WO2014175653A1 - 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체 - Google Patents

전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체 Download PDF

Info

Publication number
WO2014175653A1
WO2014175653A1 PCT/KR2014/003543 KR2014003543W WO2014175653A1 WO 2014175653 A1 WO2014175653 A1 WO 2014175653A1 KR 2014003543 W KR2014003543 W KR 2014003543W WO 2014175653 A1 WO2014175653 A1 WO 2014175653A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
seconds
electrochemical deposition
nanostructures
applied power
Prior art date
Application number
PCT/KR2014/003543
Other languages
English (en)
French (fr)
Inventor
장진탁
류혁현
김태겸
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140033653A external-priority patent/KR101572849B1/ko
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to US14/646,448 priority Critical patent/US9595439B2/en
Publication of WO2014175653A1 publication Critical patent/WO2014175653A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the present invention relates to a method for manufacturing a nanostructure by electrochemical deposition and to a nanostructure manufactured thereby, more particularly, by adjusting the method of applying power during electrochemical deposition, nano having excellent morphological, structural and optical properties
  • the present invention relates to a method for producing a nanostructure by electrochemical deposition capable of producing a structure, and a nanostructure produced thereby.
  • Nanomaterials that can realize this possibility are quantum dots with 0-dimensional nanostructures, quantum wires, nanowires, and nanorods (hereinafter referred to as quantum wires) having 1-dimensional nanostructures.
  • quantum wires quantum wires
  • nanowires, nanorods, and the like are referred to as nanostructures).
  • nanostructures such as semiconductor nanowires and nanorods.
  • zinc oxide (ZnO) a binary oxide semiconductor
  • ZnO is a group 2-6 compound semiconductor with a wurzite structure, a typical n-type peninsula with a wide energy bandgap of 3.37 eV and a large exciton binding energy of 60 meV. It is a sex substance.
  • zinc oxide (ZnO) has a variety of manufacturing processes and structures, is easy to doping, and has a narrow conduction band, it is easy to control the electro-optic properties according to the doping material. Due to these advantages, it has been spotlighted as a suitable material for manufacturing various devices such as optical devices, optical devices, solar cells, and LEDs, and various studies are underway.
  • ZnO zinc oxide
  • Major process methods include atomic layer deposition, pulsed laser deposition, molecular beam epitaxy, metal organic chemical vapor deposition, sputtering, Spin Coating, Hydrothermal Deposition, Electrochemical Deposition and the like.
  • electrochemical vapor deposition is a very simple process for growing zinc oxide (ZnO) nanostructures. It is possible to grow at low temperatures, to have large areas, to apply various substrates, and to directly control thickness. It is possible and has a low initial cost.
  • electrochemical vapor deposition has been carried out to study the conditions for growing zinc oxide (ZnO) nanostructures, that is, growth temperature, potential, deposition time, presence of heat treatment, presence of seed buffer layer, Most studies have been made with or without additives.
  • ITO is widely used as a representative material of transparent electrodes such as solar cells, smart glasses, flat panel displays, gas sensors, and transparent displays.
  • ZnO zinc oxide
  • the structure in which zinc oxide (ZnO) nanorods are combined on ITO can be applied to photoelectric devices, such as light-emitting diodes (LEDs) and solar cells, and much research is being conducted.
  • An object of the present invention is to provide a method for manufacturing a nanostructure by a new electrochemical deposition without using a buffer layer (no buffer layer) in order to solve the above problems, and a nanostructure manufactured thereby It is done.
  • the present invention to solve the above problems
  • the first applied power supply and the second applied power supply provides a method of forming a nanostructure by electrochemical deposition, characterized in that different from each other.
  • the growth solution is oxidized through a chemical reaction as follows. Zinc is produced and the resulting zinc oxide is deposited on a substrate (working electrode) to grow into nanorods.
  • the size and height of the nano-rods grown by such a process are controlled differently according to the application method, the size of the applied voltage, and the application time.
  • the working electrode is a conductive substrate, characterized in that the transparent substrate formed with a transparent conductive film, the nanostructure is grown on the conductive substrate.
  • the transparent substrate is a glass substrate
  • the transparent conductive film is a group consisting of ITO, IZO, ATO, ZnO, CdO, SnO 2 , and In 2 O 3 Characterized in that the material is selected from.
  • the plurality of electrodes comprises a reference electrode, a counter electrode, a working electrode which is controlled by a potential controller, the reference electrode is Ag / AgCl And the counter electrode is made of a metal material selected from the group consisting of Pt, Au, Zn, and Ag.
  • the first applied power source is -0.8 to -1.2 V
  • the first application time is characterized in that 6 seconds to 240 seconds.
  • the second applied power is -0.5 to -0.8 V
  • the second applied time is characterized in that 900 seconds to 1500 seconds.
  • nth application power (n is 1 or more) after the second application power supply is applied.
  • the growth solution is an electrolyte solution containing a metal salt
  • the metal is characterized in that the zinc (Zn), the electrolyte solution containing the zinc salt ZnCl 2 at a concentration of 0.0001 to 0.01 M Or Zn (NO 3 ) 2 aqueous solution.
  • the growth solution is characterized in that it further comprises potassium chloride (potassium chloride, KCl).
  • the step of growing the first nanostructures and the step of growing the second nanostructures is characterized in that it is carried out at 80 to 100 °C.
  • the step of growing the second nanostructure characterized in that it further comprises the step of performing a heat treatment at 250 to 350 °C.
  • a heat treatment at 250 to 350 °C.
  • Zn (OH) 2 is changed to ZnO, and the crystallinity is increased.
  • the present invention also provides a nanostructure formed by the method for forming a nanostructure by the electrochemical deposition of the present invention.
  • the nanostructure formed by the method of forming a nanostructure by the electrochemical deposition of the present invention is characterized in that the zinc oxide nanorods.
  • the average diameter of the nanostructures of the present invention is characterized in that 50 to 160 nm.
  • nanoparticles having excellent morphological, structural, and optical characteristics by optimizing a method of applying power in electrochemical deposition without using a buffer layer and additives
  • the structure can be prepared.
  • 1 to 3 show FE-SEM measurement results of nanostructures prepared by one embodiment and comparative example of the present invention.
  • Figure 4 shows the results of measuring the diameter and density of the nanostructures prepared by one embodiment of the present invention.
  • Zinc oxide nanostructures were prepared by using Potentiostat / galvanostat (Model PL-9 Physio Lab South Korea) as an electrochemical deposition apparatus and using a three-electrode system.
