WO2014174352A1 - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
WO2014174352A1
WO2014174352A1 PCT/IB2014/000553 IB2014000553W WO2014174352A1 WO 2014174352 A1 WO2014174352 A1 WO 2014174352A1 IB 2014000553 W IB2014000553 W IB 2014000553W WO 2014174352 A1 WO2014174352 A1 WO 2014174352A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
photosensor
position detection
scanning direction
pattern
Prior art date
Application number
PCT/IB2014/000553
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 奥山
Original Assignee
株式会社オーク製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オーク製作所 filed Critical 株式会社オーク製作所
Priority to KR1020157032107A priority Critical patent/KR102142747B1/en
Priority to JP2015513345A priority patent/JPWO2014174352A1/en
Publication of WO2014174352A1 publication Critical patent/WO2014174352A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Definitions

  • the present invention relates to a maskless exposure apparatus that forms a pattern using a light modulation element array, and more particularly to position detection of a pattern projected on a substrate or the like.
  • pattern light is projected onto a substrate by a light modulation element array such as DMD (Digital Micro-mirror Device) while moving a stage on which the substrate is mounted along the scanning direction.
  • a light modulation element such as a micromirror arranged in a two-dimensional manner is used to detect the position of a projection area (exposure area) on a substrate placed on a stage and project pattern light according to the position. Control.
  • a fine pattern is formed on the order of a micrometer, it is necessary to accurately detect the position of the substrate and project the pattern light without misalignment.
  • due to a change in temperature of the DMD or the like there may be a deviation in the projection position of the pattern light and an error in the pattern formation position.
  • a plurality of optical sensors such as photodiodes are arranged beside the stage, and a pattern for position detection is projected onto the optical sensor while scanning the stage.
  • the exposure position is corrected by comparing the detected exposure position with reference position information prepared in advance (see, for example, Patent Document 1).
  • a method of detecting a reference position from a change in light quantity of two optical sensors is known (see Patent Document 2).
  • a pair of photodiodes whose positions are symmetrically shifted along the scanning direction are arranged.
  • the slit light for position detection passes over the diode pair.
  • a position where the light amounts of the two photosensors are equal to each other is detected as a reference position.
  • the size of the photodiode is larger than the pattern resolution. There are individual differences in the photosensitive characteristics of the photodiodes. Therefore, even if a pattern is projected with the same light intensity, the amount of light detected is slightly different. In addition, the projected light may become unstable momentarily due to illuminance unevenness or the like, and it is difficult to detect the exposure position with high accuracy. Further, in the exposure apparatus, the substrate is displaced in the sub scanning direction as well as the main scanning direction. Therefore, an error occurs in the position of the scanning band through which the exposure area passes in the main scanning direction and the sub-scanning direction, and the pattern accuracy is lowered. Therefore, in a maskless exposure apparatus, accurate two-dimensional position detection is required using a photosensor such as a photodiode.
  • An exposure apparatus includes a light modulation element array in which a plurality of light modulation elements are arranged in a matrix, a scanning unit that relatively moves an exposure area by the light modulation element array with respect to a drawing object along a main scanning direction, A position detection unit is provided that includes a first photosensor group that is inclined with respect to the main scanning direction, and a second photosensor group that is inclined with respect to the main scanning direction in a direction opposite to the main scanning direction.
  • the reverse rotation direction represents the opposite direction when the first photosensor group is inclined in one rotation direction when a line along the movement direction or the scanning direction is used as a reference.
  • the exposure apparatus is inclined along the arrangement vertical direction of the first and second photosensor groups by controlling the plurality of light modulation elements, and along the arrangement direction of the first and second photosensor groups.
  • An exposure operation control unit that projects light of the first and second position detection pattern rows, each pattern width being smaller than the photosensor width and larger than the photosensor interval, to the first and second photosensor groups, respectively. Prepare.
  • the luminance signal level increases, follows constant, and decreases.
  • the position detection unit determines the exposure positions at which the levels of the luminance signals output from the adjacent photosensors become equal as the first and second position detection pattern rows pass through the first series of exposure positions and the second series.
  • a series of exposure positions are detected in time series.
  • the position detection unit can calculate a two-dimensional exposure position from the detected first and second series of exposure positions.
  • the two-dimensional exposure position can be defined based on, for example, two-dimensional coordinates defined along the main scanning direction and the sub-scanning direction.
  • the position detection unit of the present invention detects an exposure position where the level of the luminance signal output from the adjacent photosensor becomes equal while the light of one position detection pattern passes through the adjacent photosensor, and the position detection pattern A series of exposure positions are detected in time series as light passes through the row.
  • the exposure position represents a relative position on the stage of a predetermined position detection pattern, and is represented by, for example, position coordinates along the scanning direction defined on the stage.
  • the exposure apparatus may be provided with a correction unit that corrects the exposure reference position based on a series of detected exposure positions and a predetermined standard exposure position.
  • the standard exposure position can be expressed by, for example, position coordinates determined on the drawing data.
  • the exposure reference position for example, a drawing start position is determined.
  • exposure data is corrected not only for the drawing start position but also for the exposure position along the sub-scanning direction, so that the drawing area does not partially overlap and is accurate.
  • a pattern can be formed.
  • the first and second series of exposure positions are detected in advance as vector exposure positions along the sensor arrangement direction, and representative exposure positions (averages) are obtained for each photosensor group. 2), the two-dimensional exposure position coordinates along the main scanning direction and the sub-scanning direction can be obtained.
  • the arrangement interval of the photosensors, the pattern interval of the pattern row, and the like can be arbitrarily set.
  • the inclination arrangement angle ⁇ with respect to the moving direction of the first photosensor group or the main scanning direction is in a range of 30 ° ⁇ ⁇ ⁇ 60 °
  • the inclination arrangement angle ⁇ of the second photosensor group is ⁇ 60 ° ⁇ ⁇ . It falls within the range of ⁇ ⁇ 30 °.
  • the first and second photosensor groups can be inclined at + 45 ° and ⁇ 45 °, respectively, and can be arranged symmetrically with respect to the moving direction or the main scanning direction.
  • the movement direction represents the movement direction of the drawing object such as the substrate (the direction opposite to the main scanning direction).
  • each pattern in the pattern row is also arbitrary, and any shape can be used as long as the photosensor can individually detect the passage of each position detection pattern.
  • the pattern width, the inclination angle, and the like may be determined so that pattern light is projected onto both adjacent photosensors when one position detection pattern passes between the photosensors.
  • each position detection pattern is detected between a plurality of adjacent sensors, and a plurality of exposure positions are detected by passing the pattern row between the same adjacent sensors.
  • the first and second photo sensor groups can be arranged along the sub-scanning direction or along the main scanning direction in one scanning band region.
  • the exposure operation control unit may project the light of the first and second position detection pattern rows at the same time along the sub-scanning direction. As a result, the exposure position can be detected in an adjacent region without switching the pattern.
  • the exposure operation control unit projects light of the first position detection pattern row when the exposure area passes through the first photosensor group. Then, when the exposure area passes through the second photosensor group, the light of the second position detection pattern row is projected. Thereby, a series of first and second exposure positions can be detected on the same main scanning line.
  • the position correction it is possible to obtain a difference between each detected exposure position and the target standard exposure position and calculate a typical correction value such as an addition / weighted average value. Alternatively, a representative exposure position can be calculated from a series of detected exposure positions.
  • the position detection unit can adopt various configurations, and the luminance signal from a plurality of photosensors may be detected by the control unit of the exposure apparatus, or the position detection unit and the position calculation unit at the previous stage. May be provided.
  • the position detection unit calculates the exposure position according to the detected pulse signal and the pulse signal generation unit that generates the pulse signal at the same timing of the luminance signal A position calculating unit.
  • Various arrangements of the pulse signal generation unit and the position detection unit are possible. For example, when a plurality of exposure heads are provided and position correction is performed for each exposure head, a pulse signal generation unit can be provided on the stage.
  • the detection exposure operation control unit may project the light of the position detection pattern sequence so as to generate a series of detected pulse signals at different timings.
  • the exposure operation control unit can project the light of the position detection pattern row at a predetermined pattern pitch so that a series of pulse signals are generated at substantially constant time intervals.
  • An exposure method includes: moving an exposure area by a light modulation element array in which a plurality of light modulation elements are arranged in a matrix; relative to the object to be drawn along the main scanning direction; A first photosensor group that is inclined and a second photosensor group that is inclined in the reverse rotation direction with respect to the main scanning direction are arranged, and an arrangement of the first and second photosensor groups.
  • First and second position detection pattern rows that are respectively inclined along the vertical direction and each pattern width along the arrangement direction of the first and second photosensor groups is smaller than the photosensor width and larger than the photosensor interval. Are projected onto the first and second photosensor groups, respectively, and in the first and second photosensor groups, the level of the luminance signal output from the adjacent photosensors The equal exposure position, detecting in time series as the first series of the exposure position and the second series of exposure positions.
  • the pattern formation position can be accurately detected in the maskless exposure apparatus.
  • FIG. 1 is a schematic perspective view of an exposure apparatus according to a first embodiment. It is a schematic block diagram of an exposure apparatus. It is the figure which showed the photo sensor group and the position detection pattern row
  • FIG. 1 is a schematic perspective view of an exposure apparatus according to the first embodiment.
  • FIG. 2 is a schematic block diagram of the exposure apparatus.
  • the exposure apparatus (drawing apparatus) 10 is a maskless exposure apparatus that forms a pattern by irradiating light onto a substrate W coated or pasted with a photosensitive material such as a photoresist. It is installed.
  • a stage 12 on which a substrate W is mounted is installed on the base 14 so as to be movable along the scanning direction.
  • the stage drive mechanism 15 can move the stage 12 along the main scanning direction X and the sub-scanning direction Y.
  • the exposure apparatus 10 includes a plurality of exposure heads that project pattern light, and only one exposure head 18 is illustrated here.
  • the exposure head 18 includes a DMD 22, an illumination optical system, and an imaging optical system (all not shown), and the other exposure heads are similarly configured.
  • the light source 20 is constituted by a discharge lamp (not shown), for example, and is driven by a light source driving unit 21.
  • CAD / CAM data composed of vector data or the like is input to the exposure apparatus 10
  • the vector data is sent to the raster conversion circuit 26, and the vector data is converted into raster data.
  • the generated raster data is temporarily stored in a buffer memory (not shown) and then sent to the DMD driving circuit 24.
  • the DMD 22 is a light modulation element array (light modulator) in which minute micromirrors are two-dimensionally arranged, and each micromirror selectively switches the light reflection direction by changing the posture.
  • the stage drive mechanism 15 moves the stage 12 in accordance with a control signal from the controller 30.
  • the position detection unit 28 is installed near the end of the stage 12, and includes a photosensor group PD including a plurality of photosensors, and a pulse signal generation unit 29.
  • the position calculation unit 27 calculates the exposure position, that is, the position of the substrate W, based on the signal sent from the position detection unit 28.
  • the drawing table 12 moves along the scanning direction X at a constant speed.
  • a projection area (hereinafter referred to as an exposure area) by the entire DMD 22 relatively moves on the substrate W as the substrate W moves.
  • the exposure operation is performed according to a predetermined exposure pitch, and the micromirror is controlled to project pattern light in accordance with the exposure pitch.
  • the control timing of each micromirror of the DMD 22 is adjusted according to the relative position of the exposure area, the light of the pattern to be drawn is sequentially projected at the position of the exposure area.
  • a pattern is formed on the entire substrate W by drawing the entire substrate W with a plurality of exposure heads including the exposure head 18.
  • an exposure method not only a continuous movement method that moves at a constant speed, but also step and repeat movements that move intermittently are possible. Also, multiple exposure (overlap exposure) in which the projection area at the time of exposure shot is partially overlapped is possible.
  • FIG. 3 is a diagram illustrating a photosensor group and a position detection pattern sequence.
  • FIG. 4 is a diagram showing the width of the photosensor and the pattern.
  • FIG. 5 is a diagram showing a change in the amount of light incident on the photosensor.
  • the photosensor group PD includes N photosensors P1, P2,..., PN, and is arranged in the scanning direction at equal intervals of the arrangement pitch T.
  • the position detection pattern row LP is composed of a series of bar-shaped patterns L1, L2, L3,. M patterns L1, L2, L3,... LM are arranged at equal intervals with a pattern pitch J.
  • the pattern width K of each of the patterns L1, L2, L3,... LM is shorter than the photosensor width Z. Therefore, when the pattern L1 at one head position passes through the photosensors P1 and P2, the level of the luminance signal output from the photosensors P1 and P2, that is, the amount of light received by the photosensor is as shown in FIG. Followed by increasing, constant, decreasing.
