WO2014174180A1 - Procédé de gestion de l'énergie dans un véhicule semi-hybride et véhicule ainsi géré - Google Patents

Procédé de gestion de l'énergie dans un véhicule semi-hybride et véhicule ainsi géré Download PDF

Info

Publication number
WO2014174180A1
WO2014174180A1 PCT/FR2014/050884 FR2014050884W WO2014174180A1 WO 2014174180 A1 WO2014174180 A1 WO 2014174180A1 FR 2014050884 W FR2014050884 W FR 2014050884W WO 2014174180 A1 WO2014174180 A1 WO 2014174180A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
engine
electric motor
water
vehicle
Prior art date
Application number
PCT/FR2014/050884
Other languages
English (en)
Inventor
Jean-Marie L'huillier
Alain Alexandre
Original Assignee
Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault filed Critical Renault
Publication of WO2014174180A1 publication Critical patent/WO2014174180A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0688Engine temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a method for improving energy management in a semi-hybrid motor vehicle.
  • a hybrid vehicle is a vehicle that uses at least two different energy sources to move.
  • a hybrid car is a car that uses fuel and electricity to move by means of two engines, one thermal, the other electric.
  • the "Start &Stop” system ensures the start and automatic shutdown of the engine during shutdown phases. It thus saves fuel and reduces emissions of pollutants (CO 2 , exhaust gases) and noise during multiple stops and restarts of urban traffic (traffic lights, traffic jams, etc.).
  • the engine is restarted instantly by the alternator, which is powered by the car battery, which receives a slight increase in charge thanks to the energy recovered during braking.
  • Semi-hybrid machines are variants based on the "Start & Stop” system, which also use electricity to power other systems, such as lighting, air conditioning, multimedia devices, and on-board devices.
  • the electric motor often of very low power, brings a surplus of power to the engine during the phases of starting, acceleration and recovery and recovers the kinetic energy either during a braking or a descent. The energy thus recovered is stored in batteries. Unlike the fully hybrid system, you can not ride in any electric.
  • the additional heaters have, base, a poor performance, the alternator that feeds them having a yield of the order of 50% to 60%.
  • the object of the invention is to propose an improvement in the management of energy in a semi-hybrid vehicle so as to eliminate the cost of an additional heating system and to minimize the energy consumption mentioned above.
  • the invention achieves its goal through a method of energy management in a semi-hybrid vehicle comprising a water-cooled heat engine and an electric assist motor operable in the engine mode or the generator mode, the method comprising a semi-hybrid type management of the vehicle namely in normal operation assistance of the electric motor to the heat engine in the acceleration phase and operation of the electric motor generator in deceleration phase, characterized in that it is provided, when the temperature of the engine is below a first set temperature and the outside temperature is below a second temperature of set, an exceptional regime during which the electric motor also operates as a generator outside the acceleration phases of the vehicle, whereby the heat engine reaches a temperature faster than the first set temperature. In this way, the air heater effectively heats the cabin, faster ..
  • the temperature of the engine is advantageously estimated by measuring the temperature of the water of its cooling circuit.
  • the first set temperature for the temperature of the heat engine, is advantageously set between 50 and 70 ° C, for example at about 60 ° C measured on the water of the cooling circuit.
  • the second set temperature for the outside temperature, is preferably set between 5 ° C and 15 ° C, for example at about 10 ° C.
  • the invention also relates to a semi-hybrid vehicle for implementing the above method, thus comprising a water-cooled heat engine and an electric assist motor adapted to operate in engine mode or in generator mode, the vehicle comprising at least one acceleration phase sensor which, in the case of a positive signal, triggers operation in motor mode of the electric motor, characterized in that it also comprises an engine temperature sensor and an external temperature sensor which in the case of signals indicative of a temperature respectively lower than a first and a second setpoint temperature and in the case of a negative signal of the acceleration phase sensor triggers the operation in generating mode of the electric motor.
  • Figure 1 is a schematic figure of a vehicle of the invention.