  • ITO / glass surface resistance 10 ⁇ / ⁇
  • Pt-mesh as the counter electrode
  • Ag / AgCl (1 M KCl) as the reference electrode were used, and ITO / glass as the working electrode was used in acetone, methanol and deionized water, respectively. Ultrasonic washing was performed for 10 minutes, dried over filtered air and used.
  • Electrolyte solution for growing zinc oxide nanostructures 0.005 M ZnCl 2 (Sigma ALDRICH, purity> 98%) was used as the main electrolyte solution of Zn 2+ , and 0.1 M KCl (KANTO, 99.5%) was used as the auxiliary electrolyte. Used as a solution.
  • the growth temperature (bath temperature) was set to 90 ° C., and an Ar / O 2 mixed gas, which is an oxygen source, was injected into the solution for 10 minutes to prepare an electrolyte solution in which the Ar / O 2 mixed gas was saturated, as shown in Table 1 below.
  • Zinc oxide nanostructures were synthesized with a total process time of 1200 seconds while varying the first and second application potentials and time.
  • Zinc oxide nanostructures were grown while applying a constant voltage for 1200 seconds without changing the voltage.
  • FIG. 1 shows FE-SEM images of zinc oxide nanostructures prepared by varying the magnitude and time of the first applied voltage, wherein (a) to (x) are -1.2 V, -1.0 V, -0.8 V, respectively.
  • a first applied voltage of -0.6 V, -0.4 V, -0.2 V is applied for 10 seconds, 20 seconds, 60 seconds, and 240 seconds, respectively, and a second applied voltage of -0.7 V is respectively 1190 seconds, 1180 seconds, 1140.
  • Seconds, when applied for 960 seconds, (y) represents when the second applied voltage of -0.7V for 1190 seconds after applying the first applied voltage of -1.5V for 10 seconds.
  • the first applied voltage is more than ⁇ 0.8 V
  • (A) to (f) of FIG. 2 apply ⁇ 1.2 V as the first applied voltage for 3 seconds, 6 seconds, 10 seconds, 20 seconds, 60 seconds, and 240 seconds, and ⁇ 0.7 V as the second applied voltage.
  • a cross-sectional view of a zinc oxide nanostructure prepared by applying for 10 seconds and applying -0.7 V as a second applied voltage for 1190 seconds is shown.
  • the vertical growth was performed at a height of about 550 nm. It can be confirmed that.
  • Figure 3 shows the FE-SEM photographic measurement results of the zinc oxide nanostructures prepared in Comparative Example, (a) to (e) are -1.2 V, -1.0 V, -0.8 V, -0.7 V, -0.6 Top-view is shown when the applied voltage of V is continuously applied for 1200 seconds, and (f) shows a cross-sectional view when the applied voltage is -0.7V.
  • the zinc oxide nanostructures may not be vertically grown.
  • -1.2 V is applied as the first applied voltage for 3 seconds, 6 seconds, 10 seconds, 20 seconds, 60 seconds, and 240 seconds, and -0.7 V is applied as the second applied voltage.
  • the diameters and densities of the zinc oxide nanostructures prepared by applying for 1197 seconds, 1194 seconds, 1190 seconds, 1180 seconds, 1140 seconds, and 960 seconds were measured and shown in FIG. 4.
  • FIG. 5A illustrates that the application time is changed from 3 seconds to 240 seconds while the first applied voltage is applied at ⁇ 1.2 V, and the application time is changed from 1197 seconds to 960 seconds while the second applied voltage is applied at ⁇ 0.7 V.
  • XRD measurement results of the prepared zinc oxide nanostructures (b) and (c) change the application time from 10 seconds to 240 seconds while applying the first applied voltage to -1.0 V or -0.8 V, and the application time to 1190 seconds while applying the second applied voltage to -0.7 V.
  • (d) shows the XRD measurement results of the zinc oxide nanostructures prepared by applying a first applied voltage of -0.2 V to -1.5 V for 10 seconds and -0.7 V as a second applied voltage for 1190 seconds.
  • the zinc oxide nanostructures prepared according to the present invention exhibit a (100) peak at 31 ° and include all of the polycrystalline zinc oxide nanorods.
  • the intensity of the (002) peak is increased when the first applied voltage is -0.8 V or more, and the highest peak intensity is obtained when the application time is 10 seconds. .
  • 6 (b) and 6 (c) illustrate (002) peak intensity, (100) peak intensity, and (002) of the zinc oxide nanostructures prepared by applying the first applied voltage at ⁇ 1.2 V and changing the application time.
  • the intensity ratio of the / (100) peak is shown, it can be seen that as the application time increases, the (002) peak intensity increases up to 10 seconds, but the (002) peak intensity decreases after 10 seconds. This is because the electron density was not sufficient for the generation of nucleation sites until 10 seconds, whereas the electron density was excessive after 10 seconds.
  • the larger the (002) / (100) peak intensity ratio means that the nanorods grow well on the c-axis perpendicular to the substrate, and the (002) / (100) peak intensity ratio also increases until the application time is 10 seconds. It can be seen that the trend tends to decrease after 10 seconds.
  • Photo luminescence of zinc oxide nanostructures prepared by varying the first applied voltage from -0.2 V to -1.5 V and applying time equal to 10 seconds, and applying -0.7 V as the second applied voltage for 1190 seconds. 7, the intensity of the weak near-band edge emission (NBE) peak located in the ultraviolet region and the strong deep-level emission (DLE) peak located in the visible region, and the NBE and DLE peaks.
  • the intensity ratio is shown in FIG. 8.
  • NBE peaks are due to free exciton recombination and DLE peaks are oxygen vacancies, zinc vacancies, interstitial oxygen, interstitial zinc, etc. It is due to a defect.
  • the NBE peak intensity is 126101 when the first applied voltage is -1.0 V, and is higher than the NBE peak intensity when the first applied voltage is -1.2 V, 118170.
  • the DLE peak intensity is also measured to be higher, and as a result, the value of the NBE / DLE intensity ratio is found to be the highest when the value is -1.2 V.
  • the first applied voltage is applied at -1.5 V, -1.2 V, -1.0 V, -0.8 V, -0.6 V, -0.4 V, -0.2 V, respectively.
  • the values of the DLE peak intensities are 2767, 1491, 2808, 5020, 3240, 4087, 6230, and 3874, respectively, indicating that the weakest DLE peak intensities are obtained when the first applied voltage is -1.2 V.
  • the NBE / DLE peak intensity ratios are 4.2, 79.26, 44.92, 13.11, 41.95, 16.72, 4.44, and 25.18, respectively, indicating that the highest NBE / DLE peak intensity ratio appears when the first applied voltage is -1.2V.
  • the values of NBE peak intensities are 41611, 49764, 118170, 30320, respectively.
  • 62128 and 57821 indicate the strongest NBE peak intensity when the applied time of the first applied voltage is 10 seconds
  • the values of the DLE peak intensities are 2219, 1942, 1490, 1653, 2270, and 4733, respectively.
  • the weakest DLE peak intensity value appears when the applied time of 1 applied voltage is 10 seconds.
  • the NBE / DLE peak intensity ratios are 18.8, 25.7, 76.3, 18.4, 27.4, and 12.3, respectively, indicating that the highest NBE / DLE peak intensity ratios appear when the application time of the first applied voltage is 10 seconds.
  • the method of manufacturing a nanostructure by electrochemical vapor deposition according to the present invention does not use a buffer layer or an additive, and in electrochemical vapor deposition, the nanoparticles having excellent morphological, structural, and optical characteristics by optimizing a power supply method are applied.
  • a structure can be manufactured

