタ19が省略される場合には、赤色、緑色、青色のそれぞれで発光するカラーLED光源を備えるバックライトユニットが、液晶表示装置1のアレイ基板10の裏面に、備えられる。カラーLED光源を備えるバックライトユニットが用いられる場合、画素ごとの液晶層11と各色のカラーLED光源とは、時分割駆動され、これによりカラー表示が実現される。赤色、緑色、青色のそれぞれで発光する有機EL表示装置が用いられる場合も、カラーフィルタ19は省略される。 A red filter RF, a green filter GF, and a blue filter BF are provided in the respective pixel openings 2 in FIGS. 2 to 4 in plan view. The color filter 19 including the red filter RF, the green filter GF, and the blue filter BF may be omitted. When the color filter 19 including the red filter RF, the green filter GF, and the blue filter BF is omitted, a backlight unit including color LED light sources emitting red, green, and blue light is an array of the liquid crystal display device 1 The backside of the substrate 10 is provided. When a backlight unit provided with a color LED light source is used, the liquid crystal layer 11 for each pixel and the color LED light source of each color are time-division driven to realize color display. The color filter 19 is also omitted when an organic EL display that emits red, green, and blue light is used.
 色調整層18の色材又は膜厚は、後述する。なお、後述の第2及び第3の実施態様に係る色調整層18の透過率特性は、上記の図6の透過率特性よりも、およそ光波長550nm以上、700nm以下の範囲の吸収が少なくより高い透過率でもよい。したがって、後述の第2及び第3の実施態様においては、色調整層18の膜厚を薄くすることができる。 The color material or film thickness of the color adjustment layer 18 will be described later. The transmittance characteristics of the color adjustment layer 18 according to the second and third embodiments described later have less absorption in the light wavelength range of 550 nm to 700 nm than the transmittance characteristics of FIG. 6 described above. It may be a high transmittance. Therefore, in the second and third embodiments described later, the film thickness of the color adjustment layer 18 can be reduced.
 色調整層18は、紫外線吸収剤を含むとしてもよい。色調整層18に紫外線吸収剤が加えられた場合、液晶パネル9内での紫外線の再反射を緩和させ、酸化物半導体が用いられたトランジスタのしきい値電圧Vthの変動を防止することができる。紫外線吸収剤としては、例えば、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、サリチル酸系化合物、クマリン系化合物などが用いられる。これら紫外線吸収剤に、例えば、ヒンダードミン系化合物のような光安定化剤又はクエンチャー(例えば、一重項酸素クエンチャー)が添加されてもよい。 The color adjustment layer 18 may contain an ultraviolet absorber. When an ultraviolet light absorber is added to the color adjustment layer 18, the rereflection of ultraviolet light in the liquid crystal panel 9 can be alleviated, and fluctuation of the threshold voltage Vth of a transistor using an oxide semiconductor can be prevented. . As a ultraviolet absorber, a benzotriazole type compound, a benzophenone series compound, a salicylic acid type compound, a coumarin type compound etc. are used, for example. To these UV absorbers, for example, light stabilizers such as hindered amine compounds or quenchers (for example, singlet oxygen quenchers) may be added.
 本実施形態において、およそ光波長550nm以上、700nm以下の可視光領域に吸収を持つことは、およそ光波長550nmより短波長側であるおよそ430nm以上、550nm未満の透過率が、およそ光波長550nm以上、700nm以下の透過率を上回る透過率特性を意味し、S字のような透過率特性を意味する。典型的には、色調整層18として、補色のシアンフィルタを用いることができる。しかしながら、色調整層18としては、銅の反射色である赤味を打ち消す他のカラーフィルタを用いてもよい。上記の図6では、4つの代表的な透過率特性が示されている。 In the present embodiment, having absorption in the visible light region of about light wavelength 550 nm or more and 700 nm or less means that the transmittance of about 430 nm or more and less than 550 nm which is shorter than light wavelength 550 nm is about 550 nm or more Mean transmittance characteristics above a transmittance of 700 nm or less and mean S-shaped transmittance characteristics. Typically, a complementary cyan filter can be used as the color adjustment layer 18. However, as the color adjustment layer 18, another color filter that cancels out the redness that is a reflected color of copper may be used. Four representative transmission characteristics are shown in FIG. 6 above.
 銅の反射率が高くなる光波長域のうちの代表的光波長が620nmの場合、色調整層18の透過率は、およそ光波長30%以上、80%以下の範囲に含まれてもよい。 When the representative light wavelength in the light wavelength range in which the reflectance of copper is high is 620 nm, the transmittance of the color adjustment layer 18 may be included in the range of about 30% to about 80% of the light wavelength.
 銅の反射率の高い領域の代表波長をおよそ620nmとする場合、色調整層18の透過率は、およそ30%以上、80%以下の範囲としてもよい。 When the representative wavelength of the region having a high reflectance of copper is approximately 620 nm, the transmittance of the color adjustment layer 18 may be in the range of approximately 30% to 80%.
 色調整層18が、より液晶層11に近いブラックマトリクスBMの上に形成される場合、色調整層18は、色材の添加量を減らして、およそ40%以上、80%以下の透過率としてもよい。40%以上の透過率は、光学濃度換算で0.4以下となる。 When the color adjustment layer 18 is formed on the black matrix BM closer to the liquid crystal layer 11, the color adjustment layer 18 reduces the amount of addition of the coloring material to achieve a transmittance of about 40% to 80%. It is also good. The transmittance of 40% or more is 0.4 or less in optical density conversion.
 色調整層18のおよそ620nm近傍の透過率が、例えば、およそ30%未満のように、低くなりすぎると、反射色は赤味を通り越して青味が強くなりすぎる。色調整層18のおよそ620nm近傍の透過率が、例えば、およそ85%を越えて高い場合、銅の反射色の補正が不十分となり、反射色に赤味が残る場合がある。 If the transmittance near about 620 nm of the color adjustment layer 18 is too low, for example, less than about 30%, the reflected color becomes too bluish past reddish. If the transmittance around 620 nm of the color adjustment layer 18 is high, for example, more than about 85%, the correction of the copper reflection color may be insufficient, and redness may remain in the reflection color.
 後述される密着改善樹脂層は、透明基板17とブラックマトリクスBMとの界面に形成されるため、可視域でニュートラルな反射色であることを優先することができる。そのため、代表的光波長がおよそ550nmの場合の透過率は、およそ30%以上、95%以下の範囲としてもよい。 The adhesion improving resin layer to be described later is formed on the interface between the transparent substrate 17 and the black matrix BM, so that it is possible to give priority to a neutral reflection color in the visible range. Therefore, the transmittance when the representative light wavelength is approximately 550 nm may be in the range of approximately 30% to 95%.
 なお、本実施形態において、透過率は、液晶表示装置1に用いられる透明な無アルカリガラスをレファレンスとする。 In the present embodiment, the transmittance refers to the transparent non-alkali glass used in the liquid crystal display device 1.
 反射率は、酸化マグネシウム標準白色板の反射率をレファレンスとする。 The reflectance is based on the reflectance of a magnesium oxide standard white plate.
 本実施形態においては、複数のアクティブ素子3への電気信号を伝達する銅配線を備える液晶表示装置1において、銅の反射色が表れることを抑制することができる。 In the present embodiment, in the liquid crystal display device 1 provided with the copper wiring for transmitting the electric signal to the plurality of active elements 3, it is possible to suppress the appearance of the reflected color of copper.
 銅配線からの反射光は、バックライトユニットからの出射光の内部反射光、又は、液晶表示装置1の表示面に入射する外部光の再反射光を含む。 The reflected light from the copper wiring includes internally reflected light of emitted light from the backlight unit or rereflected light of external light which is incident on the display surface of the liquid crystal display device 1.
 本実施形態においては、銅配線の反射色に基づく表示色の変化、及び、銅配線を用いた液晶表示装置1内からの反射光及び液晶パネル9内での再反射光の影響を解消することができる。また、本実施形態においては、偏光版などのような液晶パネル9の構成部材の影響を解消することができる。 In the present embodiment, the effects of the change in display color based on the reflected color of the copper wiring, and the reflected light from inside the liquid crystal display device 1 using the copper wiring and re-reflected light in the liquid crystal panel 9 are eliminated. Can. Further, in the present embodiment, the influence of the constituent members of the liquid crystal panel 9 such as a polarization plate can be eliminated.
 本実施形態においては、液晶パネル9のセルギャップなどの光学条件に応じて若干の赤味を帯びた液晶表示装置1の黒表示(液晶駆動電圧オフ時の表示)の品質を改善することができる。 In the present embodiment, it is possible to improve the quality of black display (display when the liquid crystal drive voltage is off) of the liquid crystal display device 1 having a slight reddishness depending on the optical conditions such as the cell gap of the liquid crystal panel 9. .
 したがって、本実施形態においては、色材又は顔料を用いて銅配線の反射色を抑制することができ、表示色を最適化することができる。 Therefore, in the present embodiment, a color material or a pigment can be used to suppress the reflected color of the copper wiring, and the display color can be optimized.
 本実施形態においては、導電率の高い銅配線を備えることで、高速で応答ムラのない液晶表示装置1を実現することができる。 In the present embodiment, by providing the copper wiring with high conductivity, it is possible to realize the liquid crystal display device 1 with high speed and without response unevenness.
[第2の実施形態]
 本実施形態においては、上記第1の実施形態の変形例について説明する。
Second Embodiment
In the present embodiment, a modification of the first embodiment will be described.
 図7は、本実施形態に係る液晶表示装置1Aの一例を示す断面図である。 FIG. 7 is a cross-sectional view showing an example of a liquid crystal display device 1A according to the present embodiment.
 液晶表示装置1Aのカラーフィルタ基板12Aにおいては、カラーフィルタ19の上に、オーバーコート層20aが形成される。オーバーコート層20aの上に、色調整層18aが形成される。色調整層18aの形成されたオーバーコート層20aの上に、オーバーコート層20bが形成される。オーバーコート層20bの上に、対向電極21が形成される。色調整層18aのパターンの少なくとも一部は、平面視で、銅配線24のパターンのうちのブラックマトリクスBMと重ならない部分に重なる(ブラックマトリクスBMと重ならない部分に位置する)。換言すると、平面視において、色調整層18a(色調整層18aのパターン)は、銅配線である延線33aに重なるように位置している。また、色調整層18aは、平面視において、ブラックマトリクスBMと重ならない部分である補助容量線6に重なっている。 In the color filter substrate 12A of the liquid crystal display device 1A, the overcoat layer 20a is formed on the color filter 19. The color adjustment layer 18a is formed on the overcoat layer 20a. Overcoat layer 20b is formed on overcoat layer 20a in which color adjustment layer 18a was formed. The counter electrode 21 is formed on the overcoat layer 20b. At least a part of the pattern of the color adjustment layer 18 a overlaps a portion of the pattern of the copper wiring 24 not overlapping the black matrix BM in a plan view (located in a portion not overlapping the black matrix BM). In other words, in plan view, the color adjustment layer 18a (the pattern of the color adjustment layer 18a) is positioned so as to overlap the extended wire 33a which is a copper wiring. Further, the color adjustment layer 18 a overlaps the storage capacitance line 6 which is a portion not overlapping with the black matrix BM in plan view.
 本実施形態に係る液晶表示装置1Aは、透明基板17とブラックマトリクスBMとの界面に、色調整層18が形成される。 In the liquid crystal display device 1A according to the present embodiment, the color adjustment layer 18 is formed at the interface between the transparent substrate 17 and the black matrix BM.
 色調整層18aは、平面視で、ブラックマトリクスBMと、カラーフィルタ19及びオーバーコート層20aを介して重なる位置に形成される。さらに、色調整層18aは、平面視で、画素開口部2において、カラーフィルタ19(図7では緑フィルタGF)と、オーバーコート層20aを介して対向する位置に形成される。 The color adjustment layer 18 a is formed at a position overlapping with the black matrix BM via the color filter 19 and the overcoat layer 20 a in plan view. Further, the color adjustment layer 18a is formed in the pixel opening 2 at a position facing the color filter 19 (green filter GF in FIG. 7) via the overcoat layer 20a in plan view.
