WO2014173178A2 - 真空重力热管集热元件减压空晒保护方法及产品 - Google Patents

真空重力热管集热元件减压空晒保护方法及产品 Download PDF

Info

Publication number
WO2014173178A2
WO2014173178A2 PCT/CN2014/000425 CN2014000425W WO2014173178A2 WO 2014173178 A2 WO2014173178 A2 WO 2014173178A2 CN 2014000425 W CN2014000425 W CN 2014000425W WO 2014173178 A2 WO2014173178 A2 WO 2014173178A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
permanent magnet
collecting element
glass tube
heat pipe
Prior art date
Application number
PCT/CN2014/000425
Other languages
English (en)
French (fr)
Other versions
WO2014173178A3 (zh
Inventor
施国樑
Original Assignee
Shi Guoliang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi Guoliang filed Critical Shi Guoliang
Publication of WO2014173178A2 publication Critical patent/WO2014173178A2/zh
Publication of WO2014173178A3 publication Critical patent/WO2014173178A3/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to a vacuum gravity heat pipe heat collecting element decompression air drying protection method and product.
  • the vacuum heat collecting tube is provided with a vacuum heat insulating layer between the cover glass tube and the inner glass tube, and can manufacture a vacuum solar water heater which can also provide domestic hot water in winter.
  • the solar water heater manufactured by the heat pipe vacuum collecting tube has the advantages of high energy efficiency ratio in the pipe, conforming to the standard of sanitary drinking water, working in the single tube and so on. therefore.
  • the waterless solar vacuum heat pipe water heater inside the pipe will likely occupy more and more market share.
  • the integrated glass heat pipe has the advantages that it can be sealed with the cover glass tube, the surface of the glass heat pipe can directly produce the heat transfer of the absorption film, and the water with excellent thermal physical properties can be used as the working medium.
  • the internal temperature of the heat pipe of the heat collecting component can reach 230 ° C, and the saturated water vapor pressure corresponding to this temperature is 28.53 atmospheres, and the ratio of the corresponding working fluid filling volume to the heat pipe volume is the working volume ratio. 1. 1%, that is, 11 ml of water per liter of volume.
  • the reduction of the amount of the working fluid can reduce the pressure inside the heat pipe during the drying process, taking the hydraulic working medium as an example: when the working fluid filling volume / heat pipe volume ratio is reduced from 0.5% to 5 ml in 5 ml / 1000 ml to 2 ml 0 ⁇
  • the highest saturated vapor pressure is reduced from about 10 atmospheres of 18CTC to about 3.7 ° atmosphere, and the inside of the heat pipe is from about 14.7 atmospheres.
  • the internal pressure is only about 4 atm.
  • the amount of refrigerant installed can not be determined solely by the internal pressure during air drying.
  • the working fluid filling amount About 1. 8 ml.
  • the condensate of the heat pipe is more than 1. 8 ml, the condensed water at the cold end, the flow of water at the hot end, and the water at 85 ° C. .
  • the refrigerant charge/heat pipe volume ratio is greater than 0.2% or even 0.3%, and the glass heat pipe is not to be blown out due to air drying.
  • China invention patent 2009101951003 anti-air drying all-glass vacuum heat pipe heat collecting element discloses an air-protecting all-glass vacuum heat pipe heat collecting element, and provides a controllable heat transfer channel between the vacuum collecting element absorber and the cover glass tube
  • the controllable heat transfer passage is composed of a movable heat transfer member and a driving member, and is characterized by comprising a heat transducing drive member connected to the low heat resistance of the vacuum heat collecting element absorber. Since this patent is not specifically for the gravity heat pipe heat collecting element, it is not targeted; the bimetal heat-transducing drive member used in the original product has poor consistency, and the ability to restore the original shape after repeated heat deformation. It will also reduce the control system-related operating point settings, control variable input, comparison, transducing and energy supply, and execution functions that are far from being able to work effectively to the collector's possible 20-year design because of the accuracy. life.
  • Figure 4 shows a schematic diagram of the gravity heat pipe structure of a light pipe structure placed obliquely.
  • the heat pipe 1 is made of a casing and an internal working fluid.
  • the working principle is as follows: The heat energy is input from the lower hot end, that is, the side arrow pointing inward, so that the working fluid at the bottom end of the heat pipe 1 is heated and vaporized, and the steam travels upward to the cold end of the heat pipe under the pressure difference. Side by side, the heat is supplied to the load and condensed into a liquid and returned to the lower cold end under the action of gravity. At the hot end, the working medium is again heated and vaporized... thereby continuously circulating the two-phase flow heat exchange cycle.
  • the heat pipe has excellent heat transfer capability, heat flow density conversion capability, and isothermal characteristics. If the heat pipe 1 has a hot end input of 100 watts, its cold end output can reach up to 97 watts or more.
  • the heat pipe 1 of Fig. 4 is attempted to input only heat energy from below without taking heat energy, the internal vapor pressure of the heat pipe 1 rises sharply. If the heat pipe 1 uses water as the working medium and is sufficiently large, the internal maximum pressure can reach 28.53 atmospheres when the temperature of the heat pipe 1 reaches 23 CTC. If it is attempted to fully heat the heat pipe 1 of Fig. 4 from top to bottom and from the bottom slightly higher than the bottom end of the heat pipe 1, for example, a portion of the length of the entire heat pipe 1 from the bottom end is taken out, that is, only the bottom end is advanced.
  • the vapor pressure inside the heat pipe 1 is lowered to a saturated vapor pressure corresponding to the temperature of the lower cold end.
  • the temperature of the cold end of the heat pipe 1 is kept at 100 ° C, even if the other portions of the upper portion are heated to 230 ° C, because the liquid working medium inside the heat pipe 1 is concentrated at the bottom end and the overlapping cold end,
  • the hot end of the upper heat pipe 1 eliminates the entire dryness due to the absence of a working fluid, and the two-phase flow heat transfer mechanism no longer exists.
  • the steam pressure inside the heat pipe 1 is also only about 1 atmosphere.
  • thermo pipe wall has an absorbing membrane that absorbs sunlight as a thermal energy input while simultaneously connecting the heat pipe wall with a low thermal resistance of the heat transfer device and transferring the heat energy.
  • This design in which the heat pipe 1 is arranged obliquely, the heat energy is input from the heat pipe 1 and only the lower segment is used as the overlapping cold end may not be meaningful in other occasions, but the solar protection for the solar heat collecting element is only required to be extremely small.
  • Part of the heat dissipation power this part of the heat dissipation power is used to ensure that the maximum value of the internal vapor pressure inside the heat pipe does not exceed the set value when the air drying device starts to function. This part of the heat dissipation power is greater than the overlap.
  • the heat input power of the end as the hot end has a compact size, reliable performance, low heat dissipation power, less venting to the vacuum insulation layer, less influence on the occlusion of the absorber, and heat dissipation at the end of the heat collecting element.
  • the actual collector element requires a device such as a tail box for placement.
  • the tail box covers the end of the heat collecting element.
  • the parts covered by the tail box are not part of the overlapping cold end.
  • the overlapping cold ends are also used because some heat collecting elements are suitable for mounting in the cylindrical section of the vacuum insulation layer or the collector element glass tube has a necking section and is used in the shrinking section. After the neck section is formed, the inner glass tube is assembled, and then the process of rounding the tail tube of the cover glass tube is referred to as the tail pull tube.
  • the rounded end formed by the post-tailing tube process is not suitable for heat dissipation, it is necessary to use a cylindrical section of the cover glass tube from the rounded end to dissipate heat.
  • the heat pipe or the end portion of the inner glass tube corresponding to the cylindrical section belongs to the overlapping cold end.
  • the overlapping cold end is based on the decompression air protection design of the heat pipe two-phase flow heat exchange cycle, which is controllable by the non-decompression air protection design of the above-mentioned Chinese invention patent 2009101951003 anti-air drying glass vacuum heat pipe heat collecting element.
  • China 912050845 utility model electric rice cooker with automatic magnetic temperature control switch discloses a magnetic thermal transducer component working principle, including: temperature is higher than the Curie point temperature, magnetic material is demagnetized; temperature is lower than Curie point temperature, magnetic material Restore magnetism. Therefore, the thermal permanent magnet steel is also a thermal drive device.
  • the object of the present invention is to provide a vacuum gravity heat pipe heat collecting element decompression air drying protection method and product.
  • the invention discloses a vacuum gravity heat pipe heat collecting element decompression air drying protection method: a heat air drying protection heat transfer channel spanning the vacuum heat insulation layer is built in the vacuum heat insulation layer at the end of the vacuum heat collecting element, and the air is passed through the air automatically.
  • the two-phase flow heat exchange cycle inside the heat pipe is blocked to effectively reduce the steam pressure inside the heat pipe, thereby achieving the purpose of preventing the heat pipe from failing the explosion pipe; and improving the work by setting a working medium holding device inside the heat pipe.
  • the material position can increase the heating power and shorten the starting time when the heat pipe is started; the tail end of the heat collecting element is the portion that does not exceed 6% of the total length of the heat collecting element from the outer surface of the bottom end of the heat collecting element.
  • the invention solves one of the technical solutions of the technical problem according to the above method: using one or more medium-piece controllable heat transfer channels to form an embedded medium-sheet vacuum heat pipe heat collecting element decompression air drying protector, the heat transfer channel includes heat dissipation A patch, a heat sink, a thermal drive device having a heat transfer interface with a heat pipe hot end of the heat collecting member or an inner glass tube, and a middle piece that is drivingly connected to the heat driving device or integrally formed with the heat driving device. It is placed in the vacuum insulation layer at the end of the heat collecting element.
  • the heat transfer channel has two stable states: the middle plate simultaneously heats the heat transfer state when the heat sink and the heat sink patch are connected; the heat transfer state of the heat transfer connection between the heat sink and the heat sink patch is not at the same time.
  • the thermal drive device includes a thermally sensitive permanent magnet steel drive device, a bimetal drive device, a memory alloy drive device, and a bellows drive device.
  • the heat dissipating patch has a low thermal resistance connection interface with the inner surface of the bottom end of the round end of the cover glass tube and has a heat transfer interface with the middle piece.
  • the shape of the outer surface of the heat dissipation patch may be matched with the shape of the inner surface of the cover glass tube and include an inwardly turned edge; the heat dissipation patch is pressed against the inner wall of the cover glass tube by a snap spring.
  • the heat sink has a low thermal resistance connection interface with the inner glass tube or the hot end of the heat pipe and contains a plurality of outward flanged punch holes.
  • the heat-dissipating patch and the heat sink are connected by a wire spring and a high thermal resistance to facilitate the embedded assembly.
  • the thermal drive device includes a piece of heat sensitive permanent magnet steel and a piece of soft iron.
  • the soft iron is constrained to move back and forth along the axis of the heat collecting element.
  • the soft iron is connected to one end of the middle piece through the transmission wire.
  • the middle piece contains a wedge-shaped heat transfer interface; the other end of the middle piece is connected to the spring connection by a spring.
  • the technical solution of the invention solves the technical problem according to the above method: manufacturing an embedded straight vacuum heat pipe heat collecting element decompression air drying protector, comprising a heat transfer connection interface with a heat pipe hot end or an inner glass tube of the heat collecting element
  • the thermal drive device is coupled to a heat transfer straight tube that is coupled to the thermal drive device or that is fabricated integrally with the thermal drive device. It is placed in the vacuum insulation layer at the end of the heat collecting element.
  • the air-protecting device has two stable states: the heat-transfer straight tube protrudes from the end of the heat-transfer connection cover glass tube at the end of the heat conduction state; the heat transfer straight tube retracts the non-heat-heating connection when the glass tube tail end is closed and the heat insulation state .
  • the thermal drive device includes a heat-sensitive permanent magnet steel drive device, a bimetal drive device, a memory alloy drive device, and a bellows drive device.
  • the heat transfer straight tube is connected to the bottom end of the inner glass tube or the bottom end of the hot end of the heat pipe or directly through a heat sink using a one-dimensional moving pair low thermal resistance; the heat transfer straight tube can move back and forth along the axial direction of the heat collecting element.
  • the outer end of the heat transfer straight tube is shaped to match the inner surface of the tail end of the cover glass tube.
  • the air protector includes a thermal permanent magnet steel thermal drive device.
  • the thermal permanent magnet steel thermal drive device comprises a piece of thermal permanent magnet steel and a piece of soft iron.
  • the heat-sensitive permanent magnet steel is connected to the heat pipe with a low thermal resistance through the heat conduction.
  • the soft iron is constrained to move back and forth along the axis of the heat collecting element.
  • the heat transfer straight cylinder has a section of enlarged diameter, and the shape of the outer end of the enlarged diameter section coincides with the inner surface of the tail end of the cover glass tube.
  • the heat transfer straight tube and the heat pipe bottom end are connected by a one-dimensional moving sub-structure with low thermal resistance.
  • the heat transfer straight cylinder can move back and forth along the axis of the heat pipe axis.
  • a circlip high thermal resistance connection is used between the inner side of the tail end of the cover glass tube and the bottom end of the hot end of the heat pipe to realize the positioning between the cover glass tube and the heat pipe.
  • a heat-dissipating patch that matches the shape of the inner surface of the tail end of the cover glass tube, and use a wire spring with a high thermal resistance connection between the heat-dissipating patch and the heat pipe.
  • the third technical solution for solving the technical problem according to the above method is as follows:
  • One or more hot fin controllable heat transfer channels are used to form an embedded hot-wing vacuum heat pipe heat collecting element decompression air drying protector.
  • the controllable heat transfer passage comprises a heat sensitive permanent magnet steel, a soft iron hot fin and a connecting circlip. It is placed in the vacuum insulation layer at the end of the heat collecting element.
  • the controllable heat transfer channel has two stable states: the soft iron hot fin movable side rises the heat transfer state when the heat transfer connection cover glass tube; the soft iron heat fin movable side bends and does not heat the connection when the cover glass tube is closed Adiabatic state.
  • the fixed side of the soft iron hot fin contains a heat transfer connection interface with the end of the glass tube in the vacuum heat collecting element or the bottom end of the hot end of the heat pipe.
  • the heat-sensitive permanent magnet steel is placed under the movable side of the soft iron hot fin and covered by soft iron hot fins.
  • the heat-sensitive permanent magnet steel has magnetic, and the soft iron hot fin is attracted by the heat-sensitive permanent magnet steel, and the movable edge is not heat-transferred with the cover glass tube; the heat-sensitive permanent magnet steel is demagnetized, and the soft iron hot fin acts on its own elastic force.