  • FIG. 2 is a flow diagram of the steps of the method according to the invention.
  • the semi-hybrid vehicle 1 comprises a heat engine 2 and an electric assistance motor 3 interconnected by a link 4 which allows, in one direction, the electric motor 3, powered by the battery 5, to operate as a motor and to 'bring extra engine torque to thermal engine 2 or, in the other direction, the heat engine 2 to operate the electric motor 3 generator, the electricity produced being stored in the battery 5.
  • the electricity stored by the battery 5 can be used, between others, to operate certain electrical equipment such as 6 in the vehicle.
  • An acceleration sensor 7 sends a signal to a control device 8 of the electric motor 3 so as to decide the operating mode of the electric motor 3 according to the pace of the vehicle.
  • These two sensors 10, 11 send their signals to the control device 8 for analysis. If the two temperatures T water and T ext are less than two set temperatures T t and T 2 , the operation of the electric motor 3 is changed: outside the acceleration phases where the electric motor 3 operates in engine mode to boost as usually the heat engine 2, the electric motor is used as a generator; it applies a torque set resistance to the engine 2 in order to increase more quickly the temperature of the engine 2 and allow it to be used more efficiently for the traditional heating of the vehicle.
  • test step 100 depending on the water temperature T water of the engine 2 indicated by the sensor 10. If it is greater than a first set temperature T l 5 for example 60 ° C, then as indicated in box 101, the operation of the electric motor 3 is normal and characteristic of the semi-hybrid system, namely that it operates as an assistance motor during an acceleration phase and as a generator during a deceleration phase and does not work in steady motion.
  • the water temperature is not greater than the first set temperature T 1 goes to test 102 on the outside temperature T ext measured by the sensor 1 1; if it is greater than a second set temperature T 2 , for example 10 ° C, then, as indicated in box 103, the operation of the electric motor 3 is still normal and characteristic of the semi-hybrid system, as in the box 101 and depending on the detection of the acceleration.
  • a second set temperature T 2 for example 10 ° C
  • test 104 is carried out on the acceleration sensed by the sensor 7; if one is in the acceleration phase, then, as indicated by the box 105, the operation of the electric motor 3 is still normal and characteristic of the semi-hybrid system, and, since one is precisely in phase of acceleration it works as an assistance engine to boost the heat engine 2.
  • the electric motor 3 is turned on (box 106) in the generator, which applies an additional resistive torque to the heat engine by charging the torque and, at the cost of a slight overconsumption of fuel, it allows to reach a faster temperature rise within the engine 2; this operation is prolonged until the temperature of the water is higher than the second setpoint temperature in which case one returns to the situation described in the upper part of the flowchart.
  • the electric motor 3 in cold operating conditions, is used, apart from the acceleration phases (so as not to affect the brio), that is to say during the driving phases. deceleration (which is conventional) but also stabilized (where the use of the electric motor has not been considered to date), to quickly raise the engine temperature and torque. In fact, the calories transmitted to the water are directly proportional to the engine operating point. This increase in engine temperature makes it possible to switch over more quickly to traditional vehicle heating, which is more efficient than additional heaters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Ce véhicule semi-hybride comprend un moteur thermique (2) refroidi par eau et un moteur électrique (3) d'assistance adapté pour fonctionner en mode moteur ou en mode génératrice, le véhicule (1) comprenant au moins un capteur (7) de phase d'accélération qui en cas de signal positif déclenche le fonctionnement en mode moteur du moteur électrique (3), caractérisé qu'il comprend également un capteur (10) de température du moteur et un capteur (11) de température extérieure qui en cas de signaux indicatifs d'une température inférieure respectivement à une première et une seconde température de consigne et en cas de signal négatif du capteur (7) de phase d'accélération déclenche le fonctionnement en mode génératrice du moteur électrique (3), de sorte que le moteur thermique gagne plus rapidement une température permettant un chauffage rapide et efficace de l'habitacle même par temps froid.

