WO2014175181A1 - Transparent conductor and electronic device - Google Patents

Transparent conductor and electronic device Download PDF

Info

Publication number
WO2014175181A1
WO2014175181A1 PCT/JP2014/061049 JP2014061049W WO2014175181A1 WO 2014175181 A1 WO2014175181 A1 WO 2014175181A1 JP 2014061049 W JP2014061049 W JP 2014061049W WO 2014175181 A1 WO2014175181 A1 WO 2014175181A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
admittance
transparent conductor
group
compound
Prior art date
Application number
PCT/JP2014/061049
Other languages
French (fr)
Japanese (ja)
Inventor
健 波木井
敏幸 木下
小島 茂
和央 吉田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015513729A priority Critical patent/JPWO2014175181A1/en
Publication of WO2014175181A1 publication Critical patent/WO2014175181A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a transparent conductor and an electronic device including the transparent conductor.
  • An organic electroluminescence device (so-called organic EL device) using electroluminescence (hereinafter referred to as EL) of an organic material is a thin-film type completely solid device capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • Such an organic electroluminescent element has a configuration in which a light emitting layer composed of an organic material is sandwiched between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. For this reason, at least one of the two electrodes is configured as a transparent conductor.
  • oxide semiconductor materials such as indium tin oxide (ITO) and materials aiming at low resistance by laminating ITO and silver have been studied (for example, the following) (See Patent Document 1 and Patent Document 2).
  • ITO indium tin oxide
  • Patent Document 2 the material cost is high, and it is necessary to anneal at about 300 ° C. after formation in order to reduce resistance.
  • the structure which ensures electroconductivity by the thickness thinner than silver alone by mixing aluminum with silver is also proposed (for example, refer patent document 3 below).
  • the present invention provides a transparent conductor having both sufficient conductivity and light transmittance, and an electronic device whose performance is improved by using this transparent conductor.
  • the transparent conductor of the present invention includes an organic compound layer and a conductive layer provided adjacent to the organic compound layer.
  • the conductive layer includes a metal layer containing silver (Ag) as a main component and a palladium-containing layer containing palladium (Pd), and the palladium-containing layer is provided on the organic compound layer side in the conductive layer.
  • the electronic device of this invention is equipped with the said transparent conductor.
  • the transparent conductor of the present invention since it has a conductive layer in which a metal layer mainly composed of silver is formed adjacent to the palladium-containing layer, interaction between palladium and silver is obtained, and although it is thin, it is uniform A conductive layer having a sufficient thickness can be obtained. Furthermore, the uniformity of the conductive layer can be further improved by providing the conductive layer on the organic compound layer. Therefore, in the transparent conductor, it is possible to achieve both improvement in conductivity and improvement in light transmittance. Moreover, the electronic device excellent in electroconductivity and light transmittance can be comprised using this transparent conductor.
  • FIG. 2 is a diagram showing a structural formula and molecular orbital of a ⁇ -carboline ring. It is a figure which shows schematic structure of the transparent conductor of 2nd Embodiment.
  • FIG. 1 the schematic block diagram (sectional drawing) of the transparent conductor of 1st Embodiment is shown.
  • the transparent conductor 10 includes an organic compound layer 12 and a conductive layer 15.
  • the conductive layer 15 includes a metal layer 14 and a palladium-containing layer 13 adjacent to the metal layer 14.
  • the palladium-containing layer 13 is provided on the organic compound layer 12 side in the conductive layer 15. That is, the palladium-containing layer 13 is sandwiched between the metal layer 14 and the organic compound layer 12.
  • a transparent conductor 10 including an organic compound layer 12 and a conductive layer 15 composed of a palladium-containing layer 13 and a metal layer 14 is provided on the substrate 11. Therefore, the transparent conductor 10 has a configuration in which the organic compound layer 12, the palladium-containing layer 13, and the metal layer 14 are laminated on the base material 11 in this order.
  • the palladium-containing layer 13 of the conductive layer 15 is sandwiched between the organic compound layer 12 and the metal layer 14.
  • the transparent conductor 10 preferably has an average absorptance of light with a wavelength of 400 nm to 800 nm of 15% or less and a maximum absorptance of 25% or less.
  • the transparent conductor 10 has an average absorptance of light having a wavelength of 400 nm to 800 nm of 15% or less, preferably 12% or less, and more preferably 10% or less.
  • the maximum value of the absorptance of light having a wavelength of 400 nm to 800 nm is 25% or less, preferably 20% or less, and more preferably 15% or less.
  • the light absorption rate of the transparent conductor 10 can be reduced by suppressing the plasmon absorption rate of the conductive layer 15 and the light absorption rate of the material constituting each layer.
  • the average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor 10 is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor 10 is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the transparent conductor 10 is applicable also to the use as which high transparency is requested
  • the absorptance, average transmittance, and average reflectance are values measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor. Absorptivity, average transmittance and average reflectance are measured with a spectrophotometer.
  • the surface resistance of the transparent conductor 10 is 30 ⁇ / sq. Or less, more preferably 15 ⁇ / sq. It is as follows.
  • the surface resistance value of the transparent conductor 10 can be adjusted by the thickness of the conductive layer 15 and the like.
  • the surface resistance value of the transparent conductor 10 can be measured according to, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface resistivity meter.
  • transparent conductor 10 of this example means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the base material 11 on which the transparent conductor 10 is formed is a support material for various elements formed thereon.
  • the substrate 11 is preferably highly transparent to visible light. Examples of the substrate 11 include, but are not limited to, glass, quartz, a transparent resin film, and the like.
  • the base material 11 preferably has an average transmittance of light having a wavelength of 450 to 800 nm of 70% or more, more preferably 80% or more, and further preferably 85% or more.
  • the average light transmittance of the substrate 11 is low, the average light transmittance of the entire transparent conductor is lowered.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the substrate 11 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance of the base material 11 is a value measured by allowing measurement light to enter from an angle inclined by 5 ° with respect to the front surface of the base material 11.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of the substrate 11 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70.
  • the refractive index of the substrate 11 is usually determined by the material of the substrate 11.
  • the refractive index of the substrate 11 is the refractive index of light having a wavelength of 510 nm, and is measured with an ellipsometer.
  • the thickness of the substrate 11 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the base material 11 is thinner than 1 ⁇ m, the strength of the base material 11 becomes low, and there is a possibility that the base material 11 is damaged when an element is formed on the base material 11.
  • the thickness of the base material 11 is too thick, it may cause the flexibility and light transmittance of the transparent conductor to decrease.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • silica glass soda lime silica glass
  • lead glass lead glass
  • borosilicate glass alkali-free glass.
  • physical treatment such as polishing, coating films made of inorganic or organic materials, and the like, as necessary
  • a hybrid film is formed by combining these films.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (
  • a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed on the surface of the resin film.
  • Such coatings and hybrid coatings have a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992 of 0.01 g / ( m 2 ⁇ 24 hours) or less of a barrier film (also referred to as a barrier film or the like) is preferable.
  • the oxygen permeability measured by the method according to JIS-K-7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less, and the water vapor permeability is 10 ⁇ 5 g / (m (2 ⁇ 24 hours) or less is preferable.
  • the material for forming the barrier film as described above a material having a function of suppressing the intrusion of elements such as moisture and oxygen causing deterioration of the resin film is used.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the atmospheric pressure plasma polymerization method described in JP-A-2004-68143 can be preferably used.
  • the organic compound layer 12 is a layer provided on one main surface side of the substrate 11 and is provided adjacent to the conductive layer 15.
  • the thickness of the organic compound layer 12 is 1 ⁇ m or less, preferably 100 nm or less.
  • the organic compound layer 12 is composed of a compound having a Lewis base. That is, the organic compound layer 12 is configured using a compound including an atom having an unshared electron pair. Examples of the compound having a Lewis base include nitrogen-containing compounds and sulfur-containing compounds.
  • the organic compound layer 12 is a layer configured using at least one or both of a nitrogen-containing compound and a sulfur-containing compound. Moreover, it can also be set as the layer containing a multiple types of compound, respectively.
  • the compound constituting the organic compound layer 12 may be a compound containing both nitrogen and sulfur.
  • the nitrogen-containing compound constituting the organic compound layer 12 may be a compound containing a nitrogen atom (N), and it is particularly preferable that the nitrogen atom has an unshared electron pair.
  • the sulfur containing compound which comprises the organic compound layer 12 should just be a compound containing the sulfur atom (S), and it is preferable that especially a sulfur atom has an unshared electron pair.
  • the nitrogen-containing compound and the sulfur-containing compound constituting the organic compound layer 12 include a nitrogen atom or a sulfur atom having an unshared electron pair that is stably bonded to the metal material that is the main material constituting the conductive layer 15. Sometimes, this unshared electron pair of nitrogen atom or sulfur atom is referred to as [effective unshared electron pair].
  • the nitrogen-containing compound and the sulfur-containing compound constituting the organic compound layer 12 preferably have a content ratio of [effective unshared electron pairs] within a predetermined range.
  • the “effective unshared electron pair” refers to an unshared electron pair that is not involved in aromaticity and is not coordinated to a metal among the unshared electron pairs of the nitrogen atom or sulfur atom contained in the compound.
  • [Effective unshared electron pair] is a nitrogen atom or sulfur atom regardless of whether or not the nitrogen atom or sulfur atom itself provided with the unshared electron pair is a hetero atom constituting an aromatic ring. It is selected depending on whether or not the unshared electron pair possessed by is involved in aromaticity.
  • the lone pair of the nitrogen atom does not directly participate as an essential element in aromaticity, that is, a conjugated unsaturated ring
  • the unshared electron pair is [effective non-shared It is counted as one of the electron pairs.
  • the nitrogen atom is not shared.
  • the nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs. For this reason, the number of bonds of nitrogen atoms is usually three.
  • R 1 and R 2 are each a hydrogen atom (H) or a substituent.
  • the non-shared electron pair of the nitrogen atom constituting these groups does not participate in aromaticity and is not coordinated to the metal, and thus corresponds to [effective unshared electron pair].
  • the unshared electron pair possessed by the nitrogen atom of the nitro group (—NO 2 ) is used for the resonance structure with the oxygen atom, but does not participate in aromaticity and is not coordinated to the metal [ It is thought that it exists on nitrogen as an effective unshared electron pair].
  • FIG. 2 shows a structural formula of tetrabutylammonium chloride (TBAC) and a structural formula of tris (2-phenylpyridine) iridium (III) [Ir (ppy) 3 ].
  • TBAC is a quaternary ammonium salt in which one of four butyl groups is ionically bonded to a nitrogen atom and has a chloride ion as a counter ion.
  • one of the electrons constituting the unshared electron pair of the nitrogen atom is donated to the ionic bond with the butyl group.
  • the nitrogen atom of TBAC is equivalent to the absence of an unshared electron pair in the first place. Therefore, the unshared electron pair of the nitrogen atom constituting TBAC does not correspond to the [effective unshared electron pair] that is not involved in aromaticity and coordinated to the metal.
  • Ir (ppy) 3 is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated.
  • the unshared electron pair of the nitrogen atom constituting this Ir (ppy) 3 is coordinated to the iridium atom, and is utilized for coordination bonding. Therefore, the unshared electron pair of the nitrogen atom constituting Ir (ppy) 3 does not correspond to the [effective unshared electron pair] that is not involved in aromaticity and coordinated to the metal.
  • nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity.
  • nitrogen-containing aromatic ring examples include pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, tetrazole ring and the like.
  • FIG. 3 is a diagram showing a structural formula and molecular orbitals of a pyridine ring which is one of the groups exemplified above.
  • FIG. 4 shows the structural formula and molecular orbitals of the pyrrole ring.
  • the pyrrole ring has a structure in which one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of ⁇ electrons is also six and satisfies the Hückel rule. Nitrogen-containing aromatic ring. Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, the lone pair is mobilized to the 6 ⁇ electron system.
  • this unshared electron pair is used as an essential element for the expression of aromaticity, and therefore does not participate in aromaticity and is a metal. It does not correspond to [Effective unshared electron pair] that is not coordinated to.
  • FIG. 5 is a diagram showing the structural formula and molecular orbitals of the imidazole ring.
  • the imidazole ring has a structure in which two nitrogen atoms N 1 and N 2 are substituted at the 1,3-positions in a 5-membered ring, and also has a nitrogen content of 6 ⁇ electrons. It is an aromatic ring.
  • one nitrogen atom N 1 is a pyridine ring-type nitrogen atom that mobilizes only one unpaired electron to the 6 ⁇ -electron system and does not utilize the unshared electron pair for the expression of aromaticity, This unshared electron pair of nitrogen atom N 1 corresponds to [effective unshared electron pair].
  • the unshared electron pair of the nitrogen atom N 2 is [effective Does not fall under “Unshared electron pair”. Accordingly, in the imidazole ring, only the unshared electron pair of one nitrogen atom N 1 out of the two nitrogen atoms N 1 and N 2 constituting the ring corresponds to the “effective unshared electron pair”.
  • FIG. 6 shows the structural formula and molecular orbital of the ⁇ -carboline ring.
  • the ⁇ -carboline ring is a condensed ring compound having a nitrogen-containing aromatic ring skeleton, and is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order.
  • the nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron to the ⁇ -electron system
  • the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the ⁇ -electron system.
  • the total number of ⁇ electrons is an aromatic ring of 14.
  • the unshared electron pair of the nitrogen atom N 3 constituting the pyridine ring corresponds to [effective unshared electron pair], but constitutes the pyrrole ring.
  • the unshared electron pair of the nitrogen atom constituting the condensed ring compound is involved in the bond in the condensed ring compound, similarly to the bond in the single ring such as the pyridine ring and pyrrole ring constituting the condensed ring compound. .
  • the nitrogen atom having such an [effective unshared electron pair] is preferably a nitrogen atom in the nitrogen-containing aromatic ring from the viewpoint of stability and durability. Therefore, the nitrogen-containing compound preferably has an aromatic heterocycle having a nitrogen atom having [effective unshared electron pair] as a heteroatom.
  • the number n of [effective unshared electron pairs] with respect to the molecular weight M of such a compound is defined as the effective unshared electron pair content [n / M].
  • the organic compound layer 12 is preferably composed of a compound selected such that [n / M] is 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M].
  • the nitrogen-containing compound and the sulfur-containing compound have an effective unshared electron pair content [n / M] defined as described above in a range of 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M].
  • 6.5 ⁇ 10 ⁇ 3 ⁇ [n / M] is more preferable.
  • the organic compound layer 12 should just be comprised using the nitrogen containing compound and sulfur containing compound whose effective unshared electron pair content rate [n / M] is the predetermined range mentioned above, and only such a compound is used. You may be comprised, and you may be comprised using mixing such a compound and another compound. The other compound may or may not contain a nitrogen atom and a sulfur atom, and the effective unshared electron pair content [n / M] may not be within the predetermined range described above.
  • the organic compound layer 12 is configured using a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and [effective non- The total number n of [shared electron pairs] is obtained as an average value of the effective unshared electron pair content [n / M], and this value is preferably within the predetermined range described above. That is, it is preferable that the effective unshared electron pair content [n / M] of the organic compound layer 12 itself is in a predetermined range.
  • the organic compound layer 12 is composed of a plurality of compounds and the composition ratio (content ratio) of the compounds is different in the thickness direction, the organic layer on the side in contact with the conductive layer 15 is used.
  • the effective unshared electron pair content [n / M] in the surface layer of the compound layer 12 should just be a predetermined range.
  • the organic compound layer 12 is made of a conductive material, it does not become a main electrode. For this reason, the organic compound layer 12 does not need to have a film thickness necessary as an electrode, and depending on the arrangement state of the transparent conductor 10 in an electronic device in which the transparent conductor 10 including the organic compound layer 12 is used, What is necessary is just to have the film thickness set appropriately.
  • the nitrogen-containing compound constituting the organic compound layer 12 may be a compound containing a nitrogen atom (N).
  • N is an organic compound containing a nitrogen atom having an unshared electron pair, and is preferably a compound described later.
  • Table 1 shows the corresponding general formulas when these exemplary compounds also belong to the general formulas (1) to (8a) representing other compounds II described below.
  • the nitrogen-containing compound As the nitrogen-containing compound, other compounds may be used in addition to the compound whose effective unshared electron pair content [n / M] is within the predetermined range described above.
  • a compound containing a nitrogen atom is preferably used regardless of whether the effective unshared electron pair content [n / M] is in the predetermined range described above. Among them, a compound containing a nitrogen atom having [effective unshared electron pair] is particularly preferably used.
  • the nitrogen-containing compound the compound which has a property required for every electronic device to which the transparent conductor 10 provided with this nitrogen-containing compound is applied is used.
  • the transparent conductor 10 is used as an electrode of an organic electroluminescent element
  • the nitrogen-containing compound is represented by the following general formulas (1) to (8a) from the viewpoint of formability.
  • a compound having a structure is preferably used.
  • the compounds having the structures represented by the general formulas (1) to (8a) compounds that fall within the range of the effective unshared electron pair content [n / M] described above are included, and such compounds If so, it can be used alone as a nitrogen-containing compound (see Table 1 above).
  • the compound having the structure represented by the following general formulas (1) to (8a) is a compound that does not fall within the range of the effective unshared electron pair content [n / M]
  • the effective unshared electron pair It is preferable to use it as a compound constituting the organic compound layer 12 by mixing with a compound having a content [n / M] in the above-mentioned range.
  • X11 in the above general formula (1) represents -N (R11)-or -O-.
  • R11 and R12 each represent a hydrogen atom (H) or a substituent.
  • substituents examples include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group.
  • cycloalkyl groups for example, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl groups for example, vinyl group, allyl group, etc.
  • alkynyl groups for example, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon groups aromatic Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group , Pyrenyl group, biphenylyl group), aromatic heterocyclic group (eg , Furyl group, thienyl group, pyridyl group, pyridazinyl group,
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • substituents those not inhibiting the interaction between the compound and silver (Ag) are preferably used, and those having nitrogen having an effective unshared electron pair described above are particularly preferably applied.
  • the above description regarding the substituents is similarly applied to the substituents shown in the description of the general formulas (2) to (8a) described below.
  • the compound having the structure represented by the general formula (1) as described above is preferable because it can exert a strong interaction between nitrogen in the compound and palladium or silver constituting the conductive layer 15.
  • the compound represented by the general formula (1a) is one form of the compound having the structure represented by the general formula (1), and is a compound in which X11 in the general formula (1) is —N (R11) —. . Such a compound is preferable because the above interaction can be expressed more strongly.
  • a compound. Such a compound is preferable because the number of nitrogen atoms is large and the above interaction can be expressed more strongly.
  • the compound represented by the general formula (1b) is another embodiment of the compound having the structure represented by the general formula (1).
  • X11 is —O—
  • Such a compound is preferable because the above interaction can be expressed more effectively.
  • the above general formula (2) is also a form of the general formula (1).
  • Y21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • R21 represents a hydrogen atom (H) or a substituent.
  • k21 and k22 represent an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
  • examples of the arylene group represented by Y21 include o-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, and biphenyldiyl.
  • examples of the heteroarylene group represented by Y21 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, and one of carbon atoms constituting the carboline ring is nitrogen.
  • the ring structure is replaced by an atom), a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring.
  • a carbazole ring also referred to as a monoazacarboline ring
  • a triazole ring also referred to as a monoazacarboline ring
  • a pyrrole ring also referred to as a monoazacarboline ring
  • the divalent linking group consisting of an arylene group, heteroarylene group or a combination thereof represented by Y21
  • a condensed aromatic heterocycle formed by condensation of three or more rings is preferably included, and a group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • a group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • E221 to E224 and E230 to E233 are each represented by —C (R21) ⁇ .
  • E203 is represented by —C (R21) ⁇ and R21 represents a linking site, and E211 is also —C (R21).
  • R21 preferably represents a linking moiety.
  • the general formula (3) is also a form of the general formula (1a-2).
  • E301 to E312 each represent —C (R31) ⁇
  • R31 represents a hydrogen atom (H) or a substituent.
  • Y31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • the general formula (4) is also a form of the general formula (1a-1).
  • E401 to E414 each represent —C (R41) ⁇
  • R41 represents a hydrogen atom (H) or a substituent.
  • Ar41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • k41 represents an integer of 3 or more.
  • the aromatic hydrocarbon ring includes benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene Ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen And a ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • These rings may further have the substituents exemplified as R11
  • the aromatic heterocycle when Ar41 represents an aromatic heterocycle, the aromatic heterocycle includes a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring And azacarbazole ring.
  • the azacarbazole ring refers to one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom. These rings may further have the substituents exemplified as R11 and R12 in the general formula (1).
  • R51 represents a substituent.
  • R52 represents a hydrogen atom (H) or a substituent.
  • E601 to E612 each represent —C (R61) ⁇ or —N ⁇ , and R61 represents a hydrogen atom (H) or a substituent.
  • Ar61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • the substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar61 may be the same as Ar41 in the general formula (4).
  • R71 to R73 each represents a hydrogen atom (H) or a substituent
  • Ar71 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar71 may be the same as Ar41 in the general formula (4).
  • R81 to R86 each represent a hydrogen atom (H) or a substituent.
  • E801 to E803 each represent —C (R87) ⁇ or —N ⁇ , and R87 represents a hydrogen atom (H) or a substituent.
  • Ar81 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar81 include those similar to Ar41 in the general formula (4).
  • the nitrogen-containing compound having the structure represented by the general formula (8a) is one form of the nitrogen-containing compound having the structure represented by the general formula (8), and Ar81 in the general formula (8) is a carbazole derivative.
  • E804 to E811 each represent —C (R88) ⁇ or —N ⁇ , and R88 represents a hydrogen atom (H) or a substituent.
  • Non-containing compound (3) (Compound III)
  • other compounds constituting the nitrogen-containing compound include compounds 1 to 166 shown below as specific examples. Is done. These compounds are compounds containing nitrogen atoms that interact with palladium and silver constituting the conductive layer 15. Further, these compounds are materials having an electron transport property or an electron injection property. Therefore, the transparent conductor 10 in which the organic compound layer 12 is formed using these compounds is suitable as a transparent electrode in the organic electroluminescent device, and the organic compound layer 12 as an electron transport layer or an electron injection layer in the organic electroluminescent device. Can be used.
  • Step 1 (Synthesis of Intermediate 1) Under a nitrogen atmosphere, 2,8-dibromodibenzofuran (1.0 mol), carbazole (2.0 mol), copper powder (3.0 mol), potassium carbonate (1.5 mol), DMAc (dimethylacetamide) 300 ml Mixed in and stirred at 130 ° C. for 24 hours.
  • Step 2 (Synthesis of Intermediate 2)
  • Intermediate 1 (0.5 mol) was dissolved in 100 ml of DMF (dimethylformamide) at room temperature in the atmosphere, NBS (N-bromosuccinimide) (2.0 mol) was added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered and washed with methanol, yielding intermediate 2 in 92% yield.
  • Step 3 (Synthesis of Compound 5) Under a nitrogen atmosphere, intermediate 2 (0.25 mol), 2-phenylpyridine (1.0 mol), ruthenium complex [( ⁇ 6 -C 6 H 6 ) RuCl 2 ] 2 (0.05 mol), triphenyl Phosphine (0.2 mol) and potassium carbonate (12 mol) were mixed in 3 L of NMP (N-methyl-2-pyrrolidone) and stirred at 140 ° C. overnight.
  • NMP N-methyl-2-pyrrolidone
  • the sulfur-containing compound constituting the organic compound layer 12 may have a sulfide bond (also referred to as a thioether bond), a disulfide bond, a mercapto group, a sulfone group, a thiocarbonyl bond, etc. in the molecule. It preferably has a mercapto group.
  • sulfur-containing compounds having structures represented by the following general formulas (9) to (12) can be given.
  • R 71 and R 72 each represent a substituent.
  • Examples of the substituent represented by R 71 and R 72 include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group, an alkoxy group, a cycloalkoxy group, An aryloxy group etc. are mentioned.
  • R73 and R74 represent a substituent.
  • Examples of the substituent represented by R 73 and R 74 include the same substituents as R 71 and R 72 .
  • R 75 represents a substituent.
  • Examples of the substituent represented by R75 include the same substituents as R71 and R72 .
  • R 76 represents a substituent.
  • Examples of the substituent represented by R76 include the same substituents as R71 and R72 .
  • Method for forming organic compound layer 12 examples include a method using a wet process such as a coating method, an inkjet method, a coating method, and a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and a CVD method. And a method using a dry process such as Of these, the vapor deposition method is preferably applied.
  • the organic compound layer 12 is formed using a plurality of compounds, co-evaporation in which a plurality of compounds are simultaneously supplied from a plurality of evaporation sources is applied.
  • a coating method is preferably applied.
  • a coating solution in which the compound is dissolved in a solvent is used.
  • the solvent in which the compound is dissolved is not limited.
  • a coating solution may be prepared using a solvent capable of dissolving the plurality of compounds.
  • the conductive layer 15 includes a metal layer 14 mainly composed of silver (Ag) that mainly constitutes the conductive layer 15, and a palladium-containing layer 13 containing palladium (Pd) provided adjacent to the metal layer 14. Is done.
  • the absorption of light by the conductive layer 15 is determined by the total of two absorptions, absorption inherent to metal (hereinafter, intrinsic absorption) and plasmon absorption mainly due to the surface shape of the conductive layer 15.
  • intrinsic absorption is smaller as the conductive layer 15 is thinner, and the plasmon absorption is smaller as the surface is smoother. Therefore, the conductive layer 15 is as thin as possible and the surface is smooth, which is effective in reducing light absorption by the conductive layer 15. It is.
  • the plasmon absorption rate of the conductive layer 15 is preferably 20% or less over the entire wavelength range of 400 nm to 800 nm. Furthermore, the plasmon absorption rate of the conductive layer 15 is preferably 15% or less, more preferably 7% or less, and further preferably 5% or less. When the plasmon absorptance at the wavelength is large, the light transmittance of the conductive layer 15 is lowered. Further, if there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the light transmitted through the conductive layer 15 is likely to be colored.
  • the palladium-containing layer 13 is a layer containing palladium (Pd) provided adjacent to the metal layer 14.
  • the palladium-containing layer 13 is a layer formed directly on the organic compound layer 12.
  • the metal layer 14 mainly composed of Ag when the metal layer 14 mainly composed of Ag is formed on a base material, Ag atoms attached to the base material generate a lump (nucleus) having a certain size while being surface diffused. Then, the initial thin film growth proceeds along the periphery of this lump (nucleus). For this reason, in the film
  • the above growth nuclei are formed of a metal that hardly diffuses on the organic compound layer 12.
  • a metal the above-described palladium (Pd) alone or a material containing palladium (Pd) as a main component can be used.
  • an alloy containing gold, platinum, cobalt, nickel, molybdenum, titanium, aluminum, chromium, nickel, or the like may be used for palladium (Pd).
  • the palladium-containing layer 13 is difficult to diffuse on the surface of the organic compound layer 12 and needs to have high affinity with a material mainly composed of Ag constituting the metal layer 14. Moreover, it is preferable that a dense and fine growth nucleus is obtained.
  • a desired layer growth nucleus
  • IAD ion-assisted deposition
  • the average thickness of the palladium-containing layer 13 is preferably 3 nm or less, more preferably 0.1 nm or less, and still more preferably a monoatomic layer.
  • the average thickness of the palladium-containing layer 13 is adjusted by the formation speed and the formation time.
  • the palladium-containing layer 13 may be a continuous and homogeneous film, a film having a defect in which a metal atom containing Pd is not arranged or a discontinuous part in which a hole is formed, or a metal atom containing Pd is separated from each other.
  • it may be a so-called island structure attached in a dispersed state.
  • the metal atoms containing Pd are attached to each other while being separated from each other.
  • it may be formed as a single layer composed of only the palladium-containing layer 13 or may be a layer mixed with a material mainly composed of Ag of the metal layer 14 formed on the palladium-containing layer 13.
  • the palladium-containing layer 13 can be formed by using a sputtering method or a vapor deposition method with a Pd growth nucleus having a thickness of 3 nm or less. Alternatively, a palladium-containing layer having a sufficient thickness can be formed, and this layer can be dry etched to leave a Pd growth nucleus having a thickness of 3 nm or less.
  • sputtering methods examples include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering.
  • the sputtering time is appropriately selected according to the average thickness of the Pd growth nuclei to be formed and the formation speed.
  • the sputter formation rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the vapor deposition method for example, a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, an ion beam vapor deposition method, or the like can be used.
  • the deposition time is appropriately selected according to the Pd layer (growth nucleus) to be formed and the formation speed.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the method for forming the palladium-containing layer is not particularly limited.
  • a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method, or a wet deposition method such as a plating method can be used.
  • the average thickness of the Pd-containing layer to be formed is preferably 3 to 15 nm, more preferably 5 to 10 nm. If the average thickness of the layer containing Pd is less than 3 nm, the amount of metal is small, and sufficient growth nuclei may not be obtained.
  • the dry etching method for the palladium-containing layer refers to an etching method that involves physical collision of etching gas, ions, radicals, etc., and does not include reactive gas etching that performs etching only by chemical reaction.
  • the etching method is not particularly limited as long as it involves such physical collision, and for example, ion beam etching, reverse sputter etching, plasma etching, or the like can be used.
  • ion beam etching is particularly preferable from the viewpoint that desired unevenness is easily formed on the palladium-containing layer 13 (Pd growth nucleus) after etching.
  • the palladium-containing layer 13 (Pd growth nucleus) is too thick, it is difficult to obtain a thin and smooth metal layer 14 even if the growth nucleus is formed. Furthermore, the metal layer 14 formed starting from the growth nucleus of the palladium-containing layer 13 becomes thicker.
  • the average thickness of the growth nucleus of the palladium-containing layer 13 is determined from the difference between the thickness of the layer containing Pd and the etching thickness of the layer containing Pd.
  • the etching thickness of the layer containing Pd is the product of the etching rate and the etching time.
  • the etching rate is obtained from the time required for etching a layer containing Pd having a thickness of 50 nm separately formed on a glass substrate under the same conditions, and for the light transmittance after etching to be equal to that of the glass substrate (approximately 0 nm in thickness).
  • the average thickness of the palladium-containing layer 13 (Pd growth nucleus) is adjusted by the dry etching time.
  • the metal layer 14 is a layer formed using silver or an alloy containing silver as a main component, which is formed adjacent to the palladium-containing layer 13.
  • the alloy mainly composed of silver (Ag) constituting the metal layer 14 is preferably an alloy containing 50% by mass or more of silver.
  • an alloy mainly composed of silver (Ag) constituting the metal layer 14 includes silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ), Silver aluminum (AgAl), and the like.
  • the metal layer 14 as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
  • Examples of the method for forming the metal layer 14 include a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, and the like. Examples include a method using a dry process. Of these, the vapor deposition method is preferably applied.
  • the metal layer 14 is formed on the palladium-containing layer 13 so that it has sufficient conductivity even without a high-temperature annealing treatment after the formation. A high temperature annealing treatment or the like may be performed.
  • the metal layer 14 preferably has a thickness in the range of 3 to 15 nm. When the thickness is 15 nm or less, particularly 12 nm or less, the absorption component or reflection component of the layer can be suppressed low, and the light transmittance of the transparent conductor 10 is maintained, which is preferable. Moreover, if the metal layer 14 is at least 3 nm or more in thickness, the conductivity of the transparent conductor 10 is ensured.
  • the thickness of the metal layer 14 is 15 nm or less.
  • the total thickness is preferably 12 nm or less.
  • a total thickness of the metal layer 14 and the palladium-containing layer 13 of 15 nm or less is preferable because the absorption component and reflection component of the layer can be kept low and the light transmittance of the transparent conductor 10 is maintained.
  • the light transmittance of the transparent conductor 10 is further improved by setting the total thickness of the metal layer 14 and the palladium-containing layer 13 to 12 nm or less.
  • the conductive layer 15 including the palladium-containing layer 13 and the metal layer 14 provided adjacent to the palladium-containing layer 13 as described above may have an upper portion of the metal layer 14 covered with a protective film, Another conductive layer may be laminated. In this case, it is preferable that the protective film and the conductive layer have light transmittance so as not to impair the light transmittance of the transparent conductor 10.
  • the transparent conductor 10 configured as described above includes a palladium-containing layer 13 and a metal layer 14 containing silver as a main component adjacent to an organic compound layer 12 configured using a compound containing a nitrogen atom.
  • the conductive layer 15 is provided. According to this configuration, since the metal layer 14 mainly composed of silver is formed with the palladium-containing layer 13 as a growth nucleus, the diffusion distance of silver atoms on the formation surface is reduced by the interaction between Pd atoms and Ag atoms. It reduces and aggregation of silver is suppressed.
  • the palladium-containing layer 13 and the metal layer 14 adjacent to the organic compound layer 12, the interaction between Pd atoms and Ag atoms and the compound containing the nitrogen atoms constituting the organic compound layer 12.
  • the diffusion distance of Pd atoms and Ag atoms on the surface of the organic compound layer 12 is reduced, and aggregation is suppressed.
  • the organic compound layer 12 is formed using a compound having an effective unshared electron pair content [n / M] of 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M] as an index of bond stability.
  • a silver layer that is easily isolated in an island shape by growth in a nucleus growth type (Volumer-Weber: VW type) is generally formed as a single layer growth type. It is formed by the growth of (Frank-van der Merwe: FM type).
  • FM type (Frank-van der Merwe: FM type).
  • the conductive layer 15 having a uniform thickness is formed although the thickness is small. Therefore, it is possible to configure the transparent conductor 10 that can suppress light absorption by the conductive layer 15 to ensure light transmission and further ensure conductivity.
  • FIG. 7 the schematic block diagram (sectional drawing) of the transparent conductor of 2nd Embodiment is shown.
  • the transparent conductor 20 of the second embodiment is only provided with an admittance adjusting layer 21 between the base material 11 and the organic compound layer 12, and the transparent conductor 20 of the first embodiment shown in FIG. Different from the transparent conductor 10.
  • the detailed description which overlaps about the component similar to 1st Embodiment is abbreviate
  • the transparent conductor 20 includes an admittance adjusting layer 21, an organic compound layer 12, and a conductive layer 15.
  • the transparent conductor 20 is provided on the base material 11.
  • the conductive layer 15 includes a metal layer 14 mainly composed of silver and a palladium-containing layer 13 formed at a position adjacent to the metal layer 14.
  • the palladium-containing layer 13 is configured to be sandwiched between the metal layer 14 and the organic compound layer 12.
  • an admittance adjusting layer 21 is provided on the surface opposite to the surface on which the conductive layer 15 is formed.
  • the admittance adjusting layer 21 is provided between the organic compound layer 12 and the base material 11 and is directly formed on the base material 11. That is, the transparent conductor 20 has a configuration in which the admittance adjusting layer 21, the organic compound layer 12, the conductive layer 15 including the palladium-containing layer 13 and the metal layer 14 are laminated on the base material 11 in this order.
  • the organic compound layer 12, the conductive layer 15, and the palladium-containing layer 13 and the metal layer 14 constituting the conductive layer 15 have the same configuration as in the first embodiment.
  • the substrate 11 can have the same configuration as that of the first embodiment. For this reason, detailed description is abbreviate
  • the admittance adjustment layer 21 is a layer provided for adjusting optical characteristics such as reflectance and transmittance of the transparent conductor 20, in particular, the reflectance of the conductive layer 15. The admittance adjustment of the transparent conductor 20 by the admittance adjustment layer 21 will be described later.
  • the admittance adjusting layer 21 is preferably a layer containing a dielectric material or an oxide semiconductor material.
  • the material constituting the admittance adjusting layer 21 is preferably a metal oxide or a metal sulfide.
  • the admittance adjusting layer 21 may include only one type of dielectric material or oxide semiconductor material, or may include two or more types.
  • the admittance adjusting layer 21 preferably has a higher refractive index than the layer in contact with the admittance adjusting layer 21 on the side opposite to the side where the organic compound layer 12 and the conductive layer 15 are provided.
  • the admittance adjustment layer 21 preferably has a higher refractive index than the base material 11 on which the transparent conductor 20 is provided.
  • the refractive index of the admittance adjusting layer 21 is preferably 1.8 or more, more preferably 2.1 or more and 2.5 or less. As will be described later, when the refractive index of the admittance adjusting layer 21 is higher than 1.8, the light transmittance of the transparent conductor 20 is likely to increase. Further, the refractive index of the admittance adjusting layer 21 is preferably greater than the refractive index of the substrate 11 by 0.1 to 1.1 or more, more preferably 0.4 to 1.0 or more.
  • the refractive index of the admittance adjusting layer 21 is a refractive index of light having a wavelength of 510 nm, and is measured by an ellipsometer. The refractive index of the admittance adjustment layer 21 is adjusted by the material constituting the admittance adjustment layer 21, the density of the material in the admittance adjustment layer 21, and the like.
  • the thickness of the admittance adjusting layer 21 is preferably 10 to 150 nm, more preferably 20 to 80 nm. If the thickness of the admittance adjusting layer 21 is less than 10 nm, it is difficult to sufficiently enhance the light transmittance of the transparent conductor 20. On the other hand, when the thickness of the admittance adjusting layer 21 exceeds 150 nm, the transparency (antireflection property) of the transparent conductor 20 does not increase. The thickness of the admittance adjusting layer 21 is measured with an ellipsometer.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like can be used.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like can be used.
  • an electron beam evaporation method or a sputtering method it is preferable to provide assistance such as IAD in order to increase the film density.
  • the admittance adjustment layer 21 of the transparent conductor 20 has a function of adjusting the intrinsic absorption and reflectance of the conductive layer 15.
  • the reflectance R of the surface of the transparent conductor 20 is determined from the optical admittance y 0 of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor 20, and these relations are expressed by the following equations. Is done.
  • the reflectance R decreases as
  • the optical admittance y 0 of air is 1. Therefore, the closer the equivalent admittance Y E is to 1, the closer the reflectance R of the transparent conductor 20 is. Becomes lower.
  • the optical admittance y 0 of the medium the light is incident is a value determined by the refractive index of the material constituting the organic EL layer.
  • the organic EL layer if having a structure in which a organic material having a refractive index of 1.8 on the transparent conductor 20, the optical admittance y 0 of the medium the light is incident becomes 1.8. Therefore, as the equivalent admittance Y E is the closer to 1.8, the reflectance of the transparent conductor 20 R is lowered.
  • the optical admittance Y is obtained from the ratio (H / E) between the electric field strength and the magnetic field strength, and is usually the same as the refractive index.
  • the equivalent admittance Y E is obtained from the optical admittance Y of each layer constituting the transparent conductor 20. For example, when the transparent conductor 20 is composed of one layer, the equivalent admittance Y E of the transparent conductor 20 is equal to the optical admittance Y of the layer.
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is from the first layer to the (x ⁇ 1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate and a specific matrix, and specifically obtained by the following formula (1) or formula (2). .
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • 2 ⁇ nd / ⁇
  • y n (admittance of the x-th layer film)
  • d is the thickness of the x-th layer film.
  • 2 ⁇ kd / ⁇
  • d the thickness of the x-th layer film
  • k the refractive index (imaginary part) of the film.
  • optical admittance Yx (E x H x ) of the laminate from the transparent support material to the outermost layer when the x-th layer is the outermost layer becomes the equivalent admittance Y E of the transparent conductor 20.
  • FIG. 8 shows an admittance locus with a wavelength of 570 nm when the conductive layer 15 is formed directly on the substrate 11.
  • FIG. 9 shows an admittance locus with a wavelength of 570 nm when the conductive layer 15 is formed on the substrate 11 via the admittance adjusting layer 21 and the organic compound layer 12.
  • This Y 2 corresponds to the equivalent admittance Y E of the transparent conductor 20.
  • the interface opposite to Y 1 is the interface opposite to the base material 11 of the conductive layer 15 in FIG. 8, and the admittance adjusting layer 21 side (organic compound layer 12 side) of the conductive layer 15 in FIG. It is the interface on the opposite side.
  • the vertical axis (IM) is the imaginary part of the optical admittance, that is, y in the equation.
  • the admittance locus shown in FIG. 8 the start point coordinates of admittance locus, an equivalent admittance Y A conductive layer 15 side of the substrate 11, a admittance coordinates (x A, y A). Further, the equivalent admittance Y 2 of the interface of the base material 11 and the opposite side of the conductive layer 15 is admittance coordinates (x 2, y 2).
  • FIG. 8 shows the case where the conductive layer 15 is directly formed on the base material
  • the admittance coordinates (x 1 , y 1 ) of the equivalent admittance Y 1 on the base material 11 side of the conductive layer 15 are the conductive layer 15.
  • the admittance locus shown in FIG. 9, the coordinates of the start point of the admittance locus is the interface between the equivalent admittance Y A of the substrate 11 and the admittance adjustment layer 21, the admittance coordinates (x A, y A) (1.5, 0).
  • the equivalent admittance Y B at the interface between the admittance adjusting layer 21 and the organic compound layer 12 is represented by admittance coordinates (x B , y B ).
  • the equivalent admittance Y 1 at the interface between the conductive layer 15 and the organic compound layer 12 is expressed by admittance coordinates (x 1 , y 1 ).
  • the equivalent admittance Y 2 at the interface of the conductive layer 15 opposite to the admittance adjustment layer 21 is the admittance coordinates (x 2 , y 2 ).
  • the admittance locus is moved from the admittance coordinates (x A , y A ) to the admittance coordinates (x B , y B ) by providing the admittance adjustment layer 21. That is, the admittance locus is moved in the positive direction of the horizontal axis (real part) and the vertical axis (imaginary part) by the admittance adjustment layer 21. Furthermore, by providing the organic compound layer 12, the admittance locus moves from the admittance coordinates (x B , y B ) to the admittance coordinates (x 1 , y 1 ) of the conductive layer 15.
  • the admittance coordinates (x 1 , y 1 ) correspond to the optical admittance Y 1 of the conductive layer 15 on the admittance adjustment layer 21 side (organic compound layer 12 side).
  • the coordinates of the end point of the admittance locus are the equivalent admittance Y E of the transparent conductor 20.
  • the distance between the admittance coordinates (x E , y E ) of the equivalent admittance Y E of the transparent conductor 20 and the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident is the transparent conductor 20 It is proportional to the reflectance R of the surface.
  • the reflectance R becomes smaller.
  • the equivalent admittance Y E of the transparent conductor 20 is equal to the equivalent admittance Y 2 of the interface of the conductive layer 15 opposite to the admittance adjustment layer 21. Therefore, in this example, the distance between the admittance coordinates (x 2 , y 2 ) of the equivalent admittance Y 2 of the conductive layer 15 and the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident is The closer it is, the smaller the reflectance R of the transparent conductor 20 is.
  • the organic layer such as an organic EL element
  • admittance coordinates (x 0, y 0) of the optical admittance y 0 (1.8, 0).
  • the reflectance R based on the relational expression between the reflectance R, the equivalent admittance Y E , and the optical admittance y 0 of the medium on which light is incident, the coordinates (x E , y E ) of the equivalent admittance Y E are incident on the light. If it is on the right side of the admittance coordinates (x 0 , y 0 ) of the medium to be reflected, the reflectance R tends to be small.
  • x-coordinate x E of the equivalent admittance Y E that is, x-coordinate x 2 of the equivalent admittance Y 2 of the conductive layer 15 is preferably larger than the x-coordinate x 0 of the optical admittance y 0 of the medium the light is incident .
  • the optical admittances at the wavelength of 570 nm of both main surfaces of the conductive layer 15 are Y 1 and Y 2 .
  • at least one of x 1 and x 2 is 1.6 or more.
  • both x 1 and x 2 are 1.6 or more. That is, the horizontal axis coordinate (x coordinate) of at least one of Y 1 (x 1 , y 1 ) and Y 2 (x 2 , y 2 ) in the admittance locus in FIG. 9 is 1.6 or more. The reason is as follows.
  • the metal material constituting the conductive layer 15 generally has a large value of the imaginary part of the optical admittance, and when the metal material is formed, the admittance locus greatly moves in the vertical axis (imaginary part) direction.
  • the base material 11 whose admittance locus is the start point (x A , y A ) as shown in FIG. 8 described above. From the admittance coordinates (1.5, 0) to (x 2 , y 2 ) in the vertical axis (imaginary part) direction. That is, the absolute value
  • the optical admittance Y 2 of the conductive layer 15 (equivalent admittance Y E of the transparent conductor 20) becomes the admittance coordinate of the optical admittance y 0 of the medium on which the light is incident. Move away from (x 0 , y 0 ). For this reason, the optical admittance Y 2 of the conductive layer 15 is changed to the optical admittance y 0 of the medium on which light is incident, for example, the admittance coordinates (1, 0) of air or the admittance coordinates (1.8, 0) of organic material. It becomes difficult to get closer.
  • the start point (x 1 , y 1 ) of the admittance locus which is the admittance Y 1 of the interface on the base material 11 side of the conductive layer 15, hardly moves from the admittance coordinates (1.5, 0) of the base material 11. It is difficult for the admittance trajectory to be symmetric about the horizontal axis of the graph.
  • admittance locus and not about the horizontal axis line symmetry in other wavelengths (other than 570 nm), admittance locus liable shake, the coordinates of the equivalent admittance Y E is less likely to be constant. For this reason, a wavelength region in which the antireflection effect is not sufficient tends to occur.
  • the admittance coordinates of admittance Y 1 of the conductive layer 15 (x 1, y 1) is the starting point of the admittance locus It greatly moves from (x A , y A ) in the positive direction of the imaginary part (vertical axis).
  • the admittance locus of the conductive layer 15 tends to be line symmetric about the horizontal axis of the graph. Therefore, in other wavelengths (other than 570 nm), admittance locus tends linear symmetry around the horizontal axis of the graph, the coordinates of the equivalent admittance Y E of each wavelength is approximately the same.
  • the value of the equivalent admittance Y E tends to approach the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident. This indicates that a sufficient antireflection effect can be obtained at any wavelength.
  • the conductive layer 15 When a metal material is used for the conductive layer 15, two sources can be considered for light absorption generated in the conductive layer 15. One is absorption inherent in the metal material, and the other is plasmon absorption resulting from the structure of the conductive layer 15. By keeping the admittance of the conductive layer 15 high, the inherent absorption of the metal material can be minimized.
  • the following relational expression holds between the admittance Y at the interface of each layer and the electric field strength E existing in each layer.
  • the admittance adjustment layer 21 adjusting the coordinates x 1 of the real part of the admittance Y 1 of the conductive layer 15 such that 1.6 or more, admittance Y 1 of the conductive layer 15 is increased, the light by the conductive layer 15 Less absorption.
  • the admittance adjustment layer 21 the real part coordinate x 2 of the admittance Y 2 of the conductive layer 15 when adjusted to 1.6 or more even, admittance Y 2 of the conductive layer 15 is increased, the light by the conductive layer 15 Less absorption.
  • the admittance locus of the conductive layer 15 is likely to be line symmetric about the horizontal axis of the graph, and the electric field of the conductive layer 15 becomes small, so that light absorption by the conductive layer 15 is suppressed.
  • At least one of x 1 and x 2 is preferably 1.6 or more and 7.0 or less. More preferably, x 1 and x 2 is both 1.6 to 7.0. More preferably, x 1 and / or x 2 is 1.8 to 5.5, further is preferably 1.9 to 3.0.
  • x 1 is 1.6 or more.