 色調整層18aは、観察者から見た平面視で、ソース線4及び延線33aを覆うように、配置される。 The color adjustment layer 18 a is disposed to cover the source line 4 and the extended line 33 a in a plan view as viewed from the observer.
 色調整層18,18aの主な役割は、延線33a及びソース線4などに含まれる銅配線からの斜め方向を含む反射光及び再反射光に基づく赤味を緩和することにある。 The main role of the color adjustment layers 18 and 18a is to reduce redness based on reflected light and re-reflected light including oblique directions from copper wiring included in the wire 33a and the source line 4 or the like.
 また、後述の第4の実施形態で説明されるように、色調整層18,18aは、シアン色の顔料を用いて着色されてもよい。また、色調整層18,18aは、およそ18質量%以下のカーボン色材が添加されることにより、ブラックマトリクスBMの液晶パネル9Aの外部への反射光を抑制することができる。 Further, as described in the fourth embodiment described later, the color adjustment layers 18 and 18a may be colored using a cyan pigment. Further, the color adjustment layers 18 and 18a can suppress the reflected light of the black matrix BM to the outside of the liquid crystal panel 9A by adding a carbon coloring material of approximately 18% by mass or less.
 本実施形態においては、色調整層18aの位置を、延線33a及びソース線4などの銅配線の位置に近づけることができるため、銅配線からの再反射光を効率的に抑制することができる。 In the present embodiment, the position of the color adjustment layer 18a can be brought closer to the positions of the copper interconnections such as the extended wire 33a and the source line 4, so that re-reflected light from the copper interconnection can be efficiently suppressed. .
[第3の実施形態]
 本実施形態においては、上記第1及び第2の実施形態の変形例について説明する。
Third Embodiment
In this embodiment, modifications of the first and second embodiments will be described.
 図8は、本実施形態に係る液晶表示装置1Bの一例を示す断面図である。 FIG. 8 is a cross-sectional view showing an example of a liquid crystal display device 1B according to the present embodiment.
 色調整層18は、カラーフィルタ基板12における透明基板17とブラックマトリクスBMとの界面に形成される。 The color adjustment layer 18 is formed at the interface between the transparent substrate 17 and the black matrix BM in the color filter substrate 12.
 さらに、色調整層18bは、アレイ基板10Bにおけるソース線4に含まれる銅配線と、延線33aに含まれる銅配線との上に形成される。 Further, the color adjustment layer 18 b is formed on the copper interconnection included in the source line 4 in the array substrate 10 B and the copper interconnection included in the extended wire 33 a.
 アレイ基板10Bにおいては、絶縁層14cの上に、絶縁層14dが形成される。絶縁層14dの上に、色調整層18bが形成される。色調整層18bの形成された絶縁層14dの上に、絶縁層14eが形成される。絶縁層14eの上に、画素電極15が形成される。画素電極15の形成された絶縁層14eの上に、配向膜16が形成される。 In the array substrate 10B, the insulating layer 14d is formed on the insulating layer 14c. The color adjustment layer 18 b is formed on the insulating layer 14 d. An insulating layer 14e is formed on the insulating layer 14d on which the color adjustment layer 18b is formed. The pixel electrode 15 is formed on the insulating layer 14e. An alignment film 16 is formed on the insulating layer 14 e on which the pixel electrode 15 is formed.
 アレイ基板10Bにおける色調整層18bは、平面視で、すなわち、表示面に垂直な方向において、ソース線4、延線33aの上に、絶縁層14c,14dを介して重なるように形成される。 The color adjustment layer 18b in the array substrate 10B is formed to overlap the source line 4 and the extended line 33a via the insulating layers 14c and 14d in plan view, that is, in the direction perpendicular to the display surface.
 絶縁層14c,14dにスルーホールが形成されており、画素電極15は、ドレイン電極33の延線33aと電気的に接続されてもよい。 Through holes are formed in the insulating layers 14 c and 14 d, and the pixel electrode 15 may be electrically connected to the extended line 33 a of the drain electrode 33.
 本実施形態においては、色調整層18bが、膜厚方向において、上記の実施形態と比較して、銅配線と最も近い位置に形成される。このため、斜め方向の反射光成分が表示面から出射されることを防止することができる。 In the present embodiment, the color adjustment layer 18 b is formed at a position closest to the copper wiring in the film thickness direction as compared with the above embodiment. Therefore, it is possible to prevent the reflected light component in the oblique direction from being emitted from the display surface.
[第4の実施形態]
 本実施形態においては、上記第1~第3の実施形態の変形例について説明する。
Fourth Embodiment
In this embodiment, modified examples of the first to third embodiments will be described.
 本実施形態において、配向膜16,22に対する配向処理は、光配向を用いているが、ラビングなど機械的配向を用いてもよい。配向膜16,22の配向方向は、偏光板の光軸に対して、およそ15度傾斜した角度を持つ。以下において、偏光板及び位相差板の説明は省略する。 In the present embodiment, the alignment process for the alignment films 16 and 22 uses photo-alignment, but mechanical alignment such as rubbing may be used. The alignment direction of the alignment films 16 and 22 is inclined at an angle of about 15 degrees with respect to the optical axis of the polarizing plate. In the following, the description of the polarizing plate and the retardation plate is omitted.
 本実施形態において、液晶分子は、負の誘電率異方性を持つとしてもよく、正の誘電率異方性を持つとしてもよい。 In the present embodiment, the liquid crystal molecules may have negative dielectric anisotropy or may have positive dielectric anisotropy.
 図9は、本実施形態に係る液晶表示装置1Cのアレイ基板10Cを観察者から見た一例を示す平面図である。 FIG. 9 is a plan view showing an example of the array substrate 10C of the liquid crystal display device 1C according to the present embodiment as viewed from the observer.
 アレイ基板10Cは、ソース線4、ゲート線5、補助容量線61を備える。 The array substrate 10C includes the source line 4, the gate line 5, and the storage capacitance line 61.
 ソース線4は、画素開口部2の側辺部に配置されており、縦方向に延びる。ソース線4は、アクティブ素子3のソース電極32に対して電気的に接続される。 The source line 4 is disposed on the side of the pixel opening 2 and extends in the vertical direction. Source line 4 is electrically connected to source electrode 32 of active element 3.
 ゲート線5は、画素開口部2の下辺部に配置されており、横方向に延びる。ゲート線5は、アクティブ素子3のゲート電極34に対して電気的に接続される。 The gate line 5 is disposed on the lower side of the pixel opening 2 and extends in the lateral direction. Gate line 5 is electrically connected to gate electrode 34 of active element 3.
 補助容量線61は、画素開口部2の上辺部に配置されており、横方向に延びる。補助容量線61は、上記第1の実施形態と同様に、およそ膜厚8nmのチタン層23とおよそ膜厚250nmの銅層24とによって形成される。 The storage capacitance line 61 is disposed on the upper side of the pixel opening 2 and extends in the lateral direction. The storage capacitance line 61 is formed of a titanium layer 23 having a thickness of about 8 nm and a copper layer 24 having a thickness of about 250 nm, as in the first embodiment.
 本実施形態においては、ソース線4よりも上の層に、共通電極25が形成される。共通電極25よりも上の層に、櫛歯状の画素電極26が形成される。 In the present embodiment, the common electrode 25 is formed in a layer above the source line 4. A comb-like pixel electrode 26 is formed in a layer above the common electrode 25.
 画素電極26は、図9に示されるように、縦方向に軸を持つ櫛歯状パターンとして形成される。 The pixel electrode 26 is formed as a comb-like pattern having an axis in the longitudinal direction, as shown in FIG.
 アクティブ素子3は、画素の左下部に形成される。アクティブ素子3の透明チャネル層31は、例えば、膜厚およそ30nmのIGZO(登録商標、インジウム酸化物、ガリウム酸化物、亜鉛酸化物の混合酸化物)としてもよい。 The active element 3 is formed at the lower left of the pixel. The transparent channel layer 31 of the active element 3 may be, for example, IGZO (registered trademark, indium oxide, gallium oxide, mixed oxide of zinc oxide) having a film thickness of about 30 nm.
 共通電極25は、補助容量線61とコンタクトホール81を介して電気的に接続されている。共通電極25と画素電極26とは、絶縁層を介して補助容量を持つとしてもよい。 The common electrode 25 is electrically connected to the storage capacitance line 61 via the contact hole 81. The common electrode 25 and the pixel electrode 26 may have an auxiliary capacitance via an insulating layer.
 図10は、液晶表示装置1Cの一例を示す断面図であり、上記の図9のC-C’断面に相当する。 FIG. 10 is a cross-sectional view showing an example of the liquid crystal display device 1C, and corresponds to the C-C 'cross section of FIG. 9 described above.
 本実施形態に係る液晶表示装置1Cの液晶パネル9Cは、アレイ基板10Cとカラーフィルタ基板12Cとが、液晶層11を介して、向かい合う。 In the liquid crystal panel 9C of the liquid crystal display device 1C according to the present embodiment, the array substrate 10C and the color filter substrate 12C face each other via the liquid crystal layer 11.
 アレイ基板10Cは、透明導電膜(ITO)である共通電極25、画素電極26を備える。 The array substrate 10C includes a common electrode 25 and a pixel electrode 26 which are transparent conductive films (ITO).
 アレイ基板10Cの透明基板13の第1の平面(液晶層11に向く面)の上に、絶縁層14aが形成される。絶縁層14aの上に、ソース線4が形成される。ソース線4の形成された絶縁層14aの上に、絶縁層14bが形成される。絶縁層14bの上に、共通電極25が形成される。共通電極25の形成された絶縁層14bの上に、絶縁層14cが形成される。絶縁層14cの上に、櫛歯状の画素電極26が形成される。画素電極26の形成された絶縁層14cの上に、配向膜16が形成される。 The insulating layer 14a is formed on the first plane (the surface facing the liquid crystal layer 11) of the transparent substrate 13 of the array substrate 10C. Source line 4 is formed on insulating layer 14a. An insulating layer 14 b is formed on the insulating layer 14 a on which the source line 4 is formed. The common electrode 25 is formed on the insulating layer 14 b. An insulating layer 14c is formed on the insulating layer 14b on which the common electrode 25 is formed. A comb-like pixel electrode 26 is formed on the insulating layer 14c. An alignment film 16 is formed on the insulating layer 14c on which the pixel electrode 26 is formed.
 アレイ基板10Cの配向膜16は、液晶層11の近くに位置する。アレイ基板10Cの透明基板13の第2の平面(第1の平面とは反対の面)は、液晶表示装置1Cの内部に面している。 The alignment film 16 of the array substrate 10C is located near the liquid crystal layer 11. The second plane (opposite to the first plane) of the transparent substrate 13 of the array substrate 10C faces the inside of the liquid crystal display device 1C.
 カラーフィルタ基板12Cの透明基板17の第1の平面(液晶層11に向く面)の上であり、平面視で、画素の境界部に、密着改善樹脂層27が形成される。密着改善樹脂層27の上に、ブラックマトリクスBMが形成される。ブラックマトリクスBMの上に、色調整層18cが形成される。密着改善樹脂層27、ブラックマトリクスBM、色調整層18cの形成された透明基板17の上には、カラーフィルタ19が形成される。カラーフィルタ19の上にはオーバーコート層20と配向膜22とが形成される。 The adhesion improving resin layer 27 is formed on the first flat surface (surface facing the liquid crystal layer 11) of the color filter substrate 12C (surface facing the liquid crystal layer 11) and at the boundary between the pixels in a plan view. A black matrix BM is formed on the adhesion improving resin layer 27. The color adjustment layer 18 c is formed on the black matrix BM. A color filter 19 is formed on the transparent substrate 17 on which the adhesion improving resin layer 27, the black matrix BM, and the color adjustment layer 18c are formed. An overcoat layer 20 and an alignment film 22 are formed on the color filter 19.
 カラーフィルタ基板12Cの配向膜22は、液晶層11の近くに位置する。カラーフィルタ基板12Cの透明基板17の第2の平面(第1の平面とは反対の面)は、観察者に向く面である。 The alignment film 22 of the color filter substrate 12C is located near the liquid crystal layer 11. The second plane (opposite to the first plane) of the transparent substrate 17 of the color filter substrate 12C is a surface facing the viewer.
