WO2014175578A1 - Method for fabricating light extraction substrate - Google Patents

Method for fabricating light extraction substrate Download PDF

Info

Publication number
WO2014175578A1
WO2014175578A1 PCT/KR2014/002948 KR2014002948W WO2014175578A1 WO 2014175578 A1 WO2014175578 A1 WO 2014175578A1 KR 2014002948 W KR2014002948 W KR 2014002948W WO 2014175578 A1 WO2014175578 A1 WO 2014175578A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent substrate
substrate
light extraction
hopper
transparent
Prior art date
Application number
PCT/KR2014/002948
Other languages
French (fr)
Korean (ko)
Inventor
강동호
황용운
김태진
Original Assignee
엔라이팅 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130087093A external-priority patent/KR20150011911A/en
Application filed by 엔라이팅 주식회사 filed Critical 엔라이팅 주식회사
Publication of WO2014175578A1 publication Critical patent/WO2014175578A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to a transparent substrate for use in a light emitting device module, and more particularly, to a method for manufacturing a transparent substrate in which a nanostructure is formed in order to extract light generated by the light emitting device contained therein out of the transparent substrate.
  • a light emitting device such as an OLED is a self emitting device that emits light when a voltage is applied, and has been spotlighted as a display pixel formation or white OLED lighting.
  • OLED structure is composed of cathode / electron transport layer / active layer / hole hole layer / anode / transparent substrate, and the light generated from the active layer, which is a light emitting layer, has a very low ratio of penetrating a glass transparent substrate having a refractive index of about 1.5% by about 20%. Therefore, the remaining 80% of the light is not extracted outside the transparent substrate and stays inside the device, and ultimately, the device is converted into thermal air inside the device, which damages the device and shortens the device life.
  • the low light extraction efficiency is also a problem of lowering the brightness as illumination or a pixel, but as such causes a deterioration of the device, various attempts have been made to increase the light extraction efficiency.
  • Korean Patent No. 10-1177064 attempts to attach metal nanoparticles to a glass substrate in order to increase light extraction efficiency of an OLED device, and in addition to forming or attaching microlens to a glass substrate, a nanostructure It may also form (see FIG. 1).
  • Attaching the microlens array (MLA) sheet to the outside of the glass substrate is one of the methods of increasing the light extraction efficiency separately from the internal nanostructure. Therefore, using both methods at the same time can yield greater efficiency.
  • a quartz (SiO 2 ) layer is formed on the glass substrate, and silver (Ag) is uniformly deposited thereon, and then the glass substrate is heated. ) And then annealed at about 400 ° C, the silver particles are randomly agglomerated.
  • the agglomerate particle size and spacing can be controlled to some extent depending on the thickness of the Ag deposition layer or the annealing method.
  • Ag-ag particles here act as masks. After etching the quartz layer between the Ag particles by dry etching using the Ag particles as a mask, Ag is removed by wet etching to become a light extraction substrate having a nanostructure.
  • the nanostructure formation method as described above improves the light extraction efficiency, it is not practically acceptable as a productive method suitable for a large area substrate size.
  • the fabrication of the light extraction substrate as described above requires a large heating furnace according to the Ag coating system as well as the large area of the substrate and the uniform annealing on the entire surface. Makes it difficult. Large furnaces are expensive to install and maintain, uniform heating to large-area substrates is difficult, and silver (Ag) nanoparticles are very expensive, causing the need for regeneration.
  • the OLED emitting layer is placed on the flat surface.
  • the flatness of the flat surface should not generate more than 2nm unevenness in 1 ⁇ m ⁇ 1 ⁇ m area. However, a gentle hill surface does not matter.
  • planarization of a transparent substrate having a nanostructure is performed by a slit coating system or a spin coating system.
  • the former is a costly process, while the latter is suitable for small and medium-sized substrates such as wafers, but not for large area substrates larger than 5.5 generations, because of the large variation in thickness between the center and the outside depending on the radius of the coater.
  • the conventional methods all lack the mass production method of planarizing a substrate that can be applied to a large area substrate, and require an improved method.
  • an object of the present invention is to improve the light extraction efficiency of the light extraction transparent substrate, to provide a method for producing a light extraction transparent substrate with a productivity to the mass production possible.
  • a transparent thin film layer is formed on a transparent substrate such as glass or plastic, and at least one of the nano-sized metal powder, ceramic powder or polymer powder is mixed with a polar solvent to prepare a mixed liquid, and the mixed liquid is formed on the transparent substrate.
  • a nanopattern layer by spraying with an electric sprayer, and then drying and patterning the transparent thin film layer by dry etching, and then removing the nanopattern layer sprayed by wet etching.
  • a method for manufacturing a nanostructure substrate characterized in that the nanostructure formed light extraction substrate is produced.
  • the present invention is to prepare a mixture of a mixture of SiO 2 nano-size powder of a desired size on a transparent substrate such as a glass substrate in a polar solvent and an adhesive liquid, and sprayed the mixture with an electric sprayer, SiO 2 powder on a transparent substrate Is attached to the substrate to be two-dimensionally arranged on the substrate in a nano-size thickness, and then annealed the sprayed SiO 2 attached substrate to remove the adhesive material on the SiO 2 to complete the nanostructure substrate It provides a nanostructure substrate manufacturing method.
  • the present invention under a constant temperature and humidity environment, by spraying a liquid with a nebulizer on the transparent substrate on which the nanostructures are formed to cover the nanostructures to form a flat layer.
  • ultraviolet rays are irradiated onto the substrate before spraying to improve the flatness, and an ultrasonic wave generator is installed on the substrate stage to uniformly distribute the sprayed liquid with respect to the large-area substrate to emit ultrasonic waves. Gave a vibration.
  • a plurality of nebulizers may be installed according to the substrate area, and the flat layer may be formed while transferring the substrate in an inline manner.
  • the nanostructure forming method of the present invention since the nanoparticles are mixed with the polar solvent using the electrospray method, the mixture is charged and the electrostatic repulsive force is applied to each other while being sprayed, The enclosed bundles of nanoparticles themselves also repel each other, forming a uniform nanostructure of very small size.
  • all the processes can be carried out in the air in place of the existing vacuum process, and the equipment cost is greatly reduced, and the nanostructure of the desired randomness is formed on the large-area substrate at random but uniformly. can do.
  • the method of forming the flat layer of the spray method of the present invention has the advantage of being independent of the area of the substrate, the process progressing speed is good, the mass production is good, and all of the sprayed liquid is used to form the flat layer is not wasted and low cost process This can be
  • in-line method enables a quick and convenient process design, and the uniformity of the flat layer is good due to the ultrasonic device and ultraviolet irradiation pretreatment.
  • FIG. 1 is a schematic cross-sectional view showing a state in which a nanostructure is formed on a transparent substrate in order to improve light extraction efficiency of the light extraction transparent substrate.
  • FIG. 2 is a schematic diagram illustrating an apparatus for forming a nanopattern mask using an electrostatic spray according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating a process of forming a nanostructure using the nanopattern mask formed by FIG. 2.
  • FIG. 4 is a schematic diagram illustrating an apparatus for forming nanostructures using electrostatic spray in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a schematic view showing a cross-sectional configuration of a transparent substrate on which a nanostructure is formed after annealing the nanostructures fixed on the transparent substrate by electrostatic spraying.
  • FIG. 6 is a cross-sectional view illustrating a state in which a flat layer is formed on a transparent substrate on which a nanostructure is formed.
  • Figure 7 is a schematic diagram showing the formation of a nanostructure and a flat layer by the spray method according to the present invention.
  • FIG. 8 is a schematic diagram illustrating a step of forming a flat layer by the spray method of FIG. 7 in a constant temperature and humidity condition.
  • FIG. 9 is a schematic diagram illustrating the formation of nanostructures and flat layers using multiple spraying devices in accordance with the present invention.
  • FIG. 10 is a schematic diagram illustrating an in-line process of annealing in a heating furnace after pretreatment by ultraviolet irradiation and forming a flat layer by spraying according to the present invention.
  • the transparent substrate 100 of the present invention may be a glass substrate.
  • SiO 2 layer 150 is formed on the transparent substrate 100 to a nano-size thickness.