  • the upper side is upturned, and its movable side is heat-transferred with the cover glass tube.
  • the fourth technical solution for solving the technical problem according to the above method is as follows:
  • One or more lever controllable heat transfer channels are combined to form an embedded lever vacuum heat pipe heat collecting element decompression air drying protector.
  • the controllable heat transfer passage includes a heat sensitive permanent magnet steel, a soft iron hot fin, a transmission lever, and a connection circlip. It is placed in the vacuum insulation layer at the end of the heat collecting element.
  • the controllable heat transfer channel has two stable states: the drive lever rises to push the soft iron hot fin movable side to raise the heat transfer state when the heat transfer connection cover glass tube; the transmission lever is lowered so that the soft iron hot wing movable side bends down The thermal insulation of the glass tube when the cover is thermally connected.
  • the fixed side of the soft iron hot fin contains a heat transfer connection interface with the tail end of the glass tube in the vacuum heat collecting element or the bottom end of the hot end of the heat pipe; the heat sensitive permanent magnet steel is disposed under the movable side of the soft iron hot fin and is softened Iron hot wings cover.
  • the transmission lever is fixed at one end, wherein the segment is above the thermal permanent magnet steel, and the other end of the transmission end extends below the movable edge of the soft iron hot fin.
  • the heat-sensitive permanent magnet steel is magnetic, and the transmission lever is attracted by the heat-sensitive permanent magnet steel, so that the soft iron hot-winged wing is bent down without heat transfer to connect the cover glass tube; the heat-sensitive permanent magnet steel is demagnetized, and the transmission lever acts on its own elastic force The rise pushes the soft iron hot-winged edge to raise the heat transfer connection cover glass tube. It is also possible to form the soft iron hot fin by punching the flange on the heat sink.
  • the heat sink is rolled into a cylindrical shape with a thin iron plate and a low thermal resistance is connected to the end of the inner glass tube.
  • the heat-sensitive permanent magnet steel is connected to the inner glass tube by a thermal resistance by a thermal conduction.
  • the heat sink and heat guide contain a connection spring mounting groove for easy connection between the two through the circlip high thermal resistance.
  • the inner side of the tail end of the cover glass tube and the movable side of the soft iron hot fin have a heat dissipation patch; the heat dissipation patch and the end of the cover glass tube are attached with a low thermal resistance connection.
  • the fifth technical solution for solving the technical problem according to the above method is as follows: manufacturing vacuum decompression air protection gravity heat pipe vacuum
  • the heat collecting component comprises a metal heat pipe heat collecting component of a kovar glass tube and a metal fin heat pipe, and an inner glass finned heat pipe which is formed by concentric nesting arrangement of the cover glass tube and the finned inner glass tube.
  • Vacuum heat collecting element all-glass vacuum heat pipe heat collecting element sealed by concentric nesting arrangement of cover glass tube and inner glass tube, using a curved inner glass tube with eccentric straight section and straight outer straight section
  • An eccentric heat pipe heat collecting element which is formed by sealing a nested glass tube and a plug-in heat pipe heat collecting element which is formed by connecting a full glass vacuum heat collecting tube and a glass heat pipe inserted therein.
  • the heat collecting element is installed vertically or obliquely, and the heat pipe of the heat collecting element operates by gravity.
  • the vacuum insulation layer at the end of the heat collecting element is provided with a controllable heat transfer channel.
  • the heat transfer channel has a thermal driving device that communicates with a heat pipe at a hot end of a glass tube or a heat pipe in a heat collecting element; the heat driving device includes a heat sensitive permanent magnet steel driving device, a bimetal driving device, and a memory alloy Drive device and capsule drive device.
  • the controllable heat transfer channel comprises a heat dissipating patch, a heat sink, a thermal driving device with a heat transfer interface with a heat pipe of the heat collecting element or an inner glass tube, and a driving connection with the thermal driving device or an integral manufacturing with the thermal driving device.
  • the controllable heat transfer channel has two stable states: the middle plate simultaneously heats and connects the heat sink and the heat-dissipating state when the heat-dissipating patch; the middle plate does not simultaneously heat-transfer the heat sink and the heat-dissipating state of the heat-dissipating patch.
  • the heat dissipating patch has a low thermal resistance connection interface with the inner surface of the round end of the cover glass tube and has a heat transfer interface with the middle piece.
  • the controllable heat transfer passage includes a thermal drive device having a heat transfer interface with the heat pipe hot end or the inner glass tube of the heat collecting member, and a heat transfer straight tube that is drivingly coupled to the heat drive device or integrally formed with the heat drive device.
  • the air-protecting device has two stable states: the heat-transfer straight tube protrudes from the end of the heat-transfer connection cover glass tube at the end of the heat conduction state; the heat transfer straight tube retracts the non-heat-heating connection when the glass tube tail end is closed and the heat insulation state .
  • the heat transfer straight tube is connected to the end of the inner glass tube or the bottom end of the hot end of the heat pipe or directly through a heat sink using a one-dimensional moving pair low thermal resistance.
  • the heat sink is connected to the end of the inner glass tube or the lower end of the hot end of the heat pipe.
  • the heat transfer straight cylinder can be retracted and retracted in the axial direction of the heat collecting element to move back and forth.
  • the shape of the outer end of the heat transfer straight tube coincides with the inner surface of the tail end of the cover glass tube.
  • the heat transfer passage includes a heat sensitive permanent magnet steel, a soft iron hot fin, and a connection circlip.
  • the controllable heat transfer channel has two stable states: the soft iron hot fin movable side rises the heat transfer state when the heat transfer connection cover glass tube; the soft iron heat fin movable side bends and does not heat the connection when the cover glass tube is closed Adiabatic state.
  • the fixed side of the soft iron hot fin is connected to the end of the inner glass tube or the bottom end of the hot end of the heat tube with a low thermal resistance.
  • the heat-sensitive permanent magnet steel is placed under the movable side of the soft iron hot fin and covered by soft iron hot fins.
  • the heat-sensitive permanent magnet steel has magnetic, and the soft iron hot fin is attracted by the heat-sensitive permanent magnet steel, and the movable edge is not heat-transferred with the cover glass tube; the heat-sensitive permanent magnet steel is demagnetized, and the soft iron hot fin acts on its own elastic force.
  • the upper side is upturned, and its movable side is heat-transferred with the cover glass tube.
  • the heat transfer passage includes a heat-sensitive permanent magnet steel drive device, a soft iron hot fin, a transmission lever, and a connection circlip.
  • the heat transfer passage has two stable states: the drive lever rises to push the soft iron hot fin movable side to raise the heat transfer state when the heat transfer connection cover glass tube; the transmission lever is lowered so that the soft iron hot fin movable side bends and does not heat transfer connection
  • the closed state of the glass tube is closed.
  • the fixed side of the soft iron hot fin is connected to the end of the inner glass tube or the bottom end of the hot end of the heat tube with a low thermal resistance.
  • the middle section of the drive lever is above the thermal permanent magnet steel and its free end extends below the active edge of the soft iron hot fin.
  • the heat-sensitive permanent magnet steel is magnetic, and the transmission lever is attracted by the heat-sensitive permanent magnet steel so that the soft iron hot-winged wing is bent downward without heat transfer to connect the cover glass tube; the heat-sensitive permanent magnet steel is demagnetized, and the transmission lever acts on its own elastic force The rise pushes the soft iron hot-winged edge to raise the heat transfer connection cover glass tube.
  • the sixth aspect of the present invention solves the technical problem according to the above method: manufacturing a boosting decompression air drying protection gravity heat pipe vacuum heat collecting component, including a metal heat pipe heat collecting component of a kovar sealing glass tube and a metal fin heat pipe, An inner glass finned heat pipe vacuum heat collecting element made of a cover glass tube and a concentric nested glass tube in a finned inner tube, a full glass vacuum sealed by a concentric nested arrangement of a cover glass tube and an inner glass tube
  • the heat pipe heat collecting element, the eccentric heat pipe heat collecting element which is made by the curved inner glass tube with the eccentric straight section and the straight outer straight section and the cover glass tube nesting arrangement and the all-glass vacuum heat collecting tube
  • the heat collecting elements are mounted vertically or obliquely, and the heat pipes operate by gravity.
  • the vacuum insulation layer at the end of the heat collecting element is provided with
  • the heat transfer passage includes a heat dissipation patch, a heat sink, a boosting heat driving device having a heat transfer connection interface with a heat pipe hot end of the heat collecting member or an inner glass tube, and a driving connection with the boosting heat driving device or a boosting heat
  • the middle piece of the drive device is integrally manufactured.
  • the heat transfer channel has two stable states: the middle plate simultaneously heats and connects the heat sink and the heat conduction patch The hot state; the middle piece does not simultaneously heat-connect the heat sink and the heat-dissipating state of the heat-dissipating patch.
  • the heat dissipating patch has a low thermal resistance connection interface with the inner surface of the round end of the cover glass tube and has a heat transfer interface with the middle piece.
  • the booster thermal drive device includes a thermal permanent magnet steel soft iron drive pair and a bimetal booster component.
  • the thermal permanent magnet steel soft iron drive pair includes a piece of heat sensitive permanent magnet steel and a piece of soft iron.
  • the heat-sensitive permanent magnet steel is connected to the heat pipe with a low thermal resistance through a heat guide; the soft iron is constrained to move back and forth along the axial direction of the heat collecting element and is connected to the middle plate through the transmission wire.
  • the heat-sensitive permanent magnet steel soft iron drive pair has a connection interface with the bimetal boosting member.
  • the bimetal boosting member generates deformation during the cooling process of the permanent magnet steel from the demagnetized state to the magnetic state, and helps to promote the thermal permanent magnet steel soft iron driving pair suction; or, the heat transfer
  • the passage includes a boosting thermal drive device having a heat transfer connection interface with the heat pipe hot end or the inner glass tube of the heat collecting member, and a heat transfer straight tube integrally connected to the boost heat drive device or integrally formed with the boost heat drive device.
  • the heat transfer passage has two stable states: the heat transfer straight tube protrudes from the end of the heat transfer connection cover glass tube to open the heat conduction state; the heat transfer straight tube retracts the closed heat insulation state when the heat transfer connection cover glass tube tail end.
  • the heat transfer straight tube is connected to the end of the inner glass tube or the bottom end of the hot end of the heat tube or directly through a heat sink using a one-dimensional moving pair low thermal resistance, and the heat sink and the inner end of the inner glass tube or the bottom end of the hot end of the heat tube have low thermal resistance connection.
  • the heat transfer straight cylinder can move back and forth along the axial direction of the heat collecting element, and the outer end shape of the heat transfer straight tube coincides with the inner surface of the tail end of the cover glass tube.
  • the booster thermal drive device includes a thermal permanent magnet steel soft iron drive pair and a bimetal booster component.
  • the thermal permanent magnet steel soft iron drive pair includes a piece of heat sensitive permanent magnet steel and a piece of soft iron.
  • the heat-sensitive permanent magnet steel is connected to the heat pipe with a low thermal resistance through a heat guide.
  • the soft iron is constrained to move back and forth along the axial direction of the heat collecting element and is connected to the heat transfer straight cylinder through the transmission wire.
  • the heat-sensitive permanent magnet steel soft iron drive pair has a connection interface with the bimetal boosting member.
  • the bimetal boosting member generates deformation during the cooling process of the permanent magnet steel from the demagnetized state to the magnetic state, and helps to drive the thermal permanent magnet steel soft iron to drive the suction.
  • the present invention is directed to preventing heat pipe explosion by heat-dissipating the controllable heat-dissipating passage by airing a controllable heat-dissipating passage in a vacuum heat-insulating layer in a vacuum heat-insulating layer
  • the heat dissipation power can be greatly reduced by relying on the heat dissipation at the bottom end of the heat pipe of the heat collecting element to collect the liquid working medium and the air drying protection method for blocking the heat exchange between the two phases of the heat pipe.
  • the original output of 70 watts of heat collecting elements, the working volume of 3 ml, using a heat-control element between the absorber and the cover tube to set a controllable heat transfer channel increase the cooling power of 40 watts when air drying
  • the internal temperature of the heat pipe is still more than 150 ° C, the corresponding water vapor pressure can still reach 4. 8 atmospheres beyond the inner diameter of 37 mm wall thickness 1. 6 mm glass tube pressure resistance.
  • the invention can also output the 70 watt glass heat pipe heat collecting element, and the decompression air drying protection heat transfer channel only needs 10 watts of heat dissipation power, and can absorb the inside of the heat pipe at a rate of 0.25 ml/min when the air drying occurs. water.
  • the invention adopts a low-power air-light protector to ensure that the water vapor pressure inside the heat pipe never exceeds 2 atm, and does not affect the normal operation of the heat collecting element at all. .
  • the heat transfer straight barrel has a large heat transfer area and strong rigidity, and the heat transfer passage formed by the bottom end of the heat collecting element occupies less energy for the heat collecting element.
  • the use of a heat transfer straight tube with an enlarged diameter section provides a suitable solution for adequate heat transfer between a thinner finned heat pipe and a relatively large diameter cover glass tube.
  • the thermal permanent magnet steel drive device has good consistency, good repeatability, high control precision, long service life and satisfactory performance.
  • a short cylinder wick is arranged inside the glass heat pipe, and when the sun goes down, the temperature of the hot end of the heat pipe decreases, and the glass heat pipe reversely works: the liquid working medium on the inner surface of the cold end of the original heat pipe connected with the heating load and low thermal resistance evaporates and is in the original The inner surface of the hot end of the heat pipe is condensed. When the liquid working medium on the inner surface of the hot end of the original heat pipe is concentrated and flows down to the short pipe wick, it is held by the suction and lifts the position of the working medium. When the sun comes out the next day, once the hot end of the heat pipe is heated, the liquid working fluid that is sucked and intercepted rapidly evaporates and participates in the heat exchange of the two-phase flow.
  • the heat absorption area is increased by ten times, compared with the light pipe glass heat pipe which only relies on the glass tube wall to absorb heat energy from the glass tube surrounded by the mirror of the getter.
  • the amplitude increases the heating power of the working medium during the start-up phase.
  • the heat pipe startup process is shortened from more than 140 minutes to 10 to 30 minutes, which is equivalent to more than one hour of heat collection in the winter.
  • the working fluid holding and intercepting device does not hold or rarely hold liquid working medium when the heat pipe is working normally. This does not exist because of the use of working fluids By cutting the device, the problem of increasing the amount of working fluid is increased or increased, thereby maximizing the heat pipe startup and keeping the pressure inside the glass heat pipe at a low level during air drying.
