WO2014175191A1 - Composite compound, lithium-containing composite oxide, and methods respectively for producing said products - Google Patents

Composite compound, lithium-containing composite oxide, and methods respectively for producing said products Download PDF

Info

Publication number
WO2014175191A1
WO2014175191A1 PCT/JP2014/061081 JP2014061081W WO2014175191A1 WO 2014175191 A1 WO2014175191 A1 WO 2014175191A1 JP 2014061081 W JP2014061081 W JP 2014061081W WO 2014175191 A1 WO2014175191 A1 WO 2014175191A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
composite oxide
compound
producing
Prior art date
Application number
PCT/JP2014/061081
Other languages
French (fr)
Japanese (ja)
Inventor
河里 健
昌彦 田村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51791769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014175191(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015513733A priority Critical patent/JP6510402B2/en
Publication of WO2014175191A1 publication Critical patent/WO2014175191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite compound useful as a precursor of a lithium-containing composite oxide, and a method for producing the same, a lithium-containing composite oxide, and a method for producing the same, a method for producing a positive electrode for a lithium ion secondary battery, and a lithium ion secondary
  • the present invention relates to a battery manufacturing method.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • the positive electrode active material for the lithium ion secondary battery include composite oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , and LiMn 2 O 4 (hereinafter, "Sometimes referred to as" lithium-containing composite oxide ").
  • the positive electrode active material has a further improvement in the discharge capacity per unit volume and the characteristics that the discharge capacity does not decrease after repeated charge / discharge cycles (hereinafter, sometimes referred to as “cycle characteristics”), and safety.
  • cycle characteristics the characteristics that the discharge capacity does not decrease after repeated charge / discharge cycles
  • safety There is a need for compatibility with sex.
  • the cycle characteristics are insufficient, for example, in a portable electronic device, the usable time in one charge decreases with time, so the commercial value of the portable electronic device decreases. Therefore, improvement in cycle characteristics is strongly demanded.
  • the discharge capacity per unit volume is determined by the discharge capacity per unit mass and the packing density of the positive electrode active material. Therefore, in order to improve the packing density of the positive electrode active material in the positive electrode (hereinafter sometimes referred to as “electrode density”), it has been studied to control the particle size and particle size distribution of the positive electrode active material. In addition, in order to improve the packing density of the positive electrode active material in the positive electrode, it has been studied to control the shape of the positive electrode active material particles into a spherical shape or a plate shape.
  • Patent Document 1 proposes a technique for improving the press density by setting the ratio of particles of 10 ⁇ m or less to 26 to 60% by volume in the volume-based particle size distribution of the positive electrode active material.
  • this proposed technique has a problem that the average particle size of the positive electrode active material is large, so that the diffusion of lithium is delayed, the rate characteristics are lowered, and the proportion of fine particles is increased, so that the safety is lowered.
  • Patent Document 2 proposes a technique for mixing large and small positive electrode active material particles having different compositions and particle sizes.
  • this proposed technique requires a step of individually synthesizing two kinds of positive electrode active materials and a step of mixing them, and there is a problem that the manufacturing process is complicated.
  • Patent Document 3 discloses that a positive electrode is obtained by thermally decomposing particles having a ratio of a short axis particle diameter to a long axis particle diameter (short axis particle diameter / long axis particle diameter) in the range of 0.5 to 1.0.
  • a technique has been proposed in which crystallites and particles in an active material are three-dimensionally approximately isotropic.
  • this proposed technique has a problem that the obtained particles are not sufficiently spherical and a sufficient packing density cannot be obtained.
  • Patent Document 4 proposes a technique for improving the filling properties by including particles having a positive correlation between the particle diameter of the positive electrode active material and the average circularity.
  • particles with a high average circularity and particles with a low average circularity coexist, so the volume change due to lithium insertion / extraction is not isotropic.
  • the cycle characteristics such as the occurrence.
  • the presence of small particles having a large specific surface area increases the reactivity, which poses a safety problem.
  • Japanese Unexamined Patent Publication No. 2012-121805 Japanese Unexamined Patent Publication No. 2012-74246 Japanese Unexamined Patent Publication No. 2003-346809 Japanese Unexamined Patent Publication No. 2009-283353
  • the present invention is capable of producing a high-density electrode even when the pressing pressure when forming the positive electrode active material-containing layer is low, and is excellent in discharge capacity per unit volume, rate characteristics, and extremely excellent cycle characteristics. It is an object of the present invention to provide a composite compound that is useful as a precursor of a contained composite oxide, and a production method thereof. Moreover, this invention makes it a subject to provide the lithium containing complex oxide using the said complex compound, and its manufacturing method. Furthermore, this invention makes it a subject to provide the manufacturing method of the positive electrode for lithium ion secondary batteries using the said lithium containing complex oxide, and the manufacturing method of a lithium ion secondary battery using the said positive electrode.
  • the present invention provides a composite compound having the following configuration, a method for producing the same, a lithium-containing composite oxide, a method for producing the same, a method for producing a positive electrode for a lithium ion secondary battery, and a method for producing a lithium ion secondary battery. To do.
  • the content of nickel in the composite compound is 44 to 68 mol%, the content of manganese is 22 to 44 mol%, and the content of cobalt is 4 to 28 mol based on the total of nickel, manganese and cobalt. % Of the composite compound according to the above [4].
  • a method for producing a composite compound according to any one of [1] to [5] above An aqueous solution containing nickel and manganese and an alkali are continuously added to the first reaction vessel to precipitate the core particles, and a core particle-containing liquid preparation step for obtaining a core particle-containing liquid containing the core particles; A moving step of continuously transferring a part of the core particle-containing liquid in the first reaction vessel from the first reaction vessel to the second reaction vessel; To the second reaction vessel containing the core particle-containing liquid, an aqueous solution containing nickel and manganese and an alkali are continuously added to grow the core particles, and a part of water is obtained from the obtained reaction liquid.
  • a positive electrode manufacturing step of manufacturing a positive electrode A laminate production step of producing a laminate by laminating the positive electrode, the separator, and the negative electrode; Including a nonaqueous electrolyte application step of containing a nonaqueous electrolyte in the laminate,
  • the method for producing a lithium ion secondary battery, wherein the positive electrode preparation step is the method for producing a positive electrode for a lithium ion secondary battery according to the above [12] or [13].
  • the conventional problems can be solved, and even when the press pressure when forming the positive electrode active material-containing layer is low, a high-density electrode can be produced, the discharge capacity per unit volume, and It is possible to provide a composite compound useful as a precursor of a lithium-containing composite oxide that has excellent rate characteristics and extremely excellent cycle characteristics, and a method for producing the same.
  • the lithium containing complex oxide using the said complex compound and its manufacturing method can be provided.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries using the said lithium containing complex oxide and the manufacturing method of a lithium ion secondary battery using the said positive electrode can be provided.
  • FIG. 1 is a volume particle size distribution curve of the composite compound of Example 1 and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the tap density of the composite compound in Examples 1 to 5 and Comparative Examples 1 to 6 and the tap density of the lithium-containing composite oxide.
  • the “precursor” refers to a compound capable of obtaining a lithium-containing composite oxide by mixing and baking with a lithium compound described later.
  • the composite compound of the present invention contains at least nickel (Ni) and manganese (Mn), and further contains other components as necessary.
  • This composite compound has a ratio (D 90 / D 10 ) of a volume-based cumulative 90% diameter (D 90 ) and a volume-based cumulative 10% diameter (D 10 ) in laser scattering particle size distribution measurement of 2.00 or less,
  • the tap density is 1.9 g / cm 3 or more, and the average circularity is 0.960 or more.
  • this composite compound is a precursor of lithium containing composite oxide, Comprising: It is a compound which does not contain lithium.
  • the molar ratio of Ni and Mn (Ni / Mn) in the composite compound is preferably 1.5 to 3.0, and more preferably 1.65 to 2.05.
  • the composite compound preferably further contains cobalt (Co) in order to improve rate characteristics.
  • Co cobalt
  • the content of Ni is preferably 44 to 68 mol% and more preferably 48 to 58 mol% with respect to the total of Ni, Mn and Co in the composite compound.
  • Mn does not contribute to the charge / discharge capacity, but maintains a layered structure. Therefore, the content of Mn is preferably 22 to 44 mol% and more preferably 26 to 36 mol% with respect to the total of Ni, Mn and Co of the present composite compound.
  • the Co content is preferably 4 to 28 mol% and more preferably 16 to 24 mol% with respect to the total of Ni, Mn and Co in the present composite compound.
  • the contents of Ni, Mn and Co in the composite compound can be measured, for example, by dissolving the composite compound in an acid and measuring the obtained liquid by ICP (high frequency inductively coupled plasma).
  • the other component contained in the composite oxide is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), aluminum (Al), and zirconium (Zr). Is preferred.
  • the composite compound include carbonates, acetates, hydroxides, oxyhydroxides, and mixtures thereof.
  • the composite compound is preferably a hydroxide because the tap density can be increased.
  • (D 90 / D 10 ) of the composite compound is 2.00 or less, preferably 1.70 to 1.98, more preferably 1.80 to 1.95.
  • a lithium-containing composite oxide obtained using the complex compound is excellent in cycle characteristics. If (D 90 / D 10 ) is within the above preferred range, it is advantageous because the electrode density can be increased.
  • the volume-based cumulative 50% diameter (D 50 ) in the laser scattering particle size distribution measurement of the composite compound is preferably 5.0 to 13.0 ⁇ m, more preferably 6.0 to 12.0 ⁇ m, from the viewpoint of rate characteristics.
  • a thickness of 0.0 to 10.0 ⁇ m is particularly preferable.
  • D 10 , D 50 , and D 90 are particle size distributions obtained on a volume basis, and in the cumulative curve with the total volume of 100%, the cumulative curve is 10%, 50%, And the particle diameter at the point of 90%.
  • D 10, D 50, and D 90 are, for example, can be determined using the frequency distribution and cumulative volume distribution curve measured by a laser scattering particle size distribution measuring apparatus. The measurement is performed by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like.
  • Examples of the device include a laser diffraction / scattering particle size distribution measuring device (device name: MT-3300EX) manufactured by Nikkiso Co., Ltd., a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by Horiba, Ltd., Nikkiso For example, Microtrac HRA (X-100) manufactured by KK
  • the tap density of the composite compound is 1.9 g / cm 3 or more, preferably 1.9 ⁇ 2.8g / cm 3, more preferably 2.0 ⁇ 2.4g / cm 3, 2.0 ⁇ 2 .2 g / cm 3 is particularly preferred. Since this composite compound has a tap density of 1.9 g / cm 3 or more, the lithium-containing composite oxide obtained using this composite oxide is excellent in cycle characteristics. It is advantageous that the tap density is within the above-described preferable range because the electrode density can be increased.
  • the tap density can be obtained by dividing the mass of the sample filled in the container by the volume of the sample after tapping a predetermined number of times. The tap density is obtained by tapping 700 times, for example.
  • the tap density can be measured using, for example, a tap denser KYT-4000 manufactured by Seishin Enterprise Co., Ltd.
  • the average circularity of the composite compound is 0.960 or more, preferably 0.960 to 0.990, and more preferably 0.960 to 0.980. Since this composite compound has an average circularity of 0.960 or more, the lithium-containing composite oxide obtained using this composite compound is excellent in cycle characteristics. If the average circularity is within the above-described preferable range, it is advantageous because the electrode density can be increased.
  • the circularity is obtained by photographing a particle and dividing the circumference of a circle equivalent to the projected particle projection area by the circumference of the photographed particle image.
  • the average circularity is an average value of circularity of photographed particles.
  • the average circularity is measured, for example, by dispersing the particles in an aqueous medium by ultrasonic treatment or the like, and irradiating the particles passing through the flow cell with stroboscopic light so that the particles are photographed as a still image and analyzed. Is done.
  • the average circularity can be obtained, for example, by analyzing a particle image obtained using a flow type particle image analyzer (manufactured by Malvern, FPIA-3000).
  • the specific surface area of the complex compound is preferably 3.0 ⁇ 12.0m 2 / g, more preferably 4.0 ⁇ 10.0m 2 / g, particularly preferably 5.0 ⁇ 8.0m 2 / g. If the specific surface area is 3.0 m 2 / g or more, the capacity per mass is excellent, and if it is 12.0 m 2 / g or less, the electrode density can be increased. When the specific surface area is within the above-mentioned preferable range, it is advantageous in that the rate characteristics are excellent.
  • the specific surface area can be measured by, for example, the BET method using nitrogen gas.
  • the method for producing a composite compound of the present invention includes at least a core particle-containing liquid preparation step, a transfer step, and a particle growth step, and further includes other steps as necessary.
  • an aqueous solution containing Ni and Mn (hereinafter referred to as an aqueous solution (1)) and an alkali are continuously added to the first reaction vessel to precipitate the core particles, Is a step of obtaining a core particle-containing liquid containing
  • Ni, Mn, and Co have different solubility when the pH is changed, and thus may segregate when the core particles are precipitated.
  • Examples of a method for continuously adding the aqueous solution (1) and the alkali to the first reaction vessel include dropping and a method of pumping from a pipe inserted into the reaction solution.
  • the aqueous solution (1) is further preferably an aqueous solution containing Co.
  • the aqueous solution (1) can be obtained by dissolving a nickel compound and a manganese compound, and preferably a cobalt compound, in an aqueous medium.
  • the aqueous medium may contain only water or components other than water in addition to water. Examples of components other than water include methanol, ethanol, 1-propanol, 2-propanol, and polyol. Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
  • Components other than water are preferably 20% by mass or less, more preferably 10% by mass or less, particularly preferably 1% by mass or less, and most preferably not contained with respect to the aqueous medium. If there are few ratios of components other than water, it is excellent in terms of an environment, handleability, and cost.
  • the nickel compound, manganese compound, and cobalt compound include inorganic salts, oxides, hydroxides, and organic compounds containing each element.
  • inorganic salts include sulfates, nitrates, and carbonates.
  • the oxide include NiO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 , CoO, Co 2 O 3 , and Co 3 O 4 .
  • hydroxide examples include Ni (OH) 2 , Mn (OH) 2 , and Co (OH) 2 .
  • examples of the organic compound include fatty acid nickel, manganese citrate, fatty acid manganese, Co (OAc) 2 and the like. Among these, sulfate is preferable because of its high solubility and low corrosiveness to equipment.
  • the nickel compound, manganese compound, and cobalt compound may be the same type of compound or different types of compounds.
  • the content of the nickel compound in the aqueous solution (1) is preferably 1.0 to 4.0 mol / L, more preferably 1.5 to 3.5 mol / L, and particularly preferably 2.0 to 3.0 mol / L. .
  • the manganese compound content in the aqueous solution (1) is preferably 0.3 to 2.0 mol / L, more preferably 0.5 to 1.5 mol / L, and particularly preferably 0.7 to 1.3 mol / L. .
  • the content of the cobalt compound in the aqueous solution (1) is preferably 0.5 to 3.0 mol / L, more preferably 1.0 to 2.5 mol / L. 2 to 2.0 mol / L is particularly preferable.
  • the addition amount when the aqueous solution (1) is continuously added to the first reaction vessel is preferably 0.1 to 3.0 L / hour, more preferably 0.5 to 2.0 L / hour. Particularly preferred is 0 to 1.5 L / hour.
  • the alkali examples include a hydroxide or carbonate containing an alkali metal element. Specific examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate and the like.
  • the alkali is preferably used in the form of an aqueous solution, that is, as an alkaline aqueous solution.
  • the concentration of the alkaline aqueous solution is preferably 1 to 12 mol / kg, more preferably 6 to 12 mol / kg.
  • the amount of alkali added continuously to the first reaction vessel is preferably 0.01 to 0.5 L / hour, more preferably 0.02 to 0.1 L / hour as an aqueous alkali solution.
  • any compound that forms a complex with Ni and Mn may be used, and examples thereof include ammonia, ammonium sulfate, ammonium bicarbonate, and ammonium bicarbonate.
  • the amount (molar ratio) of the complexing agent with respect to the total amount of Ni, Co, Mn and the other components is preferably 0.01 to 10, and preferably 0.1 to 1 in order to suppress segregation of the metal in the particles. More preferred.
  • the core particle-containing liquid preparation step is preferably performed while maintaining the pH in the first reaction vessel at 11.0 to 13.5, and more preferably at 12.0 to 13.0. If the pH in the reaction vessel is maintained at 11.0 to 13.5, the contact between the aqueous solution (1) and the alkali occurs quickly, and the generation of core particles is dominant, which is preferable.
  • the core particles are preferably hydroxides.
  • the core particle-containing liquid preparation step is preferably performed at a temperature in the first reaction vessel of 45 to 70 ° C.
  • water may be placed in the first reaction vessel before the aqueous solution (1) and alkali are continuously added to the first reaction vessel.
  • examples of water include ion exchange water.
  • the moving step is a step of continuously transferring a part of the core particle-containing liquid in the first reaction vessel from the first reaction vessel to the second reaction vessel.
  • a specific method of the transfer step a method of transferring the nuclear particle-containing liquid overflowing from the first reaction vessel to the second reaction vessel, a pipe is provided in the upper part of the first reaction vessel, and the nucleus is passed through the pipe. Examples thereof include a method of transferring the particle-containing liquid to the second reaction vessel.
  • the method of transferring the core particle-containing liquid overflowing from the first reaction vessel to the second reaction vessel is preferable because it is simple.
  • aqueous solution (2) an aqueous solution containing Ni and Mn (hereinafter referred to as aqueous solution (2)) and an alkali are continuously added to a second reaction vessel containing the nuclear particle-containing liquid to grow the nuclear particles. Meanwhile, this is a step of removing a part of the supernatant from the obtained reaction solution. Also in the particle growth step, it is preferable to continuously add a complexing agent for the same reason as in the core particle-containing liquid preparation step.
  • the aqueous solution (2) may be the same aqueous solution as the aqueous solution (1) used in the core particle-containing liquid preparation step.
  • the method and amount of continuous addition are the same.
  • the alkali is the same as the alkali used in the core particle-containing liquid preparation step, and the method and amount of continuous addition are also the same.
  • the complexing agent is the same as the complexing agent used in the core particle-containing liquid preparation step.
  • the aqueous solution (2) and alkali are continuously added to the second reaction vessel to grow the core particles.
  • a part of water is removed from the obtained reaction liquid while growing the core particles.
  • Examples of the method for removing water include filtration.
  • the particle growth step is preferably performed while maintaining the pH in the second reaction vessel at 9.0 to 11.5, and more preferably at 9.5 to 10.5. If the pH in the reaction vessel is maintained at 9.0 to 11.5, it is preferable that the particle growth reaction proceeds easily.
  • the particle growth step is preferably performed at a temperature in the second reaction vessel of 20 to 40 ° C.
  • the growth of the formed core particles is suppressed, and the solid content concentration of the core particle-containing liquid is set to the core particle in order to suppress the bonding between the core particles. It is maintained to such an extent that bonding between them can be suppressed.
  • the supernatant liquid is partially removed from the reaction liquid to gradually increase the solid content concentration of the reaction liquid to increase the average circularity of the particles, and the particle size is uniform and has a sharp particle size distribution. Particles of the composite compound of the invention can be obtained.
  • the method for producing a lithium-containing composite oxide of the present invention includes at least a mixing step and a firing step.
  • the lithium-containing composite oxide of the present invention is obtained by the method for producing a lithium-containing composite oxide of the present invention.
  • the lithium-containing composite oxide is a composite oxide that can be used as a positive electrode active material of a lithium ion secondary battery.
  • the lithium-containing composite oxide obtained by the method for producing a lithium-containing composite oxide of the present invention is manufactured using this composite compound. Since this composite compound has a large tap density and a high average circularity of the particles, the lithium-containing composite oxide has a high tap density and an average circularity. As a result, the coating slurry containing the lithium-containing composite oxide has a low viscosity. Therefore, handling is easy and the solid content concentration in the slurry can be increased. Furthermore, a battery having a large electrode density formed on a current collector substrate and a large capacity per unit volume can be produced.