  • the SiO 2 layer can be formed by a method such as CVD or sputtering.
  • a metal, ceramic, or polymer nanopowder is mixed with a polar solvent and sprayed onto the transparent substrate by an electrospray.
  • At least one of metal, ceramic or polymer powder is prepared as shown in FIG. 2 and mixed in a polar solvent.
  • One or more of various metal powders such as Ag, Cu, Fe, WO 3 , ZnO, Fe 2 O 3 , various ceramic powders such as SiO 2 , TiO 2 , CuO, ZrO 2 , and polymer powder may be used as water, alcohol, acetone, or the like. Mix with polar solvent to form mixed solution. This mixed solution is present in solution or colloidal solution.
  • the adhesive substance (PVP etc.) which can give a viscosity can also be mixed here.
  • the concentration of the mixed solution is to be sprayed to the particle size is several to several tens nm as described later, in the present embodiment was prepared at a concentration of about 15% by weight, of course, can vary depending on the conditions of the structure.
  • the mixed liquid is placed in a hopper, and the large-area transparent substrate 100 is disposed while maintaining a proper distance (for example, 50 mm to 500 mm) from a nozzle mounted below the hopper. Multiple spray nozzles can be placed on large area substrates to increase production speed.
  • the SiO 2 layer 150 is formed on the transparent substrate 100 to have a nano size thickness. Since the transparent substrate 100 is an insulator, the transparent substrate 100 is placed on the conductor substrate holder 200.
  • a small nozzle having a diameter of about several mm is formed at a lower end of the hopper, and connects a positive electrode of the power supply device to the nozzle, and connects a negative electrode to the substrate holder 200.
  • the voltage at both ends applies a high voltage of several kV to several tens of kV (which may be 1 to 50 kV).
  • the mixed liquid When a high voltage is applied in this way, when the mixed liquid is injected from the nozzle of the hopper, positive charges are charged to the mixed liquid to exert a repulsive force with each other, thereby dispersing widely in the space as if the mixed liquid is strongly sprayed with the nebulizer.
  • the powder particles contained in the mixed liquid are dispersed and spread widely in the space without being aggregated by the electrostatic repulsion even in the state surrounded by the polar solvent. Therefore, it is settled down on the large area substrate 100 with an overall uniform distribution and deposited on the SiO 2 layer 150.
  • the polarity of the power supply device may be reversely connected to (-) and (+), respectively, to the nozzle and the substrate holder. The polarity of the solution and spray will be negative accordingly.
  • the diameter size d of the agglomerate to be adhered according to the spraying conditions of the mixed liquid may be approximated by the following formula (document).
  • Q is the flow rate of the liquid
  • is the density of the liquid
  • ⁇ 0 is the dielectric constant in vacuum
  • is the surface tension of the liquid
  • K is the electrical conductivity of the liquid.
  • Drying the transparent substrate 100 in this state is a result of forming a nano pattern mask on the SiO 2 layer 150.
  • various drying means such as natural drying, hot air drying, and ultraviolet drying, can be used.
  • the nano substrate is formed by etching the SiO 2 layer 150 by dry etching such as plasma etching on the transparent substrate 100 having the nano pattern mask formed thereon.
  • Plasma etching is performed by mixing fluorine (F) with an inert gas such as argon (Ar) to cause plasma discharge. Details of the plasma etching implementation are already well known and follow.
  • the nano pattern mask is removed by wet etching to obtain a light extraction glass substrate on which the SiO 2 layer nanostructure 170 is formed.
  • the wet etching solution may be various acid solutions or basic solutions such as nitric acid and hydrochloric acid. Wet etching may be applied by spray (spray), down flow or dip method.
  • the light extracting glass substrate having the SiO 2 layer nanostructure formed therein extracts light generated therein and escapes out of the substrate, thereby improving luminance and device life.
  • a high efficiency light extracting transparent substrate is made by the above-mentioned electrostatic spraying, it is preferable to carry out in a clean room. In this case, it can be carried out in the air without requiring a special vacuum chamber, thereby reducing the equipment cost and the process cost.
  • a SiO 2 powder or a transparent powder of another transparent, similar or higher refractive index material is prepared and mixed in a polar solvent.
  • a polar solvent water, alcohol, or the like can be used.
  • Such a mixed solution is present in a solution or colloidal solution state, and is electrically charged with a positive charge.
  • An adhesive 155 capable of imparting viscosity and adhesiveness is added to the mixed solution.
  • the concentration of the mixed solution is prepared from 10 to 30% by weight, but can of course vary.
  • the polarity of the charge may be negative.
  • the mixed solution is placed in a hopper, and the large-area transparent substrate 100 is disposed while maintaining a proper distance (for example, 50 mm to 500 mm) under the nozzle connected to the bottom of the hopper. In large areas, multiple spray nozzles can be arranged to increase production speed. Since the transparent substrate 100 is an insulator, the transparent substrate 100 is placed on the conductor substrate holder 200.
  • a small nozzle having a diameter of about several millimeters or less is located, and connects a positive electrode of the power supply to the nozzle and a negative electrode of the substrate holder 200 (polarity You can also reverse the connection).
  • the voltage at both ends applies a high voltage of several kV to several tens of kV (which may be 1 to 50 kV).
  • the voltage can be set according to the structure to be formed.
  • the size of the powder particles may be selected as the desired size. Therefore, the powder particle diameter may generally be used in the range of about 100 nm to 1500 nm when making an OLED nanostructure.
  • the SiO 2 nanostructure substrate is completed (see FIG. 5).
  • the annealing temperature may be determined in consideration of the sublimation point of the adhesive material, and may generally be about 300 ° C. or more.
  • the light extraction glass substrate on which the nanostructures 170, such as SiO 2 , are formed can escape a large amount of light generated inside the substrate to improve brightness and device life.
  • the light extraction transparent substrate is manufactured by the electrostatic spraying described above, it is preferable to carry out in a clean room, but it can be carried out in the air without requiring a special vacuum chamber, thereby reducing the equipment cost.
  • a liquid constituting the flat layer is placed in a sprayer, and the transparent substrate 100 is mounted on a stage under the sprayer.
  • 6 shows a nebulizer and a stage and a transparent substrate 100 mounted thereon according to the present invention, and the nebulizer controls the distance between the nozzle 700 and the transparent substrate 100 and is relative to the transparent substrate 100. It is driven by an XZ motor that feeds in the XZ direction for movement.
  • the stage itself may be driven by a motor for transferring the transparent substrate 100 in the Y direction.
  • the ultrasonic generator which imparts additional vibration to the stage so that the droplets spread uniformly over the front surface of the substrate ( 800 is installed. That is, the fine droplets settled down on the transparent substrate 100 on which the nanostructures are formed fill the recesses formed by the irregularities of the nanostructures by the micro-vibration of the ultrasonic generator 800, and serve to connect the droplets to the droplets.
  • the layer makes the height flatter and more uniform.
  • the transparent substrate 100 is preferably subjected to ultraviolet irradiation pretreatment by the ultraviolet irradiation device 500 as shown in FIG.
  • This modifies the surface of the transparent substrate 100 on which the nanostructure is formed to impart hydrophilicity to allow the liquid to settle well on the surface. Therefore, the flatness of the flat layer formed by liquid spraying after UV irradiation is made more uniform.
  • a nebulizer for spraying liquid may be arranged in large numbers (see FIG. 10) to improve productivity and may be carried out while transferring the substrate 100 in an inline manner.
  • the liquid that can be used in the present invention may be a high refractive solution such as TiO 2 , ZnO, ZrO 2, or a mixture thereof.
  • the constant temperature and humidity environment is maintained at a constant value of any one of the actual temperature of 20 to 30 °C, relative humidity of 30 to 60% and is preferably maintained with 99% accuracy.
  • the present invention can be used to fabricate a cover glass or the like applied to an OLED display or an OLED lighting.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a method for mass-producing light extraction transparent substrates, wherein a highly efficient light extraction substrate is fabricated by producing a mixed solution, in which SiO2 powder or transparent nanosized powder of another material having a similar or higher melting point to or than the SiO2 powder is mixed into a polar solvent, on a transparent substrate, forming a two-dimensional structure on the substrate in a mixed particle size by spraying the mixed solution onto the transparent substrate using an electric spray gun, and spraying a liquid for forming a planarization layer by using a spray gun so as to cover a nanostructure to form the planarization layer. The fabrication of a light extraction substrate, according to the present invention, is suitable for mass-production since equipment costs are relatively low while light extraction efficiency is high.