Description

Procédé de gestion de l'énergie dans un véhicule semi-hybride, et véhicule ainsi géré
La présente invention concerne un procédé d'amélioration de la gestion de l'énergie dans un véhicule automobile semi-hybride.
Un véhicule hybride est un véhicule qui utilise au moins deux sources d'énergie différentes pour se déplacer. Généralement, on désigne par voiture hybride une voiture qui recourt à un carburant et à l'électricité pour se mouvoir au moyen de deux moteurs, l'un thermique, l'autre électrique.
On distingue plusieurs degrés d'hybridation en fonction de l'importance du système électrique dans la locomotion du véhicule.
Du plus faible au plus important degré d'hybridation, on parle de système micro-hybride (connus sous le nom anglais de « Start & Stop »), semi-hybride (en anglais, « mild hybrid ») et totalement hybride (en anglais « full hybrid »).
Dans les véhicules micro-hybrides, le système « Start & Stop » assure le démarrage et la coupure automatique du moteur thermique lors des phases d'arrêt. Il permet ainsi d'économiser du carburant et de réduire les émissions de polluants (CO2, gaz d'échappement) et de bruit lors des multiples arrêts-redémarrages de la circulation urbaine (feux tricolores, embouteillage, etc.). Le moteur est redémarré instantanément par l'alternateur, qui est alimenté par la batterie de la voiture, laquelle reçoit un léger surcroît de charge grâce à l'énergie récupérée pendant le freinage.
Les engins semi-hybrides sont des variantes basées sur le système « Start & Stop », qui utilisent aussi l'électricité pour alimenter d'autres systèmes, tel qu'éclairage, climatisation, dispositifs multimédias, et appareils de bord. Le moteur électrique, souvent de très faible puissance, apporte un surplus de puissance au moteur thermique lors des phases de démarrage, d'accélération et de reprise et récupère l'énergie cinétique soit lors d'un freinage ou d'une descente. L'énergie ainsi récupérée est stockée dans des batteries. À la différence du système totalement hybride, on ne peut pas rouler en tout électrique.
Le chauffage conventionnel dans un véhicule est réalisé par les calories provenant du moteur thermique. Ces calories sont prélevées et transmises à l'air de l'habitacle grâce à un aérotherme. Mais on sait que les motorisations essence et Diesel sont de plus en plus pauvres en calories.
C'est pourquoi, afin d'atteindre une performance de chauffage imposée par le cahier des charges, il est en général nécessaire d'ajouter au système de chauffage conventionnel des organes additionnels (notamment des résistances à coefficient de température positif dites CTP), qui permettent de chauffer l'air introduit dans l'habitacle ; ce chauffage additionnel, venant en appoint du chauffage conventionnel, est utilisé de façon transitoire tant que ce dernier n'a pas atteint son niveau de performance souhaité.
Les chauffages additionnels ont, de base, un rendement médiocre, l'alternateur qui les alimente n'ayant qu'un rendement de l'ordre de 50% à 60%.
Ces systèmes additionnels ne sont utilisés en général que pour la mise en action du véhicule lorsqu'il est froid, soit environ pendant 10 à 20 minute par climat froid (typiquement au-dessous de 5°C).
Mais comme la durée moyenne d'un trajet est de 7 minutes, et que le rendement de ces systèmes est faible, cela se traduit par une surconsommation allant jusqu'à 1 litre pour 100 km.
Le coût des ces systèmes additionnels est d'environ 20€, et ils impliquent un alternateur de grosse capacité.
Le but de l'invention est de proposer une amélioration de la gestion de l'énergie dans un véhicule semi-hybride de façon à supprimer le coût d'un système de chauffage additionnel et à minimiser la surconsommation énergétique mentionnée plus haut.
L'invention atteint son but grâce à un procédé de gestion de l'énergie dans un véhicule semi-hybride comprenant un moteur thermique refroidi par eau et un moteur électrique d'assistance pouvant fonctionner en mode moteur ou en mode génératrice, le procédé comprenant une gestion de type semi-hybride du véhicule à savoir en régime normal une assistance du moteur électrique au moteur thermique en phase d'accélération et un fonctionnement du moteur électrique en génératrice en phase de décélération, caractérisé en ce qu'il est prévu, quand la température du moteur thermique est au-dessous d'une première température de consigne et que la température extérieure est au-dessous d'une seconde température de consigne, un régime exceptionnel pendant lequel le moteur électrique fonctionne également en génératrice en dehors des phases d'accélération du véhicule, moyennant quoi le moteur thermique atteint plus rapidement une température supérieure à la première température de consigne. De la sorte, l'aérotherme permet de chauffer efficacement l'habitacle, plus rapidement..
Avantageusement, on teste d'abord la température du moteur puis la température extérieure pour décider du passage en régime exceptionnel.
La température du moteur est avantageusement estimée par la mesure de la température de l'eau de son circuit de refroidissement.
La première température de consigne, pour la température du moteur thermique, est avantageusement fixée entre 50 et 70°C, par exemple à environ 60°C mesurée sur l'eau du circuit de refroidissement.
La seconde température de consigne, pour la température extérieure, est avantageusement fixée entre 5°C et 15°C, par exemple à environ 10°C.
