WO2014173363A1 - 开关整流器启动控制方法及其装置、存储介质 - Google Patents

开关整流器启动控制方法及其装置、存储介质 Download PDF

Info

Publication number
WO2014173363A1
WO2014173363A1 PCT/CN2014/079388 CN2014079388W WO2014173363A1 WO 2014173363 A1 WO2014173363 A1 WO 2014173363A1 CN 2014079388 W CN2014079388 W CN 2014079388W WO 2014173363 A1 WO2014173363 A1 WO 2014173363A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
power supply
switching rectifier
parameters
Prior art date
Application number
PCT/CN2014/079388
Other languages
English (en)
French (fr)
Inventor
王明金
郑大成
杨运东
吴琼
刘哲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/901,928 priority Critical patent/US9960668B2/en
Priority to ES14787591T priority patent/ES2850148T3/es
Priority to RU2016107531A priority patent/RU2633696C2/ru
Priority to EP14787591.8A priority patent/EP3010130B1/en
Publication of WO2014173363A1 publication Critical patent/WO2014173363A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system

Definitions

  • the present invention relates to a power control technology, and in particular, to a switch control rectifier start control method and device thereof, and a storage medium. Background technique
  • the communication power supply is a device that supplies energy to a communication base station or a communication equipment room such as a communication room, and the switch rectifier is a core component of the communication power supply. Due to the high reliability requirements of the communication field, it is required that the communication power supply can supply energy to the communication device under various conditions, which requires the switch rectifier to be loaded and started under various conditions. For example, in the environment of minus 40 degrees, it is required to start with full load; for example, when the oil machine generates electricity, it can be fully loaded and so on. In addition, in the industry standard, there is a limit to the output voltage overshoot amplitude and soft start time in the switch. Since the environmental conditions applicable to the communication equipment are not coordinated, it is necessary to set a reasonable soft start strategy so that the switching rectifier can be started smoothly under any conditions.
  • an embodiment of the present invention provides a control method, a device, and a storage medium when a switching rectifier is started, so that the switching rectifier can perform its voltage and/or current requirements according to its power supply device and external environmental factors. Start with its own load
  • a soft start control method for a switching rectifier comprising:
  • the voltage starting strategy comprises:
  • the current starting strategy comprises:
  • the power supply characteristic parameter is obtained by sampling a power supply circuit of the switching rectifier, or by a power supply requirement of the power supply object.
  • the external environmental parameter of the switching rectifier includes at least one of the following parameters: temperature, humidity, dust particle size, electric field strength, magnetic field strength;
  • the power supply characteristic parameter includes at least one of the following parameters: Input voltage, input current, maximum input power, etc.
  • a switching rectifier starting control device comprises an acquiring unit, a strategy making unit and a control unit, wherein:
  • the acquiring unit is configured to acquire an external environmental parameter of the switch rectifier and a power supply characteristic parameter of the power supply object;
  • a policy setting unit configured to formulate a voltage start strategy and/or a current start strategy for the switch rectifier according to the external environment parameter and the power supply characteristic parameter;
  • control unit configured to control the voltage and/or current of the switching rectifier to start to a full load voltage and/or current in accordance with the voltage activation strategy and/or the current activation strategy.
  • the policy making unit is further configured to:
  • the policy making unit is further configured to:
  • the acquiring unit is further configured to acquire the power supply characteristic parameter by using a power supply circuit of the switching rectifier, or obtain the power supply characteristic parameter by using a power supply requirement of the power supply object.
  • the external environmental parameter of the switching rectifier includes at least one of the following parameters: temperature, humidity, dust particle size, electric field strength, magnetic field strength;
  • a storage medium storing a computer program, the computer program being configured to perform the soft start control method of the aforementioned switching rectifier.
  • the switching rectifier when the switching rectifier is started, acquiring an external environmental parameter of the switching rectifier and a power supply characteristic parameter corresponding to the power supply object, and formulating a voltage starting strategy for the switching rectifier according to the external environmental parameter and the power supply characteristic parameter And/or a current start strategy, controlling the soft start of the switching rectifier in accordance with the voltage start strategy and/or the current start strategy until a full load voltage and/or current is provided to the load.
  • the technical solution of the embodiment of the present invention can provide a suitable voltage and/or current starting manner according to the power supply requirement of the power supply object and the working environment thereof, so that the switching rectifier can meet the voltage and/or current requirements of the power supply device and the external environment. Factor to carry out its own load start.
  • FIG. 1 is a schematic structural diagram of a power-on control device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a power-on control device according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a power-on control method according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of current starting according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of current starting according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic diagram of current starting according to Embodiment 3 of the present invention. detailed description
  • the soft start strategy of the switching rectifier of the embodiment of the invention enables the DC-DC part of the switching rectifier to be fully loaded under different working conditions.
  • the soft start method uses a digital signal processor (DSP) for digital control, and the DC-DC partial topology is a structure of a LLC resonant converter.
  • the startup strategy includes a voltage soft start strategy and a current soft start strategy.
  • the voltage loop reference value is continuously changed until the voltage loop reference reaches the set voltage value of the monitoring unit; when the current is soft-start, the current loop reference value is continuously changed according to the working environment of the switching rectifier until the current loop reference
  • the monitoring unit sets the current limit point; after the voltage soft start and the current soft start are completed, the soft start of the entire switching rectifier will end.
  • the loop structure of the DC-DC portion of the switching rectifier includes at least a voltage loop and a current loop, and the voltage loop and the current loop are in a parallel relationship.
  • Soft-start methods for switching rectifiers include voltage soft-start and current soft-start, all of which are closed-loop soft-start.