Description

광 추출 기판의 제조방법Manufacturing Method of Light Extraction Substrate
본 발명은 발광 소자 모듈에 사용되는 투명 기판에 관한 것으로, 좀 더 상세하게는 내부에 들어 있는 발광 소자에서 생성된 빛을 투명 기판 밖으로 최대한 추출하기 위해 나노구조체를 형성시킨 투명기판의 제조 방법에 관한 것이다. The present invention relates to a transparent substrate for use in a light emitting device module, and more particularly, to a method for manufacturing a transparent substrate in which a nanostructure is formed in order to extract light generated by the light emitting device contained therein out of the transparent substrate. will be.
OLED와 같은 발광소자는 전압 인가시 소자 자체가 빛을 내는 자 발광(self emission) 소자로서 디스플레이 화소 형성 또는 화이트 OLED 조명으로 각광받고 있다. OLED 구조는 캐소드/전자수송층/활성층/정공수공층/애노드/투명기판으로 이루어지며, 발광층인 활성층에서 생성된 빛은 굴절율이 1.5 정도인 유리소재 투명 기판을 뚫고 나오는 비율이 20 % 정도로 매우 낮다. 따라서 나머지 80 % 정도의 빛은 투명 기판 밖으로 추출되지 못하고 소자 내부에 머물게 되고, 궁극적으로는 소자 내부에서 열 에어지로 전환되어 소자에 손상을 가하여 소자 수명을 단축시키게 된다. 광 추출 효율이 낮다는 것은 조명 또는 화소로서의 광도 저하도 문제가 되지만 이와 같이 소자 열화의 원인이 되기 때문에 광 추출 효율을 높이기 위한 여러 가지 시도가 있어왔다. A light emitting device such as an OLED is a self emitting device that emits light when a voltage is applied, and has been spotlighted as a display pixel formation or white OLED lighting. OLED structure is composed of cathode / electron transport layer / active layer / hole hole layer / anode / transparent substrate, and the light generated from the active layer, which is a light emitting layer, has a very low ratio of penetrating a glass transparent substrate having a refractive index of about 1.5% by about 20%. Therefore, the remaining 80% of the light is not extracted outside the transparent substrate and stays inside the device, and ultimately, the device is converted into thermal air inside the device, which damages the device and shortens the device life. The low light extraction efficiency is also a problem of lowering the brightness as illumination or a pixel, but as such causes a deterioration of the device, various attempts have been made to increase the light extraction efficiency.
대한민국 등록특허제10-1177064호는 OLED 소자의 광 추출 효율을 높이기 위해 유리기판에 금속나노입자를 부착시키는 시도를 하고 있으며, 이외에도 유리 기판에 마이크로렌즈(microlens)를 형성하거나 부착하기도 하고, 나노구조체를 형성하기도 한다(도 1 참조).  Korean Patent No. 10-1177064 attempts to attach metal nanoparticles to a glass substrate in order to increase light extraction efficiency of an OLED device, and in addition to forming or attaching microlens to a glass substrate, a nanostructure It may also form (see FIG. 1).
유리기판 외부에 마이크로렌즈 어레이(MLA) 시트를 붙이는 것은 내부 나노구조체와는 별도로 광추출 효율을 높이는 방법의 하나이다. 따라서 두 가지 방법을 동시에 사용하면 더 큰 효율을 낼 수 있다. Attaching the microlens array (MLA) sheet to the outside of the glass substrate is one of the methods of increasing the light extraction efficiency separately from the internal nanostructure. Therefore, using both methods at the same time can yield greater efficiency.
나노구조체가 없는 일반적인 경우, 단지 발광량의 20% 정도가 유리기판 밖으로 나오지만, 나노구조체를 형성한 경우, 그 효과로 발광량의 40%가 밖으로 나오며, 그에 따라 소자의 밝기는 2배로 증가될 수 있다.In general, in the absence of a nanostructure, only about 20% of the light emission comes out of the glass substrate, but when the nanostructure is formed, the effect is 40% of the light emission out, and thus the brightness of the device can be doubled.
미국특허 제US2012/0305966 A1에서는 유리기판 내부에 나노구조체를 형성할 경우, 유리 기판에 석영(SiO2)층을 형성하고 여기에 은(Ag)을 균일하게 증착시킨 후 유리기판을 가열로(furnace)에 장입하여 약 400℃ 정도로 어닐링하게 되면 은 입자들이 불규칙하게 뭉치게 된다. 뭉치는 입자크기나 간격은 Ag 증착층의 두께나 어닐닝 방법에 따라 어느 정도 조절 가능하다. 여기서 Ag 뭉치 입자들은 마스크로서 작용하게 된다. Ag입자들을 마스크로 하여 드라이 에칭으로 Ag 입자들 사이의 석영층을 에칭한 후 Ag는 습식 에칭으로 제거하게 되면 나노구조를 갖는 광 추출 기판이 되는 것이다.In US 2012/0305966 A1, in the case of forming a nanostructure inside a glass substrate, a quartz (SiO 2 ) layer is formed on the glass substrate, and silver (Ag) is uniformly deposited thereon, and then the glass substrate is heated. ) And then annealed at about 400 ° C, the silver particles are randomly agglomerated. The agglomerate particle size and spacing can be controlled to some extent depending on the thickness of the Ag deposition layer or the annealing method. Ag-ag particles here act as masks. After etching the quartz layer between the Ag particles by dry etching using the Ag particles as a mask, Ag is removed by wet etching to become a light extraction substrate having a nanostructure.
위와 같은 나노구조체 형성 방법은 광 추출 효율을 향상시키기는 하나 실질적으로, 대면적 기판 크기에 적합한 생산성을 갖춘 방법으로 받아들일 수 있는 것은 아니다.Although the nanostructure formation method as described above improves the light extraction efficiency, it is not practically acceptable as a productive method suitable for a large area substrate size.
즉, 상기와 같은 광 추출 기판 제작은 Ag 코팅시스템 구현은 물론 기판의 대면적화에 따라 대형 가열로를 구비하여야 한다는 점과 전면적으로 균일한 어닐링을 하여야 한다는 점 때문에, 은 나노 패턴 형성의 실제 구현을 어렵게 한다. 대형 가열로는 설비비와 유지비가 막대하게 들고, 대면적 기판에 대한 균일한 가열 또한 어려우며, 은(Ag) 나노 입자는 매우 고가이므로 재생시켜 사용해야 하는 번거로움이 생긴다. That is, the fabrication of the light extraction substrate as described above requires a large heating furnace according to the Ag coating system as well as the large area of the substrate and the uniform annealing on the entire surface. Makes it difficult. Large furnaces are expensive to install and maintain, uniform heating to large-area substrates is difficult, and silver (Ag) nanoparticles are very expensive, causing the need for regeneration.
한편, 나노요철구조를 갖는 투명기판 면에 대해 다시 면을 평탄화하는 평탄층을 형성하는 작업을 한 후 OLED 발광층을 평탄면에 올리게 된다. 평탄면의 평탄도는 가로세로 1μmㅧ1μm 면적에서 2nm 이상의 요철이 발생되지 않아야 한다. 그러나 완만한 표면변화(hill surface)는 문제되지 않는다. On the other hand, after forming a flat layer for flattening the surface of the transparent substrate surface having a nano-concave-convex structure, the OLED emitting layer is placed on the flat surface. The flatness of the flat surface should not generate more than 2nm unevenness in 1μm ㅧ 1μm area. However, a gentle hill surface does not matter.
종래, 나노구조를 갖는 투명 기판의 평탄화작업은 슬릿 코팅(slit coating) 시스템에 의하거나 스핀 코팅(spin coating) 시스템에 의하고 있다. 전자는 고비용 공정이되며, 후자는 웨이퍼와 같은 중소형 기판에는 적합하나 5.5 세대 기판 이상의 대면적 기판에는 부적합하며, 이유는 코터의 회전반경에 따라 중앙과 외곽의 두께 편차가 크기 때문이다. Conventionally, planarization of a transparent substrate having a nanostructure is performed by a slit coating system or a spin coating system. The former is a costly process, while the latter is suitable for small and medium-sized substrates such as wafers, but not for large area substrates larger than 5.5 generations, because of the large variation in thickness between the center and the outside depending on the radius of the coater.
따라서 종래 방법들은 모두 대면적 기판에 적용될 수 있는 양산성 있는 기판 평탄화 방법으로는 부족하여 개선된 방법을 요한다. Therefore, the conventional methods all lack the mass production method of planarizing a substrate that can be applied to a large area substrate, and require an improved method.
따라서 본 발명의 목적은 광 추출용 투명 기판의 광 추출 효율을 향상시키되, 양산 가능한 정도로 생산성을 갖춘 광 추출용 투명 기판의 제조방법을 제공하고자 하는 것이다. Accordingly, an object of the present invention is to improve the light extraction efficiency of the light extraction transparent substrate, to provide a method for producing a light extraction transparent substrate with a productivity to the mass production possible.
상기 목적에 따라 According to the above purpose
본 발명은, 유리나 플라스틱과 같은 투명 기판 위에 투명박막층을 형성하고, 그 위에 나노사이즈의 금속 분말, 세라믹 분말 또는 폴리머 분말 중 하나 이상을 극성 용매에 혼합하여 혼합액을 제조하고, 상기 투명기판 위에 상기 혼합액을 전기 분무기로 분사하여 나노 패턴층을 형성하고 이를 건조한 다음, 드라이 에칭하여 투명박막층을 패터닝한 후, 습식 에칭으로 상기 분사시켰던 나노 패턴층을 제거하면 투명 나노구조체가 형성된 광 추출용 기판이 제작되는 것을 특징으로 하는 나노구조체 기판 제조방법을 제공한다. According to the present invention, a transparent thin film layer is formed on a transparent substrate such as glass or plastic, and at least one of the nano-sized metal powder, ceramic powder or polymer powder is mixed with a polar solvent to prepare a mixed liquid, and the mixed liquid is formed on the transparent substrate. To form a nanopattern layer by spraying with an electric sprayer, and then drying and patterning the transparent thin film layer by dry etching, and then removing the nanopattern layer sprayed by wet etching. Provided is a method for manufacturing a nanostructure substrate, characterized in that the nanostructure formed light extraction substrate is produced.