  • controllable heat transfer channels, heat transfer channels and air protectors of the present invention are equivalent.
  • Fig. 1 is a schematic view showing the structure of a vacuum heat collecting element of an integrated glass heat pipe with an embedded medium-pressure decompression air-protecting device.
  • 2 is a left side cross-sectional structural view of the heat dissipating patch 4 of FIG.
  • Figure 3 is a schematic view showing the structure of a vacuum heat collecting element of a metal heat pipe with an embedded straight-tube decompression air protector.
  • Figure 4 is a schematic view showing the structure of a gravity heat pipe of a light pipe structure disposed obliquely.
  • Figure 5 is an expanded view of the integrally fabricated soft iron hot fin and heat sink.
  • Figure 6 is a schematic view showing the structure of a vacuum heat collecting element with an embedded hot-wing decompression air protector.
  • Figure 7 is a schematic view of a composite structure of a vacuum heat collecting element with an embedded lever decompression air protector.
  • Fig. 8 is a schematic view showing the structure of a vacuum heat collecting element of a eccentric heat pipe with a working medium high concentration and decompression air drying protection.
  • Fig. 9 is a schematic view showing a composite structure of a vacuum heat collecting element of a heat pipe for boosting decompression and air drying protection fins.
  • Fig. 1 and Fig. 2 in the vacuum insulation layer at the end of an all-glass vacuum heat pipe heat collecting element, four medium-sheet vacuum heat pipe heat collecting elements are uniformly distributed along the circumference of the annular vacuum heat insulating layer.
  • Hot aisle It consists of an embedded medium-sized vacuum heat pipe collector element decompression air protector.
  • the air drying protection heat transfer channel comprises a heat dissipating patch 4, a heat sink 5, a thermal driving device 6, and a middle piece 7 connected to the thermal driving device 6.
  • the shape of the outer surface of the heat dissipating patch 4 coincides with the shape of the inner surface of the round glass end of the cover glass tube and includes an inwardly turned edge punching hole 8.
  • Thermal patch 4 thickness 0. 22 mm, width 40 mm.
  • the heat sink patch 4 is pressed against the inner wall of the cover glass tube 2 by a snap spring.
  • the heat sink 5 has a thickness of 0.22 mm and a width of 40 mm.
  • the low thermal resistance is connected to the inner glass tube 3, that is, the heat pipe 1 is at the bottom end of the hot end and contains an outwardly turned edge punching hole 9.
  • the heat sink 5 is pressed against the inner glass tube 3 by a snap spring.
  • the heat sink 5 protects the inner glass tube from wear and reduces thermal resistance.
  • the heat sink 5 is connected with a wire spring and high thermal resistance to facilitate the embedded assembly.
  • the heat-driven device 6 includes a heat-sensitive permanent magnet 10 and a piece of soft iron.
  • the heat-sensitive permanent magnet steel 10 of the heat-driven device 6 is connected to the inner glass tube 3 by a thermal resistance 12 with a low thermal resistance.
  • the heat guide 12 has a thickness of 0.22 mm, a width of 20 mm, and is rolled into a cylindrical shape, and is pressed against the inner glass tube 3 by a snap spring.
  • the heat-sensitive permanent magnet steel 10 is provided with a visor to prevent direct sunlight from being incident on the heat-sensitive permanent magnet steel 10 in the vacuum heat insulating layer.
  • the soft iron 11 is restrained by the two side baffles 13 to move back and forth along the axial direction of the heat collecting element.
  • the soft iron 11 is connected to the left end of the middle piece 7 through the transmission wire 14 .
  • the thickness of the middle piece 7 is 0.22 mm, and the width of 2 mm is about half the thickness of the vacuum insulation layer.
  • a wedge-shaped heat transfer interface 15 is formed on the middle piece 7.
  • the right end of the middle piece 7 is connected to the spring link 17 by a spring 16.
  • the spring connector 17 is fixed to the heat sink 5.
  • the middle piece 7 is pulled away from the permanent magnet steel 10 by the spring 16 pulling force or has a tendency to be pulled away from the permanent magnet steel 10.
  • the heat conduction 12 and the heat sink 5 are integrally connected by a narrow connecting plate with a rigid high thermal resistance.
  • Heat sink 4 heat sink 5, middle sheet 7, heat guide 12, visor, and baffle 13 are made of steel, aluminum and copper.
  • Embodiment 1 When the heat collecting element embedded with the decompression air protector is normally inclined and not in the air drying state, the sunlight is converted into heat energy on the inner glass tube absorption film, and the heat energy passes through Glass tube passed to heat pipe The internal working fluid vaporizes it. Since the temperature of the cold end of the heat pipe 1 is lower than 95 °C, the working fluid vapor flows to the cold end to release heat under the pressure difference and condenses into a liquid, returns to the hot end under the action of gravity and is again heated and vaporized... thus reversing the two-phase flow heat transfer cycle.
  • the temperature of the heat-sensitive permanent magnet steel 11 connected to the inner glass tube 3 through the thermal conduction 12 has a temperature of less than the Curie point, and the heat-sensitive permanent magnet steel 10 sucks the soft iron 11 to pull the middle piece 7 to the left.
  • the wedge-shaped heat transfer interface 15 on the middle panel 7 is not in contact with the heat sink patch 4 and the heat sink 5 (shown by the dashed triangle in Fig. 2).
  • the air protection heat transfer channel is in a closed adiabatic state.
  • the heat collecting element is normally heated.
  • the temperature of the heat sensitive permanent magnet steel 10 rises, for example, the magnetic force of the Curie point temperature of 10 CTC disappears, and the spring 16 pulls the soft iron 11 and the middle piece 7 to the right to make the middle piece 7
  • the upper wedge-shaped heat transfer interface 15 is simultaneously connected to the inwardly-flanged punching hole 8 on the heat-dissipating patch 4 and the outward-flanging punching hole 9 on the heat sink 5 (shown by a solid triangle in FIG. 2),
  • the sun protection heat transfer channel is in an open heat conduction state.
  • the inner glass tube 3, that is, the heat energy at the bottom end of the hot end of the heat pipe 1 is continuously lost to the environment through the source of the air drying protection heat transfer channel.
  • the steam inside the heat pipe 1 condenses and accumulates at the bottom end under the pressure difference, and the internal pressure of the heat pipe 1 is always at a low position, ensuring that the heat collecting element does not expand the tube to realize the air drying protection of the heat collecting element. Due to the constraint of the baffle 13, the soft iron 11 is moved to the right by a distance of at most 2 mm, which ensures that the thermal permanent magnet steel 10 can be attracted back again when the temperature is lower than the Curie point temperature.
  • the temperature of the heat-sensitive permanent magnet steel 10 decreases below the Curie point temperature, and the magnetic force recovers and attracts the soft iron 11 to make the wedge-shaped heat transfer interface 15 on the middle piece 7 and the heat-dissipating patch 4
  • the inwardly turned edge punching 8 and the outward flanged punching hole 9 on the heat sink 5 are out of contact (as indicated by the dotted triangle in Fig. 2), and the air drying protection heat transfer channel is in a closed heat insulating state, and the heat collecting component can be normal work.
  • Embodiment 1 is also applicable to a plug-in heat pipe heat collecting member.
  • the inner glass tube 3 itself is not a heat pipe, but is coupled to a plug-in heat pipe or a low heat resistance connection.
  • the working principle of the air-drying protection is similar, and the state of the heat-reducing passage of the decompression air-conditioning protection is also changed by the temperature increase/decrease of the heat-sensitive permanent magnet steel 10 during the air drying/non-air drying, and the magnetic force disappearing/restoring. The purpose of obtaining the solar protection of the heat collecting element is achieved.
  • Changing the thermal drive device 6 to a bimetal thermal drive device, or changing to a memory alloy drive device, or changing to a bellows drive device can also achieve a state in which the heat transfer passage is protected by changing the decompression air drying during air drying.
  • the wedge-shaped heat transfer interface 15 on the sheet 7 is simultaneously connected to the inwardly-flanged punching hole 8 on the heat-dissipating patch 4 and the outward-flanging punching hole 9 on the heat sink 5 to lock the working medium at the hot end of the heat pipe 1.
  • an embedded straight tube heat pipe vacuum heat collecting element decompression air protection device is arranged to form a vacuum decompression air protection metal heat pipe vacuum set.
  • Thermal component Metal heat pipes Vacuum heat collecting elements are made of kovar-sealed glass tubes and finned metal heat pipes.
  • the air protector consists of a heat-sensitive permanent magnet drive and a heat transfer straight tube 18.
  • the heat-sensitive permanent magnet steel driving device comprises a heat-sensitive permanent magnet steel 10 and a piece of soft iron 11; the heat-sensitive permanent magnet steel 10 is connected to the heat pipe of the heat pipe 1 through a thermal conduction 12 with a low thermal resistance.
  • a light-shielding plate is provided on the heat-sensitive permanent magnet steel 10 to prevent direct sunlight from being incident on the heat-sensitive permanent magnet steel 10 in the vacuum heat insulating layer.
  • the thermal conductivity solves the problem of large heat transfer resistance between the heat sensitive permanent magnet steel 10 and the heat pipe 1.
  • the soft iron 11 is constrained to move back and forth along the axial direction of the heat collecting element and is connected to the heat transfer straight cylinder 18 through the transmission wire 14, and the soft iron 11 is pushed away from the permanent magnet steel 10 by the thrust of the spring 16 or has been pushed away.
  • the heat transfer straight tube 18 can be made of a sheet having a thickness of 0.22 mm.
  • the heat transfer straight tube 18 has a section of enlarged diameter 19, and the outer end portion 20 of the enlarged diameter section 19 has a shape conforming to the inner surface of the tail end of the cover glass tube 2.
  • the heat transfer straight tube 18 and the heat pipe 1 are connected at the bottom end of the hot end by a one-dimensional moving sub-structure with low thermal resistance, and the heat transfer straight tube 18 can be extended and retracted back and forth along the direction of the core axis of the heat pipe.
  • a circlip including a wire spring and a four-jaw circlip high thermal resistance connection can be used to realize the positioning between the cover glass tube 2 and the heat pipe 1.
  • a heat dissipating patch conforming to the shape of the inner surface of the tail end of the cover glass tube 2 may be used, and a steel coil spring is thermally connected between the heat dissipating patch and the heat pipe 1.
  • the contents of the wire spring can be referred to the prior art.
  • the heat collecting element When the heat collecting element is in the air drying state, the temperature of the heat sensitive permanent magnet steel 10 rises beyond the Curie point temperature, and the spring 16 pushes the soft iron 11 and the heat transfer straight tube 18 to the right side, so that the outer end of the heat transfer straight tube 18 20 extends the end of the heat transfer connection cover glass tube 2, and the air protector is in an open heat conduction state.
  • the heat energy at the hot end of the heat pipe 1 is continuously lost to the environment through the source of the air protector.
  • the steam inside the heat pipe 1 condenses and accumulates at the bottom end under the pressure difference, and the internal pressure of the heat pipe 1 is always at a low position, ensuring the low internal pressure of the heat pipe to realize the air drying protection of the heat collecting element.
  • the temperature of the heat sensitive permanent magnet steel 10 is lower than the Curie point temperature, and the magnetic force is restored and the soft iron 11 is attracted to retract the heat transfer straight tube 18 to the end of the glass tube 2 without heat transfer.
  • the sun protector is in a closed adiabatic state, and the heat collecting component can work normally.
  • Embodiment 2 for a metal heat pipe vacuum heat collecting element having a diameter of 70 mm for the cover glass tube 2 a heat sink is not disposed on the inner wall of the tail end of the cover glass tube, and no heat sink is disposed between the hot end of the heat pipe 1 and the heat transfer straight tube 18,
  • the heat dissipation power of the air protector can also reach 10 watts or more.
  • Changing the heat-sensitive permanent magnet steel driving device to the bimetal thermal driving device, or changing to the memory alloy driving device, or changing to the bellows driving device can also realize that the outer end portion 20 of the heat transfer straight tube 18 is extended when the air is dried.
  • the end of the glass tube 2 is heat-connected, and the working medium is locked at the bottom end of the hot end of the heat pipe 1 to realize the air-drying protection mechanism of the internal pressure reduction of the heat pipe 1.
  • Fig. 5 and Fig. 6 in the vacuum insulation layer at the end of an all-glass vacuum heat collecting element, two hot fins controlled by a heat-sensitive permanent magnet steel 10, a soft iron hot fin 21 and a connecting spring are provided.
  • the heat transfer channel forms a vacuum heat collecting element with a heat-wing decompression air protector.
  • the soft iron hot fin 21 is formed by punching a flange on the heat sink 5, and its movable side 22 is shorter than the fixed side 23.
  • the hot sink 5 is also provided with a right-angled connection circlip mounting groove for easy assembly. Heat sink 5 is rolled into a cylindrical shape with a thin iron plate. The low heat resistance is connected to the inner glass tube 3 end.
  • the heat-sensitive permanent magnet steel 10 is disposed below the movable side 22 of the soft iron hot fin 21 and is covered by the soft iron hot fins 21.
  • the heat-sensitive permanent magnet steel 10 is connected to the inner glass tube 3 through a thermal guide 12 with a low thermal resistance.
  • the heat guide 12 and the heat sink 5 are also made with a right-angled connection circlip mounting groove to facilitate the assembly of the wire connection circlip.
  • the heat sink 5 and the heat guide 12 are not in direct contact.
  • the heat sink 5 and the heat guide 12 have a thickness of 0.22 mm.
  • the inner side of the cover glass tube 2 is provided with a layer of heat-dissipating patch 4 at the contact point of the soft iron hot fin 21 movable edge 22 .
  • Thermal patch 4 thickness 0. 22 mm, width 40 mm.
  • the heat-dissipating patch 4 is attached to the cover glass tube with a low thermal resistance connection.
  • Heat sink 5, heat guide 12, heat sink patch 4 production materials include steel, aluminum and copper.
  • the connecting circlip is a necessary configuration for the all-glass vacuum tube, and the related content can be referred to the prior art.
  • Embodiment 3 Connecting a plug-in heat pipe 1 in a low thermal resistance of the all-glass vacuum heat collecting tube to form a plug-in heat pipe vacuum heat collecting element, when the heat collecting element of the vacuum air-protecting device is installed When it is normally inclined and not in the air drying state, the sunlight is converted into heat energy on the absorption film of the glass tube 3, and the heat energy is transmitted to the internal working medium of the plug-in heat pipe 1 through the inner glass tube 3 to be vaporized. Since the cold end temperature of the plug-in heat pipe 1 is lower than 95 ° C, the working fluid vapor flows to the cold end under the pressure difference and condenses into a liquid, returns to the hot end under the action of gravity and is again heated and vaporized...