  • x 1 is adjusted by the refractive index of the admittance adjusting layer 21, the thickness of the admittance adjusting layer 21, and the like.
  • x 2 is 1.3 to 5.5, further preferably 1.5 to 3.5.
  • x 2 is the refractive index and the material of the conductive layer 15 is adjusted by the thickness and the like of the conductive layer 15.
  • of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • / x cross is preferably smaller than 0.5, more preferably, when the coordinate Ycross (x cross , 0) of the intersection point between the admittance locus of the conductive layer 15 and the horizontal axis is used. Is 0.3 or less, more preferably 0.2 or less.
  • ) is preferably 0.9 or less, more preferably 0.6 or less, and still more preferably 0.3 or less.
  • the transparent conductor 20 configured as described above has a configuration in which a conductive layer 15 in which a metal layer 14 is formed adjacent to the palladium-containing layer 13 is provided. Further, a conductive layer 15 composed of the palladium-containing layer 13 and the metal layer 14 is provided in contact with the organic compound layer 12. Thereby, when the metal layer 14 is formed adjacent to the palladium-containing layer 13, the palladium-containing layer of Ag atoms is formed by the interaction between the Ag atoms constituting the metal layer 14 and Pd constituting the palladium-containing layer 13. The diffusion distance on the surface 13 is reduced, and aggregation of the metal material is suppressed.
  • the metal layer 14 that is likely to be isolated in an island shape due to the growth of the nuclear growth type (Volumer-Weber: VW type) is caused by the growth of the single layer growth type (Frank-van der Merwe: FM type). Will be formed. Therefore, the thin conductive layer 15 having a uniform thickness can be obtained.
  • the transparent conductor 20, the real part x 1 at the interface of the optical admittance Y 1 of the conductive layer 15, the real part x 2 optical admittance Y 2 is the admittance adjustment layer 21, adjusted to be 1.6 or more Has been.
  • the admittance at the interface of the conductive layer 15 with the admittance adjusting layer 21 reflection of the transparent conductor 20 can be suppressed, and light transmittance can be improved.
  • FIG. 10 the schematic block diagram (sectional drawing) of the transparent conductor of 3rd Embodiment is shown.
  • the transparent conductor 30 of the third embodiment only includes a first admittance adjustment layer 31 and a second admittance adjustment layer 32 as the admittance adjustment layer 21. Different from the transparent conductor 10 of the embodiment.
  • the detailed description which overlaps about the component similar to 1st Embodiment is abbreviate
  • the transparent conductor 30 includes a first admittance adjustment layer 31 and a second admittance adjustment layer 32 as the admittance adjustment layer 21, and further includes an organic compound layer 12 and a conductive layer 15. is there.
  • the organic compound layer 12 is sandwiched between the admittance adjusting layer 21 and the conductive layer 15 at a position adjacent to the palladium-containing layer 13 constituting the conductive layer 15.
  • the conductive layer 15 includes a metal layer 14 and a palladium-containing layer 13 formed at a position adjacent to the metal layer 14. That is, in the conductive layer 15, the palladium-containing layer 13 is sandwiched between the metal layer 14 and the organic compound layer 12.
  • the transparent conductor 30 shown in FIG. 10 includes the second admittance adjusting layer 32, the first admittance adjusting layer 31, the organic compound layer 12, and the conductive layer 15. Formed on top. That is, the transparent conductor 30 has a configuration in which the second admittance adjustment layer 32, the first admittance adjustment layer 31, the organic compound layer 12, the palladium-containing layer 13, and the metal layer 14 are laminated on the base material 11 in this order. It is.
  • the organic compound layer 12 and the palladium-containing layer 13 and the metal layer 14 constituting the conductive layer 15 have the same configuration as in the first embodiment.
  • the first admittance adjustment layer 31 can have the same configuration as the admittance adjustment layer of the transparent conductor according to the second embodiment described above. For this reason, detailed description is abbreviate
  • the second admittance adjustment layer 32 is a layer provided on the side where the conductive layer 15 is not formed, of the two layers constituting the admittance adjustment layer 21. That is, in the admittance adjustment layer 21, the first admittance adjustment layer 31 is provided on the side where the conductive layer 15 is formed, and the second admittance adjustment layer 32 is provided on the side opposite to the side where the conductive layer 15 is formed. ing.
  • the second admittance adjustment layer 32 is a layer having a lower refractive index than the first admittance adjustment layer 31.
  • the second admittance adjustment layer 32 preferably has a refractive index lower than that of the first admittance adjustment layer 31 by 0.2 or more at a wavelength of 550 nm.
  • a low refractive index material generally used for an optical film is preferably used.
  • the thickness of the second admittance adjusting layer 32 is preferably 40 to 200 nm, and more preferably 50 to 180 nm. If the thickness of the second admittance adjusting layer 32 is less than 40 nm or exceeds 200 nm, it is difficult to sufficiently increase the light transmittance of the transparent conductor 30.
  • the thickness of the admittance adjusting layer 21 is measured with an ellipsometer.
  • FIG. 11 shows an admittance locus of the transparent conductor 30 at a wavelength of 570 nm.
  • Y 2 x 2 + iy 2 be the optical admittance at a wavelength of 570 nm at the interface.
  • the admittance coordinates (x 2 , y 2 ) of the optical admittance Y 2 of the conductive layer 15 correspond to the equivalent admittance Y E of the transparent conductor 30.
  • the transparent conductor 30 includes the second admittance adjustment layer 32 having a refractive index lower than that of the first admittance adjustment layer 31, so that the admittance locus is changed from the admittance coordinates (x A , y A ) to the admittance coordinates (x B , Y B ).
  • the admittance coordinates (x B , y B ) move from the admittance coordinates (x A , y A ) in the negative direction of the vertical axis (imaginary part) and the horizontal axis (real part), and then the positive direction of the vertical axis (imaginary part) And the negative direction of the horizontal axis (real part), the positive direction of the vertical vertical axis (imaginary part) and the positive direction of the horizontal axis (real part), and the negative direction of the vertical axis (imaginary part) and the horizontal axis (real part) Move to draw a circle in the positive direction.
  • the admittance coordinates (x B , y B ) correspond to the optical admittance at the interface between the first admittance adjustment layer 31 and the second admittance adjustment layer 32.
  • the admittance locus moves from the admittance coordinates (x B , y B ) to the admittance coordinates (x C , y C ). That is, the first admittance adjustment layer 31 moves the admittance locus in the positive direction of the horizontal axis (real part) and the vertical axis (imaginary part). Further, by providing the organic compound layer 12, the admittance locus moves from the admittance coordinates (x C , y C ) to the admittance coordinates (x 1 , y 1 ) of the conductive layer 15.
  • the action of the first admittance adjusting layer 31 on the transparent conductor 30 is the same as the action of the admittance adjusting layer on the transparent conductor described in the second embodiment.
  • the admittance locus can be adjusted to an arbitrary locus by including the second admittance adjustment layer 32 having a low refractive index. For this reason, compared with the case of the second embodiment described above that does not include the second admittance adjusting layer 32, the admittance coordinates (x 1 , y 1 ) of the optical admittance Y 1 of the conductive layer 15 and the optical admittance Y 2 Adjustment of the admittance coordinates (x 2 , y 2 ) can be easily performed.
  • the optical admittance Y 2 of the conductive layer 15 is changed to the optical admittance y 0 of the medium on which light is incident, for example, the admittance coordinate (1, 0) of air, the admittance coordinate (1.8, 0) of organic material, etc. It is easy to approach the arbitrary coordinate position.
  • the value of the equivalent admittance Y E is, light is easily accessible to the admittance coordinates of the optical admittance y 0 of the medium which enters (x 0, y 0), to reduce the reflectivity of the transparent conductor 30, the light permeability Can be improved. Further, the original absorption of the metal material can be minimized by keeping the admittance of the conductive layer 15 high.
  • the admittance adjustment layer 21 is formed of a plurality of layers, the degree of freedom in design is improved by appropriately combining the materials and thicknesses constituting the admittance adjustment layer 21. For this reason, compared with the case where the admittance adjusting layer is formed as a single layer, the optical admittances Y 1 and Y 2 of the conductive layer 15 can be easily adjusted, and there is a range in which the optical admittances Y 1 and Y 2 can be optimized. spread. Therefore, the light transmittance of the transparent conductor 30 can be improved by forming the admittance adjustment layer 21 from a plurality of layers like the first admittance adjustment layer 31 and the second admittance adjustment layer 32.
  • FIG. 12 is a cross-sectional configuration diagram of the organic electroluminescent element of this embodiment. The configuration of the organic electroluminescent element will be described below based on this figure.
  • the organic electroluminescent element 40 shown in FIG. 12 is provided on the base material 11 which is a transparent substrate, and in order from the base material 11 side, the transparent conductor 30 serving as an anode, the light emitting functional layer 46, and a counter electrode serving as a cathode. An electrode 47 is laminated.
  • the transparent conductor 30 of the above-described third embodiment is used as the transparent conductor 30.
  • the organic electroluminescent element 40 is configured as a bottom emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the substrate 11 side.
  • the overall layer structure of the organic electroluminescent element 40 is not limited to the above, and may be a general layer structure.
  • the transparent conductor 30 is disposed on the anode (ie, anode) side, and the metal layer 14 of the conductive layer 15 mainly functions as an anode, while the counter electrode 47 functions as a cathode (ie, cathode).
  • the light emitting functional layer 46 includes [hole injection layer 46a / hole transport layer 46b / light emission layer 46c / electron transport layer 46d / electron injection layer 46e] in this order on the transparent conductor 30 serving as the anode.
  • a stacked structure can be exemplified, and at least the light emitting layer 46c is formed using an organic material.
  • the hole injection layer 46a and the hole transport layer 46b may be provided as a hole transport / injection layer having a hole transport property and a hole injection property.
  • the electron transport layer 46d and the electron injection layer 46e may be provided as a single layer having electron transport properties and electron injection properties.
  • the electron injection layer 46e may be made of an inorganic material.
  • the light-emitting functional layer 46 may be laminated with a hole blocking layer, an electron blocking layer, or the like as necessary.
  • the light emitting layer 46c has each color light emitting layer for generating light emission in each wavelength region, and each of these color light emitting layers is laminated through a non-light emitting intermediate layer to form a light emitting layer unit. Also good.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the counter electrode 47 as a cathode may also have a laminated structure as required. In such a configuration, only a portion where the light emitting functional layer 46 is sandwiched between the transparent conductor 30 and the counter electrode 47 becomes a light emitting region in the organic electroluminescent element 40.
  • an auxiliary electrode may be provided in contact with the conductive layer 15 of the transparent conductor 30 for the purpose of reducing the resistance of the transparent conductor 30.
  • the details of the main layers for constituting the organic electroluminescent element 40 described above are as follows: the base material 11, the transparent conductor 30, the counter electrode 47, the light emitting layer 46 c of the light emitting functional layer 46, and other layers of the light emitting functional layer 46. And the auxiliary electrode will be described in this order. Then, the manufacturing method of the organic electroluminescent element 40 is demonstrated.
  • the base material 11 is made of a transparent material having optical transparency among the base materials on which the transparent conductor 30 of the first embodiment shown in FIG. 1 is provided.
  • the transparent conductor 30 is the transparent conductor 30 of the above-described third embodiment. From the substrate 11 side, the second admittance adjustment layer 32, the first admittance adjustment layer 31, the organic compound layer 12, and the conductive layer 15 are used. Is a configuration formed in this order.
  • the conductive layer 15 constituting the transparent conductor 30 is a substantial anode.
  • the counter electrode 47 is a conductive layer that functions as a cathode for supplying electrons to the light emitting functional layer 46, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 and oxide semiconductors such as SnO 2 .
  • the counter electrode 47 can be produced by forming a thin layer of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the counter electrode 47 is several hundred ⁇ / sq. The following is preferable, and the thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the light emitting layer 46c used in the organic electroluminescent element of this embodiment contains, for example, a phosphorescent compound as a light emitting material.
  • the light emitting layer 46c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 46d and holes injected from the hole transport layer 46b, and the light emitting portion is the light emitting layer 46c. Even within the layer, it may be an interface with an adjacent layer in the light emitting layer 46c.
  • the structure of the light emitting layer 46c is not particularly limited as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 46c.
  • the total thickness of the light emitting layer 46c is preferably in the range of 1 to 100 nm, and more preferably 1 to 30 nm because it can be driven at a lower voltage.
  • the sum total of the thickness of the light emitting layer 46c is a thickness also including the said intermediate
  • the thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, and more preferably adjusted to a range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 46c as described above can be formed of a light emitting material or a host compound, which will be described later, by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • the light-emitting layer 46c may be a mixture of a plurality of light-emitting materials, or a phosphorescent light-emitting material and a fluorescent light-emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light-emitting layer 46c.
  • the structure of the light emitting layer 46c preferably includes a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound or a guest material) and emits light from the light emitting material.
  • a host compound also referred to as a light emitting host
  • a light emitting material also referred to as a light emitting dopant compound or a guest material
  • the host compound contained in the light emitting layer 46c As the host compound contained in the light emitting layer 46c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Furthermore, the compound whose phosphorescence quantum yield is less than 0.01 is preferable.
  • the host compound preferably has a volume ratio in the layer of 50% or more among the compounds contained in the light emitting layer 46c.
  • the host compound a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic electroluminescence device 40 can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • Tg glass transition temperature
  • the host compound applicable to the organic electroluminescence device include compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245A.
  • the compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245 are incorporated in the present specification.
  • Luminescent material examples of the light-emitting material that can be used in the organic electroluminescent element of this embodiment include phosphorescent compounds (also referred to as phosphorescent compounds and phosphorescent materials).
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when the phosphorescent compound is used in this example, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
  • phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound.
  • the other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In either case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 46c of a general organic electroluminescent device, and preferably a group 8-10 metal in the periodic table of elements is used. It is a complex compound. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer 46c may contain two or more types of phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 46c is the light emitting layer 46c. It may change in the thickness direction.
  • the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 46c.
  • JP2013-4245A As the phosphorescent compound applicable to the organic electroluminescence device, the general formulas (4), (5), and (6) described in paragraphs [0185] to [0235] of JP2013-4245A can be used. Preferred examples include the compounds represented and exemplary compounds. As other exemplary compounds, Ir-46, Ir-47, and Ir-48 are shown below. Compounds represented by general formula (4), general formula (5) and general formula (6) described in paragraphs [0185] to [0235] of JP2013-4245A and exemplified compounds (Pt-1 to Pt) -3, Os-1, Ir-1 to Ir-45) are incorporated herein.
  • These phosphorescent compounds are preferably contained in the light emitting layer 46c as light emitting dopants, but are contained in organic functional layers other than the light emitting layer 46c. May be.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 46c of the organic electroluminescent device 40.
  • phosphorescent compounds are, for example, OrganicOrLetters magazine vol.3 No.16 2579-2581 (2001), Inorganic Chemistry, Vol.30, No.8 1685-1687. (1991), J. Am. Chem. Soc., 123 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 704 1704-1711 (2001), Inorganic Chemistry, Vol. 41 No. 12 3055-3066 (2002), New Journal of ⁇ Chemistry., 26261171 (2002), European Journal of Organic Chemistry, Vol.4 695-709 (2004), further described in these documents Can be synthesized by applying a method such as the reference.
  • Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
  • injection layer hole injection layer, electron injection layer
  • the injection layer is a layer provided between the electrode and the light emitting layer 46c in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer can be provided as necessary.
  • the hole injection layer 46a is disposed between the anode and the light emitting layer 46c or the hole transport layer 46b, and the electron injection layer 46e is disposed between the cathode and the light emitting layer 46c or the electron transport layer 46d.
  • the details of the hole injection layer 46a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like.
  • Specific examples thereof include phthalocyanine represented by copper phthalocyanine.
  • Examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer 46e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum, and the like.
  • Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer 46e is desirably a very thin layer, and its thickness is preferably in the range of 1 nm to 10 ⁇ m, although it depends on the material.
  • the hole transport layer 46b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 46a and the electron blocking layer are also included in the hole transport layer 46b.
  • the hole transport layer 46b can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • p-type hole transport materials as described in JP-A-11-251067, J. Huang et al., Applied Physics Letters, 80 (2002), p. 139 can be used. . These materials are preferably used because a highly efficient light-emitting element can be obtained.
  • the hole transport layer 46b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to.
  • the thickness of the hole transport layer 46b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 46b may have a single layer structure made of one or more of the above materials.
  • the electron transport layer 46d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 46e and a hole blocking layer (not shown) are also included in the electron transport layer 46d.
  • the electron transport layer 46d can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer 46c in the electron transport layer 46d having a single layer structure and the electron transport layer 46d having a multilayer structure
  • electrons injected from the cathode are used. What is necessary is just to have the function to transmit to the light emitting layer 46c.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 46d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer 46d.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 46d.
  • a distyrylpyrazine derivative exemplified also as the material of the light emitting layer 46c can be used as the material of the electron transport layer 46d.
  • n-type Si, n An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 46d.
  • the electron transport layer 46d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer 46d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 46d may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer 46d contains potassium or a potassium compound.
  • the potassium compound for example, potassium fluoride can be used.
  • the electron transport layer 46d for example, the above-mentioned compound No. 1-No. It is preferable to use 48 nitrogen-containing compounds, nitrogen-containing compounds represented by the above general formulas (1) to (8a), and nitrogen-containing compounds 1 to 166 described above. Further, the sulfur-containing compounds represented by the general formulas (9) to (12), the above-described 1-1 to 1-9, 2-1 to 2-11, 3-1 to 3-23, and 4 It is preferable to use a sulfur-containing compound of -1.
  • Blocking layer hole blocking layer, electron blocking layer
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of the electron transport layer 46d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer 46d mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 46c.
  • the electron blocking layer has the function of the hole transport layer 46b in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of the positive hole transport layer 46b mentioned later can be used as an electron blocking layer as needed.
  • the thickness of the blocking layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the auxiliary electrode is provided for the purpose of reducing the resistance of the transparent conductor 30, and is provided in contact with the conductive layer 15 of the transparent conductor 30.
  • the material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface. Examples of a method for forming such an auxiliary electrode include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
  • the line width of the auxiliary electrode is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • the sealing material covers the organic electroluminescent element 40, and a plate-like (film-like) sealing member may be fixed to the base material 11 side by an adhesive, or a sealing layer. Good.
  • This sealing material is provided so as to cover at least the light emitting functional layer 46 in a state where the terminal portions of the transparent conductor 30 and the counter electrode 47 in the organic electroluminescent element 40 are exposed.
  • an electrode may be provided on the sealing material so that the transparent conductor 30 of the organic electroluminescent element 40 and the terminal portion of the counter electrode 47 are electrically connected to this electrode.
  • the plate-like (film-like) sealing material examples include a glass substrate and a polymer substrate, and these substrate materials may be used in the form of a thinner film.
  • the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • a polymer substrate in the form of a thin film can be preferably used as a sealing material.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and JIS-K.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to ⁇ 7129-1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less It is preferable that
  • the above substrate material may be processed into a concave plate shape and used as a sealing material.
  • the above-described substrate member is subjected to processing such as sandblasting or chemical etching, and is formed into a concave shape.
  • the present invention is not limited to this, and a metal material may be used.
  • the metal material include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the adhesive for fixing such a plate-shaped sealing material to the base material 11 side is for sealing the organic electroluminescent element 40 sandwiched between the sealing material and the base material 11.
  • used as a sealant used as a sealant.
  • Specific examples of such an adhesive include photocuring and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing types such as 2-cyanoacrylates. Mention may be made of adhesives.
  • examples of such an adhesive include epoxy-based heat and chemical curing types (two-component mixing).
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the organic material which comprises the organic electroluminescent element 40 may deteriorate with heat processing. For this reason, it is preferable to use an adhesive that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive.
  • Application of the adhesive to the bonding portion between the sealing material and the base material 11 may be performed using a commercially available dispenser or may be printed like screen printing.
  • this gap when a gap is formed between the plate-shaped sealing material, the base material 11 and the adhesive, this gap has an inert gas such as nitrogen or argon or fluorinated carbonization in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrogen or silicon oil. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
  • an inert gas such as nitrogen or argon or fluorinated carbonization in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrogen or silicon oil. A vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a sealing layer is used as the sealing material, the light emitting functional layer 46 in the organic electroluminescent element 40 is completely covered and the terminal portions of the transparent conductor 30 and the counter electrode 47 in the organic electroluminescent element 40 are exposed.
  • a sealing layer is provided on the substrate 11.
  • Such a sealing layer is composed of an inorganic material or an organic material.
  • it is made of a material having a function of suppressing entry of a substance that causes deterioration of the light emitting functional layer 46 in the organic electroluminescent element 40 such as moisture and oxygen.
  • a material for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride is used.
  • a layered structure may be formed by using a layer made of an organic material together with a layer made of these inorganic materials.
  • the method for forming these layers is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • Protective layer, protective plate In addition, although illustration is abbreviate
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
  • a polymer film because it is lightweight and thin.
  • the second admittance adjusting layer 32 is formed on the substrate 11 to a thickness of about 90 nm.
  • the first admittance adjustment layer 31 is formed to a thickness of about 40 nm.
  • the organic compound layer 12 is formed to a thickness of about 3 nm on the first admittance adjustment layer 31.
  • the formation of the first admittance adjustment layer 31 and the second admittance adjustment layer 32 includes a vapor deposition method (EB method and the like), a sputtering method, and the like. From the viewpoint that a dense layer can be easily obtained, an ion-assisted EB vapor deposition method or a sputtering method is used. Is particularly preferred.
  • a palladium-containing layer 13 is formed on the organic compound layer 12 to a thickness of about 1 nm, and then a metal layer 14 made of a metal material is formed to a thickness of 3 nm to 15 nm.
  • the palladium-containing layer 13 and the metal layer 14 can be formed by the method described in the first embodiment. In this way, the anode-side transparent conductor 30 is produced on the substrate 11.
  • a hole injection layer 46a, a hole transport layer 46b, a light emitting layer 46c, an electron transport layer 46d, and an electron injection layer 46e are formed in this order, and the light emitting functional layer 46 is formed.
  • the formation of each of these layers includes a spin coating method, a casting method, an ink jet method, a vapor deposition method, a sputtering method, a printing method, etc., but it is easy to obtain a homogeneous layer, and pinholes are difficult to generate. Vacuum deposition or spin coating is particularly preferred. Further, different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature storing the compound is 50 ° C. to 450 ° C., and the degree of vacuum is 10 ⁇ 6 Pa to 10 ⁇ . It is desirable to select each condition as appropriate within a range of 2 Pa, a deposition rate of 0.01 nm / second to 50 nm / second, a substrate temperature of ⁇ 50 ° C. to 300 ° C., and a thickness of 0.1 ⁇ m to 5 ⁇ m.
  • the counter electrode 47 to be the cathode is formed by an appropriate forming method such as vapor deposition or sputtering. At this time, a pattern is formed in a shape in which terminal portions are drawn out from the upper side of the light emitting functional layer 46 to the periphery of the base material 11 while maintaining the insulating state with respect to the transparent conductor 30 by the light emitting functional layer 46.
  • the organic electroluminescent element 40 is obtained. Thereafter, a sealing material that covers at least the light emitting functional layer 46 is provided in a state where the terminal portions of the transparent conductor 30 and the counter electrode 47 in the organic electroluminescent element 40 are exposed. At this time, the sealing material is adhered to the base material 11 side using an adhesive, and the organic electroluminescent element 40 is sealed between the sealing material and the base material 11.
  • a desired organic electroluminescent element 40 is obtained on the substrate 11.
  • the light emitting functional layer 46 it is preferable to produce the light emitting functional layer 46 to the counter electrode 47 consistently by a single evacuation.
  • the substrate 11 is taken out from the vacuum atmosphere on the way and is different. A forming method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the conductive layer 15 serving as an anode has a positive polarity and the counter electrode 47 serving as a cathode has a negative polarity, so that the voltage is 2V or more and 40V.
  • Luminescence can be observed when the following is applied.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the configuration in which the transparent conductor according to the third embodiment is applied to the bottom emission type organic electroluminescence device is described.
  • the transparent conductor according to the first embodiment or the second embodiment is described.
  • An organic electroluminescent element can also be configured using
  • the organic electroluminescent element to which these transparent conductors are applied is not limited to the bottom emission type, for example, a top emission type configuration in which light is extracted from the counter electrode side, or a dual emission type configuration in which light is extracted from both sides. It is good.
  • the organic electroluminescent device is a top emission type
  • a transparent material is used for the counter electrode, and an opaque base material having reflectivity is used instead of the base material of the transparent conductor, and the emitted light h is reflected by the substrate. It is also possible to take out from the counter electrode side.
  • the organic electroluminescent element is a double-sided light emitting device, a transparent material may be used for the counter electrode in the same manner as the transparent conductor, and the emitted light h may be extracted from both sides.
  • the transparent electroconductive element is used in addition to the transparent electroconductive element as in the fourth embodiment.
  • the present invention can also be applied to a configuration in which a conductor is a cathode.
  • the organic electroluminescent element of each embodiment mentioned above is a surface light emitter as mentioned above, it can be used as various light emission sources.
  • lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • the organic electroluminescence device of each embodiment may be used as a kind of lamp for illumination or exposure light source, or a projection device for projecting an image, or directly viewing a still image or a moving image. It may be used as a type of display device (display).
  • display display
  • the area of the light emitting surface may be increased by so-called tiling, in which the light emitting panels provided with the organic electroluminescent elements are planarly joined together with the recent increase in size of the lighting device and the display.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be produced by using two or more organic electroluminescence elements of the present invention having different emission colors.
  • Lighting Device (Fifth Embodiment)> [Lighting device-1]
  • 5th Embodiment demonstrates the illuminating device using the organic electroluminescent element of the above-mentioned 4th Embodiment as an example of an electronic device.
  • the organic electroluminescent element used in the illumination device of the present embodiment may be designed such that the organic electroluminescent element having the configuration of the fourth embodiment described above has a resonator structure.
  • Examples of the purpose of use of the organic electroluminescence device configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not. Moreover, you may use for the said use by making a laser oscillation.
  • the material used for the organic electroluminescent element can be applied to an organic electroluminescent element that emits substantially white light (also referred to as a white organic electroluminescent element).
  • a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
  • three emission maximum wavelengths of three primary colors of red, green, and blue may be included, or two emission using a complementary color relationship such as blue and yellow, blue green and orange, etc.
  • a maximum wavelength may be included.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescent or phosphorescent light, and light from the light emitting material as excitation light.
  • a combination with a dye material that emits light may also be used.
  • a plurality of light emitting dopants may be combined and mixed.
  • Such a white organic electroluminescent element is different from a configuration in which organic electroluminescent elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic electroluminescent element itself emits white light. For this reason, a mask is not required for the formation of most layers constituting the element, and for example, a conductive layer can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. .
  • a luminescent material used for the light emitting layer of such a white organic electroluminescent element For example, if it is a backlight in a liquid crystal display element, it will match the wavelength range corresponding to CF (color filter) characteristic.
  • the metal complex described in the embodiment of the organic electroluminescent device described above or any material selected from known light-emitting materials may be selected and combined to be whitened.
  • the white organic electroluminescent element described above it is possible to produce a lighting device that emits substantially white light.
  • the lighting device can increase the area of the light emitting surface by using, for example, a plurality of organic electroluminescent elements.
  • the light emitting surface is enlarged by arranging (that is, tiling) a plurality of light emitting panels provided with organic electroluminescent elements on a base material on a support substrate.
  • the support substrate may also serve as a sealing material, and each light-emitting panel is tiled in a state where the organic electroluminescence element is sandwiched between the support substrate and the base material of the light-emitting panel.
  • An adhesive may be filled between the support substrate and the base material, thereby sealing the organic electroluminescent element. Note that the terminals of the transparent conductor and the counter electrode are exposed around the light emitting panel.
  • the center of each light emitting panel is a light emitting region, and a non-light emitting region is generated between the light emitting panels.
  • a light extraction member for increasing the amount of light extracted from the non-light-emitting area may be provided in the non-light-emitting area of the light extraction surface.
  • a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • a base material made of PET was fixed to a base material holder of a commercially available vacuum vapor deposition apparatus and attached to a vacuum tank of the vacuum vapor deposition apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the said vacuum chamber.
  • the resistance heating boat was energized and heated, and each of the metal layers made of silver was deposited at a deposition rate of 0.1 nm / second to 0.2 nm / second. Formed in thickness.
  • the sample 101 was formed with a thickness of 8 nm, and the sample 102 was formed with a thickness of 12 nm.
  • ITO indium tin oxide
  • a transparent PET substrate is fixed to a substrate holder of a commercially available electron beam evaporation apparatus, indium tin oxide (ITO) is put into a heating boat, and these substrate holder and heating boat are connected to the electron beam evaporation apparatus. Attached to a vacuum chamber. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of a commercially available vacuum evaporation system.
  • ITO indium tin oxide
  • the heating boat containing indium tin oxide (ITO) was irradiated with an electron beam and heated, and the deposition rate was 0.1 nm / second.
  • An admittance adjusting layer made of ITO having a thickness of 20 nm was provided on the substrate at a rate of ⁇ 0.2 nm / second.
  • the base material formed up to the admittance adjustment layer is transferred to a vacuum chamber of a vacuum deposition apparatus while being vacuumed, and the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then a heating boat containing silver is energized and heated. did.
  • a metal layer made of silver having a thickness of 8 nm is formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and the transparent conductivity of the sample 103 having a laminated structure of the admittance adjusting layer and the upper metal layer is formed.
  • the body Got the body.
  • a transparent conductor of Sample 104 was obtained in the same procedure as Sample 103, except that the admittance adjusting layer was composed of titanium oxide (TiO 2 ).
  • an admittance adjusting layer made of indium tin oxide (ITO) was formed to a thickness of 25 nm on a PET substrate.
  • the compound Nos. A nitrogen-containing compound consisting of 10 was formed to a thickness of 3 nm to form an organic compound layer.
  • a palladium-containing layer (Pd layer) made of palladium (Pd) is formed as a conductive layer on the organic compound layer with a thickness of 0.1 nm, and a metal layer made of silver is formed thereon with a thickness of 5 nm. did.
  • a base material made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, indium tin oxide (ITO) is placed in a heating boat, and these substrate holder and heating boat are connected to a vacuum chamber of the electron beam evaporation apparatus. Attached to.
  • a palladium (Pd) target was attached to the vacuum chamber of the sputtering apparatus.
  • a resistance heating boat made of tungsten was combined with the compound No. of the nitrogen-containing compound shown in Table 1 above. 10 was placed and attached to the first vacuum chamber of the vacuum deposition apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the 2nd vacuum chamber of the vacuum evaporation system.
  • the heating boat containing ITO is irradiated with an electron beam and heated to evaporate at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • An admittance adjustment layer made of ITO having a thickness of 25 nm was provided on the substrate in seconds.
  • the substrate formed up to the admittance adjusting layer was transferred to the first vacuum chamber of the vacuum deposition apparatus while being vacuumed, and the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat containing 10 was energized and heated.
  • the compound No. of nitrogen-containing compound having a deposition rate of 0.1 nm / second to 0.2 nm / second and a thickness of 3 nm was obtained.
  • An organic compound layer consisting of 10 was formed.
  • the substrate formed up to the organic compound layer is transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and after the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, a voltage is applied to the Pd target, A palladium-containing layer made of Pd was provided with a thickness of 0.1 nm.
  • the base material formed up to the palladium-containing layer is transferred to the second vacuum chamber of the vacuum deposition apparatus while being vacuumed, and after the pressure in the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, a resistance heating boat containing silver is added. Heated with electricity.
  • a metal layer made of silver having a thickness of 5 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • a transparent conductor of Sample 105 was obtained in which an admittance adjusting layer, an organic compound layer, a conductive layer composed of a palladium-containing layer and a metal layer were laminated in this order.
  • a transparent conductor of Sample 106 was obtained in the same procedure as Sample 105 except that the admittance adjusting layer was composed of titanium oxide (TiO 2 ) having a thickness of 20 nm.
  • a transparent conductor of Sample 107 was obtained in the same procedure as Sample 105 except that the thickness of the metal layer made of silver was 8 nm.
  • a transparent conductor of Sample 108 was obtained in the same procedure as Sample 106, except that the thickness of the metal layer made of silver was 8 nm.
  • a transparent conductor of Sample 109 was obtained in the same procedure as Sample 107 except that the admittance adjusting layer was composed of niobium oxide (Nb 2 O 5 ).
  • a transparent conductor of Sample 110 was obtained by the same procedure as Sample 109 except that the thickness of the metal layer made of silver was 10 nm.
  • a transparent conductor of Sample 111 was obtained in the same procedure as Sample 109 except that the thickness of the metal layer made of silver was 12 nm.
  • a transparent conductor of Sample 112 was obtained in the same procedure as Sample 109 except that the thickness of the metal layer made of silver was 15 nm.
  • a second admittance adjusting layer made of magnesium fluoride (MgF 2 ) is formed on a PET substrate with a thickness of 180 nm, and a first portion made of titanium oxide (TiO 2 ) is formed on the upper part.
  • An admittance adjusting layer was formed with a thickness of 20 nm.
  • the compound Nos. A nitrogen-containing compound consisting of 10 was formed to a thickness of 3 nm to form an organic compound layer.
  • a palladium-containing layer (Pd layer) made of palladium (Pd) is formed as a conductive layer on the organic compound layer with a thickness of 0.1 nm, and a metal layer made of silver is formed thereon with a thickness of 8 nm. Formed.
  • a base material made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, magnesium fluoride (MgF 2 ) is put into a heating boat, and these substrate holders and the heating boat are connected to a vacuum of the electron beam evaporation apparatus. Attached to the tank. Further, titanium oxide (TiO 2 ) was put into a heating boat and attached to the vacuum chamber of the electron beam evaporation apparatus. Next, a palladium (Pd) target was attached to the vacuum chamber of the sputtering apparatus.
  • a compound No. of nitrogen-containing compounds shown in Table 1 above was placed on a resistance heating boat made of tungsten. 10 was placed and attached to the first vacuum chamber of the vacuum deposition apparatus. Furthermore, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the 2nd vacuum chamber of the vacuum evaporation system.
  • the vacuum chamber of the electron beam evaporation apparatus was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by irradiating an electron beam onto a heating boat containing magnesium fluoride (MgF 2 ), with a deposition rate of 0.1 nm /
  • a second admittance adjusting layer made of magnesium fluoride having a thickness of 180 nm was provided on the substrate at a rate of from second to 0.2 nm / second.
  • a heating boat containing titanium oxide (TiO 2 ) is irradiated with an electron beam and heated to form a titanium oxide having a thickness of 20 nm on the second admittance adjusting layer at a deposition rate of 0.1 nm / sec to 0.2 nm / sec.
  • the 1st admittance adjustment layer which consists of was provided.
  • the substrate formed up to the admittance adjusting layer was transferred to the first vacuum chamber of the vacuum deposition apparatus while being vacuumed, and the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat containing 10 was energized and heated.
  • the compound No. of nitrogen-containing compound having a deposition rate of 0.1 nm / second to 0.2 nm / second and a thickness of 3 nm was obtained.
  • An organic compound layer consisting of 10 was formed.
  • the base material formed up to the first admittance adjustment layer is transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and after the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, a voltage is applied to the Pd target, A palladium-containing layer made of Pd was provided on the admittance adjusting layer with a thickness of 0.1 nm.
  • the substrate formed up to the palladium-containing layer is transferred to the second vacuum chamber of the vacuum deposition apparatus while being vacuumed, and after the pressure in the vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver is energized. And heated. Thereby, a metal layer made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second. Thereby, the transparent conductor of the sample 113 by which the 2nd admittance adjustment layer, the 1st admittance adjustment layer, the organic compound layer, and the conductive layer which consists of a palladium containing layer and a metal layer were laminated
  • a transparent conductor of Sample 114 was obtained in the same procedure as Sample 113 except that the first admittance adjusting layer was composed of niobium oxide (Nb 2 O 5 ).
  • Transparent conductors of Samples 115 to 128 were obtained in the same procedure as Sample 109, except that the organic compound layer was composed of the materials shown in Table 2 below. Each material shown in Table 2 applied to the organic compound layers of Samples 115 to 128 corresponds to the compounds shown in Table 1 above.
  • the plasmon absorption rate of the conductive layer was measured as follows. First, palladium was formed on a transparent glass substrate at 0.2 s (0.1 nm) on the substrate using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Corporation. The average thickness of palladium was calculated from the film formation rate at the manufacturer's nominal value of the sputtering apparatus. Thereafter, 20 nm of silver was formed on the substrate on which palladium was adhered, using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The resistance heating at this time was 210 A, and the film formation rate was 5 ⁇ / s.
  • MSP-1S magnetron sputtering apparatus
  • the light transmittance was measured using a spectrophotometer (U-3300, manufactured by Hitachi, Ltd.), and the average light transmittance was measured in the measurement light (light with a wavelength of 450 nm to 800 nm) using the same base material as the sample as the baseline. .
  • the surface resistance was measured using a resistivity meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation) by a four-terminal four-probe method and a constant current application method.
  • Table 2 shows the configurations of Samples 101 to 128 and the measurement results of optical admittance, absorption rate (%), average visible light transmittance (%), and surface resistance ( ⁇ / sq.).
  • the sample 103 and the sample 104 having the admittance adjusting layer have an improved average visible light transmittance as compared with the sample 101 not having the admittance adjusting layer. From this result, it turns out that the light transmittance of a transparent conductor improves by providing an admittance adjustment layer.
  • Sample 105 and sample 106 have a metal layer of 5 nm, and sample 107 and sample 108 have a metal layer of 8 nm.
  • Samples 109 to 112 have metal layers of 8 nm, 10 nm, 12 nm, and 15 nm, respectively.
  • the surface resistance tends to decrease as the thickness of the metal layer increases.
  • plasmon absorption that depends on the surface shape of the metal layer also decreases.
  • the absorption of the conductive layer itself increases as the thickness of the metal layer increases, in samples 109 to 112, the visible light average transmittance of the transparent conductor does not change much.
  • the thickness of the metal layer is set to 8 nm or more, the film quality of the conductive layer can be improved and the light transmittance of the transparent conductor can be improved.
  • the thickness of the metal layer is increased from 15 nm, the increase in the absorption of the conductive layer itself is larger than the decrease in the plasmon absorption rate. Therefore, the thickness of the metal layer needs to be 15 nm or less.
  • Sample 113 and sample 114 provided with two admittance adjustment layers have lower average absorptance and improved visible light average transmittance compared to sample 108 and sample 109 provided with the same thickness of conductive layer. .
  • the optical admittance of the conductor layer can be easily adjusted.
  • the light transmittance of a transparent conductor can be improved by adjusting preferably the optical admittance of a conductor layer.
  • samples 115 to 128 having different materials constituting the organic compound layer had the same good results in terms of average visible light transmittance and surface resistance. Therefore, as described in Table 1 above, an organic compound layer formed using a compound having an effective unshared electron pair content [n / M] of 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M]. And a palladium-containing layer, a highly homogeneous conductive layer is formed. That is, by having the organic compound layer and the palladium-containing layer, the metal layer is formed by single-layer growth type (Frank-van der Merwe: FM type) growth, and the homogeneity of the metal layer is improved. For this reason, the transparent conductor excellent in visible light average transmittance
  • Frank-van der Merwe FM type
  • Samples 107 to 109 are samples in which the admittance adjusting layers are made of ITO, TiO 2 , and Nb 2 O 5 , respectively.
  • the optical admittance x 1 and x 2 is increased, the light absorption of the transparent conductive material is reduced.
  • the sample 109 and the sample 108 having x 1 and x 2 of less than 1.8 have a lower absorption factor of the transparent conductor in the sample 109 having x 1 and x 2 of 1.8 or more.
  • the sample 109 having the largest x 1 and x 2 has the lowest light absorption rate.
  • most x 1 and x 2 is greater sample 109, the largest visible light average transmittance. Therefore, by increasing the x 1 and x 2, the light absorption of the transparent conductive material is lowered.
  • each transparent conductor 52 was formed on the top of a transparent polyethylene terephthalate (PET) base material 51.
  • PET polyethylene terephthalate
  • a hole-transporting hole serving as both a hole-injecting layer and a hole-transporting layer made of ⁇ -NPD is heated by energizing a heating boat containing ⁇ -NPD represented by the following structural formula as a hole-transporting injecting material.
  • the injection layer 53 was formed on the transparent conductor 52. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the thickness was 20 nm.
  • the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were respectively energized independently, and the host material H4 and phosphorescent light emission were emitted.
  • a hole-blocking layer 55 made of BAlq was formed on the light-emitting layer 54 by heating a heated boat containing BAlq represented by the following structural formula as a hole-blocking material. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the thickness was 10 nm.
  • the base material 51 on which the light emitting functional layer is formed is transferred into the vacuum chamber of the vacuum deposition apparatus, the inside of the second vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then attached to the vacuum chamber.
  • the resistance heating boat containing the obtained aluminum was energized and heated.
  • the counter electrode 57 made of aluminum having a thickness of 100 nm was formed at a deposition rate of 0.3 nm / second.
  • the counter electrode 57 is used as a cathode.
  • a bottom emission type organic electroluminescence device was formed on the base material 51 by the above method.
  • the organic electroluminescent element is covered with a sealing material made of a glass substrate having a thickness of 300 ⁇ m, and an adhesive (sealant) is placed between the transparent sealing material and the substrate 51 in a state of surrounding the organic electroluminescent element. Filled.
  • an adhesive epoxy photocurable adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) was used. The adhesive filled between the transparent sealing material and the base material 51 was irradiated with UV light from the glass substrate (transparent sealing material) side, and the adhesive was cured to seal the organic electroluminescent element. .
  • the organic electroluminescent element In the formation of the organic electroluminescent element, a vapor deposition mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm base material 51 is set as the light emitting region, and the width of the entire circumference of the light emitting region is A non-light emitting area of 0.25 cm was provided.
  • the conductive layer of the transparent conductor 52 serving as the anode and the counter electrode 57 serving as the cathode are insulated from the hole transport / injection layer 53 by the electron transport / injection layer 56 and are formed on the periphery of the substrate 51.
  • the terminal portion was formed in a drawn shape.
  • organic electroluminescent elements were provided on the substrate 51, and each light emitting panel of the organic electroluminescent elements of Samples 201 to 228 was obtained by sealing this with a transparent sealing material and an adhesive. In each of these light emitting panels, each color of emitted light h generated in the light emitting layer 54 is taken out from the substrate 51 side.
  • the color rendering property (Ra) is measured by using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing) and applying a current of 2.5 mA / cm 2 to the organic electroluminescent elements of the samples 201 to 228. The value of was measured.
  • the color rendering property (Ra) indicates that the obtained value is closer to 100 and is a preferable result.
  • Table 3 shows the configurations of the samples 201 to 228 and the measurement results of the drive voltage (V), color change ( ⁇ xy), and color rendering properties (Ra).
  • Samples 207 to 212 in which the metal layer was formed with a thickness of 8 nm or more had a low driving voltage and small color change, and good results were obtained.
  • the samples 206 and 208 to 212 using TiO 2 or Nb 2 O 5 as the admittance adjusting layer are compared with the samples 205 and 207 using ITO as the admittance adjusting layer. Good results were obtained. From this result, it is considered preferable to use TiO 2 or Nb 2 O 5 as the admittance adjusting layer.
  • the sample 213 and the sample 214 provided with two admittance adjusting layers obtained better results in the color change measurement results than the sample 208 and the sample 209 provided with the same thickness of the conductive layer. That is, by forming a plurality of admittance adjusting layers as in the sample 213 and the sample 214, the optical admittance of the conductor layer can be adjusted, and the optical characteristics of the organic electroluminescent element can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This transparent conductor is configured by being provided with an organic compound layer, and a conductive layer that is provided adjacent to the organic compound layer. In the transparent conductor, the conductive layer is configured from a metal layer having silver (Ag) as a main component, and a palladium-containing layer that contains palladium (Pd), said palladium-containing layer being provided on the organic compound layer side of the conductive layer.