  • the light quantity of the photosensor P1 increases as a part of the pattern L1 moves on the photosensor P1 due to the movement of one pattern L1. While the entire pattern L1 is positioned on the photosensor P1, the light quantity detected by the photosensor P1 is constant at the maximum light quantity. Then, as the moving front end side of the pattern L1 exceeds the photosensor P1 and moves between the photosensors P1 and P2, the light amount of the photosensor P1 decreases. Similarly, in the photosensor P2 located next to the photosensor P1 in the scanning direction, the light amount increases, is constant, and decreases. This change in light amount occurs with a delay corresponding to the pattern pitch T with respect to the photosensor P1.
  • the width K of the pattern L1 is larger than the interval B between adjacent photosensors. Therefore, while the pattern L1 passes between the photosensors P1 and P2, a period Q in which the light amount decrease of the photosensor P1 and the light amount increase of the photosensor P2 overlap occurs (see FIG. 5). In this period Q, the positions and points where the light amounts of the photosensors P1 and P2 match are detected as exposure positions. Specifically, the pulse signal generation unit 29 generates a pulse signal at the light intensity coincidence timing, and detects the position of the pattern L1, that is, the position of the substrate W. Thereby, it is possible to detect an exposure position that requires an order that is equal to or smaller than the photosensor size width Z.
  • FIG. 6 is a diagram showing a change in the light amount of the adjacent photosensors P1 and P2.
  • FIG. 7 is a diagram showing the output timing of the pulse signal in time series.
  • the pattern pitch J of the position detection pattern row L is determined so as to satisfy the following expression.
  • T represents the photosensor pitch
  • SA represents the total number of detected pulses
  • M represents the number of patterns
  • N represents the number N of photosensors.
  • the exposure position of each pattern is determined from a series of pulse signals sequentially output in time series based on the moving speed of the stage 12, encoder signals, and the like.
  • X position coordinates are calculated.
  • the controller 30 sequentially calculates the difference between the exposure position calculated from each pulse signal and the preset standard exposure position.
  • standard exposure positions position coordinates of intermediate points between (N-1) adjacent photosensors are stored and set in advance. After calculating correction values for all detected exposure position coordinates, the average value is obtained. The exposure position is corrected by this average value. When actual drawing processing is performed, drawing is started by shifting the exposure position by the correction value.
  • the exposure position is corrected as the reference position of the substrate W for each of the plurality of exposure heads.
  • the position detection unit 28 in which the plurality of photosensors P1 to PN are arranged at equal intervals along the scanning direction X is provided on the stage 12, and along the scanning direction X.
  • a position detection pattern row L composed of bar / slit patterns L1 to LM arranged at equal intervals is projected during scanning. Then, the positions at which the received light amounts of the adjacent photosensors are equal during the pattern row detection are detected in time series as exposure positions, and the reference position is determined based on the detected (N ⁇ 1) ⁇ M exposure positions. It is corrected.
  • exposure positions are detected at a number of locations, and a number of exposure positions are also detected at the same point.
  • This makes it possible to accurately detect the exposure position without being affected by irregularities in the illumination of the pattern light, the effects of fluctuations in the amount of light due to disturbance, individual differences in the photosensor (difference in output characteristics of the photosensor), changes over time, etc. Can be done in one scan.
  • an accurate exposure position can be detected without using a device that is difficult in terms of device structure, such as minimizing the size of the photosensor and the interval between photosensors, and does not require a costly configuration.
  • the configuration of the detection unit can be simplified on the stage.
  • the pattern pitch and the like are set so that the pulse signals output in time series are not output simultaneously or overlapping, it is possible to detect a large number of exposure positions.
  • the number of patterns in the pattern row, the pattern shape, and the number of photosensors are arbitrary.
  • a pattern row composed of two or more patterns may be configured, and a photosensor group may be configured with three or more photosensors.
  • the photosensor may be configured to be detachable.
  • the position detection pattern shape, pattern pitch, photosensor pitch, photosensor width, and pattern width are also set so that a light quantity change occurs between adjacent photosensors when each pattern passes, and a light quantity coincidence point can be extracted. That's fine. That is, the pattern width may be smaller than the photosensor width and larger than the distance between adjacent photosensors.
  • the exposure position is calculated by first calculating a representative exposure position such as an average value from a series of detected exposure positions, and correcting the exposure start position based on the difference between the average value and the standard value. May be. It is also possible to configure to detect the exposure position where the light amount becomes equal by a configuration other than the generation of the pulse signal.
  • a second embodiment will be described with reference to FIGS.
  • a two-dimensional exposure position is detected in the main scanning direction (X direction) and the sub-scanning direction (Y direction). Other configurations are substantially the same as those in the first embodiment.
  • FIG. 8 is a diagram illustrating a photosensor group and a position detection pattern in the second embodiment.
  • the position detection unit 128 includes a first photosensor group 128A and a second photosensor group 128B, and is arranged near the end of the stage 12 along the sub-scanning direction.
  • first photosensor group 128A a plurality of photosensors are arranged at equal intervals along a direction inclined by + 45 ° with respect to the moving direction (the direction opposite to the main scanning direction).
  • second photosensor group 128B a plurality of photosensors are arranged at equal intervals along a direction inclined by ⁇ 45 ° with respect to the moving direction.
  • the sensor arrangement direction of the second photosensor group 128B corresponds to the reverse rotation direction of the first photosensor group 128A with respect to the movement direction / main scanning direction.
  • the first photosensor group 128A is tilted counterclockwise from the moving direction, while the second photosensor group 128B is tilted clockwise.
  • the first photosensor group 128A and the second photosensor group 128A are arranged in the same scanning band (a region where the exposure area passes during scanning), and here, they are arranged in parallel along the sub-scanning direction. As described above, they are spaced apart from each other in adjacent scanning bands.
  • the first position detection pattern row HP When detecting the exposure position, the first position detection pattern row HP is projected onto the first photosensor group 128A, and the second position detection pattern IP is projected onto the second photosensor group 128B. Accordingly, the first and second position detection patterns are projected side by side along the sub-scanning direction.
  • the first position detection pattern row HP includes four bar-shaped position detection patterns H1 to H4.
  • the position detection patterns H1 to H4 are inclined along the direction perpendicular to the arrangement direction (+ 45 °) of the first photosensor group 128A, and are arranged at equal intervals along the movement direction / main scanning direction.
  • the second position detection pattern array IP includes four bar-shaped position detection patterns I1 to I4, and the position detection patterns I1 to I4 are perpendicular to the arrangement direction ( ⁇ 45 °) of the second photosensor group 128B. And are arranged along the moving direction / main scanning direction at equal intervals.
  • the first photosensor group 128A and the second photosensor group 128B are arranged at a predetermined interval in the sub-scanning direction so as to pass the first position detection pattern array HP and the second position detection pattern IP having different patterns, respectively.
  • Each of the position detection patterns H1 to H4 and I1 to I4 has a length that intersects with all the photosensors when passing through the photosensor groups 128A and 128B, respectively.
  • FIG. 9 is a diagram illustrating a positional relationship between the position detection pattern and the photosensor in the first photosensor group.
  • FIG. 10 is a diagram illustrating a positional relationship between the position detection pattern and the photosensor in the second photosensor group.
  • the exposure position detection in the second embodiment will be described with reference to FIGS. As shown in FIG. 9, when one position detection pattern H1 passes through adjacent photosensors PN and PN-1, the position detection pattern H1 and the photosensors PN and PN-1 are inclined by 45 ° with respect to the main scanning direction.
  • the pattern moving direction is inclined with respect to the main scanning direction.
  • the minutely displaced position detection pattern H1 is indicated by a broken line.
  • the relationship among the position detection pattern width K, the photosensor width Z, and the photosensor pitch T satisfies the same relationship as in the first embodiment. Therefore, the light quantity coincidence point is detected in the light quantity distribution detected between the photosensors.
  • the position detection pattern H1 moves relative to the arrangement direction of the photosensors PN and PN-1 in an oblique direction.
  • the position detection pattern H1 has a length that is sufficiently longer than the length in the long axis direction of the photosensor. . Therefore, the pattern passes through the entire area where the light amount changes.
  • the component when detecting the exposure position along the photosensor arrangement direction, the component is represented by a vector obtained by combining the X component and the Y component. Is done.
  • S2 (dX ⁇ dY) / ⁇ 2 (3) Therefore, the X component dX and the Y component dY of the exposure position can be obtained from the above equations (1) and (2) by the following equations.
  • dX (S1 + S2) / ⁇ 2
  • dX (S1-S2) / ⁇ 2 ....
  • the pulse signal is Output in series.
  • the time interval of the series of detected pulse signals corresponds to the distance interval along the photosensor array direction (+/ ⁇ 45 °). Therefore, when a series of pulse signals are detected in each of the first photosensor group 128A and the second photosensor group 128B, three exposure positions S1 and S2 along the sensor array direction are calculated. From the calculated series of exposure positions, representative values (average values, etc.) relating to S1 and S2 are calculated, and the X component and Y component of the exposure position are calculated by the above equation (4).
  • the calculated representative value is compared with the X and Y components at the reference exposure position, and correction values for the X and Y components are obtained. Then, based on the correction value, the exposure start position is corrected in the main scanning direction and the sub-scanning direction. Alternatively, the exposure data may be corrected based on the correction value and the exposure operation may be executed.
  • the first photosensor group 128A and the second photosensor group 128B are arranged so as to be inclined + 45 ° / ⁇ 45 ° with respect to the main scanning direction, and the inclination directions are mutually different. It faces in the opposite direction.
  • the first position detection pattern row HP inclined in the direction perpendicular to the sensor arrangement of the first photosensor group 128A is projected onto the first photosensor group 128A
  • the first photosensor group 128B is projected onto the first photosensor group 128A.
  • the second position detection pattern array IP tilted in the direction orthogonal to the sensor array of one photosensor group 128A is projected.
  • a series of exposure positions are detected during scanning by arranging two photosensor groups in different directions and projecting a position detection pattern row inclined according to the sensor arrangement direction. Based on the position information along the sensor arrangement direction from the two photosensor groups, the exposure position of (X, Y coordinates) along the main scanning direction and the sub-scanning direction is calculated, and a correction value is obtained. .
  • the movement distance along the sub-scanning direction of the stage is corrected together with the drawing start position, or the exposure data is corrected.
  • the sensor arrangement direction is preferably 45 °, but may be other than that, for example, in the range of 30 ° to 60 °.
  • the exposure position can be detected with sufficient accuracy for practical use.
  • sizes of the inclination angle may mutually differ.
  • the first and second photosensor groups 128A are inclined with respect to the moving direction at an angle ⁇ satisfying 0 ° ⁇ ⁇ 90 °, while the second photosensor group 128B is
  • the moving direction may be inclined at an angle ⁇ satisfying ⁇ 90 ° ⁇ ⁇ 0 °. Further, it can be similarly inclined with respect to the main scanning direction.
  • a two-dimensional exposure position calculation formula can be derived using a trigonometric function representing the sensor arrangement direction.
  • the main scanning direction and the sub-scanning direction are defined as two-dimensional coordinate axes, and the arrangement directions of the first photosensor group and the second photosensor group are represented by vectors, the vectors are adjacent and in different quadrants.
  • FIG. 11 is a diagram illustrating a photosensor group and a position detection pattern sequence according to the third embodiment.
  • the position detection unit 228 includes a first photosensor group 228A and a second photosensor group 228B.
  • the first photosensor group 228A is inclined in the positive direction with respect to the main scanning direction
  • the second photosensor group 228B is It is inclined in the reverse rotation direction.
  • the first photo sensor group 228A and the second photo sensor group 228B are arranged in the same scan band at a predetermined interval so that the exposure area passes through both photo sensor groups when moving along one scan band. Arranged along the scanning direction. During scanning, the position detection pattern row HP is projected while the exposure area passes through the first photosensor group 228A. Then, while the exposure area passes through the second photosensor group 228B, the position detection pattern row HP is switched to the position detection pattern row IP and projected. Thereby, a series of pulse signals are detected as in the third embodiment, and two-dimensional exposure position calculation and exposure start position correction are performed.
  • Various changes, substitutions and alternatives are possible with respect to the present invention without departing from the spirit and scope of the present invention as defined by the appended claims.
  • Exposure Equipment 22 DMD (Light Modulation Element Array) 28 Position detector 30 Controller

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention is a method for accurately detecting a pattern formation position in a maskless exposure device. This maskless exposure device is equipped with a position detection unit having first and second photosensor groups that are positioned at an incline in reverse directions to one another with respect to a first scanning direction. By controlling a plurality of optical modulating elements, scanning is carried out while projecting light of first and second position detection pattern rows on the position detection unit, thereby detecting the position. The light of first and second position detection pattern rows is inclined along the directions perpendicular to that in which first and second photosensor groups are aligned, and the pattern width in the alignment direction of the first and second photosensor groups is smaller than the photosensor width, and larger than the interval between the photosensors. Said position detection pattern is scanned above the position detection unit, and the exposure position at which the level of the brightness signal outputted from the adjoining photosensors becomes the same is detected in a time series for the first series of exposure positions and the second series of exposure positions.