  • the cycle characteristics are very excellent.
  • the mixing step is a step of obtaining a mixture by mixing the lithium compound and the present composite compound.
  • the lithium compound serves as a lithium source for the lithium-containing composite oxide, and lithium hydroxide, lithium carbonate, lithium nitrate, and the like can be used.
  • the lithium compound used in the mixing step is a compound different from the lithium-containing composite oxide.
  • the amount of the lithium compound in the mixing is such that the molar ratio of lithium (Li) contained in the lithium compound (Li / Ni + Mn + Co) is 1.02 to 1.12 with respect to the total of Ni, Mn and Co contained in the composite compound. Is preferable, and an amount of 1.03 to 1.07 is more preferable.
  • a baking process is a process of baking the said mixture.
  • the firing temperature is preferably 870 to 970 ° C, more preferably 890 to 940 ° C.
  • the firing atmosphere is preferably an oxygen-containing atmosphere. Examples of the oxygen-containing atmosphere include an air atmosphere.
  • the lithium-containing composite oxide is preferably a compound represented by the following general formula (1).
  • Me is composed of Mg, Ca, Sr, Ba, Al, and Zr It is at least one selected from the group.
  • lithium-containing composite oxide examples include LiMn 0.5 Ni 0.5 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 1.02 Ni 0.49 Co 0.196 Mn 0.294 O 2, Li 1.04 Ni 0.480 Co 0.192 Mn 0.288 O 2, LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 1.99 F 0.01 and the like.
  • the kind and ratio of the metal element in the lithium-containing composite oxide can be measured, for example, by ICP measurement in the same manner as the composite compound.
  • the volume-based cumulative 50% diameter (D 50 ) in laser scattering particle size distribution measurement of the lithium-containing composite oxide is preferably 5 to 20 ⁇ m, more preferably 6 to 13 ⁇ m, and particularly preferably 7 to 10 ⁇ m.
  • D 50 is equal to or 5 ⁇ m or more, the electrode density is sufficiently high, if 20 ⁇ m or less, it is advantageous from the viewpoint of excellent charge-discharge efficiency and rate characteristics.
  • the ratio (D 90 / D 10 ) of the volume-based cumulative 90% diameter (D 90 ) and the volume-based cumulative 10% diameter (D 10 ) in the laser scattering particle size distribution measurement of the lithium-containing composite oxide is 2.10 or less. Preferably, 2.00 or less is more preferable. If (D 90 / D 10 ) of the lithium-containing composite oxide is 2.10 or less, it is advantageous in that the tap density is improved and the filling property is improved.
  • the tap density of the lithium-containing composite oxide is preferably 1.9 ⁇ 3.0g / cm 3, more preferably 2.0 ⁇ 2.7g / cm 3. If the tap density is 1.9 g / cm 3 or more, the electrode density is sufficiently high, and if the tap density is 3.0 g / cm 3 or less, the electrolyte easily penetrates into the particles, and battery characteristics such as rate characteristics are obtained. This is advantageous in terms of improvement.
  • the average circularity of the lithium-containing composite oxide is preferably 0.950 or more, and more preferably 0.960 or more. If the average circularity is 0.950 or more, it is advantageous in that the tap density is excellent, the filling property, and the expansion and contraction of the electrode are isotropic.
  • the specific surface area of the lithium-containing composite oxide is preferably 0.10 ⁇ 10m 2 / g, more preferably 0.20 ⁇ 1.0m 2 / g. If the specific surface area is within a preferred range, it is advantageous in that a high positive electrode active material-containing layer having a high discharge capacity is obtained and cycle characteristics are excellent.
  • the residual alkali amount of the lithium-containing composite oxide is preferably 1.50 mol% or less, and more preferably 1.30 mol% or less. If the residual alkali amount is 1.50 mol% or less, it is advantageous in that gelation of the slurry can be suppressed during electrode coating.
  • the residual alkali amount is a value (mol%) representing the amount of alkali eluted in water from 1 mol of Li in the lithium-containing composite oxide when the lithium-containing composite oxide is dispersed in water.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention contains a positive electrode active material content layer formation process at least, Preferably a pressurization process is included.
  • the positive electrode active material-containing layer forming step is a step of forming a positive electrode active material-containing layer containing a lithium-containing composite oxide, a binder, and a conductive material. Specifically, there is a method in which a coating liquid containing a lithium-containing composite oxide, a binder, a conductive material, and a solvent is applied onto the positive electrode current collector.
  • binder examples include fluororesins, polyolefins, polymers and copolymers having an unsaturated bond, acrylic acid polymers and copolymers, and the like.
  • fluororesin examples include polyvinylidene fluoride and polytetrafluoroethylene.
  • polyolefin examples include polyethylene and polypropylene.
  • polymer having an unsaturated bond examples include styrene / butadiene rubber, isoprene rubber, and butadiene rubber.
  • acrylic acid polymers examples include acrylic acid polymers and methacrylic acid polymers.
  • Examples of the conductive material include carbon black, graphite, and carbon fiber.
  • Examples of the carbon black include acetylene black and ketjen black.
  • Examples of the solvent in the coating solution include N-methylpyrrolidone.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, copper, and nickel.
  • Application methods include doctor blade coating.
  • the thickness of the positive electrode active material-containing layer is preferably 20 to 80 ⁇ m, more preferably 30 to 50 ⁇ m.
  • the pressurizing step is a step of pressurizing the positive electrode active material-containing layer formed on the positive electrode current collector with a roll press or the like in the positive electrode active material-containing layer forming step.
  • the pressurizing pressure is preferably 1 t (ton) / cm or less, and more preferably 0.5 t / cm or less.
  • the pressurizing pressure is preferably 0.1 t / cm or more.
  • the lithium-containing composite oxide of the present invention provides a positive electrode active material-containing layer having a high electrode density even when the pressure applied is low in the production of the positive electrode. Since the pressurizing pressure is low, a strong manufacturing facility that can withstand the high pressure is unnecessary. Moreover, it is thought that the decrease in the yield due to the damage of the positive electrode when manufacturing the positive electrode can be suppressed and the decrease in the safety when used for the lithium ion secondary battery can be suppressed because the pressurization pressure is low. .
  • the method for producing a lithium ion secondary battery of the present invention includes at least a positive electrode preparation step, a laminate preparation step, and a nonaqueous electrolyte application step.
  • a positive electrode preparation process is a process of producing a positive electrode, and is a manufacturing method of the positive electrode for lithium ion secondary batteries of this invention.
  • the laminate production step is not particularly limited as long as it is a step of producing a laminate by laminating the positive electrode, the separator, and the negative electrode, and can be appropriately selected according to the purpose.
  • Examples of the material for the separator include paper, cellophane, polyolefin nonwoven fabric, polyamide nonwoven fabric, glass fiber nonwoven fabric, and porous polypropylene.
  • Examples of the paper include kraft paper, vinylon mixed paper, and synthetic pulp mixed paper.
  • the shape of the separator is a sheet shape.
  • the structure of the separator may be a single layer structure or a laminated structure.
  • the negative electrode contains at least a negative electrode current collector and a negative electrode active material-containing layer.
  • Examples of the material of the negative electrode current collector include nickel, copper, and stainless steel.
  • the negative electrode active material-containing layer contains at least a negative electrode active material. Furthermore, a binder is contained as necessary.
  • the negative electrode active material may be any material that can occlude and release lithium ions, such as lithium metal, lithium alloy, lithium compound, carbon material, silicon carbide compound, silicon oxide compound, titanium sulfide, boron carbide compound, or silicon. , Tin, or an alloy mainly composed of cobalt.
  • Examples of carbon materials include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc. Can be mentioned.
  • Examples of the cokes include pitch coke, needle coke, and petroleum coke.
  • Examples of the fired organic polymer compound include those obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
  • Other materials that can occlude and release lithium ions at a relatively low potential include, for example, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and Li 2.6 Co 0.4 N. Can also be used as the negative electrode active material.
  • the binder is the same as the binder used in the positive electrode active material-containing layer forming step.
  • a slurry is prepared by mixing a negative electrode active material, a binder, and a solvent, and the prepared slurry is applied onto a negative electrode current collector, followed by drying and then pressing.
  • the method etc. are mentioned.
  • Nonaqueous electrolyte application process As a nonaqueous electrolyte provision process, what is necessary is just the process of making the said laminate contain a nonaqueous electrolyte, The method of inject
  • non-aqueous electrolyte examples include a non-aqueous electrolyte, an inorganic solid electrolyte, and a solid or gel polymer electrolyte in which an electrolyte salt is mixed or dissolved.
  • non-aqueous electrolyte examples include those prepared by appropriately combining an organic solvent and an electrolyte salt.
  • Organic solvents include cyclic carbonate, chain carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diglyme, triglyme, ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetate ester, butyrate ester And propionic acid esters.
  • Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate.
  • Examples of the chain carbonate include diethyl carbonate and dimethyl carbonate.
  • cyclic carbonates and chain carbonates are preferable, and propylene carbonate, dimethyl carbonate, and diethyl carbonate are more preferable. These may be used individually by 1 type and may use 2 or more types together.
  • electrolyte salt contained in the non-aqueous electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, LiCl, and LiBr.
  • Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
  • Examples of the polymer compound used in the solid polymer electrolyte in which the electrolyte salt is mixed or dissolved include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, And their derivatives, mixtures, and complexes.
  • Examples of the polymer compound used in the gel polymer electrolyte in which the electrolyte salt is mixed or dissolved include a fluorine polymer compound, polyacrylonitrile, a copolymer of polyacrylonitrile, polyethylene oxide, a copolymer of polyethylene oxide, and the like. Can be mentioned.
  • Examples of the fluorine-based polymer compound include poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene).
  • the matrix of the gel electrolyte is preferably a fluorine-based polymer compound from the viewpoint of stability against redox reaction.
  • ⁇ Particle size distribution measurement> The composite compound or lithium-containing composite oxide is dispersed in water using ultrasonic waves, and measured with a laser diffraction / scattering particle size distribution measurement device (device name: MT-3300EX) manufactured by Nikkiso Co., Ltd., frequency distribution and accumulation A volume distribution curve was obtained. From the obtained cumulative volume distribution curve, D 10 , D 50 , and D 90 were calculated to obtain D 90 / D 10 .
  • SSA Specific surface area
  • ⁇ Tap density> The tap density of the composite compound and the lithium-containing composite oxide was measured using a tap density measuring device (device name: Tap Denser KYT-4000K) manufactured by Seishin Enterprise Co., Ltd.
  • the positive electrode active material was filled in a 20 mL plastic tapping cell, and the tap density was calculated from the volume after tapping 700 times with a stroke of 20 mm.
  • ⁇ Average circularity> The average circularity of the composite compound and the lithium-containing composite oxide was measured using a flow type particle image analyzer (FPIA-3000, manufactured by Malvern).
  • Example 1 ⁇ Production of complex compound> Nickel sulfate (nickel sulfate (II) hexahydrate, manufactured by Wako Pure Chemical Industries, Ltd.), cobalt sulfate (cobalt sulfate (II) heptahydrate, manufactured by Wako Pure Chemical Industries, Ltd.), and manganese sulfate (manganese sulfate (II).
  • Nickel sulfate nickel sulfate (II) hexahydrate, manufactured by Wako Pure Chemical Industries, Ltd.
  • cobalt sulfate cobalt sulfate (II) heptahydrate, manufactured by Wako Pure Chemical Industries, Ltd.
  • manganese sulfate manganese sulfate
  • the solution obtained by dissolving pentahydrate, manufactured by Wako Pure Chemical Industries, Ltd.) in ion-exchanged water is filtered to obtain 2.5 mol / L nickel sulfate,
  • ion-exchanged water 500 g was put into a first reaction tank having a capacity of 1 L, and stirred at 400 rpm while being kept at 60 ° C. while bubbling with nitrogen gas.
  • the aqueous solution (1) was continuously supplied at a rate of 1.2 L / hour and a 28% by mass aqueous ammonia solution at a rate of 0.03 L / hour at the same time.
  • the pH in the reaction vessel was maintained at 12.5.
  • the core particle-containing liquid obtained in the first reaction tank was stored in the second reaction tank (capacity: 2 L) until the volume reached 80% due to overflow from the first reaction tank.
  • the core particle-containing liquid was stirred at 400 rpm while being kept at 30 ° C. while bubbling with nitrogen gas in the second reaction tank.
  • the aqueous solution (1) was continuously added at 1.2 L / hour and a 28% by weight aqueous ammonia solution at 0.03 L / hour at the same time, while the 18 mol / L aqueous sodium hydroxide solution was used.
  • the pH in the second reaction tank was kept at 10.
  • the supernatant liquid was extracted from the reaction liquid by suction filtration through a filter, the amount of liquid in the reaction system was adjusted, and particles were grown at 30 ° C. for 72 hours. Thereafter, the reaction solution was filtered and then washed with water to obtain a composite compound.
  • the obtained composite compound was dried at 120 ° C. for 12 hours to obtain a composite compound powder.
  • Table 1 shows the particle size distribution (D 10 , D 50 , D 90 , D 90 / D 10 ), specific surface area, tap density, and average circularity of this composite compound.
  • FIG. 1 shows the particle size distribution of this composite compound.
  • lithium-containing composite oxide 200.00 g of the composite compound and 83.67 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg are mixed and fired at 910 ° C. for 8 hours in an air atmosphere.
  • Li 2 CO 3 lithium carbonate
  • the composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
  • Table 2 shows the particle size distribution (D 10 , D 50 , D 90 , D 90 / D 10 ), specific surface area, tap density, and average circularity of the obtained lithium-containing composite oxide powder.
  • Example 2 ⁇ Production of lithium-containing composite oxide> 200.00 g of the composite compound obtained in the same manner as in the method described in Example 1, 83.59 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg, lithium fluoride ( (LiF, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.06 g were mixed, and charged composition Li 1.014 Ni 0.495 in the same manner as in Example 1 except that the mixture was baked at 910 ° C. for 8 hours in the air atmosphere. A lithium-containing composite oxide of Co 0.197 Mn 0.294 O 1.999 F 0.001 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio. About the obtained lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
  • Example 3 ⁇ Production of complex compound>
  • Example 1 a composite compound was obtained in the same manner as in Example 1 except that the conditions of the particle growth step in the second reaction vessel were changed to 30 hours at 96C. About the obtained composite compound, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 1.
  • Example 1 ⁇ Production of lithium-containing composite oxide>
  • the lithium-containing composite oxidation of Li 1.014 Ni 0.491 Co 0.198 Mn 0.297 O 2 was performed in the same manner as in Example 1 except that the composite compound obtained above was used. I got a thing.
  • the composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
  • Example 4 Provide of complex compound>
  • a composite compound was obtained in the same manner as in Example 1 except that the conditions of the particle growth step in the second reaction tank were changed to 30 hours at 120 ° C.
  • the obtained composite compound it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 1.
  • Example 5 ⁇ Production of complex compound>
  • the holding temperature of the first reaction vessel was changed to 70 ° C.
  • the conditions of the particle growth step in the second reaction vessel were changed to 30 hours at 60 ° C., and in the same manner as in Example 1.
  • a composite compound was obtained.
  • Example 1 ⁇ Production of lithium-containing composite oxide>
  • the lithium-containing composite oxidation of Li 1.014 Ni 0.493 Co 0.198 Mn 0.295 O 2 was performed in the same manner as in Example 1 except that the composite compound obtained above was used. I got a thing.
  • the composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
  • ion-exchanged water 500 g was put into the reaction vessel, and stirred at 400 rpm while being kept at 60 ° C. while bubbling with nitrogen gas.
  • the aqueous solution (1) was continuously supplied at a rate of 1.2 L / hour and a 28% by mass aqueous ammonia solution at a rate of 0.03 L / hour simultaneously, while 18 mol / L aqueous sodium hydroxide solution was used.
  • the pH in the reaction vessel was maintained at 12.5.
  • the supernatant liquid was removed from the reaction solution by suction filtration through a filter to adjust the amount of liquid in the reaction system, and particles were grown at 60 ° C. for 72 hours. Thereafter, the obtained reaction solution was filtered and then washed with water to obtain a composite compound.
  • the obtained composite compound was dried at 120 ° C. for 12 hours to obtain composite compound powder.
  • the particle size distribution of the composite compound was measured in an aqueous solvent. The results are shown in Table 1.
  • FIG. 1 shows the particle size distribution of this composite compound. The tap density, specific surface area, and average circularity of the composite compound were measured. The results are shown in Table 1.
  • lithium-containing composite oxide 200.00 g of the composite compound and 83.67 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg are mixed, and the mixture is baked at 910 ° C. for 8 hours in an air atmosphere.
  • the composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
  • About the obtained lithium containing complex oxide it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
  • Comparative Example 2 ⁇ Production of composite compound and lithium-containing composite oxide> A composite compound was obtained in the same manner as in Comparative Example 1 except that the reaction conditions in Comparative Example 1 were changed to 72 hours at pH 10.0 and 30 ° C. Furthermore, a lithium-containing composite oxide having a charging composition Li 1.014 Ni 0.493 Co 0.196 Mn 0.297 O 2 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio. About the obtained complex compound and lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
  • Comparative Example 3 ⁇ Production of composite compound and lithium-containing composite oxide>
  • a composite compound was obtained in the same manner as in Comparative Example 1 except that the conditions of the particle growth process were changed to 30 ° C. for 60 hours.
  • a lithium-containing composite oxide having a charging composition Li 1.014 Ni 0.495 Co 0.197 Mn 0.294 O 2 was obtained.
  • the composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
  • About the obtained complex compound and lithium containing complex oxide it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
  • positive electrode active materials As positive electrode active materials, positive electrode active materials (lithium-containing composite oxides) of Examples 1 to 5 and Comparative Examples 1 to 6, respectively, and acetylene black (conductive material, trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) And a polyvinylidene fluoride solution (solvent: N-methylpyrrolidone) containing 12.1% by mass of polyvinylidene fluoride (binder, trade name: KFL # 1120, manufactured by Kureha Chemical Industry Co., Ltd.), and N-methylpyrrolidone Addition to make a slurry.
  • solvent N-methylpyrrolidone
  • the ratio of the positive electrode active material, acetylene black, and polyvinylidene fluoride during mixing was 90/5/5 in mass ratio (positive electrode active material / acetylene black / polyvinylidene fluoride).
  • the slurry was applied to one side of an aluminum foil having an average thickness of 20 ⁇ m (positive electrode current collector, trade name: E-FOIL, manufactured by Toyo Aluminum Co., Ltd.) using a doctor blade. It dried at 120 degreeC and produced the positive electrode sheet by performing roll press rolling (0.3t / cm) twice.
  • the positive electrode sheets obtained from the positive electrode active materials of Examples 1 to 5 were respectively positive electrode sheets 1 to 5 and the positive electrode sheets obtained from the positive electrode active materials of Comparative Examples 1 to 6 were respectively positive electrode sheets 6 to 11. And
  • Lithium foil with an average thickness of 500 ⁇ m Lithium foil, manufactured by Honjo Chemical Co., Ltd.
  • Negative electrode current collector Stainless steel plate with an average thickness of 1 mm
  • Separator Porous polypropylene with an average thickness of 25 ⁇ m (Celguard # 2500, manufactured by Celgard)
  • Lithium ion secondary batteries using the positive electrode sheets 1 to 11 are referred to as lithium batteries 1 to 11, respectively.
  • Electrode density is measured by punching an electrode coated on an aluminum foil into a disk having a diameter of 1.8 cm, measuring the mass with an electronic balance, and measuring the thickness with a micrometer. Next, an aluminum foil not coated with an electrode is punched out to a diameter of 1.8 cm, and the mass and thickness are similarly measured.