L'invention concerne aussi un véhicule semi-hybride pour la mise en œuvre du procédé ci-dessus, donc comprenant un moteur thermique refroidi par eau et un moteur électrique d'assistance adapté pour fonctionner en mode moteur ou en mode génératrice, le véhicule comprenant au moins un capteur de phase d'accélération qui en cas de signal positif déclenche le fonctionnement en mode moteur du moteur électrique, caractérisé qu'il comprend également un capteur de température du moteur et un capteur de température extérieure qui en cas de signaux indicatifs d'une température inférieure respectivement à une première et une seconde température de consigne et en cas de signal négatif du capteur de phase d'accélération déclenche le fonctionnement en mode génératrice du moteur électrique.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante d'un exemple de réalisation. Il sera fait référence aux dessins annexés sur lesquels :
La figure 1 est une figure schématique d'un véhicule de l'invention.
La figure 2 est un organigramme des étapes du procédé conforme à l'invention.
Le véhicule semi-hybride 1 comprend un moteur thermique 2 et un moteur électrique d'assistance 3 reliés entre eux par une liaison 4 qui permet, dans un sens, au moteur électrique 3, alimenté par la batterie 5, de fonctionner en moteur et d'apporter un couple moteur supplémentaire au moteur thermique 2 ou bien, dans l'autre sens, au moteur thermique 2 de faire fonctionner le moteur électrique 3 en génératrice, l'électricité produite étant stockée dans la batterie 5. L'électricité stockée par la batterie 5 peut être utilisée, entre autres, pour faire fonctionner certains équipements électriques tels que 6 dans le véhicule. Un capteur d'accélération 7 envoie un signal à un dispositif de commande 8 du moteur électrique 3 de façon à décider du mode de fonctionnement du moteur électrique 3 en fonction de l'allure du véhicule. Ces dispositions sont classiques pour les véhicules semi-hybrides et n'ont pas à être détaillées ici. Dans un véhicule semi- hybride traditionnel, le moteur électrique 3 est commandé pour fonctionner en moteur d'assistance pendant une phase d'accélération, pour fonctionner en génératrice pendant une phase de décélération et, généralement, pour ne pas fonctionner en régime de croisière.
Selon l'invention, il est aussi prévu un capteur 10 de la température Teau de l'eau de refroidissement du moteur thermique 2, indicatrice de la température du moteur thermique 2, et un capteur 1 1 de la température extérieure Text. Ces deux capteurs 10, 1 1 envoient leurs signaux au dispositif de commande 8 pour analyse. Si les deux températures Teau et Text sont inférieures à deux températures de consigne Tt et T2, le fonctionnement du moteur électrique 3 est modifié : en dehors des phases d'accélération où le moteur électrique 3 fonctionne en mode moteur pour booster comme d'habitude le moteur thermique 2, le moteur électrique est utilisé en génératrice ; il applique une consigne de couple résistant au moteur thermique 2 afin d'augmenter plus rapidement la température du moteur thermique 2 et permettre à celui-ci d'être utilisé plus efficacement pour le chauffage traditionnel du véhicule.
Ce fonctionnement est représenté sur l'organigramme de la figure 2.
On y voit une étape de test 100 en fonction de la température de l'eau Teau du moteur thermique 2 indiquée par le capteur 10. Si elle est supérieure à une première température de consigne Tl 5 par exemple 60°C, alors, comme l'indique la case 101, le fonctionnement du moteur électrique 3 est normal et caractéristique du système semi-hybride, à savoir qu'il fonctionne en moteur d'assistance pendant une phase d'accélération et en génératrice pendant une phase de décélération et ne fonctionne pas en roulage stabilisé. Si la température Teau n'est pas supérieure à la première température de consigne Tl 5 on passe au test 102 sur la température extérieure Text mesurée par le capteur 1 1 ; si elle est supérieure à une seconde température de consigne T2, par exemple 10°C, alors, comme l'indique la case 103, le fonctionnement du moteur électrique 3 est encore normal et caractéristique du système semi-hybride, comme dans la case 101 et dépendant de la détection de l'accélération. Si la température Text n'est pas supérieure à la seconde température de consigne T2, on passe au test 104 sur l'accélération captée par le capteur 7 ; si l'on est en phase d'accélération, alors, comme l'indique la case 105, le fonctionnement du moteur électrique 3 est encore normal et caractéristique du système semi- hybride, et, puisqu'on est précisément en phase d'accélération, il fonctionne en moteur d'assistance pour booster le moteur thermique 2. Si en revanche aucune accélération n'est détectée, alors on fait fonctionner (case 106) le moteur électrique 3 en génératrice, ce qui applique un couple résistant supplémentaire au moteur thermique en chargeant le couple et, au prix d'une légère surconsommation de carburant, cela permet d'atteindre plus rapidement une élévation de température au sein du moteur thermique 2 ; ce fonctionnement se prolonge jusqu'à ce que la température de l'eau soit supérieur à la seconde température de consigne auquel cas on revient à la situation décrite en partie supérieure de l'organigramme.
Ainsi, selon l'invention, dans des conditions de fonctionnement à froid, on utilise le moteur électrique 3, en dehors des phases d'accélération (pour ne pas affecter le brio), c'est-à-dire pendant les phases de roulage en décélération (ce qui est classique) mais aussi en stabilisé (où l'utilisation du moteur électrique n'a pas été envisagée à ce jour), pour faire monter rapidement le moteur en température et en couple. En effet, les calories transmises à l'eau sont directement proportionnelles au point de fonctionnement moteur. Cette élévation de la température du moteur permet de passer plus rapidement au chauffage traditionnel du véhicule, qui a un meilleur rendement que les chauffages additionnels.