Description

露光装置Exposure equipment
 本発明は、光変調素子アレイを用いてパターンを形成するマスクレス露光装置に関し、特に、基板等に投影されるパターンの位置検出に関する。 The present invention relates to a maskless exposure apparatus that forms a pattern using a light modulation element array, and more particularly to position detection of a pattern projected on a substrate or the like.
 マスクレス露光装置では、基板が搭載されるステージを走査方向に沿って移動させながら、DMD(Digital Micro−mirror Device)などの光変調素子アレイによってパターン光を基板に投影する。そこでは、ステージに載せられた基板上における投影エリア(露光エリア)の位置を検出し、その位置に応じたパターン光を投影するように、2次元状に配列されたマイクロミラーなど光変調素子を制御する。
 マイクロメータのオーダーで微細パターンを形成する場合、基板の位置を正確に検出し、パターン光を位置ずれなく投影する必要がある。しかしながら、DMDの温度変化などに起因して、パターン光の投影位置にずれが生じ、パターン形成位置に誤差が生じることがある。
 これを防ぐため、フォトダイオードなどの光センサをステージ脇に複数配置し、ステージを走査しながら位置検出用のパターンを光センサに投影する。検出される露光位置と、あらかじめ用意された基準となる位置情報とを比較することで、露光位置を補正する(例えば、特許文献1参照)。
 一方、ステージなどの可動体の位置を精度よく検出するため、2つの光センサの光量変化から基準位置を検出する方法が知られている(特許文献2参照)。そこでは、エンコーダの原点位置、すなわち基準位置を検出するため、走査方向に沿って対称的に位置をずらした1対のフォトダイオードが配置される。
 スリットの形成されたスケールを移動させることによって、位置検出用のスリット光がトダイオード対の上を通過する。このとき検出される光量変化において、2つのフォトセンサの光量が互いに等しくなる位置を、基準位置として検出する。
In a maskless exposure apparatus, pattern light is projected onto a substrate by a light modulation element array such as DMD (Digital Micro-mirror Device) while moving a stage on which the substrate is mounted along the scanning direction. There, a light modulation element such as a micromirror arranged in a two-dimensional manner is used to detect the position of a projection area (exposure area) on a substrate placed on a stage and project pattern light according to the position. Control.
When a fine pattern is formed on the order of a micrometer, it is necessary to accurately detect the position of the substrate and project the pattern light without misalignment. However, due to a change in temperature of the DMD or the like, there may be a deviation in the projection position of the pattern light and an error in the pattern formation position.
In order to prevent this, a plurality of optical sensors such as photodiodes are arranged beside the stage, and a pattern for position detection is projected onto the optical sensor while scanning the stage. The exposure position is corrected by comparing the detected exposure position with reference position information prepared in advance (see, for example, Patent Document 1).
On the other hand, in order to detect the position of a movable body such as a stage with high accuracy, a method of detecting a reference position from a change in light quantity of two optical sensors is known (see Patent Document 2). Here, in order to detect the origin position of the encoder, that is, the reference position, a pair of photodiodes whose positions are symmetrically shifted along the scanning direction are arranged.
By moving the scale formed with the slits, the slit light for position detection passes over the diode pair. In the light amount change detected at this time, a position where the light amounts of the two photosensors are equal to each other is detected as a reference position.
特開2008−134370号公報JP 2008-134370 A 特開平10−090008号公報JP 10-090008 A
 フォトダイオードのサイズは、パターン分解能に比べて大きい。また、フォトダイオードの感光特性にはそれぞれ個体差がある。したがって、同じ光強度でパターンを投影しても、検出される光量は微妙に相違する。また、照度ムラなどによって投影する光が瞬間的に不安定になることもあり、高精度に露光位置を検出することが難しい。
 また、露光装置においては、主走査方向とともに副走査方向にも基板の位置ずれが生じる。そのため、露光エリアが通過する走査バンドの位置が主走査方向および副走査方向に関して誤差が生じ、パターン精度が低下する。
 したがって、マスクレス露光装置において、フォトダイオードなどのフォトセンサを用いて正確な2次元の位置検出が求められる。
The size of the photodiode is larger than the pattern resolution. There are individual differences in the photosensitive characteristics of the photodiodes. Therefore, even if a pattern is projected with the same light intensity, the amount of light detected is slightly different. In addition, the projected light may become unstable momentarily due to illuminance unevenness or the like, and it is difficult to detect the exposure position with high accuracy.
Further, in the exposure apparatus, the substrate is displaced in the sub scanning direction as well as the main scanning direction. Therefore, an error occurs in the position of the scanning band through which the exposure area passes in the main scanning direction and the sub-scanning direction, and the pattern accuracy is lowered.
Therefore, in a maskless exposure apparatus, accurate two-dimensional position detection is required using a photosensor such as a photodiode.
 本発明の露光装置は、複数の光変調素子をマトリクス状に配列した光変調素子アレイと、光変調素子アレイによる露光エリアを被描画体に対し主走査方向に沿って相対移動させる走査部と、主走査方向に対し傾斜配列させた第1フォトセンサ群と、第1フォトセンサ群とは主走査方向に対して逆回転方向に傾斜配列させた第2フォトセンサ群とを有する位置検出部を備える。ここで、逆回転方向とは、移動方向もしくは走査方向に沿ったラインを基準としたとき、第1フォトセンサ群を一方の回転方向へ傾斜させたとき、その反対方向を表す。
 また、露光装置は、複数の光変調素子を制御することにより、第1および第2フォトセンサ群の配列垂直方向に沿ってそれぞれ傾斜し、第1および第2フォトセンサ群の配列方向に沿った各パターン幅が、フォトセンサ幅よりも小さく、フォトセンサ間隔よりも大きい第1および第2位置検出パターン列の光を、第1及び第2フォトセンサ群に対してそれぞれ投影する露光動作制御部を備える。
 ステージ移動などによって露光エリアが相対移動すると、1つの位置検出パターンがフォトセンサを通過するとき、輝度信号レベルが増加、一定、減少をたどる。それとともに、1つの位置検出パターンの光が隣り合うフォトセンサを通過する間にその隣り合うフォトセンサから出力される互いの輝度信号レベルのグラフにおいて、交差する部分が生じる。
 そして、位置検出部は、第1、第2位置検出パターン列の通過に伴い、隣り合うフォトセンサから出力される輝度信号のレベルが等しくなる露光位置を、第1の一連の露光位置および第2の一連の露光位置を時系列に検出する。これによって、位置検出部は、検出された第1および第2の一連の露光位置から、2次元露光位置を算出することが可能である。ここで、2次元露光位置は、例えば、主走査方向、副走査方向に沿って規定される2次元座標に基づいて規定することができる。
 本発明の位置検出部は、1つの位置検出パターンの光が隣り合うフォトセンサを通過する間にその隣り合うフォトセンサから出力される輝度信号のレベルが等しくなる露光位置を検出し、位置検出パターン列の光の通過に伴って一連の露光位置を時系列に検出する。なお、ここでの露光位置は、所定の位置検出パターンのステージ上での相対位置を表し、例えば、ステージに規定された走査方向に沿う位置座標で表される。
 複数の露光位置を検出することにより、照度ムラ、フォトセンサの個体差などに影響されない位置補正を行うことが可能である。例えば、露光装置に、検出される一連の露光位置と、あらかじめ定められた標準露光位置とに基づいて、露光基準位置を補正する補正部を備えればよい。ここで、標準露光位置は、例えば描画データ上で定められた位置座標によって表すことが可能である。また、露光基準位置としては、例えば、描画開始位置などが定められる。
 さらに、2次元的に露光位置を検出するため、描画開始位置のみならず、副走査方向に沿った露光位置についても露光データ補正し、描画領域が一部重複するようなことがなく、精度あるパターンを形成することができる。2次元露光位置の算出については、第1および第2の一連の露光位置について、あらかじめセンサ配列方向に沿った露光位置としてベクトル表現によって検出し、それぞれのフォトセンサ群において代表的な露光位置(平均値)などを演算した後、主走査方向、副走査方向に沿った2次元露光位置座標を求めることができる。
 フォトセンサの配置間隔、パターン列のパターン間隔などは、任意に設定可能である。例えば、第1フォトセンサ群の移動方向あるいは主走査方向に対する傾斜配置角度αが、30°≦α≦60°の範囲であり、第2フォトセンサ群の傾斜配置角度βが、−60°≦β≦−30°の範囲に収められる。特に、第1、第2フォトセンサ群を+45°、−45°にそれぞれ傾斜配置し、移動方向もしくは主走査方向に関して対称的に配置することが可能である。ただし、移動方向は、基板など被描画体の移動方向(主走査方向とは逆方向)を表す。また、複数のフォトセンサを、走査方向に沿って一定間隔に配置し、位置検出パターン列を、一定間隔で並んだ位置検出パターンで構成することが可能である。
 パターン列の各パターンの形状も任意であり、フォトセンサが各位置検出パターンの通過を個別に検知可能な形状であればよい。具体的には、1つの位置検出パターンがフォトセンサ間を通過するとき、隣り合うフォトセンサ両方にパターン光が投影されるように、パターン幅、傾斜角度などを定めればよい。例えば、バー状のパターンを主走査方向に並べたパターン列の光を投影可能である。
 検出される露光位置の数は、フォトセンサの数、パターン列のパターン個数に従う。例えば、2つ以上のフォトセンサを設置し、位置検出パターン列を、2つ以上の位置検出パターンによって構成することが可能である。この場合、各位置検出パターンが複数の隣接センサ間で検出されるとともに、同じ隣接センサ間で、パターン列通過により複数の露光位置が検出される。
 第1、第2フォトセンサ群の配置については、1つの走査バンド領域内において、副走査方向に沿って並べ、あるいは主走査方向に沿って並べることが可能である。第1、第2フォトセンサ群を副走査方向に沿って配置する場合、露光動作制御部は、第1、第2位置検出パターン列の光を副走査方向に沿って同時に投影すればよい。これにより、パターンの切り替えなく、近接する領域で露光位置を検出することができる。一方、主走査方向に沿って第1、第2フォトセンサ群を配置する場合、露光動作制御部は、露光エリアが第1フォトセンサ群を通過するとき、第1位置検出パターン列の光を投影し、露光エリアが第2フォトセンサ群を通過するとき、第2位置検出パターン列の光を投影する。これによって、同じ主走査ライン上で一連の第1、第2の露光位置を検出することができる。
 位置補正については、検出されるそれぞれの露光位置と目標となる標準露光位置との差を求め、加算/加重平均値などの代表的な補正値を算出することが可能である。あるいは、検出される一連の露光位置から代表的な露光位置を算出することも可能である。
 位置検出部は様々な構成を採用することが可能であり、複数のフォトセンサからの輝度信号を露光装置の制御部で検出してもよく、あるいは、その前段階で位置検出部、位置算出部を設けてもよい。輝度信号レベルが一致するタイミングを正確に検出するため、例えば位置検出部は、輝度信号の等しくなるタイミングでパルス信号を発生するパルス信号生成部と、検出されたパルス信号に応じて露光位置を算出する位置算出部を備える。
 パルス信号生成部、位置検出部の配置構成は様々な構成が可能である。例えば、複数の露光ヘッドを設け、各露光ヘッドに対し位置補正を行う場合、パルス信号生成部をステージに設けることが可能である。
 一連の露光位置をパルス信号によって検出する場合、パルス信号が同時に発生することを防ぐのが好ましい。したがって、検出露光動作制御部は、検出される一連のパルス信号を互いに異なるタイミングで発生させるように、位置検出パターン列の光を投影させてもよい。例えば、露光動作制御部が、ほぼ一定の時間間隔で一連のパルス信号が発生するように、所定のパターンピッチで位置検出パターン列の光を投影することができる。
 本発明の他の態様における露光方法は、複数の光変調素子をマトリクス状に配列した光変調素子アレイによる露光エリアを被描画体に対し主走査方向に沿って相対移動させ、主走査方向に対し傾斜配列させた第1フォトセンサ群と、第1フォトセンサ群とは主走査方向に関して逆回転方向に傾斜配列させた第2フォトセンサ群とを配置し、第1および第2フォトセンサ群の配列垂直方向に沿ってそれぞれ傾斜し、第1および第2フォトセンサ群の配列方向に沿った各パターン幅が、フォトセンサ幅よりも小さく、フォトセンサ間隔よりも大きい第1および第2位置検出パターン列の光を、第1及び第2フォトセンサ群に対してそれぞれ投影し、第1および第2フォトセンサ群において、隣り合うフォトセンサから出力される輝度信号のレベルが等しくなる露光位置を、第1の一連の露光位置および第2の一連の露光位置として時系列に検出する。
An exposure apparatus according to the present invention includes a light modulation element array in which a plurality of light modulation elements are arranged in a matrix, a scanning unit that relatively moves an exposure area by the light modulation element array with respect to a drawing object along a main scanning direction, A position detection unit is provided that includes a first photosensor group that is inclined with respect to the main scanning direction, and a second photosensor group that is inclined with respect to the main scanning direction in a direction opposite to the main scanning direction. . Here, the reverse rotation direction represents the opposite direction when the first photosensor group is inclined in one rotation direction when a line along the movement direction or the scanning direction is used as a reference.
Further, the exposure apparatus is inclined along the arrangement vertical direction of the first and second photosensor groups by controlling the plurality of light modulation elements, and along the arrangement direction of the first and second photosensor groups. An exposure operation control unit that projects light of the first and second position detection pattern rows, each pattern width being smaller than the photosensor width and larger than the photosensor interval, to the first and second photosensor groups, respectively. Prepare.
When the exposure area is relatively moved by moving the stage or the like, when one position detection pattern passes through the photosensor, the luminance signal level increases, follows constant, and decreases. At the same time, there is an intersecting portion in the graph of the luminance signal level of each other output from the adjacent photo sensor while the light of one position detection pattern passes through the adjacent photo sensor.
Then, the position detection unit determines the exposure positions at which the levels of the luminance signals output from the adjacent photosensors become equal as the first and second position detection pattern rows pass through the first series of exposure positions and the second series. A series of exposure positions are detected in time series. Thereby, the position detection unit can calculate a two-dimensional exposure position from the detected first and second series of exposure positions. Here, the two-dimensional exposure position can be defined based on, for example, two-dimensional coordinates defined along the main scanning direction and the sub-scanning direction.
The position detection unit of the present invention detects an exposure position where the level of the luminance signal output from the adjacent photosensor becomes equal while the light of one position detection pattern passes through the adjacent photosensor, and the position detection pattern A series of exposure positions are detected in time series as light passes through the row. Here, the exposure position represents a relative position on the stage of a predetermined position detection pattern, and is represented by, for example, position coordinates along the scanning direction defined on the stage.
By detecting a plurality of exposure positions, it is possible to perform position correction that is not affected by illuminance unevenness, individual differences among photosensors, and the like. For example, the exposure apparatus may be provided with a correction unit that corrects the exposure reference position based on a series of detected exposure positions and a predetermined standard exposure position. Here, the standard exposure position can be expressed by, for example, position coordinates determined on the drawing data. Further, as the exposure reference position, for example, a drawing start position is determined.
Furthermore, since the exposure position is detected two-dimensionally, exposure data is corrected not only for the drawing start position but also for the exposure position along the sub-scanning direction, so that the drawing area does not partially overlap and is accurate. A pattern can be formed. As for the calculation of the two-dimensional exposure position, the first and second series of exposure positions are detected in advance as vector exposure positions along the sensor arrangement direction, and representative exposure positions (averages) are obtained for each photosensor group. 2), the two-dimensional exposure position coordinates along the main scanning direction and the sub-scanning direction can be obtained.
The arrangement interval of the photosensors, the pattern interval of the pattern row, and the like can be arbitrarily set. For example, the inclination arrangement angle α with respect to the moving direction of the first photosensor group or the main scanning direction is in a range of 30 ° ≦ α ≦ 60 °, and the inclination arrangement angle β of the second photosensor group is −60 ° ≦ β. It falls within the range of ≦ −30 °. In particular, the first and second photosensor groups can be inclined at + 45 ° and −45 °, respectively, and can be arranged symmetrically with respect to the moving direction or the main scanning direction. However, the movement direction represents the movement direction of the drawing object such as the substrate (the direction opposite to the main scanning direction). In addition, it is possible to arrange a plurality of photosensors at regular intervals along the scanning direction, and to configure the position detection pattern sequence with position detection patterns arranged at regular intervals.
The shape of each pattern in the pattern row is also arbitrary, and any shape can be used as long as the photosensor can individually detect the passage of each position detection pattern. Specifically, the pattern width, the inclination angle, and the like may be determined so that pattern light is projected onto both adjacent photosensors when one position detection pattern passes between the photosensors. For example, it is possible to project light of a pattern row in which bar-shaped patterns are arranged in the main scanning direction.