  • the electrode density was calculated by the following formula (2). (Thickness of coated electrode ⁇ thickness of aluminum foil) ⁇ 0.9 2 ⁇ ⁇ (circumferential ratio) / (mass of coated electrode ⁇ mass of aluminum foil) Formula (2)
  • Examples 1 to 5 even if the press pressure for forming the positive electrode active material-containing layer is low, a higher electrode density than Comparative Examples 1 to 6 can be obtained, and good initial characteristics, rate characteristics, and cycle characteristics can be obtained. It was. The initial capacity, initial efficiency, initial voltage, and rate characteristics of Examples 1 to 5 were excellent results together with Comparative Examples 1 to 6.
  • the cycle characteristics of Examples 1 to 5 were 1.0% or more superior to the cycle characteristics of 93.1% of Comparative Example 5 that showed the best results among the comparative examples.
  • the cycle characteristics empirically tend to be proportional to the half power of the number of cycles.
  • 94.0% in 50 cycles is 73.0%
  • 93.0% in 50 cycles is 69.0%.
  • 94.0% in 50 cycles is 40%
  • 93.0% is 30%. Therefore, it was confirmed that Examples 1 to 5 were very excellent in terms of cycle characteristics as compared with Comparative Examples 1 to 6.
  • the cycle characteristic was 96.4%, which was a very good result.
  • the composite compound of the present invention can obtain a high electrode density even when the pressing pressure during production is low, has high safety, is excellent in discharge capacity per unit volume, and rate characteristics, and is very excellent in cycle characteristics. It can be suitably used as a precursor of a lithium-containing composite oxide.
  • the lithium-containing composite oxide of the present invention can obtain a high electrode density even when the pressing pressure during production is low, has high safety, excellent discharge capacity per unit volume, and rate characteristics, and further has cycle characteristics. Since it is very excellent, it can be suitably used for a lithium ion secondary battery. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-092486 filed on April 25, 2013 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided are: a composite compound which is useful as a precursor of a lithium-containing composite oxide that can achieve a high electrode density even when the pressing pressure applied during production is low, has an excellent electrical discharge capacity per unit area and excellent rate properties and also has extremely superior cycle properties; and others. A composite compound which contains nickel and manganese, and has a ratio of the diameter of 90% cumulative volume (D90) to the diameter of 10% cumulative volume (D10) (i.e., D90/D10) of 2.00 or less in a laser scattering particle size distribution measurement, a tap density of 1.9 g/cm3 or more and an average circularity degree of 0.960 or more.

Description

複合化合物、リチウム含有複合酸化物、及びそれらの製造方法Composite compound, lithium-containing composite oxide, and production method thereof
 本発明は、リチウム含有複合酸化物の前駆体として有用な複合化合物、及びその製造方法、リチウム含有複合酸化物、及びその製造方法、リチウムイオン二次電池用正極の製造方法、並びにリチウムイオン二次電池の製造方法に関する。 The present invention relates to a composite compound useful as a precursor of a lithium-containing composite oxide, and a method for producing the same, a lithium-containing composite oxide, and a method for producing the same, a method for producing a positive electrode for a lithium ion secondary battery, and a lithium ion secondary The present invention relates to a battery manufacturing method.
 リチウムイオン二次電池は、携帯電話、ノート型パソコンなどの携帯型電子機器に広く用いられている。リチウムイオン二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMnなどの、リチウムと遷移金属等との複合酸化物(以下、「リチウム含有複合酸化物」と称することがある。)が用いられている。 Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers. Examples of the positive electrode active material for the lithium ion secondary battery include composite oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , and LiMn 2 O 4 (hereinafter, "Sometimes referred to as" lithium-containing composite oxide ").
 近年、携帯型電子機器、車載用などに用いるリチウムイオン二次電池には、小型化及び軽量化、更には長期使用可能性が求められている。そのため、正極活物質には、単位体積あたりの放電容量、及び充放電サイクルを繰り返した後に放電容量が低下しない特性(以下、「サイクル特性」と称することがある。)の更なる向上と、安全性との両立が求められている。特に、サイクル特性が不十分であると、例えば、携帯型電子機器においては、1回の充電における使用可能時間が経時的に低下するため、携帯型電子機器の商品価値が低下してしまう。そのため、サイクル特性の向上が強く求められている。 In recent years, lithium ion secondary batteries used for portable electronic devices, in-vehicle use, and the like are required to be smaller and lighter, and to be usable for a long time. Therefore, the positive electrode active material has a further improvement in the discharge capacity per unit volume and the characteristics that the discharge capacity does not decrease after repeated charge / discharge cycles (hereinafter, sometimes referred to as “cycle characteristics”), and safety. There is a need for compatibility with sex. In particular, if the cycle characteristics are insufficient, for example, in a portable electronic device, the usable time in one charge decreases with time, so the commercial value of the portable electronic device decreases. Therefore, improvement in cycle characteristics is strongly demanded.
 単位体積あたりの放電容量は、単位質量あたりの放電容量と正極活物質の充填密度によって決まる。そのため、正極における正極活物質の充填密度(以下、「電極密度」と称することがある。)を向上させるために、正極活物質の粒径、及び粒度分布を制御することが検討されている。また、正極における正極活物質の充填密度を向上させるために、正極活物質粒子の形状を球状又は板状に制御することが検討されている。 The discharge capacity per unit volume is determined by the discharge capacity per unit mass and the packing density of the positive electrode active material. Therefore, in order to improve the packing density of the positive electrode active material in the positive electrode (hereinafter sometimes referred to as “electrode density”), it has been studied to control the particle size and particle size distribution of the positive electrode active material. In addition, in order to improve the packing density of the positive electrode active material in the positive electrode, it has been studied to control the shape of the positive electrode active material particles into a spherical shape or a plate shape.
 特許文献1には、正極活物質の体積基準の粒度分布において、10μm以下の粒子の割合を26~60体積%にすることで、プレス密度を向上させる技術が提案されている。しかし、この提案の技術では、正極活物質の平均粒径が大きいためリチウムの拡散が遅くなり、レート特性が低下する、また、微粒子の割合が増えるため安全性が低下するという問題がある。 Patent Document 1 proposes a technique for improving the press density by setting the ratio of particles of 10 μm or less to 26 to 60% by volume in the volume-based particle size distribution of the positive electrode active material. However, this proposed technique has a problem that the average particle size of the positive electrode active material is large, so that the diffusion of lithium is delayed, the rate characteristics are lowered, and the proportion of fine particles is increased, so that the safety is lowered.
 特許文献2には、組成、及び粒径の異なる大小の正極活物質粒子を混合する技術が提案されている。しかし、この提案の技術では、2種類の正極活物質を個別に合成する工程、及びそれらを混合する工程が必要であり、製造工程が煩雑という問題がある。 Patent Document 2 proposes a technique for mixing large and small positive electrode active material particles having different compositions and particle sizes. However, this proposed technique requires a step of individually synthesizing two kinds of positive electrode active materials and a step of mixing them, and there is a problem that the manufacturing process is complicated.
 特許文献3には、短軸粒子径と長軸粒子径との比率(短軸粒子径/長軸粒子径)が0.5~1.0の範囲である粒子を熱分解することにより、正極活物質における結晶子及び粒子の形状を立体的にほぼ等方的形状にする技術が提案されている。しかし、この提案の技術では、得られる粒子の球状性が十分ではなく、十分な充填密度が得られないという問題がある。 Patent Document 3 discloses that a positive electrode is obtained by thermally decomposing particles having a ratio of a short axis particle diameter to a long axis particle diameter (short axis particle diameter / long axis particle diameter) in the range of 0.5 to 1.0. A technique has been proposed in which crystallites and particles in an active material are three-dimensionally approximately isotropic. However, this proposed technique has a problem that the obtained particles are not sufficiently spherical and a sufficient packing density cannot be obtained.
 特許文献4には、正極活物質の粒子径と平均円形度との間に正の相関関係を有する粒子を含むことで充填性を向上させる技術が提案されている。しかし、この提案の技術では、平均円形度の高い粒子と平均円形度の低い粒子が混在するため、リチウムの脱挿入に伴う体積変化が等方的でなく、充放電を繰り返すと電極に亀裂が生じるなどサイクル特性に問題がある。更に、比表面積の大きな小粒子が存在することにより反応性が高まるために安全性に問題がある。 Patent Document 4 proposes a technique for improving the filling properties by including particles having a positive correlation between the particle diameter of the positive electrode active material and the average circularity. However, in this proposed technique, particles with a high average circularity and particles with a low average circularity coexist, so the volume change due to lithium insertion / extraction is not isotropic. There is a problem in the cycle characteristics such as the occurrence. Furthermore, the presence of small particles having a large specific surface area increases the reactivity, which poses a safety problem.
 正極における正極活物質の充填密度を向上させる他の方法としては、例えば、正極を製造する際に高い圧力を加える方法が挙げられる。しかし、この方法では、高い圧力に耐える丈夫な製造設備が必要である。また、製造された正極が切れ易く、歩留まりの低下や、リチウムイオン二次電池に用いた際に安全性の低下という問題がある。 As another method for improving the packing density of the positive electrode active material in the positive electrode, for example, there is a method of applying a high pressure when manufacturing the positive electrode. However, this method requires a robust manufacturing facility that can withstand high pressures. In addition, the manufactured positive electrode is easily cut off, and there is a problem that the yield is lowered and the safety is lowered when used for a lithium ion secondary battery.
日本特開2012-121805号公報Japanese Unexamined Patent Publication No. 2012-121805 日本特開2012-74246号公報Japanese Unexamined Patent Publication No. 2012-74246 日本特開2003-346809号公報Japanese Unexamined Patent Publication No. 2003-346809 日本特開2009-283353号公報Japanese Unexamined Patent Publication No. 2009-283353
 本発明は、正極活物質含有層を形成する際のプレス圧力が低くても、密度の高い電極を製造でき、単位体積あたりの放電容量、及びレート特性に優れ、更にサイクル特性が非常に優れるリチウム含有複合酸化物の前駆体として有用な複合化合物、及びその製造方法を提供することを課題とする。また本発明は、前記複合化合物を用いたリチウム含有複合酸化物、及びその製造方法を提供することを課題とする。さらに本発明は、前記リチウム含有複合酸化物を用いたリチウムイオン二次電池用正極の製造方法、並びに前記正極を用いたリチウムイオン二次電池の製造方法を提供することを課題とする。 The present invention is capable of producing a high-density electrode even when the pressing pressure when forming the positive electrode active material-containing layer is low, and is excellent in discharge capacity per unit volume, rate characteristics, and extremely excellent cycle characteristics. It is an object of the present invention to provide a composite compound that is useful as a precursor of a contained composite oxide, and a production method thereof. Moreover, this invention makes it a subject to provide the lithium containing complex oxide using the said complex compound, and its manufacturing method. Furthermore, this invention makes it a subject to provide the manufacturing method of the positive electrode for lithium ion secondary batteries using the said lithium containing complex oxide, and the manufacturing method of a lithium ion secondary battery using the said positive electrode.
 本発明者は、前記課題を解決すべく、鋭意検討した結果、リチウム含有複合酸化物の形状、及び粒度分布は、リチウム含有複合酸化物の前駆体である複合化合物の形状、及び粒度分布に大きく影響を受けることを見出した。
 本発明は、以下の構成を有する複合化合物、及びその製造方法、リチウム含有複合酸化物、及びその製造方法、リチウムイオン二次電池用正極の製造方法、並びにリチウムイオン二次電池の製造方法を提供する。
As a result of intensive studies to solve the above problems, the present inventors have found that the shape and particle size distribution of the lithium-containing composite oxide are greatly different from the shape and particle size distribution of the composite compound that is a precursor of the lithium-containing composite oxide. Found to be affected.
The present invention provides a composite compound having the following configuration, a method for producing the same, a lithium-containing composite oxide, a method for producing the same, a method for producing a positive electrode for a lithium ion secondary battery, and a method for producing a lithium ion secondary battery. To do.
[1] ニッケル及びマンガンを含有し、レーザー散乱粒度分布測定における体積基準累積90%径(D90)と体積基準累積10%径(D10)との比(D90/D10)が2.00以下であり、タップ密度が1.9g/cm以上であり、平均円形度が0.960以上であることを特徴とする複合化合物。
[2] 水酸化物である上記[1]に記載の複合化合物。
[3] 体積基準累積50%径(D50)が5.0~13.0μmである上記[1]または[2]に記載の複合化合物。
[4] 更にコバルトを含有する上記[1]~[3]のいずれかに記載の複合化合物。
[5] 複合化合物におけるニッケルの含有量が、ニッケル、マンガン及びコバルトの合計に対して、44~68mol%であり、マンガンの含有量が22~44mol%であり、コバルトの含有量が4~28mol%である上記[4]に記載の複合化合物。
[6] 上記[1]~[5]のいずれかに記載の複合化合物の製造方法であって、
 ニッケル及びマンガンを含有する水溶液とアルカリとを第1の反応容器に連続的に添加して核粒子を析出して、前記核粒子を含有する核粒子含有液を得る核粒子含有液作製工程と、
 第1の反応容器内の前記核粒子含有液の一部を、第1の反応容器から第2の反応容器へ連続的に移す移動工程と、
 前記核粒子含有液が入った第2の反応容器に、ニッケル及びマンガンを含有する水溶液とアルカリとを連続的に添加して核粒子を成長させつつ、得られた反応液から一部の水を除去する粒子成長工程とを含むことを特徴とする複合化合物の製造方法。
[7] 移動工程が、第1の反応容器からオーバーフローした核粒子含有液を、第2の反応容器へ移す工程である上記[6]に記載の複合化合物の製造方法。
[8] リチウム化合物と、上記[1]~[5]のいずれかに記載の複合化合物とを混合して混合物を得る混合工程と、
 前記混合物を焼成する焼成工程とを含むことを特徴とするリチウム含有複合酸化物の製造方法。
[9] リチウム含有複合酸化物が、下記一般式(1)で表される化合物である上記[8]に記載のリチウム含有複合酸化物の製造方法。
  LiNiMnCoMe ・・・一般式(1)
 ただし、前記一般式(1)において、1.02≦a≦1.12、0<x≦1.0、0<y≦1.0、0≦z≦1.0、0≦b≦0.3、0.90≦x+y+z+b≦1.05、1.9≦c≦2.1、及び0≦d≦0.03であり、Meは、Mg、Ca、Sr、Ba、Al、及びZrからなる群から選ばれる少なくとも一種である。
[10] 上記[8]または[9]に記載のリチウム含有複合酸化物の製造方法により得られることを特徴とするリチウム含有複合酸化物。
[11] タップ密度が1.9g/cm~3.0g/cmであり、平均円形度が0.950以上である上記[10]に記載のリチウム含有複合酸化物。
[12] 上記[10]または[11]に記載のリチウム含有複合酸化物と、バインダーと、導電材と、溶媒とを含有する塗布液を、正極集電体上に塗布して、リチウム含有複合酸化物と、バインダーと、導電材とを含有する正極活物質含有層を形成することを特徴とするリチウムイオン二次電池用正極の製造方法。
[13] 正極活物質含有層に1t/cm以下の圧力を加える加圧工程を含む上記[12]に記載のリチウムイオン二次電池用正極の製造方法。
[14] 正極を作製する正極作製工程と、
 前記正極と、セパレータと、負極とを積層して積層物を作製する積層物作製工程と、
 前記積層物に非水電解質を含有させる非水電解質付与工程とを含み、
 前記正極作製工程が、上記[12]または[13]に記載のリチウムイオン二次電池用正極の製造方法であることを特徴とするリチウムイオン二次電池の製造方法。
[1] It contains nickel and manganese, and the ratio (D 90 / D 10 ) of volume-based cumulative 90% diameter (D 90 ) and volume-based cumulative 10% diameter (D 10 ) in laser scattering particle size distribution measurement is 2. A composite compound characterized by having a tap density of 1.9 g / cm 3 or more and an average circularity of 0.960 or more.
[2] The composite compound according to [1], which is a hydroxide.
[3] The composite compound according to the above [1] or [2], wherein the volume-based cumulative 50% diameter (D 50 ) is 5.0 to 13.0 μm.
[4] The composite compound according to any one of [1] to [3], further containing cobalt.
[5] The content of nickel in the composite compound is 44 to 68 mol%, the content of manganese is 22 to 44 mol%, and the content of cobalt is 4 to 28 mol based on the total of nickel, manganese and cobalt. % Of the composite compound according to the above [4].
[6] A method for producing a composite compound according to any one of [1] to [5] above,
An aqueous solution containing nickel and manganese and an alkali are continuously added to the first reaction vessel to precipitate the core particles, and a core particle-containing liquid preparation step for obtaining a core particle-containing liquid containing the core particles;
A moving step of continuously transferring a part of the core particle-containing liquid in the first reaction vessel from the first reaction vessel to the second reaction vessel;
To the second reaction vessel containing the core particle-containing liquid, an aqueous solution containing nickel and manganese and an alkali are continuously added to grow the core particles, and a part of water is obtained from the obtained reaction liquid. A method for producing a composite compound, comprising a particle growth step to be removed.
[7] The method for producing a complex compound according to the above [6], wherein the transfer step is a step of transferring the core particle-containing liquid overflowing from the first reaction vessel to the second reaction vessel.
[8] A mixing step of mixing the lithium compound and the composite compound according to any one of [1] to [5] to obtain a mixture;
A method for producing a lithium-containing composite oxide, comprising a firing step of firing the mixture.
[9] The method for producing a lithium-containing composite oxide according to the above [8], wherein the lithium-containing composite oxide is a compound represented by the following general formula (1).
Li a Ni x Mn y Co z Me b O c F d ··· formula (1)
However, in the general formula (1), 1.02 ≦ a ≦ 1.12, 0 <x ≦ 1.0, 0 <y ≦ 1.0, 0 ≦ z ≦ 1.0, 0 ≦ b ≦ 0. 3, 0.90 ≦ x + y + z + b ≦ 1.05, 1.9 ≦ c ≦ 2.1, and 0 ≦ d ≦ 0.03, and Me is composed of Mg, Ca, Sr, Ba, Al, and Zr It is at least one selected from the group.
[10] A lithium-containing composite oxide obtained by the method for producing a lithium-containing composite oxide according to [8] or [9].
[11] The lithium-containing composite oxide according to the above [10], wherein the tap density is 1.9 g / cm 3 to 3.0 g / cm 3 and the average circularity is 0.950 or more.
[12] A coating solution containing the lithium-containing composite oxide according to the above [10] or [11], a binder, a conductive material, and a solvent is applied onto the positive electrode current collector, and the lithium-containing composite A method for producing a positive electrode for a lithium ion secondary battery, comprising forming a positive electrode active material-containing layer containing an oxide, a binder, and a conductive material.
[13] The method for producing a positive electrode for a lithium ion secondary battery according to the above [12], comprising a pressurizing step of applying a pressure of 1 t / cm or less to the positive electrode active material-containing layer.
[14] A positive electrode manufacturing step of manufacturing a positive electrode;
A laminate production step of producing a laminate by laminating the positive electrode, the separator, and the negative electrode;
Including a nonaqueous electrolyte application step of containing a nonaqueous electrolyte in the laminate,
The method for producing a lithium ion secondary battery, wherein the positive electrode preparation step is the method for producing a positive electrode for a lithium ion secondary battery according to the above [12] or [13].