Claims

REVENDICATIONS
1. Procédé de gestion de l'énergie dans un véhicule semi-hybride (1) comprenant un moteur thermique (2) refroidi par eau et un moteur électrique (3) d'assistance pouvant fonctionner en mode moteur ou en mode génératrice, le procédé comprenant une gestion de type semi-hybride du véhicule (1) à savoir en régime normal une assistance du moteur électrique (3) au moteur thermique (2) en phase d'accélération et un fonctionnement du moteur électrique (3) en génératrice en phase de décélération, caractérisé en ce qu'il est prévu, quand la température (Teau) du moteur thermique (2) est au-dessous d'une première température de consigne (Ti) et que la température extérieure (Text) est au-dessous d'une seconde température de consigne (T2), un régime exceptionnel pendant lequel le moteur électrique (3) fonctionne également en génératrice en dehors des phases d'accélération du véhicule, moyennant quoi le moteur thermique (2) atteint plus rapidement une température (Teau) supérieure à la première température de consigne (Ti).
2. Procédé selon la revendication 1 , caractérisé en ce qu'on teste d'abord la température (Teau) du moteur thermique (2) puis la température extérieure (Text) pour décider du passage en régime exceptionnel.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la température (Teau) du moteur thermique (2) est estimée par la mesure de la température de l'eau de son circuit de refroidissement.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la première température de consigne (Ti), pour la température (Teau) du moteur thermique (2) est fixée entre 50 et 70°C, par exemple à environ 60°C mesurée sur l'eau du circuit de refroidissement.
Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la seconde température de consigne (T2), pour la température extérieure (Text), est fixée entre 5°C et 15°C, par exemple à environ 10°C.
Véhicule semi-hybride comprenant un moteur thermique (2) refroidi par eau et un moteur électrique (3) d'assistance adapté pour fonctionner en mode moteur ou en mode génératrice, le véhicule (1) comprenant au moins un capteur (7) de phase d'accélération qui en cas de signal positif déclenche le fonctionnement en mode moteur du moteur électrique (3), caractérisé qu'il comprend également un capteur (10) de température (Teau) du moteur et un capteur (1 1) de température extérieure (Text) qui en cas de signaux indicatifs d'une température inférieure respectivement à une première et une seconde température de consigne (Tl 5 T2) et en cas de signal négatif du capteur (7) de phase d'accélération déclenche le fonctionnement en mode génératrice du moteur électrique (3).
PCT/FR2014/050884 2013-04-24 2014-04-11 Procédé de gestion de l'énergie dans un véhicule semi-hybride et véhicule ainsi géré WO2014174180A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353756A FR3005020A1 (fr) 2013-04-24 2013-04-24 Procede de gestion de l'energie dans un vehicule semi-hybride, et vehicule ainsi gere
FR1353756 2013-04-24