The number of exposure positions detected depends on the number of photosensors and the number of patterns in the pattern row. For example, it is possible to install two or more photosensors and configure the position detection pattern sequence by two or more position detection patterns. In this case, each position detection pattern is detected between a plurality of adjacent sensors, and a plurality of exposure positions are detected by passing the pattern row between the same adjacent sensors.
The first and second photo sensor groups can be arranged along the sub-scanning direction or along the main scanning direction in one scanning band region. When the first and second photosensor groups are arranged along the sub-scanning direction, the exposure operation control unit may project the light of the first and second position detection pattern rows at the same time along the sub-scanning direction. As a result, the exposure position can be detected in an adjacent region without switching the pattern. On the other hand, when the first and second photosensor groups are arranged along the main scanning direction, the exposure operation control unit projects light of the first position detection pattern row when the exposure area passes through the first photosensor group. Then, when the exposure area passes through the second photosensor group, the light of the second position detection pattern row is projected. Thereby, a series of first and second exposure positions can be detected on the same main scanning line.
As for the position correction, it is possible to obtain a difference between each detected exposure position and the target standard exposure position and calculate a typical correction value such as an addition / weighted average value. Alternatively, a representative exposure position can be calculated from a series of detected exposure positions.
The position detection unit can adopt various configurations, and the luminance signal from a plurality of photosensors may be detected by the control unit of the exposure apparatus, or the position detection unit and the position calculation unit at the previous stage. May be provided. In order to accurately detect the timing at which the luminance signal levels match, for example, the position detection unit calculates the exposure position according to the detected pulse signal and the pulse signal generation unit that generates the pulse signal at the same timing of the luminance signal A position calculating unit.
Various arrangements of the pulse signal generation unit and the position detection unit are possible. For example, when a plurality of exposure heads are provided and position correction is performed for each exposure head, a pulse signal generation unit can be provided on the stage.
When a series of exposure positions is detected by a pulse signal, it is preferable to prevent the pulse signals from being generated simultaneously. Therefore, the detection exposure operation control unit may project the light of the position detection pattern sequence so as to generate a series of detected pulse signals at different timings. For example, the exposure operation control unit can project the light of the position detection pattern row at a predetermined pattern pitch so that a series of pulse signals are generated at substantially constant time intervals.
An exposure method according to another aspect of the present invention includes: moving an exposure area by a light modulation element array in which a plurality of light modulation elements are arranged in a matrix; relative to the object to be drawn along the main scanning direction; A first photosensor group that is inclined and a second photosensor group that is inclined in the reverse rotation direction with respect to the main scanning direction are arranged, and an arrangement of the first and second photosensor groups. First and second position detection pattern rows that are respectively inclined along the vertical direction and each pattern width along the arrangement direction of the first and second photosensor groups is smaller than the photosensor width and larger than the photosensor interval. Are projected onto the first and second photosensor groups, respectively, and in the first and second photosensor groups, the level of the luminance signal output from the adjacent photosensors The equal exposure position, detecting in time series as the first series of the exposure position and the second series of exposure positions.
 本発明によれば、マスクレス露光装置において、正確にパターン形成位置を検出することができる。 According to the present invention, the pattern formation position can be accurately detected in the maskless exposure apparatus.
第1の実施形態である露光装置の概略的斜視図である。1 is a schematic perspective view of an exposure apparatus according to a first embodiment. 露光装置の概略的ブロック図である。It is a schematic block diagram of an exposure apparatus. フォトセンサ群と位置検出パターン列を示した図である。It is the figure which showed the photo sensor group and the position detection pattern row | line | column. フォトセンサとパターンの幅を示した図である。It is the figure which showed the width | variety of a photosensor and a pattern. フォトセンサに入射する光の光量変化を示した図である。It is the figure which showed the light quantity change of the light which injects into a photosensor. 隣接するフォトセンサの光量変化を示した図である。It is the figure which showed the light quantity change of the adjacent photo sensor. パルス信号の出力タイミングを時系列的に示した図である。It is the figure which showed the output timing of the pulse signal in time series. 第2の実施形態におけるフォトセンサ群と位置検出パターンを示した図である。It is the figure which showed the photo sensor group and position detection pattern in 2nd Embodiment. 第1フォトセンサ群における位置検出パターンとフォトセンサとの位置関係を示した図である。It is the figure which showed the positional relationship of the position detection pattern in a 1st photosensor group, and a photosensor. 第2フォトセンサ群における位置検出パターンとフォトセンサとの位置関係を示した図である。It is the figure which showed the positional relationship of the position detection pattern and photosensor in a 2nd photosensor group. 第3の実施形態におけるフォトセンサ群と位置検出パターン列を示した図である。It is the figure which showed the photo sensor group and position detection pattern row | line in 3rd Embodiment.
 以下では、図面を参照して本発明の実施形態について説明する。
 図1は、第1の実施形態である露光装置の概略的斜視図である。図2は、露光装置の概略的ブロック図である。
 露光装置(描画装置)10は、フォトレジストなどの感光材料を塗布、あるいは貼り付けた基板Wへ光を照射することによってパターンを形成するマスクレス露光装置であり、描画部13が基台14に搭載されている。
 基台14には、基板Wを搭載するステージ12が走査方向に沿って移動可能に設置されている。ステージ駆動機構15は、主走査方向X、副走査方向Yに沿ってステージ12を移動させることができる。
 露光装置10は、パターン光を投影する複数の露光ヘッドを備えており、ここでは1つの露光ヘッド18のみ図示している。露光ヘッド18は、DMD22、照明光学系、結像光学系(いずれも図示せず)を備えており、他の露光ヘッドも同様に構成されている。光源20は、例えば放電ランプ(図示せず)によって構成され、光源駆動部21によって駆動される。
 ベクタデータなどで構成されるCAD/CAMデータが露光装置10へ入力されると、ベクタデータがラスタ変換回路26に送られ、ベクタデータがラスタデータに変換される。生成されたラスタデータは、バッファメモリ(図示せず)に一時的に格納された後、DMD駆動回路24へ送られる。
 DMD22は、微小マイクロミラーを2次元配列させた光変調素子アレイ(光変調器)であり、各マイクロミラーは、姿勢を変化させることによって光の反射方向を選択的に切り替える。DMD駆動回路24によって各ミラーが姿勢制御されることにより、パターンに応じた光が、結像光学系を通じて基板Wの表面に投影される。
 ステージ駆動機構15は、コントローラ30からの制御信号に従い、ステージ12を移動させる。位置検出部28は、ステージ12の端部付近に設置されており、複数のフォトセンサから構成されるフォトセンサ群PD、およびパルス信号発生部29を備えている。位置計算部27は、位置検出部28から送られてくる信号に基づき、露光位置、すなわち基板Wの位置を算出する。
 露光動作中、描画テーブル12は、走査方向Xに沿って一定速度で移動する。DMD22全体による投影エリア(以下、露光エリアという)は、基板Wの移動に伴って基板W上を相対的に移動する。露光動作は所定の露光ピッチに従って行なわれ、露光ピッチに合わせてマイクロミラーがパターン光を投影するように制御される。
 DMD22の各マイクロミラーの制御タイミングを露光エリアの相対位置に従って調整することにより、露光エリアの位置に描くべきパターンの光が順次投影される。そして、露光ヘッド18を含めた複数の露光ヘッドにより基板W全体を描画することによって、基板W全体にパターンが形成される。
 なお、露光方式としては、一定速度で移動する連続移動方式だけでなく、間欠的に移動するステップ&リピートも可能である。また、露光ショット時の投影エリアを部分的に重ねる多重露光(オーバラップ露光)も可能である。
 露光動作を始める前段階においては、パターンを正確な位置に形成するため、露光開始位置に関する補正処理が行われる。ステージ12を一定速度で移動させながら、位置検出用のパターンの光を投影する。コントローラ30は、位置算出部27から送られてくる位置情報に基づき、露光開始位置を補正する。
 以下、図3~7を用いて、露光位置の検出および補正について説明する。
 図3は、フォトセンサ群と位置検出パターン列を示した図である。図4は、フォトセンサとパターンの幅を示した図である。図5は、フォトセンサに入射する光の光量変化を示した図である。
 フォトセンサ群PDは、N個のフォトセンサP1、P2、・・・、PNから構成されており、配列ピッチTの等間隔で走査方向に配列されている。一方、位置検出パターン列LPは、走査方向に関して垂直な一連のバー状パターンL1、L2、L3、・・・LMから構成される。M個のパターンL1、L2、L3、・・・LMは、パターンピッチJで等間隔に並ぶ。
 パターンL1、L2、L3、・・LMそれぞれのパターン幅Kは、フォトセンサ幅Zよりも短い。そのため、1つの先頭位置にあるパターンL1がフォトセンサP1、P2と通過するとき、フォトセンサP1とフォトセンサP2から出力される輝度信号のレベル、すなわちフォトセンサの受光量は、図5に示すように増加、一定、減少を順次辿る。
 詳述すると、1つのパターンL1の移動によってパターンL1の一部がフォトセンサP1上に移動するのに伴い、フォトセンサP1の光量は増加していく。パターンL1全体がフォトセンサP1上に位置する間、フォトセンサP1の検出する光量は最大光量で一定となる。そして、パターンL1の移動先端側がフォトセンサP1を超え、フォトセンサP1、P2の間へ移動するのに伴い、フォトセンサP1の光量は低下していく。
 走査方向に関してフォトセンサP1の隣に位置するフォトセンサP2においても、同じように光量は増加、一定、減少を辿る。この光量変化は、フォトセンサP1に対し、パターンピッチTに応じた期間だけ遅れて生じる。一方、パターンL1の幅Kは、隣り合うフォトセンサ間隔Bよりも大きい。そのため、パターンL1がフォトセンサP1、P2の間を通過する間、フォトセンサP1の光量減少、フォトセンサP2の光量増加が重なる期間Qが生じる(図5参照)。
 そして、この期間QにおいてフォトセンサP1、P2の光量が一致する位置、地点を、露光位置として検出する。具体的には、パルス信号発生部29において、光量一致のタイミングでパルス信号が発生し、パターンL1の位置、すなわち基板Wの位置が検出される。これによって、フォトセンササイズ幅Z以下であるオーダーを要求される露光位置を検知することができる。
 パターンL1が通過するときに光量一致点を検出した後、続いて順次通過するパターンL2、L3、・・LMに対しても、光量一致点を検出する。その結果、フォトセンサP1、Pの2間では、M回の露光位置が検出される。
 さらに、フォトセンサP1、P2だけでなく、隣接するフォトセンサPj、Pj+1(1≦j≦N−1)の間においても、光量一致点を露光位置として検出する。したがって、N個のフォトセンサP1、P2、・・・、PN上を、M個のパターンL1、L2、・・LMが通過するとき、(N−1)×M回露光位置が検出される。すなわち、(N−1)個あるフォトセンサの隙間において、それぞれM回露光位置が検出される。
 図6は、隣接するフォトセンサP1、P2の光量変化を示した図である。図7は、パルス信号の出力タイミングを時系列的に示した図である。
 位置検出パターン列LのパターンピッチJは、以下の式を満たすように定められている。ただし、Tはフォトセンサピッチ、SAは検出される総パルス数、Mはパターン数、Nはフォトセンサ数Nを表す。
 J=T/M+T
 SA=(N−1)M              ・・・・(1)
 このようにパターンピッチJを設定することにより、互いに隣り合うフォトセンサ間で出力される一連のパルス信号の出力タイミングが重ならず、ほぼ一定間隔で時系列的に出力される。図6には、パルスピッチPSで出力されるパルス信号が図示されている。
 そして、出力される一連のパルス信号に基づき、露光位置の演算、露光開始位置の補正が実行される。パルスカウンタ、ラッチ回路などを含む位置計算部27では、ステージ12の移動速度、エンコーダ信号等に基づき、時系列的に順次出力される一連のパルス信号から、各パターンの露光位置、すなわち基板上におけるX位置座標が算出される。
 コントローラ30では、各パルス信号から算出される露光位置に対し、あらかじめ設定された標準露光位置との差を順次算出する。標準露光位置としては、(N−1)個ある隣接フォトセンサ間の中間地点の位置座標が、あらかじめ記憶、設定されている。
 検出されるすべての露光位置座標に対して補正値を算出した後、その平均値が求められる。この平均値によって、露光位置が補正される。実際の描画処理を行うとき、露光位置を補正値だけシフトさせて描画を開始する。ここでは、複数の露光ヘッドそれぞれに対し、露光位置が基板Wの基準位置として補正される。
 このように第1の実施形態によれば、複数のフォトセンサP1~PNを走査方向Xに沿って等間隔に配列させた位置検出部28がステージ12に設置されており、走査方向Xに沿って等間隔で配列したバー状/スリット状パターンL1~LMから成る位置検出パターン列Lが、走査時に投影される。そして、パターン列通過の間、互いに隣接するフォトセンサの受光量が等しくなる位置が露光位置として時系列に検出され、検出される(N−1)×M個の露光位置に基づき、基準位置が補正される。
 走査方向に並ぶ複数のフォトセンサにパターン列を投影することによって、多数の場所で露光位置を検出するとともに、同一地点においても多数の露光位置を検出する。これにより、パターン光の照度ムラ、外乱による光量変動の影響、あるいは、フォトセンサの個体差(フォトセンサの出力特性の相違)、経時変化などといった影響を受けることなく、正確な露光位置の検出を、一度の走査で行うことができる。また、フォトセンササイズ、フォトセンサ間隔の極小化などデバイス構造上困難であってコストのかかる構成を用いなくても、精度ある露光位置を検出することができる。
 パルス信号発生によって露光位置を検出するため、ステージ上において検出部の構成を簡素化できる。特に、複数の露光ヘッドを配置させた場合、各露光ヘッドにおいてパルス信号を発生させ、位置計算部を単一回路として設けることが可能であり、位置検出部の構成を簡素化できる。さらに、時系列的に出力されるパルス信号が同時、もしくは重なって出力しないようにパターンピッチ等を設定しているため、数多くの露光位置を検出することが可能となる。
 パターン列のパターン数、パターン形状、フォトセンサ数は任意である。異なるフォトセンサ間で複数回露光位置を検出することを考慮すれば、2つ以上のパターンから成るパターン列を構成し、3つ以上のフォトセンサでフォトセンサ群を構成すればよい。また、フォトセンサについては、取り外し可能に配置する構成にしてもよい。
 位置検出パターンの形状、パターンピッチ、フォトセンサピッチ、フォトセンサ幅、パターン幅においても、各パターン通過時において、隣り合うフォトセンサの間で光量変化が生じ、光量一致点が抽出できるように設定すればよい。すなわち、パターン幅がフォトセンサ幅よりも小さく、隣接フォトセンサ間の距離よりも大きくなるようにすればよい。
 露光位置の算出については、検出される一連の露光位置から平均値などの代表的露光位置を先に算出し、平均値と標準値との差に基づいて露光開始位置を補正するように構成してもよい。パルス信号発生以外の構成によって光量が等しくなる露光位置を検出するように構成することも可能である。
 次に、図8~11を用いて、第2の実施形態について説明する。第2の実施形態では、主走査方向(X方向)、副走査方向(Y方向)に関して2次元の露光位置を検出する。それ以外の構成については、実質的に第1の実施形態と同じである。
 図8は、第2の実施形態におけるフォトセンサ群と位置検出パターンを示した図である。図8を用いて、第2の実施形態におけるフォトセンサ群の配置および位置検出パターンについて説明する。
 位置検出部128は、第1フォトセンサ群128A、第2フォトセンサ群128Bを備え、ステージ12の端付近に副走査方向に沿って並んで配置されている。第1フォトセンサ群128Aでは、移動方向(主走査方向とは逆方向)に対し+45°だけ傾斜した方向に沿って複数のフォトセンサが等間隔で配列されている。
 一方、第2フォトセンサ群128Bでは、複数のフォトセンサが、移動方向に対し−45°傾斜した方向に沿って等間隔で配列されている。第2フォトセンサ群128Bのセンサ配列方向は、移動方向/主走査方向に関し、第1フォトセンサ群128Aとは逆回転方向に相当する。図8では、第1フォトセンサ群128Aが移動方向から反時計周りの回転方向に傾斜する一方、第2フォトセンサ群128Bは時計周りの回転方向に傾斜する。
 また、第1フォトセンサ群128A、第2フォトセンサ群128Aは、同一の走査バンド(露光エリアが走査中に通過する領域)内に配置されており、ここでは、副走査方向に沿って並列するように、隣接する走査バンドにそれぞれ離間配置される。
 露光位置を検出する場合、第1フォトセンサ群128Aに対しては第1位置検出パターン列HPが投影され、第2フォトセンサ群128Bに対しては第2位置検出パターンIPが投影される。したがって、第1、第2位置検出パターンは、副走査方向に沿って並んで投影される。第1位置検出パターン列HPは、バー状の4つの位置検出パターンH1~H4から成る。また、位置検出パターンH1~H4は、第1フォトセンサ群128Aの配列方向(+45°)に垂直な方向に沿って傾斜し、互いに等間隔で移動方向/主走査方向に沿って並ぶ。
 同様に、第2位置検出パターン列IPは、バー状の4つの位置検出パターンI1~I4から成り、位置検出パターンI1~I4は、第2フォトセンサ群128Bの配列方向(−45°)に垂直な方向に沿って傾斜し、互いに等間隔で移動方向/主走査方向に沿って並ぶ。
 第1フォトセンサ群128A、第2フォトセンサ群128Bは、それぞれパターンの異なる第1位置検出パターン列HP、第2位置検出パターンIPをそれぞれ通過させるように、副走査方向に所定間隔離れて配置されている。位置検出パターンH1~H4、I1~I4各々は、それぞれフォトセンサ群128A、128Bを通過するときにすべてのフォトセンサと交差する長さを有する。
 なお、図8に示す主走査方向と基板の移動方向を逆に定めた場合においても、同様にフォトセンサ群を傾斜配置させた構成にすることが可能であり、それに合わせて第1、第2位置検出パターンHP、IPの投影パターン形状を定めればよい。
 図9は、第1フォトセンサ群における位置検出パターンとフォトセンサとの位置関係を示した図である。図10は、第2フォトセンサ群における位置検出パターンとフォトセンサとの位置関係を示した図である。図9、10を用いて、第2の実施形態における露光位置検出について説明する。
 図9に示すように、隣り合うフォトセンサPN、PN−1を1つの位置検出パターンH1が通過するとき、位置検出パターンH1とフォトセンサPN、PN−1が主走査方向に対して45°傾いているため、パターン移動方向は主走査方向に対し傾斜している。ここでは、微小変位した位置検出パターンH1を破線で示している。
 位置検出パターン幅K、フォトセンサ幅Z、フォトセンサピッチTの関係は、第1の実施形態と同様の関係を満たす。したがって、フォトセンサ間で検出される光量分布の中で光量一致点が検出される。なお、位置検出パターンH1は、フォトセンサPN、PN−1の配列方向に対し斜め方向に相対移動していくが、位置検出パターンH1はフォトセンサの長軸方向長さよりも十分な長さを有する。したがって、光量変化のある領域全体をパターンが通過していく。
 第1フォトセンサ群128AのフォトセンサPN、PN−1に関し、フォトセンサ配列方向に沿った露光位置を検出する場合、その成分はX成分とY成分とを合成したベクトルによって表される。センサ配列方向が移動方向に関して+45°傾斜しているため、配列方向に沿った露光位置のベクトルをS1、X成分、Y成分のベクトルの大きさをそれぞれdX、dYと表すと、以下の式が成り立つ。
 S1=(dX+dY)/√2            ・・・・(2)
ただし、移動方向(−X方向)に対し反時計まわりに傾斜する方向を正としている。また、便宜上、上記式はベクトル符号(→)を用いないで表している。
 同様に、第2フォトセンサ群128BのフォトセンサPM、PM−1に関に関し、フォトセンサ配列方向に沿った露光位置を検出する場合、その成分はX成分とY成分とを合成したベクトルによって表される。配列方向に沿った露光位置のベクトルをS2、X成分、Y成分のベクトルの大きさをそれぞれdX、dYと表すと、以下の式が成り立つ。
 S2=(dX−dY)/√2            ・・・・(3)
 よって、上記(1)、(2)式から、露光位置のX成分dX、Y成分dYは、以下の式によって求められる。
 dX=(S1+S2)/√2
 dX=(S1−S2)/√2
                          ・・・・(4)
 第1の実施形態と同様、第1位置検出パターン列HP、第2位置検出パターン列IPが通過する中で、互いに隣り合うフォトセンサの光量分布からその輝度レベルが一致するとき、パルス信号が時系列的に出力される。検出される一連のパルス信号の時間間隔は、フォトセンサの配列方向(+/−45°)に沿った距離間隔に対応する。
 したがって、第1フォトセンサ群128A、第2フォトセンサ群128Bそれぞれにおいて一連のパルス信号が検出されると、それぞれセンサ配列方向に沿った露光位置S1、S2が3つずつ算出される。算出された一連の露光位置から、S1、S2に関する代表値(平均値など)が算出され、上記(4)式により、露光位置のX成分、Y成分が算出される。
 算出された代表値は、参照露光位置のX成分、Y成分と比較され、X成分、Y成分の補正値が求められる。そして、補正値に基づき、露光開始位置が主走査方向、副走査方向について補正される。あるいは、補正値に基づいて露光データを補正し、露光動作を実行してもよい。
 このように第2の実施形態によれば、第1フォトセンサ群128A、第2フォトセンサ群128Bが、それぞれ主走査方向に対し+45°/−45°傾斜するように配置され、傾斜方向が互いに逆方向に向いている。そして、第1フォトセンサ群128Aに対しては、第1フォトセンサ群128Aのセンサ配列直交方向に傾斜した第1位置検出パターン列HPを投影し、第2フォトセンサ群128Bに対しては、第1フォトセンサ群128Aのセンサ配列直交方向に傾斜した第2位置検出パターン列IPを投影する。