 例えば、密着改善樹脂層27は、半透明樹脂としてもよい。密着改善樹脂層27は、カーボンを含む半透明樹脂としてもよい。 For example, the adhesion improving resin layer 27 may be a translucent resin. The adhesion improving resin layer 27 may be a translucent resin containing carbon.
 ブラックマトリクスBMは、それぞれおよそ膜厚0.3μmの色調整層18cと密着改善樹脂層27とで挟持される。 The black matrix BM is sandwiched between the color adjustment layer 18 c having a film thickness of about 0.3 μm and the adhesion improving resin layer 27.
 通常、ブラックマトリクスBMは、液晶の配向に悪影響を与えないため、例えば、およそ1.5μm以下の薄膜で形成される。ブラックマトリクスBMは、高い遮光性を持ち、カーボンなどのような遮光性色材の含有率が高い。ブラックマトリクスBMは、固形比の質量%で、およそ40%以上、60%以下のカーボンを含有する。このため、露光及び現像を含むフォトリソグラフィ工程において、剥がれを生じ易い。本実施形態に係る色調整層18c、又は、密着改善樹脂層27に含まれる色材又は顔料の比率は、およそ35%以下としてもよい。これにより、高濃度のカーボンを含むブラックマトリクスBMの現像時の剥がれを解消することができる。 Usually, the black matrix BM is formed of, for example, a thin film of about 1.5 μm or less in order to not adversely affect the alignment of the liquid crystal. The black matrix BM has high light shielding properties, and has a high content of light shielding coloring materials such as carbon. The black matrix BM contains about 40% or more and 60% or less of carbon by mass ratio of solid ratio. Therefore, peeling is likely to occur in a photolithography process including exposure and development. The ratio of the coloring material or the pigment contained in the color adjustment layer 18c or the adhesion improving resin layer 27 according to the present embodiment may be about 35% or less. Thus, it is possible to eliminate the peeling of the black matrix BM containing high concentration of carbon at the time of development.
 密着改善樹脂層27に含まれる色材は、シアン色を示す顔料の組み合わせとしてもよい。 The coloring material contained in the adhesion improving resin layer 27 may be a combination of pigments exhibiting cyan.
 本実施形態において、色調整層18cは、ブラックマトリクスBMの上面及び下面を挟持する構成を持つとしてもよい。 In the present embodiment, the color adjustment layer 18 c may be configured to sandwich the upper surface and the lower surface of the black matrix BM.
 なお、本実施形態で例示された各種の膜厚などの数値はこれに限定されず、適宜変更可能である。 In addition, numerical values, such as various film thickness illustrated by this embodiment, are not limited to this, It can change suitably.
[第5の実施形態]
 本実施形態においては、上記第4の実施形態の変形例について説明する。
Fifth Embodiment
In the present embodiment, a modification of the fourth embodiment will be described.
 図11は、本実施形態に係るカラーフィルタ基板を観察者から見た一例を示す平面図である。 FIG. 11 is a plan view showing an example of the color filter substrate according to the present embodiment as viewed from an observer.
 この図11では、赤フィルタRF、緑フィルタGF、青フィルタBF、及びブラックマトリクスBMが示されている。 In FIG. 11, a red filter RF, a green filter GF, a blue filter BF, and a black matrix BM are shown.
 図12は、本実施形態に係る液晶表示装置1Dの一例を示す断面図である。 FIG. 12 is a cross-sectional view showing an example of a liquid crystal display device 1D according to the present embodiment.
 図13は、本実施形態に係るカラーフィルタ基板12Dの一例を示す断面図である。 FIG. 13 is a cross-sectional view showing an example of a color filter substrate 12D according to the present embodiment.
 本実施形態に係る液晶表示装置1Dのカラーフィルタ基板12Dは、表示部28と額縁部29とを備える。 The color filter substrate 12D of the liquid crystal display device 1D according to the present embodiment includes a display unit 28 and a frame unit 29.
 カラーフィルタ基板12Dの透明基板17の第1の平面(液晶層11に向く面)の上に、カラーフィルタ19が形成される。カラーフィルタ19の上であり、平面視で、画素の境界部に、ブラックマトリクスBMが形成される。ブラックマトリクスBMの上に、色調整層18cが形成される。ブラックマトリクスBm及び色調整層18cの形成されたカラーフィルタ19の上に、オーバーコート層20及び配向膜22が形成される。 A color filter 19 is formed on a first plane (surface facing the liquid crystal layer 11) of the transparent substrate 17 of the color filter substrate 12D. A black matrix BM is formed on the color filters 19 and at the boundaries of the pixels in plan view. The color adjustment layer 18 c is formed on the black matrix BM. An overcoat layer 20 and an alignment film 22 are formed on the color filter 19 on which the black matrix Bm and the color adjustment layer 18c are formed.
 カラーフィルタ基板12Dの配向膜22は、液晶層11の近くに位置する。カラーフィルタ基板12Dの透明基板17の第2の平面(第1の平面とは反対の面)は、観察者に向く面である。 The alignment film 22 of the color filter substrate 12D is located near the liquid crystal layer 11. The second plane (opposite to the first plane) of the transparent substrate 17 of the color filter substrate 12D is a surface facing the viewer.
 ブラックマトリクスBMに用いられる遮光部材は、後述される遮光性レジスト2が用いられる。この遮光性レジスト2は、透明樹脂に複数種の有機顔料を混合分散して形成され、可視域について遮光性を持つ。色調整層18cは、例えば、上記第1の実施形態と同様に、およそ400nm以上、550nm未満の光波長域よりも、およそ550nm以上、700nm以下の光波長域で、吸収性を持つ。 As a light shielding member used for the black matrix BM, a light shielding resist 2 described later is used. The light shielding resist 2 is formed by mixing and dispersing plural kinds of organic pigments in a transparent resin, and has a light shielding property in a visible region. For example, as in the first embodiment, the color adjustment layer 18c is more absorptive in the light wavelength range of approximately 550 nm to 700 nm than the light wavelength range of approximately 400 nm or more and less than 550 nm.
 本実施形態において、ブラックマトリクスBMの位置は、カラーフィルタ基板12Dの構成要素のうち、オーバーコート層20及び配向膜22を除き、液晶層11に最も近い位置に配置される。この位置にブラックマトリクスBMを形成することにより、IPS(In-Plane-Switching)駆動方式(水平配向の液晶分子を用いた横電界方式)の液晶表示装置1Dにおいて、隣接画素からの混色を抑制することができる。 In the present embodiment, the position of the black matrix BM is arranged closest to the liquid crystal layer 11 except the overcoat layer 20 and the alignment film 22 among the components of the color filter substrate 12D. By forming a black matrix BM at this position, in the liquid crystal display device 1D of IPS (In-Plane-Switching) driving system (horizontal electric field system using liquid crystal molecules in horizontal alignment), color mixture from adjacent pixels is suppressed. be able to.
 IPS駆動方式の液晶表示装置1Dにおいては、液晶分子の横方向の動作伝播距離が長く、隣接する画素がオフ状態(駆動電圧印加なし)の場合であっても、駆動電圧のオン状態の画素の影響を受け、光漏れを起こしやすい。換言すれば、ブラックマトリクスBMの位置を液晶層11の近くとすることは、隣接画素駆動時のクロストークによる光漏れを抑制することができる。およそ300ppi(pixels per inch)、又は、400ppi以上の高精細の液晶表示装置においては、大きな画素では生じにくかった斜め方向の光漏れを隣接画素に与えやすい。ブラックマトリクスBMの位置を液晶層11に近くすることで、さらに、画素の微細化によって生じる斜め方向の光漏れを抑制できる。 In the liquid crystal display device 1D of the IPS drive system, even when the operation propagation distance in the horizontal direction of the liquid crystal molecules is long and the adjacent pixels are in the off state (no drive voltage application), Affected, prone to light leakage. In other words, making the position of the black matrix BM close to the liquid crystal layer 11 can suppress light leakage due to crosstalk when driving adjacent pixels. In a high definition liquid crystal display device of about 300 ppi (pixels per inch) or 400 ppi or more, it is easy to give an adjacent pixel light leakage in an oblique direction which is unlikely to occur in a large pixel. By making the position of the black matrix BM close to the liquid crystal layer 11, it is possible to further suppress light leakage in the oblique direction caused by the miniaturization of the pixels.
 ブラックマトリクスBMは、透明樹脂に複数種の有機顔料を混合分散することによって形成され、光の可視域において遮光性を持つ。液晶層11に近い位置にブラックマトリクスBMが形成される場合、カーボン色材を含むブラックマトリクスの比誘電率は高くなる。このため、カーボン色材を含むブラックマトリクスBM近傍においては、液晶層11に印加される駆動電圧の等電位線が歪み、光漏れが発生しやすい。ゆえに、本実施形態に係るカラーフィルタ基板1Dにおいては、遮光性色材の主材を有機顔料とすることが好ましい。 The black matrix BM is formed by mixing and dispersing a plurality of organic pigments in a transparent resin, and has a light shielding property in the visible range of light. When the black matrix BM is formed at a position close to the liquid crystal layer 11, the dielectric constant of the black matrix containing the carbon coloring material is high. For this reason, in the vicinity of the black matrix BM containing a carbon coloring material, the equipotential line of the drive voltage applied to the liquid crystal layer 11 is distorted, and light leakage is likely to occur. Therefore, in the color filter substrate 1D according to the present embodiment, it is preferable to use the main material of the light-shielding color material as the organic pigment.
 図14は、本実施形態に係るブラックマトリクスBM及びカラーフィルタ19を配向膜22から見た一例を示す平面図である。 FIG. 14 is a plan view showing an example of the black matrix BM and the color filter 19 according to this embodiment as viewed from the alignment film 22. As shown in FIG.
 額縁部29は、光学濃度およそ4.5のカーボン色材の遮光層と、光学濃度およそ1.0の顔料色材との2層で構成される。 The frame portion 29 is composed of two layers of a light shielding layer of a carbon colorant having an optical density of about 4.5 and a pigment colorant having an optical density of about 1.0.
 ブラックマトリクスBMは、上述のように、顔料色材を含む遮光層の単層構成で、カラーフィルタ19(赤フィルタRF、緑フィルタGF、青フィルタBF)の上に形成されている。 As described above, the black matrix BM is formed on the color filter 19 (red filter RF, green filter GF, blue filter BF) in a single layer configuration of the light shielding layer containing a pigment coloring material.
 なお、カラーフィルタ19又は顔料色材の遮光層のアライメントに必要なアライメントマークは、カーボン色材の遮光層形成時にカーボン色材の遮光層と同じ材料で、同一工程で、形成される。額縁部29は、液晶表示装置1Dの裏面に備えられるバックライトからの光を十分に遮光する必要があり、例えば、4以上の光学濃度が要求されている。遮光性色材が顔料であるブラックマトリクスBMは、近赤外域の赤外線を透過するため、カーボン色材で形成されたアライメントマークは、近赤外光と近赤外カメラを用いてアライメントできる。カーボン色材を用いて形成されたアライメントマークは、近赤外光を透過しにくい。 The alignment mark necessary for alignment of the color filter 19 or the light shielding layer of the pigment coloring material is formed of the same material as the light shielding layer of the carbon coloring material in the same process when forming the light shielding layer of the carbon coloring material. The frame portion 29 needs to sufficiently block the light from the backlight provided on the back surface of the liquid crystal display device 1D, and for example, an optical density of 4 or more is required. Since the black matrix BM in which the light-shielding color material is a pigment transmits infrared rays in the near-infrared region, alignment marks formed of carbon colorants can be aligned using near-infrared light and a near-infrared camera. Alignment marks formed using a carbon colorant are difficult to transmit near infrared light.
[第6の実施形態]
 本実施形態においては、上記各実施形態で説明された表示装置用基板(アレイ基板10,10B,10C及びカラーフィルタ基板12,12A,12C,12D)で用いられる材料について説明する。
Sixth Embodiment
In this embodiment, materials used for the display device substrates ( array substrates 10, 10B, 10C and color filter substrates 12, 12A, 12C, 12D) described in the above embodiments will be described.
(色調整層18,18a,18b,18c及び密着改善樹脂層27用色材のうち少なくとも一つを構成する層について)
 以下に、色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層に適用される色材を示す。
(About a layer constituting at least one of the color adjustment layers 18, 18a, 18b, 18c and the color material for the adhesion improving resin layer 27)
The color materials to be applied to the layers constituting at least one of the color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 will be shown below.