Description

透明導電体、及び、電子デバイスTransparent conductor and electronic device
 本発明は、透明導電体、及び、この透明導電体を備える電子デバイスに関する。 The present invention relates to a transparent conductor and an electronic device including the transparent conductor.
 有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機電界発光素子(いわゆる有機EL素子)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。 An organic electroluminescence device (so-called organic EL device) using electroluminescence (hereinafter referred to as EL) of an organic material is a thin-film type completely solid device capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
 このような有機電界発光素子は、2枚の電極間に有機材料を用いて構成された発光層を挟持した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明導電体として構成される。 Such an organic electroluminescent element has a configuration in which a light emitting layer composed of an organic material is sandwiched between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. For this reason, at least one of the two electrodes is configured as a transparent conductor.
 透明導電体としては、酸化インジウムスズ(Indium Tin Oxide:ITO)等の酸化物半導体系の材料や、ITOと銀とを積層して低抵抗化を狙った材料が検討されている(例えば、下記特許文献1、特許文献2参照)。しかしながら、ITOはレアメタルのインジウムを使用しているため、材料コストが高く、また抵抗を下げるために形成後に300℃程度でアニール処理する必要がある。そこで、銀にアルミニウムを混ぜることにより銀単独よりも薄い厚さで導電性を確保する構成も提案されている(例えば、下記特許文献3参照)。 As the transparent conductor, oxide semiconductor materials such as indium tin oxide (ITO) and materials aiming at low resistance by laminating ITO and silver have been studied (for example, the following) (See Patent Document 1 and Patent Document 2). However, since ITO uses rare metal indium, the material cost is high, and it is necessary to anneal at about 300 ° C. after formation in order to reduce resistance. Then, the structure which ensures electroconductivity by the thickness thinner than silver alone by mixing aluminum with silver is also proposed (for example, refer patent document 3 below).
特開2002-15623号公報JP 2002-15623 A 特開2006-164961号公報JP 2006-16961 A 特開2009-151963号公報JP 2009-151963 A
 しかしながら、銀とアルミニウムとを用いて構成された透明導電体であっても、十分な導電性と光透過性との両立を図ることは困難であった。 However, even with a transparent conductor composed of silver and aluminum, it has been difficult to achieve both sufficient conductivity and light transmittance.
 そこで本発明は、十分な導電性と光透過性とを兼ね備えた透明導電体を提供すること、及び、この透明導電体を用いることによって性能の向上が図られた電子デバイスを提供する。 Therefore, the present invention provides a transparent conductor having both sufficient conductivity and light transmittance, and an electronic device whose performance is improved by using this transparent conductor.
 本発明の透明導電体は、有機化合物層と、有機化合物層に隣接して設けられた導電層とを備える。導電層は、銀(Ag)を主成分とする金属層と、パラジウム(Pd)を含むパラジウム含有層とからなり、パラジウム含有層が、導電層において有機化合物層側に設けられている。
 また、本発明の電子デバイスは、上記透明導電体を備える。
The transparent conductor of the present invention includes an organic compound layer and a conductive layer provided adjacent to the organic compound layer. The conductive layer includes a metal layer containing silver (Ag) as a main component and a palladium-containing layer containing palladium (Pd), and the palladium-containing layer is provided on the organic compound layer side in the conductive layer.
Moreover, the electronic device of this invention is equipped with the said transparent conductor.
 本発明の透明導電体によれば、パラジウム含有層に隣接して銀を主成分とする金属層が形成された導電層を有するため、パラジウムと銀との相互作用が得られ、薄いながらも均一な厚さの導電層が得られる。さらに、有機化合物層上に導電層が設けられることにより、導電層の均一性をより高めることができる。
 従って、透明導電体において、導電性の向上と光透過性の向上との両立が可能となる。また、この透明導電体を用いて、導電性と光透過性とに優れる電子デバイスを構成することができる。
According to the transparent conductor of the present invention, since it has a conductive layer in which a metal layer mainly composed of silver is formed adjacent to the palladium-containing layer, interaction between palladium and silver is obtained, and although it is thin, it is uniform A conductive layer having a sufficient thickness can be obtained. Furthermore, the uniformity of the conductive layer can be further improved by providing the conductive layer on the organic compound layer.
Therefore, in the transparent conductor, it is possible to achieve both improvement in conductivity and improvement in light transmittance. Moreover, the electronic device excellent in electroconductivity and light transmittance can be comprised using this transparent conductor.
 本発明によれば、導電性と光透過性とに優れた透明導電体、及び、電子デバイスを提供することができる。 According to the present invention, it is possible to provide a transparent conductor and an electronic device that are excellent in conductivity and light transmittance.
第1実施形態の透明導電体の概略構成を示す図である。It is a figure which shows schematic structure of the transparent conductor of 1st Embodiment. 窒素原子の結合様式を説明するためのTBACとIr(ppy)の構造式を示す図である。It is a figure which shows the structural formula of TBAC and Ir (ppy) 3 for demonstrating the coupling | bonding mode of a nitrogen atom. ピリジン環の構造式と分子軌道を示す図である。It is a figure which shows the structural formula and molecular orbital of a pyridine ring. ピロール環の構造式と分子軌道を示す図である。It is a figure which shows the structural formula and molecular orbital of a pyrrole ring. イミダゾール環の構造式と分子軌道を示す図である。It is a figure which shows the structural formula and molecular orbital of an imidazole ring. δ-カルボリン環の構造式と分子軌道を示す図である。FIG. 2 is a diagram showing a structural formula and molecular orbital of a δ-carboline ring. 第2実施形態の透明導電体の概略構成を示す図である。It is a figure which shows schematic structure of the transparent conductor of 2nd Embodiment. 基材上に導電層を形成した場合のアドミッタンス軌跡を示す図である。It is a figure which shows the admittance locus | trajectory at the time of forming a conductive layer on a base material. 第2実施形態の透明導電体のアドミッタンス軌跡を示す図である。It is a figure which shows the admittance locus | trajectory of the transparent conductor of 2nd Embodiment. 第3実施形態の透明導電体の概略構成を示す図である。It is a figure which shows schematic structure of the transparent conductor of 3rd Embodiment. 第3実施形態の透明導電体のアドミッタンス軌跡を示す図である。It is a figure which shows the admittance locus | trajectory of the transparent conductor of 3rd Embodiment. 第4実施形態の有機電界発光素子の概略構成を示す図である。It is a figure which shows schematic structure of the organic electroluminescent element of 4th Embodiment. 実施例2で作製したボトムエミッション型の有機電界発光素子の概略構成を示す図である。3 is a diagram showing a schematic configuration of a bottom emission type organic electroluminescence device produced in Example 2. FIG.
 以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.透明導電体(第1実施形態)
2.透明導電体(第2実施形態)
3.透明導電体(第3実施形態)
4.有機電界発光素子(第4実施形態)
5.照明装置(第5実施形態)
Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples.
The description will be given in the following order.
1. Transparent conductor (first embodiment)
2. Transparent conductor (second embodiment)
3. Transparent conductor (third embodiment)
4). Organic electroluminescent device (fourth embodiment)
5. Lighting device (fifth embodiment)
〈1.透明導電体(第1実施形態)〉
 本発明の第1実施形態について説明する。図1に、第1実施形態の透明導電体の概略構成図(断面図)を示す。
<1. Transparent conductor (first embodiment)>
A first embodiment of the present invention will be described. In FIG. 1, the schematic block diagram (sectional drawing) of the transparent conductor of 1st Embodiment is shown.
[透明導電体の構成]
 図1に示すように、透明導電体10は、有機化合物層12と、導電層15とを備える。導電層15は、金属層14と、この金属層14に隣接するパラジウム含有層13とから構成されている。また、パラジウム含有層13は、導電層15において有機化合物層12側に設けられている。つまり、金属層14と有機化合物層12との間に、パラジウム含有層13が挟持された構成である。そして、有機化合物層12と、パラジウム含有層13及び金属層14からなる導電層15とを備える透明導電体10が、基材11上に設けられている。
 従って、透明導電体10は、基材11上に、有機化合物層12、パラジウム含有層13、及び、金属層14がこの順に積層された構成である。そして、導電層15のパラジウム含有層13が、有機化合物層12と金属層14とに挟持された構成である。
[Configuration of transparent conductor]
As shown in FIG. 1, the transparent conductor 10 includes an organic compound layer 12 and a conductive layer 15. The conductive layer 15 includes a metal layer 14 and a palladium-containing layer 13 adjacent to the metal layer 14. The palladium-containing layer 13 is provided on the organic compound layer 12 side in the conductive layer 15. That is, the palladium-containing layer 13 is sandwiched between the metal layer 14 and the organic compound layer 12. A transparent conductor 10 including an organic compound layer 12 and a conductive layer 15 composed of a palladium-containing layer 13 and a metal layer 14 is provided on the substrate 11.
Therefore, the transparent conductor 10 has a configuration in which the organic compound layer 12, the palladium-containing layer 13, and the metal layer 14 are laminated on the base material 11 in this order. The palladium-containing layer 13 of the conductive layer 15 is sandwiched between the organic compound layer 12 and the metal layer 14.
 透明導電体10は波長400nm~800nmの光の平均吸収率が15%以下、且つ、吸収率の最大値が25%以下であることが好ましい。
 透明導電体10は、波長400nm~800nmの光の平均吸収率が15%以下、好ましくは12%以下であり、さらに10%以下であることが好ましい。また、波長400nm~800nmの光の吸収率の最大値は25%以下であり、好ましくは20%以下であり、さらに15%以下であることが好ましい。透明導電体10の光の吸収率は、導電層15のプラズモン吸収率や、各層を構成する材料の光吸収率を抑制することで、低減することができる。
The transparent conductor 10 preferably has an average absorptance of light with a wavelength of 400 nm to 800 nm of 15% or less and a maximum absorptance of 25% or less.
The transparent conductor 10 has an average absorptance of light having a wavelength of 400 nm to 800 nm of 15% or less, preferably 12% or less, and more preferably 10% or less. Further, the maximum value of the absorptance of light having a wavelength of 400 nm to 800 nm is 25% or less, preferably 20% or less, and more preferably 15% or less. The light absorption rate of the transparent conductor 10 can be reduced by suppressing the plasmon absorption rate of the conductive layer 15 and the light absorption rate of the material constituting each layer.
 また、透明導電体10の波長450nm~800nmの光の平均透過率は、50%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。一方、透明導電体10の波長500nm~700nmの光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記波長の光の平均透過率が50%以上であり、かつ平均反射率20%以下であると、高い透明性が要求される用途にも、透明導電体10を適用できる。 The average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor 10 is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. On the other hand, the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor 10 is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. The transparent conductor 10 is applicable also to the use as which high transparency is requested | required as the average transmittance | permeability of the light of the said wavelength is 50% or more and average reflectance 20% or less.
 上記吸収率、平均透過率及び平均反射率は、透明導電体の正面に対して5°傾けた角度から測定光を透明導電体に入射させて測定される値である。吸収率、平均透過率及び平均反射率は、分光光度計で測定される。 The absorptance, average transmittance, and average reflectance are values measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor. Absorptivity, average transmittance and average reflectance are measured with a spectrophotometer.
 また、透明導電体10の表面抵抗は、30Ω/sq.以下であることが好ましく、さらに好ましくは15Ω/sq.以下である。透明導電体10の表面抵抗値は、導電層15の厚み等によって調整できる。透明導電体10の表面抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、市販の表面抵抗率計によっても測定できる。 The surface resistance of the transparent conductor 10 is 30Ω / sq. Or less, more preferably 15 Ω / sq. It is as follows. The surface resistance value of the transparent conductor 10 can be adjusted by the thickness of the conductive layer 15 and the like. The surface resistance value of the transparent conductor 10 can be measured according to, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface resistivity meter.
 以下に、本例の透明導電体10について、基材11、有機化合物層12、導電層15の順に詳細な構成を説明する。なお、本例の透明導電体10において、透明とは波長550nmでの光透過率が50%以上であることをいう。 Hereinafter, the detailed structure of the transparent conductor 10 of this example will be described in the order of the substrate 11, the organic compound layer 12, and the conductive layer 15. In the transparent conductor 10 of this example, “transparent” means that the light transmittance at a wavelength of 550 nm is 50% or more.
[基材11]
 透明導電体10が形成される基材11は、この上に形成される各種素子の支持材である。基材11は、可視光に対する透明性が高いことが好ましい。基材11としては、例えばガラス、石英、透明樹脂フィルム等を挙げることができるが、これらに限定されない。
[Substrate 11]
The base material 11 on which the transparent conductor 10 is formed is a support material for various elements formed thereon. The substrate 11 is preferably highly transparent to visible light. Examples of the substrate 11 include, but are not limited to, glass, quartz, a transparent resin film, and the like.
 基材11は、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。基材11の光の平均透過率が低いと、透明導電体全体の光の平均透過率が低下する。また、基材11の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The base material 11 preferably has an average transmittance of light having a wavelength of 450 to 800 nm of 70% or more, more preferably 80% or more, and further preferably 85% or more. When the average light transmittance of the substrate 11 is low, the average light transmittance of the entire transparent conductor is lowered. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the substrate 11 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 基材11の平均透過率は、基材11の正面に対して、5°傾けた角度から測定光を入射させて測定した値である。一方、平均吸収率は、平均透過率と同様の方法で基材11の平均反射率を測定し、[平均吸収率=100-(平均透過率+平均反射率)]として算出される値である。平均透過率及び平均反射率は分光光度計で測定する。 The average transmittance of the base material 11 is a value measured by allowing measurement light to enter from an angle inclined by 5 ° with respect to the front surface of the base material 11. On the other hand, the average absorptance is a value calculated as [average absorptance = 100− (average transmittance + average reflectance)] by measuring the average reflectance of the substrate 11 in the same manner as the average transmittance. . Average transmittance and average reflectance are measured with a spectrophotometer.
 基材11の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。基材11の屈折率は、通常、基材11の材質によって定まる。基材11の屈折率は、波長510nmの光の屈折率であり、エリプソメーターで測定される。 The refractive index of the substrate 11 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. The refractive index of the substrate 11 is usually determined by the material of the substrate 11. The refractive index of the substrate 11 is the refractive index of light having a wavelength of 510 nm, and is measured with an ellipsometer.
 基材11の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。基材11の厚みが1μmより薄い場合には、基材11の強度が低くなり、基材11上に素子を形成する際に破損する可能性がある。また、基材11の厚みが厚すぎると、透明導電体の可撓性や光透過性が低下する原因となる場合がある。 The thickness of the substrate 11 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the base material 11 is thinner than 1 μm, the strength of the base material 11 becomes low, and there is a possibility that the base material 11 is damaged when an element is formed on the base material 11. Moreover, when the thickness of the base material 11 is too thick, it may cause the flexibility and light transmittance of the transparent conductor to decrease.
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、透明導電体10の積層構造との密着性、耐久性、平滑性の観点から、必要に応じて研磨等の物理的処理や、無機物又は有機物からなる被膜、これらの被膜を組み合わせたハイブリッド被膜が形成される。 Examples of the glass include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. On the surface of these glass materials, from the viewpoints of adhesion to the laminated structure of the transparent conductor 10, durability, and smoothness, physical treatment such as polishing, coating films made of inorganic or organic materials, and the like, as necessary A hybrid film is formed by combining these films.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Is mentioned.
 樹脂フィルムの表面には、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜及びハイブリッド被膜は、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下のバリア性フィルム(バリア膜等ともいう)であることが好ましい。またさらには、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m・24時間・atm)以下、水蒸気透過度が10-5g/(m・24時間)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed. Such coatings and hybrid coatings have a water vapor transmission rate (25 ± 0.5 ° C., relative humidity 90 ± 2% RH) measured by a method according to JIS-K-7129-1992 of 0.01 g / ( m 2 · 24 hours) or less of a barrier film (also referred to as a barrier film or the like) is preferable. Furthermore, the oxygen permeability measured by the method according to JIS-K-7126-1987 is 10 −3 ml / (m 2 · 24 hours · atm) or less, and the water vapor permeability is 10 −5 g / (m (2 · 24 hours) or less is preferable.
 以上のようなバリア性フィルムを形成する材料としては、樹脂フィルムの劣化をもたらす水分や酸素等素子の浸入を抑制する機能を有する材料を用いる。例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As the material for forming the barrier film as described above, a material having a function of suppressing the intrusion of elements such as moisture and oxygen causing deterioration of the resin film is used. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers (organic layers) made of an organic material. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。特に、特開2004-68143号公報に記載の大気圧プラズマ重合法を好ましく用いることができる。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. In particular, the atmospheric pressure plasma polymerization method described in JP-A-2004-68143 can be preferably used.
[有機化合物層]
 有機化合物層12は、基材11の一主面側に設けられた層であり、導電層15に隣接して設けられた層である。有機化合物層12の厚さは、1μm以下、好ましくは100nm以下である。
[Organic compound layer]
The organic compound layer 12 is a layer provided on one main surface side of the substrate 11 and is provided adjacent to the conductive layer 15. The thickness of the organic compound layer 12 is 1 μm or less, preferably 100 nm or less.
 有機化合物層12は、ルイス塩基を有する化合物により構成されている。すなわち、有機化合物層12は、非共有電子対を有する原子を含む化合物を用いて構成されている。ルイス塩基を有する化合物としては、窒素含有化合物又は硫黄含有化合物が挙げられる。 The organic compound layer 12 is composed of a compound having a Lewis base. That is, the organic compound layer 12 is configured using a compound including an atom having an unshared electron pair. Examples of the compound having a Lewis base include nitrogen-containing compounds and sulfur-containing compounds.
 例えば、有機化合物層12は、窒素含有化合物及び硫黄含有化合物の少なくとも一方、又は、両方を用いて構成された層である。また、それぞれ複数種類の化合物を含有する層とすることもできる。有機化合物層12を構成する化合物は、窒素と硫黄の両方を含有した化合物であってもよい。 For example, the organic compound layer 12 is a layer configured using at least one or both of a nitrogen-containing compound and a sulfur-containing compound. Moreover, it can also be set as the layer containing a multiple types of compound, respectively. The compound constituting the organic compound layer 12 may be a compound containing both nitrogen and sulfur.
 有機化合物層12を構成する窒素含有化合物は、窒素原子(N)を含んだ化合物であればよく、特に窒素原子が非共有電子対を有することが好ましい。また、有機化合物層12を構成する硫黄含有化合物は、硫黄原子(S)を含んだ化合物であればよく、特に硫黄原子が非共有電子対を有することが好ましい。 The nitrogen-containing compound constituting the organic compound layer 12 may be a compound containing a nitrogen atom (N), and it is particularly preferable that the nitrogen atom has an unshared electron pair. Moreover, the sulfur containing compound which comprises the organic compound layer 12 should just be a compound containing the sulfur atom (S), and it is preferable that especially a sulfur atom has an unshared electron pair.
 また、有機化合物層12を構成する窒素含有化合物及び硫黄含有化合物が、導電層15を構成する主材料である金属材料と安定的に結合する、非共有電子対を有する窒素原子又は硫黄原子を含むとき、この窒素原子又は硫黄原子の非共有電子対を[有効非共有電子対]とする。有機化合物層12を構成する窒素含有化合物及び硫黄含有化合物は、この[有効非共有電子対]の含有率が所定範囲であることが好ましい。 Further, the nitrogen-containing compound and the sulfur-containing compound constituting the organic compound layer 12 include a nitrogen atom or a sulfur atom having an unshared electron pair that is stably bonded to the metal material that is the main material constituting the conductive layer 15. Sometimes, this unshared electron pair of nitrogen atom or sulfur atom is referred to as [effective unshared electron pair]. The nitrogen-containing compound and the sulfur-containing compound constituting the organic compound layer 12 preferably have a content ratio of [effective unshared electron pairs] within a predetermined range.
 ここで[有効非共有電子対]とは、化合物に含有される窒素原子又は硫黄原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対であることとする。ここでの芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造を言い、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、又は自然数)個であることを条件としている。 Here, the “effective unshared electron pair” refers to an unshared electron pair that is not involved in aromaticity and is not coordinated to a metal among the unshared electron pairs of the nitrogen atom or sulfur atom contained in the compound. Suppose that The aromaticity here refers to an unsaturated cyclic structure in which atoms having π electrons are arranged in a ring, and is aromatic according to the so-called “Hückel's rule”. The condition is that the number is “4n + 2” (n = 0 or a natural number).
 以上のような[有効非共有電子対]は、その非共有電子対を備えた窒素原子又は硫黄原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子又は硫黄原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子の非共有電子対が、芳香族性に必須要素として直接的に関与しない非共有電子対、すなわち共役不飽和環構造(芳香環)上の非局在化したπ電子系に、芳香族性発現のために必須のものとして関与していない非共有電子対であれば、その非共有電子対は[有効非共有電子対]の一つとしてカウントされる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]としてカウントされることはない。硫黄原子についても同様である。なお、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子及び硫黄原子の数と一致する。 [Effective unshared electron pair] is a nitrogen atom or sulfur atom regardless of whether or not the nitrogen atom or sulfur atom itself provided with the unshared electron pair is a hetero atom constituting an aromatic ring. It is selected depending on whether or not the unshared electron pair possessed by is involved in aromaticity. For example, even if a nitrogen atom is a hetero atom constituting an aromatic ring, the lone pair of the nitrogen atom does not directly participate as an essential element in aromaticity, that is, a conjugated unsaturated ring If a non-shared electron pair is not involved in the delocalized π-electron system on the structure (aromatic ring) as an essential element for the expression of aromaticity, the unshared electron pair is [effective non-shared It is counted as one of the electron pairs. In contrast, even if a nitrogen atom is not a heteroatom that constitutes an aromatic ring, if all of the non-shared electron pairs of the nitrogen atom are involved in aromaticity, the nitrogen atom is not shared. An electron pair is not counted as a [valid unshared electron pair]. The same applies to sulfur atoms. In each compound, the number n of [effective unshared electron pairs] described above matches the number of nitrogen atoms and sulfur atoms having [effective unshared electron pairs].
 次に、上述した[有効非共有電子対]について、具体例を挙げて詳細に説明する。
 窒素原子は、第15族元素であり、最外殻に5個の電子を有する。このうち3個の不対電子は他の原子との共有結合に用いられ、残りの2個は一対の非共有電子対となる。このため、通常、窒素原子の結合本数は3本である。
Next, the [effective unshared electron pair] described above will be described in detail with a specific example.
The nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs. For this reason, the number of bonds of nitrogen atoms is usually three.
 例えば、窒素原子を有する基として、アミノ基(-NR)、アミド基(-C(=O)NR)、ニトロ基(-NO)、シアノ基(-CN)、ジアゾ基(-N)、アジド基(-N)、ウレア結合(-NRC=ONR-)、イソチオシアネート基(-N=C=S)、チオアミド基(-C(=S)NR)などが挙げられる。尚、R,Rは、それぞれ水素原子(H)又は置換基である。 For example, as a group having a nitrogen atom, an amino group (—NR 1 R 2 ), an amide group (—C (═O) NR 1 R 2 ), a nitro group (—NO 2 ), a cyano group (—CN), diazo Group (—N 2 ), azide group (—N 3 ), urea bond (—NR 1 C═ONR 2 —), isothiocyanate group (—N═C═S), thioamide group (—C (═S) NR 1 R 2 ) and the like. R 1 and R 2 are each a hydrogen atom (H) or a substituent.
 これらの基を構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していないため、[有効非共有電子対]に該当する。このうち、ニトロ基(-NO)の窒素原子が有する非共有電子対は、酸素原子との共鳴構造に利用されているものの、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]として窒素上に存在すると考えられる。 The non-shared electron pair of the nitrogen atom constituting these groups does not participate in aromaticity and is not coordinated to the metal, and thus corresponds to [effective unshared electron pair]. Of these, the unshared electron pair possessed by the nitrogen atom of the nitro group (—NO 2 ) is used for the resonance structure with the oxygen atom, but does not participate in aromaticity and is not coordinated to the metal [ It is thought that it exists on nitrogen as an effective unshared electron pair].
 また、窒素原子は、非共有電子対を利用することで4本目の結合を作り出すこともできる。図2を用いてこの場合の一例を説明する。図2は、テトラブチルアンモニウムクロライド(TBAC)の構造式と、トリス(2-フェニルピリジン)イリジウム(III)[Ir(ppy)]の構造式である。 A nitrogen atom can also create a fourth bond by using an unshared electron pair. An example of this case will be described with reference to FIG. FIG. 2 shows a structural formula of tetrabutylammonium chloride (TBAC) and a structural formula of tris (2-phenylpyridine) iridium (III) [Ir (ppy) 3 ].
 このうち、TBACは、四つのブチル基のうちの1つが窒素原子とイオン結合しており、対イオンとして塩化物イオンを有する第四級アンモニウム塩である。この場合、窒素原子の非共有電子対を構成する電子のうちの1つは、ブチル基とのイオン結合に供与される。このため、TBACの窒素原子は、そもそも非共有電子対が存在していないと同等になる。従って、TBACを構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]に、該当しない。 Among these, TBAC is a quaternary ammonium salt in which one of four butyl groups is ionically bonded to a nitrogen atom and has a chloride ion as a counter ion. In this case, one of the electrons constituting the unshared electron pair of the nitrogen atom is donated to the ionic bond with the butyl group. For this reason, the nitrogen atom of TBAC is equivalent to the absence of an unshared electron pair in the first place. Therefore, the unshared electron pair of the nitrogen atom constituting TBAC does not correspond to the [effective unshared electron pair] that is not involved in aromaticity and coordinated to the metal.
 また、Ir(ppy)は、イリジウム原子と窒素原子とが配位結合している中性の金属錯体である。このIr(ppy)を構成する窒素原子の非共有電子対は、イリジウム原子に配位していて、配位結合に利用されている。従って、Ir(ppy)を構成する窒素原子の非共有電子対も、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]に、該当しない。 Ir (ppy) 3 is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated. The unshared electron pair of the nitrogen atom constituting this Ir (ppy) 3 is coordinated to the iridium atom, and is utilized for coordination bonding. Therefore, the unshared electron pair of the nitrogen atom constituting Ir (ppy) 3 does not correspond to the [effective unshared electron pair] that is not involved in aromaticity and coordinated to the metal.
 また、窒素原子は、芳香環を構成することのできるヘテロ原子として一般的であり、芳香族性の発現に寄与することができる。この「含窒素芳香環」としては、例えば、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環等が挙げられる。 Also, nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity. Examples of the “nitrogen-containing aromatic ring” include pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, tetrazole ring and the like.
 図3は、以上に例示した基のうちの一つであるピリジン環の構造式と分子軌道を示す図である。図3に示すとおり、ピリジン環は、6員環状に並んだ共役(共鳴)不飽和環構造において、非局在化したπ電子の数が6個であるため、4n+2(n=0又は自然数)のヒュッケル則を満たす。6員環内の窒素原子は、-CH=を置換したものであるため、1個の不対電子を6π電子系に動員するのみで、非共有電子対は芳香族性発現のために必須のものとして関与していない。
 従って、ピリジン環を構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]に、該当する。
FIG. 3 is a diagram showing a structural formula and molecular orbitals of a pyridine ring which is one of the groups exemplified above. As shown in FIG. 3, in the conjugated (resonant) unsaturated ring structure in which the pyridine ring is arranged in a 6-membered ring, the number of delocalized π electrons is 6, so that 4n + 2 (n = 0 or natural number) Satisfy Hückel's law. Since the nitrogen atom in the 6-membered ring is substituted with —CH═, only one unpaired electron is mobilized to the 6π electron system, and the unshared electron pair is essential for the expression of aromaticity. Not involved as a thing.
Therefore, the unshared electron pair of the nitrogen atom constituting the pyridine ring corresponds to an [effective unshared electron pair] that does not participate in aromaticity and is not coordinated to the metal.
 図4は、ピロール環の構造式と分子軌道を示す図である。図4に示すとおり、ピロール環は、5員環を構成する炭素原子のうちの一つが窒素原子に置換された構造であるが、やはりπ電子の数は6個であり、ヒュッケル則を満たした含窒素芳香環である。ピロール環の窒素原子は、水素原子とも結合しているため、非共有電子対が6π電子系に動員される。 FIG. 4 shows the structural formula and molecular orbitals of the pyrrole ring. As shown in FIG. 4, the pyrrole ring has a structure in which one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of π electrons is also six and satisfies the Hückel rule. Nitrogen-containing aromatic ring. Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, the lone pair is mobilized to the 6π electron system.
 従って、ピロール環の窒素原子は、非共有電子対を有するものの、この非共有電子対は、芳香族性発現のために必須のものとして利用されているため、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]に、該当しない。 Therefore, although the nitrogen atom of the pyrrole ring has an unshared electron pair, this unshared electron pair is used as an essential element for the expression of aromaticity, and therefore does not participate in aromaticity and is a metal. It does not correspond to [Effective unshared electron pair] that is not coordinated to.
 図5は、イミダゾール環の構造式と分子軌道を示す図である。図5に示すとおり、イミダゾール環は、二つの窒素原子N,Nが、5員環内の1,3位に置換した構造を有しており、やはりπ電子数が6個の含窒素芳香環である。このうち一つの窒素原子Nは、1個の不対電子のみを6π電子系に動員し、非共有電子対を芳香族性発現のために利用していないピリジン環型の窒素原子であり、この窒素原子Nの非共有電子対は、[有効非共有電子対]に、該当する。これに対して、他方の窒素原子Nは、非共有電子対を6π電子系に動員しているピロール環型の窒素原子であるため、この窒素原子Nの非共有電子対は、[有効非共有電子対]に、該当しない。
 従って、イミダゾール環においては、これを構成する二つの窒素原子N,Nのうちの一つの窒素原子Nの非共有電子対のみが、[有効非共有電子対]に該当する。
FIG. 5 is a diagram showing the structural formula and molecular orbitals of the imidazole ring. As shown in FIG. 5, the imidazole ring has a structure in which two nitrogen atoms N 1 and N 2 are substituted at the 1,3-positions in a 5-membered ring, and also has a nitrogen content of 6 π electrons. It is an aromatic ring. Of these, one nitrogen atom N 1 is a pyridine ring-type nitrogen atom that mobilizes only one unpaired electron to the 6π-electron system and does not utilize the unshared electron pair for the expression of aromaticity, This unshared electron pair of nitrogen atom N 1 corresponds to [effective unshared electron pair]. On the other hand, since the other nitrogen atom N 2 is a pyrrole-ring-type nitrogen atom that mobilizes the unshared electron pair to the 6π electron system, the unshared electron pair of the nitrogen atom N 2 is [effective Does not fall under “Unshared electron pair”.
Accordingly, in the imidazole ring, only the unshared electron pair of one nitrogen atom N 1 out of the two nitrogen atoms N 1 and N 2 constituting the ring corresponds to the “effective unshared electron pair”.
 以上のような「含窒素芳香環」の窒素原子における非共有電子対の選別は、含窒素芳香環骨格を有する縮環化合物の場合も同様に適用される。 The selection of the unshared electron pair at the nitrogen atom of the “nitrogen-containing aromatic ring” as described above is similarly applied to a condensed ring compound having a nitrogen-containing aromatic ring skeleton.
 図6は、δ-カルボリン環の構造式と分子軌道を示す図である。図6に示すとおり、δ-カルボリン環は、含窒素芳香環骨格を有する縮環化合物であり、ベンゼン環骨格、ピロール環骨格、及び、ピリジン環骨格がこの順に縮合したアザカルバゾール化合物である。このうち、ピリジン環の窒素原子Nは1個の不対電子のみをπ電子系に動員し、ピロール環の窒素原子Nは非共有電子対をπ電子系に動員しており、環を形成している炭素原子からの11個のπ電子とともに、全体のπ電子数が14個の芳香環となっている。 FIG. 6 shows the structural formula and molecular orbital of the δ-carboline ring. As shown in FIG. 6, the δ-carboline ring is a condensed ring compound having a nitrogen-containing aromatic ring skeleton, and is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order. Of these, the nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron to the π-electron system, and the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the π-electron system. Together with the 11 π electrons from the carbon atoms that are formed, the total number of π electrons is an aromatic ring of 14.
 従って、δ-カルボリン環の二つの窒素原子N,Nのうち、ピリジン環を構成する窒素原子Nの非共有電子対は[有効非共有電子対]に該当するが、ピロール環を構成する窒素原子Nの非共有電子対は、[有効非共有電子対]に該当しない。 Therefore, among the two nitrogen atoms N 3 and N 4 of the δ-carboline ring, the unshared electron pair of the nitrogen atom N 3 constituting the pyridine ring corresponds to [effective unshared electron pair], but constitutes the pyrrole ring. The unshared electron pair of the nitrogen atom N 4 that does not correspond to [Effective unshared electron pair].
 このように、縮環化合物を構成する窒素原子の非共有電子対は、縮環化合物を構成するピリジン環やピロール環等の単環中の結合と同様に、縮環化合物中の結合に関与する。 Thus, the unshared electron pair of the nitrogen atom constituting the condensed ring compound is involved in the bond in the condensed ring compound, similarly to the bond in the single ring such as the pyridine ring and pyrrole ring constituting the condensed ring compound. .
 以上説明した[有効非共有電子対]は、導電層15を構成するパラジウム含有層13及び金属層14の主成分である銀と強い相互作用を発現するために重要である。このような[有効非共有電子対]を有する窒素原子は、安定性、耐久性の観点から、含窒素芳香環中の窒素原子であることが好ましい。従って、窒素含有化合物としては、[有効非共有電子対]を持つ窒素原子をヘテロ原子とした芳香族複素環を有することが好ましい。 [Effective unshared electron pair] described above is important in order to express a strong interaction with silver which is the main component of the palladium-containing layer 13 and the metal layer 14 constituting the conductive layer 15. The nitrogen atom having such an [effective unshared electron pair] is preferably a nitrogen atom in the nitrogen-containing aromatic ring from the viewpoint of stability and durability. Therefore, the nitrogen-containing compound preferably has an aromatic heterocycle having a nitrogen atom having [effective unshared electron pair] as a heteroatom.
 特に本実施形態においては、このような化合物の分子量Mに対する[有効非共有電子対]の数nを、有効非共有電子対含有率[n/M]と定義する。そして、有機化合物層12は、この[n/M]が、2.0×10-3≦[n/M]となるように選択された化合物を用いて構成されていることが好ましい。また、窒素含有化合物及び硫黄含有化合物は、以上のように定義される有効非共有電子対含有率[n/M]が、3.9×10-3≦[n/M]の範囲であれば好ましく、6.5×10-3≦[n/M]の範囲であればさらに好ましい。 Particularly in the present embodiment, the number n of [effective unshared electron pairs] with respect to the molecular weight M of such a compound is defined as the effective unshared electron pair content [n / M]. The organic compound layer 12 is preferably composed of a compound selected such that [n / M] is 2.0 × 10 −3 ≦ [n / M]. In addition, the nitrogen-containing compound and the sulfur-containing compound have an effective unshared electron pair content [n / M] defined as described above in a range of 3.9 × 10 −3 ≦ [n / M]. Preferably, 6.5 × 10 −3 ≦ [n / M] is more preferable.
 また、有機化合物層12は、有効非共有電子対含有率[n/M]が上述した所定範囲である窒素含有化合物及び硫黄含有化合物を用いて構成されていればよく、このような化合物のみで構成されていてもよく、また、このような化合物と他の化合物とを混合して用いて構成されていてもよい。他の化合物は、窒素原子及び硫黄原子が含有されていてもいなくてもよく、さらに有効非共有電子対含有率[n/M]が上述した所定範囲でなくてもよい。 Moreover, the organic compound layer 12 should just be comprised using the nitrogen containing compound and sulfur containing compound whose effective unshared electron pair content rate [n / M] is the predetermined range mentioned above, and only such a compound is used. You may be comprised, and you may be comprised using mixing such a compound and another compound. The other compound may or may not contain a nitrogen atom and a sulfur atom, and the effective unshared electron pair content [n / M] may not be within the predetermined range described above.
 有機化合物層12が、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての[有効非共有電子対]の合計の数nを、有効非共有電子対含有率[n/M]の平均値として求め、この値が上述した所定範囲であることが好ましい。つまり、有機化合物層12自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましい。 When the organic compound layer 12 is configured using a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and [effective non- The total number n of [shared electron pairs] is obtained as an average value of the effective unshared electron pair content [n / M], and this value is preferably within the predetermined range described above. That is, it is preferable that the effective unshared electron pair content [n / M] of the organic compound layer 12 itself is in a predetermined range.
 なお、有機化合物層12が、複数の化合物を用いて構成されている場合であって、厚さ方向に化合物の混合比(含有比)が異なる構成であれば、導電層15と接する側の有機化合物層12の表面層における有効非共有電子対含有率[n/M]が所定範囲であればよい。 In addition, if the organic compound layer 12 is composed of a plurality of compounds and the composition ratio (content ratio) of the compounds is different in the thickness direction, the organic layer on the side in contact with the conductive layer 15 is used. The effective unshared electron pair content [n / M] in the surface layer of the compound layer 12 should just be a predetermined range.
 また、有機化合物層12は、導電性を有する材料で構成されている場合であっても、主たる電極となることはない。このため、有機化合物層12は、電極として必要な膜厚を備えている必要はなく、有機化合物層12を備えた透明導電体10が用いられる電子デバイス中における透明導電体10の配置状態によって、適切に設定された膜厚を有していればよい。 Further, even when the organic compound layer 12 is made of a conductive material, it does not become a main electrode. For this reason, the organic compound layer 12 does not need to have a film thickness necessary as an electrode, and depending on the arrangement state of the transparent conductor 10 in an electronic device in which the transparent conductor 10 including the organic compound layer 12 is used, What is necessary is just to have the film thickness set appropriately.
 次に、有機化合物層12を構成する化合物の詳細を、窒素含有化合物(1)、窒素含有化合物(2)、窒素含有化合物(3)、硫黄含有化合物、及び、有機化合物層12の形成方法の順に説明する。 Next, the details of the compounds constituting the organic compound layer 12 are described in terms of the method for forming the nitrogen-containing compound (1), the nitrogen-containing compound (2), the nitrogen-containing compound (3), the sulfur-containing compound, and the organic compound layer 12. These will be described in order.
[窒素含有化合物(1)]
 有機化合物層12を構成する窒素含有化合物は、窒素原子(N)を含んだ化合物であればよい。特に、非共有電子対を有する窒素原子を含む有機化合物であり、後述する化合物であることが好ましい。
[Nitrogen-containing compound (1)]
The nitrogen-containing compound constituting the organic compound layer 12 may be a compound containing a nitrogen atom (N). In particular, it is an organic compound containing a nitrogen atom having an unshared electron pair, and is preferably a compound described later.
(化合物I)
 以下に、窒素含有化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]を満たす化合物の具体例(No.1~No.48)を示す。各化合物No.1~No.48には、[有効非共有電子対]を有する窒素原子に対して○を付した。また、下記表1には、これらの化合物No.1~No.48の分子量M、[有効非共有電子対]の数n、及び有効非共有電子対含有率[n/M]を示す。下記化合物33の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が[有効非共有電子対]としてカウントされる。
(Compound I)
Hereinafter, specific examples (No. 1 to No. 48) of compounds satisfying the above-mentioned effective unshared electron pair content [n / M] of 2.0 × 10 −3 ≦ [n / M] as nitrogen-containing compounds. ). Each compound No. 1-No. 48 is marked with a circle with respect to a nitrogen atom having [effective unshared electron pair]. Table 1 below shows these compound Nos. 1-No. The molecular weight M of 48, the number n of [effective unshared electron pairs], and the effective unshared electron pair content [n / M] are shown. In the copper phthalocyanine of the following compound 33, unshared electron pairs that are not coordinated to copper among the unshared electron pairs of the nitrogen atom are counted as [effective unshared electron pairs].
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 尚、上記表1には、これらの例示化合物が、以降に説明する他の化合物IIを表す一般式(1)~(8a)にも属する場合の該当一般式を示した。 Table 1 shows the corresponding general formulas when these exemplary compounds also belong to the general formulas (1) to (8a) representing other compounds II described below.
[窒素含有化合物(2)]
(化合物II)
 また、窒素含有化合物としては、以上のような有効非共有電子対含有率[n/M]が上述した所定範囲である化合物に加え、他の化合物を用いてもよい。窒素含有化合物としては、有効非共有電子対含有率[n/M]が上述した所定範囲で有る無しにかかわらず、窒素原子を含有する化合物が好ましく用いられる。中でも[有効非共有電子対]を有する窒素原子を含有する化合物が特に好ましく用いられる。また窒素含有化合物としては、この窒素含有化合物を備えた透明導電体10が適用される電子デバイスごとに必要とされる性質を有する化合物が用いられる。例えば、この透明導電体10が、有機電界発光素子の電極として用いられる場合、その形成性の観点から、窒素含有化合物としては、以降に説明する一般式(1)~(8a)で表される構造を有する化合物が好ましく用いられる。
[Nitrogen-containing compound (2)]
(Compound II)
Further, as the nitrogen-containing compound, other compounds may be used in addition to the compound whose effective unshared electron pair content [n / M] is within the predetermined range described above. As the nitrogen-containing compound, a compound containing a nitrogen atom is preferably used regardless of whether the effective unshared electron pair content [n / M] is in the predetermined range described above. Among them, a compound containing a nitrogen atom having [effective unshared electron pair] is particularly preferably used. Moreover, as a nitrogen-containing compound, the compound which has a property required for every electronic device to which the transparent conductor 10 provided with this nitrogen-containing compound is applied is used. For example, when the transparent conductor 10 is used as an electrode of an organic electroluminescent element, the nitrogen-containing compound is represented by the following general formulas (1) to (8a) from the viewpoint of formability. A compound having a structure is preferably used.
 これらの一般式(1)~(8a)で示される構造を有する化合物の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有化合物として用いることができる(上記表1参照)。一方、下記一般式(1)~(8a)で示される構造を有する化合物が、上述した有効非共有電子対含有率[n/M]の範囲に当てはまらない化合物であれば、有効非共有電子対含有率[n/M]が上述した範囲の化合物と混合して、有機化合物層12を構成する化合物として用いることが好ましい。 Among the compounds having the structures represented by the general formulas (1) to (8a), compounds that fall within the range of the effective unshared electron pair content [n / M] described above are included, and such compounds If so, it can be used alone as a nitrogen-containing compound (see Table 1 above). On the other hand, if the compound having the structure represented by the following general formulas (1) to (8a) is a compound that does not fall within the range of the effective unshared electron pair content [n / M], the effective unshared electron pair It is preferable to use it as a compound constituting the organic compound layer 12 by mixing with a compound having a content [n / M] in the above-mentioned range.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)中におけるX11は、-N(R11)-又は-O-を表す。また一般式(1)中におけるE101~E108は、各々-C(R12)=又は-N=を表す。E101~E108のうち少なくとも1つは-N=である。上記R11及びR12は、それぞれが水素原子(H)又は置換基を表す。 X11 in the above general formula (1) represents -N (R11)-or -O-. In the general formula (1), E101 to E108 each represent —C (R12) ═ or —N═. At least one of E101 to E108 is -N =. R11 and R12 each represent a hydrogen atom (H) or a substituent.
 この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(上記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。 Examples of this substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group). Etc.), cycloalkyl groups (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl groups (for example, vinyl group, allyl group, etc.), alkynyl groups (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon groups (aromatic Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group , Pyrenyl group, biphenylyl group), aromatic heterocyclic group (eg , Furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (above carbolinyl group) Any one of the carbon atoms constituting the carboline ring is substituted with a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (eg, a pyrrolidyl group, an imidazolidyl group, a morpholyl group, an oxazolidyl group, etc.), an alkoxy group (For example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (For example, Enoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group) Etc.), arylthio groups (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl groups (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryl Oxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfo group) Nyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, Acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, Carbonyl group, etc.), amide groups (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octyl) Carbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, Cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylamino Sulfonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido) Group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2 -Pyridylsulfinyl group etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group) Dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, piperidyl group (also referred to as piperidinyl group), 2,2,6, 6-tetramethylpiperidinyl group, etc.), halogen atoms (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon groups (eg fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, penta Fluorophenyl group), cyano group Nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphate ester group (for example, dihexyl phosphoryl group, etc.), phosphorous acid An ester group (for example, diphenylphosphinyl group etc.), a phosphono group etc. are mentioned.
 これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。これらの置換基は、化合物と銀(Ag)との相互作用を阻害することのないものが好ましく用いられ、さらには上述した有効非共有電子対を有する窒素を有するものが特に好ましく適用される。尚、以上の置換基に関する記述は、以降に説明する一般式(2)~(8a)の説明において示される置換基において同様に適用される。 Some of these substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring. As these substituents, those not inhibiting the interaction between the compound and silver (Ag) are preferably used, and those having nitrogen having an effective unshared electron pair described above are particularly preferably applied. The above description regarding the substituents is similarly applied to the substituents shown in the description of the general formulas (2) to (8a) described below.