  • the temperature of the heat sensitive permanent magnet steel 10 rises more than the Curie point temperature, and the soft iron hot fin 21 is heated by the elastic force to raise the movable side 22 to heat transfer the heat sink patch 4 ( As shown by the solid line in Fig. 6, the controllable heat transfer channel is in an open heat conduction state, and the heat energy of the hot end of the plug-in heat pipe 1 is continuously lost to the environment through the air-protection source through the end wall of the inner glass tube 3.
  • the steam inside the plug-in heat pipe 1 condenses and accumulates at the bottom end under the pressure difference, and the internal steam pressure of the plug-in heat pipe 1 is always at a low position, ensuring that the plug-in heat pipe heat collecting element does not realize the explosion pipe. Air protection for heat collecting components.
  • the temperature of the heat-sensitive permanent magnet steel 10 is lowered below the Curie point temperature, and the magnetic recovery and attraction
  • the soft iron hot fin 21 is bent downward so that the movable edge 22 does not heat transfer to the heat dissipating patch 4, and the controllable heat transfer channel is in a closed adiabatic state, and the heat collecting component can work normally.
  • the heat-sensitive permanent magnet steel driving device is changed into a bimetal thermal driving device, or changed to a memory alloy driving device, or changed to a bellows driving device, and the soft iron hot fin 21 can be raised to heat the connection cover glass when the air is dried.
  • the tube locks the working medium at the bottom end of the hot end of the plug-in heat pipe 1 to realize the air-drying protection mechanism of the internal pressure reduction of the plug-in heat pipe 1.
  • an embedded lever hot-wing decompression air protector including two heat-sensitive permanent magnet steels 10, soft iron hot wings. 21.
  • the controllable heat transfer channel composed of the transmission lever 24 and the connecting circlip constitutes a vacuum heat collecting component with an embedded lever hot-wing decompression air-protecting device.
  • the soft iron hot fin 21 is formed by punching a flange on the heat sink 5, and its movable side 22 is shorter than the fixed side 23. There is also a right-angled connection circlip mounting groove on the heat sink 5 for easy assembly.
  • the heat sink 5 is rolled into a cylindrical shape with a thin iron plate and has a low thermal resistance connected to the inner glass tube 3 end.
  • the transmission lever is 24 - end fixed, wherein the section is above the heat-sensitive permanent magnet steel 10 and the other end of the free end 25 extends below the movable edge 22 of the soft iron hot fin 21 .
  • the heat-sensitive permanent magnet steel 10 is disposed under the movable side 22 of the soft iron hot fin 21 and is covered by the soft iron hot fins 21.
  • the heat-sensitive permanent magnet steel 10 is connected to the inner glass tube 3 through a thermal guide 12 with a low thermal resistance.
  • the heat guide 12 and the heat sink 5 are also made with a right-angled connection circlip mounting groove for easy assembly. In order to meet the requirement of maintaining high thermal resistance between the heat-sensitive permanent magnet steel 10 and the soft iron hot fin 21, the heat sink 5 and the heat guide 12 are not in direct contact. Heat sink 5 thickness 0.
  • the inner side of the cover glass tube 2 is provided with a heat dissipation patch 4 at the contact point of the soft iron hot fin 21 movable edge 22 .
  • Thermal patch 4 thickness 0. 22 mm, width 40 mm. Heat-dissipating patch 4 and cover glass tube 2 end-end paste with low thermal resistance connection.
  • Heat sink 5, heat guide 12, heat sink patch 4 production materials include steel, aluminum and copper.
  • the connecting circlip is a necessary configuration of the all-glass vacuum heat collecting tube manufactured by the prior art, and the related content can refer to the prior art.
  • the temperature of the heat-sensitive permanent magnet steel 10 rises more than the Curie point temperature, and the magnetic force disappears, and the transmission lever 24 rises by its own elastic force to push the movable side of the soft iron hot fin 21 to the heat transfer connection cover 22
  • the heat dissipating patch 4 on the inner side of the glass tube 2 (shown by the dotted line in the figure), the controllable heat transfer channel is in an open heat conduction state, and the heat energy of the hot end of the plug-in heat pipe 1 is passed through the end wall of the inner glass tube 3
  • the sun protector is constantly being lost to the environment.
  • the steam inside the plug-in heat pipe 1 condenses and accumulates at the bottom end under the pressure difference, and the internal steam pressure of the plug-in heat pipe 1 is always at a low position, ensuring that the plug-in heat pipe heat collecting element does not realize the explosion pipe. Air protection for heat collecting components.
  • the temperature of the heat sensitive permanent magnet steel 10 is lower than the Curie point temperature, and the magnetic force is restored and the driving lever 24 is lowered, so that the movable side 22 of the soft iron hot fin 21 is kept in a downward bend state without heat transfer connection cover glass.
  • the heat dissipating patch 4 on the inner side of the tube 2, the controllable heat transfer channel is in a closed heat insulation state, and the heat collecting component can work normally.
  • an air protector is arranged in the vacuum heat insulation layer at the end of a bent eccentric heat pipe vacuum heat collecting element to form a vacuum heat collecting element for decompression air drying protection eccentric heat pipe.
  • the bent eccentric heat pipe vacuum heat collecting element consists of a curved inner glass tube 26 composed of an outer straight section 27, an eccentric straight section 28, an inner straight section 29, an outer straight transition section 30 and an inner straight transition section 31, and one end
  • the rounded cover glass tube 2 is made by nesting and sealing.
  • the waist of the outer straight section 27 is sealed with the necked port of the cover glass tube 2, and the extended portion serves as the cold end of the heat pipe 1.
  • the inside of the curved glass tube 26 is vacuum-filled and sealed to form a bend. Glass casing heat pipe 1.
  • the eccentric straight section 5 of the curved inner glass tube 26, that is, the outer surface of the hot end of the heat pipe 1, is formed with an absorbing film; the inner surface of the cover glass tube 2 having a circumferential angle of about 180 degrees is made of a semicircular mirror surface 32; the eccentric straight section 5 penetrates into the inside of the cover glass tube 2; the eccentric straight section 5 with the absorption film is concentratingly connected to the semicircular mirror surface 32.
  • the air protector consists of a heat-sensitive permanent magnet steel drive device thermally coupled to the hot end of the heat pipe 1 and a heat transfer straight tube 18 coupled to the heat-sensitive permanent magnet steel drive device.
  • the heat-sensitive permanent magnet steel driving device comprises a heat-sensitive permanent magnet steel 10 and a piece of soft iron 1 1; the heat-sensitive permanent magnet steel 10 is connected to the heat-end of the heat pipe 1 through a heat conduction 12; if necessary, in the heat-sensitive permanent magnet A visor is provided on the steel 10 to prevent direct sunlight from being incident on the heat-sensitive permanent magnet steel 10 in the vacuum heat insulating layer.
  • the heat guide 12 solves the problem that the heat transfer resistance between the heat-sensitive permanent magnet steel 10 and the heat pipe 1 is large.
  • the soft iron 11 is restrained to move back and forth along the axial direction of the heat collecting element and is drivingly connected to the heat transfer straight cylinder 18 through the transmission wire 14.
  • the soft iron 1 1 is pushed away from the permanent magnet steel 10 by the action of the spring 16 thrust or has a tendency to be pushed away from the permanent magnet steel 10.
  • the heat transfer straight tube 18 and the inner end portion 29 of the hot end of the heat pipe 1 are connected by a one-dimensional moving sub-structure with low thermal resistance.
  • the heat transfer straight cylinder 18 can be extended and retracted in the axial direction of the heat collecting element, and the heat transfer straight cylinder 18 includes a length increasing section 19, the outer end portion 20 of the enlarged diameter section 19 has a shape and a tail end of the cover glass tube 2.
  • the inner surface is in agreement.
  • the heat transfer straight barrel 18 can be made of a thin plate.
  • the concentrating connection means that the eccentric straight section 5 with the absorbing film moves from the top to the bottom of the semicircular mirror 32 along the plane of symmetry of the semicircular mirror 32 but does not contact the semicircular mirror 32 to avoid thermal energy loss due to the formation of the thermal bridge.
  • Fig. 1 the sunlight entering the cover glass tube 2 is directly converted into heat energy on the absorbing film of the eccentric straight section 5; most of the two sides are reflected by the semicircular mirror 32 to the absorption film. Converted into heat.
  • the sunlight passing through the gap between the eccentric straight section 5 and the cover glass tube 2 may escape through the cover glass tube 2 through the reflection of the semicircular mirror 32.
  • the gap between the eccentric straight section 5 and the cover glass tube 2 is about 2 mm.
  • a short cylinder wick 33 is disposed at the inner bottom end of the hot end of the heat pipe 1.
  • the short cylinder wick 33 is made of fiberglass; the length is 50 mm.
  • the short cylinder wick 33 is arranged along the circumferential direction of the inner wall of the heat pipe 1, and is spaced apart from the bottom end of the heat pipe by a distance of 45 mm, and is pressed against the inner wall of the heat pipe 1 by a snap spring.
  • the temperature of the heat sensitive permanent magnet steel 10 rises more than the Curie point temperature disappears, and the spring 16 pushes the soft iron 11 and the heat transfer straight cylinder 18 to the right to make the outer end of the heat transfer straight tube 18
  • the portion 20 extends beyond the end of the heat transfer connection cover glass tube 2, and the air protector is in a heat conducting state.
  • the heat energy at the hot end of the heat pipe 1 is continuously lost to the environment through the source of the air protector.
  • the steam inside the heat pipe 1 flows under the pressure difference
  • the internal pressure of the clamped heat pipe 1 is always at a low level, ensuring that the internal pressure of the heat pipe 1 is low to achieve the air drying protection of the heat collecting element.
  • the temperature of the heat-sensitive permanent magnet steel 10 is lower than the Curie point temperature, and the magnetic force is recovered and the soft iron 11 is attracted to retract the heat transfer straight tube 18 to the end of the glass tube 2 without heat transfer.
  • the protector is in a closed adiabatic state and the collector element is working properly.
  • the heat pipe 1 can rely on gravity to realize the two-phase flow cycle heat exchange, and the solar heat energy source is continuously transmitted to the heating load through the cold end.
  • the heat pipe 1 is in operation, since the short-tube wick 33 can not hold the working medium, the filling amount of the working fluid is not increased, which is advantageous for limiting the internal saturated vapor pressure of the heat pipe 1 at a low level when the air is dried.
  • the short cylinder wick 33 can hold a large amount of liquid working medium when the heat pipe 1 is not working, and improve the position of the working medium of the original light pipe heat pipe concentrated at the bottom of the heat pipe 1.
  • the short cylinder wick 33 is spaced apart from the bottom end of the heat pipe 1 by a distance of 45 mm to allow the heat pipe 1 to simultaneously absorb solar heat from both the upper and lower sides to accelerate the start.
  • the heat pipe 1 allows the tens of millimeters below it to dry or partially dry during normal operation, so the short cylinder wick 33 often does not hold the working medium when the heat pipe 1 is working.
  • the condensed water on the inner surface of the cold end of the heat pipe 1 evaporates, and all or all of the working fluids including the working medium are held by the short-tube wick 33.
  • the heat dissipation patch is not disposed on the inner wall of the tail end of the cover glass tube 2,
  • the heat dissipation power of the air protector can also reach 10 watts or more.
  • Changing the heat-sensitive permanent magnet steel driving device to a bimetal thermal driving device, or changing to a memory alloy driving device, or changing to a bellows driving device, can also realize that the heat transfer straight tube 18 protrudes from the heat transfer connection when the air is dried, The working medium is locked at the bottom end of the hot end of the heat pipe 1 to realize the air drying protection mechanism of the internal decompression of the heat pipe 1.
  • an embedded straight tube heat pipe vacuum heat collecting element is provided to promote the decompression air drying protector, and a support for decompression air drying is formed.
  • the finned heat pipe vacuum heat collecting element is made by concentric nesting arrangement sealing of the cover glass tube 2 and the inner glass tube 3 provided with the fin 34; the inner glass tube 3 protrudes forward from the sealing portion and the internal vacuum filling device After the mass is sealed, a heat pipe is formed; the surface of the fin 34 is made of an absorbing film.
  • the air protector consists of a thermal permanent magnet steel boost drive device and a heat transfer straight tube 18.
  • the thermal permanent magnet steel boosting driving device comprises a heat sensitive permanent magnet steel 10, a soft iron 11 and a bimetal boosting component 35; the heat sensitive permanent magnet steel 10 is connected to the heat pipe 1 at the hot end of the heat pipe 1 through the thermal conduction 12 .
  • a light-shielding plate is provided on the heat-sensitive permanent magnet steel 10 to prevent direct sunlight from being incident on the heat-sensitive permanent magnet steel 10 in the vacuum heat insulating layer.
  • the thermal conductivity solves the problem of large heat transfer resistance between the heat sensitive permanent magnet steel 10 and the heat pipe 1.
  • the soft iron 11 is constrained to move back and forth along the axial direction of the heat collecting element and is connected to the heat transfer straight cylinder 18 through the transmission wire 14 , and the soft iron 11 is pushed away from the permanent magnet steel 10 by the thrust of the spring 16 or has been pushed The trend from permanent magnet steel 10.
  • the heat transfer straight tube 18 is made of a thin plate.
  • the outer side of the soft iron 11 serves as a connection interface with the free end of the bimetal boosting member 35.
  • the bimetal boosting member 35 is fixed at the fixed end.
  • the heat transfer cylinder 18 has a section of enlarged diameter 19, and the outer end portion 20 of the enlarged diameter section 19 has a shape that matches the inner surface of the tail end of the cover glass tube 2.
  • the heat transfer straight tube 18 and the heat pipe 1 are connected at the bottom end of the hot end by a one-dimensional moving sub-structure with low thermal resistance, and the heat transfer straight tube 18 can be extended and retracted back and forth along the direction of the core axis of the heat pipe.
  • the temperature of the heat-sensitive permanent magnet steel 10 connected to the heat pipe 1 by the low thermal resistance of the heat pipe 12 does not reach the Curie point temperature, and the heat-sensitive permanent magnet steel 10 sucks the soft iron 11 to pull the heat transfer straight tube 18 to the left, so that The heat transfer straight tube 18 does not heat the connection to the tail of the cover glass tube 2, and the air protector is in a closed heat insulation state.