 本実施形態に係る色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層に適用される顔料の分光特性は、概ね、分光カーブのボトムが浮いており、かつ、シアン色と呼称されるブロードな高い透過率を持つとしてもよい。このような分光特性を持つ顔料は、例えば、有機顔料を組み合わせて作成される。これに対して、青色と呼称され、短波長側に透過率の高い部分を持つ分光特性の色調整層は適当でない。色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層の透過域は、およそ青色と緑色との2つの透過域にわたる(属する)ことが好ましい。色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層は、緑色の透過ピークに対応する光波長およそ550nm以降から700nm以下の可視光域、すなわち、銅の高い反射率の領域で吸収性能を持つことが望ましい。換言すれば、色調整層18,18a,18b,18cの半値(例えば、ピーク透過率の半分の透過率に対応する光波長)が、およそ550nmより長波長側にあることが望ましい。 The spectral characteristics of the pigment applied to the layer constituting at least one of the color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 according to the present embodiment are generally that the bottom of the spectral curve is floating. And, it may have a broad high transmittance called cyan. Pigments having such spectral characteristics are produced, for example, by combining organic pigments. On the other hand, a color adjustment layer of spectral characteristics which is called blue and has a high transmittance portion on the short wavelength side is not suitable. It is preferable that the transmission areas of the layers constituting at least one of the color adjustment layers 18, 18a, 18b, and 18c and the adhesion improving resin layer 27 cover (belong to) approximately two transmission areas of blue and green. The layer constituting at least one of the color adjustment layers 18, 18a, 18b, and 18c and the adhesion improving resin layer 27 has a light wavelength corresponding to a green transmission peak and a visible light range of about 550 nm to 700 nm, that is, copper It is desirable to have absorption performance in the region of high reflectivity of In other words, it is desirable that the half value of the color adjustment layers 18, 18a, 18b, and 18c (for example, the light wavelength corresponding to the half transmittance of the peak transmittance) be longer than about 550 nm.
 例えば、色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層は、光学濃度がおよそ0.4以下の少量のカーボンを色材として含むとしてもよい。例えば、密着改善樹脂層27が、光学濃度がおよそ0.4以下の少量のカーボンを含む場合、透明基板17から見たブラックマトリクスBMの光の反射による干渉色などによる色付きを抑制することができ、ニュートラルな反射色を表示することができる。 For example, the layer constituting at least one of the color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 may contain a small amount of carbon having an optical density of about 0.4 or less as a coloring material. For example, when the adhesion improving resin layer 27 contains a small amount of carbon having an optical density of about 0.4 or less, coloring due to interference color or the like due to light reflection of the black matrix BM seen from the transparent substrate 17 can be suppressed. , Neutral reflection color can be displayed.
 色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層の色材として、アルミニウムフタロシアニン、銅フタロシアニン、亜鉛フタロシアニン、などが用いられる。これらフタロシアニン顔料は、フタロシアニン構造を持つブロム(Br)と塩素(Cl)との量で色調を調整することができる。アルミニウムフタロシアニン顔料は、およそ400nmから550nmの光の波長域を越えるブロードな透過域を持つため、シアン色を再現する色材として用いられる。アルミニウムフタロシアニン顔料としては、例えば、日本国特許第3837037号公報で説明されている顔料を適用することができる。銅フタロシアニン顔料としては、例えば、C.I.ピグメントグリーン7、C.I.ピグメントグリーン36を用いることができる。亜鉛フタロシアニン顔料としては、例えば、C.I.ピグメントグリーン58を用いることができる。上記の色材は、色調整層18,18a,18b,18cの主な色材として、透明樹脂を含む固形比の質量%についておよそ5質量%以上、35質量%以下の範囲で加えられてもよい。調整される光の波長は、可視域とする。銅反射色抑制の観点から、調整される光は、例えば、およそ光波長620nmで、およそ光学濃度0.5未満であることが望ましい。調整される光は、例えば、およそ光波長620nmで、およそ光学濃度0.5以上となると、添加された色材の色が強く出すぎて逆効果となる。 Aluminum phthalocyanine, copper phthalocyanine, zinc phthalocyanine or the like is used as a coloring material of the layer constituting at least one of the color adjustment layers 18, 18a, 18b, 18c and the adhesion improving resin layer 27. These phthalocyanine pigments can be adjusted in color tone by the amount of bromine (Br) and chlorine (Cl) having a phthalocyanine structure. The aluminum phthalocyanine pigment is used as a coloring material for reproducing a cyan color because it has a broad transmission range exceeding the wavelength range of light of about 400 nm to 550 nm. As the aluminum phthalocyanine pigment, for example, the pigment described in Japanese Patent No. 3837037 can be applied. As a copper phthalocyanine pigment, for example, C.I. I. Pigment green 7, C.I. I. Pigment green 36 can be used. As a zinc phthalocyanine pigment, for example, C.I. I. Pigment green 58 can be used. The above coloring materials are added as main coloring materials of the color adjustment layers 18, 18a, 18b and 18c in a range of about 5% by mass to 35% by mass with respect to mass% of solid ratio including transparent resin Good. The wavelength of light to be adjusted is in the visible range. From the viewpoint of copper reflection color suppression, it is desirable that the light to be adjusted has, for example, an optical wavelength of about 620 nm and an optical density of less than about 0.5. For example, when the light to be adjusted has an optical wavelength of about 620 nm and an optical density of about 0.5 or more, the color of the added coloring material is too strong to cause an adverse effect.
 銅の高い反射率の領域に吸収性能を持たせるために、色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層に、少量のブルー顔料を添加してもよい。ブルー顔料としては、例えば、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントグリーン7、C.I.ピグメントグリーン36、C.I.ピグメントグリーン58を用いることができる。これら補助の顔料は、上記のフタロシアニン顔料の色を調整するために加えることができる。 A small amount of blue pigment is added to the layer constituting at least one of the color adjustment layers 18, 18a, 18b, 18c and the adhesion improving resin layer 27 in order to provide absorption performance in the area of high reflectivity of copper. May be Examples of blue pigments include C.I. I. Pigment blue 15: 3, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. Pigment green 7, C.I. I. Pigment green 36, C.I. I. Pigment green 58 can be used. These auxiliary pigments can be added to adjust the color of the above-mentioned phthalocyanine pigments.
 色調整層18,18a,18b,18cは、周知のフォトリスグラフィ法により、例えば、およそ膜厚0.1μm以上、0.8μm以下で形成される。色調整層18,18a,18b,18cがおよそ0.8μmより厚くなると、色調整層18,18a,18b,18cとブラックマトリクスBMとの合計膜厚が厚くなりすぎ、液晶の配向に悪影響を与える。色調整層18,18a,18b,18cがおよそ0.8μmより厚く、かつ、色調整層18,18a,18b,18c及び密着改善樹脂層27のうち少なくとも一つを構成する層の透過率が高い場合、透明基板17とブラックマトリクスBMとの間で光の虹色の干渉が生じやすく、表示品位を低下させる。およそ0.1μm以下の薄い膜厚は、膜厚精度の確保が難しい。感光性樹脂組成物に用いられる樹脂、重合成モノマー、光重合開始剤、溶剤などは後で説明される。カラーフィルタ19の赤フィルタRF、緑フィルタGF、青フィルタBFに用いられる顔料などについても後で説明される。 The color adjustment layers 18, 18a, 18b, and 18c are formed, for example, with a film thickness of about 0.1 μm or more and 0.8 μm or less by a well-known photolithography method. When the color adjustment layers 18, 18a, 18b, and 18c are thicker than about 0.8 μm, the total film thickness of the color adjustment layers 18, 18a, 18b, and 18c and the black matrix BM becomes too thick, which adversely affects the alignment of liquid crystals. . The color adjustment layer 18, 18a, 18b, 18c is thicker than approximately 0.8 μm, and the transmittance of the layer constituting at least one of the color adjustment layer 18, 18a, 18b, 18c and the adhesion improving resin layer 27 is high. In this case, the iridescent interference of light is likely to occur between the transparent substrate 17 and the black matrix BM, and the display quality is degraded. With a thin film thickness of about 0.1 μm or less, it is difficult to ensure film thickness accuracy. The resin, the heavy synthesis monomer, the photopolymerization initiator, the solvent and the like used for the photosensitive resin composition will be described later. The red filter RF of the color filter 19, the green filter GF, and the pigment used for the blue filter BF will also be described later.
(色調整層レジスト調整の例)
<色調整層感光性レジスト1>
 色調整層感光性レジスト1は、A.着色材としてアルミニウムフタロシアニンとC.I.ピグメントブルー15:4との質量比81/19の混合物を35質量部、B.アルカリ可溶性樹脂として、メタクリル酸/ベンジルメタクリレート/2-ヒドロキシエチルメタクリレート共重合体(共重合重量比=15/70/15、Mw=28,000)を60質量部、C.多官能性単量体として、ジペンタエリスリトールヘキサアクリレートを40質量部、D.光重合開始剤として、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾールを10質量部、4,4’-ビス(ジエチルアミノ)ベンゾフェノンを10質量部、溶剤として、3-エトキシプロピオン酸エチルを1100質量部、を混合して調製する。
(Example of color adjustment layer resist adjustment)
<Color Adjustment Layer Photosensitive Resist 1>
The color adjustment layer photosensitive resist 1 is prepared by As a coloring material, aluminum phthalocyanine and C.I. I. Pigment blue 15: 4 in 35 parts by mass of a mixture having a mass ratio of 81/19, B.I. 60 parts by mass of a methacrylic acid / benzyl methacrylate / 2-hydroxyethyl methacrylate copolymer (copolymerization weight ratio = 15/70/15, Mw = 28,000) as an alkali-soluble resin, C.I. As a polyfunctional monomer, 40 parts by mass of dipentaerythritol hexaacrylate, D.I. 10 parts by mass of 2,2′-bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole as a photopolymerization initiator, 4,4′-bis (diethylamino) benzophenone It is prepared by mixing 10 parts by mass and 1,100 parts by mass of ethyl 3-ethoxypropionate as a solvent.
 色調整層18,18a,18b,18cの透過率は、溶剤の添加量を調整することによる膜厚の調整、主な色材であるアルミニウムフタロシアニンの顔料比率の調整、後述される顔料の少量の添加、で調整できる。上記の図6では、色調整層感光性レジスト1を用いて形成された色調整層の代表的な透過率特性1a,1b,1c,1dが示されている。上記の図6に示されるような透過率特性1a,1b,1c,1dは、着色剤の濃度、又は、色調整層の膜厚を調整することにより調整可能である。 The transmittances of the color adjustment layers 18, 18a, 18b and 18c are controlled by adjusting the amount of addition of the solvent, adjusting the film ratio of the main coloring material aluminum phthalocyanine, and adjusting the pigment ratio of the pigment described later It can be adjusted by addition. In FIG. 6 described above, representative transmittance characteristics 1a, 1b, 1c, 1d of the color adjustment layer formed using the color adjustment layer photosensitive resist 1 are shown. The transmittance characteristics 1a, 1b, 1c and 1d as shown in FIG. 6 can be adjusted by adjusting the concentration of the colorant or the film thickness of the color adjustment layer.
<色調整層感光性レジスト2>
 色調整層感光性レジスト2は、A.着色材として、C.I.ピグメントブルー15:3の単体顔料(33質量部)を含む。色調整層感光性レジスト2における他の要素である、B.アルカリ可溶性樹脂、C.多官能単量体、D.光重合開始剤は、上記の色調整層感光レジスト1と同様とする。
<Color Adjustment Layer Photosensitive Resist 2>
The color adjustment layer photosensitive resist 2 is prepared by As a coloring material, C.I. I. Pigment blue 15: 3 single pigment (33 parts by mass). B. Other Elements in Color Adjustment Layer Photosensitive Resist 2 Alkali soluble resin, C.I. Multifunctional monomer, D.I. The photopolymerization initiator is the same as that of the above-mentioned color adjustment layer photosensitive resist 1.
 図15は、色調整層感光性レジスト2を用いて形成された色調整層の光透過特性の例を示すグラフである。 FIG. 15 is a graph showing an example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 2.