 以上のような一般式(1)で表される構造を有する化合物は、化合物中の窒素と、導電層15を構成するパラジウムや銀との間で強力な相互作用を発現できるため、好ましい。 The compound having the structure represented by the general formula (1) as described above is preferable because it can exert a strong interaction between nitrogen in the compound and palladium or silver constituting the conductive layer 15.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(1a)で示される化合物は、上記一般式(1)で示される構造を有する化合物の一形態であり、一般式(1)におけるX11を-N(R11)-とした化合物である。このような化合物であれば、上記相互作用をより強力に発現できるため、好ましい。 The compound represented by the general formula (1a) is one form of the compound having the structure represented by the general formula (1), and is a compound in which X11 in the general formula (1) is —N (R11) —. . Such a compound is preferable because the above interaction can be expressed more strongly.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 上記一般式(1a-1)で示される化合物は、上記一般式(1a)で示される構造を有する化合物の一形態であり、一般式(1a)におけるE104を-N=とした化合物である。このような化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。 The compound represented by the general formula (1a-1) is one form of the compound having the structure represented by the general formula (1a), and is a compound in which E104 in the general formula (1a) is -N =. Such a compound is preferable because the above interaction can be expressed more effectively.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(1a-2)で示される化合物は、上記一般式(1a)で示される構造を有する化合物の他の一形態であり、一般式(1a)におけるE103及びE106を-N=とした化合物である。このような化合物は、窒素原子の数が多いことから、より強力に上記相互作用を発現できるため、好ましい。 The compound represented by the general formula (1a-2) is another embodiment of the compound having the structure represented by the general formula (1a), and E103 and E106 in the general formula (1a) are set to -N =. A compound. Such a compound is preferable because the number of nitrogen atoms is large and the above interaction can be expressed more strongly.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(1b)で示される化合物は、上記一般式(1)で示される構造を有する化合物の他の一形態であり、一般式(1)におけるX11を-O-とし、E104を-N=とした化合物である。このような化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。 The compound represented by the general formula (1b) is another embodiment of the compound having the structure represented by the general formula (1). In the general formula (1), X11 is —O—, and E104 is —N This is a compound marked with =. Such a compound is preferable because the above interaction can be expressed more effectively.
 さらに、以下の一般式(2)~(8a)で表される化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。 Furthermore, compounds represented by the following general formulas (2) to (8a) are preferable because the above interaction can be expressed more effectively.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記一般式(2)は、一般式(1)の一形態でもある。上記一般式(2)の式中、Y21は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。E201~E216、E221~E238は、各々-C(R21)=又は-N=を表す。R21は水素原子(H)又は置換基を表す。ただし、E221~E229の少なくとも1つ、及びE230~E238の少なくとも1つは-N=を表す。k21及びk22は0~4の整数を表すが、k21+k22は2以上の整数である。 The above general formula (2) is also a form of the general formula (1). In the general formula (2), Y21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof. E201 to E216 and E221 to E238 each represent -C (R21) = or -N =. R21 represents a hydrogen atom (H) or a substituent. However, at least one of E221 to E229 and at least one of E230 to E238 represents -N =. k21 and k22 represent an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
 一般式(2)において、Y21で表されるアリーレン基としては、例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’-ビフェニル]-4,4’-ジイル基、3,3’-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。 In the general formula (2), examples of the arylene group represented by Y21 include o-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, and biphenyldiyl. Groups (for example, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.), terphenyldiyl group, quaterphenyldiyl group And kinkphenyldiyl group, sexiphenyldiyl group, septiphenyldiyl group, octiphenyldiyl group, nobiphenyldiyl group, deciphenyldiyl group and the like.
 また一般式(2)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。 In the general formula (2), examples of the heteroarylene group represented by Y21 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, and one of carbon atoms constituting the carboline ring is nitrogen. The ring structure is replaced by an atom), a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring. And the like.
 Y21で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基又はジベンゾチオフェン環から導出される基が好ましい。 As a preferred embodiment of the divalent linking group consisting of an arylene group, heteroarylene group or a combination thereof represented by Y21, among the heteroarylene groups, a condensed aromatic heterocycle formed by condensation of three or more rings. A group derived from a condensed aromatic heterocyclic ring formed by condensing three or more rings is preferably included, and a group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable. Are preferred.
 一般式(2)において、E201~E208のうちの6つ以上、及びE209~E216のうちの6つ以上が、各々-C(R21)=で表されることが好ましい。 In the general formula (2), it is preferable that 6 or more of E201 to E208 and 6 or more of E209 to E216 are each represented by -C (R21) =.
 一般式(2)において、E225~E229の少なくとも1つ、及びE234~E238の少なくとも1つが-N=を表すことが好ましい。 In the general formula (2), it is preferable that at least one of E225 to E229 and at least one of E234 to E238 represent -N =.
 さらには、一般式(2)において、E225~E229のいずれか1つ、及びE234~E238のいずれか1つが-N=を表すことが好ましい。 Furthermore, in the general formula (2), it is preferable that any one of E225 to E229 and any one of E234 to E238 represent -N =.
 また、一般式(2)において、E221~E224及びE230~E233が、各々-C(R21)=で表されることが好ましい態様として挙げられる。 In the general formula (2), it is preferable that E221 to E224 and E230 to E233 are each represented by —C (R21) ═.
 さらに、一般式(2)で表される構造を有する化合物において、E203が-C(R21)=で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時に-C(R21)=で表され、かつR21が連結部位を表すことが好ましい。 Further, in the compound having the structure represented by the general formula (2), it is preferable that E203 is represented by —C (R21) ═ and R21 represents a linking site, and E211 is also —C (R21). And R21 preferably represents a linking moiety.
 さらに、E225及びE234が-N=で表されることが好ましく、E221~E224及びE230~E233が、各々-C(R21)=で表されることが好ましい。 Furthermore, E225 and E234 are preferably represented by -N =, and E221 to E224 and E230 to E233 are each preferably represented by -C (R21) =.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記一般式(3)は、一般式(1a-2)の一形態でもある。上記一般式(3)の式中、E301~E312は、各々-C(R31)=を表し、R31は水素原子(H)又は置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。 The general formula (3) is also a form of the general formula (1a-2). In the general formula (3), E301 to E312 each represent —C (R31) ═, and R31 represents a hydrogen atom (H) or a substituent. Y31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
 また一般式(3)において、Y31で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、一般式(2)のY21と同様のものが挙げられる。 Moreover, in General formula (3), as a preferable aspect of the bivalent coupling group which consists of an arylene group represented by Y31, heteroarylene group, or those combinations, the thing similar to Y21 of General formula (2) is mentioned. .
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記一般式(4)は、一般式(1a-1)の一形態でもある。上記一般式(4)の式中、E401~E414は、各々-C(R41)=を表し、R41は水素原子(H)又は置換基を表す。またAr41は、置換又は無置換の、芳香族炭化水素環又は芳香族複素環を表す。さらにk41は3以上の整数を表す。 The general formula (4) is also a form of the general formula (1a-1). In the general formula (4), E401 to E414 each represent —C (R41) ═, and R41 represents a hydrogen atom (H) or a substituent. Ar41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring. Furthermore, k41 represents an integer of 3 or more.
 また一般式(4)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1)のR11,R12として例示した置換基を有してもよい。 In the general formula (4), when Ar41 represents an aromatic hydrocarbon ring, the aromatic hydrocarbon ring includes benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene Ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen And a ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring. These rings may further have the substituents exemplified as R11 and R12 in the general formula (1).
 また一般式(4)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。尚、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1)において、R11,R12として例示した置換基を有してもよい。 In the general formula (4), when Ar41 represents an aromatic heterocycle, the aromatic heterocycle includes a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring And azacarbazole ring. The azacarbazole ring refers to one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom. These rings may further have the substituents exemplified as R11 and R12 in the general formula (1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記一般式(5)の式中、R51は置換基を表す。E501,E502、E511~E515、E521~E525は、各々-C(R52)=又は-N=を表す。E503~E505は、各々-C(R52)=を表す。R52は、水素原子(H)又は置換基を表す。E501及びE502のうちの少なくとも1つは-N=であり、E511~E515のうちの少なくとも1つは-N=であり、E521~E525のうちの少なくとも1つは-N=である。 In the general formula (5), R51 represents a substituent. E501, E502, E511 to E515, and E521 to E525 each represent -C (R52) = or -N =. E503 to E505 each represent -C (R52) =. R52 represents a hydrogen atom (H) or a substituent. At least one of E501 and E502 is -N =, at least one of E511 to E515 is -N =, and at least one of E521 to E525 is -N =.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記一般式(6)の式中、E601~E612は、各々-C(R61)=又は-N=を表し、R61は水素原子(H)又は置換基を表す。またAr61は、置換又は無置換の、芳香族炭化水素環又は芳香族複素環を表す。 In the general formula (6), E601 to E612 each represent —C (R61) ═ or —N═, and R61 represents a hydrogen atom (H) or a substituent. Ar61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
 また一般式(6)において、Ar61が表す、置換又は無置換の、芳香族炭化水素環又は芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。 In the general formula (6), the substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar61 may be the same as Ar41 in the general formula (4).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記一般式(7)の式中、R71~R73は、各々水素原子(H)又は置換基を表し、Ar71は、芳香族炭化水素環基又は芳香族複素環基を表す。 In the general formula (7), R71 to R73 each represents a hydrogen atom (H) or a substituent, and Ar71 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
 また一般式(7)において、Ar71が表す芳香族炭化水素環又は芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。 In the general formula (7), the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar71 may be the same as Ar41 in the general formula (4).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記一般式(8)は、一般式(7)の一形態でもある。上記一般式(8)の式中、R81~R86は、各々水素原子(H)又は置換基を表す。E801~E803は、各々-C(R87)=又は-N=を表し、R87は水素原子(H)又は置換基を表す。Ar81は、芳香族炭化水素環基又は芳香族複素環基を表す。 The above general formula (8) is also a form of the general formula (7). In the general formula (8), R81 to R86 each represent a hydrogen atom (H) or a substituent. E801 to E803 each represent —C (R87) ═ or —N═, and R87 represents a hydrogen atom (H) or a substituent. Ar81 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
 また一般式(8)において、Ar81が表す、芳香族炭化水素環又は芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。 In the general formula (8), examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar81 include those similar to Ar41 in the general formula (4).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(8a)で示される構造を有する窒素含有化合物は、上記一般式(8)で示され構造を有する窒素含有化合物の一形態であり、一般式(8)におけるAr81がカルバゾール誘導体である。上記一般式(8a)の式中、E804~E811は、各々-C(R88)=又は-N=を表し、R88は水素原子(H)又は置換基を表す。E808~E811のうち少なくとも一つは-N=であり、E804~E807、E808~E811は、各々互いに結合して新たな環を形成してもよい。 The nitrogen-containing compound having the structure represented by the general formula (8a) is one form of the nitrogen-containing compound having the structure represented by the general formula (8), and Ar81 in the general formula (8) is a carbazole derivative. . In the general formula (8a), E804 to E811 each represent —C (R88) ═ or —N═, and R88 represents a hydrogen atom (H) or a substituent. At least one of E808 to E811 is -N =, and E804 to E807 and E808 to E811 may be bonded to each other to form a new ring.
[窒素含有化合物(3)]
(化合物III)
 また、窒素含有化合物を構成するさらに他の化合物として、以上のような一般式(1)~(8a)で表される構造を有する化合物の他、下記に具体例を示す化合物1~166が例示される。これらの化合物は、導電層15を構成するパラジウムや銀と相互作用する窒素原子を含有する化合物である。また、これらの化合物は、電子輸送性又は電子注入性を備えた材料である。従って、これらの化合物を用いて有機化合物層12を構成した透明導電体10は、有機電界発光素子における透明電極として好適であり、有機電界発光素子における電子輸送層又は電子注入層として有機化合物層12を用いることができる。尚、これらの化合物1~166の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で有機化合物層12を構成する化合物として用いることができる。さらに、これらの化合物1~166の中には、上述した一般式(1)~(8a)に当てはまる化合物もある。
[Nitrogen-containing compound (3)]
(Compound III)
In addition to the compounds having the structures represented by the general formulas (1) to (8a) as described above, other compounds constituting the nitrogen-containing compound include compounds 1 to 166 shown below as specific examples. Is done. These compounds are compounds containing nitrogen atoms that interact with palladium and silver constituting the conductive layer 15. Further, these compounds are materials having an electron transport property or an electron injection property. Therefore, the transparent conductor 10 in which the organic compound layer 12 is formed using these compounds is suitable as a transparent electrode in the organic electroluminescent device, and the organic compound layer 12 as an electron transport layer or an electron injection layer in the organic electroluminescent device. Can be used. Among these compounds 1 to 166, compounds that fall within the range of the effective unshared electron pair content [n / M] described above are also included. It can be used as a constituent compound. Further, among these compounds 1 to 166, there are compounds that fall under the general formulas (1) to (8a) described above.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
[窒素含有化合物の合成例]
 以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
[Synthesis example of nitrogen-containing compound]
Specific examples of the synthesis of compound 5 are shown below as typical synthesis examples of the compound, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 工程1:(中間体1の合成)
 窒素雰囲気下、2,8-ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n-ヘプタン:トルエン=4:1~3:1)にて精製し、中間体1を収率85%で得た。
Step 1: (Synthesis of Intermediate 1)
Under a nitrogen atmosphere, 2,8-dibromodibenzofuran (1.0 mol), carbazole (2.0 mol), copper powder (3.0 mol), potassium carbonate (1.5 mol), DMAc (dimethylacetamide) 300 ml Mixed in and stirred at 130 ° C. for 24 hours. The reaction solution thus obtained was cooled to room temperature, 1 L of toluene was added, washed with distilled water three times, the solvent was distilled off from the washed product under a reduced pressure atmosphere, and the residue was subjected to silica gel flash chromatography (n-heptane: Purification with toluene = 4: 1 to 3: 1) gave Intermediate 1 in a yield of 85%.
 工程2:(中間体2の合成)
 室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N-ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
Step 2: (Synthesis of Intermediate 2)
Intermediate 1 (0.5 mol) was dissolved in 100 ml of DMF (dimethylformamide) at room temperature in the atmosphere, NBS (N-bromosuccinimide) (2.0 mol) was added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered and washed with methanol, yielding intermediate 2 in 92% yield.
 工程3:(化合物5の合成)
 窒素雰囲気下、中間体2(0.25モル)、2-フェニルピリジン(1.0モル)、ルテニウム錯体[(η-C)RuCl(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N-メチル-2-ピロリドン)3L中で混合し、140℃で一晩撹拌した。
Step 3: (Synthesis of Compound 5)
Under a nitrogen atmosphere, intermediate 2 (0.25 mol), 2-phenylpyridine (1.0 mol), ruthenium complex [(η 6 -C 6 H 6 ) RuCl 2 ] 2 (0.05 mol), triphenyl Phosphine (0.2 mol) and potassium carbonate (12 mol) were mixed in 3 L of NMP (N-methyl-2-pyrrolidone) and stirred at 140 ° C. overnight.
 反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次いで減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CHCl:EtN=20:1~10:1)にて精製した。 After cooling the reaction solution to room temperature, 5 L of dichloromethane was added, and the reaction solution was filtered. Subsequently, the solvent was distilled off from the filtrate under reduced pressure (800 Pa, 80 ° C.), and the residue was purified by silica gel flash chromatography (CH 2 Cl 2 : Et 3 N = 20: 1 to 10: 1).
 減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、化合物5を収率68%で得た。 In a reduced-pressure atmosphere, the solvent was distilled off from the purified product, and the residue was dissolved again in dichloromethane and washed with water three times. The material obtained by washing was dried over anhydrous magnesium sulfate, and the solvent was distilled off from the dried material in a reduced-pressure atmosphere to obtain Compound 5 in a yield of 68%.
[硫黄含有化合物]
 有機化合物層12を構成する硫黄含有化合物としては、分子内にスルフィド結合(チオエーテル結合ともいう)、ジスルフィド結合、メルカプト基、スルホン基、チオカルボニル結合等を有していればよく、特に、スルフィド結合、メルカプト基を有することが好ましい。
[Sulfur-containing compounds]
The sulfur-containing compound constituting the organic compound layer 12 may have a sulfide bond (also referred to as a thioether bond), a disulfide bond, a mercapto group, a sulfone group, a thiocarbonyl bond, etc. in the molecule. It preferably has a mercapto group.
 具体的には、下記一般式(9)~一般式(12)で表される構造を有する含硫黄化合物を挙げることができる。 Specifically, sulfur-containing compounds having structures represented by the following general formulas (9) to (12) can be given.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 上記一般式(9)において、R71及びR72は、各々置換基を表す。 In the general formula (9), R 71 and R 72 each represent a substituent.
 R71及びR72で表される置換基としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基等が挙げられる。 Examples of the substituent represented by R 71 and R 72 include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group, an alkoxy group, a cycloalkoxy group, An aryloxy group etc. are mentioned.
 上記一般式(10)において、R73及びR74は、置換基を表す。
 R73及びR74で表される置換基としては、R71及びR72と同様の置換基が挙げられる。
In the said General formula (10), R73 and R74 represent a substituent.
Examples of the substituent represented by R 73 and R 74 include the same substituents as R 71 and R 72 .
 上記一般式(11)において、R75は、置換基を表す。
 R75で表される置換基としては、R71及びR72と同様の置換基が挙げられる。
In the above general formula (11), R 75 represents a substituent.
Examples of the substituent represented by R75 include the same substituents as R71 and R72 .
 上記一般式(12)において、R76は、置換基を表す。
 R76で表される置換基としては、R71及びR72と同様の置換基が挙げられる。
In the above general formula (12), R 76 represents a substituent.
Examples of the substituent represented by R76 include the same substituents as R71 and R72 .
 以下に、有機化合物層12に適用可能な硫黄含有化合物の具体例を示す。 Hereinafter, specific examples of the sulfur-containing compound applicable to the organic compound layer 12 are shown.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
(有機化合物層の形成方法)
 以上のような有機化合物層12の形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
(Method for forming organic compound layer)
Examples of the method for forming the organic compound layer 12 include a method using a wet process such as a coating method, an inkjet method, a coating method, and a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and a CVD method. And a method using a dry process such as Of these, the vapor deposition method is preferably applied.
 特に、複数の化合物を用いて有機化合物層12を形成する場合であれば、複数の蒸着源から複数の化合物を同時に供給する共蒸着が適用される。また化合物として高分子材料を用いる場合であれば、塗布法が好ましく適用される。この場合、化合物を溶媒に溶解させた塗布液を用いる。化合物を溶解させる溶媒が限定されることはない。さらに、複数の化合物を用いて有機化合物層12を形成する場合であれば、複数の化合物を溶解させることが可能な溶媒を用いて塗布液を作製すればよい。 Particularly, in the case where the organic compound layer 12 is formed using a plurality of compounds, co-evaporation in which a plurality of compounds are simultaneously supplied from a plurality of evaporation sources is applied. If a polymer material is used as the compound, a coating method is preferably applied. In this case, a coating solution in which the compound is dissolved in a solvent is used. The solvent in which the compound is dissolved is not limited. Furthermore, if the organic compound layer 12 is formed using a plurality of compounds, a coating solution may be prepared using a solvent capable of dissolving the plurality of compounds.
[導電層]
 導電層15は、導電層15を主として構成する銀(Ag)を主成分とする金属層14と、この金属層14に隣接して設けられたパラジウム(Pd)を含むパラジウム含有層13とから構成される。
[Conductive layer]
The conductive layer 15 includes a metal layer 14 mainly composed of silver (Ag) that mainly constitutes the conductive layer 15, and a palladium-containing layer 13 containing palladium (Pd) provided adjacent to the metal layer 14. Is done.
 導電層15による光の吸収は、金属固有の吸収(以下、固有吸収)と、主に導電層15の表面形状に起因するプラズモン吸収の2つの吸収の総計で決まる。固有吸収は導電層15が薄いほど小さく、プラズモン吸収は表面が平滑なほど小さいため、導電層15ができるだけ薄く、表面が平滑であることが、導電層15による光の吸収を小さくする上で有効である。 The absorption of light by the conductive layer 15 is determined by the total of two absorptions, absorption inherent to metal (hereinafter, intrinsic absorption) and plasmon absorption mainly due to the surface shape of the conductive layer 15. The intrinsic absorption is smaller as the conductive layer 15 is thinner, and the plasmon absorption is smaller as the surface is smoother. Therefore, the conductive layer 15 is as thin as possible and the surface is smooth, which is effective in reducing light absorption by the conductive layer 15. It is.
 導電層15のプラズモン吸収率は、波長400nm~800nmの全範囲で20%以下であることが好ましい。さらに、導電層15のプラズモン吸収率は、15%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。上記波長におけるプラズモン吸収率が大きいと、導電層15の光の透過率が低くなる。また、波長400nm~800nmの一部にプラズモン吸収率が大きい領域があると導電層15を透過した光が着色されやすくなる。 The plasmon absorption rate of the conductive layer 15 is preferably 20% or less over the entire wavelength range of 400 nm to 800 nm. Furthermore, the plasmon absorption rate of the conductive layer 15 is preferably 15% or less, more preferably 7% or less, and further preferably 5% or less. When the plasmon absorptance at the wavelength is large, the light transmittance of the conductive layer 15 is lowered. Further, if there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the light transmitted through the conductive layer 15 is likely to be colored.
[パラジウム含有層]
 パラジウム含有層13は、金属層14に隣接して設けられたパラジウム(Pd)を含む層である。また、本例では、パラジウム含有層13は、有機化合物層12上に直接形成されている層である。
[Palladium-containing layer]
The palladium-containing layer 13 is a layer containing palladium (Pd) provided adjacent to the metal layer 14. In this example, the palladium-containing layer 13 is a layer formed directly on the organic compound layer 12.
 一般的に、基材上にAgを主成分とする金属層14を形成する場合、基材に付着したAg原子が表面拡散しながら、ある大きさの塊(核)を生成する。そして、この塊(核)の周囲に沿うように、初期の薄膜成長が進む。このため、形成初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長し、厚みが15μm程度になると、塊同士の一部が繋がり、かろうじて導通する。しかし、膜の表面がいまだ平滑ではなく、プラズモン吸収が生じやすい。 Generally, when the metal layer 14 mainly composed of Ag is formed on a base material, Ag atoms attached to the base material generate a lump (nucleus) having a certain size while being surface diffused. Then, the initial thin film growth proceeds along the periphery of this lump (nucleus). For this reason, in the film | membrane of the formation initial stage, there exists a clearance gap between masses and it does not conduct | electrically_connect. When a lump further grows from this state and the thickness becomes about 15 μm, a part of the lump is connected and barely conducted. However, the film surface is not yet smooth and plasmon absorption is likely to occur.
 これに対し、予め有機化合物層12と、有機化合物層12上にパラジウム(Pd)の成長核を形成すると、金属層14を構成するAg等の金属材料が、有機化合物層12やパラジウム含有層13上を移動し難くなる。
 また、Pdは、成長核同士の間隔を、Ag原子が表面拡散して形成される塊同士の間隔よりも狭くすることができる。従って、このPdの成長核を起点としてAg層が成長すると、厚みが薄くても平坦な層となりやすい。つまり、厚みが薄くても導通が得られ、さらにプラズモン吸収の生じ難い金属層14を形成することができる。
On the other hand, when a growth nucleus of palladium (Pd) is formed on the organic compound layer 12 and the organic compound layer 12 in advance, a metal material such as Ag constituting the metal layer 14 is converted into the organic compound layer 12 or the palladium-containing layer 13. It becomes difficult to move on.
Moreover, Pd can make the space | interval of growth nuclei narrower than the space | interval of the lump formed by surface diffusion of Ag atoms. Therefore, when the Ag layer grows starting from the growth nucleus of Pd, a flat layer tends to be formed even if the thickness is small. That is, it is possible to form the metal layer 14 that is electrically conductive even if the thickness is small and that hardly causes plasmon absorption.
 上述の成長核は、有機化合物層12上を表面拡散し難い金属で形成する。このような金属としては、上述のパラジウム(Pd)単体、又は、パラジウム(Pd)を主成分として含む材料を用いることができる。例えば、パラジウム(Pd)に、金、白金、コバルト、ニッケル、モリブデン、チタン、アルミニウム、クロム、ニッケル等を含む合金を用いてもよい。 The above growth nuclei are formed of a metal that hardly diffuses on the organic compound layer 12. As such a metal, the above-described palladium (Pd) alone or a material containing palladium (Pd) as a main component can be used. For example, an alloy containing gold, platinum, cobalt, nickel, molybdenum, titanium, aluminum, chromium, nickel, or the like may be used for palladium (Pd).
 パラジウム含有層13は、有機化合物層12上で表面拡散し難く、かつ金属層14を構成するAgを主成分とする材料と、親和性が高い必要がある。また、緻密で細かい成長核が得られることが好ましい。例えば、イオンアシスト蒸着(IAD:Ion Assisted Deposition)等の、アシストを用いて成長する層を細かく砕きながら形成することで、所望の層(成長核)を得ることができる。 The palladium-containing layer 13 is difficult to diffuse on the surface of the organic compound layer 12 and needs to have high affinity with a material mainly composed of Ag constituting the metal layer 14. Moreover, it is preferable that a dense and fine growth nucleus is obtained. For example, a desired layer (growth nucleus) can be obtained by forming a layer that grows using assist, such as ion-assisted deposition (IAD: Ion Assisted Deposition), while being crushed finely.
 パラジウム含有層13の平均厚みは3nm以下であることが好ましく、より好ましくは0.1nm以下、さらに好ましくは単原子層である。パラジウム含有層13の平均厚みは、形成速度及び形成時間により調整する。 The average thickness of the palladium-containing layer 13 is preferably 3 nm or less, more preferably 0.1 nm or less, and still more preferably a monoatomic layer. The average thickness of the palladium-containing layer 13 is adjusted by the formation speed and the formation time.
 また、パラジウム含有層13は、連続した均質な膜でもよく、Pdを含む金属原子が配置されていない欠陥や空孔が形成された非連続部がある膜や、Pdを含む金属原子が互いに離間して分散された状態で付着している、いわゆる島状構造であってよい。好ましくは、Pdを含む金属原子が互いに離間して付着している状態である。
 さらに、パラジウム含有層13のみによる単独層として形成されていてもよく、パラジウム含有層13上に形成される金属層14のAgを主成分とする材料と混在した層となっていてもよい。
Further, the palladium-containing layer 13 may be a continuous and homogeneous film, a film having a defect in which a metal atom containing Pd is not arranged or a discontinuous part in which a hole is formed, or a metal atom containing Pd is separated from each other. Thus, it may be a so-called island structure attached in a dispersed state. Preferably, the metal atoms containing Pd are attached to each other while being separated from each other.
Furthermore, it may be formed as a single layer composed of only the palladium-containing layer 13 or may be a layer mixed with a material mainly composed of Ag of the metal layer 14 formed on the palladium-containing layer 13.
 パラジウム含有層13は、厚み3nm以下でPd成長核を、スパッタ法又は蒸着法を用いて形成することができる。或いは、十分な厚さのパラジウム含有層を形成し、この層をドライエッチングして、厚み3nm以下のPd成長核を残存させる方法により形成することができる。 The palladium-containing layer 13 can be formed by using a sputtering method or a vapor deposition method with a Pd growth nucleus having a thickness of 3 nm or less. Alternatively, a palladium-containing layer having a sufficient thickness can be formed, and this layer can be dry etched to leave a Pd growth nucleus having a thickness of 3 nm or less.
 スパッタ法としては、例えば、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等を用いることができる。スパッタ時間は、形成するPd成長核の平均厚み、及び、形成速度に合わせて適宜選択する。スパッタ形成速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 Examples of sputtering methods that can be used include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering. The sputtering time is appropriately selected according to the average thickness of the Pd growth nuclei to be formed and the formation speed. The sputter formation rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 一方、蒸着法としては、例えば、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等を用いることができる。蒸着時間は、形成するPd層(成長核)及び、形成速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, as the vapor deposition method, for example, a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, an ion beam vapor deposition method, or the like can be used. The deposition time is appropriately selected according to the Pd layer (growth nucleus) to be formed and the formation speed. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 また、有機化合物層12上に十分な厚さのパラジウム含有層を形成した後、この層を所望の厚みまでドライエッチングする方法では、パラジウム含有層の形成方法は特に制限されない。例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の気相成膜法や、メッキ法等の湿式成膜法を用いることができる。形成するPdを含む層の平均厚みは3~15nmであることが好ましく、より好ましくは5~10nmである。Pdを含む層の平均厚みが3nm未満であると、金属の量が少なく、十分な成長核が得られない恐れがある。 Further, in the method of forming a palladium-containing layer having a sufficient thickness on the organic compound layer 12 and then dry etching the layer to a desired thickness, the method for forming the palladium-containing layer is not particularly limited. For example, a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method, or a wet deposition method such as a plating method can be used. The average thickness of the Pd-containing layer to be formed is preferably 3 to 15 nm, more preferably 5 to 10 nm. If the average thickness of the layer containing Pd is less than 3 nm, the amount of metal is small, and sufficient growth nuclei may not be obtained.
 パラジウム含有層のドライエッチング方法としては、エッチングガスやイオン、ラジカル等の物理的な衝突を伴うエッチング方法をいい、化学的な反応のみによってエッチングを行う反応性ガスエッチング等は含まない。このような物理的な衝突を伴うエッチング方法であれば特に制限されず、例えば、イオンビームエッチング、逆スパッタエッチング、プラズマエッチング等を用いることができる。
 特にエッチング後のパラジウム含有層13(Pd成長核)に所望の凹凸を形成しやすいとの観点から、イオンビームエッチングが特に好ましい。
The dry etching method for the palladium-containing layer refers to an etching method that involves physical collision of etching gas, ions, radicals, etc., and does not include reactive gas etching that performs etching only by chemical reaction. The etching method is not particularly limited as long as it involves such physical collision, and for example, ion beam etching, reverse sputter etching, plasma etching, or the like can be used.
In particular, ion beam etching is particularly preferable from the viewpoint that desired unevenness is easily formed on the palladium-containing layer 13 (Pd growth nucleus) after etching.
 パラジウム含有層13(Pd成長核)が厚すぎると、成長核を形成しても、薄くかつ平滑な金属層14が得られ難い。さらに、このパラジウム含有層13の成長核を起点に形成される金属層14が厚くなる。パラジウム含有層13の成長核の平均厚みは、Pdを含む層の厚みと、Pdを含む層のエッチング厚みとの差から求める。Pdを含む層のエッチング厚みは、エッチングレートとエッチング時間との積である。エッチングレートは、別途ガラス基板上に作製した厚み50nmのPdを含む層を同条件でエッチングし、エッチング後の光の透過率がガラス基板と同等になる(大凡厚み0nm)までの時間から求める。パラジウム含有層13(Pd成長核)の平均厚みは、ドライエッチングする時間で調整する。 If the palladium-containing layer 13 (Pd growth nucleus) is too thick, it is difficult to obtain a thin and smooth metal layer 14 even if the growth nucleus is formed. Furthermore, the metal layer 14 formed starting from the growth nucleus of the palladium-containing layer 13 becomes thicker. The average thickness of the growth nucleus of the palladium-containing layer 13 is determined from the difference between the thickness of the layer containing Pd and the etching thickness of the layer containing Pd. The etching thickness of the layer containing Pd is the product of the etching rate and the etching time. The etching rate is obtained from the time required for etching a layer containing Pd having a thickness of 50 nm separately formed on a glass substrate under the same conditions, and for the light transmittance after etching to be equal to that of the glass substrate (approximately 0 nm in thickness). The average thickness of the palladium-containing layer 13 (Pd growth nucleus) is adjusted by the dry etching time.
[金属層]
 金属層14は、パラジウム含有層13に隣接して形成された、銀又は銀を主成分とした合金を用いて構成された層である。
 金属層14を構成する銀(Ag)を主成分とする合金としては、銀を50質量%以上含む合金であることが好ましい。金属層14を構成する銀(Ag)を主成分とする合金は、一例として、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)、銀アルミニウム(AgAl)等が挙げられる。
[Metal layer]
The metal layer 14 is a layer formed using silver or an alloy containing silver as a main component, which is formed adjacent to the palladium-containing layer 13.
The alloy mainly composed of silver (Ag) constituting the metal layer 14 is preferably an alloy containing 50% by mass or more of silver. As an example, an alloy mainly composed of silver (Ag) constituting the metal layer 14 includes silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ), Silver aluminum (AgAl), and the like.
 以上のような金属層14は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。 The metal layer 14 as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
 このような金属層14の形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。なかでも蒸着法が好ましく適用される。また、金属層14は、パラジウム含有層13上に形成されることにより、形成後の高温アニール処理等がなくても十分な導電性を有することを特徴とするが、必要に応じて、形成後に高温アニール処理等が行われていてもよい。 Examples of the method for forming the metal layer 14 include a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, and the like. Examples include a method using a dry process. Of these, the vapor deposition method is preferably applied. In addition, the metal layer 14 is formed on the palladium-containing layer 13 so that it has sufficient conductivity even without a high-temperature annealing treatment after the formation. A high temperature annealing treatment or the like may be performed.
 金属層14は、厚さが3~15nmの範囲にあることが好ましい。厚さが15nm以下、特に12nm以下であることにより、層の吸収成分又は反射成分が低く抑えられ、透明導電体10の光透過率が維持されるため好ましい。また、金属層14は、少なくとも厚さが3nm以上あれば、透明導電体10の導電性が確保される。 The metal layer 14 preferably has a thickness in the range of 3 to 15 nm. When the thickness is 15 nm or less, particularly 12 nm or less, the absorption component or reflection component of the layer can be suppressed low, and the light transmittance of the transparent conductor 10 is maintained, which is preferable. Moreover, if the metal layer 14 is at least 3 nm or more in thickness, the conductivity of the transparent conductor 10 is ensured.
 さらに、透明導電体10の光透過性を阻害しないために、金属層14とパラジウム含有層13との合計の厚さが、15nm以下となるように金属層14の厚さを設定することが好ましく、特に合計の厚さを12nm以下とすることが好ましい。金属層14とパラジウム含有層13との合計の厚さが15nm以下では、層の吸収成分及び反射成分が低く抑えられ、透明導電体10の光透過率が維持されるため好ましい。さらに、金属層14とパラジウム含有層13との合計の厚さを12nm以下とすることにより、透明導電体10の光透過性がさらに向上する。 Furthermore, in order not to inhibit the light transmittance of the transparent conductor 10, it is preferable to set the thickness of the metal layer 14 so that the total thickness of the metal layer 14 and the palladium-containing layer 13 is 15 nm or less. In particular, the total thickness is preferably 12 nm or less. A total thickness of the metal layer 14 and the palladium-containing layer 13 of 15 nm or less is preferable because the absorption component and reflection component of the layer can be kept low and the light transmittance of the transparent conductor 10 is maintained. Furthermore, the light transmittance of the transparent conductor 10 is further improved by setting the total thickness of the metal layer 14 and the palladium-containing layer 13 to 12 nm or less.
 なお、以上のような、パラジウム含有層13、及びパラジウム含有層13に隣接して設けられた金属層14からなる導電層15は、金属層14の上部が保護膜で覆われていてもよく、別の導電性層が積層されていてもよい。この場合、透明導電体10の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。 In addition, the conductive layer 15 including the palladium-containing layer 13 and the metal layer 14 provided adjacent to the palladium-containing layer 13 as described above may have an upper portion of the metal layer 14 covered with a protective film, Another conductive layer may be laminated. In this case, it is preferable that the protective film and the conductive layer have light transmittance so as not to impair the light transmittance of the transparent conductor 10.
[透明導電体の効果]
 以上のように構成された透明導電体10は、窒素原子を含有する化合物を用いて構成された有機化合物層12に隣接させて、パラジウム含有層13と銀を主成分とした金属層14とからなる導電層15を設けた構成である。この構成によれば、パラジウム含有層13を成長核として銀を主成分とする金属層14が形成されるため、Pd原子とAg原子との相互作用により、形成面での銀原子の拡散距離が減少し、銀の凝集が抑えられる。
 さらに、パラジウム含有層13と金属層14とを、有機化合物層12に隣接させて形成することにより、Pd原子やAg原子と、有機化合物層12を構成する窒素原子を含んだ化合物との相互作用により、有機化合物層12表面でのPd原子やAg原子の拡散距離が減少し、凝集が抑えられる。
[Effect of transparent conductor]
The transparent conductor 10 configured as described above includes a palladium-containing layer 13 and a metal layer 14 containing silver as a main component adjacent to an organic compound layer 12 configured using a compound containing a nitrogen atom. The conductive layer 15 is provided. According to this configuration, since the metal layer 14 mainly composed of silver is formed with the palladium-containing layer 13 as a growth nucleus, the diffusion distance of silver atoms on the formation surface is reduced by the interaction between Pd atoms and Ag atoms. It reduces and aggregation of silver is suppressed.
Further, by forming the palladium-containing layer 13 and the metal layer 14 adjacent to the organic compound layer 12, the interaction between Pd atoms and Ag atoms and the compound containing the nitrogen atoms constituting the organic compound layer 12. Thus, the diffusion distance of Pd atoms and Ag atoms on the surface of the organic compound layer 12 is reduced, and aggregation is suppressed.
 また特に、結合安定性の指標として、上述の有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]となる化合物を用いて有機化合物層12を構成することで、上述のパラジウムや銀の凝集を抑える効果が顕著になる。 In particular, the organic compound layer 12 is formed using a compound having an effective unshared electron pair content [n / M] of 2.0 × 10 −3 ≦ [n / M] as an index of bond stability. By doing so, the effect of suppressing aggregation of the above-mentioned palladium and silver becomes remarkable.
 つまり、上記有機化合物層12及びパラジウム含有層13を用いることにより、一般的には核成長型(Volumer-Weber:VW型)での成長により島状に孤立し易い銀層が、単層成長型(Frank-van der Merwe:FM型)の成長によって形成される。このため、薄い厚さでありながら、均一な厚さの導電層15が形成される。
 従って、導電層15による光の吸収を抑制して光透過性を確保し、さらに、導電性を確保することが可能な透明導電体10を構成することができる。
That is, by using the organic compound layer 12 and the palladium-containing layer 13, a silver layer that is easily isolated in an island shape by growth in a nucleus growth type (Volumer-Weber: VW type) is generally formed as a single layer growth type. It is formed by the growth of (Frank-van der Merwe: FM type). For this reason, the conductive layer 15 having a uniform thickness is formed although the thickness is small.
Therefore, it is possible to configure the transparent conductor 10 that can suppress light absorption by the conductive layer 15 to ensure light transmission and further ensure conductivity.
〈2.透明導電体(第2実施形態)〉
 次に、本発明の第2実施形態について説明する。図7に、第2実施形態の透明導電体の概略構成図(断面図)を示す。図7に示すように、第2実施形態の透明導電体20は、基材11と有機化合物層12との間に、アドミッタンス調整層21を備えることのみが、図1に示す第1実施形態の透明導電体10と異なる。以下、第1実施形態と同様の構成要素についての重複する詳細な説明は省略し、第2実施形態の透明導電体20の構成を説明する。
<2. Transparent Conductor (Second Embodiment)>
Next, a second embodiment of the present invention will be described. In FIG. 7, the schematic block diagram (sectional drawing) of the transparent conductor of 2nd Embodiment is shown. As shown in FIG. 7, the transparent conductor 20 of the second embodiment is only provided with an admittance adjusting layer 21 between the base material 11 and the organic compound layer 12, and the transparent conductor 20 of the first embodiment shown in FIG. Different from the transparent conductor 10. Hereinafter, the detailed description which overlaps about the component similar to 1st Embodiment is abbreviate | omitted, and demonstrates the structure of the transparent conductor 20 of 2nd Embodiment.
[透明導電体の構成]
 図7に示すように、透明導電体20は、アドミッタンス調整層21と、有機化合物層12と、導電層15とを備える。また、この透明導電体20が、基材11上に設けられている。
 導電層15は、銀を主成分とする金属層14と、金属層14に隣接する位置に形成されたパラジウム含有層13とからなる。パラジウム含有層13が、金属層14と有機化合物層12とに挟持された構成である。
 また、有機化合物層12において、導電層15が形成されている面と、反対側の面にアドミッタンス調整層21が設けられている。
 アドミッタンス調整層21は、有機化合物層12と基材11との間に設けられ、基材11上に直接形成されている。
 つまり、透明導電体20は、基材11上に、アドミッタンス調整層21、有機化合物層12、パラジウム含有層13と金属層14とからなる導電層15が、この順に積層された構成である。
[Configuration of transparent conductor]
As shown in FIG. 7, the transparent conductor 20 includes an admittance adjusting layer 21, an organic compound layer 12, and a conductive layer 15. The transparent conductor 20 is provided on the base material 11.
The conductive layer 15 includes a metal layer 14 mainly composed of silver and a palladium-containing layer 13 formed at a position adjacent to the metal layer 14. The palladium-containing layer 13 is configured to be sandwiched between the metal layer 14 and the organic compound layer 12.
In the organic compound layer 12, an admittance adjusting layer 21 is provided on the surface opposite to the surface on which the conductive layer 15 is formed.
The admittance adjusting layer 21 is provided between the organic compound layer 12 and the base material 11 and is directly formed on the base material 11.
That is, the transparent conductor 20 has a configuration in which the admittance adjusting layer 21, the organic compound layer 12, the conductive layer 15 including the palladium-containing layer 13 and the metal layer 14 are laminated on the base material 11 in this order.
 第2実施形態の透明導電体20において、有機化合物層12、導電層15、並びに、導電層15を構成するパラジウム含有層13及び金属層14は、上述の第1実施形態と同様の構成である。また、基材11も上述の第1実施形態と同様の構成を用いることができる。
 このため、基材11、有機化合物層12、及び、この上に形成される導電層15、パラジウム含有層13、金属層14の構成については、詳細な説明を省略する。
In the transparent conductor 20 of the second embodiment, the organic compound layer 12, the conductive layer 15, and the palladium-containing layer 13 and the metal layer 14 constituting the conductive layer 15 have the same configuration as in the first embodiment. . In addition, the substrate 11 can have the same configuration as that of the first embodiment.
For this reason, detailed description is abbreviate | omitted about the structure of the base material 11, the organic compound layer 12, and the conductive layer 15, the palladium containing layer 13, and the metal layer 14 which are formed on this.
[アドミッタンス調整層]
 アドミッタンス調整層21は、透明導電体20の反射率や透過率等の光学特性、特に、導電層15の反射率を調整するために設けられる層である。アドミッタンス調整層21による透明導電体20のアドミッタンス調整に関しては、後述する。
[Admittance adjustment layer]
The admittance adjustment layer 21 is a layer provided for adjusting optical characteristics such as reflectance and transmittance of the transparent conductor 20, in particular, the reflectance of the conductive layer 15. The admittance adjustment of the transparent conductor 20 by the admittance adjustment layer 21 will be described later.
 アドミッタンス調整層21は、誘電性材料又は酸化物半導体材料を含む層であることが好ましい。アドミッタンス調整層21を構成する材料は、金属酸化物又は金属硫化物であることが好ましい。金属酸化物又は金属硫化物の例には、酸化チタン(TiO:n=2.1~2.4)、酸化インジウムスズ(ITO:n=1.9~2.2)、酸化亜鉛(ZnO:n=1.9~2.0)、硫化亜鉛(ZnS:n=2.0~2.2)、酸化ニオブ(Nb:n=2.2~2.4)、酸化ジルコニウム(ZrO:n=2.0.~2.1)、酸化セリウム(CeO:n=1.9~2.2)、五酸化タンタル(Ta:n=1.9~2.2)、酸化錫(SnO:n=1.8~2.0)等が含まれ、屈折率や生産性の観点からTiO、Nbであることが好ましい。アドミッタンス調整層21には、誘電性材料又は酸化物半導体材料が1種のみ含まれてもよく、2種以上が含まれてもよい。 The admittance adjusting layer 21 is preferably a layer containing a dielectric material or an oxide semiconductor material. The material constituting the admittance adjusting layer 21 is preferably a metal oxide or a metal sulfide. Examples of metal oxides or metal sulfides include titanium oxide (TiO 2 : n = 2.1 to 2.4), indium tin oxide (ITO: n = 1.9 to 2.2), zinc oxide (ZnO : N = 1.9 to 2.0), zinc sulfide (ZnS: n = 2.0 to 2.2), niobium oxide (Nb 2 O 5 : n = 2.2 to 2.4), zirconium oxide ( ZrO 2 : n = 2.0. To 2.1), cerium oxide (CeO 2 : n = 1.9 to 2.2), tantalum pentoxide (Ta 2 O 5 : n = 1.9 to 2.2) ), Tin oxide (SnO 2 : n = 1.8 to 2.0) and the like, and TiO 2 and Nb 2 O 5 are preferable from the viewpoint of refractive index and productivity. The admittance adjusting layer 21 may include only one type of dielectric material or oxide semiconductor material, or may include two or more types.
 アドミッタンス調整層21は、有機化合物層12及び導電層15の設けられている側と反対側でアドミッタンス調整層21が接する層よりも高い屈折率を有することが好ましい。本例であれば、アドミッタンス調整層21は、透明導電体20が設けられている基材11よりも高い屈折率を有することが好ましい。 The admittance adjusting layer 21 preferably has a higher refractive index than the layer in contact with the admittance adjusting layer 21 on the side opposite to the side where the organic compound layer 12 and the conductive layer 15 are provided. In this example, the admittance adjustment layer 21 preferably has a higher refractive index than the base material 11 on which the transparent conductor 20 is provided.
 また、アドミッタンス調整層21の屈折率は、1.8以上であることが好ましく、より好ましくは2.1以上2.5以下である。後述するように、アドミッタンス調整層21の屈折率が1.8より高いと、透明導電体20の光透過性が高まりやすい。また、アドミッタンス調整層21の屈折率は、基材11の屈折率よりも、0.1~1.1以上大きいことが好ましく、0.4~1.0以上大きいことがより好ましい。アドミッタンス調整層21の屈折率は、波長510nmの光の屈折率であり、エリプソメーターで測定される。アドミッタンス調整層21の屈折率は、アドミッタンス調整層21を構成する材料や、アドミッタンス調整層21中の材料の密度等によって調整される。 Further, the refractive index of the admittance adjusting layer 21 is preferably 1.8 or more, more preferably 2.1 or more and 2.5 or less. As will be described later, when the refractive index of the admittance adjusting layer 21 is higher than 1.8, the light transmittance of the transparent conductor 20 is likely to increase. Further, the refractive index of the admittance adjusting layer 21 is preferably greater than the refractive index of the substrate 11 by 0.1 to 1.1 or more, more preferably 0.4 to 1.0 or more. The refractive index of the admittance adjusting layer 21 is a refractive index of light having a wavelength of 510 nm, and is measured by an ellipsometer. The refractive index of the admittance adjustment layer 21 is adjusted by the material constituting the admittance adjustment layer 21, the density of the material in the admittance adjustment layer 21, and the like.