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체에 관한 것으로서, 더욱 상세하게는 전기 화학 증착시 전원을 인가하는 방식을 조절함으로써 형태적, 구조적, 광학적 특성이 우수한 나노 구조체를 제조할 수 있는 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체에 관한 것이다.

Description

전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체
본 발명은 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체에 관한 것으로서, 더욱 상세하게는 전기 화학 증착시 전원을 인가하는 방식을 조절함으로써 형태적, 구조적, 광학적 특성이 우수한 나노 구조체를 제조할 수 있는 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체에 관한 것이다.
반도체 기술 분야에서는 현재의 공정적 한계를 극복하고 새로운 기능성을 부여하기 위해 나노 합성과 배열을 기본으로 하여 bottom-up 방식으로 나노 소자를 구현하는 것이 큰 주목을 받고 있다.
이러한 가능성을 구현할 수 있는 나노 소재로서 0차원 나노 구조를 갖는 양자점(quantum dot)과 1차원 나노 구조를 갖는 양자선(quantum wires) 혹은 나노선(nanowires), 나노 로드(nanorods)(이하, 양자선, 나노선, 나노 로드 등을 통칭하여 나노 구조체라 한다)가 제안되고 있다.
현재 국내외적으로 반도체 나노 와이어, 나노 로드 등의 나노 구조체를 형성하기 위해 널리 연구되고 있는 재료로서는 Si 및 Ge을 비롯하여 Al-Ga-In-P-N 시스템, ZnO, SnO2, SiC 등이 중심이 되고 있다.
특히, 이원계 산화물 반도체인 산화아연(ZnO)는 wurzite 구조의 2-6 족 화합물 반도체로서 3.37 eV의 넓은 에너지 밴드갭, 60 meV의 큰 엑시톤 결합에너지(exciton binding energy)를 갖는 전형적인 n-형의 반도성 물질이다. 또한, 산화아연(ZnO)은 제조공정 및 구조가 다양하고, 도핑이 쉽고 좁은 전도대역을 가지기 때문에 도핑물질에 따라 전기 광학적 성질의 조절이 용이 하다. 이러한 장점으로 인하여 광학기기 및 광학소자, 태양전지, LED 등 다양한 소자 제작에 적합한 소재로 각광 받고 있고, 다양한 연구가 진행 중이다.
현재까지의 연구 중에서 산화아연(ZnO) 나노 구조체는 다양한 공정을 통하여 많은 연구가 진행되고 있다. 주요 공정 방법으로는 원자층 증착법(Atomic Layer Deposition), 펄스 레이저 증착법(Pulsed Laser Deposition), 분자선 에피택시법(Molecular Beam Epitaxy), 유기금속 화학증착법(Metal Organic Chemical Vapor Deposition), 스퍼터링(Sputtering), 스핀코팅(Spin Coating), 수열합성법(Hydrothermal Deposition), 전기 화학 증착법(Electrochemical Deposition) 등이 있다.
이러한 공정 방법들 중에서 전기 화학 증착법은 산화아연(ZnO) 나노 구조체를 성장시키는 매우 간단한 공정으로, 낮은 온도에서 성장이 가능하며, 대면적화가 가능하고, 다양한 기판이 적용될 수 있을 뿐만 아니라 직접적인 두께 조절이 가능하며 초기비용이 저렴한 이점이 있다. 지금까지의 전기 화학 증착법에 대한 연구는, 산화아연(ZnO) 나노 구조체를 성장시키기 위한 조건, 즉 성장 온도, 전위(potential), 증착 시간, 열처리의 유무, 씨드 버퍼층(seed buffer layer)의 유무, 첨가제의 유무에 따른 연구가 대부분을 이루고 있다.
ITO는 투명전극의 대표적인 물질로써 태양전지, 스마트유리(electrochromic devices), 평판 패널 디스플레이(flat panel display), 가스 센서, 투명 디스플레이 등 광범위하게 사용되고 있다. 특히 ITO 위에 산화아연(ZnO) 나노 로드가 접목된 구조는 광전소자 즉, Light-Emitting Diode(LED), 태양전지 등에 응용될 수 있으며 현재 많은 연구가 진행 중에 있다.
그러나, ITO 위에 산화아연(ZnO) 나노 로드의 수직 성장을 위해 AAO 등과 같은 주형(template), 버퍼층(buffer layer), 첨가제를 이용하여 수직성장을 시도한 연구결과가 보고되고 있으나, 이러한 방법들에 의할 경우 첨가되는 버퍼층(buffer layer), 첨가제 등에 의해 생성되는 산화아연(ZnO) 나노 로드의 광학 특성이 저해되는 문제점이 있었다.
본 발명은 종래 상기와 같은 과제를 해결하기 위하여 버퍼층(buffer layer)을 형성하지 않고, 첨가제를 사용하지 않는 새로운 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체를 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여
작업 전극을 포함하는 다수의 전극들을 전기 화학 증착 반응기의 성장 용액 내에 위치시키는 단계;
상기 전극들 간에 제 1 인가 전원을 제 1 인가 시간 동안 공급하고 산소/불활성기체를 상기 전기 화학 증착반응기로 공급하여 상기 작업 전극 상에 제 1 나노 구조체를 성장시키는 단계; 및
상기 전극들 간에 제 2 인가 전원을 제 2 인가 시간 동안 공급하고 산소/불활성 기체를 상기 전해 증착 반응기로 공급하여 상기 작업 전극 상에 성장시킨 제 1 나노 구조체 상에 제 2 나노 구조체를 성장시키는 단계;를 포함하고,