  • the topology of the DC-DC converter is not limited to the LLC resonant converter, and other topologies such as phase-shifted full bridges, half bridges, etc. may also implement the present invention.
  • a switching rectifier startup control device includes an obtaining unit 10, a strategy formulating unit 11 and a control unit 12, where:
  • the obtaining unit 10 is configured to acquire an external environmental parameter of the switch rectifier and a power supply characteristic parameter of the power supply object;
  • the policy setting unit 11 is configured to formulate a voltage starting strategy and/or a current starting strategy for the switching rectifier according to the external environment parameter and the power supply characteristic parameter;
  • the control unit 12 is configured to control the voltage and/or current of the switching rectifier to be activated to a full load voltage and/or current in accordance with the voltage activation strategy and/or the current activation strategy.
  • the above policy making unit 11 is also configured to:
  • the intermediate voltage is not necessarily set, and is mainly set according to the power supply requirement.
  • the number of intermediate voltages may be one or two or more.
  • the above policy making unit 11 is also configured to:
  • the intermediate current is not necessarily set, and is mainly set according to the power supply requirement.
  • the number of intermediate currents may be one or two or more.
  • the obtaining unit 10 is further configured to acquire the power supply characteristic parameter by using a power supply circuit of the switching rectifier, or obtain the power supply characteristic parameter by using a power supply requirement of the power supply object.
  • the external environmental parameters of the switching rectifier include at least one of the following parameters:
  • the input voltage, the input current, the maximum input power, etc., the above-mentioned acquisition unit may be implemented by a sampling circuit, or the determined power supply characteristic parameters may be configured in the acquisition unit.
  • Digital signal processor, FPGA, microprocessor, etc. are implemented.
  • the policy formulation unit 11 and the control unit 12 can each be implemented by a CPU, a digital signal processor, an FPGA, a microprocessor, or the like.
  • an analog sampling circuit 21 samples an analog temperature such as an ambient temperature and an input power supply device voltage.
  • the soft start curve calculation circuit 22 calculates a soft start curve or a start line and supplies it to the voltage loop reference circuit 23 and the current loop reference circuit 26; the voltage loop reference circuit 23 calculates the circuit according to the soft start curve.
  • the calculated soft start curve sets a reference voltage; this reference voltage is compared with the voltage detected by the voltage sampling circuit 24 to obtain an error; this error is adjusted and amplified by the voltage loop compensation circuit 25, and output to the comparator 29;
  • the current loop reference circuit 26 sets a reference current according to the soft start curve or the start line calculated by the soft start curve calculation circuit 22; this reference current is compared with the current detected by the current sample circuit 27 to obtain an error; This error is adjusted and amplified by the current loop compensation circuit 28, and the output is ratio 29; comparator 29 voltage loop compensation circuit 25 and the output current loop compensation circuit 28, according to the comparison and selection, to the pulse width modulated signal No. calculating circuit 210; the driving signal sent by the pulse width modulation signal calculating circuit is amplified by the power tube driving circuit 211 to drive the operation of the power tube; the closed loop adjusting process is used to realize the soft start of the switching rectifier.
  • FIG. 3 is a flowchart of a method for controlling a startup of a switching rectifier according to an embodiment of the present invention. As shown in FIG. 3, a method for controlling a startup of a switching rectifier according to an embodiment of the present invention includes the following steps:
  • Step 301 Acquire an external environmental parameter of the switch rectifier and a power supply characteristic parameter of the power supply object.
  • the power supply characteristic parameter and the external environment parameter are obtained by the power supply circuit of the switching rectifier, or the power supply characteristic parameter is obtained by the power supply requirement of the power supply object.
  • the external environmental parameters of the switching rectifier include at least one of the following parameters:
  • external environmental parameters such as temperature and humidity values of the power supply circuit can be obtained by using a temperature, a humidity sampler, or the like.
  • parameters such as dust particle size can also be obtained.
  • the characteristic parameters of the power supply device can be detected either by the detection circuit or manually before the rectifier product is installed according to the actual usage scenario.
  • Step 302 Develop a voltage start strategy and/or a current start strategy for the power supply object according to the external environment parameter and the power supply characteristic parameter.
  • the voltage starting strategy includes:
  • the intermediate voltage is not necessarily set, and is mainly set according to the power supply requirement.
  • the number of intermediate voltages may be one or two or more.
  • the current starting strategy includes:
  • the intermediate current is not necessarily set, and is mainly set according to the power supply requirement.
  • the number of intermediate currents may be one or two or more.
  • the current starting mode and the voltage starting mode can be executed in parallel.
  • the voltage start strategy or current start strategy can be performed only on the power supply circuit as needed.
  • Step 303 controlling the voltage and/or current of the switch rectifier to start to a full load voltage and/or current according to the voltage starting strategy and/or the current starting strategy.
  • the startup voltage and/or the startup of the switching rectifier are adjusted by the aforementioned voltage activation strategy and/or current activation strategy to smoothly adjust the startup voltage and/or startup current to a full load voltage and/or current.
  • the specific rectifier compensation is taken as an example to further clarify the essence of the technical solution of the embodiment of the present invention.
  • the LLC resonant DC/DC converter has the following characteristics: (1) Since the resonant element operates in a sinusoidal resonant state, the voltage on the switching transistor naturally crosses zero, and the zero-voltage turn-on of the primary switching transistor can be realized in the range of the frequency conversion. With shutdown, the power loss is small; (2) Because the loss is small, the operating frequency can be made higher, which can effectively reduce the size and cost of the converter, and improve the power density; (3) The secondary diode is naturally turned off, eliminating The secondary side voltage spike reduces the turn-off loss. As a result, LLC resonant converters have outstanding advantages in terms of conversion efficiency and power density, and are therefore favored by many switching power supply industry personnel. At present, the DC-DC portion of the latest communication switching rectifier mostly uses the topology of the LLC resonant converter.