 アドミッタンス調整層21の厚みは、10~150nmであることが好ましく、より好ましくは20~80nmである。アドミッタンス調整層21の厚みが10nm未満であると、透明導電体20の光透過性を十分に高めることが難しい。一方、アドミッタンス調整層21の厚みが150nmを超えると、透明導電体20の透明性(反射防止性)が高まらない。アドミッタンス調整層21の厚みは、エリプソメーターで測定される。 The thickness of the admittance adjusting layer 21 is preferably 10 to 150 nm, more preferably 20 to 80 nm. If the thickness of the admittance adjusting layer 21 is less than 10 nm, it is difficult to sufficiently enhance the light transmittance of the transparent conductor 20. On the other hand, when the thickness of the admittance adjusting layer 21 exceeds 150 nm, the transparency (antireflection property) of the transparent conductor 20 does not increase. The thickness of the admittance adjusting layer 21 is measured with an ellipsometer.
 アドミッタンス調整層21の形成には、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法を用いることができる。アドミッタンス調整層21の屈折率(密度)が高まるとの観点から、電子ビーム蒸着法又はスパッタ法を用いることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD等のアシストを備えることが好ましい。 For forming the admittance adjusting layer 21, a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like can be used. From the viewpoint of increasing the refractive index (density) of the admittance adjusting layer 21, it is preferable to use an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is preferable to provide assistance such as IAD in order to increase the film density.
[透明導電体の光学アドミッタンスについて]
 次に、透明導電体20の光学アドミッタンスについて説明する。透明導電体20のアドミッタンス調整層21は、導電層15の固有吸収と反射率を調整する機能を有する。
[Optical admittance of transparent conductor]
Next, the optical admittance of the transparent conductor 20 will be described. The admittance adjustment layer 21 of the transparent conductor 20 has a function of adjusting the intrinsic absorption and reflectance of the conductive layer 15.
 ここで、透明導電体20の表面の反射率Rは、光が入射する媒質の光学アドミッタンスyと、透明導電体20表面の等価アドミッタンスYとから定まり、これらの関係は以下の式で表される。 Here, the reflectance R of the surface of the transparent conductor 20 is determined from the optical admittance y 0 of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor 20, and these relations are expressed by the following equations. Is done.
Figure JPOXMLDOC01-appb-M000068
Figure JPOXMLDOC01-appb-M000068
 上記の式に基づけば、|y-Y|が0に近い程、反射率Rが低くなる。ここで、例えば、光が入射する媒質が空気であるとすると、空気の光学アドミッタンスyは1であることから、等価アドミッタンスYが1に近ければ近いほど、透明導電体20の反射率Rが低くなる。
 また、別の例として、透明導電体20の上に有機EL層を積層した場合、光が入射する媒質の光学アドミッタンスyは、有機EL層を構成する材料の屈折率で決まる値となる。例えば、有機EL層として、透明導電体20の上に屈折率1.8の有機材料を積層した構成の場合、光が入射する媒質の光学アドミッタンスyは1.8となる。このため、等価アドミッタンスYが1.8に近ければ近いほど、透明導電体20の反射率Rが低くなる。
Based on the above formula, the reflectance R decreases as | y 0 -Y E | is closer to 0. Here, for example, if the medium on which light is incident is air, the optical admittance y 0 of air is 1. Therefore, the closer the equivalent admittance Y E is to 1, the closer the reflectance R of the transparent conductor 20 is. Becomes lower.
As another example, when the organic EL layer is laminated on the transparent conductor 20, the optical admittance y 0 of the medium the light is incident is a value determined by the refractive index of the material constituting the organic EL layer. For example, the organic EL layer, if having a structure in which a organic material having a refractive index of 1.8 on the transparent conductor 20, the optical admittance y 0 of the medium the light is incident becomes 1.8. Therefore, as the equivalent admittance Y E is the closer to 1.8, the reflectance of the transparent conductor 20 R is lowered.
 光学アドミッタンスYは、電場強度と磁場強度との比(H/E)から求められ、通常屈折率と同一である。等価アドミッタンスYは、透明導電体20を構成する各層の光学アドミッタンスYから求められる。例えば、透明導電体20が一層からなる場合には、透明導電体20の等価アドミッタンスYは、当該層の光学アドミッタンスYと等しくなる。 The optical admittance Y is obtained from the ratio (H / E) between the electric field strength and the magnetic field strength, and is usually the same as the refractive index. The equivalent admittance Y E is obtained from the optical admittance Y of each layer constituting the transparent conductor 20. For example, when the transparent conductor 20 is composed of one layer, the equivalent admittance Y E of the transparent conductor 20 is equal to the optical admittance Y of the layer.
 一方、透明導電体20が積層体である場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され、具体的には以下の式(1)又は式(2)にて求められる。 On the other hand, when the transparent conductor 20 is a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is from the first layer to the (x−1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate and a specific matrix, and specifically obtained by the following formula (1) or formula (2). .
・x層目が誘電性材料又は酸化物半導体材料からなる層である場合 ・ When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000069
Figure JPOXMLDOC01-appb-M000069
 上記式において、δ=2πnd/λであり、y=n(x層目の膜のアドミッタンス)、dはx層目の膜の厚みである。 In the above formula, δ = 2πnd / λ, y = n (admittance of the x-th layer film), and d is the thickness of the x-th layer film.
・x層目が理想金属層である場合 ・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000070
Figure JPOXMLDOC01-appb-M000070
 上記式において、γ=2πkd/λ、dはx層目の膜の厚み、kは膜の屈折率(虚部)である。 In the above equation, γ = 2πkd / λ, d is the thickness of the x-th layer film, and k is the refractive index (imaginary part) of the film.
 そして、x層目が最表層であるときの、透明支持材から最表層までの積層物の光学アドミッタンスYx(E H)が、当該透明導電体20の等価アドミッタンスYとなる。 The optical admittance Yx (E x H x ) of the laminate from the transparent support material to the outermost layer when the x-th layer is the outermost layer becomes the equivalent admittance Y E of the transparent conductor 20.
 ここで、図8に基材11上に直接導電層15を形成した場合における、波長570nmのアドミッタンス軌跡を示す。また、図9に、基材11上にアドミッタンス調整層21と有機化合物層12を介して導電層15を形成した場合における、波長570nmのアドミッタンス軌跡を示す。 Here, FIG. 8 shows an admittance locus with a wavelength of 570 nm when the conductive layer 15 is formed directly on the substrate 11. FIG. 9 shows an admittance locus with a wavelength of 570 nm when the conductive layer 15 is formed on the substrate 11 via the admittance adjusting layer 21 and the organic compound layer 12.
 図8においては、導電層15の基材11側の界面の波長570nmの光学アドミッタンスを、Y=x+iyとする。一方、図9においては、導電層15のアドミッタンス調整層21側(有機化合物層12側)の波長570nmの光学アドミッタンスを、Y=x+iyとする。
 さらに、図8及び図9において、導電層15の上記Yと反対側の界面の波長570nmの光学アドミッタンスを、Y=x+iyとする。このYが、透明導電体20の等価アドミッタンスYに相当する。なお、上記Yと反対側の界面とは、図8においては導電層15の基材11と反対側の界面、図9においては導電層15のアドミッタンス調整層21側(有機化合物層12側)と反対側の界面である。
In FIG. 8, the optical admittance at a wavelength of 570 nm at the interface of the conductive layer 15 on the substrate 11 side is Y 1 = x 1 + iy 1 . On the other hand, in FIG. 9, the optical admittance having a wavelength of 570 nm on the admittance adjusting layer 21 side (organic compound layer 12 side) of the conductive layer 15 is Y 1 = x 1 + iy 1 .
Further, in FIGS. 8 and 9, the optical admittance at the wavelength 570 nm of the interface on the opposite side of Y 1 of the conductive layer 15 is Y 2 = x 2 + iy 2 . This Y 2 corresponds to the equivalent admittance Y E of the transparent conductor 20. The interface opposite to Y 1 is the interface opposite to the base material 11 of the conductive layer 15 in FIG. 8, and the admittance adjusting layer 21 side (organic compound layer 12 side) of the conductive layer 15 in FIG. It is the interface on the opposite side.
 また、アドミッタンス軌跡を示すグラフにおいて、横軸(Re)は、光学アドミッタンスYを、[Y=x+iy]と表わしたときの実部、つまり当該式におけるxである。また、縦軸(IM)は、光学アドミッタンスの虚部、つまり当該式におけるyである。 In the graph showing the admittance locus, the horizontal axis (Re) is the real part when the optical admittance Y is expressed as [Y = x + iy], that is, x in the equation. The vertical axis (IM) is the imaginary part of the optical admittance, that is, y in the equation.
 図8に示すアドミッタンス軌跡では、アドミッタンス軌跡の始点の座標が、基材11の導電層15側の等価アドミッタンスYであり、アドミッタンス座標(x,y)である。また、導電層15の基材11と反対側の界面の等価アドミッタンスYがアドミッタンス座標(x,y)である。 The admittance locus shown in FIG. 8, the start point coordinates of admittance locus, an equivalent admittance Y A conductive layer 15 side of the substrate 11, a admittance coordinates (x A, y A). Further, the equivalent admittance Y 2 of the interface of the base material 11 and the opposite side of the conductive layer 15 is admittance coordinates (x 2, y 2).
 図8では、基材上に直接導電層15を形成した場合を示しているため、導電層15の基材11側の等価アドミッタンスYのアドミッタンス座標(x,y)は、導電層15と基材11との界面の等価アドミッタンスYのアドミッタンス座標(x,y)に一致する。
 そして、このアドミッタンス軌跡の始点は、基材11の表面であるため、基材11側の等価アドミッタンスYが基材11の屈折率(例えば、n:1.5)に依存し、YとYのアドミッタンス座標(x,y)=(x,y)=(1.5,0)となる。
Since FIG. 8 shows the case where the conductive layer 15 is directly formed on the base material, the admittance coordinates (x 1 , y 1 ) of the equivalent admittance Y 1 on the base material 11 side of the conductive layer 15 are the conductive layer 15. And the admittance coordinates (x A , y A ) of the equivalent admittance Y A at the interface between the substrate 11 and the substrate 11.
Then, the starting-point of the admittance locus are the surface of the substrate 11, the refractive index of the substrate 11 side of the equivalent admittance Y 1 is a substrate 11 (e.g., n: 1.5) depending on the Y A Y 1 admittance coordinates (x A , y A ) = (x 1 , y 1 ) = (1.5, 0).
 図9に示すアドミッタンス軌跡では、アドミッタンス軌跡の始点の座標が、基材11とアドミッタンス調整層21との界面の等価アドミッタンスYであり、アドミッタンス座標(x,y)=(1.5,0)となる。また、アドミッタンス調整層21と有機化合物層12との界面の等価アドミッタンスYが、アドミッタンス座標(x,y)で表される。
 そして、導電層15と有機化合物層12との界面の等価アドミッタンスYが、アドミッタンス座標(x,y)で表される。導電層15のアドミッタンス調整層21と反対側の界面の等価アドミッタンスYがアドミッタンス座標(x,y)である。
The admittance locus shown in FIG. 9, the coordinates of the start point of the admittance locus is the interface between the equivalent admittance Y A of the substrate 11 and the admittance adjustment layer 21, the admittance coordinates (x A, y A) = (1.5, 0). The equivalent admittance Y B at the interface between the admittance adjusting layer 21 and the organic compound layer 12 is represented by admittance coordinates (x B , y B ).
The equivalent admittance Y 1 at the interface between the conductive layer 15 and the organic compound layer 12 is expressed by admittance coordinates (x 1 , y 1 ). The equivalent admittance Y 2 at the interface of the conductive layer 15 opposite to the admittance adjustment layer 21 is the admittance coordinates (x 2 , y 2 ).
 図9に示すアドミッタンス軌跡では、アドミッタンス調整層21を備えることにより、アドミッタンス軌跡がアドミッタンス座標(x,y)から、アドミッタンス座標(x,y)に移動する。つまり、アドミッタンス調整層21により、アドミッタンス軌跡が、横軸(実部)及び縦軸(虚部)の正方向に移動する。
 さらに、有機化合物層12を備えることにより、アドミッタンス軌跡が、アドミッタンス座標(x,y)から、導電層15のアドミッタンス座標(x,y)に移動する。このアドミッタンス座標(x,y)は、アドミッタンス調整層21側(有機化合物層12側)の導電層15の光学アドミッタンスYに相当する。
In the admittance locus shown in FIG. 9, the admittance locus is moved from the admittance coordinates (x A , y A ) to the admittance coordinates (x B , y B ) by providing the admittance adjustment layer 21. That is, the admittance locus is moved in the positive direction of the horizontal axis (real part) and the vertical axis (imaginary part) by the admittance adjustment layer 21.
Furthermore, by providing the organic compound layer 12, the admittance locus moves from the admittance coordinates (x B , y B ) to the admittance coordinates (x 1 , y 1 ) of the conductive layer 15. The admittance coordinates (x 1 , y 1 ) correspond to the optical admittance Y 1 of the conductive layer 15 on the admittance adjustment layer 21 side (organic compound layer 12 side).
 図8及び図9において、アドミッタンス軌跡の終点の座標が、透明導電体20の等価アドミッタンスYである。透明導電体20の等価アドミッタンスYのアドミッタンス座標(x,y)と、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)との距離が、透明導電体20表面の反射率Rに比例する。つまり、等価アドミッタンスYの座標(x,y)と、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)との距離が近ければ近いほど、透明導電体20の反射率Rが小さくなる。 8 and 9, the coordinates of the end point of the admittance locus are the equivalent admittance Y E of the transparent conductor 20. The distance between the admittance coordinates (x E , y E ) of the equivalent admittance Y E of the transparent conductor 20 and the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident is the transparent conductor 20 It is proportional to the reflectance R of the surface. That is, the closer the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light enters, the closer the transparent conductor 20 is. The reflectance R becomes smaller.
 上述のように、透明導電体20の等価アドミッタンスYは、導電層15のアドミッタンス調整層21と反対側の界面の等価アドミッタンスYに等しい。従って、本例では、導電層15の等価アドミッタンスYのアドミッタンス座標(x,y)と、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)との距離が近ければ近いほど、透明導電体20の反射率Rが小さくなる。 As described above, the equivalent admittance Y E of the transparent conductor 20 is equal to the equivalent admittance Y 2 of the interface of the conductive layer 15 opposite to the admittance adjustment layer 21. Therefore, in this example, the distance between the admittance coordinates (x 2 , y 2 ) of the equivalent admittance Y 2 of the conductive layer 15 and the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident is The closer it is, the smaller the reflectance R of the transparent conductor 20 is.
 例えば、光が入射する媒質が空気の場合には、空気の屈折率(n:1)から、光学アドミッタンスyのアドミッタンス座標(x,y)=(1,0)となる。また、有機EL素子のような有機層であれば、有機層の屈折率を例えばn=1.8とした場合、光学アドミッタンスyのアドミッタンス座標(x,y)=(1.8,0)となる。
 従って、導電層15の等価アドミッタンスYのアドミッタンス座標(x,y)が、光学アドミッタンスyのアドミッタンス座標(1,0)や(1.8,0)に近づくほど、透明導電体20の反射率Rが小さくなる。
For example, when the medium on which light is incident is air, the admittance coordinates (x 0 , y 0 ) = (1, 0 ) of the optical admittance y 0 are obtained from the refractive index (n: 1) of air. Further, if the organic layer such as an organic EL element, when the refractive index for example, n = 1.8 in the organic layer, admittance coordinates (x 0, y 0) of the optical admittance y 0 = (1.8, 0).
Accordingly, the closer the admittance coordinates (x 2 , y 2 ) of the equivalent admittance Y 2 of the conductive layer 15 are to the admittance coordinates (1, 0) and (1.8, 0) of the optical admittance y 0 , the transparent conductor 20 The reflectance R becomes smaller.
 また、反射率Rと、等価アドミッタンスY、及び、光が入射する媒質の光学アドミッタンスyとの関係式に基づけば、等価アドミッタンスYの座標(x,y)が、光が入射する媒質のアドミッタンス座標(x,y)より右側にあると、反射率Rが小さくなりやすい。従って、等価アドミッタンスYのx座標x、つまり、導電層15の等価アドミッタンスYのx座標xは、光が入射する媒質の光学アドミッタンスyのx座標xよりも大きいことが好ましい。 Further, based on the relational expression between the reflectance R, the equivalent admittance Y E , and the optical admittance y 0 of the medium on which light is incident, the coordinates (x E , y E ) of the equivalent admittance Y E are incident on the light. If it is on the right side of the admittance coordinates (x 0 , y 0 ) of the medium to be reflected, the reflectance R tends to be small. Thus, x-coordinate x E of the equivalent admittance Y E, that is, x-coordinate x 2 of the equivalent admittance Y 2 of the conductive layer 15 is preferably larger than the x-coordinate x 0 of the optical admittance y 0 of the medium the light is incident .
 本実施形態の透明導電体20では、導電層15の両主面の波長570nmにおける光学アドミッタンスをY、Yとする。そして、光学アドミッタンスY=x+iyとし、光学アドミッタンスY=x+iyとした場合に、x及びxのうち、少なくともいずれか一方が1.6以上である。また、好ましくはx及びxの両方が1.6以上である。つまり、図9のアドミッタンス軌跡におけるY(x,y)、及び、Y(x,y)の少なくともいずれか一方の横軸座標(x座標)が1.6以上である。その理由を以下に示す。 In the transparent conductor 20 of this embodiment, the optical admittances at the wavelength of 570 nm of both main surfaces of the conductive layer 15 are Y 1 and Y 2 . Then, when optical admittance Y 1 = x 1 + iy 1 and optical admittance Y 2 = x 2 + iy 2 , at least one of x 1 and x 2 is 1.6 or more. Preferably, both x 1 and x 2 are 1.6 or more. That is, the horizontal axis coordinate (x coordinate) of at least one of Y 1 (x 1 , y 1 ) and Y 2 (x 2 , y 2 ) in the admittance locus in FIG. 9 is 1.6 or more. The reason is as follows.
 なお、透明導電体20の導電層15が複数の層から形成されている場合には、最もアドミッタンス調整層21側(有機化合物層12側)の層の導電層15の界面の光学アドミッタンスをY=x+iyとする。そして、最もアドミッタンス調整層21(有機化合物層12側)の反対側の層の導電層15の界面の光学アドミッタンスをY=x+iyとする。
 従って、金属層14とパラジウム含有層13とからなる導電層15の場合には、アドミッタンス調整層21側のパラジウム含有層13の界面の光学アドミッタンスをY=x+iyとする。そして、アドミッタンス調整層21側(有機化合物層12側)と反対側の金属層14の界面の光学アドミッタンスをY=x+iyとする。
In the case where the conductive layer 15 of the transparent conductor 20 is formed of a plurality of layers, the optical admittance at the interface of the conductive layer 15 of the layer closest to the admittance adjustment layer 21 (organic compound layer 12 side) is Y 1. = X 1 + iy 1 The optical admittance at the interface of the conductive layer 15 on the layer opposite to the admittance adjusting layer 21 (on the organic compound layer 12 side) is Y 2 = x 2 + iy 2 .
Therefore, in the case of the conductive layer 15 including the metal layer 14 and the palladium-containing layer 13, the optical admittance at the interface of the palladium-containing layer 13 on the admittance adjusting layer 21 side is set to Y 1 = x 1 + iy 1 . The optical admittance at the interface of the metal layer 14 on the side opposite to the admittance adjusting layer 21 side (organic compound layer 12 side) is Y 2 = x 2 + iy 2 .
 導電層15を構成する金属材料は、一般的に光学アドミッタンスの虚部の値が大きく、金属材料を形成するとアドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。
 例えば、アドミッタンス調整層21を設けずに、基材11上に直接導電層15を積層すると、上述の図8に示すように、アドミッタンス軌跡が、始点(x,y)である基材11のアドミッタンス座標(1.5,0)から、縦軸(虚部)方向にある(x,y)に大きく移動する。つまり、アドミッタンス座標の虚部の絶対値|y|が非常に大きくなる。このように、アドミッタンス座標の虚部の絶対値が大きくなると、導電層15の光学アドミッタンスY(透明導電体20の等価アドミッタンスY)は、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)から遠ざかる方向に移動する。このため、導電層15の光学アドミッタンスYを、光が入射する媒質の光学アドミッタンスy、例えば、空気のアドミッタンス座標(1,0)や、有機材料のアドミッタンス座標(1.8,0)に近づけることが難しくなる。
The metal material constituting the conductive layer 15 generally has a large value of the imaginary part of the optical admittance, and when the metal material is formed, the admittance locus greatly moves in the vertical axis (imaginary part) direction.
For example, when the conductive layer 15 is laminated directly on the base material 11 without providing the admittance adjustment layer 21, the base material 11 whose admittance locus is the start point (x A , y A ) as shown in FIG. 8 described above. From the admittance coordinates (1.5, 0) to (x 2 , y 2 ) in the vertical axis (imaginary part) direction. That is, the absolute value | y 2 | of the imaginary part of the admittance coordinates becomes very large. Thus, when the absolute value of the imaginary part of the admittance coordinate increases, the optical admittance Y 2 of the conductive layer 15 (equivalent admittance Y E of the transparent conductor 20) becomes the admittance coordinate of the optical admittance y 0 of the medium on which the light is incident. Move away from (x 0 , y 0 ). For this reason, the optical admittance Y 2 of the conductive layer 15 is changed to the optical admittance y 0 of the medium on which light is incident, for example, the admittance coordinates (1, 0) of air or the admittance coordinates (1.8, 0) of organic material. It becomes difficult to get closer.
 また、導電層15の基材11側の界面のアドミッタンスYである、アドミッタンス軌跡の始点(x,y)が、基材11のアドミッタンス座標(1.5,0)から殆ど移動しない場合には、アドミッタンス軌跡がグラフの横軸を中心に線対称になり難い。このように、アドミッタンス軌跡が、横軸を中心に線対称にならないと、他の波長(570nm以外)においても、アドミッタンス軌跡がぶれやすく、等価アドミッタンスYの座標が一定になりにくい。このため、反射防止効果が十分でない波長領域が生じやすい。 Further, the start point (x 1 , y 1 ) of the admittance locus, which is the admittance Y 1 of the interface on the base material 11 side of the conductive layer 15, hardly moves from the admittance coordinates (1.5, 0) of the base material 11. It is difficult for the admittance trajectory to be symmetric about the horizontal axis of the graph. Thus, admittance locus and not about the horizontal axis line symmetry, in other wavelengths (other than 570 nm), admittance locus liable shake, the coordinates of the equivalent admittance Y E is less likely to be constant. For this reason, a wavelength region in which the antireflection effect is not sufficient tends to occur.
 これに対し、図9に示す、基材11/アドミッタンス調整層21/有機化合物層12/導電層15をこの順に備える透明導電体20の波長570nmのアドミッタンス軌跡では、アドミッタンス調整層21により、導電層15のアドミッタンスYのアドミッタンス座標(x,y)が、アドミッタンス軌跡の始点(x,y)である基材11のアドミッタンス座標(1.5,0)から横軸(実部)及び縦軸(虚部)の正方向に大きく移動する。
 特に、Yの実部の座標xを1.6以上とすると、アドミッタンス軌跡の円弧が大きくなり、導電層15のアドミッタンスYのアドミッタンス座標(x,y)が、アドミッタンス軌跡の始点(x,y)から、虚部(縦軸)の正方向に大きく移動する。
On the other hand, in the admittance locus of wavelength 570 nm of the transparent conductor 20 provided with the base material 11 / the admittance adjusting layer 21 / the organic compound layer 12 / the conductive layer 15 in this order shown in FIG. The horizontal axis (real part) from the admittance coordinates (1.5, 0) of the base material 11 where the admittance coordinates (x 1 , y 1 ) of 15 admittances Y 1 are the start points (x A , y A ) of the admittance locus And it moves largely in the positive direction of the vertical axis (imaginary part).
In particular, when the coordinates x 1 of the real part of Y 1 and 1.6 or more, the arc of the admittance locus increases, the admittance coordinates of admittance Y 1 of the conductive layer 15 (x 1, y 1) is the starting point of the admittance locus It greatly moves from (x A , y A ) in the positive direction of the imaginary part (vertical axis).
 つまり、導電層15によって、アドミッタンス軌跡が虚部の負方向に大きく移動しても、Yの虚部の絶対値|y|が大きくなり難い。さらに、導電層15のアドミッタンス軌跡がグラフの横軸を中心に線対称になりやすい。このため、他の波長(570nm以外)においても、アドミッタンス軌跡がグラフの横軸を中心に線対称となりやすく、各波長の等価アドミッタンスYの座標がほぼ同一になる。つまり、いずれの波長においても、等価アドミッタンスYの値が、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)に近づきやすくなる。これはいずれの波長においても、十分な反射防止効果が得られることを示す。 That is, even if the admittance locus is largely moved in the negative direction of the imaginary part by the conductive layer 15, the absolute value | y 2 | of the imaginary part of Y 2 is difficult to increase. Furthermore, the admittance locus of the conductive layer 15 tends to be line symmetric about the horizontal axis of the graph. Therefore, in other wavelengths (other than 570 nm), admittance locus tends linear symmetry around the horizontal axis of the graph, the coordinates of the equivalent admittance Y E of each wavelength is approximately the same. That is, at any wavelength, the value of the equivalent admittance Y E tends to approach the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident. This indicates that a sufficient antireflection effect can be obtained at any wavelength.
 導電層15に金属材料を用いる場合は、導電層15において発生する光吸収には、2つの起源が考えられる。1つは金属材料本来の吸収であり、もう1つは導電層15の構造に起因するプラズモン吸収である。導電層15のアドミッタンスを高く保つことで金属材料本来の吸収を最小化することができる。
 ここで、各層界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。
When a metal material is used for the conductive layer 15, two sources can be considered for light absorption generated in the conductive layer 15. One is absorption inherent in the metal material, and the other is plasmon absorption resulting from the structure of the conductive layer 15. By keeping the admittance of the conductive layer 15 high, the inherent absorption of the metal material can be minimized.
Here, the following relational expression holds between the admittance Y at the interface of each layer and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000071
Figure JPOXMLDOC01-appb-M000071
 上記関係式に基づけば、アドミッタンスYが大きくなれば電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。従って、アドミッタンス調整層21により、導電層15のアドミッタンスYの実部の座標xを1.6以上となるように調整すると、導電層15のアドミッタンスYが大きくなり、導電層15による光の吸収が少なくなる。 Based on the above relational expression, as the admittance Y increases, the electric field strength E decreases and the electric field loss (absorption of light) is suppressed. Therefore, the admittance adjustment layer 21, adjusting the coordinates x 1 of the real part of the admittance Y 1 of the conductive layer 15 such that 1.6 or more, admittance Y 1 of the conductive layer 15 is increased, the light by the conductive layer 15 Less absorption.
 また、アドミッタンス調整層21により、導電層15のアドミッタンスYの実部の座標xを1.6以上に調整した場合にも、導電層15のアドミッタンスYが大きくなり、導電層15による光の吸収が少なくなる。また、導電層15のアドミッタンス軌跡がグラフの横軸を中心に線対称になりやすく、導電層15の電場が小さくなるため、導電層15による光の吸収が抑制される。 Further, the admittance adjustment layer 21, the real part coordinate x 2 of the admittance Y 2 of the conductive layer 15 when adjusted to 1.6 or more even, admittance Y 2 of the conductive layer 15 is increased, the light by the conductive layer 15 Less absorption. Further, the admittance locus of the conductive layer 15 is likely to be line symmetric about the horizontal axis of the graph, and the electric field of the conductive layer 15 becomes small, so that light absorption by the conductive layer 15 is suppressed.
 上述のように、x及びxは、少なくともどちらかが1.6以上7.0以下であることが好ましい。より好ましくは、x及びxが共に1.6以上7.0以下である。さらに好ましくは、x及び/又はxが、1.8以上5.5以下、さらに1.9以上3.0以下であることが好ましい。 As described above, at least one of x 1 and x 2 is preferably 1.6 or more and 7.0 or less. More preferably, x 1 and x 2 is both 1.6 to 7.0. More preferably, x 1 and / or x 2 is 1.8 to 5.5, further is preferably 1.9 to 3.0.
 また、x及びxのうち、特にxが1.6以上であることが好ましい。xは、アドミッタンス調整層21の屈折率や、アドミッタンス調整層21の厚み等によって調整される。この場合、xは1.3以上5.5以下であることが好ましく、さらに好ましくは1.5以上3.5以下である。xは、導電層15を構成する材料の屈折率や、導電層15の厚み等によって調整される。 Also, among the x 1 and x 2, it is preferably in particular x 1 is 1.6 or more. x 1 is adjusted by the refractive index of the admittance adjusting layer 21, the thickness of the admittance adjusting layer 21, and the like. In this case, it is preferable that x 2 is 1.3 to 5.5, further preferably 1.5 to 3.5. x 2 is the refractive index and the material of the conductive layer 15 is adjusted by the thickness and the like of the conductive layer 15.
 ここで、xとxとの差の絶対値|x-x|は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。また特に、導電層15のアドミッタンス軌跡と横軸との交点の座標Ycross(xcross,0)とした場合に|x-x|/xcrossが0.5より小さいことが好ましく、より好ましくは0.3以下であり、さらに好ましくは0.2以下である。 Here, the absolute value | x 1 −x 2 | of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there. Further, in particular, | x 1 −x 2 | / x cross is preferably smaller than 0.5, more preferably, when the coordinate Ycross (x cross , 0) of the intersection point between the admittance locus of the conductive layer 15 and the horizontal axis is used. Is 0.3 or less, more preferably 0.2 or less.
 また、アドミッタンス軌跡をグラフの横軸を中心に線対称とするため、上記Yの虚部の座標yと、Yの虚部の座標yが、y×y<0を満たすことが好ましい。 Moreover, since the center line of symmetry of the horizontal axis of the graph of admittance locus, a coordinate y 1 of the imaginary part of the Y 1, the coordinate y 2 of the imaginary part of Y 2, satisfy y 1 × y 2 <0 It is preferable.
 また、さらに、等価アドミッタンスYの座標(x,y)と、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)との距離(|x-x|+|y-y|)は、0.9以下であることが好ましく、より好ましくは0.6以下、さらに好ましくは0.3以下である。 Furthermore, the distance (| x E −x 0 |) between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (x 0 , y 0 ) of the optical admittance y 0 of the medium on which light is incident. + | Y E −y 0 |) is preferably 0.9 or less, more preferably 0.6 or less, and still more preferably 0.3 or less.
[透明導電体の効果]
 以上のように構成された透明導電体20は、パラジウム含有層13に隣接させて金属層14が形成された、導電層15を設けた構成である。さらに、このパラジウム含有層13と金属層14とからなる導電層15が、有機化合物層12に接して設けられている。これにより、パラジウム含有層13に隣接させて金属層14を形成する際には、金属層14を構成するAg原子とパラジウム含有層13を構成するPdとの相互作用により、Ag原子のパラジウム含有層13表面での拡散距離が減少し、金属材料の凝集が抑えられる。同時に、有機化合物層12とPd原子との相互作用、有機化合物層12とAg原子との相互作用により、パラジウム及び金属材料の凝集が抑えられる。
 このため、一般的には核成長型(Volumer-Weber:VW型)での成長により島状に孤立し易い金属層14が、単層成長型(Frank-van der Merwe:FM型)の成長によって形成されるようになる。従って、薄いながらも、均一な厚さの導電層15が得られるようになる。
[Effect of transparent conductor]
The transparent conductor 20 configured as described above has a configuration in which a conductive layer 15 in which a metal layer 14 is formed adjacent to the palladium-containing layer 13 is provided. Further, a conductive layer 15 composed of the palladium-containing layer 13 and the metal layer 14 is provided in contact with the organic compound layer 12. Thereby, when the metal layer 14 is formed adjacent to the palladium-containing layer 13, the palladium-containing layer of Ag atoms is formed by the interaction between the Ag atoms constituting the metal layer 14 and Pd constituting the palladium-containing layer 13. The diffusion distance on the surface 13 is reduced, and aggregation of the metal material is suppressed. At the same time, aggregation of palladium and the metal material is suppressed by the interaction between the organic compound layer 12 and Pd atoms and the interaction between the organic compound layer 12 and Ag atoms.
Therefore, in general, the metal layer 14 that is likely to be isolated in an island shape due to the growth of the nuclear growth type (Volumer-Weber: VW type) is caused by the growth of the single layer growth type (Frank-van der Merwe: FM type). Will be formed. Therefore, the thin conductive layer 15 having a uniform thickness can be obtained.
 さらに、透明導電体20は、導電層15の界面の光学アドミッタンスYの実部x、光学アドミッタンスYの実部xが、アドミッタンス調整層21により、1.6以上となるように調整されている。このように、アドミッタンス調整層21により、導電層15の界面のアドミッタンスを調整することにより、透明導電体20の反射を抑制することができ、光透過性を向上させることができる。 Further, the transparent conductor 20, the real part x 1 at the interface of the optical admittance Y 1 of the conductive layer 15, the real part x 2 optical admittance Y 2 is the admittance adjustment layer 21, adjusted to be 1.6 or more Has been. Thus, by adjusting the admittance at the interface of the conductive layer 15 with the admittance adjusting layer 21, reflection of the transparent conductor 20 can be suppressed, and light transmittance can be improved.
 以上の結果、光透過性を確保しつつ、導電性が確保された透明導電体20を得ることができる。このため、透明導電体20において、導電性の向上と、光透過性の向上との両立を図ることが可能になる。 As a result of the above, it is possible to obtain the transparent conductor 20 in which conductivity is ensured while ensuring light transmittance. For this reason, in the transparent conductor 20, it becomes possible to aim at coexistence with the improvement of electroconductivity, and the improvement of light transmittance.
〈3.透明導電体(第3実施形態)〉
 次に、本発明の第3実施形態について説明する。図10に、第3実施形態の透明導電体の概略構成図(断面図)を示す。図10に示すように、第3実施形態の透明導電体30は、アドミッタンス調整層21として、第1アドミッタンス調整層31と第2アドミッタンス調整層32とを備えることのみが、図1に示す第1実施形態の透明導電体10と異なる。以下、第1実施形態と同様の構成要素についての重複する詳細な説明は省略し、第3実施形態の透明導電体30の構成を説明する。
<3. Transparent Conductor (Third Embodiment)>
Next, a third embodiment of the present invention will be described. In FIG. 10, the schematic block diagram (sectional drawing) of the transparent conductor of 3rd Embodiment is shown. As shown in FIG. 10, the transparent conductor 30 of the third embodiment only includes a first admittance adjustment layer 31 and a second admittance adjustment layer 32 as the admittance adjustment layer 21. Different from the transparent conductor 10 of the embodiment. Hereinafter, the detailed description which overlaps about the component similar to 1st Embodiment is abbreviate | omitted, and demonstrates the structure of the transparent conductor 30 of 3rd Embodiment.
[透明導電体の構成]
 図10に示すように、透明導電体30は、アドミッタンス調整層21として第1アドミッタンス調整層31と第2アドミッタンス調整層32とを備え、さらに、有機化合物層12と導電層15とを備える構成である。
 有機化合物層12は、導電層15を構成するパラジウム含有層13と隣接する位置で、アドミッタンス調整層21と導電層15との間に挟持されている。導電層15は、金属層14と、金属層14に隣接する位置に形成されたパラジウム含有層13とからなる。つまり、導電層15において、パラジウム含有層13が、金属層14と有機化合物層12との間に挟まれた構成である。
[Configuration of transparent conductor]
As shown in FIG. 10, the transparent conductor 30 includes a first admittance adjustment layer 31 and a second admittance adjustment layer 32 as the admittance adjustment layer 21, and further includes an organic compound layer 12 and a conductive layer 15. is there.
The organic compound layer 12 is sandwiched between the admittance adjusting layer 21 and the conductive layer 15 at a position adjacent to the palladium-containing layer 13 constituting the conductive layer 15. The conductive layer 15 includes a metal layer 14 and a palladium-containing layer 13 formed at a position adjacent to the metal layer 14. That is, in the conductive layer 15, the palladium-containing layer 13 is sandwiched between the metal layer 14 and the organic compound layer 12.
 上述のように、図10に示す透明導電体30は、第2アドミッタンス調整層32、第1アドミッタンス調整層31、有機化合物層12、及び、導電層15からなる透明導電体30が、基材11上に形成されている。
 つまり、透明導電体30は、基材11上に、第2アドミッタンス調整層32、第1アドミッタンス調整層31、有機化合物層12、パラジウム含有層13、及び、金属層14がこの順に積層された構成である。
As described above, the transparent conductor 30 shown in FIG. 10 includes the second admittance adjusting layer 32, the first admittance adjusting layer 31, the organic compound layer 12, and the conductive layer 15. Formed on top.
That is, the transparent conductor 30 has a configuration in which the second admittance adjustment layer 32, the first admittance adjustment layer 31, the organic compound layer 12, the palladium-containing layer 13, and the metal layer 14 are laminated on the base material 11 in this order. It is.
 第3実施形態の透明導電体30において、有機化合物層12、並びに、導電層15を構成するパラジウム含有層13及び金属層14は、上述の第1実施形態と同様の構成である。また、第1アドミッタンス調整層31は、上述の第2実施形態の透明導電体のアドミッタンス調整層と同様の構成とすることができる。このため、第1アドミッタンス調整層31、及び、この上に形成される有機化合物層12、導電層15のパラジウム含有層13及び金属層14の構成については、詳細な説明を省略する。 In the transparent conductor 30 of the third embodiment, the organic compound layer 12 and the palladium-containing layer 13 and the metal layer 14 constituting the conductive layer 15 have the same configuration as in the first embodiment. The first admittance adjustment layer 31 can have the same configuration as the admittance adjustment layer of the transparent conductor according to the second embodiment described above. For this reason, detailed description is abbreviate | omitted about the structure of the 1st admittance adjustment layer 31, the organic compound layer 12 formed on this, the palladium containing layer 13 of the conductive layer 15, and the metal layer 14. FIG.
[第2アドミッタンス調整層]
 第2アドミッタンス調整層32は、アドミッタンス調整層21を構成する2層のうち、導電層15が形成されない側に設けられた層である。つまり、アドミッタンス調整層21では、導電層15が形成されている側に第1アドミッタンス調整層31が設けられ、導電層15が形成されている側と反対側に第2アドミッタンス調整層32が設けられている。
[Second admittance adjustment layer]
The second admittance adjustment layer 32 is a layer provided on the side where the conductive layer 15 is not formed, of the two layers constituting the admittance adjustment layer 21. That is, in the admittance adjustment layer 21, the first admittance adjustment layer 31 is provided on the side where the conductive layer 15 is formed, and the second admittance adjustment layer 32 is provided on the side opposite to the side where the conductive layer 15 is formed. ing.
 第2アドミッタンス調整層32は、第1アドミッタンス調整層31よりも低い屈折率を有す層である。特に、第2アドミッタンス調整層32は、第1アドミッタンス調整層31よりも、特に波長550nmにおける屈折率が0.2以上低いことが好ましい。この第2アドミッタンス調整層32としては、例えば、低い屈折率と、光透過性とを有する材料で構成される。例えば、フッ化マグネシウム(MgF:n=1.37)、フッ化リチウム(LiF:n=1.39)、フッ化カルシウム(CaF:n=1.43)、フッ化アルミニウム(AlF:n=1.38)等が用いられる。例えば、一般的に光学フィルムに用いられる低屈折率材料が好ましく用いられる。また、Poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate):n=1.38、Poly(2,2,3,3,4,4,4-heptafluorobutyl acrylate):n=1.38、Poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate):n=1.38、Poly(2,2,3,3,3-pentafluoropropyl acrylate):n=1.39、Poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate):n=1.39、Poly(2,2,3,4,4,4-hexafluorobutyl acrylate):n=1.39、Poly(2,2,3,3,3-pentafluoropropyl methacrylate):n=1.40、Poly(2,2,2-trifluoroethyl acrylate):n=1.41、Poly(2,2,3,3-tetrafluoropropyl acrylate):n=1.42、Poly(2,2,3,3-tetrafluoropropyl methacrylate):n=1.42、Poly(2,2,2-trifluoroethyl methacrylate):n=1.42等のポリマー材料などが用いられる。 The second admittance adjustment layer 32 is a layer having a lower refractive index than the first admittance adjustment layer 31. In particular, the second admittance adjustment layer 32 preferably has a refractive index lower than that of the first admittance adjustment layer 31 by 0.2 or more at a wavelength of 550 nm. The second admittance adjusting layer 32 is made of, for example, a material having a low refractive index and light transmittance. For example, magnesium fluoride (MgF 2 : n = 1.37), lithium fluoride (LiF: n = 1.39), calcium fluoride (CaF 2 : n = 1.43), aluminum fluoride (AlF 3 : n = 1.38) or the like is used. For example, a low refractive index material generally used for an optical film is preferably used. Poly (1,1,1,3,3,3-hexafluoroisopropyl acrylate): n = 1.38, Poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate): n = 1. 38, Poly (2,2,3,3,4,4,4-heptafluorobutyl methacrylate): n = 1.38, Poly (2,2,3,3,3-pentafluoropropyl acrylate): n = 1.39 Poly (1,1,1,3,3,3-hexafluoroisopropyl methacrylate): n = 1.39, Poly (2,2,3,4,4,4-hexafluorobutyl acrylate): n = 1.39, Poly ( 2,2,3,3,3-pentafluoropropyl methacrylate): n = 1.40, Poly (2,2,2-trifluoroethyl acrylate): n = 1.41, Poly (2,2,3,3-tetrafluoropropyl acrylate) ): Polymer material such as n = 1.42, Poly (2,2,3,3-tetrafluoropropyl methacrylate): n = 1.42, Poly (2,2,2-trifluoroethyl methacrylate): n = 1.42, etc. Is used.
 第2アドミッタンス調整層32の厚みは、40~200nmであることが好ましく、より好ましくは50~180nmである。第2アドミッタンス調整層32の厚みが40nm未満又は200nmを超えると、透明導電体30の光透過性を十分に高めることが難しい。アドミッタンス調整層21の厚みは、エリプソメーターで測定される。 The thickness of the second admittance adjusting layer 32 is preferably 40 to 200 nm, and more preferably 50 to 180 nm. If the thickness of the second admittance adjusting layer 32 is less than 40 nm or exceeds 200 nm, it is difficult to sufficiently increase the light transmittance of the transparent conductor 30. The thickness of the admittance adjusting layer 21 is measured with an ellipsometer.
[透明導電体の光学アドミッタンスについて]
 次に、透明導電体30の光学アドミッタンスについて説明する。
 図11に、透明導電体30の波長570nmのアドミッタンス軌跡を示す。
[Optical admittance of transparent conductor]
Next, the optical admittance of the transparent conductor 30 will be described.
FIG. 11 shows an admittance locus of the transparent conductor 30 at a wavelength of 570 nm.
 導電層15の第1アドミッタンス調整層31側(有機化合物層12側)の界面の波長570nmの光学アドミッタンスをY=x+iyとし、導電層15の第1アドミッタンス調整層31と反対側の界面の波長570nmの光学アドミッタンスをY=x+iyとする。
 導電層15の光学アドミッタンスYのアドミッタンス座標(x,y)が、透明導電体30の等価アドミッタンスYに相当する。
The optical admittance at a wavelength of 570 nm at the interface of the conductive layer 15 on the first admittance adjusting layer 31 side (organic compound layer 12 side) is Y 1 = x 1 + iy 1 , and the conductive layer 15 is opposite to the first admittance adjusting layer 31. Let Y 2 = x 2 + iy 2 be the optical admittance at a wavelength of 570 nm at the interface.
The admittance coordinates (x 2 , y 2 ) of the optical admittance Y 2 of the conductive layer 15 correspond to the equivalent admittance Y E of the transparent conductor 30.
 図11に示すアドミッタンス軌跡では、アドミッタンス軌跡の始点の座標が、基材11の導電層15側の等価アドミッタンスYであり、アドミッタンス座標(x,y)である。
 そして、透明導電体30では、第1アドミッタンス調整層31よりも屈折率の低い第2アドミッタンス調整層32を備えることにより、アドミッタンス軌跡がアドミッタンス座標(x,y)から、アドミッタンス座標(x,y)に移動する。アドミッタンス座標(x,y)は、アドミッタンス座標(x,y)から縦軸(虚部)及び横軸(実部)の負方向移動した後、縦軸(虚部)の正方向且つ横軸(実部)の負方向、縦縦軸(虚部)の正方向且つ横軸(実部)の正方向、及び、縦軸(虚部)の負方向且つ横軸(実部)の正方向に円を描くように移動する。
 アドミッタンス座標(x,y)は、第1アドミッタンス調整層31と第2アドミッタンス調整層32との界面の光学アドミッタンスに相当する。
The admittance locus shown in FIG. 11, the start point coordinates of admittance locus, an equivalent admittance Y A conductive layer 15 side of the substrate 11, a admittance coordinates (x A, y A).
The transparent conductor 30 includes the second admittance adjustment layer 32 having a refractive index lower than that of the first admittance adjustment layer 31, so that the admittance locus is changed from the admittance coordinates (x A , y A ) to the admittance coordinates (x B , Y B ). The admittance coordinates (x B , y B ) move from the admittance coordinates (x A , y A ) in the negative direction of the vertical axis (imaginary part) and the horizontal axis (real part), and then the positive direction of the vertical axis (imaginary part) And the negative direction of the horizontal axis (real part), the positive direction of the vertical vertical axis (imaginary part) and the positive direction of the horizontal axis (real part), and the negative direction of the vertical axis (imaginary part) and the horizontal axis (real part) Move to draw a circle in the positive direction.
The admittance coordinates (x B , y B ) correspond to the optical admittance at the interface between the first admittance adjustment layer 31 and the second admittance adjustment layer 32.
 さらに、図11に示すように、第1アドミッタンス調整層31を備えることにより、アドミッタンス軌跡がアドミッタンス座標(x,y)から、アドミッタンス座標(x,y)に移動する。つまり、第1アドミッタンス調整層31により、アドミッタンス軌跡が、横軸(実部)及び縦軸(虚部)の正方向に移動する。
 さらに、有機化合物層12を備えることにより、アドミッタンス軌跡が、アドミッタンス座標(x,y)から、導電層15のアドミッタンス座標(x,y)に移動する。
Furthermore, as shown in FIG. 11, by providing the first admittance adjustment layer 31, the admittance locus moves from the admittance coordinates (x B , y B ) to the admittance coordinates (x C , y C ). That is, the first admittance adjustment layer 31 moves the admittance locus in the positive direction of the horizontal axis (real part) and the vertical axis (imaginary part).
Further, by providing the organic compound layer 12, the admittance locus moves from the admittance coordinates (x C , y C ) to the admittance coordinates (x 1 , y 1 ) of the conductive layer 15.
 このように、第1アドミッタンス調整層31、及び、第2アドミッタンス調整層32を備えることにより、Yの実部の座標xが1.6以上となるように、透明導電体30のアドミッタンス軌跡を調整することができる。また、導電層15のアドミッタンス軌跡をグラフの横軸を中心に線対称に近付けることができる。
 第1アドミッタンス調整層31による透明導電体30への作用は、上述第2実施形態で説明した透明導電体へのアドミッタンス調整層の作用と同様である。
Thus, the first admittance adjusting layer 31, and, by providing the second admittance adjusting layer 32, so that the coordinates x 1 of the real part of Y 1 is 1.6 or more, the transparent conductor 30 admittance locus Can be adjusted. Further, the admittance locus of the conductive layer 15 can be brought close to line symmetry about the horizontal axis of the graph.
The action of the first admittance adjusting layer 31 on the transparent conductor 30 is the same as the action of the admittance adjusting layer on the transparent conductor described in the second embodiment.
 上述のように、屈折率の低い第2アドミッタンス調整層32を備えることにより、アドミッタンス軌跡を、任意の軌跡に調整することができる。このため、第2アドミッタンス調整層32を備えない上述の第2実施形態の場合に比べて、導電層15の光学アドミッタンスYのアドミッタンス座標(x,y)、及び、光学アドミッタンスYのアドミッタンス座標(x,y)の調整を、容易に行うことができる。
 この結果、導電層15の光学アドミッタンスYを、光が入射する媒質の光学アドミッタンスy、例えば、空気のアドミッタンス座標(1,0)や、有機材料のアドミッタンス座標(1.8,0)等の任意の座標位置に近づけることが容易になる。
As described above, the admittance locus can be adjusted to an arbitrary locus by including the second admittance adjustment layer 32 having a low refractive index. For this reason, compared with the case of the second embodiment described above that does not include the second admittance adjusting layer 32, the admittance coordinates (x 1 , y 1 ) of the optical admittance Y 1 of the conductive layer 15 and the optical admittance Y 2 Adjustment of the admittance coordinates (x 2 , y 2 ) can be easily performed.
As a result, the optical admittance Y 2 of the conductive layer 15 is changed to the optical admittance y 0 of the medium on which light is incident, for example, the admittance coordinate (1, 0) of air, the admittance coordinate (1.8, 0) of organic material, etc. It is easy to approach the arbitrary coordinate position.
 従って、等価アドミッタンスYの値が、光が入射する媒質の光学アドミッタンスyのアドミッタンス座標(x,y)に近づきやすくなり、透明導電体30の反射率を低下させ、光透過性を向上させることができる。また、導電層15のアドミッタンスを高く保つことで金属材料本来の吸収を最小化することができる。 Therefore, the value of the equivalent admittance Y E is, light is easily accessible to the admittance coordinates of the optical admittance y 0 of the medium which enters (x 0, y 0), to reduce the reflectivity of the transparent conductor 30, the light permeability Can be improved. Further, the original absorption of the metal material can be minimized by keeping the admittance of the conductive layer 15 high.
 上述のように、アドミッタンス調整層21を複数層で形成する場合には、アドミッタンス調整層21を構成する材料や厚さを適宜組み合わせることにより、設計自由度が向上する。このため、アドミッタンス調整層を単層で形成する場合に比べて、導電層15の光学アドミッタンスY及びYの調整が容易になり、また、光学アドミッタンスY及びYを最適化できる範囲が広がる。
 従って、アドミッタンス調整層21を、第1アドミッタンス調整層31と第2アドミッタンス調整層32のように複数の層から構成することで、透明導電体30の光透過性を向上させることができる。
As described above, when the admittance adjustment layer 21 is formed of a plurality of layers, the degree of freedom in design is improved by appropriately combining the materials and thicknesses constituting the admittance adjustment layer 21. For this reason, compared with the case where the admittance adjusting layer is formed as a single layer, the optical admittances Y 1 and Y 2 of the conductive layer 15 can be easily adjusted, and there is a range in which the optical admittances Y 1 and Y 2 can be optimized. spread.
Therefore, the light transmittance of the transparent conductor 30 can be improved by forming the admittance adjustment layer 21 from a plurality of layers like the first admittance adjustment layer 31 and the second admittance adjustment layer 32.
〈4.有機電界発光素子(第4実施形態)〉
 次に、本発明の第4実施形態について説明する。第4実施形態は、電子デバイスの一例として、上述の第3実施形態の透明導電体を用いたボトムエミッション型の有機電界発光素子について説明する。図12に、本実施形態の有機電界発光素子の断面構成図を示す。以下にこの図に基づいて有機電界発光素子の構成を説明する。
<4. Organic Electroluminescent Device (Fourth Embodiment)>
Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, as an example of an electronic device, a bottom emission type organic electroluminescent element using the transparent conductor of the above-described third embodiment will be described. FIG. 12 is a cross-sectional configuration diagram of the organic electroluminescent element of this embodiment. The configuration of the organic electroluminescent element will be described below based on this figure.