 2つのフォトセンサ群を、互いに別方向に並べ、そのセンサ配列方向に合わせて傾斜させた位置検出パターン列を投影することにより、走査中、一連の露光位置が検出される。そして、2つのフォトセンサ群からのセンサ配列方向に沿った位置情報に基づき、主走査方向、副走査方向に沿った(X,Y座標)の露光位置が算出されるとともに、補正値が求められる。これにより、描画開始位置とともに、ステージの副走査方向に沿った移動距離が補正されるか、もしくは、露光デーダが補正される。特に、副走査方向に沿って露光位置を調整することにより、走査バンドが重なって投影領域に段差が生じることを防ぐことができる。
 なお、2つのフォトセンサ群のパルス信号から容易に露光位置を算出することを考慮すれば、センサ配列方向は、45°が好ましいがそれ以外にしてもよく、例えば30°から60°の範囲で適宜選択すると、実用上十分な精度で露光位置を検出することができる。また、その傾斜角度の大きさが互いに異なってもよい。
 具体的には、第1、第2フォトセンサ群第1フォトセンサ群128Aが移動方向に対し、0°<α<90°を満たす角度αで傾斜配置される一方、第2フォトセンサ群128Bは、移動方向に対し、−90°<β<0°を満たす角度βで傾斜配置するようにすればよい。また、主走査方向に対しても同様に傾斜配置させることが可能である。
 その場合、上記(4)式において、センサ配列方向を表す三角関数を用いて2次元の露光位置算出式を導くことができる。ただし、主走査方向、副走査方向を二次元座標軸として規定し、第1フォトセンサ群、第2フォトセンサ群の配置方向をそれぞれベクトルで表した場合、隣接し、かつ異なる象限内にそれぞれベクトルが存在するように、2つの配列方向を定める必要がある。
 次に、図11を用いて、第3の実施形態について説明する。第3の実施形態では、第1フォトセンサ群と第2フォトセンサ群が同一の走査バンド内に配置される一方、主走査方向に沿って間隔をあけて配置される。
 図11は、第3の実施形態におけるフォトセンサ群と位置検出パターン列を示した図である。
 位置検出部228は、第1フォトセンサ群228A、第2フォトセンサ群228Bを備え、第1フォトセンサ群228Aは、主走査方向に対して正方向に傾斜し、第2フォトセンサ群228Bは、それとは逆回転方向に傾斜している。第1フォトセンサ群228A、第2フォトセンサ群228Bは、露光エリアが1つの走査バンドに沿って移動するとき両方のフォトセンサ群を通過するように、所定間隔を空けて同一走査バンド内に主走査方向に沿って配置されている。
 走査時において、露光エリアが第1フォトセンサ群228Aを通過する間、位置検出パターン列HPが投影される。そして、露光エリアが第2フォトセンサ群228Bを通過する間、位置検出パターン列HPから位置検出パターン列IPに切り替わって投影される。これにより、第3実施形態と同様に一連のパルス信号が検出され、2次元の露光位置算出および露光開始位置補正が行われる。
 本発明に関しては、添付されたクレームによって定義される本発明の意図および範囲から離れることなく、様々な変更、置換、代替が可能である。さらに、本発明では、明細書に記載された特定の実施形態のプロセス、装置、製造、構成物、手段、方法およびステップに限定されることを意図していない。当業者であれば、本発明の開示から、ここに記載された実施形態がもたらす機能と同様の機能を実質的に果たし、又は同等の作用、効果を実質的にもたらす装置、手段、方法が導かれることを認識するであろう。したがって、添付した請求の範囲は、そのような装置、手段、方法の範囲に含まれることが意図されている。
 本願は、日本出願(特願2013−086730号、2013年4月17日出願)を基礎出願として優先権主張する出願であり、基礎出願の明細書、図面およびクレームを含む開示内容は、参照することによって本願全体に組み入れられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view of an exposure apparatus according to the first embodiment. FIG. 2 is a schematic block diagram of the exposure apparatus.
The exposure apparatus (drawing apparatus) 10 is a maskless exposure apparatus that forms a pattern by irradiating light onto a substrate W coated or pasted with a photosensitive material such as a photoresist. It is installed.
A stage 12 on which a substrate W is mounted is installed on the base 14 so as to be movable along the scanning direction. The stage drive mechanism 15 can move the stage 12 along the main scanning direction X and the sub-scanning direction Y.
The exposure apparatus 10 includes a plurality of exposure heads that project pattern light, and only one exposure head 18 is illustrated here. The exposure head 18 includes a DMD 22, an illumination optical system, and an imaging optical system (all not shown), and the other exposure heads are similarly configured. The light source 20 is constituted by a discharge lamp (not shown), for example, and is driven by a light source driving unit 21.
When CAD / CAM data composed of vector data or the like is input to the exposure apparatus 10, the vector data is sent to the raster conversion circuit 26, and the vector data is converted into raster data. The generated raster data is temporarily stored in a buffer memory (not shown) and then sent to the DMD driving circuit 24.
The DMD 22 is a light modulation element array (light modulator) in which minute micromirrors are two-dimensionally arranged, and each micromirror selectively switches the light reflection direction by changing the posture. By controlling the posture of each mirror by the DMD driving circuit 24, light corresponding to the pattern is projected onto the surface of the substrate W through the imaging optical system.
The stage drive mechanism 15 moves the stage 12 in accordance with a control signal from the controller 30. The position detection unit 28 is installed near the end of the stage 12, and includes a photosensor group PD including a plurality of photosensors, and a pulse signal generation unit 29. The position calculation unit 27 calculates the exposure position, that is, the position of the substrate W, based on the signal sent from the position detection unit 28.
During the exposure operation, the drawing table 12 moves along the scanning direction X at a constant speed. A projection area (hereinafter referred to as an exposure area) by the entire DMD 22 relatively moves on the substrate W as the substrate W moves. The exposure operation is performed according to a predetermined exposure pitch, and the micromirror is controlled to project pattern light in accordance with the exposure pitch.
By adjusting the control timing of each micromirror of the DMD 22 according to the relative position of the exposure area, the light of the pattern to be drawn is sequentially projected at the position of the exposure area. Then, a pattern is formed on the entire substrate W by drawing the entire substrate W with a plurality of exposure heads including the exposure head 18.
As an exposure method, not only a continuous movement method that moves at a constant speed, but also step and repeat movements that move intermittently are possible. Also, multiple exposure (overlap exposure) in which the projection area at the time of exposure shot is partially overlapped is possible.
In the stage before starting the exposure operation, correction processing relating to the exposure start position is performed in order to form a pattern at an accurate position. While moving the stage 12 at a constant speed, light of a pattern for position detection is projected. The controller 30 corrects the exposure start position based on the position information sent from the position calculation unit 27.
Hereinafter, the detection and correction of the exposure position will be described with reference to FIGS.
FIG. 3 is a diagram illustrating a photosensor group and a position detection pattern sequence. FIG. 4 is a diagram showing the width of the photosensor and the pattern. FIG. 5 is a diagram showing a change in the amount of light incident on the photosensor.
The photosensor group PD includes N photosensors P1, P2,..., PN, and is arranged in the scanning direction at equal intervals of the arrangement pitch T. On the other hand, the position detection pattern row LP is composed of a series of bar-shaped patterns L1, L2, L3,. M patterns L1, L2, L3,... LM are arranged at equal intervals with a pattern pitch J.
The pattern width K of each of the patterns L1, L2, L3,... LM is shorter than the photosensor width Z. Therefore, when the pattern L1 at one head position passes through the photosensors P1 and P2, the level of the luminance signal output from the photosensors P1 and P2, that is, the amount of light received by the photosensor is as shown in FIG. Followed by increasing, constant, decreasing.
More specifically, the light quantity of the photosensor P1 increases as a part of the pattern L1 moves on the photosensor P1 due to the movement of one pattern L1. While the entire pattern L1 is positioned on the photosensor P1, the light quantity detected by the photosensor P1 is constant at the maximum light quantity. Then, as the moving front end side of the pattern L1 exceeds the photosensor P1 and moves between the photosensors P1 and P2, the light amount of the photosensor P1 decreases.
Similarly, in the photosensor P2 located next to the photosensor P1 in the scanning direction, the light amount increases, is constant, and decreases. This change in light amount occurs with a delay corresponding to the pattern pitch T with respect to the photosensor P1. On the other hand, the width K of the pattern L1 is larger than the interval B between adjacent photosensors. Therefore, while the pattern L1 passes between the photosensors P1 and P2, a period Q in which the light amount decrease of the photosensor P1 and the light amount increase of the photosensor P2 overlap occurs (see FIG. 5).
In this period Q, the positions and points where the light amounts of the photosensors P1 and P2 match are detected as exposure positions. Specifically, the pulse signal generation unit 29 generates a pulse signal at the light intensity coincidence timing, and detects the position of the pattern L1, that is, the position of the substrate W. Thereby, it is possible to detect an exposure position that requires an order that is equal to or smaller than the photosensor size width Z.
After the light quantity coincidence point is detected when the pattern L1 passes, the light quantity coincidence point is also detected for the patterns L2, L3,. As a result, M exposure positions are detected between the photosensors P1 and P2.
Furthermore, not only the photosensors P1 and P2, but also the adjacent photosensors Pj and Pj + 1 (1 ≦ j ≦ N−1), the light quantity coincidence point is detected as the exposure position. Accordingly, when M patterns L1, L2,... LM pass over N photosensors P1, P2,..., PN, (N-1) .times.M exposure positions are detected. That is, the M exposure positions are detected in the gaps of (N−1) photosensors.
FIG. 6 is a diagram showing a change in the light amount of the adjacent photosensors P1 and P2. FIG. 7 is a diagram showing the output timing of the pulse signal in time series.
The pattern pitch J of the position detection pattern row L is determined so as to satisfy the following expression. However, T represents the photosensor pitch, SA represents the total number of detected pulses, M represents the number of patterns, and N represents the number N of photosensors.
J = T / M + T
SA = (N−1) M (1)
By setting the pattern pitch J in this way, the output timings of a series of pulse signals output between adjacent photosensors do not overlap, but are output in time series at substantially constant intervals. FIG. 6 shows a pulse signal output at the pulse pitch PS.
Based on a series of output pulse signals, the exposure position is calculated and the exposure start position is corrected. In the position calculation unit 27 including a pulse counter, a latch circuit, and the like, the exposure position of each pattern, that is, on the substrate, is determined from a series of pulse signals sequentially output in time series based on the moving speed of the stage 12, encoder signals, and the like. X position coordinates are calculated.
The controller 30 sequentially calculates the difference between the exposure position calculated from each pulse signal and the preset standard exposure position. As standard exposure positions, position coordinates of intermediate points between (N-1) adjacent photosensors are stored and set in advance.
After calculating correction values for all detected exposure position coordinates, the average value is obtained. The exposure position is corrected by this average value. When actual drawing processing is performed, drawing is started by shifting the exposure position by the correction value. Here, the exposure position is corrected as the reference position of the substrate W for each of the plurality of exposure heads.
As described above, according to the first embodiment, the position detection unit 28 in which the plurality of photosensors P1 to PN are arranged at equal intervals along the scanning direction X is provided on the stage 12, and along the scanning direction X. A position detection pattern row L composed of bar / slit patterns L1 to LM arranged at equal intervals is projected during scanning. Then, the positions at which the received light amounts of the adjacent photosensors are equal during the pattern row detection are detected in time series as exposure positions, and the reference position is determined based on the detected (N−1) × M exposure positions. It is corrected.
By projecting pattern rows onto a plurality of photosensors arranged in the scanning direction, exposure positions are detected at a number of locations, and a number of exposure positions are also detected at the same point. This makes it possible to accurately detect the exposure position without being affected by irregularities in the illumination of the pattern light, the effects of fluctuations in the amount of light due to disturbance, individual differences in the photosensor (difference in output characteristics of the photosensor), changes over time, etc. Can be done in one scan. In addition, an accurate exposure position can be detected without using a device that is difficult in terms of device structure, such as minimizing the size of the photosensor and the interval between photosensors, and does not require a costly configuration.
Since the exposure position is detected by generating a pulse signal, the configuration of the detection unit can be simplified on the stage. In particular, when a plurality of exposure heads are arranged, it is possible to generate a pulse signal in each exposure head and provide the position calculation unit as a single circuit, and the configuration of the position detection unit can be simplified. Further, since the pattern pitch and the like are set so that the pulse signals output in time series are not output simultaneously or overlapping, it is possible to detect a large number of exposure positions.
The number of patterns in the pattern row, the pattern shape, and the number of photosensors are arbitrary. Considering that the exposure position is detected a plurality of times between different photosensors, a pattern row composed of two or more patterns may be configured, and a photosensor group may be configured with three or more photosensors. In addition, the photosensor may be configured to be detachable.
The position detection pattern shape, pattern pitch, photosensor pitch, photosensor width, and pattern width are also set so that a light quantity change occurs between adjacent photosensors when each pattern passes, and a light quantity coincidence point can be extracted. That's fine. That is, the pattern width may be smaller than the photosensor width and larger than the distance between adjacent photosensors.
The exposure position is calculated by first calculating a representative exposure position such as an average value from a series of detected exposure positions, and correcting the exposure start position based on the difference between the average value and the standard value. May be. It is also possible to configure to detect the exposure position where the light amount becomes equal by a configuration other than the generation of the pulse signal.