  • the LLC resonant converter has the following problems: When operating at low voltage and light load, it does not fully realize soft switching, and its switching frequency is also high at this time, so the switching loss at this time is relatively large. When working under low voltage and light load conditions for a long time, the power tube will be damaged due to the temperature rise accumulated by the switching loss.
  • the soft start of DC-DC if the load is small and the output voltage is very low at the beginning of operation, if the soft start time is long, that is, working under such conditions for a long time, it will be damaged due to the temperature rise accumulated by the switching loss. Power tube. Therefore, the speed at which the output voltage rises at the beginning of startup is required to be fast.
  • the switching rectifier for communication also has a limit on the overshoot of the output voltage during startup. If the output voltage rises too fast during the soft start, the overshoot of the output voltage will exceed the allowable range.
  • the soft-start strategy of the output voltage is shown in Figure 4: At the beginning of the start, during the ti time, the reference of the voltage loop in the voltage soft-start is from V. Rising to Vi, this time is relatively short; then in the period of ⁇ to h, the reference value of the voltage loop in the voltage soft start rises from the set value V ref of the monitoring unit, which is relatively long and does not cause the output voltage. There is an overshoot problem. In addition, there are limits to the starting surge current in soft start in the industry standard, so it is necessary to limit the output current during startup. Therefore, as shown in Figure 5, the current limit is I at the beginning of the soft start. After the time elapses, the current limit point becomes the current limit point I ref issued by the monitoring unit. In this way, the strategy of starting the soft-start is also limited.
  • the value of ⁇ and can be determined by the external environment parameter and the power supply characteristic parameter of the power supply object, or may be a predetermined value.
  • I. For a specific value in the power supply circuit, the initial voltage value and the initial current value of the different power supplies may be slightly different, but may be determined by the power supply characteristics.
  • I ref is determined by external environmental parameters and power supply characteristic parameters of the power supply object, and of course, the value may also be a predetermined value.
  • the communication power system is generally equipped with an oil machine power generation equipment in the outdoor base station, and the oil machine of different power levels is used according to the load condition.
  • an oil machine power generation equipment in the outdoor base station, and the oil machine of different power levels is used according to the load condition.
  • a three-phase 10KW oil machine is often used.
  • the problem with this type of oil machine is that when its three-phase load is unbalanced, the one-phase or two-phase AC input voltage with less load is made high, and the rectifier that supplies it triggers protection due to input overvoltage. Therefore, the three-phase oil machine is required to balance the load between its three phases. This requires that the rectifiers carried between the three phases be load balanced.
  • the three-phase oil machine only has a three-phase unloading imbalance exceeding a certain range, the AC input voltage of a certain phase exceeds the input overvoltage protection threshold of the rectifier. Therefore, you can limit this by not restricting the soft-start strategy.
  • the current soft start of the DC-DC portion of the rectifier is limited.
  • the slope of the current soft start the deviation of the load power of each phase of the three-phase oil machine is limited to not exceed the allowable range.
  • the value of ⁇ and can be determined by the external environment parameter and the power supply characteristic parameter of the power supply object, or may be a predetermined value.
  • I. For a specific value in the power supply circuit, the initial voltage value and the initial current value of the different power supplies may be slightly different, but may be determined by the power supply characteristics.
  • I ref is determined by the external environmental parameters and the power supply characteristic parameters of the power supply object, and of course, it may also be a predetermined value.
  • t 2 and b may be determined by external environmental parameters and power supply characteristic parameters of the power supply object, or may be predetermined values.
  • the switching rectifier can work normally under low temperature conditions, or after a period of low temperature storage, it can be started directly with full load. For example, some customers require the rectifier to be fully loaded under the condition of minus 40 degrees. . However, some devices in a switching rectifier have a sharp drop in performance at low temperatures, which can cause the switching rectifier to fail to fully load with normal startup. Usually the performance will trigger some protection actions inside the rectifier, causing the soft start to fail.
  • the soft start strategy can be modified to achieve the purpose of the switch rectifier with full load to successfully complete the soft start.
  • the switch rectifier can change the soft start strategy according to the different ambient temperature, and smoothly complete the soft start with full load without guaranteeing some protection actions inside the rectifier.
  • the current limit is fixed at I at the beginning. And keep the ti time constant; during the time from ti to t 2 , the current limit point is from I. Linear rise to L; From t.
  • the current soft-start strategy to t 2 is the same as in the second embodiment; the time when the current reference rises from L to I ref is no longer fixed, but the slope of the change with temperature, ie t 2 to b The time will vary with the ambient temperature of the rectifier; of course, this requires a temperature sensor that can detect the ambient temperature at which the rectifier is operating.
  • the embodiment of the invention also describes a rectifier comprising the power start control device as described above.
  • the power-on control method and apparatus in the embodiments of the present invention may be implemented by a digital signal processor (DSP), but may also be implemented by other means.
  • DSP digital signal processor
  • the voltage loop and the current loop compensation network are realized by the analog circuit; and the analog circuit can also be used for implementation. No longer here - repeat.
  • the embodiment of the present invention further describes a storage medium in which a computer program is stored, the computer program being configured to execute the soft start control method of the switching rectifier of the foregoing embodiment.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the invention can provide a suitable voltage and/or current starting mode according to the power supply requirement of the power supply object and its working environment, so that the switching rectifier can perform itself according to the voltage and/or current requirements of the power supply device and external environmental factors. Start with load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