[有機電界発光素子の構成]
 図12に示す有機電界発光素子40は、透明基板である基材11上に設けられており、基材11側から順に、アノードとなる透明導電体30、発光機能層46、及びカソードとなる対向電極47が積層されている。このうち、透明導電体30として、上述の第3実施形態の透明導電体30が用いられている。このため有機電界発光素子40は、発生させた光(以下、発光光hと記す)を、少なくとも基材11側から取り出すボトムエミッション型として構成されている。
[Configuration of organic electroluminescent element]
The organic electroluminescent element 40 shown in FIG. 12 is provided on the base material 11 which is a transparent substrate, and in order from the base material 11 side, the transparent conductor 30 serving as an anode, the light emitting functional layer 46, and a counter electrode serving as a cathode. An electrode 47 is laminated. Among these, the transparent conductor 30 of the above-described third embodiment is used as the transparent conductor 30. For this reason, the organic electroluminescent element 40 is configured as a bottom emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the substrate 11 side.
 また、有機電界発光素子40の全体的な層構造は、上記に限定されることはなく、一般的な層構造であってもよい。ここでは、透明導電体30がアノード(すなわち陽極)側に配置され、主に導電層15の金属層14がアノードとして機能する一方、対向電極47がカソード(すなわち陰極)として機能する。 Further, the overall layer structure of the organic electroluminescent element 40 is not limited to the above, and may be a general layer structure. Here, the transparent conductor 30 is disposed on the anode (ie, anode) side, and the metal layer 14 of the conductive layer 15 mainly functions as an anode, while the counter electrode 47 functions as a cathode (ie, cathode).
 この場合、例えば発光機能層46は、アノードである透明導電体30の上部に[正孔注入層46a/正孔輸送層46b/発光層46c/電子輸送層46d/電子注入層46e]をこの順に積層した構成を例示できるが、このうち少なくとも有機材料を用いて構成された発光層46cを有する。正孔注入層46a及び正孔輸送層46bは、正孔輸送性と正孔注入性とを有する正孔輸送/注入層として設けられてもよい。電子輸送層46d及び電子注入層46eは、電子輸送性と電子注入性とを有する単一層として設けられてもよい。また、これらの発光機能層46のうち、例えば電子注入層46eは無機材料で構成されていてもよい。 In this case, for example, the light emitting functional layer 46 includes [hole injection layer 46a / hole transport layer 46b / light emission layer 46c / electron transport layer 46d / electron injection layer 46e] in this order on the transparent conductor 30 serving as the anode. A stacked structure can be exemplified, and at least the light emitting layer 46c is formed using an organic material. The hole injection layer 46a and the hole transport layer 46b may be provided as a hole transport / injection layer having a hole transport property and a hole injection property. The electron transport layer 46d and the electron injection layer 46e may be provided as a single layer having electron transport properties and electron injection properties. Of these light emitting functional layers 46, for example, the electron injection layer 46e may be made of an inorganic material.
 また、発光機能層46は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてもよい。さらに、発光層46cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させて発光層ユニットとして形成されていてもよい。中間層は、正孔阻止層、電子阻止層として機能してもよい。さらにカソードである対向電極47も、必要に応じた積層構造であってもよい。このような構成において、透明導電体30と対向電極47とで発光機能層46が挟持されている部分のみが、有機電界発光素子40における発光領域となる。 Further, in addition to these layers, the light-emitting functional layer 46 may be laminated with a hole blocking layer, an electron blocking layer, or the like as necessary. Further, the light emitting layer 46c has each color light emitting layer for generating light emission in each wavelength region, and each of these color light emitting layers is laminated through a non-light emitting intermediate layer to form a light emitting layer unit. Also good. The intermediate layer may function as a hole blocking layer and an electron blocking layer. Further, the counter electrode 47 as a cathode may also have a laminated structure as required. In such a configuration, only a portion where the light emitting functional layer 46 is sandwiched between the transparent conductor 30 and the counter electrode 47 becomes a light emitting region in the organic electroluminescent element 40.
 また、以上のような層構成においては、透明導電体30の低抵抗化を図ることを目的とし、透明導電体30の導電層15に接して補助電極が設けられていてもよい。 Further, in the layer configuration as described above, an auxiliary electrode may be provided in contact with the conductive layer 15 of the transparent conductor 30 for the purpose of reducing the resistance of the transparent conductor 30.
 以下、上述した有機電界発光素子40を構成するための主要各層の詳細を、基材11、透明導電体30、対向電極47、発光機能層46の発光層46c、発光機能層46の他の層、及び補助電極の順に説明する。その後、有機電界発光素子40の作製方法を説明する。 Hereinafter, the details of the main layers for constituting the organic electroluminescent element 40 described above are as follows: the base material 11, the transparent conductor 30, the counter electrode 47, the light emitting layer 46 c of the light emitting functional layer 46, and other layers of the light emitting functional layer 46. And the auxiliary electrode will be described in this order. Then, the manufacturing method of the organic electroluminescent element 40 is demonstrated.
[基材]
 基材11は、上述の図1に示す第1実施形態の透明導電体30が設けられる基材のうち、光透過性を有する透明な材料が用いられる。
[Base material]
The base material 11 is made of a transparent material having optical transparency among the base materials on which the transparent conductor 30 of the first embodiment shown in FIG. 1 is provided.
[透明導電体(アノード側)]
 透明導電体30は、上述の第3実施形態の透明導電体30であり、基材11側から、第2アドミッタンス調整層32、第1アドミッタンス調整層31、有機化合物層12、及び、導電層15がこの順に形成された構成である。ここでは特に、透明導電体30を構成する導電層15が実質的なアノードとなる。
[Transparent conductor (anode side)]
The transparent conductor 30 is the transparent conductor 30 of the above-described third embodiment. From the substrate 11 side, the second admittance adjustment layer 32, the first admittance adjustment layer 31, the organic compound layer 12, and the conductive layer 15 are used. Is a configuration formed in this order. Here, in particular, the conductive layer 15 constituting the transparent conductor 30 is a substantial anode.
[対向電極(カソード)]
 対向電極47は、発光機能層46に電子を供給するためのカソードとして機能する導電層であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
[Counter electrode (cathode)]
The counter electrode 47 is a conductive layer that functions as a cathode for supplying electrons to the light emitting functional layer 46, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 and oxide semiconductors such as SnO 2 .
 対向電極47は、これらの導電性材料を蒸着やスパッタリング等の方法により薄層を形成させることにより作製することができる。また、対向電極47としてのシート抵抗は、数百Ω/sq.以下が好ましく、厚さは通常5nm~5μm、好ましくは5nm~200nmの範囲で選ばれる。 The counter electrode 47 can be produced by forming a thin layer of these conductive materials by a method such as vapor deposition or sputtering. The sheet resistance as the counter electrode 47 is several hundred Ω / sq. The following is preferable, and the thickness is usually selected in the range of 5 nm to 5 μm, preferably 5 nm to 200 nm.
[発光層]
 本実施形態の有機電界発光素子に用いられる発光層46cは、発光材料として例えば燐光発光化合物が含有されている。
[Light emitting layer]
The light emitting layer 46c used in the organic electroluminescent element of this embodiment contains, for example, a phosphorescent compound as a light emitting material.
 この発光層46cは、電極又は電子輸送層46dから注入された電子と、正孔輸送層46bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層46cの層内であっても発光層46cにおける隣接する層との界面であってもよい。 The light emitting layer 46c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 46d and holes injected from the hole transport layer 46b, and the light emitting portion is the light emitting layer 46c. Even within the layer, it may be an interface with an adjacent layer in the light emitting layer 46c.
 このような発光層46cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層46c間には非発光性の中間層(図示せず)を有していることが好ましい。 The structure of the light emitting layer 46c is not particularly limited as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 46c.
 発光層46cの厚さの総和は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い電圧で駆動することができることから1~30nmである。なお、発光層46cの厚さの総和とは、発光層46c間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。 The total thickness of the light emitting layer 46c is preferably in the range of 1 to 100 nm, and more preferably 1 to 30 nm because it can be driven at a lower voltage. In addition, the sum total of the thickness of the light emitting layer 46c is a thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between the light emitting layers 46c.
 複数層を積層した構成の発光層46cの場合、個々の発光層の厚さとしては、1~50nmの範囲に調整することが好ましく、1~20nmの範囲に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の厚さの関係については、特に制限はない。 In the case of the light emitting layer 46c having a structure in which a plurality of layers are laminated, the thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, and more preferably adjusted to a range of 1 to 20 nm. When the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
 以上のような発光層46cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により形成することができる。 The light emitting layer 46c as described above can be formed of a light emitting material or a host compound, which will be described later, by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
 また発光層46cは、複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)を同一発光層46c中に混合して用いてもよい。 The light-emitting layer 46c may be a mixture of a plurality of light-emitting materials, or a phosphorescent light-emitting material and a fluorescent light-emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light-emitting layer 46c.
 発光層46cの構成として、ホスト化合物(発光ホストともいう)、発光材料(発光ドーパント化合物、ゲスト材料ともいう)を含有し、発光材料より発光させることが好ましい。 The structure of the light emitting layer 46c preferably includes a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound or a guest material) and emits light from the light emitting material.
(ホスト化合物)
 発光層46cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに、燐光量子収率が0.01未満である化合物が好ましい。また、ホスト化合物は、発光層46cに含有される化合物の中で、層中での体積比が50%以上であることが好ましい。
(Host compound)
As the host compound contained in the light emitting layer 46c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Furthermore, the compound whose phosphorescence quantum yield is less than 0.01 is preferable. The host compound preferably has a volume ratio in the layer of 50% or more among the compounds contained in the light emitting layer 46c.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子40を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic electroluminescence device 40 can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound having a high Tg (glass transition temperature) that has a hole transporting ability and an electron transporting ability and prevents the emission of light from being long-wavelength is preferable. The glass transition point (Tg) here is a value obtained by a method in accordance with JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 有機電界発光素子に適用可能なホスト化合物の具体例としては、特開2013-4245の段落[0163]~[0178]に記載の化合物H1~H79を例示することができる。特開2013-4245の段落[0163]~[0178]に記載の化合物H1~H79を本願明細書に組み込む。 Specific examples of the host compound applicable to the organic electroluminescence device include compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245A. The compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245 are incorporated in the present specification.
 また、その他の公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 Also, as specific examples of other known host compounds, compounds described in the following documents can be used. For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
(発光材料)
 本実施形態の有機電界発光素子に用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
(Luminescent material)
Examples of the light-emitting material that can be used in the organic electroluminescent element of this embodiment include phosphorescent compounds (also referred to as phosphorescent compounds and phosphorescent materials).
 燐光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。 A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
 上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本例において燐光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when the phosphorescent compound is used in this example, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
 燐光発光性化合物の発光の原理としては2種挙げられる。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性化合物に移動させることで燐光発光性化合物からの発光を得るというエネルギー移動型であり、もう一つは、燐光発光性化合物がキャリアトラップとなり、燐光発光性化合物上でキャリアの再結合が起こり燐光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、燐光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。 There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound. The other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In either case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
 燐光発光性化合物は、一般的な有機電界発光素子の発光層46cに使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物である。さらに好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 46c of a general organic electroluminescent device, and preferably a group 8-10 metal in the periodic table of elements is used. It is a complex compound. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
 本実施形態の有機電界発光素子40においては、少なくとも一つの発光層46cに2種以上の燐光発光性化合物を含有していてもよく、発光層46cにおける燐光発光性化合物の濃度比が発光層46cの厚さ方向で変化していてもよい。 In the organic electroluminescent element 40 of the present embodiment, at least one light emitting layer 46c may contain two or more types of phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 46c is the light emitting layer 46c. It may change in the thickness direction.
 燐光発光性化合物は好ましくは発光層46cの総量に対し0.1体積%以上30体積%未満である。 The phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 46c.
 有機電界発光素子に適用可能な燐光発光性化合物としては、特開2013-4245の段落[0185]~[0235]に記載の一般式(4)、一般式(5)、一般式(6)で表される化合物、及び、例示化合物を好ましく挙げることができる。また、その他の例示化合物として、Ir-46、Ir-47、Ir-48、を以下に示す。特開2013-4245の段落[0185]~[0235]に記載の一般式(4)、一般式(5)、一般式(6)で表される化合物、及び、例示化合物(Pt-1~Pt-3、Os-1、Ir-1~Ir-45)を本願明細書に組み込む。 As the phosphorescent compound applicable to the organic electroluminescence device, the general formulas (4), (5), and (6) described in paragraphs [0185] to [0235] of JP2013-4245A can be used. Preferred examples include the compounds represented and exemplary compounds. As other exemplary compounds, Ir-46, Ir-47, and Ir-48 are shown below. Compounds represented by general formula (4), general formula (5) and general formula (6) described in paragraphs [0185] to [0235] of JP2013-4245A and exemplified compounds (Pt-1 to Pt) -3, Os-1, Ir-1 to Ir-45) are incorporated herein.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 尚、これらの燐光発光性化合物(燐光発光性の金属錯体ともいう)は、発光層46cに発光ドーパントとして含有されることが好ましい態様であるが、発光層46c以外の有機機能層に含有されていてもよい。 These phosphorescent compounds (also referred to as phosphorescent metal complexes) are preferably contained in the light emitting layer 46c as light emitting dopants, but are contained in organic functional layers other than the light emitting layer 46c. May be.
 また、燐光発光性化合物は、有機電界発光素子40の発光層46cに使用される公知のものの中から適宜選択して用いることができる。 Further, the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 46c of the organic electroluminescent device 40.
 上記の燐光発光性化合物(燐光発光性金属錯体等ともいう)は、例えば、Organic Letters誌 vol.3 No.16 2579~2581頁(2001)、Inorganic Chemistry,第30巻 第8号 1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻 4304頁(2001年)、Inorganic Chemistry,第40巻第7号 1704~1711頁(2001年)、Inorganic Chemistry,第41巻 第12号 3055~3066頁(2002年)、New Journal of Chemistry.,第26巻 1171頁(2002年)、European Journal of Organic Chemistry,第4巻 695~709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。 The above phosphorescent compounds (also referred to as phosphorescent metal complexes) are, for example, OrganicOrLetters magazine vol.3 No.16 2579-2581 (2001), Inorganic Chemistry, Vol.30, No.8 1685-1687. (1991), J. Am. Chem. Soc., 123 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 704 1704-1711 (2001), Inorganic Chemistry, Vol. 41 No. 12 3055-3066 (2002), New Journal of 第 Chemistry., 26261171 (2002), European Journal of Organic Chemistry, Vol.4 695-709 (2004), further described in these documents Can be synthesized by applying a method such as the reference.
(蛍光発光材料)
 蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
(Fluorescent material)
Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
[注入層:正孔注入層、電子注入層]
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層46cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層46aと電子注入層46eとがある。
[Injection layer: hole injection layer, electron injection layer]
The injection layer is a layer provided between the electrode and the light emitting layer 46c in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and the forefront of its industrialization (November 30, 1998, NT. 2) Chapter 2 “Electrode Materials” (pages 123 to 166) of “S. Co., Ltd.”), which includes a hole injection layer 46a and an electron injection layer 46e.
 注入層は、必要に応じて設けることができる。正孔注入層46aであれば、アノードと発光層46c又は正孔輸送層46bの間、電子注入層46eであればカソードと発光層46c又は電子輸送層46dとの間に配置される。 The injection layer can be provided as necessary. The hole injection layer 46a is disposed between the anode and the light emitting layer 46c or the hole transport layer 46b, and the electron injection layer 46e is disposed between the cathode and the light emitting layer 46c or the electron transport layer 46d.
 正孔注入層46aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。 The details of the hole injection layer 46a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Specific examples thereof include phthalocyanine represented by copper phthalocyanine. Examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 電子注入層46eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。電子注入層46eはごく薄い層であることが望ましく、素材にもよるがその厚さは1nm~10μmの範囲が好ましい。 The details of the electron injection layer 46e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum, and the like. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide. The electron injection layer 46e is desirably a very thin layer, and its thickness is preferably in the range of 1 nm to 10 μm, although it depends on the material.
[正孔輸送層]
 正孔輸送層46bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層46a、電子阻止層も正孔輸送層46bに含まれる。正孔輸送層46bは単層又は複数層設けることができる。
[Hole transport layer]
The hole transport layer 46b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 46a and the electron blocking layer are also included in the hole transport layer 46b. The hole transport layer 46b can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-30 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 688 are linked in a starburst type ( MTDATA) and the like.
 さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Also, so-called p-type hole transport materials as described in JP-A-11-251067, J. Huang et al., Applied Physics Letters, 80 (2002), p. 139 can be used. . These materials are preferably used because a highly efficient light-emitting element can be obtained.
 正孔輸送層46bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層46bの厚さについては特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層46bは、上記材料の1種又は2種以上からなる一層構造であってもよい。 The hole transport layer 46b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to. The thickness of the hole transport layer 46b is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer 46b may have a single layer structure made of one or more of the above materials.
 また、正孔輸送層46bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to increase the p property by doping impurities into the material of the hole transport layer 46b. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. .
 このように、正孔輸送層46bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer 46b because an element with lower power consumption can be manufactured.
[電子輸送層]
 電子輸送層46dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層46e、正孔阻止層(図示せず)も電子輸送層46dに含まれる。電子輸送層46dは単層構造又は複数層の積層構造として設けることができる。
[Electron transport layer]
The electron transport layer 46d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 46e and a hole blocking layer (not shown) are also included in the electron transport layer 46d. The electron transport layer 46d can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層46d、及び積層構造の電子輸送層46dにおいて発光層46cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層46cに伝達する機能を有していれば良い。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層46dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 As an electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer 46c in the electron transport layer 46d having a single layer structure and the electron transport layer 46d having a multilayer structure, electrons injected from the cathode are used. What is necessary is just to have the function to transmit to the light emitting layer 46c. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Further, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 46d. Can do. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層46dの材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer 46d.
 その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層46dの材料として好ましく用いることができる。また、発光層46cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層46dの材料として用いることができるし、正孔注入層46a、正孔輸送層46bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層46dの材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 46d. Further, a distyrylpyrazine derivative exemplified also as the material of the light emitting layer 46c can be used as the material of the electron transport layer 46d. Similarly to the hole injection layer 46a and the hole transport layer 46b, n-type Si, n An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 46d.
 電子輸送層46dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層46dの膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層46dは上記材料の1種又は2種以上からなる一層構造であってもよい。 The electron transport layer 46d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The film thickness of the electron transport layer 46d is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer 46d may have a single layer structure composed of one or more of the above materials.
 また、電子輸送層46dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層46dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層46dのn性を高くすると、より低消費電力の素子を作製することができる。 It is also possible to increase the n property by doping the electron transport layer 46d with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable that the electron transport layer 46d contains potassium or a potassium compound. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 46d is increased, a device with lower power consumption can be manufactured.
 また、電子輸送層46dの材料(電子輸送性化合物)としては、例えば、上述の化合物No.1~No.48の窒素含有化合物、上記一般式(1)~(8a)で表される窒素含有化合物、上述の化合物1~166の窒素含有化合物を用いることが好ましい。
 また、一般式(9)~一般式(12)で表される硫黄含有化合物、上述の1-1~1-9、2-1~2-11、3-1~3-23、及び、4-1の硫黄含有化合物を用いることが好ましい。
Moreover, as a material (electron transporting compound) of the electron transport layer 46d, for example, the above-mentioned compound No. 1-No. It is preferable to use 48 nitrogen-containing compounds, nitrogen-containing compounds represented by the above general formulas (1) to (8a), and nitrogen-containing compounds 1 to 166 described above.
Further, the sulfur-containing compounds represented by the general formulas (9) to (12), the above-described 1-1 to 1-9, 2-1 to 2-11, 3-1 to 3-23, and 4 It is preferable to use a sulfur-containing compound of -1.
[阻止層:正孔阻止層、電子阻止層]
 阻止層は、上述のように有機化合物薄膜の基本構成層の他に、必要に応じて設けられる。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
[Blocking layer: hole blocking layer, electron blocking layer]
As described above, the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では、電子輸送層46dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層46dの構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層46cに隣接して設けられていることが好ましい。 The hole blocking layer has a function of the electron transport layer 46d in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of the electron carrying layer 46d mentioned later can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer 46c.
 一方、電子阻止層とは、広い意味では、正孔輸送層46bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層46bの構成を必要に応じて電子阻止層として用いることができる。阻止層の厚さとしては、好ましくは3~100nmであり、さらに好ましくは5~30nmである。 On the other hand, the electron blocking layer has the function of the hole transport layer 46b in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to. Moreover, the structure of the positive hole transport layer 46b mentioned later can be used as an electron blocking layer as needed. The thickness of the blocking layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
[補助電極]
 補助電極は、透明導電体30の抵抗を下げる目的で設けられ、透明導電体30の導電層15に接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極の厚さは、導電性の観点から1μm以上であることが好ましい。
[Auxiliary electrode]
The auxiliary electrode is provided for the purpose of reducing the resistance of the transparent conductor 30, and is provided in contact with the conductive layer 15 of the transparent conductor 30. The material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface. Examples of a method for forming such an auxiliary electrode include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method. The line width of the auxiliary electrode is preferably 50 μm or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 μm or more from the viewpoint of conductivity.
[封止材]
 封止材は、有機電界発光素子40を覆うものであって、接着剤によって板状(フィルム状)の封止部材が基材11側に固定されていてもよく、封止層であってもよい。この封止材は、有機電界発光素子40における透明導電体30及び対向電極47の端子部分を露出させる状態で、少なくとも発光機能層46を覆う状態で設けられている。また封止材に電極を設け、有機電界発光素子40の透明導電体30及び対向電極47の端子部分と、この電極とを導通させるように構成されていてもよい。
[Encapsulant]
The sealing material covers the organic electroluminescent element 40, and a plate-like (film-like) sealing member may be fixed to the base material 11 side by an adhesive, or a sealing layer. Good. This sealing material is provided so as to cover at least the light emitting functional layer 46 in a state where the terminal portions of the transparent conductor 30 and the counter electrode 47 in the organic electroluminescent element 40 are exposed. Further, an electrode may be provided on the sealing material so that the transparent conductor 30 of the organic electroluminescent element 40 and the terminal portion of the counter electrode 47 are electrically connected to this electrode.
 板状(フィルム状)の封止材としては、具体的には、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いてもよい。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。 Specific examples of the plate-like (film-like) sealing material include a glass substrate and a polymer substrate, and these substrate materials may be used in the form of a thinner film. Examples of the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
 なかでも、素子を薄型化できるということから、封止材として薄型のフィルム状にしたポリマー基板を好ましく使用することができる。 In particular, since the element can be thinned, a polymer substrate in the form of a thin film can be preferably used as a sealing material.
 さらには、フィルム状としたポリマー基板は、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 Further, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and JIS-K. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to −7129-1992 is 1 × 10 −3 g / (m 2 · 24 h) or less It is preferable that
 また、以上のような基板材料は、凹板状に加工して封止材として用いてもよい。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状に形成される。 Further, the above substrate material may be processed into a concave plate shape and used as a sealing material. In this case, the above-described substrate member is subjected to processing such as sandblasting or chemical etching, and is formed into a concave shape.
 また、これに限らず、金属材料を用いてもよい。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。このような金属材料は、薄型のフィルム状にして封止材として用いることにより、有機電界発光素子が設けられた発光パネル全体を薄型化できる。 Further, the present invention is not limited to this, and a metal material may be used. Examples of the metal material include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. By using such a metal material as a sealing material in the form of a thin film, the entire light-emitting panel provided with the organic electroluminescent element can be thinned.
 また、このような板状の封止材を基材11側に固定するための接着剤は、封止材と基材11との間に挟持された有機電界発光素子40を封止するためのシール剤として用いられる。このような接着剤は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。 Moreover, the adhesive for fixing such a plate-shaped sealing material to the base material 11 side is for sealing the organic electroluminescent element 40 sandwiched between the sealing material and the base material 11. Used as a sealant. Specific examples of such an adhesive include photocuring and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing types such as 2-cyanoacrylates. Mention may be made of adhesives.
 また、このような接着剤としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Also, examples of such an adhesive include epoxy-based heat and chemical curing types (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機電界発光素子40を構成する有機材料は、熱処理により劣化する場合がある。このため、室温から80℃までに接着硬化できる接着剤を使用することが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。 In addition, the organic material which comprises the organic electroluminescent element 40 may deteriorate with heat processing. For this reason, it is preferable to use an adhesive that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive.
 封止材と基材11との接着部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Application of the adhesive to the bonding portion between the sealing material and the base material 11 may be performed using a commercially available dispenser or may be printed like screen printing.
 また、板状の封止材と基材11と接着剤との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 Further, when a gap is formed between the plate-shaped sealing material, the base material 11 and the adhesive, this gap has an inert gas such as nitrogen or argon or fluorinated carbonization in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrogen or silicon oil. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 一方、封止材として封止層を用いる場合、有機電界発光素子40における発光機能層46を完全に覆い、かつ有機電界発光素子40における透明導電体30及び対向電極47の端子部分を露出させる状態で、基材11上に封止層が設けられる。 On the other hand, when a sealing layer is used as the sealing material, the light emitting functional layer 46 in the organic electroluminescent element 40 is completely covered and the terminal portions of the transparent conductor 30 and the counter electrode 47 in the organic electroluminescent element 40 are exposed. Thus, a sealing layer is provided on the substrate 11.
 このような封止層は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機電界発光素子40における発光機能層46の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることとする。このような材料として、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が用いられる。さらに封止層の脆弱性を改良するために、これら無機材料からなる層と共に、有機材料からなる層を用いて積層構造としてもよい。 Such a sealing layer is composed of an inorganic material or an organic material. In particular, it is made of a material having a function of suppressing entry of a substance that causes deterioration of the light emitting functional layer 46 in the organic electroluminescent element 40 such as moisture and oxygen. As such a material, for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride is used. Further, in order to improve the brittleness of the sealing layer, a layered structure may be formed by using a layer made of an organic material together with a layer made of these inorganic materials.
 これらの層の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming these layers is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
[保護層、保護板]
 尚、ここでの図示は省略したが、有機電界発光素子及び封止材を挟んで基材11との間に保護層若しくは保護板を設けてもよい。この保護層若しくは保護板は、有機電界発光素子を機械的に保護するためのものであり、特に封止材が封止層である場合には、有機電界発光素子ELに対する機械的な保護が十分ではないため、このような保護層若しくは保護板を設けることが好ましい。
[Protective layer, protective plate]
In addition, although illustration is abbreviate | omitted here, you may provide a protective layer or a protective board between the base materials 11 on both sides of an organic electroluminescent element and a sealing material. This protective layer or protective plate is for mechanically protecting the organic electroluminescent element, and particularly when the sealing material is a sealing layer, sufficient mechanical protection is provided for the organic electroluminescent element EL. Therefore, it is preferable to provide such a protective layer or protective plate.
 以上のような保護層若しくは保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄型化ということからポリマーフィルムを用いることが好ましい。 As the above protective layer or protective plate, a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied. Among these, it is particularly preferable to use a polymer film because it is lightweight and thin.
[有機電界発光素子の作製方法]
 ここでは一例として、図12に示す有機電界発光素子40の製造方法を説明する。
[Method for Fabricating Organic Electroluminescent Device]
Here, as an example, a method for manufacturing the organic electroluminescent element 40 shown in FIG. 12 will be described.
 まず、基材11上に、第2アドミッタンス調整層32を90nm程度の厚さに形成する。次に、第1アドミッタンス調整層31を40nm程度の厚さに形成する。
 次に、第1アドミッタンス調整層31上に、有機化合物層12を3nm程度の厚さに形成する。
 第1アドミッタンス調整層31、第2アドミッタンス調整層32の形成は、蒸着法(EB法等)、スパッタリング法等があるが、緻密な層が得られやすい点から、イオンアシストEB蒸着法又はスパッタリング法が特に好ましい。
 次に、有機化合物層12上に、パラジウム含有層13を1nm程度形成し、その後、金属材料からなる金属層14を3nm~15nmとなるように形成する。パラジウム含有層13と金属層14は、上述の第1実施形態に記載の方法で形成することができる。
 以上により、アノード側の透明導電体30を基材11上に作製する。
First, the second admittance adjusting layer 32 is formed on the substrate 11 to a thickness of about 90 nm. Next, the first admittance adjustment layer 31 is formed to a thickness of about 40 nm.
Next, the organic compound layer 12 is formed to a thickness of about 3 nm on the first admittance adjustment layer 31.
The formation of the first admittance adjustment layer 31 and the second admittance adjustment layer 32 includes a vapor deposition method (EB method and the like), a sputtering method, and the like. From the viewpoint that a dense layer can be easily obtained, an ion-assisted EB vapor deposition method or a sputtering method is used. Is particularly preferred.
Next, a palladium-containing layer 13 is formed on the organic compound layer 12 to a thickness of about 1 nm, and then a metal layer 14 made of a metal material is formed to a thickness of 3 nm to 15 nm. The palladium-containing layer 13 and the metal layer 14 can be formed by the method described in the first embodiment.
In this way, the anode-side transparent conductor 30 is produced on the substrate 11.
 次にこの上に、正孔注入層46a、正孔輸送層46b、発光層46c、電子輸送層46d、電子注入層46eの順に形成し、発光機能層46を形成する。これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な層が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに層ごとに異なる形成方法を適用してもよい。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般に化合物を収蔵したボート加熱温度50℃~450℃、真空度10-6Pa~10-2Pa、蒸着速度0.01nm/秒~50nm/秒、基板温度-50℃~300℃、厚さ0.1μm~5μmの範囲で、各条件を適宜選択することが望ましい。 Next, a hole injection layer 46a, a hole transport layer 46b, a light emitting layer 46c, an electron transport layer 46d, and an electron injection layer 46e are formed in this order, and the light emitting functional layer 46 is formed. The formation of each of these layers includes a spin coating method, a casting method, an ink jet method, a vapor deposition method, a sputtering method, a printing method, etc., but it is easy to obtain a homogeneous layer, and pinholes are difficult to generate. Vacuum deposition or spin coating is particularly preferred. Further, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature storing the compound is 50 ° C. to 450 ° C., and the degree of vacuum is 10 −6 Pa to 10 −. It is desirable to select each condition as appropriate within a range of 2 Pa, a deposition rate of 0.01 nm / second to 50 nm / second, a substrate temperature of −50 ° C. to 300 ° C., and a thickness of 0.1 μm to 5 μm.
 次に、カソードとなる対向電極47を、蒸着法やスパッタ法などの適宜の形成方法によって形成する。この際、発光機能層46によって透明導電体30に対して絶縁状態を保ちつつ、発光機能層46の上方から基材11の周縁に端子部分を引き出した形状にパターン形成する。 Next, the counter electrode 47 to be the cathode is formed by an appropriate forming method such as vapor deposition or sputtering. At this time, a pattern is formed in a shape in which terminal portions are drawn out from the upper side of the light emitting functional layer 46 to the periphery of the base material 11 while maintaining the insulating state with respect to the transparent conductor 30 by the light emitting functional layer 46.
 これにより、有機電界発光素子40が得られる。また、その後には、有機電界発光素子40における透明導電体30及び対向電極47の端子部分を露出させた状態で、少なくとも発光機能層46を覆う封止材を設ける。この際、接着剤を用いて、封止材を基材11側に接着し、これらの封止材-基材11間に有機電界発光素子40を封止する。 Thereby, the organic electroluminescent element 40 is obtained. Thereafter, a sealing material that covers at least the light emitting functional layer 46 is provided in a state where the terminal portions of the transparent conductor 30 and the counter electrode 47 in the organic electroluminescent element 40 are exposed. At this time, the sealing material is adhered to the base material 11 side using an adhesive, and the organic electroluminescent element 40 is sealed between the sealing material and the base material 11.
 以上により、基材11上に所望の有機電界発光素子40が得られる。このような有機電界発光素子40の作製においては、一回の真空引きで一貫して発光機能層46から対向電極47まで作製するのが好ましいが、途中で真空雰囲気から基材11を取り出して異なる形成法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 Thus, a desired organic electroluminescent element 40 is obtained on the substrate 11. In the production of such an organic electroluminescent element 40, it is preferable to produce the light emitting functional layer 46 to the counter electrode 47 consistently by a single evacuation. However, the substrate 11 is taken out from the vacuum atmosphere on the way and is different. A forming method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 このようにして得られた有機電界発光素子40に直流電圧を印加する場合には、アノードである導電層15を+の極性とし、カソードである対向電極47を-の極性として、電圧2V以上40V以下程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic electroluminescence device 40 thus obtained, the conductive layer 15 serving as an anode has a positive polarity and the counter electrode 47 serving as a cathode has a negative polarity, so that the voltage is 2V or more and 40V. Luminescence can be observed when the following is applied. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 なお、上述の実施形態では、第3実施形態の透明導電体をボトミエミッション型の有機電界発光素子に適用した構成について説明しているが、第1実施形態や第2実施形態の透明導電体を用いて有機電界発光素子を構成することもできる。
 さらに、これらの透明導電体が適用される有機電界発光素子は、ボトムエミッション型に限られず、例えば、対向電極側から光を取り出すトップエミッション型の構成や、両面から光を取り出す両面発光型の構成としてもよい。有機電界発光素子がトップエミッション型であれば、対向電極に透明な材料を用いると共に、透明導電体の基材に換えて反射性を有する不透明な基材を用い、発光光hを基板で反射させて対向電極側から取り出す構成としてもよい。また、有機電界発光素子が両面発光型であれば、対向電極に透明導電体と同様に透明な材料を用い、発光光hを両面から取り出す構成としてもよい。
 また、ボトミエミッション型、トップエミッション型及び両面発光型の有機電界発光素子においても、上述の第4実施形態の有機電界発光素子のように、透明導電体をアノードとする構成以外にも、透明導電体をカソードとする構成にも適用可能である。
In the above-described embodiment, the configuration in which the transparent conductor according to the third embodiment is applied to the bottom emission type organic electroluminescence device is described. However, the transparent conductor according to the first embodiment or the second embodiment is described. An organic electroluminescent element can also be configured using
Furthermore, the organic electroluminescent element to which these transparent conductors are applied is not limited to the bottom emission type, for example, a top emission type configuration in which light is extracted from the counter electrode side, or a dual emission type configuration in which light is extracted from both sides. It is good. If the organic electroluminescent device is a top emission type, a transparent material is used for the counter electrode, and an opaque base material having reflectivity is used instead of the base material of the transparent conductor, and the emitted light h is reflected by the substrate. It is also possible to take out from the counter electrode side. If the organic electroluminescent element is a double-sided light emitting device, a transparent material may be used for the counter electrode in the same manner as the transparent conductor, and the emitted light h may be extracted from both sides.
Also, in the bottom emission type, top emission type, and double-sided emission type organic electroluminescent elements, the transparent electroconductive element is used in addition to the transparent electroconductive element as in the fourth embodiment. The present invention can also be applied to a configuration in which a conductor is a cathode.
[有機電界発光素子の用途]
 上述した各実施形態の有機電界発光素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
[Applications of organic electroluminescent devices]
Since the organic electroluminescent element of each embodiment mentioned above is a surface light emitter as mentioned above, it can be used as various light emission sources. For example, lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
 また、各実施形態の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機電界発光素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。 In addition, the organic electroluminescence device of each embodiment may be used as a kind of lamp for illumination or exposure light source, or a projection device for projecting an image, or directly viewing a still image or a moving image. It may be used as a type of display device (display). In this case, the area of the light emitting surface may be increased by so-called tiling, in which the light emitting panels provided with the organic electroluminescent elements are planarly joined together with the recent increase in size of the lighting device and the display.
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. A color or full-color display device can be produced by using two or more organic electroluminescence elements of the present invention having different emission colors.
〈5.照明装置(第5実施形態)〉
[照明装置-1]
 本発明の第5実施形態について説明する。第5実施形態は、電子デバイスの一例として上述の第4実施形態の有機電界発光素子を用いた照明装置について説明する。
<5. Lighting Device (Fifth Embodiment)>
[Lighting device-1]
A fifth embodiment of the present invention will be described. 5th Embodiment demonstrates the illuminating device using the organic electroluminescent element of the above-mentioned 4th Embodiment as an example of an electronic device.
 本実施形態の照明装置に用いる有機電界発光素子は、上述した第4実施形態の構成の有機電界発光素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機電界発光素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic electroluminescent element used in the illumination device of the present embodiment may be designed such that the organic electroluminescent element having the configuration of the fourth embodiment described above has a resonator structure. Examples of the purpose of use of the organic electroluminescence device configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not. Moreover, you may use for the said use by making a laser oscillation.
 なお、有機電界発光素子に用いられる材料は、実質的に白色の発光を生じる有機電界発光素子(白色有機電界発光素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させてもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有させてもよい。 The material used for the organic electroluminescent element can be applied to an organic electroluminescent element that emits substantially white light (also referred to as a white organic electroluminescent element). For example, a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing. As a combination of a plurality of emission colors, three emission maximum wavelengths of three primary colors of red, green, and blue may be included, or two emission using a complementary color relationship such as blue and yellow, blue green and orange, etc. A maximum wavelength may be included.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料の組み合わせや、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせでもよい。白色有機電界発光素子においては、発光ドーパントを複数組み合わせて混合してもよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescent or phosphorescent light, and light from the light emitting material as excitation light. A combination with a dye material that emits light may also be used. In the white organic electroluminescent device, a plurality of light emitting dopants may be combined and mixed.
 このような白色有機電界発光素子は、各色発光の有機電界発光素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機電界発光素子自体が白色を発光する。このため、素子を構成するほとんどの層の形成にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば導電層を形成でき、生産性も向上する。 Such a white organic electroluminescent element is different from a configuration in which organic electroluminescent elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic electroluminescent element itself emits white light. For this reason, a mask is not required for the formation of most layers constituting the element, and for example, a conductive layer can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. .
 また、このような白色有機電界発光素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、上述の有機電界発光素子の実施形態に記載の金属錯体、また公知の発光材料の中から任意の材料を選択して組み合わせて白色化すればよい。 Moreover, there is no restriction | limiting in particular as a luminescent material used for the light emitting layer of such a white organic electroluminescent element, For example, if it is a backlight in a liquid crystal display element, it will match the wavelength range corresponding to CF (color filter) characteristic. As described above, the metal complex described in the embodiment of the organic electroluminescent device described above or any material selected from known light-emitting materials may be selected and combined to be whitened.