 この図15では、色調整層感光性レジスト2を用いて形成された色調整層の代表的な透過率特性2a,2b,2c,2dが示されている。図15に示されるような透過率特性2a,2b,2c,2dは、着色材の濃度、又は、色調整層の膜厚を調整することにより調整可能である。 In FIG. 15, representative transmittance characteristics 2a, 2b, 2c and 2d of the color adjustment layer formed using the color adjustment layer photosensitive resist 2 are shown. The transmittance characteristics 2a, 2b, 2c and 2d as shown in FIG. 15 can be adjusted by adjusting the concentration of the colorant or the thickness of the color adjustment layer.
<色調整層感光レジスト3>
 色調整層感光性レジスト3は、A.着色材として、C.I.ピグメントグリーン7とC.I.ピグメントブルー15:3との質量比50/50の混合物を35質量部、B.アルカリ可溶性樹脂として、メタクリル酸/ベンジルメタクリレート/2-ヒドロキシエチルメタクリレート共重合体(共重合重量比=15/70/15、Mw=28,000)を60質量部、C.多官能性単量体として、ジペンタエリスリトールヘキサアクリレートを40質量部、D.光重合開始剤として、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾールを10質量部、4,4’-ビス(ジエチルアミノ)ベンゾフェノンを10質量部、溶剤として、3-エトキシプロピオン酸エチルを1100質量部、を混合して調製する。
<Color adjustment layer photosensitive resist 3>
The color adjustment layer photosensitive resist 3 is prepared from A.I. As a coloring material, C.I. I. Pigment green 7 and C.I. I. Pigment Blue 15: 3 in 35 parts by weight of a 50/50 mixture by weight, B.I. 60 parts by mass of a methacrylic acid / benzyl methacrylate / 2-hydroxyethyl methacrylate copolymer (copolymerization weight ratio = 15/70/15, Mw = 28,000) as an alkali-soluble resin, C.I. As a polyfunctional monomer, 40 parts by mass of dipentaerythritol hexaacrylate, D.I. 10 parts by mass of 2,2′-bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole as a photopolymerization initiator, 4,4′-bis (diethylamino) benzophenone It is prepared by mixing 10 parts by mass and 1,100 parts by mass of ethyl 3-ethoxypropionate as a solvent.
 図16は、色調整層感光性レジスト3を用いて形成された色調整層の光透過特性の例を示すグラフである。 FIG. 16 is a graph showing an example of the light transmission characteristics of the color adjustment layer formed using the color adjustment layer photosensitive resist 3.
 この図16では、色調整層感光性レジスト3を用いて形成された色調整層の代表的な透過率特性3a,3b,3c,3dが示されている。図16に示されるような透過率特性3a,3b,3c,3dは、着色材の濃度、又は、色調整層の膜厚を調整することにより調整可能である。 In FIG. 16, typical transmittance characteristics 3a, 3b, 3c and 3d of the color adjustment layer formed using the color adjustment layer photosensitive resist 3 are shown. The transmittance characteristics 3a, 3b, 3c, 3d as shown in FIG. 16 can be adjusted by adjusting the concentration of the coloring material or the film thickness of the color adjustment layer.
<色調整層感光性レジスト4>
 色調整層感光性レジスト4は、A.着色材として、アルミニウムフタロシアニン、C.I.ピグメントブルー15:4、C.I.ピグメントイエロー138の混合物を35質量部として用いる。色調整層感光性レジスト4における他の要素である、B.アルカリ可溶性樹脂、C.多官能単量体、D.光重合開始剤は、上記の色調整層感光レジスト1と同様とする。
<Color Adjustment Layer Photosensitive Resist 4>
The color control layer photosensitive resist 4 is prepared by As a coloring material, aluminum phthalocyanine, C.I. I. Pigment blue 15: 4, C.I. I. A mixture of pigment yellow 138 is used as 35 parts by mass. B. Other Elements in Color Adjustment Layer Photosensitive Resist 4 Alkali soluble resin, C.I. Multifunctional monomer, D.I. The photopolymerization initiator is the same as that of the above-mentioned color adjustment layer photosensitive resist 1.
 図17は、色調整層感光性レジスト4を用いて形成された色調整層の光透過特性の例を示すグラフである。 FIG. 17 is a graph showing an example of the light transmission characteristic of the color adjustment layer formed using the color adjustment layer photosensitive resist 4.
 この図17では、色調整層感光性レジスト4を用いて形成された色調整層の代表的な透過率特性4a,4b,4c,4dが示されている。図17に示されるような透過率特性4a,4b,4c,4dは、着色材の濃度、又は、色調整層の膜厚を調整することにより調整可能である。 In FIG. 17, representative transmittance characteristics 4a, 4b, 4c, 4d of the color adjustment layer formed using the color adjustment layer photosensitive resist 4 are shown. The transmittance characteristics 4a, 4b, 4c and 4d as shown in FIG. 17 can be adjusted by adjusting the concentration of the coloring material or the film thickness of the color adjustment layer.
 樹脂、開始剤、モノマーなどは、後述される種々の材料から選択される。可視域の広い範囲で、均一に、透過率を下げるため、色調整層18,18a,18b,18cは、遮光性色材のカーボンを、全色材での固形比10質量%以下の量で添加してもよい。換言すれば、色調整層18,18a,18b,18cに遮光性色材のカーボンを少量加えることで、ブラックマトリクスBM表面からの反射光を、可視域の広い範囲でおよそ0.5%以下に抑えることができる。 The resin, the initiator, the monomer and the like are selected from various materials described later. In order to uniformly reduce the transmittance in a wide range of visible range, the color adjustment layers 18, 18a, 18b and 18c are made of a light-shielding coloring material carbon in an amount of 10% by mass or less based on the solid ratio of all coloring materials You may add. In other words, by adding a small amount of carbon of the light-shielding coloring material to the color adjustment layers 18, 18a, 18b, and 18c, the reflected light from the surface of the black matrix BM becomes approximately 0.5% or less in a wide range of visible range. It can be suppressed.
(密着改善樹脂層レジスト調整の一例)
 ビスフェノールフルオレン型エポキシ樹脂(新日鉄住金化学社製「V259-ME」固形分56.1%)16.48gに対し、ジペンタエリスリトールペンタ/ヘキサアクリレート混合物(日本化薬社製「KAYARAD DPHA」)2.02g、光重合開始剤(ADEKA社製「NCI-831」)0.21g、カーボンブラック(カーボン色材)のプロピレングリコールモノメチルエーテルアセテート分散液(固形分26.0%、固形分中のカーボンブラック濃度75.0質量%)9.69g及びプロピレングリコールモノメチルエーテルアセテート71.59g、を加えてよく攪拌し、密着改善樹脂層レジスト、100g(固形分14.0%、カーボンブラック濃度13.5質量%、光学濃度1.0/μm)が作成される。
(An example of adhesion improvement resin layer resist adjustment)
Dipentaerythritol penta / hexaacrylate mixture ("KayaraD DPHA" manufactured by Nippon Kayaku Co., Ltd.) with respect to 16.48 g of bisphenol fluorene type epoxy resin ("V 259-ME" solid content 56.1% manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 02 g, 0.21 g of a photopolymerization initiator (“NCI-831” manufactured by ADEKA), and a dispersion of a carbon black (carbon coloring material) in propylene glycol monomethyl ether acetate (solid content 26.0%, carbon black concentration in solid content) 75.0 mass%) 9.69 g and 71.59 g of propylene glycol monomethyl ether acetate are added and stirred well to obtain an adhesion improving resin layer resist, 100 g (solid content 14.0%, carbon black concentration 13.5 mass%, An optical density of 1.0 / μm) is produced.
 上記の各実施形態において、密着改善樹脂層27の硬膜後の膜厚は、およそ0.3μmとする。実効的な光学濃度は約0.3とする。 In each of the above embodiments, the film thickness after hardening of the adhesion improving resin layer 27 is approximately 0.3 μm. The effective optical density is about 0.3.
(感光性樹脂組成物)
 本実施形態の色調整層18,18a,18b,18c及び密着改善樹脂層27は、少なくとも、樹脂、重合性モノマー、光重合開始剤及び溶剤を含有する感光性樹脂組成物に、遮光性色材又は顔料を添加して作成される。赤フィルタRF、緑フィルタGF、青フィルタBFを含むカラーフィルタ19は、感光性樹脂組成物に、後述される顔料を添加して着色させてもよい。
(Photosensitive resin composition)
The color adjustment layers 18, 18a, 18b and 18c and the adhesion improving resin layer 27 of the present embodiment are a light shielding coloring material in a photosensitive resin composition containing at least a resin, a polymerizable monomer, a photopolymerization initiator and a solvent. Or it is made by adding a pigment. The color filter 19 including the red filter RF, the green filter GF, and the blue filter BF may be colored by adding a pigment described later to the photosensitive resin composition.
<樹脂>
 樹脂としては、例えば、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレートなどのアルキルアクリレート又はアルキルメタクリレート、環状のシクロヘキシルアクリレート又はメタクリレート、ヒドロキシエチルアクリレート又はメタクリレート、スチレン、などの内から3~5種類程度のモノマーを用いて合成した、分子量5000~100000程度の樹脂が用いられる。
<Resin>
As the resin, for example, alkyl acrylate or alkyl methacrylate such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclic cyclohexyl acrylate or methacrylate, hydroxyethyl acrylate or methacrylate, A resin having a molecular weight of about 5,000 to 100,000, which is synthesized using about 3 to 5 kinds of monomers such as styrene, is used.
 アクリル系樹脂の一部に不飽和二重結合を付加した樹脂として、上記のアクリル樹脂、イソシアネート基と1個以上のビニル基を有するイソシアネートエチルアクリレート、メタクリロイルイソシアネート、などの化合物を反応させて得られる、酸価50以上、150以下の感光性共重合体が、耐熱性、現像性等の点から好ましく使用される。 It is obtained by reacting a compound such as the above acrylic resin, isocyanate ethyl acrylate having an isocyanate group and one or more vinyl groups, methacryloyl isocyanate, etc. as a resin in which unsaturated double bond is added to a part of acrylic resin. A photosensitive copolymer having an acid value of 50 or more and 150 or less is preferably used from the viewpoint of heat resistance, developability and the like.
 樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリカルボン酸グリシジルエステル、ポリオールポリグリシジルエステル、脂肪族又は脂環式エポキシ樹脂、アミンエポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂などのエポキシ樹脂と(メタ)アクリル酸を反応させて得られるエポキシ(メタ)アクリレート、等の通常の光重合可能な樹脂、カルド樹脂も使用できる。 As the resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, polycarboxylic acid glycidyl ester, polyol polyglycidyl ester, aliphatic or alicyclic epoxy resin, amine epoxy resin, triphenolmethane type epoxy Also usable are ordinary photopolymerizable resins such as epoxy (meth) acrylates obtained by reacting an epoxy resin such as a dihydroxybenzene type epoxy resin and (meth) acrylic acid, and a cardo resin.
<重合性モノマー>
 光重合性モノマーとしては、例えば、エチレングリコール(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンテトラ(メタ)アクリレート、テトラトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が用いられる。これらの成分は単独又は混合物として使用される。光重合性モノマーとして、例えば、各種変性(メタ)アクリレート、ウレタン(メタ)アクリレート等を用いることもできる。特に、二重結合当量が小さく高感度化が達成できるペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが好適に用いられる。
<Polymerizable monomer>
As the photopolymerizable monomer, for example, ethylene glycol (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, hexane di (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, glycerin tetra (meth) acrylate, tetratrimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta ( Data) acrylate, dipentaerythritol hexa (meth) acrylate and the like are used. These components are used alone or as a mixture. As the photopolymerizable monomer, for example, various modified (meth) acrylates, urethane (meth) acrylates and the like can also be used. In particular, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate, which have a small double bond equivalent and can achieve high sensitivity, are preferably used.