公开了一种开关整流器软启动的控制方法,包括:获取开关整流器的外部环境参数及供电对象的供电特征参数,根据所述外部环境参数及所述供电特征参数为所述开关整流器制定电压启动策略和/或电流启动策略,按照所述电压启动策略和/或电流启动策略控制所述开关整流器的电压和/或电流启动至满载电压和/或电流。还公开了一种开关整流器的软启动控制装置。技术方案能根据开关整流器本身供电对象的供电要求及其工作环境为开关整流器提供合适的电压和/或电流启动方式,从而使得开关整理器能够完成软启动,为负载供电。

Description

开关整流器启动控制方法及其装置、 存储介质 技术领域
本发明涉及电源控制技术, 尤其涉及一种开关整流器的启动控制方法 及其装置、 存储介质。 背景技术
通信电源是为通信基站或者通信机房等通讯设备提供能量的设备, 而 开关整流器是通信电源的核心组成部分。 由于通讯领域高可靠性的要求, 因此要求通信电源在各种条件下都能够为通讯设备提供能量, 这就要求开 关整流器在各种条件下均能够带载启动。 如在零下 40度的环境下要求带满 载启动; 如在油机发电时能够带满载启动等等。 另外, 在行业标准中, 对 于开关机中输出电压过冲幅度、 软启动时间都有限制。 由于通讯设备适用 的环境条件各不协同, 需要设置一个合理的软启动策略使得开关整流器在 任何条件下都能够顺利启动。
遗憾的是, 目前尚未有能适用于各种应用环境下的开关整流器。 发明内容
为解决上述技术问题, 本发明实施例提供一种开关整流器启动时的控 制方法及其装置、 存储介质, 使得开关整流器能够根据其供电装置对电压 和 /或电流的要求以及外部环境因素来进行其本身的带负载启动
本发明的技术方案是这样实现的:
一种开关整流器的软启动控制方法, 包括:
获取开关整流器的外部环境参数及供电对象的供电特征参数, 根据所 述外部环境参数及所述供电特征参数为所述开关整流器制定电压启动策略 和 /或电流启动策略, 按照所述电压启动策略和 /或电流启动策略控制所述开 关整流器的电压和 /或电流启动至带满载电压和 /或电流。
优选地, 所述电压启动策略包括:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电压提升至满载电压的时长, 在所述时长内将所述开关整流器的电压从初 始电压提升至所述开关整流器的满载电压;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电压至满载电压之间确定至少一中间电压, 并依次对所述开关整流 器的初始电压、 所述至少一中间电压及所述的满载电压进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电压。
优选地, 所述电流启动策略包括:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电流提升至满载电流的时长, 在所述时长内将所述开关整流器的电流从初 始电流提升至满载电流;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电流至满载电流之间确定至少一中间电流, 并依次对所述开关整流 器的初始电流、 所述至少一中间电流及所述的满载电流进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电流。
优选地, 所述供电特征参数通过釆样所述开关整流器的供电电路获取, 或通过所述供电对象的供电要求而获取。
优选地, 所述开关整流器的外部环境参数包括以下参数的至少之一: 温度、 湿度、 灰尘颗粒度、 电场强度、 磁场强度;
所述供电特征参数包括以下参数的至少之一: 输入电压、 输入电流、 最大输入功率等。
一种开关整流器启动控制装置, 包括获取单元、 策略制定单元和控制 单元, 其中:
获取单元, 配置为获取开关整流器的外部环境参数及供电对象的供电 特征参数;
策略制定单元, 配置为根据所述外部环境参数及所述供电特征参数为 所述开关整流器制定电压启动策略和 /或电流启动策略;
控制单元, 配置为按照所述电压启动策略和 /或电流启动策略控制所述 开关整流器的电压和 /或电流启动至满载电压和 /或电流。
优选地, 所述策略制定单元, 还配置为:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电压提升至满载电压的时长, 在所述时长内将所述开关整流器的电压从初 始电压提升至满载电压;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电压至满载电压之间确定至少一中间电压, 并依次对所述开关整流 器的初始电压、 所述至少一中间电压及所述的满载电压进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电压。
优选地, 所述策略制定单元, 还配置为:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电流提升至满载电流的时长, 在所述时长内将所述开关整流器的电流从初 始电流提升至满载电流;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电流至满载电流之间确定至少一中间电流, 并依次对所述开关整流 器的初始电流、 所述至少一中间电流及所述的满载电流进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电流。
优选地, 所述获取单元, 还配置为通过釆样所述开关整流器的供电电 路获取所述供电特征参数, 或通过所述供电对象的供电需求而获取所述供 电特征参数。
优选地, 所述开关整流器的外部环境参数包括以下参数的至少之一: 温度、 湿度、 灰尘颗粒度、 电场强度、 磁场强度;
所述供电特征参数包括以下参数的至少之一:
输入电压、 输入电流、 最大输入功率等。
一种存储介质, 所述存储介质中存储有计算机程序, 所述计算机程序 配置为执行前述的开关整流器的软启动控制方法。
本发明实施例中, 在开关整流器启动时, 获取开关整流器的外部环境 参数及其对应供电对象的供电特征参数, 根据所述外部环境参数及所述供 电特征参数为所述开关整流器制定电压启动策略和 /或电流启动策略, 按照 所述电压启动策略和 /或电流启动策略控制所述开关整流器的软启动, 直至 为负载提供满载电压和 /或电流。 本发明实施例的技术方案能根据供电对象 的供电需求及其工作环境为其提供合适的电压和 /或电流启动方式, 使得开 关整流器能够根据其供电装置对电压和 /或电流的要求以及外部环境因素来 进行其本身的带负载启动。 附图说明
图 1为本发明实施例的电源启动控制装置的组成结构示意图; 图 2为本发明实施例的电源启动控制装置具体实现的结构示意图; 图 3为本发明实施例的电源启动控制方法的流程图;
图 4为本发明实施例一的电压启动示意图;
图 5为本发明实施例一的电流启动示意图; 图 6为本发明实施例二的电流启动示意图;
图 7为本发明实施例三的电流启动示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
本发明实施例的开关整流器的软启动策略, 使得开关整流器在不同的 工作条件下, 其 DC-DC部分均能够带满载启动。 该软启动方法利用数字信 号处理器(DSP )进行数字控制, DC-DC部分拓朴结构为 LLC谐振变换器 的结构。 该启动策略包括电压软启动策略和电流软启动策略。 电压软启动 时, 根据开关整流器工作环境通过不断改变电压环参考值直至电压环参考 达到监控单元设定电压值; 电流软启动时, 根据开关整流器工作环境通过 不断改变电流环参考值直至电流环参考达到监控单元设定限流点; 在电压 软启动和电流软启动都完成之后, 整个开关整流器的软启动才会结束。