상기 제 1 인가 전원 및 제 2 인가 전원은 서로 상이한 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법을 제공한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법은 전기 화학 증착 장치 내의 성장 용액에 담겨져 있는 기판(작업 전극)과 다수의 전극에 전위가 인가되는 경우, 성장 용액에서는 아래와 같은 화학반응을 통해 산화아연이 생성되며, 생성된 산화아연은 기판(작업 전극)상에 증착되어 나노 막대로 성장하게 된다.
[화학 반응식]
Zn(NO3)2 -> Zn2+ + 2NO3 -
NO3 -+ H2O + 2e- -> NO2 - + 2OH-
Zn2+ + 2OH- -> Zn(OH)2
Zn(OH)2 -> ZnO + H2O
본 발명에 있어서, 이와 같은 과정으로 성장되는 나노 막대의 크기와 높이는 인가되는 인가 전압의 인가 방식 및 크기, 인가 시간에 따라 다르게 제어된다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 작업 전극은 전도성 기판으로, 투명 도전막이 형성된 투명 기판인 것을 특징으로 하며, 상기 전도성 기판에서 나노 구조체의 성장이 이루어 진다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 투명 기판은 유리 기판이며, 상기 투명 도전막은 ITO, IZO, ATO, ZnO, CdO, SnO2, 및 In2O3로 구성되는 그룹으로부터 선택되는 재료로 형성된 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 다수의 전극들은 일정 전위 컨트롤러에 의해 전위 제어가 이루어지는 기준 전극, 상대 전극, 작업 전극을 포함하고, 상기 기준 전극은 Ag/AgCl로 구성되며, 상기 상대 전극은 Pt, Au, Zn, 및 Ag로 구성되는 그룹으로부터 선택되는 금속재료로 구성되는 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 제 1 인가 전원은 -0.8 내지 -1.2 V 이고, 상기 제 1 인가 시간은 6 초 내지 240 초인 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 제 2 인가 전원은 -0.5 내지 -0.8 V 이고, 제 2 인가 시간은 900 초 내지 1500 초 인 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 제 2 인가 전원을 인가한 이후 제 n 번(n 은 1 이상)의 인가 전원을 추가로 인가하는 것이 가능하다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 성장 용액은 금속 염을 포함하는 전해질 용액으로, 상기 금속은 아연(Zn)인 것을 특징으로 하며, 상기 아연 염을 포함하는 전해질 용액은 0.0001 내지 0.01 M 농도의 ZnCl2 또는 Zn(NO3)2 수용액인 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 성장 용액은 염화칼륨(potassium chloride, KCl)을 더 포함하는 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 제 1 나노 구조체를 성장시키는 단계 및 상기 제 2 나노 구조체를 성장시키는 단계는 80 내지 100 ℃에서 수행되는 것을 특징으로 한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 있어서, 상기 제 2 나노 구조체를 성장시키는 단계 이후, 250 내지 350 ℃에서 열처리를 수행하는 단계를 더 포함하는 것을 특징으로 한다. 상기 열처리 과정을 더 거치는 경우 Zn(OH)2가 ZnO로 변화하며 결정성이 증가하는 효과를 나타낸다.
본 발명은 또한, 본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 의하여 형성된 나노 구조체를 제공한다.
본 발명의 전기 화학 증착에 의한 나노 구조체의 형성 방법에 의하여 형성된 나노 구조체는 산화아연 나노 로드인 것을 특징으로 한다.
본 발명의 나노 구조체의 평균 직경은 50 내지 160 nm 인 것을 특징으로 한다.
본 발명에 의한 전기 화학 증착에 의한 나노 구조체의 제조 방법은 버퍼층(buffer layer), 첨가제를 사용하지 않고, 전기 화학 증착에 있어서, 전원의 인가 방식을 최적화함으로써 형태적, 구조적, 광학적 특성이 우수한 나노 구조체를 제조할 수 있다.
도 1 내지 도 3은 본 발명의 일 실시예 및 비교예에 의하여 제조된 나노 구조체의 FE-SEM 측정 결과를 나타낸다.
도 4는 본 발명의 일 실시예에 의하여 제조된 나노 구조체의 직경 및 밀도를 측정한 결과를 나타낸다.
도 5 및 도 6은 본 발명의 일 실시예에 의하여 제조된 나노 구조체의 XRD 측정 결과를 나타낸다.
도 7 내지 도 10은 본 발명의 일 실시예에 의하여 제조된 나노 구조체의 PL(photo luminescence) 측정 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
<실시예> 산화아연 나노 구조체의 제조
전기 화학 증착 장비로서 Potentiostat/galvanostat(Model PL-9 Physio Lab South Korea)을 사용하고 3전극 시스템을 이용하여 산화아연 나노 구조체를 제조하였다. 작업 전극으로 ITO/glass(면저항 10Ω/□), 상대 전극으로 Pt-mesh, 기준 전극으로 Ag/AgCl(1 M KCl)을 사용하였으며, 작업 전극인 ITO/glass는 아세톤, 메탄올, 탈이온수에서 각각 10 분씩 초음파 세척하고, 필터링 된 공기(filtered air)로 건조시킨 후 사용하였다.