 光重合性モノマーの含有量としては、感光性樹脂組成物の固形分中およそ5重量%以上、20重量%以下であることが好ましい。光重合性モノマーの含有量は、より好ましくは、およそ10重量%以上、15重量%以下の範囲である。光重合性モノマーの含有量がこの範囲の場合、感光性樹脂組成物の感度、現像速度を、生産上好適な水準に調整することができる。光重合性モノマーの含有量は、およそ5重量%未満の場合、黒色感光性樹脂組成物の感度は不足する。 The content of the photopolymerizable monomer is preferably about 5% by weight or more and 20% by weight or less in the solid content of the photosensitive resin composition. The content of the photopolymerizable monomer is more preferably in the range of about 10% by weight or more and 15% by weight or less. When the content of the photopolymerizable monomer is in this range, the sensitivity of the photosensitive resin composition and the development rate can be adjusted to a level suitable for production. When the content of the photopolymerizable monomer is less than about 5% by weight, the sensitivity of the black photosensitive resin composition is insufficient.
<光重合開始剤>
 光重合開始剤として、従来公知の化合物が適宜使用されてもよい。光重合開始剤としては、オキシムエステル化合物が用いられることが好ましい。オキシムエステル化合物は、光を透過しない黒色感光性樹脂組成物に用いられる場合に、高感度化を実現することができる。
<Photoinitiator>
As the photopolymerization initiator, a conventionally known compound may be suitably used. As a photoinitiator, it is preferable that an oxime ester compound is used. The oxime ester compound can realize high sensitivity when it is used for a black photosensitive resin composition which does not transmit light.
 オキシムエステル系化合物の具体例としては、2-(O-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン、1-(O-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン(共にBASFジャパン社製)等が用いられる。 Specific examples of the oxime ester compound include 2- (O-benzoyloxime) -1- [4- (phenylthio) phenyl] -1,2-octanedione, 1- (O-acetyloxime) -1- [9 -Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone (both manufactured by BASF Japan Ltd.) and the like are used.
 光重合開始剤の含有量は、感光性樹脂組成物の固形分中およそ0.5重量%以上、10.0重量%以下であることが好ましく、より好ましくはおよそ1.0重量%以上、およそ5.0重量%以下の範囲である。光重合開始剤の含有量がおよそ1重量%未満の場合、感光性樹脂組成物の感度が不足する。光重合開始剤の含有量がおよそ10重量%より大きい場合、ブラックマトリックスのパターン線幅が太くなりすぎる。 The content of the photopolymerization initiator is preferably about 0.5% by weight or more and 10.0% by weight or less in the solid content of the photosensitive resin composition, and more preferably about 1.0% by weight or more It is the range of 5.0 weight% or less. When the content of the photopolymerization initiator is less than about 1% by weight, the sensitivity of the photosensitive resin composition is insufficient. When the content of the photopolymerization initiator is more than about 10% by weight, the pattern line width of the black matrix becomes too thick.
 本実施形態に用いられる感光性樹脂組成物には、上記の光重合開始剤と共に、他の光重合開始剤を併用することができる。 In the photosensitive resin composition used for this embodiment, other photoinitiators can be used together with said photoinitiator.
 他の光重合開始剤としては、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系化合物、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系化合物、チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系化合物、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィン系化合物、9,10-フェナンスレンキノン、カンファーキノン、エチルアントラキノン等のキノン系化合物、ボレート系化合物、カルバゾール系化合物、イミダゾール系化合物、チタノセン系化合物等が用いられる。これらの光重合開始剤は1種または必要に応じて任意の比率で2種以上混合して用いられる。他の光重合開始剤の含有量は、感光性樹脂組成物の固形分中およそ0.1重量%以上、1重量%以下であることが好ましく、より好ましくはおよそ0.2重量%以上、0.5重量%以下の範囲である。 Other photopolymerization initiators include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl)- Acetophenone compounds such as butan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin compounds such as benzyl dimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-pheny Benzophenone compounds such as benzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, thioxanthone, 2- Thioxanthone compounds such as chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-diethylthioxanthone, 2,4,6-trichloro-s-triazine, 2-phenyl-4,6- Bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -S-Triage , 2-piperonyl-4,6-bis (trichloromethyl) -s-triazine, 2,4-bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphth-1-yl) -4,6 -Bis (trichloromethyl) -s-triazine, 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-trichloromethyl- (piperonyl)- Triazine compounds such as 6-triazine, 2,4-trichloromethyl (4'-methoxystyryl) -6-triazine, bis (2,4,6-trimethylbenzoyl) phenyl phosphine oxide, 2,4,6-trimethylbenzoyl Phosphine compounds such as diphenyl phosphine oxide, 9,10-phenanthrene quinone, camphor quinone, ethyl anthra A quinone compound such as quinone, a borate compound, a carbazole compound, an imidazole compound, a titanocene compound or the like is used. These photopolymerization initiators may be used alone or in combination of two or more at any ratio as required. The content of the other photopolymerization initiator is preferably about 0.1% by weight or more and 1% by weight or less, more preferably about 0.2% by weight or more, of the solid content of the photosensitive resin composition. .5% by weight or less.
<溶剤>
 溶剤としては、メタノール、エタノール、エチルセロソルブ、エチルセロソルブアセテート、ジグライム、シクロヘキサノン、エチルベンゼン、キシレン、酢酸イソアミル、酢酸nアミル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルアセテート、液体ポリエチレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテルアセテート、乳酸エステル、エチルエトキシプロピオネートなどが用いられる。
<Solvent>
As the solvent, methanol, ethanol, ethyl cellosolve, ethyl cellosolve acetate, diglyme, cyclohexanone, ethylbenzene, xylene, isoamyl acetate, n-amyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol mono Ethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, triethylene glycol, Polyethylene glycol monomethyl ether, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether, triethylene glycol monoethyl ether acetate, liquid polyethylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether Dipropylene glycol monoethyl ether acetate, lactic acid ester, ethyl ethoxy propionate and the like are used.
<遮光性色材>
 本実施形態に係る遮光性色材としては、カーボンブラック(各実施形態ではカーボンとも表記される)が好ましい。カーボンブラックとしては、ランプブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、又は、ファーネスブラック等が用いられてもよい。
<Light-shielding color material>
As the light-shielding coloring material according to the present embodiment, carbon black (also referred to as carbon in each embodiment) is preferable. As the carbon black, lamp black, acetylene black, thermal black, channel black, furnace black or the like may be used.
<顔料>
 赤フィルタRFの形成に用いられる赤色顔料としては、例えば、C.I.PigmentRed 7、9、14、41、48:1、48:2、48:3、48:4、81:1、81:2、81:3、97、122、123、146、149、168、177、178、179、180、184、185、187、192、200、202、208、210、215、216、217、220、223、224、226、227、228、240、246、254、255、264、272、279等が用いられてもよい。赤フィルタRFの色相を調整するために、赤色顔料と、黄色顔料と橙色顔料との少なくとも一方とを併用してもよい。
<Pigment>
Examples of red pigments used to form the red filter RF include C.I. I. Pigment Red 7, 9, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 97, 122, 123, 146, 149, 168, 177 178, 179, 180, 184, 185, 187, 192, 200, 202, 208, 210, 215, 216, 217, 220, 224, 226, 227, 228, 240, 246, 254, 255, 264 272, 279, etc. may be used. In order to adjust the hue of the red filter RF, a red pigment and at least one of a yellow pigment and an orange pigment may be used in combination.
 黄色顔料としては、C.I.Pigment Yellow 1、2、3、4、5、6、10、12、13、14、15、16、17、18、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、86、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、125、126、127、128、129、137、138、139、144、146、147、148、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、188、193、194、199、213、214等が用いられてもよい。 As yellow pigments, C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 144, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, It may be used, such as 73,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214.
 橙色顔料としては、C.I.Pigment Orange 36、43、51、55、59、61、71、73等が用いられてもよい。 As an orange pigment, C.I. I. Pigment Orange 36, 43, 51, 55, 59, 61, 71, 73, and the like may be used.
 緑フィルタGFを形成するための緑色顔料としては、例えば、C.I.PigmentGreen 7、10、36、37、58等が用いられてもよい。緑フィルタGFの色相を調整するために、緑色顔料と黄色顔料とが併用されてもよい。黄色顔料としては、赤フィルタRFの色相を調整するために併用可能な黄色顔料を適宜用いてもよい。 As a green pigment for forming a green filter GF, for example, C.I. I. Pigment Green 7, 10, 36, 37, 58, etc. may be used. A green pigment and a yellow pigment may be used in combination to adjust the hue of the green filter GF. As a yellow pigment, a yellow pigment that can be used in combination to adjust the hue of the red filter RF may be appropriately used.
 青フィルタBFを形成するための青色顔料には、例えば、C.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、16、22、60、64等が用いられてもよい。青フィルタBFの色相を調整するために、青色顔料と紫色顔料とが併用されてもよい。紫色顔料の具体例としては、C.I.ピグメントバイオレット1、19、23、27、29、30、32、37、40、42、50等が用いられてもよい。 Examples of blue pigments for forming the blue filter BF include C.I. I. Pigment blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, etc. may be used. In order to adjust the hue of the blue filter BF, a blue pigment and a purple pigment may be used in combination. Specific examples of the purple pigment include C.I. I. Pigment Violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50, etc. may be used.
 先に列記された顔料は、色調整層18,18a,18b,18cの色材として用いられてもよい。以下において、C.I.Pigment Yellow 139はY139、C.I.ピグメントブルー15:6はB15:6、C.I.ピグメントバイオレット23はV23と略記する場合がある。 The pigments listed above may be used as coloring materials for the color adjustment layers 18, 18a, 18b and 18c. In the following, C.I. I. Pigment Yellow 139 to Y139, C.I. I. Pigment blue 15: 6 is B15: 6, C.I. I. Pigment Violet 23 may be abbreviated as V23.
(額縁部29に適用される遮光性レジスト1の例)
 液晶表示装置1Dにおいては、額縁部に高い遮光性が要求される。このため、遮光性色材の主材は、カーボンであることが好ましい。
(Example of the light shielding resist 1 applied to the frame portion 29)
In the liquid crystal display device 1D, a high light shielding property is required of the frame portion. Therefore, it is preferable that the main material of the light shielding color material is carbon.
 また、カーボンを遮光性色材の主材とする額縁部29は、比誘電率が高い。このため、額縁部29は、膜厚方向において、液晶層から遠い位置に形成されることが望ましい。 Further, the frame portion 29 mainly made of carbon as a light shielding color material has a high relative dielectric constant. Therefore, it is desirable that the frame portion 29 be formed at a position far from the liquid crystal layer in the film thickness direction.
 下記の組成の混合物が均一に攪拌混合され、ビーズミル分散機にて攪拌され、黒色ペーストが作成される。混合物の組成は質量部で表される。 A mixture having the following composition is uniformly mixed by stirring, and is stirred by a bead mill disperser to form a black paste. The composition of the mixture is expressed in parts by weight.
 カーボン顔料 20部
 分散剤 8.3部
 銅フタロシアニン誘導体 1.0部
 プロピレングリコールモノメチルエーテルアセテート 71部
 上記の黒色ペーストを用いて、下記の組成の混合物が均一になるように攪拌混合され、およそ5μmのフィルタで濾過され、遮光層18に適用される遮光性レジスト1が調製される。本実施形態において、レジストとは、カーボン又は有機顔料を含む感光性着色組成物を指す。
Carbon pigment 20 parts Dispersant 8.3 parts Copper phthalocyanine derivative 1.0 part Propylene glycol monomethyl ether acetate 71 parts Using the above black paste, the mixture of the following composition is stirred and mixed so as to be uniform, approximately 5 μm A light shielding resist 1 is prepared which is filtered by a filter and applied to the light shielding layer 18. In the present embodiment, a resist refers to a photosensitive coloring composition containing carbon or an organic pigment.