本发明实施例中,开关整流器 DC-DC部分的环路结构至少包括电压环 和电流环, 并且电压环和电流环是并行关系。 开关整流器的软启动方式包 括电压软启动和电流软启动, 它们均为闭环软启动。
本发明实施例中, DC-DC变换器的拓朴结构并不限于 LLC谐振变换器, 其他拓朴结构如移相全桥、 半桥等也可以实施本发明。
图 1 为本发明实施例的开关整流器启动控制装置的组成结构示意图, 如图 1所示, 本发明实施例的开关整流器启动控制装置包括获取单元 10、 策略制定单元 11和控制单元 12, 其中:
获取单元 10, 配置为获取开关整流器的外部环境参数及供电对象的供 电特征参数;
策略制定单元 11, 配置为根据所述外部环境参数及所述供电特征参数 为所述开关整流器制定电压启动策略和 /或电流启动策略; 控制单元 12, 配置为按照所述电压启动策略和 /或电流启动策略控制所 述开关整流器的电压和 /或电流启动至满载电压和 /或电流。
上述策略制定单元 11, 还配置为:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电压提升至满载电压的时长, 在所述时长内将所述开关整流器的电压从初 始电压提升至所述电源的满载电压; 当然, 也可以根据需要, 以设定的曲 线方式(非匀速)提升, 如以指数方式提升电压; 以设定的直线方式(匀 速)提升。
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电压至满载电压之间确定至少一中间电压, 并依次对所述开关整流 器的初始电压、 所述至少一中间电压及所述的满载电压进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电压。 需要说明的是, 中间电压并非必须设置, 主要根据供电需要而设置, 中间电压的设置数量可以为一个, 也可以为两个以上。
上述策略制定单元 11, 还配置为:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电流提升至满载电流的时长, 在所述时长内将所述开关整流器的电流从初 始电流提升至满载电流; 当然, 也可以根据需要, 以设定的曲线方式(非 匀速)提升, 如以指数方式提升电流; 以设定的直线方式(勾速)提升。
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电流至满载电流之间确定至少一中间电流, 并依次对所述开关整流 器的初始电流、 所述至少一中间电流及所述的满载电流进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电流。 中间电流并非必须设置, 主要根据供电需要而设置, 中间电流的设 置数量可以为一个, 也可以为两个以上。 上述获取单元 10, 还配置为通过釆样所述开关整流器的供电电路获取 所述供电特征参数, 或通过所述供电对象的供电需求而获取所述供电特征 参数。
所述开关整流器的外部环境参数包括以下参数的至少之一:
温度、 湿度、 灰尘颗粒度、 电场强度、 磁场强度;
所述供电特征参数包括以下参数的至少之一:
输入电压、 输入电流、 最大输入功率等需要说明的是, 上述获取单元, 可通过釆样电路实现, 或者, 可将确定的供电特征参数等配置于获取单元 中, 此时, 获取单元可由 CPU、数字信号处理器、 FPGA、微处理器等实现。 策略制定单元 11及控制单元 12均可由可由 CPU、数字信号处理器、 FPGA、 微处理器等实现。
以下通过具体示例, 进一步阐明本发明实施例的开关整流器启动控制 装置的实质。
图 2 为本发明实施例的开关整流器启动控制装置具体实现的结构示意 图,如图 2所示,本发明实施例首先,模拟量釆样电路 21会釆样环境温度、 输入供电设备电压等模拟量; 根据釆样的模拟量, 软启动曲线计算电路 22 会计算出一个软启动曲线或启动直线同时提供给电压环参考电路 23和电流 环参考电路 26; 电压环参考电路 23会根据软启动曲线计算电路 22计算出 的软启动曲线设置一个参考电压; 这个参考电压与电压釆样电路 24检测出 的电压进行比较,求误差;这个误差经过电压环补偿电路 25的调节和放大, 输出给比较器 29; 与此同时, 电流环参考电路 26会根据软启动曲线计算电 路 22计算出的软启动曲线或启动直线设置一个参考电流; 这个参考电流与 电流釆样电路 27检测出来的电流进行比较, 求误差; 这个误差经过电流环 补偿电路 28的调节和放大, 输出给比较器 29; 比较器 29根据电压环补偿 电路 25和电流环补偿电路 28的输出, 进行比较和筛选, 送给脉宽调制信 号计算电路 210;脉宽调制信号计算电路发出的驱动信号经过功率管驱动电 路 211 的放大, 来驱动功率管的工作; 这个闭环的调节过程来实现开关整 流器的软启动。
图 3为本发明实施例的开关整流器启动控制方法的流程图, 如图 3所 示, 本发明实施例的开关整流器启动控制方法包括以下步骤:
步骤 301, 获取开关整流器的外部环境参数及供电对象的供电特征参 数。
通过釆样所述开关整流器的供电电路获取供电特征参数及外部环境参 数, 或通过所述供电对象的供电需求而获取供电特征参数等。
所述开关整流器的外部环境参数包括以下参数的至少之一:
温度、 湿度、 灰尘颗粒度、 电场强度、 磁场强度;
所述供电特征参数包括以下参数的至少之一:
输入电压、 输入电流、 最大输入功率等。
具体的, 可通过温度、 湿度釆样器等获取供电电路的外部环境参数如 温度及湿度值等。 利用同样的方式, 也可获取到灰尘颗粒度等参数。 而对 于供电装置的特征参数, 既可以通过检测电路来检测, 也可以在整流器产 品安装前根据实际使用场景预先人为设置。
步骤 302,根据所述外部环境参数及所述供电特征参数为所述供电对象 制定电压启动策略和 /或电流启动策略。
所述电压启动策略包括:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电压提升至满载电压的时长, 在所述时长内将所述开关整流器的电压从初 始电压匀速提升至满载电压; 当然, 也可以根据需要, 以设定的曲线方式 (非匀速)提升, 如以指数方式提升电压; 以设定的直线方式(匀速)提 升。 或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电压至满载电压之间确定至少一中间电压, 并依次对所述开关整流 器的初始电压、 所述至少一中间电压及所述的满载电压进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电压。 中间电压并非必须设置, 主要根据供电需要而设置, 中间电压的设 置数量可以为一个, 也可以为两个以上。
所述电流启动策略包括:
根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电流提升至满载电流的时长, 在所述时长内将所述开关整流器的电流从初 始电流匀速提升至满载电流; 当然, 也可以根据需要, 以设定的曲线方式 (非匀速)提升, 如以指数方式提升电流; 以设定的直线方式(匀速)提 升。
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电流至满载电流之间确定至少一中间电流, 并依次对所述电源的初 始电流、 所述至少一中间电流及所述的满载电流进行分段, 并确定每一分 段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的电流。 中间电流并非必须设置, 主要根据供电需要而设置, 中间电流的设置数量 可以为一个, 也可以为两个以上。