산화아연 나노 구조체를 성장시킬 전해질 용액으로는 0.005 M ZnCl2 (Sigma ALDRICH, 순도>98%)를 Zn2+의 주된 전해질 용액으로 사용하였고, 0.1 M KCl(KANTO, 순도>99.5%)을 보조 전해질 용액으로 사용하였다. 성장 온도(bath temperature)는 90 ℃로 하고, 산소 소스인 Ar/O2 혼합 기체를 용액 내에 10분 동안 주입하여 Ar/O2 혼합 기체가 포화된 전해질 용액을 만들어 사용하였으며, 아래 표 1과 같이 제 1 인가 전위 및 시간, 제 2 인가 전위 및 시간을 변경하면서 총 공정시간을 1200 초로 하여 산화아연 나노 구조체를 합성하였다.
전기 화학 공정 후 RTP(Rapid Thermal System)를 사용하여 300 ℃에서 질소 분위기로 1 시간 동안 열처리를 진행하였다.
표 1
Figure PCTKR2014003543-appb-T000001
<비교예>
전압의 변화 없이 일정한 전압을 1200 초 동안 계속 인가하면서 산화아연 나노 구조체를 성장시켰다.
<실험예> Field Emission Scanning Electron Microscope (FE-SEM) 측정
제 1 인가 전압의 크기 및 시간에 따른 산화아연 나노 구조체의 형태적 특성을 확인하기 위해 FE-SEM 사진을 측정하고 이를 도 1 내지 도 3에 나타내었다.
도 1은 제 1 인가 전압의 크기 및 시간을 변화시키면서 제조한 산화아연 나노 구조체의 FE-SEM 사진을 나타낸 것으로서, (a) 내지 (x)는 각각 -1.2 V, -1.0 V, -0.8 V, -0.6 V, -0.4 V, -0.2 V의 제 1 인가 전압을 각각 10 초, 20 초, 60 초, 240 초 동안 인가하고, -0.7 V의 제 2 인가 전압을 각각 1190 초, 1180 초, 1140 초, 960 초 동안 인가하였을 때를 나타내며, (y)는 -1.5 V의 제 1 인가 전압을 10 초 동안 인가한 후 -0.7 V의 제 2 인가 전압을 1190초 동안 인가하였을 때를 나타낸 것이다.
상기 도 1에서 보는 바와 같이, 제 1 인가 전압이 -0.8 V 이상인 경우 고밀도의 산화아연 나노 구조체가 제조되는 것을 확인할 수 있다. 이는 -0.8 V 이상의 전압이 인가되는 경우 핵심성장 자리(instantaneous nucleation site)를 형성시키기 위해 필요한 기판 표면(작업 전극)에서의 전자 밀도가 충분히 제공되기 때문이다.
제 1 인가 전압으로 -1.5 V를 10 초 동안 인가한 후, 제 2 인가 전압으로 -0.7 V를 1190 초 동안 인가한 경우 육방정계의(hexagonal) 결정구조를 갖는 산화아연 나노 구조체가 성장 되었으나, 상기 제 1 인가 전압을 20 초 이상 인가하여 실험을 진행한 경우 기준 전극이 망가지는 현상이 발생하였다.
도 2의 (a) 내지 (f)는 제 1 인가 전압으로서 -1.2 V를 3 초, 6 초, 10 초, 20 초, 60 초, 240 초 동안 인가하고, 제 2 인가 전압으로서 -0.7 V를 각각 1197 초, 1194 초, 1190 초, 1180 초, 1140 초, 960 초 동안 인가하여 제조된 산화아연 나노 구조체의 평면도(Top-view)를 나타내며, (g)는 제 1 인가 전압으로서 -1.2 V를 10 초 동안 인가하고 제 2 인가 전압으로서 -0.7 V를 1190 초 동안 인가하여 제조된 산화아연 나노 구조체의 단면도(Cross-sectional view)를 나타낸다.
상기 도 2에서 보는 바와 같이 제 1 인가 전압으로서 -1.2 V를 10 초 동안 인가하고 제 2 인가 전압으로서 -0.7 V를 1190 초 동안 인가하여 제조된 산화아연 나노 구조체의 경우 약 550 nm 높이로 수직 성장하였음을 확인 할 수 있다.
도 3은 비교예에서 제조된 산화아연 나노 구조체의 FE-SEM 사진 측정 결과를 나타내는 것으로서, (a) 내지 (e)는 각각 -1.2 V, -1.0 V, -0.8 V, -0.7 V, -0.6 V의 인가 전압을 1200 초 동안 계속하여 인가 하였을 때의 평면도(Top-view)를 나타낸 것이며, (f)는 인가 전압이 -0.7 V일 때의 단면도(Cross-sectional view)를 나타낸다.
상기 도 3에서 보는 바와 같이 동일한 인가 전압을 계속하여 인가한 경우 산화아연 나노 구조체가 수직적으로 성장되지 않는 것을 확인할 수 있다.
<실험예> 나노 구조체의 직경 및 밀도 측정
상기 도 2의 FE-SEM 사진을 이용하여 제 1 인가 전압으로서 -1.2 V 를 3 초, 6 초, 10 초, 20 초, 60 초, 240 초 동안 인가하고, 제 2 인가 전압으로서 -0.7 V를 각각 1197 초, 1194 초, 1190 초, 1180 초, 1140 초, 960 초 동안 인가하여 제조된 산화아연 나노 구조체의 직경 및 밀도를 측정하고 이를 도 4에 나타내었다.
상기 도 4에서 보는 바와 같이 제 1 인가 전압의 인가 시간이 증가할수록 직경은 감소하다가 다시 증가하는 경향을 보이고, 밀도는 증가하다가 다시 감소하는 경향을 보여, 제 1 인가 전압의 인가 시간이 증가할 수록 제조된 산화아연 나노 구조체의 직경과 밀도는 서로 상반된 경향성을 나타내는 것을 알 수 있다.
<실험예> X선 회절 분석 (XRD)
산화아연 나노 구조체의 구조적 특성을 확인하기 위해 XRD를 측정하고 그 결과를 도 5 및 도 6에 나타내었다.
도 5의 (a)는 제 1 인가 전압을 -1.2 V로 인가하면서 인가 시간을 3 초 내지 240 초로 변경하고, 제 2 인가 전압을 -0.7 V로 인가하면서 인가 시간을 1197 초 내지 960 초로 변경하면서 제조한 산화아연 나노 구조체의 XRD 측정 결과이다. (b) 및 (c)는 제 1 인가 전압을 -1.0 V 또는 -0.8 V로 인가하면서 인가 시간을 10 초 내지 240 초로 변경하고, 제 2 인가 전압을 -0.7 V로 인가하면서 인가 시간을 1190 초 내지 960 초로 변경하면서 제조한 산화아연 나노 구조체의 XRD 측정 결과이다. (d)는 -0.2 V 내지 -1.5 V의 제 1 인가 전압을 10 초 동안 인가하고, -0.7 V를 제 2 인가 전압으로서 1190 초 동안 인가하여 제조한 산화아연 나노 구조체의 XRD 측정 결과이다.