  • the heat collecting element is normally collected.
  • the heat collecting element When the heat collecting element is in the air drying state, the temperature of the heat sensitive permanent magnet steel 10 rises more than the Curie point temperature disappears, and the spring 16 pushes the soft iron 11 and the heat transfer straight cylinder 18 to the right to make the outer end of the heat transfer straight tube 18
  • the portion 20 extends beyond the tail of the heat transfer connection cover glass tube 2, and the air protector is in an open heat conduction state.
  • the heat energy at the hot end of the heat pipe 1 is continuously lost to the environment through the source of the air protector.
  • the steam inside the heat pipe 1 condenses and accumulates at the bottom end under the pressure difference, and the internal pressure of the heat pipe 1 is always at a low position, thereby realizing the air drying protection of the heat collecting element.
  • the temperature of the bimetal boosting member 35 is high and its shape is not bent to the left, thereby ensuring that the soft iron 11 is pulled rightward.
  • the temperature of the heat-sensitive permanent magnet steel 10 is lower than the Curie point temperature, and the magnetic force is restored and the soft iron 11 is attracted to retract the heat transfer straight tube 18 to the end of the glass tube 2 without heat transfer.
  • the device is in a closed adiabatic state and the collector element is working properly.
  • the bimetal boosting member 35 is deformed during the cooling process of the permanent magnet steel 10 from the demagnetized state to the magnetic state, and the free end thereof is bent to the left to push the soft iron 11 to the left (as shown by the dotted line in the figure) ). Due to the existence of the bimetal boosting member 35, the accuracy error of the related components is overcome, so that the soft iron 11 is too far away from the heat sensitive permanent magnet steel 10, and the heat sensitive permanent magnet steel 10 has insufficient suction force, and the air protector cannot work normally. Make the permanent magnet permanent magnet drive device work more quickly and reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)

Abstract

本发明涉及真空重力热管集热元件减压空晒保护方法及产品,在真空集热元件尾端建立一个跨越真空隔热层的热力空晒保护传热通道;空晒时通过自动开通热力空晒保护传热通道将热管热能传出使工质集聚于热管底端处阻断热管的两相流换热循环以降低热管内部压力;并在热管内部设置工质吸持器件提高工质位置增加热管启动加热功率缩短启动时间。按此方法制造的减压空晒保护重力热管真空集热元件。本发明采用一个小功率空晒保护器就可保证空晒时热管内部水蒸汽压力始终不超过2个大气压,并可在冬季将热管启动时间从140分钟缩短至20分钟,每天多集热1小时。

Description

真空重力热管集热元件减压空晒保护方法及产品 技术领域
本发明涉及真空重力热管集热元件减压空晒保护方法及产品。
背景技术
真空集热管在其罩玻璃管与内玻璃管之间设置真空隔热层, 可制造冬季也能提供生活热 水的真空太阳能热水器。用热管真空集热管制造的太阳能热水器更具有管内无水能效比高、 符合卫生饮用水标准、 单管损坏照样工作等优点。 因此。 管内无水的太阳能真空热管热水 器将有可能占领越来越多的市场份额。
采用一体式玻璃热管具有可以与罩玻璃管融封、玻璃热管表面可以直接制作吸收膜传热 环节少、 可釆用热物理性能极佳的水作工质等优点。 但空晒时, 集热元件热管内部温度可 达 230°C, 这个温度对应的饱和水蒸汽压为 28. 53个大气压, 对应的工质充装量与热管容 积之比即工质容积比为 1. 1%, 即每 1升容积有 11毫升水。
通过减少工质充装量可以降低空晒时热管内部的压力, 以水工质为例: 当工质充装量 / 热管容积率从 5毫升 /1000毫升时的 0. 5%降低至 2毫升 /1000毫升时的 0. 2%, 相应地其最 高饱和蒸汽压从 18CTC的约 10个大气压降低至 140°C的约 3. 7个大气压, 并且热管内部从 14CTC约 3. 7个大气压的最高蒸汽压继续升温至 18CTC时内部压力仅有 4个大气压左右。但 有时工质充装量不能仅仅以空晒时的内部压力来决定。对于一支工质充装量 /热管容积率为 0. 2%、 内部容积 1000毫升、 长度 2000毫米的热管, 如果为了使空晒 23CTC时内部压力不 超过 4个大气压, 则工质充装量约 1. 8毫升。 问题是所述热管即使为光管结构, 在倾斜约 45度工作时,冷端的冷凝水、热端的流动水加上 85°C水蒸汽的水量 0. 353毫升之和会远超 过 1. 8毫升。
为了满足热管正常工作而使工质充装量 /热管容积率大于 0. 2%甚至 0. 3%, 并确保玻璃热 管不因为空晒而炸管, 必须采取空晒保护措施。
中国发明专利 2009101951003抗空晒全玻璃真空热管集热元件, 披露了一种空晒保护全 玻璃真空热管集热元件, 由在真空集热元件吸收体和罩玻管之间设置可控传热通道构成, 可控传热通道由活动传热件和驱动件组成, 其特征在于含有与真空集热元件吸收体低热阻 连接的热力换能驱动件。 由于这项专利不是专门针对重力热管集热元件的, 因而针对性不 强; 其采用的双金属片热力换能驱动件本来产品的一致性就不好, 在多次受热变形后恢复 原状的能力又会降低, 其所承担的控制系统相关的工作点设定、 控制变量输入、 比较、 换 能和能量供给以及执行功能因为精度受到影响而远不能正常有效工作到集热元件可能的 20年设计寿命。
图 4给出一支倾斜安置的光管结构重力热管结构示意图。
图 4中, 热管 1由管壳和内部工质制成。 其工作原理为: 热能从下方的热端即并排向里 的箭头标示处输入, 使热管 1内部底端处的工质受热汽化, 蒸汽在压差的作用下, 向上行 进到热管冷端即箭头并排向外标示处放出热能供应给负荷并冷凝成液体在重力作用下回流 至下面的冷端, 在热端工质再次受热汽化……, 由此不断循环实现两相流换热循环。 热管 具有优异的传热能力、 热流密度变换能力和等温特性。 如果热管 1热端输入 100瓦, 则其 冷端输出最高可以达到 97瓦甚至更高。
如果试图对图 4的热管 1仅仅从下面输入热能, 而不取走热能, 则热管 1内部蒸汽压会 急剧上升。 如果热管 1采用水作为工质并且足够多, 则在热管 1温度达到 23CTC时, 内部 最高压力可达 28. 53个大气压。 如果试图对图 4的热管 1从上到下全面加热并从下面略高于热管 1底端的地方譬如从底 端开始的占整个热管 1长度 3%的一段取出热能,即仅仅令底端往前占热管 1总长度 3%的部 位同时作为重叠冷端, 则热管 1内部的蒸汽压会降到与下面冷端的温度相对应的饱和蒸汽 压。 譬如用水作为工质时, 保持热管 1下面重叠冷端的温度 100°C, 则即使上面其他部分 加热到 230°C, 因为热管 1 内部的液态工质都集聚于底端和所述重叠冷端, 除所述重叠冷 端之外上面的热管 1热端由于没有工质补充整个干涸, 两相流传热机制不复存在。 热管 1 内部的蒸汽压力也只有约 1个大气压。
重叠冷端的一个例子是热管管壁带有吸收膜, 吸收太阳光作为热能输入, 同时用传热器 件低热阻连接所述热管管壁并将热能转移。
这种令热管 1倾斜布置、热能从热管 1上面输入而只用下面一小段作为重叠冷端的设计 在其他场合或许没有什么意义, 但用于太阳能集热元件的空晒保护, 因为只需要极小一部 分散热功率一一这部分散热功率用于确保空晒发生时, 空晒保护装置开始起作用的初期热 管内部蒸汽压的最高值不超过设定值; 这部分散热功率还要大于所述重叠冷端作为热端的 热能输入功率一一因而具有散热器件体积紧凑、 性能可靠、 散热功率小、 对真空隔热层的 放气少、 对吸收体的遮挡影响小以及可利用集热元件尾端作为散热界面的优点。
可以看到,重叠冷端的面积越小、所述空晒保护器件所需要的散热功率也越小、越有利。 实际的集热元件需要尾盒之类的器件进行安置。 尾盒会遮盖集热元件的尾端。 被尾盒遮盖 的部分都不属于重叠冷端。 之所以还会用到重叠冷端, 是因为有些集热元件空晒保护装置 比较适合安装于真空隔热层的筒形段或者, 集热元件罩玻璃管带有缩颈段并且是采用在缩 颈段形成后装配内玻璃管, 然后再对罩玻璃管圆封拉尾管简称后拉尾管的工艺。 后拉尾管 工艺形成的圆封端如果不适合用于散热, 就需要利用从所述圆封端往上的罩玻璃管筒形段 进行散热。 与所述筒形段相对应的热管或者内玻璃管尾端部分属于重叠冷端。
重叠冷端是基于阻断热管两相流换热循环的减压空晒保护设计, 这是与上述中国发明专 利 2009101951003抗空晒全玻璃真空热管集热元件的非减压空晒保护设计可控散热通道本 质区别。
中国 912050845实用新型电饭煲用自动磁性温控开关, 披露了一种磁性热力换能元件的 工作原理, 包括: 温度高于居里点温度, 磁性材料失磁; 温度低于居里点温度, 磁性材料 恢复磁性。 所以, 热敏永磁钢也是一种热力驱动器件。
发明内容
本发明的目的是要提供真空重力热管集热元件减压空晒保护方法及产品。
本发明一种真空重力热管集热元件减压空晒保护方法: 在真空集热元件尾端的真空隔热 层内建立一个跨越真空隔热层的热力空晒保护传热通道, 空晒时通过自动开通所述热力空 晒保护传热通道将真空集热元件内玻璃管尾端或者热管底端处的热能通过罩玻璃管尾端处 传给环境, 使热管内部的液态工质尽可能多地集聚于热管底端处来阻断热管内部的两相流 换热循环, 以有效降低热管内部的蒸汽压力, 达到预防热管失效炸管的目的; 并通过在热 管内部设置工质吸持器件来提高工质位置使热管启动时能够增加加热功率缩短启动时间; 集热元件尾端为自集热元件尾端底部外表面起往前不超过集热元件总长度 6%的部分。