 以上に説明した白色有機電界発光素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。 If the white organic electroluminescent element described above is used, it is possible to produce a lighting device that emits substantially white light.
[照明装置-2]
 また、照明装置は、例えば有機電界発光素子を複数用いることにより、発光面を大面積化することもできる。この場合、基材上に有機電界発光素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止材を兼ねるものであってもよく、この支持基板と、発光パネルの基材との間に有機電界発光素子を挟持する状態で各発光パネルをタイリングする。支持基板と基材との間には接着剤を充填し、これによって有機電界発光素子を封止してもよい。尚、発光パネルの周囲には、透明導電体及び対向電極の端子を露出させておく。
[Lighting device-2]
Further, the lighting device can increase the area of the light emitting surface by using, for example, a plurality of organic electroluminescent elements. In this case, the light emitting surface is enlarged by arranging (that is, tiling) a plurality of light emitting panels provided with organic electroluminescent elements on a base material on a support substrate. The support substrate may also serve as a sealing material, and each light-emitting panel is tiled in a state where the organic electroluminescence element is sandwiched between the support substrate and the base material of the light-emitting panel. An adhesive may be filled between the support substrate and the base material, thereby sealing the organic electroluminescent element. Note that the terminals of the transparent conductor and the counter electrode are exposed around the light emitting panel.
 このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けてもよい。光取り出し部材としては、集光シートや光拡散シートを用いることができる。 In the lighting device having such a configuration, the center of each light emitting panel is a light emitting region, and a non-light emitting region is generated between the light emitting panels. For this reason, a light extraction member for increasing the amount of light extracted from the non-light-emitting area may be provided in the non-light-emitting area of the light extraction surface. As the light extraction member, a light collecting sheet or a light diffusion sheet can be used.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[透明導電体の作製]
 試料101~128の各透明導電体を、導電性領域の面積が5cm×5cmとなるように作製した。下記表2に、試料101~128の各透明導電体の構成を示す。
[Production of transparent conductor]
Each of the transparent conductors of Samples 101 to 128 was manufactured so that the area of the conductive region was 5 cm × 5 cm. Table 2 below shows the configuration of each transparent conductor of Samples 101 to 128.
[試料101,102の透明導電体の作製]
 以下のようにして、ポリエチレンテレフタレート(PET)製の基材上に、下記表2に示すそれぞれの厚さで銀からなる金属層を形成した。
[Preparation of transparent conductors of samples 101 and 102]
In the following manner, a metal layer made of silver was formed on a polyethylene terephthalate (PET) base material with each thickness shown in Table 2 below.
 まず、PET製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で、銀からなる金属層をそれぞれの厚さで形成した。試料101では厚さ8nmで形成し、試料102では厚さ12nmで形成した。 First, a base material made of PET was fixed to a base material holder of a commercially available vacuum vapor deposition apparatus and attached to a vacuum tank of the vacuum vapor deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the said vacuum chamber. Next, after depressurizing the vacuum chamber to 4 × 10 −4 Pa, the resistance heating boat was energized and heated, and each of the metal layers made of silver was deposited at a deposition rate of 0.1 nm / second to 0.2 nm / second. Formed in thickness. The sample 101 was formed with a thickness of 8 nm, and the sample 102 was formed with a thickness of 12 nm.
[試料103の透明導電体の作製]
 以下のようにして、PET製の基材上に、酸化インジウムスズ(ITO)からなるアドミッタンス調整層を20nmの厚さで形成し、この上部に銀からなる金属層を8nmの厚さで形成した。
[Production of transparent conductor of sample 103]
An admittance adjusting layer made of indium tin oxide (ITO) was formed with a thickness of 20 nm on a base material made of PET as follows, and a metal layer made of silver was formed with a thickness of 8 nm on top of this. .
 まず、透明なPET製の基材を市販の電子ビーム蒸着装置の基材ホルダーに固定し、酸化インジウムスズ(ITO)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、市販の真空蒸着装置の真空槽に取り付けた。 First, a transparent PET substrate is fixed to a substrate holder of a commercially available electron beam evaporation apparatus, indium tin oxide (ITO) is put into a heating boat, and these substrate holder and heating boat are connected to the electron beam evaporation apparatus. Attached to a vacuum chamber. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of a commercially available vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、酸化インジウムスズ(ITO)の入った加熱ボートに電子ビームを照射して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で基材上に厚さ20nmのITOからなるアドミッタンス調整層を設けた。 Next, after reducing the vacuum chamber of the electron beam evaporation apparatus to 4 × 10 −4 Pa, the heating boat containing indium tin oxide (ITO) was irradiated with an electron beam and heated, and the deposition rate was 0.1 nm / second. An admittance adjusting layer made of ITO having a thickness of 20 nm was provided on the substrate at a rate of ˜0.2 nm / second.
 次に、アドミッタンス調整層まで形成した基材を真空のまま真空蒸着装置の真空槽に移し、当該真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる金属層を形成し、アドミッタンス調整層とこの上部の金属層との積層構造からなる試料103の透明導電体を得た。 Next, the base material formed up to the admittance adjustment layer is transferred to a vacuum chamber of a vacuum deposition apparatus while being vacuumed, and the vacuum chamber is depressurized to 4 × 10 −4 Pa, and then a heating boat containing silver is energized and heated. did. As a result, a metal layer made of silver having a thickness of 8 nm is formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and the transparent conductivity of the sample 103 having a laminated structure of the admittance adjusting layer and the upper metal layer is formed. Got the body.
[試料104の透明導電体の作製]
 アドミッタンス調整層を酸化チタン(TiO)で構成した以外は、上記試料103と同様の手順で試料104の透明導電体を得た。
[Production of transparent conductor of sample 104]
A transparent conductor of Sample 104 was obtained in the same procedure as Sample 103, except that the admittance adjusting layer was composed of titanium oxide (TiO 2 ).
[試料105の透明導電体の作製]
 以下のようにして、PET製の基材上に、酸化インジウムスズ(ITO)からなるアドミッタンス調整層を25nmの厚さで形成した。また、この上部に上記表1に示す化合物No.10からなる窒素含有化合物を3nmの厚さで形成し、有機化合物層を形成した。さらに、有機化合物層上に、導電層としてパラジウム(Pd)からなるパラジウム含有層(Pd層)を0.1nmの厚さで形成し、この上部に銀からなる金属層を5nmの厚さで形成した。
[Preparation of transparent conductor of sample 105]
As described below, an admittance adjusting layer made of indium tin oxide (ITO) was formed to a thickness of 25 nm on a PET substrate. In addition, the compound Nos. A nitrogen-containing compound consisting of 10 was formed to a thickness of 3 nm to form an organic compound layer. Furthermore, a palladium-containing layer (Pd layer) made of palladium (Pd) is formed as a conductive layer on the organic compound layer with a thickness of 0.1 nm, and a metal layer made of silver is formed thereon with a thickness of 5 nm. did.
 まず、PET製の基材を市販の電子ビーム蒸着装置の基材ホルダーに固定し、酸化インジウムスズ(ITO)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。次に、パラジウム(Pd)のターゲットをスパッタリング装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに、上記表1に示す窒素含有化合物の化合物No.10を入れ、真空蒸着装置の第1真空槽に取り付けた。さらに、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽に取り付けた。 First, a base material made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, indium tin oxide (ITO) is placed in a heating boat, and these substrate holder and heating boat are connected to a vacuum chamber of the electron beam evaporation apparatus. Attached to. Next, a palladium (Pd) target was attached to the vacuum chamber of the sputtering apparatus. In addition, a resistance heating boat made of tungsten was combined with the compound No. of the nitrogen-containing compound shown in Table 1 above. 10 was placed and attached to the first vacuum chamber of the vacuum deposition apparatus. Furthermore, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the 2nd vacuum chamber of the vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、ITOの入った加熱ボートに電子ビームを照射し加熱して、蒸着速度0.1nm/秒~0.2nm/秒で基板上に厚さ25nmのITOからなるアドミッタンス調整層を設けた。 Next, after reducing the vacuum chamber of the electron beam evaporation apparatus to 4 × 10 −4 Pa, the heating boat containing ITO is irradiated with an electron beam and heated to evaporate at a deposition rate of 0.1 nm / second to 0.2 nm / second. An admittance adjustment layer made of ITO having a thickness of 25 nm was provided on the substrate in seconds.
 続いて、アドミッタンス調整層まで形成した基板を真空のまま真空蒸着装置の第1真空槽に移し、第1真空槽を4×10-4Paまで減圧した後、化合物No.10の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ3nmの窒素含有化合物の化合物No.10からなる有機化合物層を形成した。 Subsequently, the substrate formed up to the admittance adjusting layer was transferred to the first vacuum chamber of the vacuum deposition apparatus while being vacuumed, and the first vacuum chamber was depressurized to 4 × 10 −4 Pa. The resistance heating boat containing 10 was energized and heated. As a result, the compound No. of nitrogen-containing compound having a deposition rate of 0.1 nm / second to 0.2 nm / second and a thickness of 3 nm was obtained. An organic compound layer consisting of 10 was formed.
 次に、有機化合物層まで形成した基板を真空のままスパッタリング装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、Pdのターゲットに電圧を印加し、有機化合物層上にPdからなるパラジウム含有層を0.1nmの厚さで設けた。 Next, the substrate formed up to the organic compound layer is transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and after the vacuum chamber is depressurized to 4 × 10 −4 Pa, a voltage is applied to the Pd target, A palladium-containing layer made of Pd was provided with a thickness of 0.1 nm.
 次に、パラジウム含有層まで形成した基材を真空のまま真空蒸着装置の第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ5nmの銀からなる金属層を形成した。
 これにより、アドミッタンス調整層と、有機化合物層と、パラジウム含有層及び金属層からなる導電層とが、この順に積層された試料105の透明導電体を得た。
Next, the base material formed up to the palladium-containing layer is transferred to the second vacuum chamber of the vacuum deposition apparatus while being vacuumed, and after the pressure in the second vacuum chamber is reduced to 4 × 10 −4 Pa, a resistance heating boat containing silver is added. Heated with electricity. Thus, a metal layer made of silver having a thickness of 5 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
As a result, a transparent conductor of Sample 105 was obtained in which an admittance adjusting layer, an organic compound layer, a conductive layer composed of a palladium-containing layer and a metal layer were laminated in this order.
[試料106の透明導電体の作製]
 アドミッタンス調整層を、厚さ20nmの酸化チタン(TiO)で構成した以外は、上記試料105と同様の手順で試料106の透明導電体を得た。
[Preparation of transparent conductor of sample 106]
A transparent conductor of Sample 106 was obtained in the same procedure as Sample 105 except that the admittance adjusting layer was composed of titanium oxide (TiO 2 ) having a thickness of 20 nm.
[試料107の透明導電体の作製]
 銀からなる金属層の厚さを8nmで構成した以外は、上記試料105と同様の手順で試料107の透明導電体を得た。
[Preparation of transparent conductor of sample 107]
A transparent conductor of Sample 107 was obtained in the same procedure as Sample 105 except that the thickness of the metal layer made of silver was 8 nm.
[試料108の透明導電体の作製]
 銀からなる金属層の厚さを8nmで構成した以外は、上記試料106と同様の手順で試料108の透明導電体を得た。
[Preparation of transparent conductor of sample 108]
A transparent conductor of Sample 108 was obtained in the same procedure as Sample 106, except that the thickness of the metal layer made of silver was 8 nm.
[試料109の透明導電体の作製]
 アドミッタンス調整層を酸化ニオブ(Nb)で構成した以外は、上記試料107と同様の手順で試料109の透明導電体を得た。
[Production of transparent conductor of sample 109]
A transparent conductor of Sample 109 was obtained in the same procedure as Sample 107 except that the admittance adjusting layer was composed of niobium oxide (Nb 2 O 5 ).
[試料110の透明導電体の作製]
 銀からなる金属層の厚さを10nmで構成した以外は、上記試料109と同様の手順で試料110の透明導電体を得た。
[Production of transparent conductor of sample 110]
A transparent conductor of Sample 110 was obtained by the same procedure as Sample 109 except that the thickness of the metal layer made of silver was 10 nm.
[試料111の透明導電体の作製]
 銀からなる金属層の厚さを12nmで構成した以外は、上記試料109と同様の手順で試料111の透明導電体を得た。
[Preparation of transparent conductor of sample 111]
A transparent conductor of Sample 111 was obtained in the same procedure as Sample 109 except that the thickness of the metal layer made of silver was 12 nm.
[試料112の透明導電体の作製]
 銀からなる金属層の厚さを15nmで構成した以外は、上記試料109と同様の手順で試料112の透明導電体を得た。
[Production of transparent conductor of sample 112]
A transparent conductor of Sample 112 was obtained in the same procedure as Sample 109 except that the thickness of the metal layer made of silver was 15 nm.
[試料113の透明導電体の作製]
 以下のようにして、PET製の基材上に、フッ化マグネシウム(MgF)からなる第2アドミッタンス調整層を180nmの厚さで形成し、この上部に酸化チタン(TiO)からなる第1アドミッタンス調整層を20nmの厚さで形成した。また、この上部に上記表1に示す化合物No.10からなる窒素含有化合物を3nmの厚さで形成し、有機化合物層を形成した。さらに、有機化合物層上に、導電層として、パラジウム(Pd)からなるパラジウム含有層(Pd層)を0.1nmの厚さで形成し、この上部に銀からなる金属層を8nmの厚さで形成した。
[Production of transparent conductor of sample 113]
As described below, a second admittance adjusting layer made of magnesium fluoride (MgF 2 ) is formed on a PET substrate with a thickness of 180 nm, and a first portion made of titanium oxide (TiO 2 ) is formed on the upper part. An admittance adjusting layer was formed with a thickness of 20 nm. In addition, the compound Nos. A nitrogen-containing compound consisting of 10 was formed to a thickness of 3 nm to form an organic compound layer. Further, a palladium-containing layer (Pd layer) made of palladium (Pd) is formed as a conductive layer on the organic compound layer with a thickness of 0.1 nm, and a metal layer made of silver is formed thereon with a thickness of 8 nm. Formed.
 まず、PET製の基材を市販の電子ビーム蒸着装置の基材ホルダーに固定し、フッ化マグネシウム(MgF)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。さらに、酸化チタン(TiO)を加熱ボートに入れ、当該電子ビーム蒸着装置の真空槽に取り付けた。次に、パラジウム(Pd)のターゲットをスパッタリング装置の真空槽に取り付けた。 First, a base material made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, magnesium fluoride (MgF 2 ) is put into a heating boat, and these substrate holders and the heating boat are connected to a vacuum of the electron beam evaporation apparatus. Attached to the tank. Further, titanium oxide (TiO 2 ) was put into a heating boat and attached to the vacuum chamber of the electron beam evaporation apparatus. Next, a palladium (Pd) target was attached to the vacuum chamber of the sputtering apparatus.
 次に、タングステン製の抵抗加熱ボートに、上記表1に示す窒素含有化合物の化合物No.10を入れ、真空蒸着装置の第1真空槽に取り付けた。さらに、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽に取り付けた。 Next, a compound No. of nitrogen-containing compounds shown in Table 1 above was placed on a resistance heating boat made of tungsten. 10 was placed and attached to the first vacuum chamber of the vacuum deposition apparatus. Furthermore, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the 2nd vacuum chamber of the vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、フッ化マグネシウム(MgF)の入った加熱ボートに電子ビームを照射して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で基材上に厚さ180nmのフッ化マグネシウムからなる第2アドミッタンス調整層を設けた。
 さらに、酸化チタン(TiO)の入った加熱ボートに電子ビームを照射して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で第2アドミッタンス調整層上に厚さ20nmの酸化チタンからなる第1アドミッタンス調整層を設けた。
Next, the vacuum chamber of the electron beam evaporation apparatus was depressurized to 4 × 10 −4 Pa, and then heated by irradiating an electron beam onto a heating boat containing magnesium fluoride (MgF 2 ), with a deposition rate of 0.1 nm / A second admittance adjusting layer made of magnesium fluoride having a thickness of 180 nm was provided on the substrate at a rate of from second to 0.2 nm / second.
Further, a heating boat containing titanium oxide (TiO 2 ) is irradiated with an electron beam and heated to form a titanium oxide having a thickness of 20 nm on the second admittance adjusting layer at a deposition rate of 0.1 nm / sec to 0.2 nm / sec. The 1st admittance adjustment layer which consists of was provided.
 続いて、アドミッタンス調整層まで形成した基板を真空のまま真空蒸着装置の第1真空槽に移し、第1真空槽を4×10-4Paまで減圧した後、化合物No.10の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ3nmの窒素含有化合物の化合物No.10からなる有機化合物層を形成した。 Subsequently, the substrate formed up to the admittance adjusting layer was transferred to the first vacuum chamber of the vacuum deposition apparatus while being vacuumed, and the first vacuum chamber was depressurized to 4 × 10 −4 Pa. The resistance heating boat containing 10 was energized and heated. As a result, the compound No. of nitrogen-containing compound having a deposition rate of 0.1 nm / second to 0.2 nm / second and a thickness of 3 nm was obtained. An organic compound layer consisting of 10 was formed.
 次に、第1アドミッタンス調整層まで形成した基材を真空のままスパッタリング装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、Pdのターゲットに電圧を印加し、第1アドミッタンス調整層上にPdからなるパラジウム含有層を0.1nmの厚さで設けた。 Next, the base material formed up to the first admittance adjustment layer is transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and after the vacuum chamber is depressurized to 4 × 10 −4 Pa, a voltage is applied to the Pd target, A palladium-containing layer made of Pd was provided on the admittance adjusting layer with a thickness of 0.1 nm.
 次に、パラジウム含有層まで形成した基材を真空のまま真空蒸着装置の第2真空槽に移し、当該真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる金属層を形成した。これにより、第2アドミッタンス調整層、第1アドミッタンス調整層、有機化合物層、及び、パラジウム含有層と金属層とからなる導電層が、この順に積層された試料113の透明導電体を得た。 Next, the substrate formed up to the palladium-containing layer is transferred to the second vacuum chamber of the vacuum deposition apparatus while being vacuumed, and after the pressure in the vacuum chamber is reduced to 4 × 10 −4 Pa, the heating boat containing silver is energized. And heated. Thereby, a metal layer made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second. Thereby, the transparent conductor of the sample 113 by which the 2nd admittance adjustment layer, the 1st admittance adjustment layer, the organic compound layer, and the conductive layer which consists of a palladium containing layer and a metal layer were laminated | stacked in this order was obtained.
[試料114の透明導電体の作製]
 第1アドミッタンス調整層を酸化ニオブ(Nb)で構成した以外は、上記試料113と同様の手順で試料114の透明導電体を得た。
[Production of transparent conductor of sample 114]
A transparent conductor of Sample 114 was obtained in the same procedure as Sample 113 except that the first admittance adjusting layer was composed of niobium oxide (Nb 2 O 5 ).
[試料115~128の透明導電体の作製]
 有機化合物層を、下記表2に示す材料で構成した以外は、上記試料109と同様の手順で試料115~128の透明導電体を得た。試料115~128の有機化合物層に適用する表2に示す各材料は、上記表1に記載の化合物に対応する。
[Preparation of transparent conductors of samples 115 to 128]
Transparent conductors of Samples 115 to 128 were obtained in the same procedure as Sample 109, except that the organic compound layer was composed of the materials shown in Table 2 below. Each material shown in Table 2 applied to the organic compound layers of Samples 115 to 128 corresponds to the compounds shown in Table 1 above.
[実施例1の各試料の評価]
 上記の方法で作製した試料101~128の各透明導電体の光学特性として、光学アドミッタンスの決定、吸収率(平均吸収率、最大吸収率、プラズモン吸収率:%)の測定を行った。
 また、試料101~128の各透明導電体について、可視光平均透過率(%)、及び、表面抵抗(Ω/sq.)を測定した。
 光学アドミッタンスの決定、吸収率(%)、可視光平均透過率(%)、及び、表面抵抗(Ω/sq.)の測定は、以下のように行った。
[Evaluation of each sample of Example 1]
As the optical characteristics of the transparent conductors of the samples 101 to 128 manufactured by the above method, the determination of optical admittance and the measurement of the absorption rate (average absorption rate, maximum absorption rate, plasmon absorption rate:%) were performed.
For each of the transparent conductors of Samples 101 to 128, the average visible light transmittance (%) and the surface resistance (Ω / sq.) Were measured.
Determination of optical admittance, absorptance (%), average visible light transmittance (%), and surface resistance (Ω / sq.) Were measured as follows.
[アドミッタンスの決定方法]
 透明導電体を構成する各界面のアドミッタンスは、薄膜設計ソフトEssential Macleod Ver.9.4.375で算出した。なお、算出に必要な各層の厚みd、屈折率n、及び吸収係数kは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[How to determine admittance]
The admittance of each interface composing the transparent conductor is measured by the thin film design software Essential Macintosh Ver. It calculated in 9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
[平均吸収率、最大吸収率の測定方法]
 透明導電体の正面に対して、5°傾けた角度から測定光(波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の平均透過率及び平均反射率を測定した。そして、平均吸収率は、100-(平均透過率+平均反射率)の計算式より算出した。なお、測定光は、基材側から入射させた。
 また、上記と同様の方法で波長450nm~800nmの透過率及び反射率を測定した。そして、各波長における吸収率を100-(透過率+反射率)の計算式より算出し、得られた値の最大値を最大吸収率とした。
[Measurement method of average absorption rate and maximum absorption rate]
Measuring light (light with a wavelength of 450 nm to 800 nm) is incident on the front surface of the transparent conductor from an angle of 5 °, and the average transmittance and average reflectance of light are measured by Hitachi, Ltd .: spectrophotometer U4100 Was measured. The average absorptance was calculated from a calculation formula of 100− (average transmittance + average reflectance). The measurement light was incident from the substrate side.
Further, transmittance and reflectance at wavelengths of 450 nm to 800 nm were measured by the same method as described above. Then, the absorptance at each wavelength was calculated from a calculation formula of 100− (transmittance + reflectance), and the maximum value obtained was defined as the maximum absorptance.
[プラズモン吸収率の測定方法]
 導電層のプラズモン吸収率は、以下のように測定した。
 まず、透明ガラス基板上に、パラジウムを真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)を用いて基板上に0.2s(0.1nm)で形成した。パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。その後、パラジウムが付着した基板上にシンクロン製のBMC-800T蒸着機を用いて銀を20nm形成した。このときの抵抗加熱は210A、成膜レートは5Å/sとした。
 得られた導電層の反射率及び透過率を測定し、吸収率=100-(透過率+反射率)として算出した。この導電層にはプラズモン吸収が無いと仮定し、実施例で作成した各試料の透明導電体の導電層の吸収率を測定したデータから差し引き、プラズモン吸収率を測定した。
 光の透過率及び反射率は、日立株式会社製:分光光度計 U4100にて測定した。
[Measurement method of plasmon absorption rate]
The plasmon absorption rate of the conductive layer was measured as follows.
First, palladium was formed on a transparent glass substrate at 0.2 s (0.1 nm) on the substrate using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Corporation. The average thickness of palladium was calculated from the film formation rate at the manufacturer's nominal value of the sputtering apparatus. Thereafter, 20 nm of silver was formed on the substrate on which palladium was adhered, using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The resistance heating at this time was 210 A, and the film formation rate was 5 Å / s.
The reflectance and transmittance of the obtained conductive layer were measured and calculated as absorptivity = 100− (transmittance + reflectance). Assuming that this conductive layer has no plasmon absorption, the plasmon absorption rate was measured by subtracting from the data obtained by measuring the absorption rate of the conductive layer of the transparent conductor of each sample prepared in the example.
The light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
[可視光平均透過率の測定方法]
 光透過率の測定は、分光光度計(日立製作所製U-3300)を用い、測定光(波長450nm~800nmの光)において、試料と同じ基材をベースラインとして光の平均透過率を測定した。
[Measurement method of average visible light transmittance]
The light transmittance was measured using a spectrophotometer (U-3300, manufactured by Hitachi, Ltd.), and the average light transmittance was measured in the measurement light (light with a wavelength of 450 nm to 800 nm) using the same base material as the sample as the baseline. .
[表面抵抗の測定方法]
 表面抵抗の測定は、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式で行った。
[Measurement method of surface resistance]
The surface resistance was measured using a resistivity meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation) by a four-terminal four-probe method and a constant current application method.
 試料101~128の構成、並びに、光学アドミッタンス、吸収率(%)、可視光平均透過率(%)、及び、表面抵抗(Ω/sq.)の測定結果を下記表2に示す。 Table 2 below shows the configurations of Samples 101 to 128 and the measurement results of optical admittance, absorption rate (%), average visible light transmittance (%), and surface resistance (Ω / sq.).
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
[実施例1の評価結果]
 アドミッタンス調整層、有機化合物層、及び、パラジウム含有層と金属層とからなる導電層がこの順に形成されている試料105~128の透明導電体では、各吸収率が低く、可視光平均透過率、表面抵抗においても良好な結果が得られた。
[Evaluation results of Example 1]
In the transparent conductors of Samples 105 to 128 in which the admittance adjusting layer, the organic compound layer, and the conductive layer composed of the palladium-containing layer and the metal layer are formed in this order, each of the absorptances is low, the visible light average transmittance, Good results were also obtained in terms of surface resistance.
 試料101~104では、有機化合物層、及び、パラジウム含有層が形成されていないため、有機化合物層、及び、パラジウム含有層が形成された試料105~128に比べ、導電層を構成するAg層の均一性が悪く、透明導電体の光吸収率が大きい。このため、可視光平均透過率、及び、表面抵抗も悪化している。 In Samples 101 to 104, since the organic compound layer and the palladium-containing layer are not formed, the Ag layer constituting the conductive layer is compared with Samples 105 to 128 in which the organic compound layer and the palladium-containing layer are formed. The uniformity is poor and the light absorption rate of the transparent conductor is large. For this reason, the visible light average transmittance and the surface resistance are also deteriorated.
 また、試料101~104の中では、アドミッタンス調整層を備える試料103及び試料104が、アドミッタンス調整層を備えない試料101に比べて、可視光平均透過率が向上している。この結果から、アドミッタンス調整層を備えることにより、透明導電体の光透過率が向上することがわかる。 In the samples 101 to 104, the sample 103 and the sample 104 having the admittance adjusting layer have an improved average visible light transmittance as compared with the sample 101 not having the admittance adjusting layer. From this result, it turns out that the light transmittance of a transparent conductor improves by providing an admittance adjustment layer.
 試料105及び試料106は、金属層が5nmであり、試料107及び試料108は、金属層が8nmである。また、試料109~112は、金属層がそれぞれ8nm、10nm、12nm、15nmである。これらの試料を比較すると、金属層の厚さが大きくなるほど、表面抵抗が低下する傾向にある。
 さらに、金属層の厚さが大きくなるほど、金属層の表面形状に依存するプラズモン吸収も低下している。
 一方で、金属層の厚さが増加すると導電層自体の吸収が増加するため、試料109~112では、透明導電体の可視光平均透過率では、あまり変化がない。
 従って、金属層の厚さを8nm以上とすることにより、導電層の膜質が向上し、透明導電体の光透過率を向上させることができる。ただし、金属層の厚さが15nmより増加するとプラズモン吸収率の低下よりも、導電層自体の吸収が増加の方が大きくなるため、金属層の厚さを15nm以下とする必要がある。
Sample 105 and sample 106 have a metal layer of 5 nm, and sample 107 and sample 108 have a metal layer of 8 nm. Samples 109 to 112 have metal layers of 8 nm, 10 nm, 12 nm, and 15 nm, respectively. When these samples are compared, the surface resistance tends to decrease as the thickness of the metal layer increases.
Furthermore, as the thickness of the metal layer increases, plasmon absorption that depends on the surface shape of the metal layer also decreases.
On the other hand, since the absorption of the conductive layer itself increases as the thickness of the metal layer increases, in samples 109 to 112, the visible light average transmittance of the transparent conductor does not change much.
Therefore, by setting the thickness of the metal layer to 8 nm or more, the film quality of the conductive layer can be improved and the light transmittance of the transparent conductor can be improved. However, if the thickness of the metal layer is increased from 15 nm, the increase in the absorption of the conductive layer itself is larger than the decrease in the plasmon absorption rate. Therefore, the thickness of the metal layer needs to be 15 nm or less.
 アドミッタンス調整層を2層設けた試料113及び試料114は、同じ厚さの導電層を設けた試料108や試料109に比べて、平均吸収率が低下し、可視光平均透過率が向上している。このように、試料113及び試料114のように、アドミッタンス調整層を複数形成することにより、導体層の光学アドミッタンスを容易に調整することができる。そして、導体層の光学アドミッタンスを好ましく調整することにより、透明導電体の光透過率を向上させることができる。 Sample 113 and sample 114 provided with two admittance adjustment layers have lower average absorptance and improved visible light average transmittance compared to sample 108 and sample 109 provided with the same thickness of conductive layer. . In this manner, by forming a plurality of admittance adjustment layers as in the sample 113 and the sample 114, the optical admittance of the conductor layer can be easily adjusted. And the light transmittance of a transparent conductor can be improved by adjusting preferably the optical admittance of a conductor layer.
 また、有機化合物層を構成する材料が異なる試料115~128では、可視光平均透過率及び表面抵抗において、それぞれ同等な良好な結果が得られた。従って、上記表1に記載されているような、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]の化合物を用いて構成された有機化合物層と、パラジウム含有層とを有することにより、均質性の高い導電層が形成される。つまり、有機化合物層と、パラジウム含有層とを有することにより、金属層が単層成長型(Frank-van der Merwe:FM型)の成長によって形成され、金属層の均質性が向上する。このため、可視光平均透過率及び表面抵抗に優れた透明導電体を構成することができる。 Also, samples 115 to 128 having different materials constituting the organic compound layer had the same good results in terms of average visible light transmittance and surface resistance. Therefore, as described in Table 1 above, an organic compound layer formed using a compound having an effective unshared electron pair content [n / M] of 2.0 × 10 −3 ≦ [n / M]. And a palladium-containing layer, a highly homogeneous conductive layer is formed. That is, by having the organic compound layer and the palladium-containing layer, the metal layer is formed by single-layer growth type (Frank-van der Merwe: FM type) growth, and the homogeneity of the metal layer is improved. For this reason, the transparent conductor excellent in visible light average transmittance | permeability and surface resistance can be comprised.
 試料107~109は、アドミッタンス調整層をそれぞれITO、TiO、Nbで構成した試料である。これらの試料では、光学アドミッタンスx及びxが大きくなると、透明導電体の光吸収率が低下している。特に、x及びxが1.8未満の試料107及び試料108に対し、x及びxが1.8以上の試料109は、透明導電体の吸収率が低下している。そして、最もx及びxが大きい試料109は、光吸収率が最も低い。同様に、最もx及びxが大きい試料109は、可視光平均透過率が最も大きい。
 このため、x及びxを大きくすることにより、透明導電体の光吸収率が低下することがわかる。
Samples 107 to 109 are samples in which the admittance adjusting layers are made of ITO, TiO 2 , and Nb 2 O 5 , respectively. In these samples, the optical admittance x 1 and x 2 is increased, the light absorption of the transparent conductive material is reduced. In particular, the sample 109 and the sample 108 having x 1 and x 2 of less than 1.8 have a lower absorption factor of the transparent conductor in the sample 109 having x 1 and x 2 of 1.8 or more. The sample 109 having the largest x 1 and x 2 has the lowest light absorption rate. Similarly, most x 1 and x 2 is greater sample 109, the largest visible light average transmittance.
Therefore, by increasing the x 1 and x 2, the light absorption of the transparent conductive material is lowered.
[ボトムエミッション型の有機電界発光素子の作製]
 実施例1で作製した透明導電体の試料101~128を、アノードとして発光機能層の下部に設けたボトムエミッション型の有機電界発光素子(有機EL素子)の試料201~228を作製した。図13を参照し、作製手順を説明する。尚、下記表3には、試料201~228の有機電界発光素子に用いた透明導電体の構成を示している。各有機電界発光素子の試料201~228には、試料番号の下2ケタが一致する実施例1の各試料101~128の透明導電体を用いた。
[Fabrication of bottom emission type organic electroluminescence device]
Samples 201 to 228 of bottom emission type organic electroluminescent elements (organic EL elements) provided as transparent anode samples 101 to 128 prepared in Example 1 as anodes under the light emitting functional layer were prepared. A manufacturing procedure will be described with reference to FIG. Table 3 below shows the configuration of the transparent conductor used in the organic electroluminescent elements of Samples 201 to 228. As the samples 201 to 228 of the organic electroluminescent elements, the transparent conductors of the samples 101 to 128 of Example 1 in which the last two digits of the sample number coincide with each other were used.
[試料201~228の有機電界発光素子の作製手順]
(透明導電体の形成)
 先ず、試料201~228の作製において、透明なポリエチレンテレフタレート(PET)製の基材51の上部に、各透明導電体52を形成した。各透明導電体52の形成は、実施例1の試料101~128と同様の手順で行った。
[Procedure for manufacturing organic electroluminescent elements of samples 201 to 228]
(Formation of transparent conductor)
First, in the preparation of samples 201 to 228, each transparent conductor 52 was formed on the top of a transparent polyethylene terephthalate (PET) base material 51. Each transparent conductor 52 was formed in the same procedure as the samples 101 to 128 of Example 1.
(正孔輸送・注入層の形成)
 次に、正孔輸送注入材料として下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層53を、透明導電体52上に形成した。この際、蒸着速度0.1nm/秒~0.2nm/秒、厚さ20nmとした。
(Hole transport / injection layer formation)
Next, a hole-transporting hole serving as both a hole-injecting layer and a hole-transporting layer made of α-NPD is heated by energizing a heating boat containing α-NPD represented by the following structural formula as a hole-transporting injecting material. The injection layer 53 was formed on the transparent conductor 52. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the thickness was 20 nm.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
(発光層の形成)
 次に、下記構造式に示すホスト材料H4の入った加熱ボートと、下記構造式に示す燐光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層54を、正孔輸送・注入層53上に形成した。この際、蒸着速度がホスト材料H4:燐光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また、発光層54の厚さを30nmとした。
(Formation of light emitting layer)
Next, the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were respectively energized independently, and the host material H4 and phosphorescent light emission were emitted. The light emitting layer 54 made of the photosensitive compound Ir-4 was formed on the hole transport / injection layer 53. At this time, the energization of the heating boat was adjusted so that the deposition rate was the host material H4: phosphorescent compound Ir-4 = 100: 6. Further, the thickness of the light emitting layer 54 was set to 30 nm.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
(正孔阻止層の形成)
 次に、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層55を、発光層54上に形成した。この際、蒸着速度0.1nm/秒~0.2nm/秒、厚さ10nmとした。
(Formation of hole blocking layer)
Next, a hole-blocking layer 55 made of BAlq was formed on the light-emitting layer 54 by heating a heated boat containing BAlq represented by the following structural formula as a hole-blocking material. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(電子輸送・注入層の形成)
 その後、電子輸送材料として、先に構造式を示した化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層56を、正孔阻止層55上に形成した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また厚さ30nmとした。
(Formation of electron transport / injection layer)
Thereafter, as an electron transporting material, a heating boat containing the compound 10 having the structural formula shown above and a heating boat containing potassium fluoride were energized independently, and an electron composed of the compound 10 and potassium fluoride. An electron transport / injection layer 56 serving both as an injection layer and an electron transport layer was formed on the hole blocking layer 55. At this time, the energization of the heating boat was adjusted so that the deposition rate was compound 10: potassium fluoride = 75: 25. The thickness was 30 nm.
(対向電極:カソードの形成)
 以上の後には、発光機能層が形成された基材51を、真空蒸着装置の真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した後、真空槽内に取り付けられたアルミニウムの入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で厚さ100nmのアルミニウムからなる対向電極57を形成した。この対向電極57は、カソードとして用いられる。
 以上の方法により、基材51上に、ボトムエミッション型の有機電界発光素子を形成した。
(Counter electrode: formation of cathode)
After the above, the base material 51 on which the light emitting functional layer is formed is transferred into the vacuum chamber of the vacuum deposition apparatus, the inside of the second vacuum chamber is depressurized to 4 × 10 −4 Pa, and then attached to the vacuum chamber. The resistance heating boat containing the obtained aluminum was energized and heated. Thus, the counter electrode 57 made of aluminum having a thickness of 100 nm was formed at a deposition rate of 0.3 nm / second. The counter electrode 57 is used as a cathode.
A bottom emission type organic electroluminescence device was formed on the base material 51 by the above method.
(素子の封止)
 その後、有機電界発光素子を、厚さ300μmのガラス基板からなる封止材で覆い、有機電界発光素子を囲む状態で、透明封止材と基材51との間に接着剤(シール材)を充填した。接着剤としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。透明封止材と基材51との間に充填した接着剤に対して、ガラス基板(透明封止材)側からUV光を照射し、接着剤を硬化させて有機電界発光素子を封止した。
(Element sealing)
Thereafter, the organic electroluminescent element is covered with a sealing material made of a glass substrate having a thickness of 300 μm, and an adhesive (sealant) is placed between the transparent sealing material and the substrate 51 in a state of surrounding the organic electroluminescent element. Filled. As the adhesive, an epoxy photocurable adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) was used. The adhesive filled between the transparent sealing material and the base material 51 was irradiated with UV light from the glass substrate (transparent sealing material) side, and the adhesive was cured to seal the organic electroluminescent element. .
 尚、有機電界発光素子の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの基材51における中央の4.5cm×4.5cmを発光領域とし、発光領域の全周に幅0.25cmの非発光領域を設けた。また、アノードである透明導電体52の導電層と、カソードである対向電極57とは、正孔輸送・注入層53から電子輸送・注入層56によって絶縁された状態で、基材51の周縁に端子部分を引き出された形状で形成した。 In the formation of the organic electroluminescent element, a vapor deposition mask is used for forming each layer, and the central 4.5 cm × 4.5 cm of the 5 cm × 5 cm base material 51 is set as the light emitting region, and the width of the entire circumference of the light emitting region is A non-light emitting area of 0.25 cm was provided. In addition, the conductive layer of the transparent conductor 52 serving as the anode and the counter electrode 57 serving as the cathode are insulated from the hole transport / injection layer 53 by the electron transport / injection layer 56 and are formed on the periphery of the substrate 51. The terminal portion was formed in a drawn shape.
 以上のようにして、基材51上に有機電界発光素子を設け、これを透明封止材と接着剤とで封止した試料201~228の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層54で発生した各色の発光光hが、基材51側から取り出される。 As described above, organic electroluminescent elements were provided on the substrate 51, and each light emitting panel of the organic electroluminescent elements of Samples 201 to 228 was obtained by sealing this with a transparent sealing material and an adhesive. In each of these light emitting panels, each color of emitted light h generated in the light emitting layer 54 is taken out from the substrate 51 side.
[実施例2の各試料の評価]
 試料201~228で作製した有機電界発光素子について、駆動電圧(V)、色変化(Δxy)、及び、演色性(Ra)を測定した。この結果を下記表3に合わせて示す。
[Evaluation of each sample of Example 2]
With respect to the organic electroluminescent elements prepared from Samples 201 to 228, the driving voltage (V), the color change (Δxy), and the color rendering properties (Ra) were measured. The results are also shown in Table 3 below.
[駆動電圧の測定方法]
 駆動電圧の測定においては、各試料201~228の有機電界発光素子の透明導電体52側(すなわち基材51側)での正面輝度が1000cd/mとなるときの電圧を駆動電圧として測定した。なお、輝度の測定には分光放射輝度計CS-2000(コニカミノルタセンシング製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表わす。
[Measurement method of drive voltage]
In the measurement of the driving voltage, the voltage when the front luminance at the transparent conductor 52 side (that is, the base material 51 side) of the organic electroluminescent elements of the samples 201 to 228 was 1000 cd / m 2 was measured as the driving voltage. . For the measurement of luminance, a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing) was used. A smaller value of the obtained drive voltage indicates a more favorable result.
[色変化の測定方法]
 色変化の測定においては、各試料201~228の有機電界発光素子に2.5mA/cmの電流を加え、角度の異なる位置からCIE1931表色系における色度を測定した。この際、透明導電体52側の発光面に対する法線方向となる0°の位置と、垂直水平(上下左右)方向にそれぞれ45°の各位置とで色度を測定した。角度の異なる位置において測定した色度の差を、色変化(Δxy)として下記表3に示した。色変化は、色度の視野角特性を表し、数値が小さいほど好ましい結果となる。
[Measurement method of color change]
In the measurement of the color change, a current of 2.5 mA / cm 2 was applied to the organic electroluminescent elements of the samples 201 to 228, and the chromaticity in the CIE 1931 color system was measured from positions at different angles. At this time, the chromaticity was measured at a position of 0 ° which is a normal direction to the light emitting surface on the transparent conductor 52 side and each position of 45 ° in the vertical horizontal (up, down, left and right) directions. The difference in chromaticity measured at different angles is shown in Table 3 below as color change (Δxy). The color change represents the viewing angle characteristic of chromaticity, and the smaller the value, the better the result.
[演色性の測定方法]
 演色性(Ra)の測定には、分光放射輝度計CS-2000(コニカミノルタセンシング製)を用い、各試料201~228の有機電界発光素子に、2.5mA/cmの電流を加えた場合の値を測定した。演色性(Ra)は、得られた値が100に近いほど好ましい結果であることを表す。
[Measurement method of color rendering properties]
The color rendering property (Ra) is measured by using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing) and applying a current of 2.5 mA / cm 2 to the organic electroluminescent elements of the samples 201 to 228. The value of was measured. The color rendering property (Ra) indicates that the obtained value is closer to 100 and is a preferable result.
 試料201~228の構成、並びに、駆動電圧(V)、色変化(Δxy)、及び、演色性(Ra)の測定結果を下記表3に示す。 Table 3 below shows the configurations of the samples 201 to 228 and the measurement results of the drive voltage (V), color change (Δxy), and color rendering properties (Ra).
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
[実施例2の評価結果]
 アドミッタンス調整層、有機化合物層、及び、パラジウム含有層と金属層とからなる導電層がこの順に形成された透明導電体を備える試料205~228の有機電界発光素子では、駆動電圧、色変化、及び、演色性のすべてに良好な結果が得られた。
[Evaluation results of Example 2]
In the organic electroluminescent elements of Samples 205 to 228 including the transparent conductor in which the admittance adjusting layer, the organic compound layer, and the conductive layer including the palladium-containing layer and the metal layer are formed in this order, the driving voltage, the color change, and Good results were obtained for all of the color rendering properties.
 試料201~204の有機電界発光素子では、金属層を12nm形成した試料202を除き、発光しなかった。また、試料202においても、色変化の測定結果が低く、十分な結果が得られなかった。さらに、演色性においても、試料205~228の有機電界発光素子に比べて低い値となった。 In the organic electroluminescent elements of Samples 201 to 204, no light was emitted except for Sample 202 in which a metal layer was formed to 12 nm. Also in the sample 202, the measurement result of the color change was low, and a sufficient result could not be obtained. Further, the color rendering properties were lower than those of the organic electroluminescent elements of Samples 205 to 228.
 金属層を5nm形成した試料205、試料206に比べると、金属層を8nm以上形成した試料207~212では、駆動電圧が低く、色変化も小さい、良好な結果が得られた。 Compared with Sample 205 and Sample 206 in which the metal layer was formed with a thickness of 5 nm, Samples 207 to 212 in which the metal layer was formed with a thickness of 8 nm or more had a low driving voltage and small color change, and good results were obtained.
 また、色変化の測定結果を見ると、アドミッタンス調整層としてTiOやNbを用いた試料206、試料208~212では、アドミッタンス調整層としてITOを用いた試料205及び試料207に比べて、良好な結果が得られた。この結果から、アドミッタンス調整層としては、TiOやNbを用いることが好ましいと考えられる。 Further, when the measurement result of the color change is seen, the samples 206 and 208 to 212 using TiO 2 or Nb 2 O 5 as the admittance adjusting layer are compared with the samples 205 and 207 using ITO as the admittance adjusting layer. Good results were obtained. From this result, it is considered preferable to use TiO 2 or Nb 2 O 5 as the admittance adjusting layer.
 さらに、アドミッタンス調整層を2層設けた試料213及び試料214は、同じ厚さの導電層を設けた試料208や試料209に比べて、色変化の測定結果で良好な結果が得られた。つまり、試料213及び試料214のように、アドミッタンス調整層を複数形成することにより、導体層の光学アドミッタンスを調整することが可能となり、有機電界発光素子の光学特性を向上させることが可能となる。 Furthermore, the sample 213 and the sample 214 provided with two admittance adjusting layers obtained better results in the color change measurement results than the sample 208 and the sample 209 provided with the same thickness of the conductive layer. That is, by forming a plurality of admittance adjusting layers as in the sample 213 and the sample 214, the optical admittance of the conductor layer can be adjusted, and the optical characteristics of the organic electroluminescent element can be improved.
 10,20,30,52・・・透明導電体、11,51・・・基材、12・・・有機化合物層、13・・・パラジウム含有層、14・・・金属層、15・・・導電層、21・・・アドミッタンス調整層、31・・・第1アドミッタンス調整層、32・・・第2アドミッタンス調整層、40・・・有機電界発光素子、46・・・発光機能層、46a・・・正孔注入層、46b・・・正孔輸送層、46c,54・・・発光層、46d・・・電子輸送層、46e・・・電子注入層、47,57・・・対向電極、53・・・正孔輸送・注入層、55・・・正孔阻止層、56・・・電子輸送・注入層 10, 20, 30, 52 ... transparent conductor, 11, 51 ... base material, 12 ... organic compound layer, 13 ... palladium-containing layer, 14 ... metal layer, 15 ... Conductive layer, 21 ... admittance adjustment layer, 31 ... first admittance adjustment layer, 32 ... second admittance adjustment layer, 40 ... organic electroluminescence device, 46 ... light emission functional layer, 46a ..Hole injection layer, 46b... Hole transport layer, 46c, 54... Luminescent layer, 46d... Electron transport layer, 46e. 53 ... Hole transport / injection layer, 55 ... Hole blocking layer, 56 ... Electron transport / injection layer