상기 도 5에서 보는 바와 같이 본 발명에 의해 제조된 산화아연 나노 구조체는 31°에서 (100) 피크를 나타내고 있어 다결정성(polycrystalline) 산화아연 나노 로드를 모두 포함하고 있음을 알 수 있다.
도 6은 제 1 인가 전압 및 인가 시간에 따른 34°에서의 (002) 피크의 강도, 31°에서의 (100) 피크의 강도 및 (002)/(100) 피크의 강도 비를 측정한 결과를 나타낸다.
상기 도 6의 (a)에서 보는 바와 제 1 인가 전압이 -0.8 V 이상인 경우 (002) 피크의 강도가 증가하는 것을 알 수 있으며, 인가 시간이 10 초인 경우 가장 높은 피크 강도를 나타내는 것을 알 수 있다.
상기 도 6의 (b) 및 (c)는 제 1 인가 전압을 -1.2 V로 인가하고 인가 시간을 변경하면서 제조한 산화아연 나노 구조체의 (002) 피크 강도, (100) 피크 강도 및 (002)/(100) 피크의 강도 비를 나타낸 것으로, 인가 시간이 증가할수록 10 초 까지는 (002) 피크 강도가 증가하나 10 초 이후부터는 (002) 피크 강도가 감소하는 것을 알 수 있다. 이는 10 초 까지는 핵심성장 자리(nucleation site) 발생을 위한 전자 밀도가 충분하지 못한 반면, 10 초 이후부터는 전자 밀도가 과잉 되었기 때문이다. (002)/(100) 피크 강도 비가 클수록 나노 로드가 기판과 수직 방향인 c-축으로 잘 성장함을 의미하며, (002)/(100) 피크 강도 비 역시 인가 시간이 10 초가 될 때까지는 증가하다 10 초 이후부터는 감소하는 경향을 나타냄을 알 수 있다.
<실험예> 제 1 인가 전압에 따른 광학 특성 측정
제 1 인가 전압을 -0.2 V 내지 -1.5 V로 달리하고 인가 시간은 10 초로 동일하게 하며, 제 2 인가 전압으로서 -0.7 V를 1190 초 동안 인가하여 제조된 산화아연 나노 구조체에 대하여 PL(photo luminescence) 특성을 측정하고 이를 도 7에 나타내었으며, 자외선 영역에 위치한 약한 NBE(near-band edge emission) 피크의 강도 및 가시광 영역에 위치한 강한 DLE(deep-level emission) 피크의 강도, 상기 NBE 와 DLE 피크 강도 비를 도 8에 나타내었다.
일반적으로 NBE 피크는 자유 엑시톤 재결합(free exciton recombination)에 의한 것이고 DLE 피크는 산소 공공(oxygen vacancy), 아연 공공(zinc vacancy), 침입형 산소(interstitial oxygen), 침입형 아연(interstitial zinc)과 같은 결함에 의한 것이다.
상기 도 8의 (a)에서 보는 바와 같이 제 1 인가 전압이 -1.0 V일 때 NBE 피크 강도가 126101로 제 1 인가 전압이 -1.2 V일 때의 NBE 피크 강도인 118170 보다 높게 나타났으나, 제 1 인가 전압이 -1.0 V인 경우 DLE 피크 강도 또한 보다 높게 측정되어, 결과적으로 NBE/DLE 강도 비의 값은 -1.2 V 일 때 가장 높은 것으로 나타났다. 상기 도 8의 (a) 및 (b)에서 보는 바와 같이 제 1 인가 전압을 각각 -1.5 V, -1.2 V, -1.0 V, -0.8 V, -0.6 V, -0.4 V, -0.2 V로 인가하는 경우 DLE 피크 강도의 값은 각각 2767, 1491, 2808, 5020, 3240, 4087, 6230, 3874으로 나타나 제 제 1 인가 전압이 -1.2 V일 때 가장 약한 DLE 피크 강도 값을 나타남을 알 수 있으며, NBE/DLE 피크 강도 비는 각각 4.2, 79.26, 44.92, 13.11, 41.95, 16.72, 4.44, 25.18로 나타나 제 1 인가 전압이 -1.2 V일 때 가장 높은 NBE/DLE 피크 강도 비가 나타남을 알 수 있다.
<실험예> 제 1 인가 전압의 인가 시간에 따른 광학 특성 측정
제 1 인가 전압을 -1.2 V로 동일하게 하고 인가 시간을 3 초 내지 240 초로 달리하며, 제 2 인가 전압을 -0.7 V로 하고 인가 시간을 1197 초 내지 960 초로 달리하여 제조된 산화아연 나노 구조체에 대하여 PL(photo luminescence) 특성을 측정하고 이를 도 9에 나타내었으며, NBE 피크 강도 및 DLE 피크 강도, 상기 NBE 와 DLE 피크 강도 비를 도 10에 나타내었다.
상기 도 10에서 보는 바와 같이 제 1 인가 전압의 인가 시간을 각각 3 초, 6 초, 10 초, 20 초, 60 초, 240 초로 하는 경우 NBE 피크 강도의 값은 각각 41611, 49764, 118170, 30320, 62128, 57821 으로 나타나 제 1 인가 전압의 인가시간이 10 초 일 때 가장 강한 NBE 피크 강도를 나타남을 알 수 있으며, DLE 피크 강도의 값은 각각 2219, 1942, 1490, 1653, 2270, 4733 으로 나타나 제 1 인가 전압의 인가시간이 10 초일 때 가장 약한 DLE 피크 강도 값을 나타남을 알 수 있다. 또한 NBE/DLE 피크 강도 비는 각각 18.8, 25.7, 76.3, 18.4, 27.4, 12.3으로 나타나 제 1 인가 전압의 인가 시간이 10 초 일 때 가장 높은 NBE/DLE 피크 강도 비가 나타남을 알 수 있다.
본 발명에 의한 전기 화학 증착에 의한 나노 구조체의 제조 방법은 버퍼층(buffer layer), 첨가제를 사용하지 않고, 전기 화학 증착에 있어서, 전원의 인가 방식을 최적화함으로써 형태적, 구조적, 광학적 특성이 우수한 나노 구조체를 제조할 수 있다