本发明实施例中, 电流启动方式及电压启动方式可并行执行。 当然, 可根据需要, 仅对供电电路执行其中的电压启动策略或电流启动策略。
步骤 303, 按照所述电压启动策略和 /或电流启动策略控制所述开关整 流器的电压和 /或电流启动至满载电压和 /或电流。
通过前述的电压启动策略和 /或电流启动策略对供电电路进行启动电压 和 /或启动开关整流器的调整, 以使启动电压和 /或启动电流平稳地调整至满 载电压和 /或电流。 以下以具体的整流器补偿为示例, 进一步阐明本发明实施例技术方案 的实质。
实施例一
LLC谐振 DC/DC变换器由于具有以下的特点: ( 1 )由于谐振元件工作 在正弦谐振状态, 开关管上的电压自然过零, 在变频的范围内都能够实现 原边开关管的零电压开通与关断, 电源损耗很小; (2 ) 由于损耗很小, 工 作频率可以做得比较高, 可有效减轻变换器的体积与成本, 提高功率密度; ( 3 )副边二极管自然关断, 消除了副边电压尖峰, 降低了关断损耗。 因此, LLC 谐振变换器在变换效率和功率密度方面具有突出的优势, 从而受到很 多开关电源行业人员的青睐。 目前, 最新的通信用开关整流器的 DC-DC部 分大多使用 LLC谐振变换器的拓朴结构。
但是 LLC谐振变换器存在以下问题: 当工作在低压轻载时, 它并不能 完全实现软开关, 并且此时它的开关频率也会很高, 因此此时的开关损耗 相对是比较大的。 当长时间工作在低压轻载的条件下, 会因为开关损耗积 累的温升损坏功率管。
在 DC-DC的软启动中, 如果负载很小, 而且刚开始工作时输出电压很 低, 如果软启动时间比较长, 即长时间工作在这种条件下, 会因为开关损 耗积累的温升损坏功率管。 因此刚开始启动时要求输出电压上升的速度要 很快。 而通信用开关整流器对于输出电压在启动过程中的超调也有限制, 如果软启动过程中输出电压上升的速度过快, 会导致输出电压的超调量超 过允许的范围。 鉴于上述原因, 输出电压的软启动策略如图 4 所示: 刚开 始启动时, 在 ti的时间内, 电压软启动中电压环的参考从 V。上升到 Vi, 这 个时间相对比较短; 然后在 ^至 h的时间内, 电压软启动中电压环的参考值 从 上升到监控单元的设定值 Vref, 这个时间比较长, 不会导致输出电压 出现过冲的问题。 此外, 行业标准中对于软启动中启动冲击电流也有限制, 因此需要对 于启动中输出电流进行限制。 因此, 如图 5 所示, 刚开始软启动时, 限流 点为 I。, 经过 ^时间后, 限流点变为监控单元下发的限流点 Iref。 这样, 釆 用电流软启动的策略, 启动冲击电流也被限制。
本实施例中, ^及 的值可通过外部环境参数及供电对象的供电特征 参数来确定, 也可以是事先确定的值。 V。及 I。为供电电路中特定的值, 不 同的电源的初始电压值及初始电流值会略有不同, 但均可通过电源特性而 确定。 Iref通过外部环境参数及供电对象的供电特征参数而确定, 当然其值 也可以为事先确定的值。
实施例二
通信电源系统在户外基站一般配置有油机发电设备, 会根据负载情况 釆用不同功率等级的油机, 如在小型户外基站中常釆用的是三相 10KW的 油机。 这种油机存在的问题是当其三相负载不平衡时, 会使其中带载少的 一相或者两相交流输入电压变得很高, 使其供电的整流器因为输入过压而 触发保护。 因此要求三相油机能够在其三相之间平衡带载。 这就要求其三 相之间所带的整流器能够负载平衡。 而油机在带整流器启动过程中, 由于 硬件之间的差异性, 很难保证油机三相所带的整流器能够同时启动并且保 持负载一致。 因此, 如果不在策略上进行优化, 很难保证油机带载启动中 不会出现三相电压不平衡导致整流器检测到输入过压触发保护的问题。
由于三相油机只有在三相带载不平衡度超过一定范围的条件下才会出 现某相交流输入电压超过整流器的输入过压保护阀值。 因此, 可以通过对 软启动策略进行限制使其不会出现这种现象。
本实施例中, 对整流器 DC-DC部分的电流软启动进行限制, 通过改变 电流软启动的斜率, 限制三相油机每相带载功率偏差不超过允许范围。
如图 6所示, 为整流器 DC-DC部分电流环参考值与时间的关系图。 刚 开始时, 限流点固定在 I。, 并维持 ^时间不变; 在 t t2的时间内, 限流点 从 I。线性上升到 L, 这个时间相对比较长; 这两段时间限流点的緩慢变化, 保证了三相油机中每相的整流器都带有一定的负载, 并且三相负载的不平 衡度相差较小, 不会出现三相输入电压偏差过大的问题; 随后, 在 t2到 b 的时间内, 限流点从 L快速上升至 Lrf, 整个限流软启动结束。 另外, 在这 一过程中, 电压软启动保持图 4所示的方式不变。
本示例中, ^及 的值可通过外部环境参数及供电对象的供电特征参 数来确定, 也可以是事先确定的值。 V。及 I。为供电电路中特定的值, 不同 的电源的初始电压值及初始电流值会略有不同, 但均可通过电源特性而确 定。 Iref通过外部环境参数及供电对象的供电特征参数而确定, 当然其也可 以为事先确定的值。 t2及 b可通过外部环境参数及供电对象的供电特征参数 来确定, 也可以是事先确定的值。
实施例三
目前, 市场要求开关整流器在低温条件下能够正常工作, 或者在低温 存储一段时间过后, 能够直接开机带满载启动, 如某些客户要求开关整流 器在零下 40度极寒的条件下整流器能够带满载起动。 然而, 开关整流器中 一些器件在低温条件下其性能会急剧下降, 这样会造成开关整流器无法带 满载正常启动。 通常表现是会触发整流器内部的某些保护动作, 使得软启 动失败。
可以通过修改软启动策略来达到开关整流器带满载顺利完成软启动的 目的。 通过合理的设置电流软启动和电压软启动曲线, 使得开关整流器能 根据环境温度的不同来改变软启动策略, 在保证不触发整流器内部的某些 保护动作的前提下, 顺利完成带满载软启动。
如图 7所示, DC-DC部分电流软启动策略中, 刚开始时, 限流点固定 在 I。, 并维持 ti时间不变; 在 ti到 t2的时间内, 限流点从 I。线性上升到 L; 从 t。到 t2的时间内电流软启动策略与实施例二相同;电流参考值从 L上升到 Iref的时间不再是固定不变的, 而是随着温度改变其变化斜率, 即 t2到 b的 时间会随整流器的环境温度而改变; 当然, 这需要有温度传感器能够检测 到整流器工作的环境温度。
本发明实施例还记载了一种整流器, 包括前文所述的电源启动控制装 置。
本发明实施例中的电源启动控制方法及装置可通过数字信号处理器 ( DSP )来实现,但是也可以通过其他方式来实现。如通过数模结合的方式, 即通过单片机来计算和设定电压环和电流环的参考, 通过模拟电路的方式 来实现电压环和电流环补偿网络; 也可以全部利用模拟电路来进行实现。 这里不再——赘述。
本发明实施例还记载了一种存储介质, 所述存储介质中存储有计算机 程序, 所述计算机程序配置为执行前述实施例的开关整流器的软启动控制 方法。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤 可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者 分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来 执行, 并且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的 步骤, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性
本发明能根据供电对象的供电需求及其工作环境为其提供合适的电压 和 /或电流启动方式, 使得开关整流器能够根据其供电装置对电压和 /或电流 的要求以及外部环境因素来进行其本身的带负载启动。