Next, a second embodiment will be described with reference to FIGS. In the second embodiment, a two-dimensional exposure position is detected in the main scanning direction (X direction) and the sub-scanning direction (Y direction). Other configurations are substantially the same as those in the first embodiment.
FIG. 8 is a diagram illustrating a photosensor group and a position detection pattern in the second embodiment. The arrangement and position detection pattern of the photosensor group in the second embodiment will be described with reference to FIG.
The position detection unit 128 includes a first photosensor group 128A and a second photosensor group 128B, and is arranged near the end of the stage 12 along the sub-scanning direction. In the first photosensor group 128A, a plurality of photosensors are arranged at equal intervals along a direction inclined by + 45 ° with respect to the moving direction (the direction opposite to the main scanning direction).
On the other hand, in the second photosensor group 128B, a plurality of photosensors are arranged at equal intervals along a direction inclined by −45 ° with respect to the moving direction. The sensor arrangement direction of the second photosensor group 128B corresponds to the reverse rotation direction of the first photosensor group 128A with respect to the movement direction / main scanning direction. In FIG. 8, the first photosensor group 128A is tilted counterclockwise from the moving direction, while the second photosensor group 128B is tilted clockwise.
The first photosensor group 128A and the second photosensor group 128A are arranged in the same scanning band (a region where the exposure area passes during scanning), and here, they are arranged in parallel along the sub-scanning direction. As described above, they are spaced apart from each other in adjacent scanning bands.
When detecting the exposure position, the first position detection pattern row HP is projected onto the first photosensor group 128A, and the second position detection pattern IP is projected onto the second photosensor group 128B. Accordingly, the first and second position detection patterns are projected side by side along the sub-scanning direction. The first position detection pattern row HP includes four bar-shaped position detection patterns H1 to H4. The position detection patterns H1 to H4 are inclined along the direction perpendicular to the arrangement direction (+ 45 °) of the first photosensor group 128A, and are arranged at equal intervals along the movement direction / main scanning direction.
Similarly, the second position detection pattern array IP includes four bar-shaped position detection patterns I1 to I4, and the position detection patterns I1 to I4 are perpendicular to the arrangement direction (−45 °) of the second photosensor group 128B. And are arranged along the moving direction / main scanning direction at equal intervals.
The first photosensor group 128A and the second photosensor group 128B are arranged at a predetermined interval in the sub-scanning direction so as to pass the first position detection pattern array HP and the second position detection pattern IP having different patterns, respectively. ing. Each of the position detection patterns H1 to H4 and I1 to I4 has a length that intersects with all the photosensors when passing through the photosensor groups 128A and 128B, respectively.
Even when the main scanning direction and the moving direction of the substrate shown in FIG. 8 are reversed, it is possible to similarly arrange the photosensor groups in an inclined manner. The projection pattern shape of the position detection patterns HP and IP may be determined.
FIG. 9 is a diagram illustrating a positional relationship between the position detection pattern and the photosensor in the first photosensor group. FIG. 10 is a diagram illustrating a positional relationship between the position detection pattern and the photosensor in the second photosensor group. The exposure position detection in the second embodiment will be described with reference to FIGS.
As shown in FIG. 9, when one position detection pattern H1 passes through adjacent photosensors PN and PN-1, the position detection pattern H1 and the photosensors PN and PN-1 are inclined by 45 ° with respect to the main scanning direction. Therefore, the pattern moving direction is inclined with respect to the main scanning direction. Here, the minutely displaced position detection pattern H1 is indicated by a broken line.
The relationship among the position detection pattern width K, the photosensor width Z, and the photosensor pitch T satisfies the same relationship as in the first embodiment. Therefore, the light quantity coincidence point is detected in the light quantity distribution detected between the photosensors. The position detection pattern H1 moves relative to the arrangement direction of the photosensors PN and PN-1 in an oblique direction. However, the position detection pattern H1 has a length that is sufficiently longer than the length in the long axis direction of the photosensor. . Therefore, the pattern passes through the entire area where the light amount changes.
Regarding the photosensors PN and PN-1 of the first photosensor group 128A, when the exposure position along the photosensor arrangement direction is detected, the component is represented by a vector obtained by combining the X component and the Y component. Since the sensor array direction is inclined by + 45 ° with respect to the movement direction, the exposure position vectors along the array direction are expressed as S1, X component, and Y component vectors as dX and dY, respectively. It holds.
S1 = (dX + dY) / √2 (2)
However, the direction which inclines counterclockwise with respect to the moving direction (−X direction) is positive. For the sake of convenience, the above formula is represented without using a vector code (→).
Similarly, regarding the photosensors PM and PM-1 of the second photosensor group 128B, when detecting the exposure position along the photosensor arrangement direction, the component is represented by a vector obtained by combining the X component and the Y component. Is done. When the exposure position vector along the arrangement direction is expressed as S2, the X component, and the Y component vectors as dX and dY, respectively, the following equations are established.
S2 = (dX−dY) / √2 (3)
Therefore, the X component dX and the Y component dY of the exposure position can be obtained from the above equations (1) and (2) by the following equations.
dX = (S1 + S2) / √2
dX = (S1-S2) / √2
.... (4)
Similarly to the first embodiment, when the first position detection pattern array HP and the second position detection pattern array IP pass, when the luminance level matches from the light quantity distribution of the adjacent photosensors, the pulse signal is Output in series. The time interval of the series of detected pulse signals corresponds to the distance interval along the photosensor array direction (+/− 45 °).
Therefore, when a series of pulse signals are detected in each of the first photosensor group 128A and the second photosensor group 128B, three exposure positions S1 and S2 along the sensor array direction are calculated. From the calculated series of exposure positions, representative values (average values, etc.) relating to S1 and S2 are calculated, and the X component and Y component of the exposure position are calculated by the above equation (4).
The calculated representative value is compared with the X and Y components at the reference exposure position, and correction values for the X and Y components are obtained. Then, based on the correction value, the exposure start position is corrected in the main scanning direction and the sub-scanning direction. Alternatively, the exposure data may be corrected based on the correction value and the exposure operation may be executed.
As described above, according to the second embodiment, the first photosensor group 128A and the second photosensor group 128B are arranged so as to be inclined + 45 ° / −45 ° with respect to the main scanning direction, and the inclination directions are mutually different. It faces in the opposite direction. Then, the first position detection pattern row HP inclined in the direction perpendicular to the sensor arrangement of the first photosensor group 128A is projected onto the first photosensor group 128A, and the first photosensor group 128B is projected onto the first photosensor group 128A. The second position detection pattern array IP tilted in the direction orthogonal to the sensor array of one photosensor group 128A is projected.
A series of exposure positions are detected during scanning by arranging two photosensor groups in different directions and projecting a position detection pattern row inclined according to the sensor arrangement direction. Based on the position information along the sensor arrangement direction from the two photosensor groups, the exposure position of (X, Y coordinates) along the main scanning direction and the sub-scanning direction is calculated, and a correction value is obtained. . Thereby, the movement distance along the sub-scanning direction of the stage is corrected together with the drawing start position, or the exposure data is corrected. In particular, by adjusting the exposure position along the sub-scanning direction, it is possible to prevent the scanning bands from overlapping and causing a step in the projection area.
In consideration of easily calculating the exposure position from the pulse signals of the two photosensor groups, the sensor arrangement direction is preferably 45 °, but may be other than that, for example, in the range of 30 ° to 60 °. When appropriately selected, the exposure position can be detected with sufficient accuracy for practical use. Moreover, the magnitude | sizes of the inclination angle may mutually differ.
Specifically, the first and second photosensor groups 128A are inclined with respect to the moving direction at an angle α satisfying 0 ° <α <90 °, while the second photosensor group 128B is The moving direction may be inclined at an angle β satisfying −90 ° <β <0 °. Further, it can be similarly inclined with respect to the main scanning direction.
In that case, in the above equation (4), a two-dimensional exposure position calculation formula can be derived using a trigonometric function representing the sensor arrangement direction. However, when the main scanning direction and the sub-scanning direction are defined as two-dimensional coordinate axes, and the arrangement directions of the first photosensor group and the second photosensor group are represented by vectors, the vectors are adjacent and in different quadrants. In order to exist, it is necessary to define two arrangement directions.
Next, a third embodiment will be described with reference to FIG. In the third embodiment, the first photosensor group and the second photosensor group are arranged in the same scanning band, while being arranged at intervals along the main scanning direction.
FIG. 11 is a diagram illustrating a photosensor group and a position detection pattern sequence according to the third embodiment.
The position detection unit 228 includes a first photosensor group 228A and a second photosensor group 228B. The first photosensor group 228A is inclined in the positive direction with respect to the main scanning direction, and the second photosensor group 228B is It is inclined in the reverse rotation direction. The first photo sensor group 228A and the second photo sensor group 228B are arranged in the same scan band at a predetermined interval so that the exposure area passes through both photo sensor groups when moving along one scan band. Arranged along the scanning direction.
During scanning, the position detection pattern row HP is projected while the exposure area passes through the first photosensor group 228A. Then, while the exposure area passes through the second photosensor group 228B, the position detection pattern row HP is switched to the position detection pattern row IP and projected. Thereby, a series of pulse signals are detected as in the third embodiment, and two-dimensional exposure position calculation and exposure start position correction are performed.
Various changes, substitutions and alternatives are possible with respect to the present invention without departing from the spirit and scope of the present invention as defined by the appended claims. Furthermore, the present invention is not intended to be limited to the specific embodiments of the processes, apparatus, manufacture, components, means, methods, and steps described in the specification. Those skilled in the art will appreciate from the disclosure of the present invention devices, means, and methods that perform substantially the same functions as those provided by the embodiments described herein, or that provide substantially the same effects and advantages. You will recognize it. Accordingly, the appended claims are intended to be included within the scope of such devices, means, and methods.
This application is an application claiming priority from a Japanese application (Japanese Patent Application No. 2013-086730, filed on April 17, 2013) as a basic application, and the disclosure including the specification, drawings, and claims of the basic application is referred to. Which is incorporated herein by reference in its entirety.
 10 露光装置
 22 DMD(光変調素子アレイ)
 28 位置検出部
 30 コントローラ
10 Exposure Equipment 22 DMD (Light Modulation Element Array)
28 Position detector 30 Controller