本发明按照上述方法解决其技术问题的技术方案之一: 用一个以上中片可控传热通道组 成一个嵌入式中片真空热管集热元件减压空晒保护器,所述传热通道包括散热贴片、热汇、 带有与集热元件热管热端或者内玻璃管传热连接界面的热力驱动器件和与热力驱动器件传 动连接或者与热力驱动器件一体制造的中片。 安置于集热元件尾端的真空隔热层内。 所述 传热通道具有两种稳定状态: 中片同时传热连接热汇与散热贴片时的开启导热状态; 中片 不同时传热连接热汇与散热贴片时的关闭绝热状态。 所述热力驱动器件包括热敏永磁钢驱 动器件、 双金属片驱动器件、 记忆合金驱动器件和膜盒驱动器件。 所述散热贴片带有与罩 玻璃管圆封端底端处内表面的低热阻连接界面并带有与中片的传热界面。 还可以令散热贴片外表面的形状与罩玻璃管温度内表面的形状相吻合并含有向内翻边 冲孔; 散热贴片用卡簧压贴于罩玻璃管内壁。 所述热汇含有与内玻璃管或者热管热端的低 热阻连接界面并含有若干向外翻边冲孔。 散热贴片、 热汇之间用钢丝卡簧高热阻连接为一 体, 方便嵌入式装配。 所述热力驱动器件包括一块热敏永磁钢和一块软铁。 软铁受约束可 沿集热元件轴心线方向作前后移动。 软铁通过传动钢丝与中片一端传动连接。 中片含有楔 形传热界面; 中片的另一端通过弹簧与弹簧连接件连接。
本发明按照上述方法解决其技术问题的技术方案之二: 制造嵌入式直筒真空热管集热元 件减压空晒保护器, 包括带有与集热元件热管热端或者内玻璃管传热连接界面的热力驱动 器件和与热力驱动器件传动连接或者与热力驱动器件一体制造的传热直筒。 安置于集热元 件尾端的真空隔热层内。 所述空晒保护器具有两种稳定状态: 传热直筒伸出传热连接罩玻 璃管尾端时的开启导热状态; 传热直筒缩回不传热连接罩玻璃管尾端时的关闭绝热状态。 所述热力驱动器件包括热敏永磁钢驱动器件、 双金属片驱动器件、 记忆合金驱动器件和膜 盒驱动器件。 传热直筒与内玻璃管尾端或者热管热端底端处直接或者通过一个热汇采用一 维移动副低热阻连接; 传热直筒可沿集热元件轴心线方向作前后移动。 传热直筒的外端部 形状与罩玻璃管尾端内表面的相吻合。
还可以令所述空晒保护器包括热敏永磁钢热力驱动器件。热敏永磁钢热力驱动器件包括 一块热敏永磁钢和一块软铁。 热敏永磁钢通过热导与热管热端低热阻连接。 软铁受约束可 沿集热元件轴心线方向作前后移动。 传热直筒带有一段扩径段, 扩径段外端部的形状与罩 玻璃管尾端内表面的相吻合。传热直筒与热管热端底端处采用一维移动副结构低热阻连接。 传热直筒可沿热管轴心线方向作前后移动。 罩玻璃管尾端内侧与热管热端底端处之间采用 一个卡簧高热阻连接, 实现罩玻璃管与热管之间的定位。 或者采用一个与罩玻璃管尾端内 表面形状相吻合的散热贴片, 并在散热贴片与热管之间采用钢丝卡簧高热阻连接。
本发明按照上述方法解决其技术问题的技术方案之三: 用一个以上热翅可控传热通道组 成一个嵌入式热翅真空热管集热元件减压空晒保护器。所述可控传热通道包括热敏永磁钢、 软铁热翅和连接卡簧。 安置于集热元件尾端的真空隔热层内。 所述可控传热通道具有两种 稳定状态: 软铁热翅活动边上扬传热连接罩玻璃管时的开启导热状态; 软铁热翅活动边下 弯不传热连接罩玻璃管时的关闭绝热状态。 软铁热翅的固定边含有与真空集热元件内玻璃 管尾端或者热管热端底端处的传热连接界面。 热敏永磁钢设置于软铁热翅的活动边下方, 并被软铁热翅遮盖。 热敏永磁钢有磁, 软铁热翅被热敏永磁钢吸引下弯, 其活动边不与罩 玻璃管传热连接; 热敏永磁钢失磁, 软铁热翅在自身弹力作用下上翘, 其活动边与罩玻璃 管传热连接。
本发明按照上述方法解决其技术问题的技术方案之四: 用一个以上杠杆可控传热通道组 成一个嵌入式杠杆真空热管集热元件减压空晒保护器。所述可控传热通道包括热敏永磁钢、 软铁热翅、 传动杠杆和连接卡簧。 安置于集热元件尾端的真空隔热层内。 所述可控传热通 道具有两种稳定状态: 传动杠杆上升推动软铁热翅活动边上扬传热连接罩玻璃管时的开启 导热状态;传动杠杆下降使得软铁热翅活动边下弯不传热连接罩玻璃管时的关闭绝热状态。 软铁热翅的固定边含有与真空集热元件内玻璃管尾端或者热管热端底端处的传热连接界 面; 热敏永磁钢设置于软铁热翅的活动边下方, 并被软铁热翅遮盖。 传动杠杆一端固定, 其中段处于热敏永磁钢上方, 其另一端自由端伸进软铁热翅的活动边下方。 热敏永磁钢有 磁, 传动杠杆被热敏永磁钢吸引下降使得软铁热翅活动边下弯不传热连接罩玻璃管; 热敏 永磁钢失磁,传动杠杆靠自身弹性力作用上升推动软铁热翅活动边上扬传热连接罩玻璃管。 还可以令所述软铁热翅通过在热汇上冲制翻边而成。热汇用薄铁板卷成筒形包裹低热阻 连接内玻璃管尾端。 热敏永磁钢通过热导与内玻璃管低热阻连接。 热汇和热导含有连接卡 簧装配槽, 方便两者通过卡簧高热阻连接。 罩玻璃管尾端内侧与软铁热翅活动边接触处含 有一层散热贴片; 散热贴片与罩玻璃管尾端贴合低热阻连接。
本发明按照上述方法解决其技术问题的技术方案之五: 制造减压空晒保护重力热管真空 集热元件, 包括可伐封接罩玻璃管与金属翅片热管的金属热管集热元件、 由罩玻璃管和带 翅板的内玻璃管同心嵌套布置封接制成的内玻翅板热管真空集热元件、 由罩玻璃管和内玻 璃管同心嵌套布置封接制成的全玻璃真空热管集热元件、 用一支由带有偏心直段和正心外 直段的弯曲的内玻璃管与罩玻璃管嵌套布置封接制成的偏心热管集热元件和由全玻璃真空 集热管与插入其中的玻璃热管低热阻连接制成的插入式热管集热元件。 所述集热元件垂直 或者倾斜安装, 所述集热元件的热管依靠重力工作。 所述集热元件尾端的真空隔热层设置 有一个可控传热通道。
所述传热通道带有一个与集热元件内玻璃管或者热管热端传热连接界面的热力驱动器 件; 所述热力驱动器件包括热敏永磁钢驱动器件、 双金属片驱动器件、 记忆合金驱动器件 和膜盒驱动器件。
所述可控传热通道包括散热贴片、 热汇、 带有与集热元件热管热端或者内玻璃管传热连 接界面的热力驱动器件和与热力驱动器件传动连接或者与热力驱动器件一体制造的中片。 所述可控传热通道具有两种稳定状态: 中片同时传热连接热汇与散热贴片时的开启导热状 态; 中片不同时传热连接热汇与散热贴片时的关闭绝热状态。 所述散热贴片带有与罩玻璃 管圆封端内表面的低热阻连接界面并带有与中片的传热界面。
或者, 所述可控传热通道包括带有与集热元件热管热端或者内玻璃管传热连接界面的热 力驱动器件和与热力驱动器件传动连接或者与热力驱动器件一体制造的传热直筒。 所述空 晒保护器具有两种稳定状态: 传热直筒伸出传热连接罩玻璃管尾端时的开启导热状态; 传 热直筒缩回不传热连接罩玻璃管尾端时的关闭绝热状态。 传热直筒与内玻璃管尾端或者热 管热端底端处直接或者通过一个热汇采用一维移动副低热阻连接。 所述热汇与内玻璃管尾 端或者热管热端底端处低热阻连接。 所述传热直筒可以沿集热元件轴心线方向作伸出缩回 前后移动。 传热直筒的外端部形状与罩玻璃管尾端内表面的相吻合。
或者, 所述传热通道包括热敏永磁钢、 软铁热翅和连接卡簧。 所述可控传热通道具有两 种稳定状态: 软铁热翅活动边上扬传热连接罩玻璃管时的开启导热状态; 软铁热翅活动边 下弯不传热连接罩玻璃管时的关闭绝热状态。 软铁热翅的固定边低热阻连接内玻璃管尾端 或者热管热端底端处。 热敏永磁钢设置于软铁热翅的活动边下方并被软铁热翅遮盖。 热敏 永磁钢有磁, 软铁热翅被热敏永磁钢吸引下弯, 其活动边不与罩玻璃管传热连接; 热敏永 磁钢失磁, 软铁热翅在自身弹力作用下上翘, 其活动边与罩玻璃管传热连接。
或者, 所述传热通道包括热敏永磁钢驱动器件、 软铁热翅、 传动杠杆和连接卡簧。 所述 传热通道具有两种稳定状态: 传动杠杆上升推动软铁热翅活动边上扬传热连接罩玻璃管时 的开启导热状态; 传动杠杆下降使得软铁热翅活动边下弯不传热连接罩玻璃管时的关闭绝 热状态。 软铁热翅的固定边低热阻连接内玻璃管尾端或者热管热端底端处。 传动杠杆的中 段处于热敏永磁钢上方其自由端伸进软铁热翅的活动边下方。 热敏永磁钢有磁, 传动杠杆 被热敏永磁钢吸引下降使得软铁热翅活动边下弯不传热连接罩玻璃管; 热敏永磁钢失磁, 传动杠杆靠自身弹性力作用上升推动软铁热翅活动边上扬传热连接罩玻璃管。
本发明按照上述方法解决其技术问题的技术方案之六: 制造助推减压空晒保护重力热管 真空集热元件, 包括可伐封接罩玻璃管与金属翅片热管的金属热管集热元件、 由罩玻璃管 和带翅板内玻璃管同心嵌套布置封接制成的内玻翅板热管真空集热元件、 由罩玻璃管和内 玻璃管同心嵌套布置封接制成的全玻璃真空热管集热元件、 用一支由带有偏心直段和正心 外直段的弯曲的内玻璃管与罩玻璃管嵌套布置封接制成的偏心热管集热元件和由全玻璃真 空集热管与插入其中的玻璃热管低热阻连接制成的插入式热管集热元件。 所述集热元件垂 直或者倾斜安装, 所述热管依靠重力工作。 集热元件尾端的真空隔热层设置一个可控传热 通道。
所述传热通道包括散热贴片、 热汇、 带有与集热元件热管热端或者内玻璃管传热连接界 面的助推热力驱动器件和与助推热力驱动器件传动连接或者与助推热力驱动器件一体制造 的中片。 所述传热通道具有两种稳定状态: 中片同时传热连接热汇与散热贴片时的开启导 热状态; 中片不同时传热连接热汇与散热贴片时的关闭绝热状态。 所述散热贴片带有与罩 玻璃管圆封端内表面的低热阻连接界面并带有与中片的传热界面。 助推热力驱动器件包括 一个热敏永磁钢软铁驱动对和一个双金属片助推部件。 热敏永磁钢软铁驱动对包括一块热 敏永磁钢和一块软铁。 热敏永磁钢通过一块热导与热管热端低热阻连接; 软铁受约束可作 沿集热元件轴心线方向的前后移动并通过传动钢丝与中片传动连接。 所述热敏永磁钢软铁 驱动对含有与双金属片助推部件的连接界面。 所述双金属片助推部件在热敏永磁钢从失磁 状态向有磁状态转变的降温过程中, 产生形变帮助推动热敏永磁钢软铁驱动对吸合; 或者, 所述传热通道包括带有与集热元件热管热端或者内玻璃管传热连接界面的助推热 力驱动器件和与助推热力驱动器件传动连接或者与助推热力驱动器件一体制造的传热直 筒。 所述传热通道具有两种稳定状态: 传热直筒伸出传热连接罩玻璃管尾端时的开启导热 状态; 传热直筒缩回不传热连接罩玻璃管尾端时的关闭绝热状态。 传热直筒与内玻璃管尾 端或者热管热端底端处直接或者通过一个热汇采用一维移动副低热阻连接, 所述热汇与内 玻璃管尾端或者热管热端底端处低热阻连接。 传热直筒可沿集热元件轴心线方向作前后移 动, 传热直筒的外端部形状与罩玻璃管尾端内表面的相吻合。 助推热力驱动器件包括一个 热敏永磁钢软铁驱动对和一个双金属片助推部件。 热敏永磁钢软铁驱动对包括一块热敏永 磁钢和一块软铁。 热敏永磁钢通过一块热导与热管热端低热阻连接。 软铁受约束可作沿集 热元件轴心线方向的前后移动并通过传动钢丝与传热直筒传动连接。 所述热敏永磁钢软铁 驱动对含有与双金属片助推部件的连接界面。 所述双金属片助推部件在热敏永磁钢从失磁 状态向有磁状态转变的降温过程中, 产生形变帮助推动热敏永磁钢软铁驱动对吸合。
本发明的有益效果: 相对于通过在真空集热元件真空隔热层中均布可控散热通道在空晒 时通过启动所述可控散热通道进行散热来防止热管炸管的技术方案, 本发明依靠在集热元 件热管底端处散热来收集液态工质、 阻断热管内部两相流换热的空晒保护方法, 散热功率 可以大大减小。 譬如, 原来一个输出 70瓦的集热元件, 工质充装量 3毫升, 采用集热元件 吸收体和罩玻管之间设置可控传热通道的方案, 空晒时增加散热功率 40瓦,热管内部温度 最高还有 150°C以上,相应的水蒸汽压力仍可达 4. 8个大气压超出内径 37毫米壁厚 1. 6毫 米玻璃管的耐压能力。本发明对于同样输出 70瓦的玻璃热管集热元件,减压空晒保护传热 通道只需 10瓦散热功率,就可以在空晒发生时以 0. 25毫升 /分钟的速率来吸收热管内部的 水。空晒开始约 6分钟后,其时虽然热管的温度可能从空晒保护开始时的 95°C升高至约 114 至 123°C, 但热管热端内部除底端处都已经干涸、 蒸汽压己经小于 2个大气压, 即热管已 经受到保护处于安全状态。节省 30瓦的散热功率令成本有较大削减,减少传热通道对真空 隔热层的放气 75%、 并且可靠性大幅度提高。 关键是能有效解决热管集热元件的空晒保护 问题。 本发明采用一个小功率空晒保护器就可保证热管内部水蒸汽压力始终不超过 2个大 气压, 并且完全不影响集热元件的正常工作。 .