 本発明によると、従来における前記諸問題を解決することができ、正極活物質含有層を形成する際のプレス圧力が低くても、密度の高い電極を製造でき、単位体積あたりの放電容量、及びレート特性に優れ、更にサイクル特性が非常に優れるリチウム含有複合酸化物の前駆体として有用な複合化合物、及びその製造方法を提供することができる。また、本発明によると、前記複合化合物を用いたリチウム含有複合酸化物、及びその製造方法を提供することができる。さらに本発明によると、前記リチウム含有複合酸化物を用いたリチウムイオン二次電池用正極の製造方法、並びに前記正極を用いたリチウムイオン二次電池の製造方法を提供することができる。 According to the present invention, the conventional problems can be solved, and even when the press pressure when forming the positive electrode active material-containing layer is low, a high-density electrode can be produced, the discharge capacity per unit volume, and It is possible to provide a composite compound useful as a precursor of a lithium-containing composite oxide that has excellent rate characteristics and extremely excellent cycle characteristics, and a method for producing the same. Moreover, according to this invention, the lithium containing complex oxide using the said complex compound and its manufacturing method can be provided. Furthermore, according to this invention, the manufacturing method of the positive electrode for lithium ion secondary batteries using the said lithium containing complex oxide and the manufacturing method of a lithium ion secondary battery using the said positive electrode can be provided.
図1は、実施例1及び比較例1の複合化合物の体積粒度分布曲線である。1 is a volume particle size distribution curve of the composite compound of Example 1 and Comparative Example 1. FIG. 図2は、実施例1~5、及び比較例1~6における複合化合物のタップ密度と、リチウム含有複合酸化物のタップ密度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the tap density of the composite compound in Examples 1 to 5 and Comparative Examples 1 to 6 and the tap density of the lithium-containing composite oxide.
 本明細書において、「前駆体」とは、後述するリチウム化合物と混合、焼成することでリチウム含有複合酸化物を得ることができる化合物をいう。
(複合化合物)
 本発明の複合化合物(以下、本複合化合物という)は、ニッケル(Ni)とマンガン(Mn)とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 本複合化合物は、レーザー散乱粒度分布測定における体積基準累積90%径(D90)と体積基準累積10%径(D10)との比(D90/D10)が2.00以下であり、タップ密度が1.9g/cm以上であり、平均円形度が0.960以上である。
 なお、本複合化合物は、リチウム含有複合酸化物の前駆体であって、リチウムを含有しない化合物である。
 本複合化合物におけるNiとMnのモル比(Ni/Mn)は、1.5~3.0であることが好ましく、1.65~2.05であることがさらに好ましい。
In the present specification, the “precursor” refers to a compound capable of obtaining a lithium-containing composite oxide by mixing and baking with a lithium compound described later.
(Composite compound)
The composite compound of the present invention (hereinafter referred to as the present composite compound) contains at least nickel (Ni) and manganese (Mn), and further contains other components as necessary.
This composite compound has a ratio (D 90 / D 10 ) of a volume-based cumulative 90% diameter (D 90 ) and a volume-based cumulative 10% diameter (D 10 ) in laser scattering particle size distribution measurement of 2.00 or less, The tap density is 1.9 g / cm 3 or more, and the average circularity is 0.960 or more.
In addition, this composite compound is a precursor of lithium containing composite oxide, Comprising: It is a compound which does not contain lithium.
The molar ratio of Ni and Mn (Ni / Mn) in the composite compound is preferably 1.5 to 3.0, and more preferably 1.65 to 2.05.
 本複合化合物は、レート特性向上のために、更にコバルト(Co)を含有することが好ましい。
 本複合化合物において、Niの量が多いほど、これを使用して得られるリチウム含有複合酸化物の容量を大きくできるが、安全性が低下する。そのため、本複合化合物のNi、MnおよびCoの合計に対して、Niの含有量は、44~68mol%が好ましく、48~58mol%がより好ましい。
 本複合化合物において、Mnは充放電容量に寄与せず、層状構造維持するためである。そのため、本複合化合物のNi、MnおよびCoの合計に対して、Mnの含有量は、22~44mol%が好ましく、26~36mol%がより好ましい。
 本複合化合物において、Coが少量存在すると、これを使用して得られるリチウム含有複合酸化物のレート特性が向上する。そのため、本複合化合物のNi、MnおよびCoの合計に対して、Coの含有量は、4~28mol%が好ましく、16~24mol%がより好ましい。
The composite compound preferably further contains cobalt (Co) in order to improve rate characteristics.
In this composite compound, the greater the amount of Ni, the greater the capacity of the lithium-containing composite oxide obtained using this, but the safety is reduced. Therefore, the content of Ni is preferably 44 to 68 mol% and more preferably 48 to 58 mol% with respect to the total of Ni, Mn and Co in the composite compound.
In this composite compound, Mn does not contribute to the charge / discharge capacity, but maintains a layered structure. Therefore, the content of Mn is preferably 22 to 44 mol% and more preferably 26 to 36 mol% with respect to the total of Ni, Mn and Co of the present composite compound.
In this composite compound, when a small amount of Co is present, the rate characteristics of the lithium-containing composite oxide obtained by using it are improved. Therefore, the Co content is preferably 4 to 28 mol% and more preferably 16 to 24 mol% with respect to the total of Ni, Mn and Co in the present composite compound.
 複合化合物におけるNi、Mn及びCoの含有量は、例えば、複合化合物を酸に溶解し、得られた液をICP(高周波誘導結合プラズマ)測定することにより測定できる。
 本複合酸化物に含まれるその他の成分は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、アルミニウム(Al)、およびジルコニウム(Zr)からなる群から選ばれる少なくとも一種が好ましい。
 本複合化合物は、炭酸塩、酢酸塩、水酸化物、オキシ水酸化物、およびそれらの混合物であることが挙げられる。本複合化合物は、タップ密度を高くできることから、水酸化物であることが好ましい。
The contents of Ni, Mn and Co in the composite compound can be measured, for example, by dissolving the composite compound in an acid and measuring the obtained liquid by ICP (high frequency inductively coupled plasma).
The other component contained in the composite oxide is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), aluminum (Al), and zirconium (Zr). Is preferred.
Examples of the composite compound include carbonates, acetates, hydroxides, oxyhydroxides, and mixtures thereof. The composite compound is preferably a hydroxide because the tap density can be increased.
 本複合化合物としては、Mn0.5Ni0.5(OH)、Ni0.5Co0.2Mn0.3(OH)、Ni0.6Co0.2Mn0.2(OH)などが挙げられる。 
 本複合化合物の(D90/D10)は、2.00以下であり、1.70~1.98が好ましく、1.80~1.95がより好ましい。本複合化合物の(D90/D10)は、2.00以下であるため、本複合化合物を使用して得られるリチウム含有複合酸化物はサイクル特性に優れる。(D90/D10)が、前記した好ましい範囲内であれば、電極密度を大きくできるため有利である。
 本複合化合物のレーザー散乱粒度分布測定における体積基準累積50%径(D50)は、レート特性の点から、5.0~13.0μmが好ましく、6.0~12.0μmがより好ましく、7.0~10.0μmが特に好ましい。
As this composite compound, Mn 0.5 Ni 0.5 (OH) 2 , Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 , Ni 0.6 Co 0.2 Mn 0.2 (OH 2 ) and the like.
(D 90 / D 10 ) of the composite compound is 2.00 or less, preferably 1.70 to 1.98, more preferably 1.80 to 1.95. Of the complex compound (D 90 / D 10), since it is 2.00 or less, a lithium-containing composite oxide obtained using the complex compound is excellent in cycle characteristics. If (D 90 / D 10 ) is within the above preferred range, it is advantageous because the electrode density can be increased.
The volume-based cumulative 50% diameter (D 50 ) in the laser scattering particle size distribution measurement of the composite compound is preferably 5.0 to 13.0 μm, more preferably 6.0 to 12.0 μm, from the viewpoint of rate characteristics. A thickness of 0.0 to 10.0 μm is particularly preferable.
 ここで、D10、D50、及びD90は、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが小粒径側から、それぞれ10%、50%、及び90%となる点の粒子径である。
 D10、D50、及びD90は、例えば、レーザー散乱粒度分布測定装置で測定した頻度分布及び累積体積分布曲線を用いて求めることができる。測定は、粉末を水媒体中に超音波処理などで十分に分散して行う。前記装置としては、例えば、日機装社製レーザー回折/散乱式粒子径分布測定装置(装置名;MT-3300EX)、堀場製作所社製のレーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、日機装社製のマイクロトラックHRA(X-100)などが挙げられる。
Here, D 10 , D 50 , and D 90 are particle size distributions obtained on a volume basis, and in the cumulative curve with the total volume of 100%, the cumulative curve is 10%, 50%, And the particle diameter at the point of 90%.
D 10, D 50, and D 90 are, for example, can be determined using the frequency distribution and cumulative volume distribution curve measured by a laser scattering particle size distribution measuring apparatus. The measurement is performed by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like. Examples of the device include a laser diffraction / scattering particle size distribution measuring device (device name: MT-3300EX) manufactured by Nikkiso Co., Ltd., a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by Horiba, Ltd., Nikkiso For example, Microtrac HRA (X-100) manufactured by KK
 本複合化合物のタップ密度は、1.9g/cm以上であり、1.9~2.8g/cmが好ましく、2.0~2.4g/cmがより好ましく、2.0~2.2g/cmが特に好ましい。本複合化合物はタップ密度が、1.9g/cm以上であるため、本複合酸化物を使用して得られるリチウム含有複合酸化物はサイクル特性に優れる。タップ密度が、前記した好ましい範囲内であると、電極密度を大きくできるため有利である。
 タップ密度は、容器に充填した試料の質量を、所定回数タッピングした後の試料の体積で割ることで求めることができる。タップ密度は、例えば、700回タッピングして求める。タップ密度は、例えば、セイシン企業社製のタップデンサー KYT-4000を用いて測定できる。
The tap density of the composite compound is 1.9 g / cm 3 or more, preferably 1.9 ~ 2.8g / cm 3, more preferably 2.0 ~ 2.4g / cm 3, 2.0 ~ 2 .2 g / cm 3 is particularly preferred. Since this composite compound has a tap density of 1.9 g / cm 3 or more, the lithium-containing composite oxide obtained using this composite oxide is excellent in cycle characteristics. It is advantageous that the tap density is within the above-described preferable range because the electrode density can be increased.
The tap density can be obtained by dividing the mass of the sample filled in the container by the volume of the sample after tapping a predetermined number of times. The tap density is obtained by tapping 700 times, for example. The tap density can be measured using, for example, a tap denser KYT-4000 manufactured by Seishin Enterprise Co., Ltd.
 本複合化合物の平均円形度は、0.960以上であり、0.960~0.990が好ましく、0.960~0.980がより好ましい。本複合化合物は、平均円形度が、0.960以上であるため、本複合化合物を使用して得られるリチウム含有複合酸化物はサイクル特性に優れる。平均円形度が、前記した好ましい範囲内であると、電極密度を大きくできるため有利である。
 円形度は、粒子を撮影し、撮影粒子投影面積相当円の周囲長を撮影粒子像の周囲長で割って求められる。前記平均円形度は、撮影した粒子の円形度の平均値である。平均円形度の測定は、例えば、粒子を水媒体中に超音波処理などで十分に分散させてフローセルを通過する粒子にストロボ光を照射することで粒子を静止画像として撮影して画像解析することにより行われる。前記平均円形度は、例えば、フロー式粒子像分析装置(Malvern社製、FPIA-3000)を用いて得られた粒子画像を解析することで求められる。
The average circularity of the composite compound is 0.960 or more, preferably 0.960 to 0.990, and more preferably 0.960 to 0.980. Since this composite compound has an average circularity of 0.960 or more, the lithium-containing composite oxide obtained using this composite compound is excellent in cycle characteristics. If the average circularity is within the above-described preferable range, it is advantageous because the electrode density can be increased.
The circularity is obtained by photographing a particle and dividing the circumference of a circle equivalent to the projected particle projection area by the circumference of the photographed particle image. The average circularity is an average value of circularity of photographed particles. The average circularity is measured, for example, by dispersing the particles in an aqueous medium by ultrasonic treatment or the like, and irradiating the particles passing through the flow cell with stroboscopic light so that the particles are photographed as a still image and analyzed. Is done. The average circularity can be obtained, for example, by analyzing a particle image obtained using a flow type particle image analyzer (manufactured by Malvern, FPIA-3000).
 本複合化合物の比表面積は、3.0~12.0m/gが好ましく、4.0~10.0m/gがより好ましく、5.0~8.0m/gが特に好ましい。比表面積が、3.0m/g以上であれば、質量当りの容量に優れ、12.0m/g以下であれば、電極密度を大きくすることができる。比表面積が、前記したより好ましい範囲内であると、レート特性に優れる点で有利である。
 比表面積は、例えば、窒素ガスを用いたBET法により測定できる。
The specific surface area of the complex compound is preferably 3.0 ~ 12.0m 2 / g, more preferably 4.0 ~ 10.0m 2 / g, particularly preferably 5.0 ~ 8.0m 2 / g. If the specific surface area is 3.0 m 2 / g or more, the capacity per mass is excellent, and if it is 12.0 m 2 / g or less, the electrode density can be increased. When the specific surface area is within the above-mentioned preferable range, it is advantageous in that the rate characteristics are excellent.
The specific surface area can be measured by, for example, the BET method using nitrogen gas.
(複合化合物の製造方法)
 本発明の複合化合物の製造方法(以下、本製造方法という)は、核粒子含有液作製工程と、移動工程と、粒子成長工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
(Production method of composite compound)
The method for producing a composite compound of the present invention (hereinafter referred to as the present production method) includes at least a core particle-containing liquid preparation step, a transfer step, and a particle growth step, and further includes other steps as necessary.
<核粒子含有液作製工程>
 核粒子含有液作製工程は、Ni及びMnを含有する水溶液(以下、水溶液(1)という)とアルカリとを第1の反応容器に連続的に添加して核粒子を析出して、前記核粒子を含有する核粒子含有液を得る工程である。
 核粒子含有液作製工程において、Ni、Mn、及びCoはそれぞれpHを変えた場合の溶解度が異なるため核粒子を析出させる際に偏析する可能性がある。核粒子含有液作製工程では、溶解度の異なる複数の金属元素を均一に析出させるために、金属イオンを安定化させる錯形成剤を連続的に添加することが好ましい。
 水溶液(1)とアルカリとを第1の反応容器に連続的に添加する方法としては、滴下や、反応溶液中に挿入した配管から圧送する方法などが挙げられる。
<Nucleic particle-containing liquid preparation process>
In the core particle-containing liquid preparation step, an aqueous solution containing Ni and Mn (hereinafter referred to as an aqueous solution (1)) and an alkali are continuously added to the first reaction vessel to precipitate the core particles, Is a step of obtaining a core particle-containing liquid containing
In the core particle-containing liquid preparation step, Ni, Mn, and Co have different solubility when the pH is changed, and thus may segregate when the core particles are precipitated. In the core particle-containing liquid preparation step, it is preferable to continuously add a complexing agent that stabilizes metal ions in order to uniformly precipitate a plurality of metal elements having different solubilities.
Examples of a method for continuously adding the aqueous solution (1) and the alkali to the first reaction vessel include dropping and a method of pumping from a pipe inserted into the reaction solution.
 水溶液(1)は、更に、Coを含有する水溶液であることが好ましい。
 水溶液(1)は、ニッケル化合物及びマンガン化合物と、好ましくはコバルト化合物とを水性媒体に溶解させることにより得ることができる。水性媒体としては、水のみ、又は水に加えて水以外の成分を含んでいてもよい。水以外の成分としては、メタノール、エタノール、1-プロパノール、2-プロパノール、ポリオール等が挙げられる。ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
The aqueous solution (1) is further preferably an aqueous solution containing Co.
The aqueous solution (1) can be obtained by dissolving a nickel compound and a manganese compound, and preferably a cobalt compound, in an aqueous medium. The aqueous medium may contain only water or components other than water in addition to water. Examples of components other than water include methanol, ethanol, 1-propanol, 2-propanol, and polyol. Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
 水以外の成分は、水性媒体に対して20質量%以下が好ましく、10質量%以下がより好ましく、1質量%以下が特に好ましく、含まないことが最も好ましい。水以外の成分の割合が少なければ、環境面、取扱い性、及びコストの点で優れている。 
 ニッケル化合物、マンガン化合物及びコバルト化合物としては、各元素を含む無機塩、酸化物、水酸化物、有機化合物などが挙げられる。無機塩としては、硫酸塩、硝酸塩、炭酸塩が挙げられる。酸化物としては、NiO、Mn、Mn、MnO、CoO、Co、Coなどが挙げられる。水酸化物としては、Ni(OH)、Mn(OH)、Co(OH)などが挙げられる。有機化合物としては、脂肪酸ニッケル、クエン酸マンガン、脂肪酸マンガン、Co(OAc)などが挙げられる。これらの中でも、溶解性が高く、設備に対する腐食性が低いことから、硫酸塩が好ましい。
Components other than water are preferably 20% by mass or less, more preferably 10% by mass or less, particularly preferably 1% by mass or less, and most preferably not contained with respect to the aqueous medium. If there are few ratios of components other than water, it is excellent in terms of an environment, handleability, and cost.
Examples of the nickel compound, manganese compound, and cobalt compound include inorganic salts, oxides, hydroxides, and organic compounds containing each element. Examples of inorganic salts include sulfates, nitrates, and carbonates. Examples of the oxide include NiO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 , CoO, Co 2 O 3 , and Co 3 O 4 . Examples of the hydroxide include Ni (OH) 2 , Mn (OH) 2 , and Co (OH) 2 . Examples of the organic compound include fatty acid nickel, manganese citrate, fatty acid manganese, Co (OAc) 2 and the like. Among these, sulfate is preferable because of its high solubility and low corrosiveness to equipment.
 ニッケル化合物、マンガン化合物及びコバルト化合物は、それぞれ同一種の化合物であってもよく、異種の化合物であってもよい。
 水溶液(1)におけるニッケル化合物の含有量としては、1.0~4.0mol/Lが好ましく、1.5~3.5mol/Lがより好ましく、2.0~3.0mol/Lが特に好ましい。
The nickel compound, manganese compound, and cobalt compound may be the same type of compound or different types of compounds.
The content of the nickel compound in the aqueous solution (1) is preferably 1.0 to 4.0 mol / L, more preferably 1.5 to 3.5 mol / L, and particularly preferably 2.0 to 3.0 mol / L. .
 水溶液(1)におけるマンガン化合物の含有量としては、0.3~2.0mol/Lが好ましく、0.5~1.5mol/Lがより好ましく、0.7~1.3mol/Lが特に好ましい。 The manganese compound content in the aqueous solution (1) is preferably 0.3 to 2.0 mol / L, more preferably 0.5 to 1.5 mol / L, and particularly preferably 0.7 to 1.3 mol / L. .
 水溶液(1)がCoを含有する場合、水溶液(1)におけるコバルト化合物の含有量としては、0.5~3.0mol/Lが好ましく、1.0~2.5mol/Lがより好ましく、1.2~2.0mol/Lが特に好ましい。 When the aqueous solution (1) contains Co, the content of the cobalt compound in the aqueous solution (1) is preferably 0.5 to 3.0 mol / L, more preferably 1.0 to 2.5 mol / L. 2 to 2.0 mol / L is particularly preferable.
 水溶液(1)を第1の反応容器に連続的に添加する際の添加量としては、0.1~3.0L/時間が好ましく、0.5~2.0L/時間がより好ましく、1.0~1.5L/時間が特に好ましい。 The addition amount when the aqueous solution (1) is continuously added to the first reaction vessel is preferably 0.1 to 3.0 L / hour, more preferably 0.5 to 2.0 L / hour. Particularly preferred is 0 to 1.5 L / hour.
 アルカリとしては、アルカリ金属元素を含有する水酸化物または炭酸塩が挙げられる。具体的には、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどが挙げられる。アルカリは、水溶液の状態で用いること、即ちアルカリ水溶液として用いることが好ましい。
 アルカリ水溶液の濃度としては、1~12mol/kgが好ましく、6~12mol/kgがより好ましい。
Examples of the alkali include a hydroxide or carbonate containing an alkali metal element. Specific examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate and the like. The alkali is preferably used in the form of an aqueous solution, that is, as an alkaline aqueous solution.
The concentration of the alkaline aqueous solution is preferably 1 to 12 mol / kg, more preferably 6 to 12 mol / kg.