Claims (11)

  1.  複数の光変調素子をマトリクス状に配列した光変調素子アレイと、
     前記光変調素子アレイによる露光エリアを被描画体に対し主走査方向に沿って相対移動させる走査部と、
     主走査方向に対し傾斜配列させた第1フォトセンサ群と、前記第1フォトセンサ群とは主走査方向に関して逆回転方向に傾斜配列させた第2フォトセンサ群とを有する位置検出部と、
     前記複数の光変調素子を制御することにより、前記第1および第2フォトセンサ群の配列垂直方向に沿ってそれぞれ傾斜し、前記第1および第2フォトセンサ群の配列方向に沿った各パターン幅が、フォトセンサ幅よりも小さく、フォトセンサ間隔よりも大きい第1および第2位置検出パターン列の光を、前記第1及び第2フォトセンサ群に対してそれぞれ投影する露光動作制御部とを備え、
     前記位置検出部が、走査中、前記第1および第2フォトセンサ群において、隣り合うフォトセンサから出力される輝度信号のレベルが等しくなる露光位置を、第1の一連の露光位置および第2の一連の露光位置として時系列に検出することを特徴とする露光装置。
    A light modulation element array in which a plurality of light modulation elements are arranged in a matrix, and
    A scanning unit that moves the exposure area by the light modulation element array relative to the object to be drawn along the main scanning direction;
    A position detection unit having a first photosensor group that is inclined with respect to the main scanning direction, and a second photosensor group that is inclined with respect to the main scanning direction in a direction opposite to the main scanning direction;
    By controlling the plurality of light modulation elements, each pattern width is inclined along the arrangement vertical direction of the first and second photosensor groups, and along the arrangement direction of the first and second photosensor groups. An exposure operation control unit that projects light of the first and second position detection pattern rows smaller than the photosensor width and larger than the photosensor interval to the first and second photosensor groups, respectively. ,
    In the first and second photosensor groups during scanning, the position detector detects exposure positions at which the levels of the luminance signals output from adjacent photosensors are equal to each other as a first series of exposure positions and a second An exposure apparatus that detects time series as a series of exposure positions.
  2.  前記位置検出部が、検出された第1および第2の一連の露光位置から、2次元露光位置を算出することを特徴とする請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the position detection unit calculates a two-dimensional exposure position from the detected first and second series of exposure positions.
  3.  前記第1および第2フォトセンサ群が、副走査方向に沿って配置されることを特徴とする請求項1乃至2のいずれかに記載の露光装置。 3. The exposure apparatus according to claim 1, wherein the first and second photo sensor groups are arranged along a sub-scanning direction.
  4.  前記第1および第2フォトセンサ群が、主走査方向に沿って配置されることを特徴とする請求項1乃至2のいずれかに記載の露光装置。 3. The exposure apparatus according to claim 1, wherein the first and second photo sensor groups are arranged along a main scanning direction.
  5.  前記位置検出部が、
     輝度信号の等しくなるタイミングでパルス信号を発生するパルス信号生成部と、
     検出されたパルス信号に応じて露光位置を算出する位置算出部と
     を備えたことを特徴とする請求項1乃至2のいずれかに記載の露光装置。
    The position detection unit is
    A pulse signal generator that generates a pulse signal at the same timing of the luminance signal;
    The exposure apparatus according to claim 1, further comprising: a position calculation unit that calculates an exposure position in accordance with the detected pulse signal.
  6.  前記パルス信号生成部が、前記ステージに設けられていることを特徴とする請求項3に記載の露光装置。 4. The exposure apparatus according to claim 3, wherein the pulse signal generator is provided on the stage.
  7.  前記露光動作制御部が、検出される一連のパルス信号を互いに異なるタイミングで発生させるように、前記第1及び第2位置検出パターン列の光を投影することを特徴とする請求項2乃至4のいずれかに記載の露光装置。 5. The exposure operation control unit projects light of the first and second position detection pattern rows so as to generate a series of detected pulse signals at different timings. The exposure apparatus according to any one of the above.
  8.  前記露光動作制御部が、ほぼ一定の時間間隔で一連のパルス信号が発生するように、所定のパターンピッチで前記第1および第2位置検出パターン列の光を投影することを特徴とする請求項5に記載の露光装置。 The exposure operation control unit projects light of the first and second position detection pattern rows at a predetermined pattern pitch so that a series of pulse signals are generated at substantially constant time intervals. 5. The exposure apparatus according to 5.
  9.  前記第1および第2フォトセンサ群が、前記被描画体の搭載されるステージに一体的に設けられていることを特徴とする請求項1乃至8のいずれかに記載の露光装置。 The exposure apparatus according to any one of claims 1 to 8, wherein the first and second photosensor groups are integrally provided on a stage on which the drawing object is mounted.
  10.  前記第1フォトセンサ群の移動方向あるいは主走査方向に対する傾斜配置角度αが、30°≦α≦60°の範囲であり、
     前記第2フォトセンサ群の移動方向あるいは主走査方向に対する傾斜配置角度βが、−60°≦β≦−30°の範囲であることを特徴とする請求項1乃至9のいずれかに記載の露光装置。
    The inclination arrangement angle α with respect to the moving direction or the main scanning direction of the first photosensor group is in a range of 30 ° ≦ α ≦ 60 °,
    10. The exposure according to claim 1, wherein an inclination arrangement angle β with respect to the moving direction of the second photosensor group or the main scanning direction is in a range of −60 ° ≦ β ≦ −30 °. apparatus.
  11.  複数の光変調素子をマトリクス状に配列した光変調素子アレイによる露光エリアを被描画体に対し主走査方向に沿って相対移動させ、
     主走査方向に対し傾斜配列させた第1フォトセンサ群と、前記第1フォトセンサ群とは主走査方向に関して逆回転方向に傾斜配列させた第2フォトセンサ群とを配置し、
     前記第1および第2フォトセンサ群の配列垂直方向に沿ってそれぞれ傾斜し、前記第1および第2フォトセンサ群の配列方向に沿った各パターン幅が、フォトセンサ幅よりも小さく、フォトセンサ間隔よりも大きい第1および第2位置検出パターン列の光を、前記第1及び第2フォトセンサ群に対してそれぞれ投影し、
    前記第1および第2フォトセンサ群において、隣り合うフォトセンサから出力される輝度信号のレベルが等しくなる露光位置を、第1の一連の露光位置および第2の一連の露光位置として時系列に検出することを特徴とする露光方法。
    Move the exposure area by the light modulation element array in which a plurality of light modulation elements are arranged in a matrix, relative to the object to be drawn along the main scanning direction,
    A first photosensor group that is inclined with respect to the main scanning direction, and a second photosensor group that is inclined with respect to the main scanning direction in a reverse rotation direction with respect to the main scanning direction;
    The first and second photosensor groups are inclined along the arrangement vertical direction, and the pattern widths along the arrangement direction of the first and second photosensor groups are smaller than the photosensor width. Projecting light of the first and second position detection pattern rows larger than the first and second photosensor groups,
    In the first and second photo sensor groups, the exposure positions at which the levels of the luminance signals output from the adjacent photo sensors are equal are detected in time series as the first series of exposure positions and the second series of exposure positions. An exposure method characterized by:
PCT/IB2014/000553 2013-04-17 2014-04-16 Exposure device WO2014174352A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157032107A KR102142747B1 (en) 2013-04-17 2014-04-16 Exposure device
JP2015513345A JPWO2014174352A1 (en) 2013-04-17 2014-04-16 Exposure equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086730 2013-04-17
JP2013086730 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014174352A1 true WO2014174352A1 (en) 2014-10-30