Claims (15)

  1. 작업 전극을 포함하는 다수의 전극들을 전해 증착 반응기의 성장 용액 내에 위치시키는 단계;
    상기 전극들 간에 제 1 인가 전원을 제 1 인가 시간 동안 공급하고 산소/불활성기체를 상기 전해 증착 반응기로 공급하여 상기 작업 전극 상에 제 1 나노 구조체를 성장시키는 단계; 및
    상기 전극들 간에 제 2 인가 전원을 제 2 인가 시간 동안 공급하고 산소/불활성기체를 상기 전해 증착 반응기로 공급하여 상기 작업 전극 상에 성장시킨 제 1 나노 구조체 상에 제 2 나노 구조체를 성장시키는 단계;를 포함하고,
    상기 제 1 인가 전원 및 상기 제 2 인가 전원은 서로 상이한 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  2. 제 1 항에 있어서,
    상기 작업 전극은 전도성 기판으로, 투명 도전막이 형성된 투명 기판인 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  3. 제 2 항에 있어서,
    상기 투명 기판은 유리 기판이며, 상기 투명 도전막은 ITO, IZO, ATO, ZnO, CdO, SnO2, 및 In2O3로 구성되는 그룹으로부터 선택되는 재료로 형성된 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  4. 제 1 항에 있어서,
    상기 다수의 전극들은 기준 전극, 상대 전극, 작업 전극을 포함하고,
    상기 기준 전극은 Ag/AgCl로 구성되며,
    상기 상대 전극은 Pt, Au, Zn, 및 Ag로 구성되는 그룹으로부터 선택되는 재료로 구성되는 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  5. 제 1 항에 있어서,
    상기 제 1 인가 전원은 -0.8 내지 -1.2 V 이고, 상기 제 1 인가 시간은 6 초 내지 240 초인 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  6. 제 1 항에 있어서,
    상기 제 2 인가 전원은 -0.5 내지 -0.8 V 이고, 제 2 인가 시간은 900 내지 1500 초 인 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  7. 제 1 항에 있어서,
    상기 성장 용액은 금속 염을 포함하는 전해질 용액으로, 상기 금속은 아연(Zn)인 것을 특징으로 하는 전기 화학 증착에 의한 금속산화물 나노 구조체의 형성 방법.
  8. 제 7 항에 있어서,
    상기 성장 용액은 0.0001 내지 0.01 M 농도의 ZnCl2 또는 Zn(NO3)2 수용액인 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  9. 제 8 항에 있어서,
    상기 성장 용액은 염화칼륨(KCl)을 더 포함하는 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  10. 제 1 항에 있어서,
    상기 제 1 나노 구조체를 성장시키는 단계 및 상기 제 2 나노 구조체를 성장시키는 단계는 80 내지 100 ℃에서 수행되는 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  11. 제 1 항에 있어서,
    상기 제 2 나노 구조체를 성장시키는 단계 이후, 250 내지 350 ℃에서 열처리를 수행하는 단계를 더 포함하는 것인 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  12. 제 1 항에 있어서,
    상기 제 2 인가 전원을 인가한 이후제 n 번(n 은 1 이상)의 인가 전원을 인가하는 단계를 더 포함하는 것을 특징으로 하는 전기 화학 증착에 의한 나노 구조체의 형성 방법.
  13. 제 1 항 내지 제 12 항 중 어느 하나의 제조 방법에 의하여 제조된 나노 구조체.
  14. 제 13 항에 있어서,
    상기 나노 구조체는 산화아연 나노 로드인 것인 나노 구조체.
  15. 제 13 항에 있어서,
    상기 나노 구조체의 평균 직경은 50 내지 160 nm인 나노 구조체.
PCT/KR2014/003543 2013-04-23 2014-04-23 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체 WO2014175653A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/646,448 US9595439B2 (en) 2013-04-23 2014-04-23 Method for preparing nanostructure by electrochemical deposition, and nanostructure prepared thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0044522 2013-04-23
KR20130044522 2013-04-23
KR10-2014-0033653 2014-03-21
KR1020140033653A KR101572849B1 (ko) 2013-04-23 2014-03-21 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체