또한, 본 발명은, 유리기판과 같은 투명 기판 위에 원하는 크기의 SiO2 나노사이즈 분말을 극성 용매와 접착액에 혼합한 혼합액을 제조하고, 상기 혼합액을 전기 분무기로 분사하여, 투명 기판 위에 SiO2 분말을 나노사이즈 두께로 기판 위에 2차원적으로 평평하게 배열되도록 부착시킨 다음, 분사된 SiO2 가 부착된 기판을 어닐링 하여 SiO2 에 묻어 있던 접착성 물질을 제거하여 나노구조체 기판이 완성되는 것을 특징으로 하는 나노구조체 기판 제조방법을 제공한다.In addition, the present invention is to prepare a mixture of a mixture of SiO 2 nano-size powder of a desired size on a transparent substrate such as a glass substrate in a polar solvent and an adhesive liquid, and sprayed the mixture with an electric sprayer, SiO 2 powder on a transparent substrate Is attached to the substrate to be two-dimensionally arranged on the substrate in a nano-size thickness, and then annealed the sprayed SiO 2 attached substrate to remove the adhesive material on the SiO 2 to complete the nanostructure substrate It provides a nanostructure substrate manufacturing method.
또한, 본 발명은, 항온항습 환경 하에, 나노구조체가 형성된 투명기판 위에 액체를 분무기로 분사하여 나노구조체 위를 덮어 평탄 층을 형성하게 하였다. In addition, the present invention, under a constant temperature and humidity environment, by spraying a liquid with a nebulizer on the transparent substrate on which the nanostructures are formed to cover the nanostructures to form a flat layer.
상기 평탄층 형성 공정에서, 평탄도 향상을 위해 분무 전에 자외선을 기판에 조사하고, 대면적 기판에 대해 분무 된 액체가 기판 전면에 균일하게 분포하도록 초음파 발생장치를 기판스테이지에 설치하여 초음파를 발사하여 진동을 주었다. In the flat layer formation process, ultraviolet rays are irradiated onto the substrate before spraying to improve the flatness, and an ultrasonic wave generator is installed on the substrate stage to uniformly distribute the sprayed liquid with respect to the large-area substrate to emit ultrasonic waves. Gave a vibration.
상기 공정에서 분무기는 기판 면적에 따라 다수 설치할 수 있고, 기판을 인라인 방식으로 이송하면서 평탄층을 형성할 수 있다. In the above process, a plurality of nebulizers may be installed according to the substrate area, and the flat layer may be formed while transferring the substrate in an inline manner.
본 발명의 나노구조체 형성방법에 따르면 전기분무(electrospray) 방법을 이용하여 극성 용매에 혼합된 나노입자들을 분사하기 때문에 혼합액이 전하를 띠게 되고 분사되는 동안 서로 정전기 반발력이 작용하여 퍼짐과 동시에, 혼합액에 둘러싸인 나노 입자 뭉치 자체도 서로 반발하기 때문에 매우 작은 사이즈의 균일한 나노 구조를 형성하게 된다. 무엇보다 본 발명에 따르면, 기존의 진공공정을 대체하여 모든 공정을 대기 중에서 실시할 수 있어 설비비가 크게 줄어들며, 대면적 기판에 전면적으로 무작위적이지만 균일하게, 원하는 불규칙성(random)의 나노구조체를 형성할 수 있다. According to the nanostructure forming method of the present invention, since the nanoparticles are mixed with the polar solvent using the electrospray method, the mixture is charged and the electrostatic repulsive force is applied to each other while being sprayed, The enclosed bundles of nanoparticles themselves also repel each other, forming a uniform nanostructure of very small size. Above all, according to the present invention, all the processes can be carried out in the air in place of the existing vacuum process, and the equipment cost is greatly reduced, and the nanostructure of the desired randomness is formed on the large-area substrate at random but uniformly. can do.
또한, 본 발명에 따르면, 별도의 PECVD에 의한 SiO2 코팅, 나노구조체 마스크 제작 과정이 필요 없다. 따라서 설비비가 크게 절감되며, 대면적 기판 상에 전면적으로, 무작위적이지만 균일하게 2차원 나노구조체를 형성하게 할 수 있다. In addition, according to the present invention, there is no need for a separate SiO 2 coating by PECVD, a nanostructure mask manufacturing process. Therefore, the equipment cost is greatly reduced, and it is possible to form a two-dimensional nanostructure on the large-area substrate on the whole, randomly or uniformly.
본 발명의 분무 방식의 평탄층 형성방법은 기판 면적에 구애받지 않는 장점이 있고, 공정 진행 속도가 빨라 양산성이 좋으며, 분사되는 액체의 전부가 평탄층을 형성하는 데 사용되고 낭비되는 것이 없어 저비용 공정이 될 수 있다. The method of forming the flat layer of the spray method of the present invention has the advantage of being independent of the area of the substrate, the process progressing speed is good, the mass production is good, and all of the sprayed liquid is used to form the flat layer is not wasted and low cost process This can be
또한, 인라인 방식으로 신속하고 편리한 공정설계가 가능하고 초음파 장치와 자외선 조사 전처리로 인해 평탄층의 균일도가 좋다. In addition, in-line method enables a quick and convenient process design, and the uniformity of the flat layer is good due to the ultrasonic device and ultraviolet irradiation pretreatment.
본 발명에 따르면, 종래 공정에 비해 생산비를 현저히 낮추면서도 동일한 광 추출 효율을 나타낼 수 있다. According to the present invention, it is possible to exhibit the same light extraction efficiency while significantly lowering the production cost compared to the conventional process.
도 1은 광 추출용 투명 기판의 광 추출 효율을 향상시키기 위하여 투명 기판 상에 나노 구조체를 형성한 상태를 나타내는 모식적인 단면도이다.1 is a schematic cross-sectional view showing a state in which a nanostructure is formed on a transparent substrate in order to improve light extraction efficiency of the light extraction transparent substrate.
도 2는 본 발명의 바람직한 실시예에 따라 정전기 분무를 이용하여 나노패턴 마스크를 형성하는 장치를 설명하는 개략도이다. 2 is a schematic diagram illustrating an apparatus for forming a nanopattern mask using an electrostatic spray according to a preferred embodiment of the present invention.
도 3은 도 2에 의해 형성된 나노패턴 마스크를 이용하여 나노구조체를 형성하는 과정을 설명하는 개략도이다. 3 is a schematic diagram illustrating a process of forming a nanostructure using the nanopattern mask formed by FIG. 2.
도 4는 본 발명의 바람직한 실시예에 따라 정전기 분무를 이용하여 나노구조체를 형성하는 장치를 설명하는 개략도이다. 4 is a schematic diagram illustrating an apparatus for forming nanostructures using electrostatic spray in accordance with a preferred embodiment of the present invention.
도 5는 정전기 분무로 투명 기판 위에 정착된 나노구조체를 어닐링 후 나노구조체가 형성된 투명 기판의 단면 구성을 나타내는 개략도이다.5 is a schematic view showing a cross-sectional configuration of a transparent substrate on which a nanostructure is formed after annealing the nanostructures fixed on the transparent substrate by electrostatic spraying.
도 6은 나노구조체가 형성된 투명기판 위에 평탄층을 형성한 상태를 보여주는 단면도이다.6 is a cross-sectional view illustrating a state in which a flat layer is formed on a transparent substrate on which a nanostructure is formed.
도 7은 본 발명에 따른 분무 법으로 나노구조 및 평탄층을 형성하는 것을 나타내는 개략적인 구성도이다. Figure 7 is a schematic diagram showing the formation of a nanostructure and a flat layer by the spray method according to the present invention.
도 8은 도 7의 분무 법으로 평탄층을 형성하는 공정을 항온항습 상태에서 실시하는 것을 나타내는 개요도이다.FIG. 8 is a schematic diagram illustrating a step of forming a flat layer by the spray method of FIG. 7 in a constant temperature and humidity condition. FIG.
도 9는 본 발명에 따라 다수의 분무 장치를 이용하여 나노구조 및 평탄층을 형성하는 것을 나타내는 개요도이다. 9 is a schematic diagram illustrating the formation of nanostructures and flat layers using multiple spraying devices in accordance with the present invention.
도 10은 본 발명에 따라 자외선 조사로 전처리를 하고 분무 법으로 평탄층을 형성한 후 가열로에서 어닐링하는 공정을 인라인 방식으로 실시하는 것을 나타내는 개요도이다. FIG. 10 is a schematic diagram illustrating an in-line process of annealing in a heating furnace after pretreatment by ultraviolet irradiation and forming a flat layer by spraying according to the present invention.
100: 기판100: substrate
25, 170: 나노구조체25, 170: nanostructures
150: SiO2150: SiO 2 layer
155: 점착제 155: adhesive
160: 극성용매160: polar solvent
180: 혼합액180: mixed solution
200: 기판 홀더200: substrate holder
300: 나노패턴 마스크300: nano pattern mask
400: 챔버400: chamber
500: 자외선 조사장치500: UV irradiation device
700: 노즐700: nozzle
800: 초음파 발생장치800: ultrasonic generator
이하, 본 발명의 실시예들에 대해 첨부도면을 참조하여 상세히 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
나노구조체 형성 실시예 1Nanostructure Formation Example 1
본 발명의 투명 기판(100)은 유리 기판일 수 있다. 투명 기판(100) 위에 SiO2층(150)을 나노사이즈 두께로 형성한다. SiO2층은 CVD 또는 스퍼터링 등의 방법으로 형성할 수 있다. The transparent substrate 100 of the present invention may be a glass substrate. SiO 2 layer 150 is formed on the transparent substrate 100 to a nano-size thickness. The SiO 2 layer can be formed by a method such as CVD or sputtering.
본 발명의 나노구조체를 형성한 투명기판의 제조는 금속, 세라믹 또는 폴리머 나노분말을 극성 용매에 혼합하여 정전 분무기(electrospry)로 투명 기판 위에 분사하는 방법을 사용한다. In the manufacture of the transparent substrate on which the nanostructure of the present invention is formed, a metal, ceramic, or polymer nanopowder is mixed with a polar solvent and sprayed onto the transparent substrate by an electrospray.
먼저, 도 2에서와 같이 금속, 세라믹 또는 폴리머 분말 중 하나 이상을 준비하고 이를 극성 용매에 혼합한다. First, at least one of metal, ceramic or polymer powder is prepared as shown in FIG. 2 and mixed in a polar solvent.