Family

ID=51791127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/000553 WO2014174352A1 (en) 2013-04-17 2014-04-16 Exposure device

Country Status (4)

Country Link
JP (1) JPWO2014174352A1 (en)
KR (1) KR102142747B1 (en)
TW (1) TWI607291B (en)
WO (1) WO2014174352A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190706A1 (en) * 2021-03-09 2022-09-15 株式会社Screenホールディングス Exposure method, and exposure device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613246A (en) * 1979-07-06 1981-02-09 Hitachi Ltd Difference in wheel revolution detection controller
JPH03249503A (en) * 1990-02-28 1991-11-07 Sumitomo Heavy Ind Ltd Relative position detector using slit and grid
JP2006278799A (en) * 2005-03-30 2006-10-12 Nikon Corp Positioning method and device manufacturing method employing the same
JP2009058698A (en) * 2007-08-31 2009-03-19 V Technology Co Ltd Exposure apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134370A (en) 2006-11-28 2008-06-12 Orc Mfg Co Ltd Exposure apparatus
US8440375B2 (en) * 2007-05-29 2013-05-14 Nikon Corporation Exposure method and electronic device manufacturing method
KR20090124179A (en) * 2008-05-29 2009-12-03 삼성전자주식회사 Measuring method for a position error of beam and apparatus therefor
KR101059811B1 (en) * 2010-05-06 2011-08-26 삼성전자주식회사 Maskless exposure apparatus and method of alignment for overlay in maskless exposure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613246A (en) * 1979-07-06 1981-02-09 Hitachi Ltd Difference in wheel revolution detection controller
JPH03249503A (en) * 1990-02-28 1991-11-07 Sumitomo Heavy Ind Ltd Relative position detector using slit and grid
JP2006278799A (en) * 2005-03-30 2006-10-12 Nikon Corp Positioning method and device manufacturing method employing the same
JP2009058698A (en) * 2007-08-31 2009-03-19 V Technology Co Ltd Exposure apparatus

Also Published As

Publication number Publication date
KR102142747B1 (en) 2020-08-07
TWI607291B (en) 2017-12-01
KR20150143622A (en) 2015-12-23
JPWO2014174352A1 (en) 2017-02-23
TW201447502A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP4201178B2 (en) Image recording device
JP2006349945A (en) Exposure apparatus
JP2006339183A (en) Pattern drawing device and method of determining number of blocks
JP2007034168A (en) Method and device for acquiring stage position change information
US20120050705A1 (en) Photolithography system
JP6818393B2 (en) Exposure device
JP2006284890A (en) Position correcting method for alignment sensor, reference pattern correcting method, exposure position correcting method, pattern for correction, and alignment device
JP3975626B2 (en) Laser drawing device
JP6129579B2 (en) Exposure equipment
JP2007271867A (en) Drawing position measurement method and apparatus, and drawing method and apparatus
WO2014174352A1 (en) Exposure device
JP6321386B2 (en) Exposure apparatus and exposure method
JP6148135B2 (en) Exposure equipment
KR20160112967A (en) Exposure device and exposure method
JP2005300805A (en) Drawing apparatus
KR20220122422A (en) Exposure device and exposure method
JP7037341B2 (en) Exposure equipment and exposure method
JP6486167B2 (en) Exposure apparatus, photometric apparatus for exposure apparatus, and exposure method
JP2005353927A (en) Pattern drawing apparatus
JP6904689B2 (en) Exposure equipment and light-shielding members for exposure equipment
KR20110064570A (en) Maskless exposure apparatus and control method thereof
KR102413894B1 (en) Exposure device
JP2023139738A (en) Exposure apparatus and exposure position measurement method
KR101437692B1 (en) Maskless exposure apparatus using a plurality of spatial light modultor and method for forming pattern using the same
TW202136922A (en) Exposure device and exposure method capable of forming high resolution patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157032107

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14787648

Country of ref document: EP

Kind code of ref document: A1