Publications (1)

Publication Number Publication Date
WO2014174180A1 true WO2014174180A1 (fr) 2014-10-30

Family

ID=48745999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050884 WO2014174180A1 (fr) 2013-04-24 2014-04-11 Procédé de gestion de l'énergie dans un véhicule semi-hybride et véhicule ainsi géré

Country Status (2)

Country Link
FR (1) FR3005020A1 (fr)
WO (1) WO2014174180A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182074A2 (fr) * 2000-08-25 2002-02-27 Ford Global Technologies, Inc. Procédure de régulation d'un véhicule hybride-électrique pour la réduction des émissions
US6424053B1 (en) * 1999-10-08 2002-07-23 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicle
WO2005115785A1 (fr) * 2004-05-25 2005-12-08 Bayerische Motoren Werke Aktiengesellschaft Procede permettant de faire fonctionner un vehicule automobile hybride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424053B1 (en) * 1999-10-08 2002-07-23 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicle
EP1182074A2 (fr) * 2000-08-25 2002-02-27 Ford Global Technologies, Inc. Procédure de régulation d'un véhicule hybride-électrique pour la réduction des émissions
WO2005115785A1 (fr) * 2004-05-25 2005-12-08 Bayerische Motoren Werke Aktiengesellschaft Procede permettant de faire fonctionner un vehicule automobile hybride

Also Published As

Publication number Publication date
FR3005020A1 (fr) 2014-10-31

Similar Documents

Publication Publication Date Title
US7654077B2 (en) Method for controlling an operation of a heatable exhaust-gas sensor of a motor vehicle
US10480381B2 (en) Vehicle and control method for vehicle
EP1781939B1 (fr) Procede d'inhibition de la commande d'arrêt automatique du moteur thermique d'un vehicule lors de manoeuvres de stationnement
JP4120418B2 (ja) 自動車用電源装置
US8653681B2 (en) Power equipment apparatus having flywheel assembly
US20160153374A1 (en) Vehicle Control Device
FR2827912A1 (fr) Appareil et procede pour commander l'arret automatique d'un moteur a combustion interne
CN110388275A (zh) 广义冷启动减排策略
EP2776297A1 (fr) Procede de regeneration d'un filtre a particules pour vehicule automobile hybride
EP2089630A1 (fr) Procede de commande d'un dispositif d'arret et de redemarrage automatique d'un moteur thermique
US10981560B2 (en) Hybrid vehicle
FR3057911A1 (fr) Systeme de commande d'arret automatique de moteur
EP3350049A1 (fr) Procédé et dispositif de commande du couple électrique d'un véhicule automobile hybride
WO2014174180A1 (fr) Procédé de gestion de l'énergie dans un véhicule semi-hybride et véhicule ainsi géré
EP3217010A1 (fr) Procédé de commande des bougies de préchauffage d'un moteur
JP2012106660A (ja) ハイブリッド自動車
FR2966119A1 (fr) Procede de gestion d'une fonction d'arret et de redemarrage automatique d'un moteur thermique et vehicule comportant un calculateur mettant en œuvre le procede
US20180179932A1 (en) Vehicle and control method for vehicle
GB2418898A (en) Hybrid electric drive system optimising emissions from a vehicle
EP2391520B1 (fr) Procede de gestion d'energie d'une chaine de traction d'un vehicule automobile hybride
FR3057912A1 (fr) Systeme de commande d'arret automatique de moteur
KR101765621B1 (ko) 마일드 하이브리드 차량의 동결 방지 장치 및 방법
EP3300247B1 (fr) Procédé de pilotage d'un moteur électrique de véhicule hybride
KR20220130596A (ko) 자동차 배터리를 충전하는 방법 및 내연기관을 작동하기 위한 엔진 제어 장치
EP2630363A2 (fr) Procede pour la mise en uvre d'un dispositif de demarrage equipant un moteur d'un vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14726680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14726680

Country of ref document: EP

Kind code of ref document: A1