Ag, Cu, Fe, WO3, ZnO, Fe2O3 등의 각종 금속 분말, SiO2, TiO2, CuO, ZrO2 등의 각종 세라믹 분말, 폴리머 분말 중 하나 이상을 물, 알콜, 아세톤 등의 극성 용매에 혼합하여 혼합액을 만든다. 이러한 혼합액은 용액 또는 콜로이드 용액 상태로 존재한다. 여기에 점성을 부여할 수 있는 접착물질(PVP 등)을 혼합할 수도 있다. 혼합액의 농도는 후술하는 바와 같이 분사되는 입자 크기는 수 내지 수십nm가 되게 하며, 본 실시예에서는 약 15중량%의 농도로 제조하였으나 구조체의 조건에 따라 변동 가능함은 물론이다. One or more of various metal powders such as Ag, Cu, Fe, WO 3 , ZnO, Fe 2 O 3 , various ceramic powders such as SiO 2 , TiO 2 , CuO, ZrO 2 , and polymer powder may be used as water, alcohol, acetone, or the like. Mix with polar solvent to form mixed solution. This mixed solution is present in solution or colloidal solution. The adhesive substance (PVP etc.) which can give a viscosity can also be mixed here. The concentration of the mixed solution is to be sprayed to the particle size is several to several tens nm as described later, in the present embodiment was prepared at a concentration of about 15% by weight, of course, can vary depending on the conditions of the structure.
호퍼(hopper)에 상기 혼합액을 넣고, 호퍼 아래 장착된 노즐로 부터 적당한 간격(예를 들면 50mm에서 500mm)을 유지한 상태에서 대면적 투명 기판(100)을 배치한다. 생산속도를 증진시키기 위하여 대면적 기판에 대해 여러 개의 분사노즐을 배치할 수 있다. 상기 투명 기판(100)상에는 상술한 바와 같이 SiO2층(150)이 나노사이즈 두께로 형성되어 있는 상태이다. 이러한 투명 기판(100)은 부도체이므로 도체 기판 홀더(200)에 올려놓는다. The mixed liquid is placed in a hopper, and the large-area transparent substrate 100 is disposed while maintaining a proper distance (for example, 50 mm to 500 mm) from a nozzle mounted below the hopper. Multiple spray nozzles can be placed on large area substrates to increase production speed. As described above, the SiO 2 layer 150 is formed on the transparent substrate 100 to have a nano size thickness. Since the transparent substrate 100 is an insulator, the transparent substrate 100 is placed on the conductor substrate holder 200.
상기 호퍼의 하단에는 직경 수 mm 정도의 작은 노즐이 형성되어 있으며, 노즐에 전원장치의 (+)극을 연결하고, 기판 홀더(200)에 (-)극을 연결한다. 양단의 전압은 수 kV 내지 수십 kV(1 내지 50kV 일 수 있다)의 고전압을 인가한다. A small nozzle having a diameter of about several mm is formed at a lower end of the hopper, and connects a positive electrode of the power supply device to the nozzle, and connects a negative electrode to the substrate holder 200. The voltage at both ends applies a high voltage of several kV to several tens of kV (which may be 1 to 50 kV).
이와 같이 고전압이 인가되면, 혼합액이 호퍼의 노즐로부터 분사될 때, 혼합액에 (+) 전하가 대전 되어 서로 반발력을 미치게 되고, 그로 인해 혼합액을 분무기로 강하게 뿜어준 것과 같이 공간 중에 넓게 분산된다. 혼합액에 포함된 분말 입자는 극성 용매에 둘러싸인 상태로 입자 간에도 정전기 반발에 의해 뭉치지 않고 공간 중에 넓게 분산되어 퍼져나간다. 따라서 대면적 기판(100) 위에 전반적으로 균일한 분포를 가지고 내려앉아 SiO2층(150) 위에 부착된다. 상기에서 전원 장치의 극성은 반대로 연결되어 노즐과 기판 홀더에 각각 (-)와 (+)로 연결될 수 있다. 용액과 분무액의 극성은 그에 따라 (-)를 띠게 될 것이다. When a high voltage is applied in this way, when the mixed liquid is injected from the nozzle of the hopper, positive charges are charged to the mixed liquid to exert a repulsive force with each other, thereby dispersing widely in the space as if the mixed liquid is strongly sprayed with the nebulizer. The powder particles contained in the mixed liquid are dispersed and spread widely in the space without being aggregated by the electrostatic repulsion even in the state surrounded by the polar solvent. Therefore, it is settled down on the large area substrate 100 with an overall uniform distribution and deposited on the SiO 2 layer 150. In the above, the polarity of the power supply device may be reversely connected to (-) and (+), respectively, to the nozzle and the substrate holder. The polarity of the solution and spray will be negative accordingly.
혼합액의 분사 조건에 따른 부착되는 입자뭉치의 지름크기 d 는 다음과 같은 식(문헌)에 근사될 수 있다.The diameter size d of the agglomerate to be adhered according to the spraying conditions of the mixed liquid may be approximated by the following formula (document).
Figure PCTKR2014002948-appb-I000001
Figure PCTKR2014002948-appb-I000001
여기서 Q는 액체의 흐름비(flow rate), ρ는 액체의 밀도, ε0는 진공에서의 유전상수, γ는 액체의 표면장력, K는 액체의 전기전도도를 의미한다. Where Q is the flow rate of the liquid, ρ is the density of the liquid, ε 0 is the dielectric constant in vacuum, γ is the surface tension of the liquid, and K is the electrical conductivity of the liquid.
문헌) Hartman R. P. A., Brunner D. J., Camelot D. M. A., Marijnissen J. C. M., Scarlett B.J. Aerosol Sci. 31, p65 (2000) Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B. J. Aerosol Sci. 31, p65 (2000)
이러한 상태의 투명 기판(100)을 건조하면 SiO2층(150) 위에 나노 패턴 마스크를 형성한 결과가 되는 것이다. 건조 수단은 자연 건조, 열풍 건조, 자외선 건조 등 다양한 건조 수단을 사용할 수 있다. Drying the transparent substrate 100 in this state is a result of forming a nano pattern mask on the SiO 2 layer 150. As a drying means, various drying means, such as natural drying, hot air drying, and ultraviolet drying, can be used.
나노 패턴 마스크가 형성된 투명 기판(100)을 플라즈마 에칭과 같은 드라이 에칭으로 SiO2층(150)을 에칭하여 나노 패턴을 형성한다. 플라즈마 에칭은 플루오르(F)를 아르곤(Ar) 등의 비활성 가스에 혼합하여 플라즈마 방전을 일으켜 실시한다. 플라즈마 에칭 실시에 대한 세부 사항은 이미 널리 알려져 있으므로 그에 따른다. The nano substrate is formed by etching the SiO 2 layer 150 by dry etching such as plasma etching on the transparent substrate 100 having the nano pattern mask formed thereon. Plasma etching is performed by mixing fluorine (F) with an inert gas such as argon (Ar) to cause plasma discharge. Details of the plasma etching implementation are already well known and follow.
다음, 나노 패턴 마스크를 습식 에칭으로 제거하게 되면 SiO2층 나노구조체(170)가 형성된 광 추출 유리 기판을 얻는다. 습식 에칭 용액은 질산, 염산 등의 각종 산 용액 또는 염기성 용액일 수 있다. 습식 에칭은 분무(spray)식, 다운 플로우식 또는 딥 방식 등이 적용될 수 있다. Next, the nano pattern mask is removed by wet etching to obtain a light extraction glass substrate on which the SiO 2 layer nanostructure 170 is formed. The wet etching solution may be various acid solutions or basic solutions such as nitric acid and hydrochloric acid. Wet etching may be applied by spray (spray), down flow or dip method.
SiO2층 나노구조체가 형성된 광 추출 유리기판은 내부에서 생성된 빛을 추출하여 기판 밖으로 빠져나올 수 있게 하여 휘도 및 소자 수명을 향상시킨다. 이와 같은 고효율 광 추출 투명기판의 제조가 상술한 정전기 분무에 의할 경우, 클린룸에서 실시하는 것이 바람직하다. 이러한 경우 특별한 진공 챔버를 요하지 않고 대기 중에서 실시할 수 있어 설비비용 및 공정 비용을 줄일 수 있다. The light extracting glass substrate having the SiO 2 layer nanostructure formed therein extracts light generated therein and escapes out of the substrate, thereby improving luminance and device life. When the production of such a high efficiency light extracting transparent substrate is made by the above-mentioned electrostatic spraying, it is preferable to carry out in a clean room. In this case, it can be carried out in the air without requiring a special vacuum chamber, thereby reducing the equipment cost and the process cost.
나노구조체 형성 실시예 2Nanostructure Formation Example 2
먼저, 도 4에서와 같이 SiO2 분말 또는 그 외 투명하고 굴절률이 비슷하거나 더 높은 물질의 투명 분말을 준비하고 이를 극성 용매에 혼합한다. 극성 용매로는 물, 알콜 등이 사용될 수 있다. 이러한 혼합액은 용액 또는 콜로이드 용액 상태로 존재하게 되며, (+) 전하 대전 시 전기적으로 (+) 전하를 띠게 된다. 여기에 점성과 접착성을 부여할 수 있는 접착제(155)를 혼합액에 넣는다. 혼합액의 농도는 10 내지 30 중량%로 제조하였으나 변동 가능함은 물론이다. 또한, 대전전하의 극성은 (-)로 할 수도 있다. First, as shown in FIG. 4, a SiO 2 powder or a transparent powder of another transparent, similar or higher refractive index material is prepared and mixed in a polar solvent. As the polar solvent, water, alcohol, or the like can be used. Such a mixed solution is present in a solution or colloidal solution state, and is electrically charged with a positive charge. An adhesive 155 capable of imparting viscosity and adhesiveness is added to the mixed solution. The concentration of the mixed solution is prepared from 10 to 30% by weight, but can of course vary. In addition, the polarity of the charge may be negative.
호퍼(hopper)에 상기 혼합액을 넣고, 호퍼 하단에 연결된 노즐 아래로 적당한 간격(예를 들면, 50mm 내지 500mm)을 유지한 상태에서 대면적 투명 기판(100)을 배치한다. 대면적일 경우 생산속도를 증진시키기 위하여 여러 개의 분사노즐을 배치할 수 있다. 상기 투명 기판(100)은 부도체이므로 도체 기판 홀더(200)에 올려놓는다. The mixed solution is placed in a hopper, and the large-area transparent substrate 100 is disposed while maintaining a proper distance (for example, 50 mm to 500 mm) under the nozzle connected to the bottom of the hopper. In large areas, multiple spray nozzles can be arranged to increase production speed. Since the transparent substrate 100 is an insulator, the transparent substrate 100 is placed on the conductor substrate holder 200.
상기 호퍼의 하단에는 직경 수 mm 정도 또는 그 이하 크기의 작은 노즐이 위치되어 있으며, 노즐에 전원장치의 (+)극을 연결하고, 기판 홀더(200)에 (-)극을 연결한다(극성은 반대로 연결할 수도 있다). 양단의 전압은 수 kV 내지 수십 kV(1 내지 50kV 일 수 있다)의 고전압을 인가한다. 전압은 형성하고자 하는 구조체에 따라 설정할 수 있다. At the bottom of the hopper, a small nozzle having a diameter of about several millimeters or less is located, and connects a positive electrode of the power supply to the nozzle and a negative electrode of the substrate holder 200 (polarity You can also reverse the connection). The voltage at both ends applies a high voltage of several kV to several tens of kV (which may be 1 to 50 kV). The voltage can be set according to the structure to be formed.