 黒色ペースト 25.2部
 アクリル樹脂溶液 18部
 ジペンタエリスリトールペンタ及びヘキサアクリレート 5.2部
 光重合開始剤 1.2部
 増感剤 0.3部
 レベリング剤 0.1部
 シクロヘキサノン 25部
 プロピレングリコールモノメチルエーテルアセテート 25部
 本実施形態において、黒色レジスト1又はカラーレジストにおける主な色材(顔料)とは、そのレジストに含まれる色材(顔料)の全質量比(%)に対して50%を越える色材を意味する。例えば、黒色レジスト1は、カーボンが色材の100%を占め、カーボンが主な色材となる。また、カーボンを主な色材とする黒色レジスト1では、その色調又は反射色を調整するため、全質量比にて10%以下を目安に、赤色、黄色、青色などの有機顔料を添加してもよい。目的とする塗布膜厚は、シクロヘキサノンなどの溶剤添加量で調整できる。
Black paste 25.2 parts Acrylic resin solution 18 parts Dipentaerythritol penta and hexaacrylate 5.2 parts Photopolymerization initiator 1.2 parts Sensitizer 0.3 parts Leveling agent 0.1 part Cyclohexanone 25 parts Propylene glycol monomethyl ether Acetate 25 parts In this embodiment, the main coloring material (pigment) in the black resist 1 or the color resist is a color exceeding 50% with respect to the total mass ratio (%) of the coloring material (pigment) contained in the resist Means wood. For example, in the black resist 1, carbon accounts for 100% of the coloring material, and carbon is the main coloring material. In addition, in the case of the black resist 1 mainly composed of carbon, in order to adjust the color tone or the reflection color, an organic pigment such as red, yellow, blue or the like is added with a total mass ratio of 10% or less as a standard. It is also good. The target coating film thickness can be adjusted by the addition amount of solvent such as cyclohexanone.
(第5の実施形態のブラックマトリクスBMに適用される遮光性レジスト2の例)
 第5の実施形態は、IPS又はFFS(Fringe Field Switching)と呼称される駆動方式の液晶表示装置1Dである。
(Example of the light shielding resist 2 applied to the black matrix BM of the fifth embodiment)
The fifth embodiment is a liquid crystal display device 1D of a driving method called IPS or FFS (Fringe Field Switching).
 IPS駆動方式の液晶表示装置1Dは、初期水平配向の液晶分子を備え、かつ、アレイ基板10Cの画素電極26の並ぶ平面の上で液晶分子の回転動作を行わせる。したがって、液晶分子の回転動作に影響しないように、ブラックマトリクスBMは低い比誘電率であることが望ましい。 The liquid crystal display device 1D of the IPS driving method includes liquid crystal molecules in the initial horizontal alignment, and causes the liquid crystal molecules to rotate on the plane in which the pixel electrodes 26 of the array substrate 10C are arranged. Therefore, it is desirable that the black matrix BM have a low relative dielectric constant so as not to affect the rotational movement of liquid crystal molecules.
 ブラックマトリクスBMの比誘電率を低くするためには、カーボンを用いない又はカーボン添加量を減らし、遮光性レジストが複数の有機顔料主体の組み合わせを含むとすればよい。 In order to lower the relative dielectric constant of the black matrix BM, carbon may not be used, or the amount of carbon added may be reduced, and the light shielding resist may contain a combination of a plurality of organic pigments.
 カラーレジスト(着色組成物)が作成される前に、顔料は、樹脂又は溶液中に分散され、顔料ペースト(分散液)が作成される。例えば、黄色顔料Y139単体を樹脂又は溶液に分散させるためには、黄色顔料Y139の7部(質量部)に対して以下の材料が混合される。 Before the color resist (colored composition) is made, the pigment is dispersed in a resin or solution to make a pigment paste (dispersion liquid). For example, in order to disperse the yellow pigment Y139 alone in a resin or a solution, the following materials are mixed with 7 parts (by mass) of the yellow pigment Y139.
 アクリル樹脂溶液(固形分20%) 40部
 分散剤 0.5部
 シクロヘキサノン 23.0部
 なお、赤色、紫色、青色などの他の顔料についても、同じ樹脂又は溶液に分散され、顔料分散ペーストが作成されてもよい。
Acrylic resin solution (solid content 20%) 40 parts Dispersant 0.5 part Cyclohexanone 23.0 parts Note that other pigments such as red, purple and blue are also dispersed in the same resin or solution to make a pigment dispersion paste It may be done.
 以下に、上記の顔料分散ペーストに基づいて遮光性レジスト2を作成するための組成比を例示する。 Below, the composition ratio for producing the light-shielding resist 2 is illustrated based on said pigment dispersion paste.
 Y139ペースト 13部
 B15:6ペースト 5部
 V23ペースト 20部
 アクリル樹脂溶液 14部
 アクリルモノマー 4.2部
 開始剤 0.7部
 増感剤 0.4部
 シクロヘキサノン 27部
 PGMAC 11部
 上記の組成比により第3の実施形態に係るブラックマトリクスに用いられる遮光性レジスト2が形成される。
Y139 paste 13 parts B15: 6 paste 5 parts V23 paste 20 parts acrylic resin solution 14 parts acrylic monomer 4.2 parts initiator 0.7 part sensitizer 0.4 part cyclohexanone 27 parts PGMAC 11 parts according to the above composition ratio The light shielding resist 2 used in the black matrix according to the third embodiment is formed.
 液晶表示装置1Dでは、黒表示(液晶駆動電圧オフ状態のときの表示)で偏光板などの他の液晶パネル構成要素の影響により、又は、液晶セルのセルギャップなどの光学条件に応じて、黒表示が若干の赤味を帯びることがある。観察者は、赤味を帯びた黒表示よりも、寒色系(若干、青味のある)の黒表示を好む。 In the liquid crystal display device 1D, black is displayed (displayed when the liquid crystal drive voltage is in the off state), and is affected by other liquid crystal panel components such as a polarizing plate or according to optical conditions such as a cell gap of a liquid crystal cell. The display may be slightly reddish. The observer prefers a black (slightly bluish) black display to a reddish black display.
 上記の各実施形態に係る表示装置用基板は、上記のように銅配線に基づいて生じる赤味を解消することができる。なお、例えば、アルミニウム配線など銅配線でない他の材質で形成される配線を備える液晶表示装置に対しても、上記各実施形態を適用してもよい。 The display device substrate according to each of the above-described embodiments can eliminate the redness that is generated based on the copper wiring as described above. The above embodiments may also be applied to, for example, a liquid crystal display device provided with a wiring formed of another material other than copper wiring, such as aluminum wiring.
 上記の各実施形態に係る液晶表示装置は、垂直配向及び縦電界のVA(Virtical Alignment)、及び、水平配向及び横電界のIPSのいずれの液晶駆動方式でもよく、他の液晶駆動方式でもよい。他の液晶駆動方式としては、例えば、ECB(Electrically Controlled Birefringence)、FFS、OCB(Optically Compensated Bend)、又は、ブルーフェーズなどが用いられる。 The liquid crystal display device according to each of the above embodiments may be any liquid crystal drive system of vertical alignment and vertical electric field VA (Virtical Alignment) and horizontal alignment and horizontal electric field IPS, and may be another liquid crystal drive system. As another liquid crystal drive system, for example, ECB (Electrically Controlled Birefringence), FFS, OCB (Optically Compensated Bend), blue phase or the like is used.
 上記の各実施形態に係る表示装置用基板板は、銅配線を含む液晶表示装置及び有機EL表示装置に適用できる。 The display device substrate board according to each of the above embodiments can be applied to a liquid crystal display device and an organic EL display device including copper wiring.
 上記の各実施形態は、発明の趣旨が変わらない範囲で様々に変更して適用することができる。上記の各実施形態は、自由に組み合わせて用いることができる。 The above-described embodiments can be variously modified and applied as long as the spirit of the invention does not change. Each above-mentioned embodiment can be used combining freely.
 1,1A~1D…液晶表示装置,2…画素開口部、3…アクティブ素子、31…透明チャネル層、32…ソース電極、33…ドレイン電極、33a…延線、34…ゲート電極、4…ソース線、5…ゲート線、6,61…補助容量線、7…画素電極、8,81…コンタクトホール、BM…ブラックマトリクス、9,9A,9C…液晶パネル、10,10B…アレイ基板、11…液晶層、12,12A,12C,12D…カラーフィルタ基板(表示装置用基板)、13…透明基板、14a~14e…絶縁層、15,26…画素電極、16,22…配向膜、17…透明基板、18,18a~18c…色調整層、19…カラーフィルタ、RF…赤フィルタ、GF…緑フィルタ、BF…青フィルタ、20,20a,20b…オーバーコート層(透明樹脂層)、21…対向電極、23…チタン層、24…銅層(銅配線)、25…共通電極,27…密着改善樹脂層、28…表示部、29…額縁部。 1, 1A to 1D: liquid crystal display device, 2: pixel opening, 3: active element, 31: transparent channel layer, 32: source electrode, 33: drain electrode, 33a: extended wire, 34: gate electrode, 4: source Line 5 5 gate line 6 61 auxiliary capacitance line 7 pixel electrode 8 81 contact hole BM black matrix 9, 9A 9C liquid crystal panel 10 10B array substrate 11 Liquid crystal layer 12, 12A, 12C, 12D: color filter substrate (substrate for display device) 13, transparent substrate, 14a to 14e: insulating layer, 15, 26: pixel electrode, 16, 22: alignment film, 17: transparent Substrate, 18, 18a to 18c: color adjustment layer, 19: color filter, RF: red filter, GF: green filter, BF: blue filter, 20, 20a, 20b: overcoat layer (transparent tree Layer), 21 ... counter electrode, 23 ... titanium layer, 24 ... copper layer (copper wire), 25 ... common electrode, 27 ... adhesion improving resin layer, 28 ... display unit, 29 ... frame portion.

Claims (20)

  1.  表示装置用基板とアレイ基板とを対向させ、液晶層を介して、貼り合わせることによって形成される液晶表示装置において、
     前記表示装置用基板は、透明基板の上に、複数の画素開口部を持つブラックマトリクスと、透明樹脂層とを備え、
     前記アレイ基板は、前記複数の画素開口部のそれぞれに対応する複数のアクティブ素子と、前記複数のアクティブ素子と電気的に接続される銅配線とを備え、
     観察者側からの平面視で、前記銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すとともに前記銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層を具備する、液晶表示装置。
    In a liquid crystal display device formed by facing a display device substrate and an array substrate and bonding them through a liquid crystal layer,
    The display device substrate includes, on a transparent substrate, a black matrix having a plurality of pixel openings, and a transparent resin layer.
    The array substrate includes a plurality of active elements corresponding to each of the plurality of pixel openings, and a copper wire electrically connected to the plurality of active elements.
    In a plan view from the observer side, it overlaps at least a part of the copper wiring and exhibits low transmittance in a light wavelength range with high copper reflectance and high transmission in a light wavelength range with low copper reflectance A liquid crystal display device comprising a color adjustment layer having a transmittance characteristic indicating a rate.
  2.  前記銅配線は、前記平面視で、前記複数の画素開口部に位置する部分を含み、
     前記色調整層のパターンの少なくとも一部は、前記平面視で、前記銅配線のパターンのうちの前記ブラックマトリクスと重ならない部分の上に重なる、請求項1に記載の液晶表示装置。
    The copper wiring includes a portion located in the plurality of pixel openings in the plan view,
    2. The liquid crystal display device according to claim 1, wherein at least a part of the pattern of the color adjustment layer overlaps the portion of the pattern of the copper wiring which does not overlap the black matrix in the plan view.
  3.  前記色調整層は、前記透明基板と前記透明樹脂層との間に形成されている、請求項1又は請求項2に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the color adjustment layer is formed between the transparent substrate and the transparent resin layer.
  4.  前記透明基板と前記ブラックマトリクスとの間に、密着改善樹脂層をさらに具備し、
     前記ブラックマトリクスのパターンと前記密着改善樹脂層のパターンとは、前記平面視で、同じ形状を持つ、請求項1から請求項3のいずれか一項に記載の液晶表示装置。
    An adhesion improving resin layer is further provided between the transparent substrate and the black matrix,
    The liquid crystal display device according to any one of claims 1 to 3, wherein the pattern of the black matrix and the pattern of the adhesion improving resin layer have the same shape in the plan view.
  5.  前記色調整層の少なくとも一部は、前記透明基板と前記ブラックマトリクスとの間、と、前記ブラックマトリクスと前記透明樹脂層との間、の少なくとも1つに、備えられる、請求項1から請求項4のいずれか一項に記載の液晶表示装置。 The at least one portion of the color adjustment layer is provided in at least one of between the transparent substrate and the black matrix, and between the black matrix and the transparent resin layer. 4. The liquid crystal display device according to any one of 4.