传热直筒传热面积大、 刚性强、 利用集热元件底端构建传热通道对集热元件的吸收资源 占用少。 采用带有扩径段的传热直筒, 为直径较细的翅板热管与直径较粗的罩玻璃管之间 的充分传热提供了一个合适的解决方案。 热敏永磁钢驱动器件一致性好、 重复性好、 控制 精度高、 使用寿命长、 性能令人满意。
在所述玻璃热管内部设置短筒吸液芯, 当太阳落山时热管热端温度下降, 所述玻璃热管 逆向工作: 与加热负荷低热阻连接的原热管冷端内表面的液态工质蒸发并在原热管热端内 表面凝结, 当原热管热端内表面液态工质集聚较多而向下流淌到达短筒吸液芯时被吸持截 留从而抬高了工质的位置。 第二天太阳出来时, 热管热端一旦受热, 被吸持截液的液态工 质迅速蒸发并参与两相流换热。 进一步分析可知: 由于采用了短筒吸液芯, 成十倍增加了 吸热面积, 与仅仅依靠玻璃管壁从被吸气剂镜面包围的玻璃管上方吸取热能的光管玻璃热 管相比, 大幅度增加了启动阶段工质的加热功率。 冬季, 热管启动过程从原来光管的 140 多分钟缩短至 10至 30分钟, 相当于集热装置冬季每天多集热一个多小时。 工质吸持拦截 器件在热管正常工作时不持有或者很少持有液态工质。 这样就不存在因为使用工质吸持拦 截器件而增加或者较多地增加工质充装量的问题, 从而既最大限度加快热管启动; 又使空 晒时玻璃热管内部的压力保持低位。
本发明的可控传热通道、 传热通道与空晒保护器是等价的。
附图说明
下面结合附图和实施例对本发明进一步说明。
图 1是一支带嵌入式中片减压空晒保护器一体式玻璃热管真空集热元件结构示意图。 图 2是图 1在散热贴片 4处的左视剖视结构示意图。
图 3是一支带嵌入式直筒减压空晒保护器金属热管真空集热元件结构示意图。
图 4是一支倾斜安置的光管结构重力热管结构示意图。
图 5是一体制作的软铁热翅和热汇的展开图。
图 6是一支带嵌入式热翅减压空晒保护器的真空集热元件结构示意图。
图 7是一支带嵌入式杠杆减压空晒保护器的真空集热元件复合结构示意图。
图 8是一支工质高位集聚减压空晒保护偏心热管真空集热元件结构示意图。
图 9是一个助推减压空晒保护翅板热管真空集热元件复合结构示意图。
图中 1.热管; 2.罩玻璃管; 3.内玻璃管; 4.散热贴片; 5.热汇; 6.热力驱动器件; 7. 中片; 8.向内翻边冲孔; 9.向外翻边冲孔; 10.热敏永磁钢; 11.软铁; 12.热导; 13.档板; .传动钢丝; 15.楔形传热界面; 16.弹簧; 17.弹簧连接件; 18.传热直筒; 19 扩径段; 20.外端部; 21.软铁热翅; 22.活动边; 23.固定边; 24.传动杠杆; 25.自由端; 26.弯内玻 璃管; 27.外直段; 28.偏心直段; 29.内直段; 30.外直过渡段; 31.内直过渡段; 32.半圆 镜面; 33.短筒吸液芯; 34.翅板; 35.双金属片助推部件。
具体实施方式
实施例 1
图 1和图 2中, 在一支全玻璃真空热管集热元件尾端的真空隔热层内, 沿环形真空隔热 层圆周向均布四个中片真空热管集热元件减压空晒保护传热通道。 组成一个嵌入式中片真 空热管集热元件减压空晒保护器。所述空晒保护传热通道包括散热贴片 4、 热汇 5、热力驱 动器件 6、 与热力驱动器件 6传动连接的中片 7。 散热贴片 4外表面的形状与罩玻璃管 2 圆封端内表面的形状相吻合并含有向内翻边冲孔 8。 散热贴片 4厚度 0. 22毫米、 宽度 40 毫米。 散热贴片 4用卡簧压贴于罩玻璃管 2内壁。 热汇 5厚度 0. 22毫米、 宽度 40毫米, 低热阻连接于内玻璃管 3即热管 1热端底端处并含有向外翻边冲孔 9。 热汇 5用卡簧压贴 于内玻璃管 3上。 热汇 5可以保护内玻璃管免受磨损, 还可以减少热阻。 散热贴片 4、 热 汇 5之间用钢丝卡簧高热阻连接为一体方便嵌入式装配。 热力驱动器件 6包括一块热敏永 磁钢 10和一块软铁 11, 热力驱动器件 6的热敏永磁钢 10通过热导 12与内玻璃管 3低热 阻连接。 热导 12厚度 0. 22毫米、 宽度 20毫米、 卷成筒形, 用卡簧压贴于内玻璃管 3上。 热敏永磁钢 10上面设置遮光板, 防止太阳光直射在处于真空隔热层中的热敏永磁钢 10使 其误动作。软铁 11受两侧档板 13约束可沿集热元件轴心线方向作前后移动。软铁 11通过 传动钢丝 14与中片 7左端传动连接。 中片 7厚度 0. 22毫米、 宽度 2毫米约为真空隔热层 厚度的一半。 中片 7上制作有楔形传热界面 15。 中片 7的右端通过弹簧 16与弹簧连接件 17连接。 弹簧连接件 17固定于热汇 5上。 中片 7受弹簧 16拉力作用被拉离永磁钢 10或 者具有被拉离永磁钢 10的趋势。 热导 12、 热汇 5两者之间通过一片较窄的连接板刚性高 热阻连接为一体。
散热贴片 4、 热汇 5、 中片 7、 热导 12、 遮光板、 档板 13的制作材料包括钢板、 铝板和 铜板。
实施例 1的工作原理: 当嵌入安装有所述减压空晒保护器的集热元件正常倾斜布置且不 处于空晒状态时, 太阳光在内玻璃管吸收膜上转换为热能, 热能通过内玻璃管传递给热管 内部工质使之汽化。 由于热管 1冷端温度低于 95 °C, 工质蒸汽在压差作用下流向冷端放热 并凝结成液体在重力作用下返回热端并再度受热汽化……如此周而复始实现两相流换热循 环。此时,通过热导 12与内玻璃管 3低热阻连接的热敏永磁钢 11温度达不到居里点温度, 热敏永磁钢 10吸住软铁 11将中片 7往左拉,使中片 7上的楔形传热界面 15不接触散热贴 片 4和热汇 5 (如图 2中虚线三角形所示)。 空晒保护传热通道处于关闭绝热状态。 集热元 件正常加热。
当集热元件处于空晒状态时,热敏永磁钢 10温度升高譬如达到 10CTC的居里点温度磁力 消失,弹簧 16将软铁 11和中片 7—起往右拉,使中片 7上的楔形传热界面 15同时低热阻 连接散热贴片 4上的向内翻边冲孔 8和热汇 5上的向外翻边冲孔 9 (如图 2中实线三角形 所示),空晒保护传热通道处于开启导热状态。内玻璃管 3即热管 1热端底端处的热能通过 空晒保护传热通道源源不断散失到环境。 热管 1内部的蒸汽在压差作用下流向底端处凝结 并集聚于底端处, 钳制热管 1内部压力始终处于低位, 保证集热元件不会炸管实现集热元 件的空晒保护。 由于档板 13的约束, 软铁 11向右移动的距离最多 2毫米, 这样可以保证 以后热敏永磁钢 10温度低于居里点温度磁力恢复时能够将软铁 11再度吸引回来。
以后当集热元件脱离空晒状态后, 热敏永磁钢 10温度降低低于居里点温度时磁力恢复 并吸引软铁 11使中片 7上的楔形传热界面 15与散热贴片 4上的向内翻边冲孔 8和热汇 5 上的向外翻边冲孔 9脱离接触(如图 2中虚线三角形所示),空晒保护传热通道处于关闭绝 热状态, 集热元件又可正常工作。
实施例 1同样适用于插入式热管集热元件, 这时, 内玻璃管 3本身不是热管, 而是与一 支插入式热管配合连接或者低热阻连接。 其空晒保护的工作原理相似, 也是通过热敏永磁 钢 10在空晒时 /非空晒时的温度升高 /降低、 磁力消失 /恢复来改变减压空晒保护传热通道 的状态, 达到使集热元件获得空晒保护的目的。
将热力驱动器件 6改为双金属片热力驱动器件、 或者改为记忆合金驱动器件、 或者改为 膜盒驱动器件也可以实现空晒时通过改变减压空晒保护传热通道的状态, 使中片 7上的楔 形传热界面 15同时低热阻连接散热贴片 4上的向内翻边冲孔 8和热汇 5上的向外翻边冲孔 9, 来将工质锁定在热管 1热端底端处实现热管 1内部减压的空晒保护机制。
实施例 2
图 3中, 在一支金属热管真空集热元件尾端的真空隔热层内, 设置一个嵌入式直筒热管 真空集热元件减压空晒保护器, 组成一支减压空晒保护金属热管真空集热元件。 金属热管 真空集热元件用可伐封接罩玻璃管和翅板金属热管制成。 空晒保护器由热敏永磁钢驱动器 件和传热直筒 18组成。 热敏永磁钢驱动器件包括一块热敏永磁钢 10和一块软铁 11 ; 热敏 永磁钢 10通过热导 12与热管 1热端低热阻连接。需要时,在热敏永磁钢 10上面设置遮光 板防止太阳光直射在处于真空隔热层中的热敏永磁钢 10使其误动作。热导解决了热敏永磁 钢 10与热管 1之间接触传热热阻大的问题。 软铁 11受约束可沿集热元件轴心线方向作前 后移动并通过传动钢丝 14与传热直筒 18传动连接, 软铁 11受弹簧 16推力作用被推离永 磁钢 10或者具有被推离永磁钢 10的趋势。 传热直筒 18可用厚度 0. 22毫米的板材制作, 传热直筒 18带有一段扩径段 19, 扩径段 19的外端部 20的形状与罩玻璃管 2尾端内表面 的相吻合。 传热直筒 18与热管 1 热端底端处采用一维移动副结构低热阻连接, 传热直筒 18可以沿热管 1轴心线方向作伸出缩回前后移动。
罩玻璃管 2尾端内侧与热管 1热端底端处之间可采用一个卡簧包括钢丝卡簧和四爪卡簧 高热阻连接实现罩玻璃管 2与热管 1之间的定位。 或者还可以用一个与罩玻璃管 2尾端内 表面形状相吻合的散热贴片, 并在所述散热贴片与热管 1之间采用钢丝卡簧高热阻连接。 钢丝卡簧的内容可以参照现有技术。
实施例 2的工作原理: 当嵌入安装有所述减压空晒保护器的集热元件正常倾斜布置且不 处于空晒状态时,与热管 1低热阻连接的热敏永磁钢 10温度达不到居里点温度,热敏永磁 钢 10吸住软铁 11将传热直筒 18往左拉,使传热直筒 18外端部 20不接触罩玻璃管 2尾端, 空晒保护器处于关闭绝热状态。 集热元件可正常集热。
当集热元件处于空晒状态时, 热敏永磁钢 10温度升高超过居里点温度磁力消失, 弹簧 16将软铁 11和传热直筒 18推向右面, 使传热直筒 18外端部 20伸出传热连接罩玻璃管 2 尾端, 空晒保护器处于开启导热状态。 热管 1热端的热能通过空晒保护器源源不断散失到 环境。 热管 1内部的蒸汽在压差作用下流向底端处凝结并集聚于底端处, 钳制热管 1内部 压力始终处于低位, 保证热管内部压力低位实现集热元件的空晒保护。
以后集热元件脱离空晒状态, 热敏永磁钢 10温度降低低于居里点温度时磁力恢复并吸 引软铁 11使传热直筒 18缩回不传热连接罩玻璃管 2尾端,空晒保护器处于关闭绝热状态, 集热元件又可正常工作。
实施例 2对于罩玻璃管 2直径 70毫米的金属热管真空集热元件, 不采用在罩玻璃管尾 端内壁设置散热贴片和不在热管 1热端与传热直筒 18之间设置热汇,所述空晒保护器的散 热功率也可以达到 10瓦以上。
将热敏永磁钢驱动器件改为双金属片热力驱动器件、 或者改为记忆合金驱动器件、 或者 改为膜盒驱动器件也可以实现空晒时使传热直筒 18外端部 20伸出传热连接罩玻璃管 2尾 端, 将工质锁定在热管 1热端底端处实现热管 1内部减压的空晒保护机制。
实施例 3
图 5和图 6中, 在一支全玻璃真空集热元件尾端的真空隔热层内, 设置两个由热敏永磁 钢 10、 软铁热翅 21和连接卡簧组成的热翅可控传热通道, 组成一支带热翅减压空晒保护 器的真空集热元件。 软铁热翅 21通过在热汇 5上冲制翻边而成, 其活动边 22比固定边 23 短一些。 热汇 5上还制作有直角形连接卡簧装配槽以方便装配。 热汇 5用薄铁板卷成筒形 包裹低热阻连接内玻璃管 3尾端。热敏永磁钢 10设置于软铁热翅 21的活动边 22下方并被 软铁热翅 21遮盖。 热敏永磁钢 10通过一片热导 12与内玻璃管 3低热阻连接。 热导 12上 和热汇 5—样也制作有直角形连接卡簧装配槽以方便采用钢丝连接卡簧装配。 为满足热敏 永磁钢 10与软铁热翅 21之间保持高热阻的要求,令热汇 5与热导 12两者不直接接触。热 汇 5与热导 12厚度 0. 22毫米。 罩玻璃管 2尾端内侧与软铁热翅 21活动边 22接触处设置 一层散热贴片 4。 散热贴片 4厚度 0. 22毫米、 宽度 40毫米。 散热贴片 4与罩玻璃管 2尾 端贴合并低热阻连接。
热汇 5、 热导 12、 散热贴片 4的制作材料包括钢板、 铝板和铜板。 连接卡簧是全玻璃真 空集热管的必须配置, 有关内容可以参照现有技术。
实施例 3的工作原理: 在全玻璃真空集热管内腔低热阻连接一支插入式热管 1构成一支 插入式热管真空集热元件, 当安装有所述减压空晒保护器的集热元件正常倾斜布置且不处 于空晒状态时, 太阳光在内玻璃管 3吸收膜上转换为热能, 热能通过内玻璃管 3传递给插 入式热管 1内部工质使之汽化。 由于插入式热管 1冷端温度低于 95°C, 工质蒸汽在压差作 用下流向冷端放热并凝结成液体在重力作用下返回热端并再度受热汽化……如此周而复始 实现两相流换热循环。 此时, 通过热导 12与内玻璃管 3低热阻连接的热敏永磁钢 10温度 达不到居里点温度,软铁热翅 21被热敏永磁钢 10的磁性吸住活动边 22往下弯,不接触散 热贴片 4 (如图 6中虚线所示)。 可控传热通道处于关闭绝热状态。 集热元件正常集热。
当集热元件处于空晒状态时, 热敏永磁钢 10温度升高超过居里点温度磁力消失, 软铁 热翅 21在自身弹性力作用下上扬活动边 22传热连接散热贴片 4 (如图 6中实线所示), 可 控传热通道处于开启导热状态, 通过内玻璃管 3尾端管壁将所述插入式热管 1热端的热能 通过空晒保护器源源不断散失到环境。 插入式热管 1内部的蒸汽在压差作用下流向底端处 凝结并集聚于底端处, 钳制插入式热管 1内部蒸汽压力始终处于低位, 保证所述插入式热 管集热元件不会炸管实现集热元件的空晒保护。
以后集热元件脱离空晒状态, 热敏永磁钢 10温度降低低于居里点温度磁力恢复并吸引 软铁热翅 21下弯使其活动边 22不传热连接散热贴片 4,可控传热通道处于关闭绝热状态, 集热元件又可正常工作。
将热敏永磁钢驱动器件改为双金属片热力驱动器件、 或者改为记忆合金驱动器件、 或者 改为膜盒驱动器件也可以实现空晒时使软铁热翅 21上扬传热连接罩玻璃管,将工质锁定在 插入式热管 1热端底端处实现插入式热管 1内部减压的空晒保护机制。