Claims

权利要求书
1、 一种开关整流器的软启动控制方法, 包括:
获取开关整流器的外部环境参数及供电对象的供电特征参数, 根据所 述外部环境参数及所述供电特征参数为所述开关整流器制定电压启动策略 和 /或电流启动策略, 按照所述电压启动策略和 /或电流启动策略控制所述开 关整流器的电压和 /或电流启动至带满载电压和 /或电流。
2、 根据权利要求 1所述的方法, 其中, 所述电压启动策略包括: 根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电压提升至满载电压的时长, 在所述时长内将所述开关整流器的电压从初 始电压提升至所述开关整流器的满载电压;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电压至满载电压之间确定至少一中间电压, 并依次对所述开关整流 器的初始电压、 所述至少一中间电压及所述的满载电压进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电压。
3、 根据权利要求 1或 2所述的方法, 其中, 所述电流启动策略包括: 根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电流提升至满载电流的时长, 在所述时长内将所述开关整流器的电流从初 始电流提升至满载电流;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电流至满载电流之间确定至少一中间电流, 并依次对所述开关整流 器的初始电流、 所述至少一中间电流及所述的满载电流进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电流。
4、 根据权利要求 3所述的方法, 其中, 所述供电特征参数通过釆样所 述开关整流器的供电电路获取, 或通过所述供电对象的供电要求而获取。
5、 根据权利要求 4所述的方法, 其中, 所述开关整流器的外部环境参 数包括以下参数的至少之一:
温度、 湿度、 灰尘颗粒度、 电场强度、 磁场强度;
所述供电特征参数包括以下参数的至少之一:
输入电压、 输入电流、 最大输入功率。
6、 一种开关整流器启动控制装置, 包括获取单元、 策略制定单元和控 制单元, 其中:
获取单元, 配置为获取开关整流器的外部环境参数及供电对象的供电 特征参数;
策略制定单元, 配置为根据所述外部环境参数及所述供电特征参数为 所述开关整流器制定电压启动策略和 /或电流启动策略;
控制单元, 配置为按照所述电压启动策略和 /或电流启动策略控制所述 开关整流器的电压和 /或电流启动至满载电压和 /或电流。
7、根据权利要求 5所述的装置, 其中, 所述策略制定单元, 还配置为: 根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电压提升至满载电压的时长, 在所述时长内将所述开关整流器的电压从初 始电压提升至满载电压;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电压至满载电压之间确定至少一中间电压, 并依次对所述开关整流 器的初始电压、 所述至少一中间电压及所述的满载电压进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电压。
8、 根据权利要求 6或 7所述的装置, 其中, 所述策略制定单元, 还配 置为: 根据所述外部环境参数及所述供电特征参数确定将所述开关整流器的 电流提升至满载电流的时长, 在所述时长内将所述开关整流器的电流从初 始电流提升至满载电流;
或者, 根据所述外部环境参数及所述供电特征参数在所述开关整流器 的初始电流至满载电流之间确定至少一中间电流, 并依次对所述开关整流 器的初始电流、 所述至少一中间电流及所述的满载电流进行分段, 并确定 每一分段的提升时长, 按照所确定的提升时长依次提升所述开关整流器的 电流。
9、 根据权利要求 8所述的装置, 其中, 所述获取单元, 还配置为通过 釆样所述开关整流器的供电电路获取所述供电特征参数, 或通过所述供电 对象的供电需求而获取所述供电特征参数。
10、 根据权利要求 9所述的装置, 其中, 所述开关整流器的外部环境 参数包括以下参数的至少之一:
温度、 湿度、 灰尘颗粒度、 电场强度、 磁场强度;
所述供电特征参数包括以下参数的至少之一:
输入电压、 输入电流、 最大输入功率。
11、 一种存储介质, 所述存储介质中存储有计算机程序, 所述计算机 程序配置为执行权利要求 1至 5任一项所述的开关整流器的软启动控制方 法。
PCT/CN2014/079388 2013-08-16 2014-06-06 开关整流器启动控制方法及其装置、存储介质 WO2014173363A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/901,928 US9960668B2 (en) 2013-08-16 2014-06-06 Method and device for controlling start of switching rectifier, and storage medium
ES14787591T ES2850148T3 (es) 2013-08-16 2014-06-06 Método de control de arranque de rectificador de conmutación, y dispositivo y medio de almacenamiento del mismo
RU2016107531A RU2633696C2 (ru) 2013-08-16 2014-06-06 Способ, устройство и носитель данных для управления пуском импульсного выпрямителя
EP14787591.8A EP3010130B1 (en) 2013-08-16 2014-06-06 Switch rectifier startup control method, and device and storage medium thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310360219.8A CN104377949B (zh) 2013-08-16 2013-08-16 开关整流器启动控制方法及其装置
CN201310360219.8 2013-08-16

Publications (1)

Publication Number Publication Date
WO2014173363A1 true WO2014173363A1 (zh) 2014-10-30

Family

ID=51791092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079388 WO2014173363A1 (zh) 2013-08-16 2014-06-06 开关整流器启动控制方法及其装置、存储介质

Country Status (7)