 アルカリを前記第1の反応容器に連続的に添加する際の添加量としては、アルカリ水溶液として、0.01~0.5L/時間が好ましく、0.02~0.1L/時間がより好ましい。 The amount of alkali added continuously to the first reaction vessel is preferably 0.01 to 0.5 L / hour, more preferably 0.02 to 0.1 L / hour as an aqueous alkali solution.
 錯形成剤としては、Ni、Mnと錯体を形成するものであればよく、アンモニア、硫酸アンモニウム、重炭酸アンモニウム、炭酸水素アンモニウムなどが挙げられる。Ni、Co、Mn及び前記その他の成分の合計量に対する錯形成剤の量(モル比)は、粒子内の金属の偏析が抑えられるため、0.01~10が好ましく、0.1~1がより好ましい。 As the complex-forming agent, any compound that forms a complex with Ni and Mn may be used, and examples thereof include ammonia, ammonium sulfate, ammonium bicarbonate, and ammonium bicarbonate. The amount (molar ratio) of the complexing agent with respect to the total amount of Ni, Co, Mn and the other components is preferably 0.01 to 10, and preferably 0.1 to 1 in order to suppress segregation of the metal in the particles. More preferred.
 核粒子含有液作製工程は、第1の反応容器内のpHを11.0~13.5に保持して行うことが好ましく、12.0~13.0に保持して行うことがより好ましい。反応容器内のpHが、11.0~13.5に保持されていれば、水溶液(1)とアルカリとの接触が素早く起こり、核粒子の生成が支配的になり好ましい。核粒子としては、水酸化物であることが好ましい。 The core particle-containing liquid preparation step is preferably performed while maintaining the pH in the first reaction vessel at 11.0 to 13.5, and more preferably at 12.0 to 13.0. If the pH in the reaction vessel is maintained at 11.0 to 13.5, the contact between the aqueous solution (1) and the alkali occurs quickly, and the generation of core particles is dominant, which is preferable. The core particles are preferably hydroxides.
 核粒子含有液作製工程は、第1の反応容器内の温度を45~70℃にして行うことが好ましい。 The core particle-containing liquid preparation step is preferably performed at a temperature in the first reaction vessel of 45 to 70 ° C.
 核粒子含有液作製工程においては、水溶液(1)とアルカリとを第1の反応容器に連続的に添加する前に、第1の反応容器内に水を入れておいてもよい。水としては、イオン交換水などが挙げられる。 In the core particle-containing liquid preparation step, water may be placed in the first reaction vessel before the aqueous solution (1) and alkali are continuously added to the first reaction vessel. Examples of water include ion exchange water.
<移動工程>
 移動工程は、第1の反応容器内の核粒子含有液の一部を、第1の反応容器から第2の反応容器へ連続的に移す工程である。移動工程の具体的な方法としては、第1の反応容器からオーバーフローした核粒子含有液を第2の反応容器へ移す方法、第1の反応容器上部に配管を設け、前記配管を介して、核粒子含有液を第2の反応容器へ移す方法などが挙げられる。これらの中でも、第1の反応容器からオーバーフローした核粒子含有液を第2の反応容器へ移す方法が簡便であるため好ましい。
<Transfer process>
The moving step is a step of continuously transferring a part of the core particle-containing liquid in the first reaction vessel from the first reaction vessel to the second reaction vessel. As a specific method of the transfer step, a method of transferring the nuclear particle-containing liquid overflowing from the first reaction vessel to the second reaction vessel, a pipe is provided in the upper part of the first reaction vessel, and the nucleus is passed through the pipe. Examples thereof include a method of transferring the particle-containing liquid to the second reaction vessel. Among these, the method of transferring the core particle-containing liquid overflowing from the first reaction vessel to the second reaction vessel is preferable because it is simple.
<粒子成長工程>
 粒子成長工程は、核粒子含有液が入った第2の反応容器に、Ni及びMnを含有する水溶液(以下、水溶液(2)という)とアルカリとを連続的に添加して核粒子を成長させつつ、得られた反応液から一部の上澄み液を除去する工程である。粒子成長工程においても、核粒子含有液作製工程と同様の理由から、更に錯形成剤を連続的に添加することが好ましい。
<Particle growth process>
In the particle growth step, an aqueous solution containing Ni and Mn (hereinafter referred to as aqueous solution (2)) and an alkali are continuously added to a second reaction vessel containing the nuclear particle-containing liquid to grow the nuclear particles. Meanwhile, this is a step of removing a part of the supernatant from the obtained reaction solution. Also in the particle growth step, it is preferable to continuously add a complexing agent for the same reason as in the core particle-containing liquid preparation step.
 水溶液(2)としては、核粒子含有液作製工程で用いた水溶液(1)と同様の水溶液でもよい。連続的に添加する方法及び添加量は同様である。 The aqueous solution (2) may be the same aqueous solution as the aqueous solution (1) used in the core particle-containing liquid preparation step. The method and amount of continuous addition are the same.
 アルカリとしては、核粒子含有液作製工程で用いたアルカリと同様であり、連続的に添加する方法及び添加量も同様である。 The alkali is the same as the alkali used in the core particle-containing liquid preparation step, and the method and amount of continuous addition are also the same.
 錯形成剤としては、核粒子含有液作製工程で用いた錯形成剤と同様である。 The complexing agent is the same as the complexing agent used in the core particle-containing liquid preparation step.
 水溶液(2)とアルカリとを、第2の反応容器に連続的に添加することで、前記核粒子が成長する。 The aqueous solution (2) and alkali are continuously added to the second reaction vessel to grow the core particles.
 粒子成長工程では、核粒子を成長させつつ、得られた反応液から一部の水を除去する。水の除去方法としては、例えば、濾過などが挙げられる。 In the particle growth process, a part of water is removed from the obtained reaction liquid while growing the core particles. Examples of the method for removing water include filtration.
 粒子成長工程は、第2の反応容器内のpHを9.0~11.5に保持して行うことが好ましく、9.5~10.5に保持して行うことがより好ましい。反応容器内のpHが、9.0~11.5に保持されていれば、粒子成長反応が進行しやすく好ましい。 The particle growth step is preferably performed while maintaining the pH in the second reaction vessel at 9.0 to 11.5, and more preferably at 9.5 to 10.5. If the pH in the reaction vessel is maintained at 9.0 to 11.5, it is preferable that the particle growth reaction proceeds easily.
 粒子成長工程は、第2の反応容器内の温度を20~40℃にして行うことが好ましい。
 粒子成長工程における反応時間は、特に制限はなく、目的とする粒子の大きさに応じて適宜選択することができる。
The particle growth step is preferably performed at a temperature in the second reaction vessel of 20 to 40 ° C.
There is no restriction | limiting in particular in the reaction time in a particle growth process, According to the magnitude | size of the target particle | grain, it can select suitably.
 複合化合物の製造方法において、核粒子含有液作製工程では、形成された核粒子の成長は抑制しておき、核粒子同士の結合を抑制するために、核粒子含有液の固形分濃度を核粒子同士の結合が抑制できる程度に維持する。
 粒子成長工程では、反応液から上澄み液を一部除くことにより反応液の固形分濃度を徐々に高くすることで粒子の平均円形度を高め、粒子サイズが均一でシャープな粒度分布を有する、本発明の複合化合物の粒子を得ることができる。
In the manufacturing method of the composite compound, in the core particle-containing liquid preparation step, the growth of the formed core particles is suppressed, and the solid content concentration of the core particle-containing liquid is set to the core particle in order to suppress the bonding between the core particles. It is maintained to such an extent that bonding between them can be suppressed.
In the particle growth process, the supernatant liquid is partially removed from the reaction liquid to gradually increase the solid content concentration of the reaction liquid to increase the average circularity of the particles, and the particle size is uniform and has a sharp particle size distribution. Particles of the composite compound of the invention can be obtained.
(リチウム含有複合酸化物、及びリチウム含有複合酸化物の製造方法)
 本発明のリチウム含有複合酸化物の製造方法は、混合工程と、焼成工程とを少なくとも含む。
 本発明のリチウム含有複合酸化物は、本発明のリチウム含有複合酸化物の製造方法により得られる。
 リチウム含有複合酸化物とは、リチウムイオン二次電池の正極活物質として用いることができる複合酸化物である。
(Lithium-containing composite oxide and method for producing lithium-containing composite oxide)
The method for producing a lithium-containing composite oxide of the present invention includes at least a mixing step and a firing step.
The lithium-containing composite oxide of the present invention is obtained by the method for producing a lithium-containing composite oxide of the present invention.
The lithium-containing composite oxide is a composite oxide that can be used as a positive electrode active material of a lithium ion secondary battery.
 本発明のリチウム含有複合酸化物の製造方法で得られるリチウム含有複合酸化物は、本複合化合物を用いて製造される。本複合化合物は、タップ密度が大きく、かつ、粒子の平均円形度が高いため、リチウム含有複合酸化物はタップ密度と平均円形度がともに高い。その結果、該リチウム含有複合酸化物を含む塗工スラリーは粘度が低い。そのため、取り扱いが容易で、かつスラリー中の固形分濃度を高くすることができる。更に、集電体基板上に塗布成形された電極密度が大きく、単位体積当たりの容量が大きい電池を作製することができる。更に、平均円形度が高く、粒子サイズが揃っていることから、充放電時の電極の膨張収縮が等方的であるので、導電パスの切断、及び集電体からの剥離が生じ難く、安全性に優れるとともに、サイクル特性が非常に優れる。 The lithium-containing composite oxide obtained by the method for producing a lithium-containing composite oxide of the present invention is manufactured using this composite compound. Since this composite compound has a large tap density and a high average circularity of the particles, the lithium-containing composite oxide has a high tap density and an average circularity. As a result, the coating slurry containing the lithium-containing composite oxide has a low viscosity. Therefore, handling is easy and the solid content concentration in the slurry can be increased. Furthermore, a battery having a large electrode density formed on a current collector substrate and a large capacity per unit volume can be produced. Furthermore, since the average circularity is high and the particle size is uniform, the expansion and contraction of the electrode during charging and discharging is isotropic, so that the conductive path is not easily cut off and peeled off from the current collector. In addition to excellent properties, the cycle characteristics are very excellent.
<混合工程>
 混合工程は、リチウム化合物と、本複合化合物とを混合して混合物を得る工程である。
<Mixing process>
The mixing step is a step of obtaining a mixture by mixing the lithium compound and the present composite compound.
 リチウム化合物は、リチウム含有複合酸化物のリチウム源となり、水酸化リチウム、炭酸リチウム、硝酸リチウム等を使用できる。
 混合工程で使用するリチウム化合物は、前記リチウム含有複合酸化物とは異なる化合物である。
The lithium compound serves as a lithium source for the lithium-containing composite oxide, and lithium hydroxide, lithium carbonate, lithium nitrate, and the like can be used.
The lithium compound used in the mixing step is a compound different from the lithium-containing composite oxide.
 混合方法としては、特に制限はなく、目的に応じて適宜選択することができる。
 混合における前記リチウム化合物の量は、複合化合物に含まれるNi、MnおよびCoの合計に対して、リチウム化合物に含まれるリチウム(Li)のモル比(Li/Ni+Mn+Co)が1.02~1.12となる量が好ましく、1.03~1.07となる量がより好ましい。
There is no restriction | limiting in particular as a mixing method, According to the objective, it can select suitably.
The amount of the lithium compound in the mixing is such that the molar ratio of lithium (Li) contained in the lithium compound (Li / Ni + Mn + Co) is 1.02 to 1.12 with respect to the total of Ni, Mn and Co contained in the composite compound. Is preferable, and an amount of 1.03 to 1.07 is more preferable.
<焼成工程>
 焼成工程は、前記混合物を焼成する工程である。
 焼成温度は、870~970℃が好ましく、890~940℃がより好ましい。
 焼成雰囲気は、酸素含有雰囲気が好ましい。酸素含有雰囲気としては、例えば、大気雰囲気などが挙げられる。
<Baking process>
A baking process is a process of baking the said mixture.
The firing temperature is preferably 870 to 970 ° C, more preferably 890 to 940 ° C.
The firing atmosphere is preferably an oxygen-containing atmosphere. Examples of the oxygen-containing atmosphere include an air atmosphere.
<リチウム含有複合酸化物>
 リチウム含有複合酸化物は、下記一般式(1)で表される化合物であることが好ましい。
  LiNiMnCoMe ・・・一般式(1)
 ただし、前記一般式(1)において、1.02≦a≦1.12、0<x≦1.0、0<y≦1.0、0≦z≦1.0、0≦b≦0.3、0.90≦x+y+z+b≦1.05、1.9≦c≦2.1、及び0≦d≦0.03であり、Meは、Mg、Ca、Sr、Ba、Al、及びZrからなる群から選ばれる少なくとも一種である。
<Lithium-containing composite oxide>
The lithium-containing composite oxide is preferably a compound represented by the following general formula (1).
Li a Ni x Mn y Co z Me b O c F d ··· formula (1)
However, in the general formula (1), 1.02 ≦ a ≦ 1.12, 0 <x ≦ 1.0, 0 <y ≦ 1.0, 0 ≦ z ≦ 1.0, 0 ≦ b ≦ 0. 3, 0.90 ≦ x + y + z + b ≦ 1.05, 1.9 ≦ c ≦ 2.1, and 0 ≦ d ≦ 0.03, and Me is composed of Mg, Ca, Sr, Ba, Al, and Zr It is at least one selected from the group.
 リチウム含有複合酸化物としては、LiMn0.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、Li1.02Ni0.49Co0.196Mn0.294、Li1.04Ni0.480Co0.192Mn0.288、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.31.990.01などが挙げられる。 Examples of the lithium-containing composite oxide include LiMn 0.5 Ni 0.5 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 1.02 Ni 0.49 Co 0.196 Mn 0.294 O 2, Li 1.04 Ni 0.480 Co 0.192 Mn 0.288 O 2, LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 1.99 F 0.01 and the like.
 リチウム含有複合酸化物における金属元素の種類及び割合は、例えば、前記複合化合物と同様に、ICP測定することにより測定できる。 The kind and ratio of the metal element in the lithium-containing composite oxide can be measured, for example, by ICP measurement in the same manner as the composite compound.
 リチウム含有複合酸化物のレーザー散乱粒度分布測定における体積基準累積50%径(D50)は、5~20μmが好ましく、6~13μmがより好ましく、7~10μmが特に好ましい。D50が、5μm以上であれば、電極密度が充分に高く、20μm以下であれば、充放電効率やレート特性に優れる点で有利である。 The volume-based cumulative 50% diameter (D 50 ) in laser scattering particle size distribution measurement of the lithium-containing composite oxide is preferably 5 to 20 μm, more preferably 6 to 13 μm, and particularly preferably 7 to 10 μm. D 50 is equal to or 5μm or more, the electrode density is sufficiently high, if 20μm or less, it is advantageous from the viewpoint of excellent charge-discharge efficiency and rate characteristics.
 リチウム含有複合酸化物のレーザー散乱粒度分布測定における体積基準累積90%径(D90)と体積基準累積10%径(D10)との比(D90/D10)は、2.10以下が好ましく、2.00以下がより好ましい。リチウム含有複合酸化物の(D90/D10)が、2.10以下であれば、タップ密度が向上し、充填性が向上する点で有利である。 The ratio (D 90 / D 10 ) of the volume-based cumulative 90% diameter (D 90 ) and the volume-based cumulative 10% diameter (D 10 ) in the laser scattering particle size distribution measurement of the lithium-containing composite oxide is 2.10 or less. Preferably, 2.00 or less is more preferable. If (D 90 / D 10 ) of the lithium-containing composite oxide is 2.10 or less, it is advantageous in that the tap density is improved and the filling property is improved.
 リチウム含有複合酸化物のタップ密度は、1.9~3.0g/cmが好ましく、2.0~2.7g/cmがより好ましい。タップ密度が、1.9g/cm以上であれば、電極密度が充分に高く、3.0g/cm以下であれば、粒子内部まで電解液が浸透しやすく、レート特性などの電池特性が向上する点で有利である。 The tap density of the lithium-containing composite oxide is preferably 1.9 ~ 3.0g / cm 3, more preferably 2.0 ~ 2.7g / cm 3. If the tap density is 1.9 g / cm 3 or more, the electrode density is sufficiently high, and if the tap density is 3.0 g / cm 3 or less, the electrolyte easily penetrates into the particles, and battery characteristics such as rate characteristics are obtained. This is advantageous in terms of improvement.
 リチウム含有複合酸化物の平均円形度は、0.950以上が好ましく、0.960以上がより好ましい。平均円形度が、0.950以上であれば、タップ密度に優れ、充填性、電極の膨張収縮が等方的である点で有利である。 The average circularity of the lithium-containing composite oxide is preferably 0.950 or more, and more preferably 0.960 or more. If the average circularity is 0.950 or more, it is advantageous in that the tap density is excellent, the filling property, and the expansion and contraction of the electrode are isotropic.
 リチウム含有複合酸化物の比表面積は、0.10~10m/gが好ましく、0.20~1.0m/gがより好ましい。比表面積が、好ましい範囲内であれば、放電容量が高く、かつ緻密な正極活物質含有層が得られ、サイクル特性が優れる点で有利である。 The specific surface area of the lithium-containing composite oxide is preferably 0.10 ~ 10m 2 / g, more preferably 0.20 ~ 1.0m 2 / g. If the specific surface area is within a preferred range, it is advantageous in that a high positive electrode active material-containing layer having a high discharge capacity is obtained and cycle characteristics are excellent.
 リチウム含有複合酸化物の残存アルカリ量は、1.50mol%以下が好ましく、1.30mol%以下がより好ましい。残存アルカリ量が、1.50mol%以下であれば、電極塗工時にスラリーのゲル化が抑制できる点で有利である。
 残存アルカリ量は、リチウム含有複合酸化物を水中に分散させた際に、リチウム含有複合酸化物中のLi1モルあたりから、水中に溶出するアルカリ量を百分率で表した値(モル%)である。
The residual alkali amount of the lithium-containing composite oxide is preferably 1.50 mol% or less, and more preferably 1.30 mol% or less. If the residual alkali amount is 1.50 mol% or less, it is advantageous in that gelation of the slurry can be suppressed during electrode coating.
The residual alkali amount is a value (mol%) representing the amount of alkali eluted in water from 1 mol of Li in the lithium-containing composite oxide when the lithium-containing composite oxide is dispersed in water.
(リチウムイオン二次電池用正極の製造方法)
 本発明のリチウムイオン二次電池用正極の製造方法は、正極活物質含有層形成工程を少なくとも含み、好ましくは加圧工程を含む。
(Method for producing positive electrode for lithium ion secondary battery)
The manufacturing method of the positive electrode for lithium ion secondary batteries of this invention contains a positive electrode active material content layer formation process at least, Preferably a pressurization process is included.
<正極活物質含有層形成工程>
 正極活物質含有層形成工程は、リチウム含有複合酸化物と、バインダーと、導電材とを含有する正極活物質含有層を形成する工程である。具体的には、リチウム含有複合酸化物と、バインダーと、導電材と、溶媒とを含有する塗布液を、正極集電体上に塗布する方法が挙げられる。
<Positive electrode active material-containing layer forming step>
The positive electrode active material-containing layer forming step is a step of forming a positive electrode active material-containing layer containing a lithium-containing composite oxide, a binder, and a conductive material. Specifically, there is a method in which a coating liquid containing a lithium-containing composite oxide, a binder, a conductive material, and a solvent is applied onto the positive electrode current collector.