이와 같이 고전압이 인가되면, 혼합액이 호퍼의 노즐로부터 분사될 때, 혼합액에 (+) 전하(극성이 반대일 경우 (-))가 대전 되어 서로 반발력을 미치게 되고, 그로 인해 혼합액을 분무기로 강하게 뿜어준 것과 같이 공간 중에 넓게 분산된다. 혼합액에 포함된 분말 입자는 극성 용매에 둘러싸인 상태로 입자 간에도 정전기 반발에 의해 뭉치지 않고 공간 중에 넓게 분산되어 퍼져나간다. 따라서 대면적 기판(100) 위에 전반적으로 불규칙적이지만 균일한 2차원 분포를 형성하면서 투명 기판(100) 위에 부착된다. When a high voltage is applied in this manner, when the mixed liquid is injected from the nozzle of the hopper, a positive charge ((-)) is charged to the mixed liquid to exert a repulsive force against each other. It is widely distributed in space as given. The powder particles contained in the mixed liquid are dispersed and spread widely in the space without being aggregated by the electrostatic repulsion even in the state surrounded by the polar solvent. Therefore, it is attached on the transparent substrate 100 while forming an overall irregular but uniform two-dimensional distribution on the large area substrate 100.
나노구조기판은 분무액 속의 분말 입자에 의해 그대로 결정되므로, 분말 입자의 크기를 원하는 크기의 것으로 선택하면 된다. 따라서 분말입자지름은 OLED 나노구조체를 만들 경우 100nm 내지 1500nm 정도의 것이 일반적으로 사용될 수 있다. Since the nanostructured substrate is determined as it is by the powder particles in the spray liquid, the size of the powder particles may be selected as the desired size. Therefore, the powder particle diameter may generally be used in the range of about 100 nm to 1500 nm when making an OLED nanostructure.
이러한 상태의 투명 기판(100)을 건조하여 접착물질이 제거될 수 있는 온도로 어닐링 하면 SiO2 나노구조체 기판이 완성되는 것이다(도 5 참조). 어닐링 온도는 점착물질의 승화점을 고려하여 정할 수 있고, 대체로 약 300℃이상이 될 수 있다. When the transparent substrate 100 in this state is dried and annealed to a temperature at which the adhesive material can be removed, the SiO 2 nanostructure substrate is completed (see FIG. 5). The annealing temperature may be determined in consideration of the sublimation point of the adhesive material, and may generally be about 300 ° C. or more.
SiO2 등의 나노구조체(170)가 형성된 광 추출 유리기판은 내부에서 생성된 빛의 상당량을 기판 밖으로 빠져나올 수 있게 하여 휘도 및 소자 수명을 향상시킨다. 이와 같은 광 추출 투명기판의 제조가 상술한 정전기 분무에 의할 경우, 클린룸에서 실시하는 것이 바람직하나 특별한 진공 챔버를 요하지 않고 대기 중에서 실시할 수 있어 설비비를 줄일 수 있다. The light extraction glass substrate on which the nanostructures 170, such as SiO 2 , are formed, can escape a large amount of light generated inside the substrate to improve brightness and device life. When the light extraction transparent substrate is manufactured by the electrostatic spraying described above, it is preferable to carry out in a clean room, but it can be carried out in the air without requiring a special vacuum chamber, thereby reducing the equipment cost.
평탄층 형성 실시예Flat Layer Formation Example
도 7에 도시한 바와 같이 나노구조 요철 면을 갖는 투명기판(100) 위에 평탄층을 형성하기 위해, 평탄층을 구성하는 액체를 분무기에 넣고 분무기 아래 상기 투명기판(100)을 스테이지에 탑재한다. 도 6에는 본 발명에 따른 분무기와 스테이지 및 그 위에 탑재된 투명기판(100)이 나타나 있으며, 분무기는 노즐(700)과 투명기판(100) 사이의 간격을 조절하고 투명기판(100)에 대해 상대운동할 수 있도록 X-Z 방향으로 이송하는 X-Z 모터로 구동된다. 또한, 스테이지 자체도 Y 방향으로 투명기판(100)을 이송하는 모터에 의해 구동될 수 있다. 노즐(700)로부터 액체가 분사되면 매우 많은 수의 미세한 액적이 투명기판(100)의 상당한 면적을 커버하게 되나, 이러한 액적이 기판 전면에 균일하게 퍼지도록 스테이지에는 추가적인 진동을 부여하는 초음파 발생장치(800)가 설치된다. 즉, 나노구조체가 형성된 투명기판(100) 위에 내려앉은 미세 액적들은 초음파 발생장치(800)의 미세 진동에 의해 나노구조의 요철들이 이루는 오목부를 메우게 되고, 액적과 액적을 연결해주는 역할을 함으로서 평탄층으로 하여금 그 높이를 더욱 평탄하게 하고 균일하게 하여준다. As shown in FIG. 7, in order to form a flat layer on the transparent substrate 100 having the nanostructured uneven surface, a liquid constituting the flat layer is placed in a sprayer, and the transparent substrate 100 is mounted on a stage under the sprayer. 6 shows a nebulizer and a stage and a transparent substrate 100 mounted thereon according to the present invention, and the nebulizer controls the distance between the nozzle 700 and the transparent substrate 100 and is relative to the transparent substrate 100. It is driven by an XZ motor that feeds in the XZ direction for movement. In addition, the stage itself may be driven by a motor for transferring the transparent substrate 100 in the Y direction. When the liquid is ejected from the nozzle 700, a very large number of fine droplets cover a considerable area of the transparent substrate 100, but the ultrasonic generator which imparts additional vibration to the stage so that the droplets spread uniformly over the front surface of the substrate ( 800 is installed. That is, the fine droplets settled down on the transparent substrate 100 on which the nanostructures are formed fill the recesses formed by the irregularities of the nanostructures by the micro-vibration of the ultrasonic generator 800, and serve to connect the droplets to the droplets. The layer makes the height flatter and more uniform.
상술한 바와 같이, 액체는 분사되어 미세 액적으로 되자마자 그 표면적이 현저히 증가 되어 휘발성이 급격히 좋아진다. 미세 액적이 나노구조체 위에 도달하기 전에 휘발 되면 평탄층을 형성할 수 없으므로, 주변 환경을 항온항습으로 하는 것이 바람직하다. 습도는 가능한 한 높아야 용액의 휘발성을 지연시킬 수 있다. 그러나 고전압은 습도가 높을 경우 공기를 통하여 직접 방전이 일어날 수 있기 때문에 방전이 일어나지 않는 상태를 유지하면서 사용 가능한 전압과 습도 및 온도를 갖는 분무조건을 요한다. 따라서 본 실시예는 기판과 분무기를 모두 항온항습 챔버(400)에 넣고 공정을 실시하였다(도 9 참조). As described above, as soon as the liquid is sprayed into the fine droplets, its surface area is significantly increased, leading to a sharp increase in volatility. Fine droplets reach over the nanostructures If volatilized before, a flat layer cannot be formed, so it is preferable to make the surrounding environment constant temperature and humidity. Humidity should be as high as possible to delay the volatility of the solution. However, high voltage requires a spraying condition having a usable voltage, humidity, and temperature while maintaining a state where discharge does not occur because high discharge can occur directly through air. Therefore, in this embodiment, both the substrate and the sprayer were placed in the constant temperature and humidity chamber 400, and the process was performed (see FIG. 9).
또한, 액체를 분사하기 전에 투명기판(100)은 도 11에서처럼 자외선 조사장치(500)로 자외선 조사 전처리를 하여주는 것이 바람직하다. 이는 나노구조체가 형성된 투명기판(100) 표면을 개질하여 액체가 표면에 잘 정착하게 하는 친수성을 부여한다. 따라서 UV 조사 이후 액체 분무에 의해 형성되는 평탄층의 평탄도를 더욱 균일하게 한다. In addition, before spraying the liquid, the transparent substrate 100 is preferably subjected to ultraviolet irradiation pretreatment by the ultraviolet irradiation device 500 as shown in FIG. This modifies the surface of the transparent substrate 100 on which the nanostructure is formed to impart hydrophilicity to allow the liquid to settle well on the surface. Therefore, the flatness of the flat layer formed by liquid spraying after UV irradiation is made more uniform.
액체를 분사하는 분무기는 생산성을 좋게 하기 위해 다수를 배치할 수 있고(도 10 참조) 인라인 방식으로 기판(100)을 이송하면서 실시할 수 있다. A nebulizer for spraying liquid may be arranged in large numbers (see FIG. 10) to improve productivity and may be carried out while transferring the substrate 100 in an inline manner.
평탄층을 형성하는 액체 분무를 마친 후에는 가열로에서 400℃에서 약 40분간 어닐링되어 평탄층을 투명기판(100)에 견고히 정착시킬 수 있다. After finishing the liquid spray to form the flat layer can be annealed for about 40 minutes at 400 ℃ in a heating furnace to firmly fix the flat layer to the transparent substrate 100.
본 발명에서 사용될 수 있는 액체는 TiO2 , ZnO, ZrO2 등 고굴절 용액일 수 있고, 이들의 혼합액일 수 있다. The liquid that can be used in the present invention may be a high refractive solution such as TiO 2 , ZnO, ZrO 2, or a mixture thereof.
항온항습 환경은 실제 온도 20 내지 30 ℃, 상대습도 30 내지 60 % 중 어느 하나의 수치로 일정하게 유지되며 99% 정확도를 가지고 유지되는 것이 바람직하다. The constant temperature and humidity environment is maintained at a constant value of any one of the actual temperature of 20 to 30 ℃, relative humidity of 30 to 60% and is preferably maintained with 99% accuracy.
이와 같이 하여 저비용으로 신속하고도 평탄도가 우수한 평탄층을 형성할 수 있다. In this manner, it is possible to form a flat layer having a high level of flatness and high speed at low cost.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The rights of the present invention are not limited to the embodiments described above, but are defined by the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.
본 발명은 OLED 디스플레이 또는 OLED 조명에 적용되는 커버 유리 등의 제작에 이용될 수 있다.The present invention can be used to fabricate a cover glass or the like applied to an OLED display or an OLED lighting.