Claims (15)

  1.  有機化合物層と、
     前記有機化合物層に隣接して設けられた導電層と、を備え、
     前記導電層は、銀(Ag)を主成分とする金属層と、パラジウム(Pd)を含むパラジウム含有層とからなり、
     前記パラジウム含有層が、前記導電層において前記有機化合物層側に設けられている
     透明導電体。
    An organic compound layer;
    A conductive layer provided adjacent to the organic compound layer,
    The conductive layer includes a metal layer mainly composed of silver (Ag) and a palladium-containing layer containing palladium (Pd).
    The said palladium containing layer is provided in the said organic compound layer side in the said conductive layer. The transparent conductor.
  2.  前記有機化合物層が、ルイス塩基を有する化合物からなる請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the organic compound layer is made of a compound having a Lewis base.
  3.  前記ルイス塩基を有する化合物は、当該化合物に含まれる窒素原子(N)又は硫黄原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が、2.0×10-3≦[n/M]となる請求項2に記載の透明導電体。 The compound having a Lewis base is a non-shared electron pair that does not participate in aromaticity and is not coordinated to a metal among the non-shared electron pairs that the nitrogen atom (N) or sulfur atom contained in the compound has. 3. The transparent conductor according to claim 2, wherein the effective unshared electron pair content [n / M] when the number is n and the molecular weight is M is 2.0 × 10 −3 ≦ [n / M].
  4.  前記金属層の厚さが、3nm以上15nm以下である請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the thickness of the metal layer is 3 nm or more and 15 nm or less.
  5.  前記有機化合物層の前記導電層が形成されている面と反対側の面に、アドミッタンス調整層を有し、
     前記導電層の前記有機化合物層側の界面における波長570nmの光学アドミッタンスをY=x+iy、前記導電層の前記有機化合物層と反対側の界面における波長570nmの光学アドミッタンスをY=x+iy、で表した場合に、x及びxの少なくとも一方が1.6以上である
     請求項1に記載の透明導電体。
    An admittance adjusting layer on the surface of the organic compound layer opposite to the surface on which the conductive layer is formed;
    The optical admittance at a wavelength of 570 nm at the interface of the conductive layer on the organic compound layer side is Y 1 = x 1 + iy 1 , and the optical admittance at the interface of the conductive layer on the side opposite to the organic compound layer is Y 2 = x The transparent conductor according to claim 1, wherein at least one of x 1 and x 2 is 1.6 or more when represented by 2 + iy 2 .
  6.  前記アドミッタンス調整層が、誘電性材料、又は、酸化物半導体材料を含有する請求項5に記載の透明導電体。 The transparent conductor according to claim 5, wherein the admittance adjusting layer contains a dielectric material or an oxide semiconductor material.
  7.  前記導電層のプラズモン吸収率が、波長400nm~800nmの全範囲で15%以下である請求項5に記載の透明導電体。 The transparent conductor according to claim 5, wherein the conductive layer has a plasmon absorptance of 15% or less over the entire wavelength range of 400 nm to 800 nm.
  8.  x及びxが共に1.6以上である請求項5に記載の透明導電体。 The transparent conductor according to claim 5, wherein both x 1 and x 2 are 1.6 or more.
  9.  前記光学アドミッタンスYのyと、前記光学アドミッタンスYのyとが、y×y<0の関係を満たす請求項5に記載の透明導電体。 The optical and y 1 of the admittance Y 1, wherein a y 2 optical admittance Y 2 is a transparent conductor according to claim 5 satisfies the relationship y 1 × y 2 <0.
  10.  前記アドミッタンス調整層が、TiO、又は、Nbを含む請求項5に記載の透明導電体。 The transparent conductor according to claim 5, wherein the admittance adjusting layer contains TiO 2 or Nb 2 O 5 .
  11.  前記アドミッタンス調整層の屈折率が1.8以上2.5以下である請求項5に記載の透明導電体。 The transparent conductor according to claim 5, wherein a refractive index of the admittance adjusting layer is 1.8 or more and 2.5 or less.
  12.  前記アドミッタンス調整層が、第1アドミッタンス調整層と、第2アドミッタンス調整層とからなり、前記第1アドミッタンス調整層側に前記有機化合物層が設けられている請求項5に記載の透明導電体。 The transparent conductor according to claim 5, wherein the admittance adjustment layer includes a first admittance adjustment layer and a second admittance adjustment layer, and the organic compound layer is provided on the first admittance adjustment layer side.
  13.  前記第1アドミッタンス調整層の屈折率が、前記第2アドミッタンス調整層の屈折率よりも0.2以上大きい請求項12に記載の透明導電体。 The transparent conductor according to claim 12, wherein a refractive index of the first admittance adjusting layer is 0.2 or more larger than a refractive index of the second admittance adjusting layer.
  14.  前記請求項1から13のいずれかに記載の透明導電体を備える電子デバイス。 An electronic device comprising the transparent conductor according to any one of claims 1 to 13.
  15.  前記透明導電体上に発光機能層を有する請求項14に記載の電子デバイス。 The electronic device according to claim 14, further comprising a light emitting functional layer on the transparent conductor.
PCT/JP2014/061049 2013-04-22 2014-04-18 Transparent conductor and electronic device WO2014175181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015513729A JPWO2014175181A1 (en) 2013-04-22 2014-04-18 Transparent conductor and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-089613 2013-04-22
JP2013089613 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014175181A1 true WO2014175181A1 (en) 2014-10-30

Family

ID=51791759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061049 WO2014175181A1 (en) 2013-04-22 2014-04-18 Transparent conductor and electronic device

Country Status (2)

Country Link
JP (1) JPWO2014175181A1 (en)
WO (1) WO2014175181A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328198A (en) * 2000-05-18 2001-11-27 Bridgestone Corp Laminated film and method of forming laminated film
JP2004315970A (en) * 2003-04-03 2004-11-11 Kobe Steel Ltd Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING
JP2006502535A (en) * 2002-08-22 2006-01-19 アグフア−ゲヴエルト Method of manufacturing a substantially transparent conductive layer configuration
JP2008041294A (en) * 2006-08-02 2008-02-21 Dainippon Printing Co Ltd Conductive membrane substrate
JP2008036952A (en) * 2006-08-04 2008-02-21 Asahi Glass Co Ltd Electroconductive laminate and protective plate for plasma display
JP2008171637A (en) * 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd Transparent conductive film laminate, organic el device using this transparent conductive film laminate, and manufacturing method of these
JP2008226581A (en) * 2007-03-12 2008-09-25 Sumitomo Metal Mining Co Ltd Transparent conductive membrane, transparent conductive substrate using this, transparent conductive film, and near-infrared ray cutoff filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328198A (en) * 2000-05-18 2001-11-27 Bridgestone Corp Laminated film and method of forming laminated film
JP2006502535A (en) * 2002-08-22 2006-01-19 アグフア−ゲヴエルト Method of manufacturing a substantially transparent conductive layer configuration
JP2004315970A (en) * 2003-04-03 2004-11-11 Kobe Steel Ltd Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING
JP2008041294A (en) * 2006-08-02 2008-02-21 Dainippon Printing Co Ltd Conductive membrane substrate
JP2008036952A (en) * 2006-08-04 2008-02-21 Asahi Glass Co Ltd Electroconductive laminate and protective plate for plasma display
JP2008171637A (en) * 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd Transparent conductive film laminate, organic el device using this transparent conductive film laminate, and manufacturing method of these
JP2008226581A (en) * 2007-03-12 2008-09-25 Sumitomo Metal Mining Co Ltd Transparent conductive membrane, transparent conductive substrate using this, transparent conductive film, and near-infrared ray cutoff filter

Also Published As

Publication number Publication date
JPWO2014175181A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6287834B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2013161602A1 (en) Transparent electrode, electronic device, and organic electroluminescent element
JP6230868B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6256349B2 (en) Transparent electrode and electronic device
JP6217642B2 (en) Transparent electrode, electronic device, and method of manufacturing transparent electrode
WO2014084170A1 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2013161639A1 (en) Transparent electrode, method for manufacturing transparent electrode, electronic device, and organic electroluminescence element
JP6241189B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
WO2014112410A1 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2014065236A1 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6112107B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2014129381A1 (en) Transparent electrode, electronic device and organic electroluminescent element
JP5967047B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP6295958B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP2016058205A (en) Transparent electrode, electronic device and organic electroluminescent element
JP6028806B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6187471B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2016136397A1 (en) Transparent electrode and electronic device
JP6277581B2 (en) Organic electroluminescence device
WO2014181640A1 (en) Light-emitting element and display device
WO2014175181A1 (en) Transparent conductor and electronic device
WO2014175451A1 (en) Transparent conductor and electronic device
JP6314839B2 (en) Transparent electrode, electronic device, and organic electroluminescent element
JP2015060717A (en) Transparent electrode, electronic device, and organic electroluminescent element
WO2014098014A1 (en) Transparent electrode and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14789103

Country of ref document: EP

Kind code of ref document: A1