  6.  前記表示装置用基板は、前記複数の画素開口部のそれぞれに割り当てられる赤フィルタ、緑フィルタ、青フィルタをさらに具備する、請求項1から請求項5のいずれか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 5, wherein the display device substrate further includes a red filter, a green filter, and a blue filter assigned to each of the plurality of pixel openings.
  7.  前記ブラックマトリクスは、遮光性色材の主材として有機顔料を含む、請求項1から請求項6のいずれか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 6, wherein the black matrix contains an organic pigment as a main component of a light-shielding coloring material.
  8.  前記平面視で、表示部と、前記表示部を囲む額縁部とを備え、
     前記額縁部は、遮光性色材の主材としてカーボンを含む、請求項1から請求項7のいずれか一項に記載の液晶表示装置。
    In the plan view, the display unit includes a display unit and a frame unit surrounding the display unit.
    The liquid crystal display device according to any one of claims 1 to 7, wherein the frame portion contains carbon as a main material of a light shielding color material.
  9.  銅配線を備えるアレイ基板と対向し、かつ、液晶層を介して貼り合わされる表示装置用基板において、
     透明基板の上に、複数の画素開口部を持つブラックマトリクス及び前記複数の画素開口部のそれぞれに割り当てられる赤フィルタ、緑フィルタ、青フィルタと、透明樹脂層とを具備し、
     観察者側からの平面視で、前記銅配線の少なくとも一部の上に重なり、銅の反射率の高い光波長域で低透過率を示すとともに前記銅の反射率の低い光波長域で高透過率を示す透過率特性を持つ色調整層をさらに具備する、表示装置用基板。
    In a substrate for a display device which is opposed to an array substrate provided with copper wiring and is bonded via a liquid crystal layer,
    A black matrix having a plurality of pixel openings and a red filter, a green filter, a blue filter, and a transparent resin layer assigned to each of the plurality of pixel openings are provided on a transparent substrate,
    In a plan view from the observer side, it overlaps at least a part of the copper wiring and exhibits low transmittance in a light wavelength range with high copper reflectance and high transmission in a light wavelength range with low copper reflectance A substrate for a display device, further comprising a color adjustment layer having a transmittance characteristic indicating a rate.
  10.  前記色調整層は、前記ブラックマトリクスと前記赤フィルタと前記緑フィルタと前記青フィルタとよりも前記液晶層の近くに形成される、請求項9に記載の表示装置用基板。 10. The display device substrate according to claim 9, wherein the color adjustment layer is formed closer to the liquid crystal layer than the black matrix, the red filter, the green filter, and the blue filter.
  11.  前記透明基板と前記ブラックマトリクスとの間に、密着改善樹脂層をさらに具備する、請求項9又は請求項10に記載の表示装置用基板。 11. The display device substrate according to claim 9, further comprising an adhesion improving resin layer between the transparent substrate and the black matrix.
  12.  前記色調整層の少なくとも一部は、前記透明基板と前記ブラックマトリクスとの境界面に、前記ブラックマトリクスとほぼ同じパターンで形成される、請求項9から請求項11のいずれか一項に記載の表示装置用基板。 The color matching layer according to any one of claims 9 to 11, wherein at least a part of the color adjustment layer is formed in substantially the same pattern as the black matrix at the interface between the transparent substrate and the black matrix. Display substrate.
  13.  前記透明基板の上に、前記赤フィルタ、前記緑フィルタ、前記青フィルタが形成され、
     前記赤フィルタ、前記緑フィルタ、前記青フィルタの上に、前記ブラックマトリクスが形成される、請求項9から請求項12のいずれか一項に記載の表示装置用基板。
    The red filter, the green filter, and the blue filter are formed on the transparent substrate,
    The substrate for a display device according to any one of claims 9 to 12, wherein the black matrix is formed on the red filter, the green filter, and the blue filter.
  14.  前記色調整層は、およそ光の波長620nmでの透過率が、およそ30%以上、80%以下である、請求項9から請求項13のいずれか一項に記載の表示装置用基板。 The display device substrate according to any one of claims 9 to 13, wherein the color adjustment layer has a transmittance of about 30% to 80% at a wavelength of about 620 nm of light.
  15.  前記密着改善樹脂層は半透明樹脂層である、請求項11に記載の表示装置用基板。 The display device substrate according to claim 11, wherein the adhesion improving resin layer is a translucent resin layer.
  16.  前記密着改善樹脂層は、およそ光の波長550nmでの透過率が、およそ30%以上、95%以下である、請求項11又は請求項15に記載の表示装置用基板。 The substrate for a display device according to claim 11 or 15, wherein the adhesion improving resin layer has a transmittance of about 30% to about 95% at a wavelength of about 550 nm of light.
  17.  前記密着改善樹脂層はカーボンを含む、請求項11,15,16のいずれか一項に記載の表示装置用基板。 The substrate for a display device according to any one of claims 11, 15, and 16, wherein the adhesion improving resin layer contains carbon.
  18.  前記色調整層は、アルミニウムフタロシアン顔料を含む、請求項9から請求項17のいずれか一項に記載の表示装置用基板。 The display device substrate according to any one of claims 9 to 17, wherein the color adjustment layer contains an aluminum phthalocyanine pigment.
  19.  前記ブラックマトリクスは、遮光性色材の主材として有機顔料を含む、請求項9から請求項18のいずれか一項に記載の表示装置用基板。 The substrate for a display device according to any one of claims 9 to 18, wherein the black matrix contains an organic pigment as a main component of a light-shielding coloring material.
  20.  前記平面視で、表示部と、前記表示部を囲む額縁部とを備え、
     前記額縁部は、遮光性色材の主材としてカーボンを含む、請求項9から請求項19のいずれか一項に記載の表示装置用基板。
     
    In the plan view, the display unit includes a display unit and a frame unit surrounding the display unit.
    20. The display device substrate according to any one of claims 9 to 19, wherein the frame portion contains carbon as a main material of a light shielding color material.
PCT/JP2013/083912 2013-04-30 2013-12-18 Liquid crystal display device and display device substrate WO2014178157A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380076122.2A CN105164577B (en) 2013-04-30 2013-12-18 Liquid crystal display device and base board for display device
JP2014510994A JP6197788B2 (en) 2013-04-30 2013-12-18 Liquid crystal display device and display device substrate
KR1020157033562A KR102103905B1 (en) 2013-04-30 2013-12-18 Liquid crystal display device and display device substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095723 2013-04-30
JP2013095723 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178157A1 true WO2014178157A1 (en) 2014-11-06

Family

ID=51843304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083912 WO2014178157A1 (en) 2013-04-30 2013-12-18 Liquid crystal display device and display device substrate

Country Status (5)

Country Link
JP (1) JP6197788B2 (en)
KR (1) KR102103905B1 (en)
CN (1) CN105164577B (en)
TW (1) TWI518429B (en)
WO (1) WO2014178157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203848A (en) * 2016-05-10 2017-11-16 株式会社ジャパンディスプレイ Substrate for display, display, method for manufacturing substrate for display

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581038B (en) * 2015-06-29 2017-05-01 友達光電股份有限公司 Liquid crystal display panel
WO2018105602A1 (en) * 2016-12-08 2018-06-14 旭硝子株式会社 Transparent substrate having light blocking region and display device
CN108919571B (en) * 2018-07-11 2021-07-27 业成科技(成都)有限公司 Display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334759A (en) * 1995-06-06 1996-12-17 Toshiba Corp Reflection type liquid crystal display element
JP2002258304A (en) * 2001-03-02 2002-09-11 Seiko Epson Corp Liquid crystal device, method for manufacturing the same and electronic appliance
JP2006184379A (en) * 2004-12-27 2006-07-13 Seiko Epson Corp Electro-optical device, color filter substrate and electronic equipment
JP2008058723A (en) * 2006-08-31 2008-03-13 Sharp Corp Anti-glare film and liquid crystal display apparatus
WO2011104943A1 (en) * 2010-02-24 2011-09-01 シャープ株式会社 Liquid crystal display panel, and liquid crystal display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307303A (en) 1997-05-06 1998-11-17 Hitachi Ltd Liquid crystal display substrate, its production and liquid crystal display device
JP3837037B2 (en) * 2001-06-20 2006-10-25 山陽色素株式会社 Coloring composition for color filter, resist composition, and color filter
EP1557891A3 (en) * 2004-01-20 2006-10-04 LG Electronics Inc. Organic electroluminescent device and fabrication method thereof
KR20060098585A (en) * 2005-03-03 2006-09-19 엘지.필립스 엘시디 주식회사 Liquid crystal display device and method of fabricating the same
KR20080042466A (en) * 2006-11-10 2008-05-15 엘지디스플레이 주식회사 Liquid crystal display panel and method for fabricating thereof
KR101368391B1 (en) * 2007-06-22 2014-03-04 엘지디스플레이 주식회사 Liquid crystal display device
KR20100028926A (en) * 2008-09-05 2010-03-15 삼성전자주식회사 Display apparatus and method of manuracturing the same
KR20190093705A (en) 2009-11-27 2019-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334759A (en) * 1995-06-06 1996-12-17 Toshiba Corp Reflection type liquid crystal display element
JP2002258304A (en) * 2001-03-02 2002-09-11 Seiko Epson Corp Liquid crystal device, method for manufacturing the same and electronic appliance
JP2006184379A (en) * 2004-12-27 2006-07-13 Seiko Epson Corp Electro-optical device, color filter substrate and electronic equipment
JP2008058723A (en) * 2006-08-31 2008-03-13 Sharp Corp Anti-glare film and liquid crystal display apparatus
WO2011104943A1 (en) * 2010-02-24 2011-09-01 シャープ株式会社 Liquid crystal display panel, and liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203848A (en) * 2016-05-10 2017-11-16 株式会社ジャパンディスプレイ Substrate for display, display, method for manufacturing substrate for display
US11143888B2 (en) 2016-05-10 2021-10-12 Japan Display Inc. Substrate for display apparatus, display apparatus, and method of manufacturing substrate for display apparatus
US11860457B2 (en) 2016-05-10 2024-01-02 Japan Display Inc. Substrate for display apparatus, display apparatus, and method of manufacturing substrate for display apparatus

Also Published As

Publication number Publication date
CN105164577B (en) 2018-03-27
TW201441745A (en) 2014-11-01
KR102103905B1 (en) 2020-04-24
JPWO2014178157A1 (en) 2017-02-23
JP6197788B2 (en) 2017-09-20
TWI518429B (en) 2016-01-21
KR20160003091A (en) 2016-01-08
CN105164577A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5609791B2 (en) Counter substrate for liquid crystal display and liquid crystal display device
JP5077367B2 (en) Color filter substrate for transflective liquid crystal display device, manufacturing method thereof, and transflective liquid crystal display device
US9164311B2 (en) Color filter substrate for liquid crystal display device and liquid crystal display device
EP2624046B1 (en) Color filter substrate and liquid crystal display device
US20060066788A1 (en) Liquid crystal display apparatus
WO2011148706A1 (en) Substrate for liquid crystal display device, and liquid crystal display device
US20130271679A1 (en) Color filter substrate for oblique electric field liquid crystal display devices, and liquid crystal display device
JP5704262B1 (en) DISPLAY DEVICE SUBSTRATE, DISPLAY DEVICE SUBSTRATE MANUFACTURING METHOD, AND DISPLAY DEVICE
JP6197788B2 (en) Liquid crystal display device and display device substrate
JP2015200774A (en) Color filter substrate and liquid crystal display device
US10928670B2 (en) Liquid crystal display device
JP5560865B2 (en) Color filter substrate for transflective liquid crystal display device, manufacturing method thereof, and transflective liquid crystal display device
JP2014215589A (en) Black matrix substrate, color filter substrate and liquid crystal display device
JP2011107474A (en) Color filter substrate and liquid crystal display device
JP5532844B2 (en) Color filter substrate and liquid crystal display device
JP2015102792A (en) Black photosensitive resin composition, black matrix substrate, color filter, liquid crystal display device, and organic electroluminescence display device
JP2013097235A (en) Photosensitive coloring composition and color filter substrate using the same
US20230215875A1 (en) Display Apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076122.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014510994

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157033562

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13883600

Country of ref document: EP

Kind code of ref document: A1