Claims (18)

  1. 투명 기판 위에 SiO2, TiO2, WO3, ZnO 중 어느 하나로 된 투명 박막층을 형성하고, Forming a transparent thin film layer of any one of SiO 2 , TiO 2 , WO 3 , ZnO on the transparent substrate,
    금속 분말, 세라믹 분말, 폴리머 분말 중 하나 이상을 극성 용매에 혼합하여 혼합액을 제조하고, At least one of a metal powder, a ceramic powder, and a polymer powder is mixed with a polar solvent to prepare a mixed liquid,
    상기 투명기판 위에 상기 혼합액을 전기 분무기로 분사하여 나노 패턴 층을 형성하고, Spraying the mixed solution on the transparent substrate with an electric atomizer to form a nano pattern layer,
    이를 건조하고 드라이 에칭하여 투명 박막층을 패터닝 하고, Drying and dry etching the patterned transparent thin film layer,
    습식 에칭으로 상기 나노 패턴 층을 제거하여 투명 나노구조체가 형성된 광 추출용 투명 기판의 제조 방법.Transparent by removing the nano pattern layer by wet etching Method for producing a transparent substrate for light extraction formed nanostructures.
  2. 제1항에 있어서, 상기 전기 분무기는 노즐을 구비한 호퍼를 포함하여, 상기 혼합액은 상기 호퍼에 넣어지고, 상기 투명 기판은 도제 기판 홀더에 탑재되어, 전원의 (+)극을 상기 호퍼에 장착된 노즐에, (-)극을 기판 홀더에 연결하여 전압을 인가하여, 상기 호퍼의 노즐로부터 분사되는 혼합액을 (+) 전하로 대전시키거나, (-)극을 상기 호퍼에 장착된 노즐에, (+)극을 기판 홀더에 연결하여 전압을 인가하여, 상기 호퍼의 노즐로부터 분사되는 혼합액을 (-) 전하로 대전시켜 정전기 반발력으로 분산시키는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.2. The electrospray of claim 1, wherein the electrospray comprises a hopper with a nozzle, wherein the mixed liquid is placed in the hopper, and the transparent substrate is mounted on a ceramic substrate holder to mount a positive pole of a power source to the hopper. The negative electrode is connected to the substrate holder to apply a voltage to charge the mixed liquid injected from the nozzle of the hopper with positive charge, or the negative electrode to the nozzle mounted to the hopper, A method of manufacturing a transparent substrate for light extraction, comprising connecting a (+) electrode to a substrate holder to apply a voltage to charge the mixed liquid injected from the nozzle of the hopper with negative charge to disperse it with electrostatic repulsive force.
  3. 제1항에 있어서, 나노 패턴 층을 이루는 입자의 사이즈는 혼합액의 농도로 제어하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of manufacturing a transparent substrate for light extraction according to claim 1, wherein the size of the particles forming the nanopattern layer is controlled by the concentration of the mixed liquid.
  4. 제2항에 있어서, 나노 패턴 층을 이루는 입자의 사이즈 및 입자간의 간격을 혼합액의 농도와 호퍼의 노즐 크기로 제어하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of manufacturing a transparent substrate for light extraction according to claim 2, wherein the size of the particles forming the nanopattern layer and the distance between the particles are controlled by the concentration of the mixed liquid and the nozzle size of the hopper.
  5. 제1항에 있어서, 상기 혼합액에 점도 및 접착성 부여제를 더 추가하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of manufacturing a transparent substrate for light extraction according to claim 1, further comprising a viscosity and adhesion imparting agent to the mixture.
  6. 제1항 또는 제2항에 있어서, 상기 드라이 에칭은 플라즈마 에칭을 포함하고, 상기 습식 에칭은 산성 용액 또는 염기성 용액을 이용하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of claim 1 or 2, wherein the dry etching comprises plasma etching, and the wet etching uses an acidic solution or a basic solution.
  7. 제2항에 있어서, 상기 호퍼는 다수의 노즐을 포함하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of claim 2, wherein the hopper comprises a plurality of nozzles.
  8. 투명 기판 위에 SiO2, ZnO, ZrO2 또는 WO3 중 어느 하나로 된 나노사이즈 분말을 극성 용매에 혼합한 혼합액을 제조하고, 상기 혼합액을 전기 분무기로 분사하여 투명 기판 위에 SiO2, ZnO, ZrO2 또는 WO3 중 어느 하나로 된 나노구조체가 형성된 광 추출용 투명 기판의 제조방법. SiO 2 , ZnO, ZrO 2 or on a transparent substrate A mixed liquid obtained by mixing a nano-sized powder of any one of WO 3 in a polar solvent was prepared, and the mixed liquid was sprayed with an electric sprayer to deposit SiO 2 , ZnO, ZrO 2 or Method for producing a transparent substrate for extracting light in which the nanostructure of any one of WO 3 formed.
  9. 투명 기판 위에 SiO2 분말과 굴절률이 같거나 더 높은 물질로 된 투명 나노사이즈 분말을 극성 용매에 혼합한 혼합액을 제조하고, 상기 혼합액을 전기 분무기로 분사하여 투명 기판 위에 투명 나노구조체가 형성된 광 추출용 투명 기판의 제조방법.For preparing a liquid mixture of a transparent nano-sized powder made of a material having the same refractive index or higher than the SiO 2 powder in a polar solvent on a transparent substrate, and spraying the mixture liquid with an electric atomizer to extract transparent nanostructures formed on the transparent substrate. Method of manufacturing a transparent substrate.
  10. 제8항 또는 제9항에 있어서, 상기 전기 분무기는 노즐을 구비한 호퍼를 포함하여, 상기 혼합액은 상기 호퍼에 넣어지고, 상기 투명 기판은 도체로 된 기판홀더에 탑재되어, 전원의 (+)극을 상기 호퍼에 장착된 노즐에, (-)극을 기판 홀더에 연결하여 전압을 인가하여, 상기 호퍼의 노즐로부터 분사되는 혼합액을 (+) 전하로 대전시키거나, 전원의 (-)극을 상기 호퍼에 장착된 노즐에, (+)극을 기판 홀더에 연결하여 전압을 인가하여, 상기 호퍼의 노즐로부터 분사되는 혼합액을 (-) 전하로 대전시켜 정전기 반발력으로 분산시키는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.10. The apparatus according to claim 8 or 9, wherein the electric nebulizer comprises a hopper having a nozzle, the mixed liquid is placed in the hopper, and the transparent substrate is mounted on a substrate holder made of a conductor, A voltage is applied by connecting a pole to a nozzle mounted on the hopper and a negative electrode to a substrate holder to charge a mixed liquid injected from the nozzle of the hopper with a positive charge or to discharge a negative pole of a power source. Light extraction is characterized in that the positive electrode is connected to the substrate holder to apply a voltage to the nozzle mounted on the hopper, thereby charging the mixed liquid injected from the nozzle of the hopper with negative charge to disperse the electrostatic repulsive force. Method for producing a transparent substrate for use.
  11. 제8항 또는 제9항에 있어서, 상기 혼합액에 접착성 부여제를 더 추가하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of manufacturing a transparent substrate for light extraction according to claim 8 or 9, further comprising an adhesive imparting agent to the mixed solution.
  12. 제10항에 있어서, 상기 호퍼는 노즐을 다수 구비하는 것을 특징으로 하는 광 추출용 투명 기판의 제조방법.The method of manufacturing a transparent substrate for light extraction according to claim 10, wherein the hopper includes a plurality of nozzles.
  13. 나노구조체가 형성된 투명기판의 나노요철 면을 평탄화하는 방법으로서, 나노요철 면이 있는 투명기판과 분무기를 항온항습 챔버 안에 넣고, 평탄층을 형성할 액체를 분무기에 담아 상기 투명기판 위에 분사하여 분무된 액체가 상기 나노요철 면을 메워 평탄층을 형성하는 것을 특징으로 하는 광 추출용 기판의 평탄 층 제작 방법.A method of flattening the nano-concave-convex surface of a transparent substrate on which a nanostructure is formed, the transparent substrate and the atomizer having a nano-concave-side surface are placed in a constant temperature and humidity chamber, and the liquid to form the flat layer is sprayed onto the transparent substrate by spraying the liquid The liquid fills the nano-concave-convex surface to form a flat layer, the flat layer manufacturing method of the substrate for light extraction.
  14. 제13항에 있어서, 상기 투명기판은 스테이지에 탑재되고, 상기 스테이지에는 초음파 발생장치가 설치되어 투명기판 위로 분무 된 액체가 투명기판 전면에 걸쳐 균일하게 퍼지도록 하는 것을 특징으로 하는 광 추출용 기판의 평탄 층 제작 방법.The light extracting substrate of claim 13, wherein the transparent substrate is mounted on a stage, and the ultrasonic generator is installed on the stage so that the liquid sprayed on the transparent substrate is uniformly spread over the entire surface of the transparent substrate. How to make a flat layer.
  15. 제13항 또는 제14항에 있어서, 상기 투명기판 위에 액체를 분사하기 전에 상기 투명기판 전면에 자외선을 조사하여 친수성 투명기판 표면으로 만드는 것을 특징으로 하는 광 추출용 기판의 평탄 층 제작 방법.15. The method of claim 13 or 14, wherein before the liquid is injected onto the transparent substrate, ultraviolet rays are irradiated to the entire surface of the transparent substrate to form a hydrophilic transparent substrate surface.
  16. 제13항 또는 제14항에 있어서, 상기 분무기는 하나 이상 설치되며, 상기 분무기는 상하좌우(X-Z) 모션이 가능하고 상기 투명기판은 전후(Y) 모션이 가능한 것을 특징으로 하는 광 추출용 기판의 평탄 층 제작 방법.15. The method of claim 13 or 14, wherein one or more of the atomizer is installed, the atomizer is capable of vertical motion (XZ) motion and the transparent substrate of the light extraction substrate, characterized in that the front and rear (Y) motion is possible. How to make a flat layer.
  17. 제13항 또는 제14항에 있어서, 상기 투명기판은 액체가 분사된 후 가열로에서 어닐링 되는 것을 특징으로 하는 광 추출용 기판의 평탄 층 제작 방법.15. The method of claim 13 or 14, wherein the transparent substrate is annealed in a heating furnace after the liquid is injected.
  18. 제1항, 제8항, 또는 제9항 중 어느 한 항으로 나노구조체를 형성하고, 제13항의 방법으로 평탄층을 형성하는 것을 특징으로 하는 광 추출용 기판의 제조 방법. A method for manufacturing a light extraction substrate, wherein the nanostructure is formed by any one of claims 1, 8, or 9, and a flat layer is formed by the method of claim 13.
PCT/KR2014/002948 2013-04-22 2014-04-07 Method for fabricating light extraction substrate WO2014175578A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0043933 2013-04-22
KR20130043925 2013-04-22
KR10-2013-0043925 2013-04-22
KR20130043933 2013-04-22
KR1020130087093A KR20150011911A (en) 2013-07-24 2013-07-24 Manufacturing method of planarization layer on substrate for light extraction
KR10-2013-0087093 2013-07-24