 バインダーとしては、フッ素系樹脂、ポリオレフィン、不飽和結合を有する重合体及び共重合体、アクリル酸系重合体及び共重合体などが挙げられる。フッ素系樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどが挙げられる。ポリオレフィンとしては、ポリエチレン、ポリプロピレンなどが挙げられる。不飽和結合を有する重合体としては、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴムなどが挙げられる。アクリル酸系重合体としては、アクリル酸重合体、メタクリル酸重合体などが挙げられる。 Examples of the binder include fluororesins, polyolefins, polymers and copolymers having an unsaturated bond, acrylic acid polymers and copolymers, and the like. Examples of the fluororesin include polyvinylidene fluoride and polytetrafluoroethylene. Examples of the polyolefin include polyethylene and polypropylene. Examples of the polymer having an unsaturated bond include styrene / butadiene rubber, isoprene rubber, and butadiene rubber. Examples of acrylic acid polymers include acrylic acid polymers and methacrylic acid polymers.
 導電材としては、カーボンブラック、黒鉛、カーボンファイバーなどが挙げられる。前記カーボンブラックとしては、アセチレンブラック、ケッチェンブラックなどが挙げられる。 Examples of the conductive material include carbon black, graphite, and carbon fiber. Examples of the carbon black include acetylene black and ketjen black.
 塗布液中の溶媒としては、N-メチルピロリドンなどが挙げられる。 Examples of the solvent in the coating solution include N-methylpyrrolidone.
 正極集電体の材質としては、ステンレス鋼、アルミニウム、アルミニウム合金、銅、ニッケルなどが挙げられる。 Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, copper, and nickel.
 塗布方法としては、ドクターブレード塗工などが挙げられる。 Application methods include doctor blade coating.
 正極活物質含有層の厚みは、20~80μmが好ましく、30~50μmがより好ましい。 The thickness of the positive electrode active material-containing layer is preferably 20 to 80 μm, more preferably 30 to 50 μm.
<加圧工程>
 加圧工程は、正極活物質含有層形成工程において、正極集電体上に形成された正極活物質含有層をロールプレス機等により加圧する工程である。加圧圧力は、1t(トン)/cm以下が好ましく、0.5t/cm以下がより好ましい。加圧圧力は、0.1t/cm以上が好ましい。
<Pressurization process>
The pressurizing step is a step of pressurizing the positive electrode active material-containing layer formed on the positive electrode current collector with a roll press or the like in the positive electrode active material-containing layer forming step. The pressurizing pressure is preferably 1 t (ton) / cm or less, and more preferably 0.5 t / cm or less. The pressurizing pressure is preferably 0.1 t / cm or more.
 本発明のリチウム含有複合酸化物は、正極の製造において加圧圧力が低くても電極密度が高い正極活物質含有層が得られる。加圧圧力が低いため、高い圧力に耐えうる丈夫な製造設備は不要である。また、加圧圧力が低いことで、正極を製造する際の正極の破損による歩留まり低下が抑制でき、更にはリチウムイオン二次電池に用いる際の安全性の低下を抑制することができると考えられる。 The lithium-containing composite oxide of the present invention provides a positive electrode active material-containing layer having a high electrode density even when the pressure applied is low in the production of the positive electrode. Since the pressurizing pressure is low, a strong manufacturing facility that can withstand the high pressure is unnecessary. Moreover, it is thought that the decrease in the yield due to the damage of the positive electrode when manufacturing the positive electrode can be suppressed and the decrease in the safety when used for the lithium ion secondary battery can be suppressed because the pressurization pressure is low. .
(リチウムイオン二次電池の製造方法)
 本発明のリチウムイオン二次電池の製造方法は、正極作製工程と、積層物作製工程と、非水電解質付与工程とを少なくとも含む。
(Method for producing lithium ion secondary battery)
The method for producing a lithium ion secondary battery of the present invention includes at least a positive electrode preparation step, a laminate preparation step, and a nonaqueous electrolyte application step.
<正極作製工程>
 正極作製工程は、正極を作製する工程であり、本発明のリチウムイオン二次電池用正極の製造方法である。
<Positive electrode fabrication process>
A positive electrode preparation process is a process of producing a positive electrode, and is a manufacturing method of the positive electrode for lithium ion secondary batteries of this invention.
<積層物作製工程>
 積層物作製工程は、前記正極と、セパレータと、負極とを積層して積層物を作製する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Laminate production process>
The laminate production step is not particularly limited as long as it is a step of producing a laminate by laminating the positive electrode, the separator, and the negative electrode, and can be appropriately selected according to the purpose.
 セパレータの材質としては、紙、セロハン、ポリオレフィン不織布、ポリアミド不織布、ガラス繊維不織布、多孔質ポリプロピレンなどが挙げられる。紙としては、クラフト紙、ビニロン混抄紙、合成パルプ混抄紙などが挙げられる。
 セパレータの形状としては、シート状である。セパレータの構造は、単層構造であってもよいし、積層構造であってもよい。
Examples of the material for the separator include paper, cellophane, polyolefin nonwoven fabric, polyamide nonwoven fabric, glass fiber nonwoven fabric, and porous polypropylene. Examples of the paper include kraft paper, vinylon mixed paper, and synthetic pulp mixed paper.
The shape of the separator is a sheet shape. The structure of the separator may be a single layer structure or a laminated structure.
 負極は、負極集電体と、負極活物質含有層とを少なくとも含有する。 The negative electrode contains at least a negative electrode current collector and a negative electrode active material-containing layer.
 負極極集電体の材質としては、ニッケル、銅、ステンレス鋼などが挙げられる。 Examples of the material of the negative electrode current collector include nickel, copper, and stainless steel.
 負極活物質含有層は、負極活物質を少なくとも含有する。更に必要に応じてバインダーを含有する。 The negative electrode active material-containing layer contains at least a negative electrode active material. Furthermore, a binder is contained as necessary.
 負極活物質としては、リチウムイオンを吸蔵、及び放出可能な材料であればよく、リチウム金属、リチウム合金、リチウム化合物、炭素材料、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物、若しくはケイ素、スズ、またはコバルトを主体とする合金などが挙げられる。 The negative electrode active material may be any material that can occlude and release lithium ions, such as lithium metal, lithium alloy, lithium compound, carbon material, silicon carbide compound, silicon oxide compound, titanium sulfide, boron carbide compound, or silicon. , Tin, or an alloy mainly composed of cobalt.
 炭素材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類などが挙げられる。前記コークス類としては、ピッチコークス、ニードルコークス、石油コークスなどが挙げられる。有機高分子化合物焼成体としては、フェノール樹脂、フラン樹脂などを適当な温度で焼成し炭素化したものが挙げられる。 Examples of carbon materials include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc. Can be mentioned. Examples of the cokes include pitch coke, needle coke, and petroleum coke. Examples of the fired organic polymer compound include those obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
 その他に、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であれば、例えば、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ、Li2.6Co0.4Nなども前記負極活物質として用いることができる。
 バインダーとしては、正極活物質含有層形成工程で用いたバインダーと同様である。
Other materials that can occlude and release lithium ions at a relatively low potential include, for example, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and Li 2.6 Co 0.4 N. Can also be used as the negative electrode active material.
The binder is the same as the binder used in the positive electrode active material-containing layer forming step.
 負極活物質含有層の形成方法としては、負極活物質とバインダーと溶媒とを混合することによってスラリーを調製し、調製したスラリーを負極集電体上に塗布し、続いて乾燥した後に、プレスする方法などが挙げられる。 As a method for forming a negative electrode active material-containing layer, a slurry is prepared by mixing a negative electrode active material, a binder, and a solvent, and the prepared slurry is applied onto a negative electrode current collector, followed by drying and then pressing. The method etc. are mentioned.
<非水電解質付与工程>
 非水電解質付与工程としては、前記積層物に非水電解質を含有させる工程であればよく、積層物に非水電解質を注入する方法、非水電解質に積層物を浸漬する方法などが挙げられ
る。
<Nonaqueous electrolyte application process>
As a nonaqueous electrolyte provision process, what is necessary is just the process of making the said laminate contain a nonaqueous electrolyte, The method of inject | pouring a nonaqueous electrolyte into a laminate, the method of immersing a laminate in a nonaqueous electrolyte, etc. are mentioned.
 非水電解質としては、非水電解液、無機固体電解質、電解質塩を混合又は溶解させた固体状又はゲル状の高分子電解質などが挙げられる。 Examples of the non-aqueous electrolyte include a non-aqueous electrolyte, an inorganic solid electrolyte, and a solid or gel polymer electrolyte in which an electrolyte salt is mixed or dissolved.
 非水電解液としては、有機溶媒と電解質塩とを適宜組み合わせて調製したものが挙げられる。
 有機溶媒としては、環状カーボネート、鎖状カーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム、トリグライム、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステルなどが挙げられる。環状カーボネートとしては、プロピレンカーボネート、エチレンカーボネートなどが挙げられる。鎖状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネートなどが挙げられる。これらの中でも、電圧安定性の点から、環状カーボネート、鎖状カーボネートが好ましく、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートがより好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 非水電解液に含まれる電解質塩としては、LiClO、LiPF、LiBF、CFSOLi、LiCl、LiBrなどが挙げられる。
Examples of the non-aqueous electrolyte include those prepared by appropriately combining an organic solvent and an electrolyte salt.
Organic solvents include cyclic carbonate, chain carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diglyme, triglyme, γ-butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetate ester, butyrate ester And propionic acid esters. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include diethyl carbonate and dimethyl carbonate. Among these, from the viewpoint of voltage stability, cyclic carbonates and chain carbonates are preferable, and propylene carbonate, dimethyl carbonate, and diethyl carbonate are more preferable. These may be used individually by 1 type and may use 2 or more types together.
Examples of the electrolyte salt contained in the non-aqueous electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, LiCl, and LiBr.
 無機固体電解質としては、窒化リチウム、ヨウ化リチウムなどが挙げられる。
 電解質塩を混合又は溶解させた固体状の高分子電解質に用いられる高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、及びこれらの誘導体、混合物、並びに複合体などが挙げられる。
Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
Examples of the polymer compound used in the solid polymer electrolyte in which the electrolyte salt is mixed or dissolved include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, And their derivatives, mixtures, and complexes.
 電解質塩を混合又は溶解させたゲル状の高分子電解質に用いられる高分子化合物としては、フッ素系高分子化合物、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体などが挙げられる。フッ素系高分子化合物としては、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)などが挙げられる。
 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の観点から、フッ素系高分子化合物が好ましい。
Examples of the polymer compound used in the gel polymer electrolyte in which the electrolyte salt is mixed or dissolved include a fluorine polymer compound, polyacrylonitrile, a copolymer of polyacrylonitrile, polyethylene oxide, a copolymer of polyethylene oxide, and the like. Can be mentioned. Examples of the fluorine-based polymer compound include poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene).
The matrix of the gel electrolyte is preferably a fluorine-based polymer compound from the viewpoint of stability against redox reaction.
 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
<粒度分布測定>
 複合化合物又はリチウム含有複合酸化物を、水中に超音波を用いて分散させ、日機装社製レーザー回折/散乱式粒子径分布測定装置(装置名;MT-3300EX)により測定を行い、頻度分布及び累積体積分布曲線を得た。得られた累積体積分布曲線より、D10、D50、及びD90を算出し、D90/D10を求めた。
<Particle size distribution measurement>
The composite compound or lithium-containing composite oxide is dispersed in water using ultrasonic waves, and measured with a laser diffraction / scattering particle size distribution measurement device (device name: MT-3300EX) manufactured by Nikkiso Co., Ltd., frequency distribution and accumulation A volume distribution curve was obtained. From the obtained cumulative volume distribution curve, D 10 , D 50 , and D 90 were calculated to obtain D 90 / D 10 .
<比表面積(SSA)>
 複合化合物及びリチウム含有複合酸化物の比表面積(SSA)は、マウンテック社製比表面積測定装置(装置名;HM model-1208)によりBET(Brunauer Emmett Teller)法を用いて測定した。
<Specific surface area (SSA)>
The specific surface area (SSA) of the composite compound and the lithium-containing composite oxide was measured using a BET (Brunauer Emmet Teller) method with a specific surface area measuring device (device name: HM model-1208) manufactured by Mountec.
<タップ密度>
 複合化合物及びリチウム含有複合酸化物のタップ密度は、セイシン企業社製タップ密度測定器(装置名;タップデンサー KYT-4000K)を用いて測定した。20mLのプラスチック製タッピングセルに正極活物質を充填し、20mmのストロークで700回タッピングを行った後の容積からタップ密度を計算した。
<Tap density>
The tap density of the composite compound and the lithium-containing composite oxide was measured using a tap density measuring device (device name: Tap Denser KYT-4000K) manufactured by Seishin Enterprise Co., Ltd. The positive electrode active material was filled in a 20 mL plastic tapping cell, and the tap density was calculated from the volume after tapping 700 times with a stroke of 20 mm.
<残存(遊離)アルカリ量の測定方法>
 30mLのスクリュー管瓶にリチウム含有複合酸化物1gを秤量し、純水を50g投入し、スターラにて30分間撹拌した後に濾過した。平沼自動適定装置(日立ハイテク社製、COM-1750)を用いて、得られた濾液に対して、0.02モル/Lの塩酸で終点pH4.0まで中和適定を行った。その後、滴定量から、正極活物質に含まれるLiの1モルあたりの水中への残存アルカリ量(mol%)を計算した。
<Measurement method of remaining (free) alkali amount>
1 g of lithium-containing composite oxide was weighed into a 30 mL screw tube bottle, 50 g of pure water was added, and the mixture was stirred for 30 minutes with a stirrer and then filtered. Using a Hiranuma automatic titration apparatus (COM-1750, manufactured by Hitachi High-Tech Co., Ltd.), the obtained filtrate was subjected to neutralization titration with 0.02 mol / L hydrochloric acid to an end point of pH 4.0. Then, the residual alkali amount (mol%) in water per 1 mol of Li contained in the positive electrode active material was calculated from the titration amount.
<平均円形度>
 複合化合物及びリチウム含有複合酸化物の平均円形度は、フロー式粒子像分析装置(Malvern社製、FPIA-3000)を用いて測定した。
<Average circularity>
The average circularity of the composite compound and the lithium-containing composite oxide was measured using a flow type particle image analyzer (FPIA-3000, manufactured by Malvern).
(実施例1)
<複合化合物の製造>
 硫酸ニッケル(硫酸ニッケル(II)六水和物、和光純薬工業社製)、硫酸コバルト(硫酸コバルト(II)七水和物、和光純薬工業社製)、及び硫酸マンガン(硫酸マンガン(II)五水和物、和光純薬工業社製)をイオン交換水に溶解して得た溶液を濾過して、2.5mol/Lの硫酸ニッケルと1.0mol/Lの硫酸コバルトと1.5mol/Lの硫酸マンガンを含有する水溶液(1)を調製した。
(Example 1)
<Production of complex compound>
Nickel sulfate (nickel sulfate (II) hexahydrate, manufactured by Wako Pure Chemical Industries, Ltd.), cobalt sulfate (cobalt sulfate (II) heptahydrate, manufactured by Wako Pure Chemical Industries, Ltd.), and manganese sulfate (manganese sulfate (II The solution obtained by dissolving pentahydrate, manufactured by Wako Pure Chemical Industries, Ltd.) in ion-exchanged water is filtered to obtain 2.5 mol / L nickel sulfate, 1.0 mol / L cobalt sulfate and 1.5 mol. An aqueous solution (1) containing / L manganese sulfate was prepared.
 次いで、容量1Lの第1の反応槽にイオン交換水500gを入れ、窒素ガスでバブリングしながら60℃に保持しつつ400rpmで攪拌した。このイオン交換水中に、前記水溶液(1)を1.2L/時間で、かつ28質量%アンモニア水溶液を0.03L/時間で同時に連続的に供給しつつ、18mol/Lの水酸化ナトリウム水溶液にて反応槽内のpHが12.5を保つようにした。 Next, 500 g of ion-exchanged water was put into a first reaction tank having a capacity of 1 L, and stirred at 400 rpm while being kept at 60 ° C. while bubbling with nitrogen gas. In this ion-exchanged water, the aqueous solution (1) was continuously supplied at a rate of 1.2 L / hour and a 28% by mass aqueous ammonia solution at a rate of 0.03 L / hour at the same time. The pH in the reaction vessel was maintained at 12.5.
 そして、前記第1の反応槽からオーバーフローにより、前記第1の反応槽内で得られた核粒子含有液を、第2の反応槽(容量:2L)に80%の容量になるまで貯蔵した。 The core particle-containing liquid obtained in the first reaction tank was stored in the second reaction tank (capacity: 2 L) until the volume reached 80% due to overflow from the first reaction tank.
 次に、第2の反応槽で核粒子含有液を窒素ガスでバブリングしながら30℃に保持しつつ400rpmで攪拌した。この溶液中に、前記水溶液(1)を1.2L/時間で、かつ28質量%アンモニア水溶液を0.03L/時間で同時に連続的に添加しつつ、18mol/Lの水酸化ナトリウム水溶液にて前記第2の反応槽内のpHが10を保つようにした。フィルターを通した吸引濾過により、反応液から上澄み液を抜きとり、反応系内の液量を調節し、30℃で72時間粒子成長した。その後、反応液を濾過し、次いで水洗して複合化合物を得た。 Next, the core particle-containing liquid was stirred at 400 rpm while being kept at 30 ° C. while bubbling with nitrogen gas in the second reaction tank. To this solution, the aqueous solution (1) was continuously added at 1.2 L / hour and a 28% by weight aqueous ammonia solution at 0.03 L / hour at the same time, while the 18 mol / L aqueous sodium hydroxide solution was used. The pH in the second reaction tank was kept at 10. The supernatant liquid was extracted from the reaction liquid by suction filtration through a filter, the amount of liquid in the reaction system was adjusted, and particles were grown at 30 ° C. for 72 hours. Thereafter, the reaction solution was filtered and then washed with water to obtain a composite compound.
 更に、得られた複合化合物を120℃で12時間乾燥することにより複合化合物の粉末を得た。
 得られた複合化合物の粉末の金属成分の組成は、Ni:Co:Mn=50.2:20.0:29.8(モル比)であった。
 この複合化合物の粒度分布(D10、D50、D90、D90/D10)、比表面積、タップ密度、及び平均円形度を表1に示す。
 図1に、この複合化合物の粒度分布を示す。
Further, the obtained composite compound was dried at 120 ° C. for 12 hours to obtain a composite compound powder.
The composition of the metal component of the obtained composite compound powder was Ni: Co: Mn = 50.2: 20.0: 29.8 (molar ratio).
Table 1 shows the particle size distribution (D 10 , D 50 , D 90 , D 90 / D 10 ), specific surface area, tap density, and average circularity of this composite compound.
FIG. 1 shows the particle size distribution of this composite compound.
<リチウム含有複合酸化物の製造>
 前記複合化合物200.00gと、Li含量26.96mol/kgの炭酸リチウム(LiCO、SQM社製)83.67gとを混合し、大気雰囲気下で、910℃で8時間焼成して仕込み組成でLi1.014Ni0.495Co0.197Mn0.294のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
<Production of lithium-containing composite oxide>
200.00 g of the composite compound and 83.67 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg are mixed and fired at 910 ° C. for 8 hours in an air atmosphere. A lithium-containing composite oxide having a composition of Li 1.014 Ni 0.495 Co 0.197 Mn 0.294 O 2 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
 得られたリチウム含有複合酸化物粉末の粒度分布(D10、D50、D90、D90/D10)、比表面積、タップ密度、及び平均円形度を表2に示す。 Table 2 shows the particle size distribution (D 10 , D 50 , D 90 , D 90 / D 10 ), specific surface area, tap density, and average circularity of the obtained lithium-containing composite oxide powder.