Publications (1)

Publication Number Publication Date
WO2014175653A1 true WO2014175653A1 (ko) 2014-10-30

Family

ID=51792135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003543 WO2014175653A1 (ko) 2013-04-23 2014-04-23 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체

Country Status (1)

Country Link
WO (1) WO2014175653A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460514A (zh) * 2017-06-27 2017-12-12 江苏大学 一种简易制备氧化锌纳米花的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521794A (ja) * 2002-03-27 2005-07-21 アイル・コート・リミテッド 金属および合金にセラミック被膜を形成するプロセスと装置、およびこのプロセスによって生成される被膜
KR20090003736A (ko) * 2007-07-03 2009-01-12 동국대학교 산학협력단 나노 구조체 및 그의 형성 방법 그리고 그를 포함하는 전계방출 디스플레이소자, 백라이트 유닛, 전계 방출형 램프
KR20100130379A (ko) * 2009-06-03 2010-12-13 국민대학교산학협력단 수열-전기화학적 합성에 의한 ZnO 나노로드의 제조 방법
KR20110094196A (ko) * 2008-12-26 2011-08-22 니혼 파커라이징 가부시키가이샤 금속의 전해 세라믹스 코팅방법, 금속의 전해 세라믹스 코팅용 전해액 및 금속재료

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521794A (ja) * 2002-03-27 2005-07-21 アイル・コート・リミテッド 金属および合金にセラミック被膜を形成するプロセスと装置、およびこのプロセスによって生成される被膜
KR20090003736A (ko) * 2007-07-03 2009-01-12 동국대학교 산학협력단 나노 구조체 및 그의 형성 방법 그리고 그를 포함하는 전계방출 디스플레이소자, 백라이트 유닛, 전계 방출형 램프
KR20110094196A (ko) * 2008-12-26 2011-08-22 니혼 파커라이징 가부시키가이샤 금속의 전해 세라믹스 코팅방법, 금속의 전해 세라믹스 코팅용 전해액 및 금속재료
KR20100130379A (ko) * 2009-06-03 2010-12-13 국민대학교산학협력단 수열-전기화학적 합성에 의한 ZnO 나노로드의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460514A (zh) * 2017-06-27 2017-12-12 江苏大学 一种简易制备氧化锌纳米花的方法

Similar Documents

Publication Publication Date Title
Pauporté et al. Key growth parameters for the electrodeposition of ZnO films with an intense UV-light emission at room temperature
Xie et al. Facile solution-based fabrication of ZnIn2S4 nanocrystalline thin films and their photoelectrochemical properties
Downing et al. Hydrothermal growth of ZnO nanorods: The role of KCl in controlling rod morphology
Orhan et al. Characterization of size-controlled ZnO nanorods produced by electrochemical deposition technique
Ye et al. Investigation of ZnO nanorods synthesized by a solvothermal method, using Al-doped ZnO seed films
Braiek et al. Electrochemical synthesis of ZnO/In2S3 core–shell nanowires for enhanced photoelectrochemical properties
EP2674964B1 (en) Precursor solution for forming a semiconductor thin film on the basis of CIS, CIGS or CZTS
Li et al. Electrochemical synthesis of orientation-ordered ZnO nanorod bundles
Liang et al. Structural, optical and electrical properties of electrodeposited Sb-doped ZnO nanorod arrays
Nouri et al. Photoluminescence study of Eu+ 3 doped ZnO nanocolumns prepared by electrodeposition method
Zhang et al. Effects of bath temperature on the morphology of ZnO nano-rods and its optical properties
Mandati et al. CuIn1− xGaxSe2 thin-film absorber layers for solar photovoltaics fabricated by two-stage pulsed current electrodeposition
Atourki et al. Characterization of nanostructured ZnO grown by linear sweep voltammetry
Su et al. Directed electrochemical synthesis of ZnO/PDMcT core/shell nanorod arrays with enhanced photoelectrochemical properties
Giniyatova et al. Structure, electrical properties and luminescence of ZnO nanocrystals deposited in SiO2/Si track templates
Singh et al. Concentration dependent structural and optical properties of electrochemically grown ZnO thin films and nanostructures
Chen et al. Boosting the performance of ZnO microrod metal-semiconductor-metal photodetectors via surface capping of thin amorphous Al2O3 shell layer
Salah et al. Effect of Al doped ZnO on optical and photovoltaic properties of the p-Cu2O/n-AZO solar cells
Li et al. Defect-controlled ZnO nanorod arrays for enhanced photoelectrochemical performance
Klochko et al. Structure and optical properties of sequentially electrodeposited ZnO/Se bases for ETA solar cells
Kim et al. Effect of ZnCl2 concentration on the growth of ZnO by electrochemical deposition
Sawant et al. Copper indium disulfide thin films: electrochemical deposition and properties
Kois et al. Electrochemically synthesised CdSe nanofibers and pearl-chain nanostructures for photovoltaic applications
WO2014175653A1 (ko) 전기 화학 증착에 의한 나노 구조체의 제조 방법 및 이에 의하여 제조된 나노 구조체
Yuvaraj et al. Deposition of ZnO nanostructured film at room temperature on glass substrates by activated reactive evaporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787528

Country of ref document: EP

Kind code of ref document: A1