Publications (1)

Publication Number Publication Date
WO2014175578A1 true WO2014175578A1 (en) 2014-10-30

Family

ID=51792094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002948 WO2014175578A1 (en) 2013-04-22 2014-04-07 Method for fabricating light extraction substrate

Country Status (2)

Country Link
TW (1) TW201500310A (en)
WO (1) WO2014175578A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090061911A (en) * 2007-12-12 2009-06-17 (주)에이치시티 Electrospray vaporizer
KR20100027842A (en) * 2008-09-03 2010-03-11 연세대학교 산학협력단 Device for patterning conductive line by electrohydrodynamic spray type and patterning method using the same
JP2011108632A (en) * 2009-11-18 2011-06-02 Samsung Mobile Display Co Ltd Organic luminescent display device and method of manufacturing the same
KR20120096308A (en) * 2011-02-22 2012-08-30 부산대학교 산학협력단 Synthesis of photocatalyst nanoparticles and method for fabricating of dye sensitized solar cells using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090061911A (en) * 2007-12-12 2009-06-17 (주)에이치시티 Electrospray vaporizer
KR20100027842A (en) * 2008-09-03 2010-03-11 연세대학교 산학협력단 Device for patterning conductive line by electrohydrodynamic spray type and patterning method using the same
JP2011108632A (en) * 2009-11-18 2011-06-02 Samsung Mobile Display Co Ltd Organic luminescent display device and method of manufacturing the same
KR20120096308A (en) * 2011-02-22 2012-08-30 부산대학교 산학협력단 Synthesis of photocatalyst nanoparticles and method for fabricating of dye sensitized solar cells using the same

Also Published As

Publication number Publication date
TW201500310A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
US8222061B2 (en) Mist fabrication of quantum dot devices
WO2012047054A2 (en) Substrate for an organic electronic element and a production method therefor
WO2012046898A1 (en) Solid state powder coating device
TW200415030A (en) Liquid material discharging method, liquid material discharging apparatus, and electronic device manufactured thereby
JP2001319560A (en) Electron emitting element, electron source, field-emission image display device and fluorescent lamp using electron emitting element and their manufacturing methods
CN1293649C (en) Preparation method of large surface area carbon nano pipe film for field emitting display cathode
Nguyen et al. Electrospray mechanism for quantum dot thin-film formation using an electrohydrodynamic jet and light-emitting device application
TW201029942A (en) Electrostatically depositing conductive films during glass draw
CN106340573A (en) LB quantum dot film, light-emitting diode and preparation method thereof
JP2012135704A (en) Electrospray deposition device
WO2014010803A1 (en) Optical element using three-dimensional structure assembled with nanoparticles
JP5926709B2 (en) Field electron emission film, field electron emission device, light emitting device, and method for manufacturing the same
KR101382738B1 (en) Apparatus and method for forming pattern by electrostactic spray, and method for manufacturing display panel
WO2014175578A1 (en) Method for fabricating light extraction substrate
JP5926750B2 (en) Field electron emission film, field electron emission device, light emitting device, and method for manufacturing the same
CN1866323A (en) Display device and its manufacturing method
KR20140127148A (en) Method for manufacturing light extraction nanopatterning plate by transparent powder
JP2007005177A (en) Manufacturing method of organic electroluminescent element, and organic electroluminescent display
CN108906524B (en) Method for encapsulating quantum dot light guide plate based on electrostatic atomization film forming
WO2020091198A1 (en) Method for forming pattern of non-etching printed microelectrodes
KR101498418B1 (en) Method for manufacturing substrate with high efficiency light extraction nanostructure
CN1780530A (en) Method of forming a wiring pattern, method of manufacturing a device, device, and electro-optic device
JP2010248651A (en) Device and method for accumulating fine particle and fine particle accumulation film formed by the device
KR101721902B1 (en) Manufacturing method for substrate with nano structure improving light extracting efficiency
JP2001353454A (en) Deposition method, method for manufacturing organic el element and deposition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-03-2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14788119

Country of ref document: EP

Kind code of ref document: A1