(実施例2)
<リチウム含有複合酸化物の製造>
 実施例1に記載の方法と同様にして得られた複合化合物200.00gと、Li含量26.96mol/kgの炭酸リチウム(LiCO、SQM社製)83.59gと、フッ化リチウム(LiF、和光純薬工業社製)0.06gとを混合し、大気雰囲気下にて、910℃で8時間焼成した以外は、実施例1同様にして、仕込み組成Li1.014Ni0.495Co0.197Mn0.2941.9990.001のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られたリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表2に示す。
(Example 2)
<Production of lithium-containing composite oxide>
200.00 g of the composite compound obtained in the same manner as in the method described in Example 1, 83.59 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg, lithium fluoride ( (LiF, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.06 g were mixed, and charged composition Li 1.014 Ni 0.495 in the same manner as in Example 1 except that the mixture was baked at 910 ° C. for 8 hours in the air atmosphere. A lithium-containing composite oxide of Co 0.197 Mn 0.294 O 1.999 F 0.001 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
(実施例3)
<複合化合物の製造>
 実施例1において、第2の反応槽における粒子成長工程の条件を、30℃で96時間に変更した以外は、実施例1と同様にして、複合化合物を得た。
 得られた複合化合物について、実施例1と同様にして、各種特性を評価した。結果を表1に示す。
(Example 3)
<Production of complex compound>
In Example 1, a composite compound was obtained in the same manner as in Example 1 except that the conditions of the particle growth step in the second reaction vessel were changed to 30 hours at 96C.
About the obtained composite compound, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 1.
<リチウム含有複合酸化物の製造>
 実施例1において、上記で得られた複合化合物を使用したこと以外は、実施例1と同様にして、Li1.014Ni0.491Co0.198Mn0.297のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られたリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表2に示す。
<Production of lithium-containing composite oxide>
In Example 1, the lithium-containing composite oxidation of Li 1.014 Ni 0.491 Co 0.198 Mn 0.297 O 2 was performed in the same manner as in Example 1 except that the composite compound obtained above was used. I got a thing. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
(実施例4)
<複合化合物の製造>
 実施例1において、第2の反応槽における粒子成長工程の条件を、30℃で120時間に変更した以外は、実施例1と同様にして、複合化合物を得た。
 得られた複合化合物について、実施例1と同様にして、各種特性を評価した。結果を表1に示す。
Example 4
<Production of complex compound>
In Example 1, a composite compound was obtained in the same manner as in Example 1 except that the conditions of the particle growth step in the second reaction tank were changed to 30 hours at 120 ° C.
About the obtained composite compound, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 1.
<リチウム含有複合酸化物の製造>
 得られた複合化合物200gと、Li含量26.96mol/kgの炭酸リチウム(LiCO、SQM社製)83.92gと、酸化ジルコニウム(PCS、日本電工社製)0.81gとを混合し、大気雰囲気下にて、910℃で8時間焼成したこと以外は、実施例1と同様にして、仕込み組成Li1.014Ni0.489Co0.197Mn0.297Zr0.003のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られたリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表2に示す。
<Production of lithium-containing composite oxide>
200 g of the obtained composite compound, 83.92 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg, and 0.81 g of zirconium oxide (PCS, manufactured by Nippon Electric Works) were mixed. The charged composition Li 1.014 Ni 0.489 Co 0.197 Mn 0.297 Zr 0.003 O 2 was carried out in the same manner as in Example 1 except that it was fired at 910 ° C. for 8 hours in the air atmosphere. Lithium-containing composite oxide was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
(実施例5)
<複合化合物の製造>
 実施例1において、第1の反応槽の保持温度を70℃に変更し、第2の反応槽における粒子成長工程の条件を30℃で60時間に変更した以外は、実施例1と同様にして、複合化合物を得た。
 得られた複合化合物について、実施例1と同様にして、各種特性を評価した。結果を表1に示す。
(Example 5)
<Production of complex compound>
In Example 1, the holding temperature of the first reaction vessel was changed to 70 ° C., and the conditions of the particle growth step in the second reaction vessel were changed to 30 hours at 60 ° C., and in the same manner as in Example 1. A composite compound was obtained.
About the obtained composite compound, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 1.
<リチウム含有複合酸化物の製造>
 実施例1において、上記で得られた複合化合物を使用したこと以外は、実施例1と同様にして、Li1.014Ni0.493Co0.198Mn0.295のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られたリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表2に示す。
<Production of lithium-containing composite oxide>
In Example 1, the lithium-containing composite oxidation of Li 1.014 Ni 0.493 Co 0.198 Mn 0.295 O 2 was performed in the same manner as in Example 1 except that the composite compound obtained above was used. I got a thing. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
(比較例1)
<複合化合物の製造>
 硫酸ニッケル(硫酸ニッケル(II)六水和物、和光純薬工業社製)、硫酸コバルト(硫酸コバルト(II)七水和物、和光純薬工業社製)及び硫酸マンガン(硫酸マンガン(II)五水和物、和光純薬工業社製)をイオン交換水に溶解して得た溶液を濾過して、2.5mol/Lの硫酸ニッケルと1.0mol/Lの硫酸コバルトと1.5mol/Lの硫酸マンガンを含有する水溶液(1)を調製した。
(Comparative Example 1)
<Production of complex compound>
Nickel sulfate (nickel sulfate (II) hexahydrate, manufactured by Wako Pure Chemical Industries, Ltd.), cobalt sulfate (cobalt sulfate (II) heptahydrate, manufactured by Wako Pure Chemical Industries, Ltd.) and manganese sulfate (manganese sulfate (II)) A solution obtained by dissolving pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in ion-exchanged water is filtered to obtain 2.5 mol / L nickel sulfate, 1.0 mol / L cobalt sulfate and 1.5 mol / An aqueous solution (1) containing L manganese sulfate was prepared.
 次いで、反応槽にイオン交換水500gを入れ、窒素ガスでバブリングしながら60℃に保持しつつ400rpmで攪拌した。このイオン交換水中に、前記水溶液(1)を1.2L/時間で、かつ28質量%アンモニア水溶液を0.03L/時間で同時に連続的に供給しつつ、18mol/Lの水酸化ナトリウム水溶液にて反応槽内のpHが12.5を保つようにした。フィルターを通した吸引濾過により反応液から上澄み液を除去して反応系内の液量を調節し、60℃で72時間粒子成長した。その後、得られた反応液を濾過し、次いで水洗して複合化合物を得た。 Next, 500 g of ion-exchanged water was put into the reaction vessel, and stirred at 400 rpm while being kept at 60 ° C. while bubbling with nitrogen gas. In this ion-exchanged water, the aqueous solution (1) was continuously supplied at a rate of 1.2 L / hour and a 28% by mass aqueous ammonia solution at a rate of 0.03 L / hour simultaneously, while 18 mol / L aqueous sodium hydroxide solution was used. The pH in the reaction vessel was maintained at 12.5. The supernatant liquid was removed from the reaction solution by suction filtration through a filter to adjust the amount of liquid in the reaction system, and particles were grown at 60 ° C. for 72 hours. Thereafter, the obtained reaction solution was filtered and then washed with water to obtain a composite compound.
 更に、得られた複合化合物を120℃で12時間乾燥することにより複合化合物粉末を得た。
 得られた複合化合物の金属成分の組成は、Ni:Co:Mn=50.0:20.1:29.9(モル比)であった。
 この複合化合物の粒度分布を、水溶媒中にて測定した。結果を表1に示す。
 図1に、この複合化合物の粒度分布を示す。
 前記複合化合物のタップ密度、比表面積、及び平均円形度を測定した。結果を表1に示す。
Further, the obtained composite compound was dried at 120 ° C. for 12 hours to obtain composite compound powder.
The composition of the metal component of the obtained composite compound was Ni: Co: Mn = 50.0: 20.1: 29.9 (molar ratio).
The particle size distribution of the composite compound was measured in an aqueous solvent. The results are shown in Table 1.
FIG. 1 shows the particle size distribution of this composite compound.
The tap density, specific surface area, and average circularity of the composite compound were measured. The results are shown in Table 1.
<リチウム含有複合酸化物の製造>
 前記複合化合物200.00gとLi含量26.96mol/kgの炭酸リチウム(LiCO、SQM社製)83.67gとを混合し、大気雰囲気下にて、910℃で8時間焼成して仕込み組成でLi1.014Ni0.493Co0.198Mn0.295のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られたリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表2に示す。
<Production of lithium-containing composite oxide>
200.00 g of the composite compound and 83.67 g of lithium carbonate (Li 2 CO 3 , manufactured by SQM) having a Li content of 26.96 mol / kg are mixed, and the mixture is baked at 910 ° C. for 8 hours in an air atmosphere. A lithium-containing composite oxide having a composition of Li 1.014 Ni 0.493 Co 0.198 Mn 0.295 O 2 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Table 2.
(比較例2)
<複合化合物、及びリチウム含有複合酸化物の製造>
 比較例1において、反応条件を、pH10.0、30℃で72時間に変更した以外は、比較例1と同様にして、複合化合物を得た。更に、仕込み組成Li1.014Ni0.493Co0.196Mn0.297のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られた複合化合物及びリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表1及び表2に示す。
(Comparative Example 2)
<Production of composite compound and lithium-containing composite oxide>
A composite compound was obtained in the same manner as in Comparative Example 1 except that the reaction conditions in Comparative Example 1 were changed to 72 hours at pH 10.0 and 30 ° C. Furthermore, a lithium-containing composite oxide having a charging composition Li 1.014 Ni 0.493 Co 0.196 Mn 0.297 O 2 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained complex compound and lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
(比較例3)
<複合化合物、及びリチウム含有複合酸化物の製造>
 比較例1において、粒子成長工程の条件を、30℃で60時間に変更した以外は、比較例1と同様にして、複合化合物を得た。更に、仕込み組成Li1.014Ni0.495Co0.197Mn0.294のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られた複合化合物及びリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表1及び表2に示す。
(Comparative Example 3)
<Production of composite compound and lithium-containing composite oxide>
In Comparative Example 1, a composite compound was obtained in the same manner as in Comparative Example 1 except that the conditions of the particle growth process were changed to 30 ° C. for 60 hours. Furthermore, a lithium-containing composite oxide having a charging composition Li 1.014 Ni 0.495 Co 0.197 Mn 0.294 O 2 was obtained. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained complex compound and lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
(比較例4)
<複合化合物、及びリチウム含有複合酸化物の製造>
 比較例1において、反応条件を、60℃で60時間に変更した以外は、比較例1と同様にして、複合化合物を得た。更に、仕込み組成Li1.014Ni0.496Co0.197Mn0.293のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られた複合化合物及びリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表1及び表2に示す。
(Comparative Example 4)
<Production of composite compound and lithium-containing composite oxide>
A composite compound was obtained in the same manner as in Comparative Example 1 except that the reaction conditions in Comparative Example 1 were changed to 60 hours at 60 ° C. Furthermore, to obtain a lithium-containing composite oxide of the charge composition Li 1.014 Ni 0.496 Co 0.197 Mn 0.293 O 2. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained complex compound and lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
(比較例5)
<複合化合物、及びリチウム含有複合酸化物の製造>
 比較例1において、反応条件を、pH10.0、50℃で60時間に変更した以外は、比較例1と同様にして、複合化合物を得た。更に、仕込み組成Li1.014Ni0.496Co0.197Mn0.293のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られた複合化合物及びリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表1及び表2に示す。
(Comparative Example 5)
<Production of composite compound and lithium-containing composite oxide>
A composite compound was obtained in the same manner as in Comparative Example 1 except that the reaction conditions in Comparative Example 1 were changed to pH 10.0 and 50 ° C. for 60 hours. Furthermore, to obtain a lithium-containing composite oxide of the charge composition Li 1.014 Ni 0.496 Co 0.197 Mn 0.293 O 2. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained complex compound and lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
(比較例6)
<複合化合物、及びリチウム含有複合酸化物の製造>
 比較例1において、反応条件を、pH12.5、60℃で120時間に変更した以外は、比較例1と同様にして、複合化合物を得た。更に、仕込み組成Li1.014Ni0.496Co0.197Mn0.293のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。
 得られた複合化合物及びリチウム含有複合酸化物について、実施例1と同様にして、各種特性を評価した。結果を表1及び表2に示す。
(Comparative Example 6)
<Production of composite compound and lithium-containing composite oxide>
A composite compound was obtained in the same manner as in Comparative Example 1, except that the reaction conditions in Comparative Example 1 were changed to 120 hours at pH 12.5 and 60 ° C. Furthermore, to obtain a lithium-containing composite oxide of the charge composition Li 1.014 Ni 0.496 Co 0.197 Mn 0.293 O 2. The composition ratio of the obtained lithium-containing composite oxide coincided with the preparation ratio.
About the obtained complex compound and lithium containing complex oxide, it carried out similarly to Example 1, and evaluated various characteristics. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(正極の製造)
 正極活物質として、それぞれ実施例1~5、及び比較例1~6の正極活物質(リチウム含有複合酸化物)と、アセチレンブラック(導電材、商品名:デンカブラック、電気化学工業社製)と、ポリフッ化ビニリデン(バインダー、商品名:KFL#1120、呉羽化学工業社製)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒:N-メチルピロリドン)とを混合し、更にN-メチルピロリドンを添加してスラリーを作製した。混合の際の、正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとの比率は、質量比(正極活物質/アセチレンブラック/ポリフッ化ビニリデン)で、90/5/5とした。スラリーを平均厚み20μmのアルミニウム箔(正極集電体、商品名:E-FOIL、東洋アルミニウム社製)にドクターブレードを用いて片面塗工した。120℃で乾燥し、ロールプレス圧延(0.3t/cm)を2回行うことにより正極体シートを作製した。実施例1~5の正極活物質から得た正極体シートを、それぞれ正極体シート1~5と、比較例1~6の正極活物質から得た正極体シートを、それぞれ正極体シート6~11とする。
(Manufacture of positive electrode)
As positive electrode active materials, positive electrode active materials (lithium-containing composite oxides) of Examples 1 to 5 and Comparative Examples 1 to 6, respectively, and acetylene black (conductive material, trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) And a polyvinylidene fluoride solution (solvent: N-methylpyrrolidone) containing 12.1% by mass of polyvinylidene fluoride (binder, trade name: KFL # 1120, manufactured by Kureha Chemical Industry Co., Ltd.), and N-methylpyrrolidone Addition to make a slurry. The ratio of the positive electrode active material, acetylene black, and polyvinylidene fluoride during mixing was 90/5/5 in mass ratio (positive electrode active material / acetylene black / polyvinylidene fluoride). The slurry was applied to one side of an aluminum foil having an average thickness of 20 μm (positive electrode current collector, trade name: E-FOIL, manufactured by Toyo Aluminum Co., Ltd.) using a doctor blade. It dried at 120 degreeC and produced the positive electrode sheet by performing roll press rolling (0.3t / cm) twice. The positive electrode sheets obtained from the positive electrode active materials of Examples 1 to 5 were respectively positive electrode sheets 1 to 5 and the positive electrode sheets obtained from the positive electrode active materials of Comparative Examples 1 to 6 were respectively positive electrode sheets 6 to 11. And
(電池の製造)
 前記で製造した正極体シート1~11を正極に用い、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。
 その他の材料は以下のとおりである。
 ・負極:平均厚み500μmの金属リチウム箔(リチウムフォイル、本荘ケミカル社製)
 ・負極集電体:平均厚み1mmのステンレス鋼板
 ・セパレータ:平均厚み25μmの多孔質ポリプロピレン(セルガード#2500、セルガード社製)
 ・電解液:濃度1mol/dmのLiPF/EC(エチレンカーボネート)+DEC(ジエチルカーボネート)(1:1)溶液(LiPFを溶質とするECとDECとの体積比(EC:DEC=1:1)の混合溶液を意味する。)
 正極体シート1~11を用いたリチウムイオン二次電池をリチウム電池1~11とする。
(Manufacture of batteries)
Using the positive electrode sheets 1 to 11 manufactured as described above as the positive electrode, a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box.
Other materials are as follows.
・ Negative electrode: Lithium foil with an average thickness of 500 μm (lithium foil, manufactured by Honjo Chemical Co., Ltd.)
Negative electrode current collector: Stainless steel plate with an average thickness of 1 mm Separator: Porous polypropylene with an average thickness of 25 μm (Celguard # 2500, manufactured by Celgard)
Electrolyte: LiPF 6 / EC (ethylene carbonate) + DEC (diethyl carbonate) (1: 1) solution (concentration 1 mol / dm 3 ) (volume ratio of EC and DEC containing LiPF 6 as a solute (EC: DEC = 1: It means the mixed solution of 1).)
Lithium ion secondary batteries using the positive electrode sheets 1 to 11 are referred to as lithium batteries 1 to 11, respectively.
(電池特性評価)
 得られたリチウム電池1~11について、以下の電池特性の評価を行った。結果を表3に示す。なお、評価は、25℃で行った。
(Battery characteristics evaluation)
The obtained lithium batteries 1 to 11 were evaluated for the following battery characteristics. The results are shown in Table 3. In addition, evaluation was performed at 25 degreeC.
<初期特性>
 前記で製造したリチウム電池1~11を用いて下記評価を行った。
 即ち、正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき32mAの負荷電流にて2.75Vまで放電した。4.3V~2.75Vにおける放電容量を初期容量として、TOSCAT-3000(東洋システム社製)を用いて測定した。
 また、初期の効率を、初回放電容量/初回充電容量により求めた。
 また、初期の電圧を、初回の平均放電電圧により求めた。
 結果を表3に示す。
<Initial characteristics>
The following evaluation was performed using the lithium batteries 1 to 11 manufactured above.
That is, it charged to 4.3V with the load current of 192mA per 1g of positive electrode active materials, and discharged to 2.75V with the load current of 32mA per 1g of positive electrode active materials. The discharge capacity at 4.3 V to 2.75 V was used as the initial capacity, and the measurement was performed using a TOSCAT-3000 (manufactured by Toyo System Co., Ltd.).
Further, the initial efficiency was determined by the initial discharge capacity / initial charge capacity.
Moreover, the initial voltage was calculated | required by the first average discharge voltage.
The results are shown in Table 3.
<レート特性>
 前記で製造したリチウム電池1~11を用いて下記評価を行った。
 即ち、正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき32mAの負荷電流にて2.75Vまで放電した。続いて正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき480mAの負荷電流(1Cレート)にて2.75Vまで放電した。更に、正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき800mAの負荷電流(5Cレート)にて2.75Vまで放電した。この時の初期容量に対する容量をレート特性として求めた。結果を表3に示す。
<Rate characteristics>
The following evaluation was performed using the lithium batteries 1 to 11 manufactured above.
That is, it charged to 4.3V with the load current of 192mA per 1g of positive electrode active materials, and discharged to 2.75V with the load current of 32mA per 1g of positive electrode active materials. Then, it charged to 4.3V with the load current of 192mA per 1g of positive electrode active materials, and discharged to 2.75V with the load current (1C rate) of 480mA per 1g of positive electrode active materials. Furthermore, it charged to 4.3V with the load current of 192mA / g positive electrode active material, and discharged to 2.75V with the load current (5C rate) of 800mA / g positive electrode active material. The capacity with respect to the initial capacity at this time was obtained as a rate characteristic. The results are shown in Table 3.
<電極密度>
 電極密度は、アルミニウム箔に塗工した電極を直径1.8cmφの円板に打ち抜き、電子天秤で質量を測定し、マイクロメーターで厚みを測定する。次に、電極を塗工していないアルミニウム箔を直径1.8cmφに打ち抜き、同様に質量と厚みを測定する。電極密度は以下に示す式(2)にて算出した。
(塗工電極の厚み-アルミニウム箔の厚み)×0.9×π(円周率)/(塗工電極の質量-アルミニウム箔の質量) 式(2)
<Electrode density>
The electrode density is measured by punching an electrode coated on an aluminum foil into a disk having a diameter of 1.8 cm, measuring the mass with an electronic balance, and measuring the thickness with a micrometer. Next, an aluminum foil not coated with an electrode is punched out to a diameter of 1.8 cm, and the mass and thickness are similarly measured. The electrode density was calculated by the following formula (2).