Country Link
US (1) US9960668B2 (zh)
EP (1) EP3010130B1 (zh)
CN (1) CN104377949B (zh)
ES (1) ES2850148T3 (zh)
MY (1) MY180830A (zh)
RU (1) RU2633696C2 (zh)
WO (1) WO2014173363A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329904A (zh) * 2015-06-15 2017-01-11 中兴通讯股份有限公司 一种电压变换电路的软启动控制方法及装置
CN108512426A (zh) * 2017-02-27 2018-09-07 中兴通讯股份有限公司 开关电源控制方法、装置及开关电源控制器
CN109038505B (zh) * 2018-07-16 2020-04-03 四川创宏电气有限公司 一种电源短路保护方法及逆变电源
CN109995245B (zh) * 2019-04-29 2020-09-18 矽力杰半导体技术(杭州)有限公司 控制电路、控制方法和谐振变换器
CN110266054B (zh) * 2019-07-30 2021-01-08 阳光电源股份有限公司 一种光储发电系统离网启动方法、光储发电设备及系统
CN116054551A (zh) * 2021-12-31 2023-05-02 深圳市驰普科达科技有限公司 户外电源装置启动控制方法、控制器及户外电源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201134749Y (zh) * 2007-12-24 2008-10-15 赵启阳 开关电源节能装置
CN102624210A (zh) * 2012-03-29 2012-08-01 上海交通大学 软启动电路
CN202565185U (zh) * 2012-04-27 2012-11-28 江苏谷峰电力科技有限公司 单晶炉智能高频电源
CN103066864A (zh) * 2011-10-24 2013-04-24 中兴通讯股份有限公司 通信电源系统及其应用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723078A1 (de) * 1987-07-11 1989-01-19 Philips Patentverwaltung Verfahren zur erkennung von zusammenhaengend gesprochenen woertern
RU2012989C1 (ru) * 1991-12-02 1994-05-15 Яшкин Виктор Иванович Импульсно-модулированный преобразователь
CN1859001B (zh) 2006-03-01 2010-05-12 华为技术有限公司 一种直流电源缓启动电路
GB2449119B (en) * 2007-05-11 2012-02-29 Converteam Technology Ltd Power converters
CN201191806Y (zh) * 2008-05-09 2009-02-04 华中科技大学 一种脉宽调制dc-dc开关电源的软启动电路
US8699246B2 (en) * 2008-06-18 2014-04-15 Optis Wireless Technology, Llc Switch mode converter and a method of starting a switch mode converter
CN101577481B (zh) 2009-03-27 2012-06-27 Bcd半导体制造有限公司 一种开关电源的零电流启动电路及方法
EP2299572A1 (de) 2009-09-21 2011-03-23 SMA Solar Technology AG Aufstarten eines DC/DC-Wandlers mit Hochfrequenztransformator
CN101741233B (zh) 2009-11-16 2012-05-23 无锡芯朋微电子有限公司 一种数模转换控制的dc-dc开关电源软启动电路
JP5589827B2 (ja) * 2010-12-24 2014-09-17 サンケン電気株式会社 起動回路、スイッチング電源用ic及びスイッチング電源装置
US8582329B2 (en) * 2011-01-10 2013-11-12 Iwatt Inc. Adaptively controlled soft start-up scheme for switching power converters
US8929106B2 (en) * 2011-05-20 2015-01-06 General Electric Company Monotonic pre-bias start-up of a DC-DC converter
US9291683B2 (en) * 2011-10-11 2016-03-22 General Electric Company Power module protection at start-up
DE102011116807B4 (de) 2011-10-25 2013-10-02 Raiedah Ahmed M. Almohammadi Medizinisches Schneidwerkzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201134749Y (zh) * 2007-12-24 2008-10-15 赵启阳 开关电源节能装置
CN103066864A (zh) * 2011-10-24 2013-04-24 中兴通讯股份有限公司 通信电源系统及其应用方法
CN102624210A (zh) * 2012-03-29 2012-08-01 上海交通大学 软启动电路
CN202565185U (zh) * 2012-04-27 2012-11-28 江苏谷峰电力科技有限公司 单晶炉智能高频电源

Also Published As

Publication number Publication date
EP3010130A1 (en) 2016-04-20
RU2016107531A (ru) 2017-09-22
MY180830A (en) 2020-12-10
ES2850148T3 (es) 2021-08-25
RU2633696C2 (ru) 2017-10-17
US9960668B2 (en) 2018-05-01
EP3010130B1 (en) 2020-11-18
CN104377949B (zh) 2019-11-12
US20160301324A1 (en) 2016-10-13
CN104377949A (zh) 2015-02-25
EP3010130A4 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2014173363A1 (zh) 开关整流器启动控制方法及其装置、存储介质
US9762113B2 (en) Control circuit, control method and flyback converter
WO2017028500A1 (zh) 一种提高开关电源动态响应的控制方法
US9455623B2 (en) Power factor correction circuit and method
US8711580B2 (en) Resonant conversion system with over-current protection processes
TWI441426B (zh) 在切換式電源供應器中在脈衝寬度調變及脈衝頻率調變之間轉換之系統、方法及裝置
US10720829B1 (en) Totem-pole bridgeless PFC conversion device and method of operating the same
EP2883302A1 (en) Motor drive control using pulse-width modulation pulse skipping
US8472212B2 (en) Resonant converting device, and control module and method for controlling a resonant converter
US20200220452A1 (en) Enhanced power factor correction
TW201924198A (zh) 具有降低交越失真之切換邊界模式交錯電力轉換器之數位控制
JP2014064353A (ja) スイッチング電源装置
CN114303310A (zh) 多相转换器控制系统和用于交错多相转换器的方法
EP2251966B1 (en) DC-DC converter with discontinuous and continuous conduction modes
TW201250416A (en) Pulse width modulation power converter and control method
CN112019035B (zh) 功率因数校正系统及方法
Jakobsen et al. Interleaved buck converter with variable number of active phases and a predictive current sharing scheme
CN108780123B (zh) 一种负载检测方法、负载检测电路及电子设备
CN213027812U (zh) 一种交错式功率因数校正电路控制系统
Liao et al. Control and Modeling of Boost PFC for the 47~ 800Hz universal grids
CN113364264A (zh) Pfc拓扑电路及其控制方法
Nam et al. Design and implementation of digital controlled boost PFC converter under boundary conduction mode
KR20170050014A (ko) 역률 보상 장치 및 이의 동작 방법
CN114710043B (zh) 双向谐振变换器及其控制方法、装置、电源设备
KR101918300B1 (ko) Dc-dc컨버터의 전류제한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14901928

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014787591

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016107531

Country of ref document: RU

Kind code of ref document: A