(Thickness of coated electrode−thickness of aluminum foil) × 0.9 2 × π (circumferential ratio) / (mass of coated electrode−mass of aluminum foil) Formula (2)
<サイクル特性>
 前記で製造したリチウム電池1~11を用いて下記評価を行った。
 即ち、正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき32mAの負荷電流にて2.75Vまで放電した。続いて正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき480mAの負荷電流にて2.75Vまで放電した。更に、正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき800mAの負荷電流にて2.75Vまで放電した。
 次いで、正極活物質1gにつき192mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき160mAの負荷電流にて2.75Vまで放電する充放電サイクルを50回繰返した。4.3V充放電サイクル50回目の放電容量を4.3V初期容量で割った値をサイクル維持率とする。
<Cycle characteristics>
The following evaluation was performed using the lithium batteries 1 to 11 manufactured above.
That is, it charged to 4.3V with the load current of 192mA per 1g of positive electrode active materials, and discharged to 2.75V with the load current of 32mA per 1g of positive electrode active materials. Then, it charged to 4.3V with the load current of 192mA per 1g of positive electrode active materials, and discharged to 2.75V with the load current of 480mA per 1g of positive electrode active materials. Furthermore, it charged to 4.3V with the load current of 192mA / g positive electrode active material, and discharged to 2.75V with the load current of 800mA / g positive electrode active material.
Next, a charge / discharge cycle of charging to 4.3 V at a load current of 192 mA per 1 g of the positive electrode active material and discharging to 2.75 V at a load current of 160 mA per 1 g of the positive electrode active material was repeated 50 times. The value obtained by dividing the discharge capacity at the 50th cycle of the 4.3V charge / discharge cycle by the initial capacity of 4.3V is defined as the cycle maintenance ratio.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~5では、正極活物質含有層を形成するプレス圧力が低くても、比較例1~6より高い電極密度を得ることができ、良好な初期特性、レート特性、サイクル特性が得られた。
 実施例1~5の初期容量、初期効率、初期電圧、及びレート特性は、比較例1~6とともに優れた結果であった。
In Examples 1 to 5, even if the press pressure for forming the positive electrode active material-containing layer is low, a higher electrode density than Comparative Examples 1 to 6 can be obtained, and good initial characteristics, rate characteristics, and cycle characteristics can be obtained. It was.
The initial capacity, initial efficiency, initial voltage, and rate characteristics of Examples 1 to 5 were excellent results together with Comparative Examples 1 to 6.
 一方、実施例1~5のサイクル特性は、比較例のうちで最も結果がよかった比較例5のサイクル特性93.1%よりも1.0%以上優れていた。
 本実施例では、負極に用いているLi負極が劣化するため、長期サイクル評価ができず、サイクル特性の繰り返し数を50としている。しかし、サイクル特性は経験的にサイクル回数の1/2乗に比例する傾向にある。上記結果を1,000サイクルに換算すると、50サイクルにおける94.0%は、73.0%となり、50サイクルにおける93.0%は、69.0%となる。更に、5,000サイクルに換算すると、50サイクルにおける94.0%は、40%となり、93.0%は、30%となる。
 そのため、実施例1~5は、比較例1~6と比べて、サイクル特性の点で非常に優れていることが確認できた。特に、実施例1では、サイクル特性が96.4%あり、非常に良好な結果であった。
On the other hand, the cycle characteristics of Examples 1 to 5 were 1.0% or more superior to the cycle characteristics of 93.1% of Comparative Example 5 that showed the best results among the comparative examples.
In this example, since the Li negative electrode used for the negative electrode deteriorates, long-term cycle evaluation cannot be performed, and the number of repetitions of cycle characteristics is 50. However, the cycle characteristics empirically tend to be proportional to the half power of the number of cycles. When the above result is converted into 1,000 cycles, 94.0% in 50 cycles is 73.0%, and 93.0% in 50 cycles is 69.0%. Furthermore, in terms of 5,000 cycles, 94.0% in 50 cycles is 40%, and 93.0% is 30%.
Therefore, it was confirmed that Examples 1 to 5 were very excellent in terms of cycle characteristics as compared with Comparative Examples 1 to 6. In particular, in Example 1, the cycle characteristic was 96.4%, which was a very good result.
 本発明の複合化合物は、製造時のプレス圧力が低くても高い電極密度を得ることができ、安全性が高く、単位体積あたりの放電容量、及びレート特性に優れ、更にサイクル特性が非常に優れるリチウム含有複合酸化物の前駆体として好適に用いることができる。
 本発明のリチウム含有複合酸化物は、製造時のプレス圧力が低くても高い電極密度を得ることができ、安全性が高く、単位体積あたりの放電容量、及びレート特性に優れ、更にサイクル特性が非常に優れることから、リチウムイオン二次電池に好適に用いることができる。
 なお、2013年4月25日に出願された日本特許出願2013-092486号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The composite compound of the present invention can obtain a high electrode density even when the pressing pressure during production is low, has high safety, is excellent in discharge capacity per unit volume, and rate characteristics, and is very excellent in cycle characteristics. It can be suitably used as a precursor of a lithium-containing composite oxide.
The lithium-containing composite oxide of the present invention can obtain a high electrode density even when the pressing pressure during production is low, has high safety, excellent discharge capacity per unit volume, and rate characteristics, and further has cycle characteristics. Since it is very excellent, it can be suitably used for a lithium ion secondary battery.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-092486 filed on April 25, 2013 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (14)

  1.  ニッケル及びマンガンを含有し、レーザー散乱粒度分布測定における体積基準累積90%径(D90)と体積基準累積10%径(D10)との比(D90/D10)が2.00以下であり、タップ密度が1.9g/cm以上であり、平均円形度が0.960以上であることを特徴とする複合化合物。 It contains nickel and manganese, and the ratio (D 90 / D 10 ) of volume-based cumulative 90% diameter (D 90 ) and volume-based cumulative 10% diameter (D 10 ) in laser scattering particle size distribution measurement is 2.00 or less. A composite compound having a tap density of 1.9 g / cm 3 or more and an average circularity of 0.960 or more.
  2.  水酸化物である請求項1に記載の複合化合物。 The composite compound according to claim 1, which is a hydroxide.
  3.  体積基準累積50%径(D50)が5.0~13.0μmである請求項1または2に記載の複合化合物。 The composite compound according to claim 1 or 2, wherein the volume-based cumulative 50% diameter (D 50 ) is 5.0 to 13.0 µm.
  4.  更にコバルトを含有する請求項1~3のいずれかに記載の複合化合物。 The composite compound according to any one of claims 1 to 3, further comprising cobalt.
  5.  複合化合物におけるニッケルの含有量が、ニッケル、マンガン及びコバルトの合計に対して、44~68mol%であり、マンガンの含有量が22~44mol%であり、コバルトの含有量が4~28mol%である請求項4に記載の複合化合物。 The content of nickel in the composite compound is 44 to 68 mol%, the content of manganese is 22 to 44 mol%, and the content of cobalt is 4 to 28 mol% with respect to the total of nickel, manganese and cobalt. The composite compound according to claim 4.
  6.  請求項1~5のいずれかに記載の複合化合物の製造方法であって、
     ニッケル及びマンガンを含有する水溶液とアルカリとを第1の反応容器に連続的に添加して核粒子を析出して、前記核粒子を含有する核粒子含有液を得る核粒子含有液作製工程と、
     第1の反応容器内の核粒子含有液の一部を、第1の反応容器から第2の反応容器へ連続的に移す移動工程と、
     前記核粒子含有液が入った第2の反応容器に、ニッケル及びマンガンを含有する水溶液とアルカリとを連続的に添加して核粒子を成長させつつ、得られた反応液から一部の上澄み液を除去する粒子成長工程とを含むことを特徴とする複合化合物の製造方法。
    A method for producing the composite compound according to any one of claims 1 to 5,
    An aqueous solution containing nickel and manganese and an alkali are continuously added to the first reaction vessel to precipitate the core particles, thereby obtaining a core particle-containing liquid preparation step for obtaining a core particle-containing liquid containing the core particles;
    A moving step of continuously transferring a part of the nuclear particle-containing liquid in the first reaction vessel from the first reaction vessel to the second reaction vessel;
    Part of the supernatant from the reaction solution obtained while growing the core particles by continuously adding an aqueous solution containing nickel and manganese and an alkali to the second reaction vessel containing the core particle-containing solution. A method of producing a composite compound, comprising: a particle growth step of removing particles.
  7.  移動工程が、第1の反応容器からオーバーフローした核粒子含有液を、第2の反応容器へ移す工程である請求項6に記載の複合化合物の製造方法。 The method for producing a complex compound according to claim 6, wherein the moving step is a step of transferring the core particle-containing liquid overflowing from the first reaction vessel to the second reaction vessel.
  8.  リチウム化合物と、請求項1から5のいずれかに記載の複合化合物とを混合して混合物を得る混合工程と、
     前記混合物を焼成する焼成工程とを含むことを特徴とするリチウム含有複合酸化物の製造方法。
    A mixing step of mixing a lithium compound and the composite compound according to any one of claims 1 to 5 to obtain a mixture;
    A method for producing a lithium-containing composite oxide, comprising a firing step of firing the mixture.
  9.  リチウム含有複合酸化物が、下記一般式(1)で表される化合物である請求項8に記載のリチウム含有複合酸化物の製造方法。
      LiNiMnCoMe ・・・一般式(1)
     ただし、前記一般式(1)において、1.02≦a≦1.12、0<x≦1.0、0<y≦1.0、0≦z≦1.0、0≦b≦0.3、0.90≦x+y+z+b≦1.05、1.9≦c≦2.1、及び0≦d≦0.03であり、Meは、Mg、Ca、Sr、Ba、Al、及びZrからなる群から選ばれる少なくとも一種である。
    The method for producing a lithium-containing composite oxide according to claim 8, wherein the lithium-containing composite oxide is a compound represented by the following general formula (1).
    Li a Ni x Mn y Co z Me b O c F d ··· formula (1)
    However, in the general formula (1), 1.02 ≦ a ≦ 1.12, 0 <x ≦ 1.0, 0 <y ≦ 1.0, 0 ≦ z ≦ 1.0, 0 ≦ b ≦ 0. 3, 0.90 ≦ x + y + z + b ≦ 1.05, 1.9 ≦ c ≦ 2.1, and 0 ≦ d ≦ 0.03, and Me is composed of Mg, Ca, Sr, Ba, Al, and Zr It is at least one selected from the group.
  10.  請求項8または9に記載のリチウム含有複合酸化物の製造方法により得られることを特徴とするリチウム含有複合酸化物。 A lithium-containing composite oxide obtained by the method for producing a lithium-containing composite oxide according to claim 8 or 9.
  11.  タップ密度が1.9g/cm~3.0g/cmであり、平均円形度が0.950以上である請求項10に記載のリチウム含有複合酸化物。 The lithium-containing composite oxide according to claim 10, wherein the tap density is 1.9 g / cm 3 to 3.0 g / cm 3 and the average circularity is 0.950 or more.
  12.  請求項10または11に記載のリチウム含有複合酸化物と、バインダーと、導電材と、溶媒とを含有する塗布液を、正極集電体上に塗布して、リチウム含有複合酸化物と、バインダーと、導電材とを含有する正極活物質含有層を形成することを特徴とするリチウムイオン二次電池用正極の製造方法。 A lithium-containing composite oxide according to claim 10 or 11, a coating liquid containing a binder, a conductive material, and a solvent is applied onto a positive electrode current collector, the lithium-containing composite oxide, a binder, A method for producing a positive electrode for a lithium ion secondary battery, comprising forming a positive electrode active material-containing layer containing a conductive material.
  13.  正極活物質含有層に1t/cm以下の圧力を加える加圧工程を含む請求項12に記載のリチウムイオン二次電池用正極の製造方法。 The manufacturing method of the positive electrode for lithium ion secondary batteries of Claim 12 including the pressurization process which applies the pressure of 1 t / cm or less to a positive electrode active material content layer.
  14.  正極を作製する正極作製工程と、
     前記正極と、セパレータと、負極とを積層して積層物を作製する積層物作製工程と、
     前記積層物に非水電解質を含有させる非水電解質付与工程とを含み、
     前記正極作製工程が、請求項12または13に記載のリチウムイオン二次電池用正極の製造方法であることを特徴とするリチウムイオン二次電池の製造方法。
    A positive electrode manufacturing step of manufacturing a positive electrode;
    A laminate production step of producing a laminate by laminating the positive electrode, the separator, and the negative electrode;
    Including a nonaqueous electrolyte application step of containing a nonaqueous electrolyte in the laminate,
    The method for producing a lithium ion secondary battery, wherein the positive electrode preparation step is the method for producing a positive electrode for a lithium ion secondary battery according to claim 12 or 13.
PCT/JP2014/061081 2013-04-25 2014-04-18 Composite compound, lithium-containing composite oxide, and methods respectively for producing said products WO2014175191A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015513733A JP6510402B2 (en) 2013-04-25 2014-04-18 Composite compound, lithium-containing composite oxide, and method for producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092486 2013-04-25
JP2013-092486 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175191A1 true WO2014175191A1 (en) 2014-10-30

Family

ID=51791769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061081 WO2014175191A1 (en) 2013-04-25 2014-04-18 Composite compound, lithium-containing composite oxide, and methods respectively for producing said products

Country Status (2)

Country Link
JP (1) JP6510402B2 (en)
WO (1) WO2014175191A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115547A1 (en) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2016095934A (en) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 Secondary battery
JP2016184528A (en) * 2015-03-26 2016-10-20 日産自動車株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2017525090A (en) * 2014-06-12 2017-08-31 ユミコア Precursor of lithium transition metal oxide cathode material for rechargeable batteries
EP3225592A1 (en) * 2016-03-31 2017-10-04 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
JP2017188443A (en) * 2016-03-31 2017-10-12 日亜化学工業株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
WO2017204164A1 (en) * 2016-05-24 2017-11-30 住友化学株式会社 Positive electrode active material, method for producing same and positive electrode for lithium ion secondary batteries
JP2018198132A (en) * 2017-05-23 2018-12-13 本田技研工業株式会社 Cathode for lithium ion secondary battery and lithium ion secondary battery employing the same
CN109244450A (en) * 2018-10-24 2019-01-18 湖南海利锂电科技股份有限公司 Preparation method of high-compaction high-capacity lithium manganate composite positive electrode material for mixed ternary material
WO2020220662A1 (en) * 2019-04-28 2020-11-05 宁德时代新能源科技股份有限公司 Positive electrode active material, positive electrode pole, lithium ion secondary battery and apparatus
WO2021025101A1 (en) 2019-08-06 2021-02-11 株式会社田中化学研究所 Nickel composite hydroxide particles, positive electrode active material having nickel composite hydroxide particles as precursors, and method for producing positive electrode active material
CN113474296A (en) * 2019-02-22 2021-10-01 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2022120400A (en) * 2021-02-05 2022-08-18 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
US20220285676A1 (en) * 2019-08-30 2022-09-08 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147068A (en) * 2006-12-12 2008-06-26 Ise Chemicals Corp Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2010536697A (en) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Powdered compound, process for its production and its use in lithium secondary batteries
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057777A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Granulated powder of transition metal compound for raw material for positive electrode active material of lithium secondary battery, and method for producing the same
JP6428105B2 (en) * 2014-09-29 2018-11-28 住友金属鉱山株式会社 Nickel cobalt manganese compound and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147068A (en) * 2006-12-12 2008-06-26 Ise Chemicals Corp Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2010536697A (en) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Powdered compound, process for its production and its use in lithium secondary batteries
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115547A1 (en) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2015115547A1 (en) * 2014-01-31 2017-03-23 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US10236507B2 (en) 2014-01-31 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide particles, method for producing same, cathode active material for non-aqueous electrolyte secondary batteries, method for producing same, and non-aqueous electrolyte secondary battery
JP2017525090A (en) * 2014-06-12 2017-08-31 ユミコア Precursor of lithium transition metal oxide cathode material for rechargeable batteries
JP2016095934A (en) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 Secondary battery
JP2016184528A (en) * 2015-03-26 2016-10-20 日産自動車株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2017188443A (en) * 2016-03-31 2017-10-12 日亜化学工業株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
EP3594182A1 (en) * 2016-03-31 2020-01-15 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
JP2018147889A (en) * 2016-03-31 2018-09-20 日亜化学工業株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US11380892B2 (en) 2016-03-31 2022-07-05 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
EP3225592A1 (en) * 2016-03-31 2017-10-04 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US11165060B2 (en) 2016-05-24 2021-11-02 Sumitomo Chemical Company, Limited Cathode active material, its production process, and positive electrode for lithium ion secondary battery
JPWO2017204164A1 (en) * 2016-05-24 2019-03-22 住友化学株式会社 Positive electrode active material, method for producing the same, and positive electrode for lithium ion secondary battery
WO2017204164A1 (en) * 2016-05-24 2017-11-30 住友化学株式会社 Positive electrode active material, method for producing same and positive electrode for lithium ion secondary batteries
CN109155410A (en) * 2016-05-24 2019-01-04 住友化学株式会社 Positive active material, its manufacturing method and lithium ion secondary battery anode
JP2018198132A (en) * 2017-05-23 2018-12-13 本田技研工業株式会社 Cathode for lithium ion secondary battery and lithium ion secondary battery employing the same
CN109244450A (en) * 2018-10-24 2019-01-18 湖南海利锂电科技股份有限公司 Preparation method of high-compaction high-capacity lithium manganate composite positive electrode material for mixed ternary material
CN113474296A (en) * 2019-02-22 2021-10-01 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2020220662A1 (en) * 2019-04-28 2020-11-05 宁德时代新能源科技股份有限公司 Positive electrode active material, positive electrode pole, lithium ion secondary battery and apparatus
EP4148830A3 (en) * 2019-04-28 2023-04-05 Contemporary Amperex Technology Co., Limited Positive electrode active material, positive electrode plate, lithium ion secondary battery, and apparatus
WO2021025101A1 (en) 2019-08-06 2021-02-11 株式会社田中化学研究所 Nickel composite hydroxide particles, positive electrode active material having nickel composite hydroxide particles as precursors, and method for producing positive electrode active material
US20220285676A1 (en) * 2019-08-30 2022-09-08 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2022120400A (en) * 2021-02-05 2022-08-18 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP7416734B2 (en) 2021-02-05 2024-01-17 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6510402B2 (en) 2019-05-08
JPWO2014175191A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2014175191A1 (en) Composite compound, lithium-containing composite oxide, and methods respectively for producing said products
CN105226266B (en) Lithium-containing composite oxide and method for producing same
JP6062947B2 (en) Precursor of positive electrode active material for lithium secondary battery, positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP5428251B2 (en) Lithium transition metal compound powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
WO2011125722A1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP6487279B2 (en) Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6903260B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5135843B2 (en) Lithium transition metal composite oxide, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
WO2011083861A1 (en) Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2011108554A (en) Lithium transition metal based compound powder, its manufacturing method, and positive electrode material for lithium secondary battery and lithium secondary battery using it
JP2008305777A (en) Lithium transition metal compound powder, its production method, spray dried product being baking precursor of the powder, positive electrode for lithium secondary battery using the product, and lithium secondary battery
JP2013065467A (en) Lithium ion secondary battery
JP2005123179A (en) Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
WO2013048071A2 (en) Precursor of cathode active material for a lithium secondary battery, method for manufacturing the precursor, cathode active material, and lithium secondary battery including the cathode active material
US20070298324A1 (en) Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP2010534915A (en) Porous network electrode for non-aqueous electrolyte secondary battery
JP2008243447A (en) Lithium transition metal composite oxide, its manufacturing method, cathode for lithium secondary battery using it, and lithium secondary battery using it
JP2010116302A (en) Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
JP2006172753A (en) Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2012038680A (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery using the positive electrode active material and lithium secondary battery
JP6495824B2 (en) Method for producing lithium-containing composite oxide, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014116162A (en) Positive electrode active material
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
CN109964345B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14789092

Country of ref document: EP

Kind code of ref document: A1