实施例 4
图 7中, 在一支全玻璃真空集热元件尾端的真空隔热层内, 设置一个嵌入式杠杆热翅减 压空晒保护器, 包括两个由热敏永磁钢 10、 软铁热翅 21、 传动杠杆 24和连接卡簧组成的 可控传热通道, 组成一支带嵌入式杠杆热翅减压空晒保护器的真空集热元件。 软铁热翅 21 通过在热汇 5上冲制翻边而成, 其活动边 22比固定边 23短一些。 热汇 5上还制作有直角 形连接卡簧装配槽以方便装配。热汇 5用薄铁板卷成筒形包裹低热阻连接内玻璃管 3尾端。 传动杠杆 24—端固定,其中段处于热敏永磁钢 10上方,其另一端自由端 25伸进软铁热翅 21的活动边 22下方。热敏永磁钢 10设置于软铁热翅 21的活动边 22下方并被软铁热翅 21 遮盖。热敏永磁钢 10通过一片热导 12与内玻璃管 3低热阻连接。热导 12上和热汇 5—样 也制作有直角形连接卡簧装配槽以方便装配。 为满足热敏永磁钢 10与软铁热翅 21之间保 持高热阻的要求, 令热汇 5与热导 12两者不直接接触。 热汇 5厚度 0. 22毫米。 罩玻璃管 2尾端内侧与软铁热翅 21活动边 22接触处设置一层散热贴片 4。 散热贴片 4厚度 0. 22毫 米、 宽度 40毫米。 散热贴片 4与罩玻璃管 2尾端贴合并低热阻连接。
热汇 5、 热导 12、 散热贴片 4的制作材料包括钢板、 铝板和铜板。 连接卡簧是现有技术 制造的全玻璃真空集热管的必须配置, 有关内容可以参照现有技术。
实施例 4的工作原理: 在全玻璃真空集热管内腔低热阻连接一支插入式热管 1构成一支 插入式热管真空集热元件, 当安装有所述减压空晒保护器的集热元件正常倾斜布置且不处 于空晒状态时., 太阳光在内玻璃管 3吸收膜上转换为热能, 热能通过内玻璃管 3传递给插 入式热管 1内部工质使之汽化。 由于插入式热管 1冷端温度低于 95 °C, 工质蒸汽在压差作 用下流向冷端放热并凝结成液体在重力作用下返回热端并再度受热汽化……如此周而复始 实现两相流换热循环。 此时, 通过热导 12与内玻璃管 3低热阻连接的热敏永磁钢 10温度 达不到居里点温度, 传动杠杆 24被热敏永磁钢 10吸引下降使得软铁热翅 21活动边 22保 持下弯状态不传热连接罩玻璃管 2内侧的散热贴片 4, 可控传热通道处于关闭绝热状态。 集热元件正常集热。
当集热元件处于空晒状态时, 热敏永磁钢 10温度升高超过居里点温度磁力消失, 传动 杠杆 24靠自身弹性力作用上升推动软铁热翅 21活动边 22上扬传热连接罩玻璃管 2内侧的 散热贴片 4 (如图中虚线所示位置), 可控传热通道处于开启导热状态, 通过内玻璃管 3尾 端管壁将所述插入式热管 1热端的热能通过空晒保护器源源不断散失到环境。 插入式热管 1 内部的蒸汽在压差作用下流向底端处凝结并集聚于底端处, 钳制插入式热管 1 内部蒸汽 压力始终处于低位, 保证所述插入式热管集热元件不会炸管实现集热元件的空晒保护。
以后集热元件脱离空晒状态, 热敏永磁钢 10温度降低低于居里点温度磁力恢复并吸引 传动杠杆 24下降使得软铁热翅 21活动边 22保持下弯状态不传热连接罩玻璃管 2内侧的散 热贴片 4, 可控传热通道处于关闭绝热状态, 集热元件又可正常工作。
实施例 5
图 8中, 在一支折弯偏心热管真空集热元件尾端的真空隔热层内设置一个空晒保护器, 组成一支减压空晒保护偏心热管真空集热元件。 折弯偏心热管真空集热元件由一支用外直 段 27、 偏心直段 28、 内直段 29、 外直过渡段 30和内直过渡段 31构成的弯内玻璃管 26, 与一支一端圆封的罩玻璃管 2嵌套布置封接制成。外直段 27的腰部与罩玻璃管 2的缩颈端 口封接,伸出部分作为热管 1冷端。弯内玻璃管 26内部抽真空灌装工质封离制成一支折弯 的玻璃壳体热管 1。 弯内玻璃管 26的偏心直段 5即热管 1热端的外表面制作有吸收膜; 约 180度圆周角范围的罩玻璃管 2内表面磁控溅射铝膜制成半圆镜面 32 ; 偏心直段 5深入罩 玻璃管 2内部;带吸收膜的偏心直段 5与半圆镜面 32聚光连接。空晒保护器由一个与热管 1热端传热连接的热敏永磁钢驱动器件和与热敏永磁钢驱动器件传动连接的传热直筒 18组 成。 热敏永磁钢驱动器件包括一块热敏永磁钢 10和一块软铁 1 1 ; 热敏永磁钢 10通过一块 热导 12与热管 1热端低热阻连接; 需要时, 在热敏永磁钢 10上面设置遮光板防止太阳光 直射在处于真空隔热层中的热敏永磁钢 10使其误动作。热导 12解决了热敏永磁钢 10与热 管 1之间接触传热热阻大的问题。软铁 11受约束可沿集热元件轴心线方向作前后移动并通 过传动钢丝 14与传热直筒 18传动连接。软铁 1 1受弹簧 16推力作用被推离永磁钢 10或者 具有被推离永磁钢 10的趋势。传热直筒 18与热管 1热端底端处即内直段 29采用一维移动 副结构低热阻连接。传热直筒 18可以沿集热元件轴心线方向作伸出缩回前后移动;传热直 筒 18含有一段扩径段 19, 扩径段 19的外端部 20的形状与罩玻璃管 2尾端内表面的相吻 合。 传热直筒 18可用薄板制作。
聚光连接是指带吸收膜的偏心直段 5以其轴心线沿半圆镜面 32的对称平面从上向下移 动靠近半圆镜面 32但不与半圆镜面 32接触以免形成热桥造成热能损失。 从图 1可见: 进 入罩玻璃管 2的阳光, 中间部分直接在偏心直段 5的吸收膜上转化成热能; 两侧部分中的 绝大部分经过一次或者多次半圆镜面 32 的反射到达吸收膜上转化成热能。 从偏心直段 5 与罩玻璃管 2之间的间隙穿过的阳光有可能经过半圆镜面 32的反射而穿出罩玻璃管 2逃逸 掉。 偏心直段 5与罩玻璃管 2之间的间隙宽度约为 2毫米。
在热管 1热端内部底端设置短筒吸液芯 33。 短筒吸液芯 33采用玻璃纤维制作; 长度 50 毫米。 短筒吸液芯 33沿热管 1内壁圆周向布置, 离热管底端的间隔距离 45毫米, 用卡簧 压贴于热管 1内壁。
实施例 5的工作原理: 当嵌入安装有所述减压空晒保护器的集热元件正常倾斜布置且不 处于空晒状态时,与热管 1低热阻连接的热敏永磁钢 10温度达不到居里点温度,热敏永磁 钢 10吸住软铁 1 1将传热直筒 18往左拉, 使传热直筒 18不接触罩玻璃管 2尾端, 空晒保 护器处于关闭绝热状态。 集热元件可正常集热。
当集热元件处于空晒状态时, 热敏永磁钢 10温度升高超过居里点温度磁力消失, 弹簧 16将软铁 11和传热直筒 18推向右面,使传热直筒 18的外端部 20伸出传热连接罩玻璃管 2尾端, 空晒保护器处于幵启导热状态。 热管 1热端的热能通过空晒保护器源源不断散失 到环境。 热管 1内部的蒸汽在压差作用下流向
底端处凝结并集聚于底端处, 钳制热管 1内部压力始终处于低位, 保证热管 1内部压力 低位实现集热元件的空晒保护。
以后集热元件脱离空晒状态, 热敏永磁钢 10温度降低低于居里点温度磁力恢复并吸引 软铁 11使传热直筒 18缩回不传热连接罩玻璃管 2尾端, 空晒保护器处于关闭绝热状态, 集热元件又可正常工作。
当集热元件作顺时针旋转约 45度倾斜安装时, 热管 1能够依靠重力实现两相流循环换 热, 将太阳热能源源不断地通过冷端传递给加热负荷。 热管 1工作时, 因为短筒吸液芯 33 可以不持有工质, 所以, 工质充装量不增加, 有利于限制空晒时热管 1内部饱和蒸汽压处 于低水平。
短筒吸液芯 33能够在热管 1不工作时大量吸持液态工质,提高原光管热管集聚于热管 1 底部的工质的位置。 短筒吸液芯 33离热管 1底端间隔距离 45毫米可使热管 1启动时从上 面和下面同时吸收太阳热能加速启动。
热管 1正常工作时允许其下面数十毫米段干涸或者部分干涸所以短筒吸液芯 33在热管 1 工作时常常不持有工质。 太阳落山时, 热管 1冷端内表面的凝结水蒸发, 包括这部分工质 在内的所有工质全部或者绝大部分工质被短筒吸液芯 33吸持。
对于罩玻璃管 2直径 70的真空集热元件, 不采用在罩玻璃管 2尾端内壁设置散热贴片, 所述空晒保护器的散热功率也可以达到 10瓦以上。
将热敏永磁钢驱动器件改为双金属片热力驱动器件、 或者改为记忆合金驱动器件、 或者 改为膜盒驱动器件也可以实现空晒时使传热直筒 18 伸出传热连接, 将工质锁定在热管 1 热端底端处实现热管 1内部减压的空晒保护机制。
实施例 6
图 9中, 在一支翅板热管真空集热元件尾端的真空隔热层内, 设置一个嵌入式直筒热管 真空集热元件助推减压空晒保护器, 组成一支助推减压空晒保护翅板热管真空集热元件。 翅板热管真空集热元件由罩玻璃管 2和套装有翅板 34的内玻璃管 3同心嵌套布置封接制 成; 内玻璃管 3自封接处向前伸出并且内部抽真空灌装工质后封离制成一支热管; 翅板 34 表面制作有吸收膜。空晒保护器由热敏永磁钢助推驱动器件和传热直筒 18组成。热敏永磁 钢助推驱动器件包括一块热敏永磁钢 10、 一块软铁 11和一个双金属片助推部件 35; 热敏 永磁钢 10通过热导 12与热管 1热端低热阻连接。需要时,在热敏永磁钢 10上面设置遮光 板防止太阳光直射在处于真空隔热层中的热敏永磁钢 10使其误动作。热导解决了热敏永磁 钢 10与热管 1之间接触传热热阻大的问题。 软铁 11受约束可沿集热元件轴心线方向作前 后移动并通过传动钢丝 14与传热直筒 18传动连接, 软铁 1 1受弹簧 16推力作用被推离永 磁钢 10或者具有被推离永磁钢 10的趋势。 传热直筒 18用薄板制作。 软铁 11外侧中间作 为与双金属片助推部件 35自由端的连接界面。 双金属片助推部件 35固定端固定。 传热直 筒 18带有一段扩径段 19, 扩径段 19的外端部 20的形状与罩玻璃管 2尾端内表面的相吻 合。 传热直筒 18与热管 1热端底端处采用一维移动副结构低热阻连接, 传热直筒 18可以 沿热管 1轴心线方向作伸出缩回前后移动。
实施例 6的工作原理: 当嵌入安装有所述减压空晒保护器的金属热管真空集热元件正常 倾斜布置且不处于空晒状态时, 太阳光在翅板热管吸收膜上转换为热能, 热能传递给热管 内部工质使之汽化。 由于热管 1冷端温度低于 95°C, 工质蒸汽在压差作用下流向冷端放热 并凝结成液体在重力作用下返回热端并再度受热汽化……如此周而复始实现两相流换热循 环。
此时, 通过热导 12与热管 1低热阻连接的热敏永磁钢 10温度达不到居里点温度, 热敏 永磁钢 10吸住软铁 11将传热直筒 18往左拉,使传热直筒 18不传热连接罩玻璃管 2尾部, 空晒保护器处于关闭绝热状态。 集热元件正常集热。
当集热元件处于空晒状态时, 热敏永磁钢 10温度升高超过居里点温度磁力消失, 弹簧 16将软铁 11和传热直筒 18推向右面,使传热直筒 18的外端部 20伸出传热连接罩玻璃管 2尾部, 空晒保护器处于开启导热状态。 热管 1热端的热能通过空晒保护器源源不断散失 到环境。 热管 1内部的蒸汽在压差作用下流向底端处凝结并集聚于底端处, 钳制热管 1内 部压力始终处于低位, 实现集热元件的空晒保护。
集热元件处于空晒状态时, 双金属片助推部件 35 的温度高其形状不向左弯, 保证软铁 11受拉右移。
以后集热元件脱离空晒状态, 热敏永磁钢 10温度降低低于居里点温度磁力恢复并吸引 软铁 11使传热直筒 18缩回不传热连接罩玻璃管 2尾部, 空晒保护器处于关闭绝热状态, 集热元件又可正常工作。
双金属片助推部件 35在热敏永磁钢 10从失磁状态向有磁状态转变的降温过程中, 产生 形变其自由端向左弯曲推动软铁 11向左移动 (如图中虚线所示)。 由于双金属片助推部件 35的存在, 克服了相关部件的精度误差使软铁 11离热敏永磁钢 10过远, 热敏永磁钢 10 吸力不够空晒保护器不能正常工作的问题, 使热敏永磁钢驱动器件工作更为迅速可靠。

Claims

权利要求书
1.真空重力热管集热元件减压空晒保护方法:在真空集热元件尾端的真空隔热层内建立一 个跨越真空隔热层的热力空晒保护传热通道,空晒时通过自动开通所述热力空晒保护传 热通道将真空集热元件内玻璃管尾端或者热管底端处的热能通过罩玻璃管尾端处传给 环境,使热管内部的液态工质尽可能多地集聚于热管底端处来阻断热管内部的两相流换 热循环, 以有效降低热管内部的蒸汽压力, 达到预防热管失效炸管的目的。
2.按照权利要求 1所述方法制造的减压空晒保护重力热管真空集热元件,其特征是集热元 件尾端的真空隔热层含有一个以上可控传热通道或者空晒保护器,所述可控传热通道或 者空晒保护器包括带有与集热元件热管热端或者内玻璃管传热连接界面的热力驱动器 件;所述可控传热通道或者空晒保护器具有两种稳定状态: 关闭绝热状态和开启导热状 态。
3.如权利要求 2所述的减压空晒保护重力热管真空集热元件,其特征是所述可控传热通道 为一个以上中片可控传热通道,包括散热贴片、热汇和与热力驱动器件传动连接或者与 热力驱动器件一体制造的中片;所述散热贴片带有与罩玻璃管圆封端内表面的低热阻连 接界面并带有与中片的传热界面。
4.如权利要求 3所述的减压空晒保护重力热管真空集热元件,其特征是所述散热贴片外表 面的形状与罩玻璃管圆封端内表面的形状相吻合并含有向内翻边冲孔;所述热汇含有与 内玻璃管或者热管热端的低热阻连接界面并含有若干向外翻边冲孔;散热贴片、热汇之 间用钢丝卡簧高热阻连接为一体; 所述热力驱动器件包括一块热敏永磁钢和一块软铁; 软铁受约束可沿集热元件轴心线方向作前后移动;软铁通过传动钢丝与中片一端传动连 接; 中片含有楔形传热界面; 中片的另一端通过弹簧与弹簧连接件连接。
5. 如权利要求 4 所述的减压空晒保护重力热管真空集热元件, 其特征是带有与集热元件 热管热端或者内玻璃管传热连接界面的助推热力驱动器件,所述助推热力驱动器件包括 一个热敏永磁钢软铁驱动对和一个双金属片助推部件;热敏永磁钢软铁驱动对包括一块 热敏永磁钢和一块软铁; 热敏永磁钢通过一块热导与热管热端低热阻连接; 软铁受约束 可作沿集热元件轴心线方向的前后移动并通过传动钢丝与中片传动连接;所述热敏永磁 钢软铁驱动对含有与双金属片助推部件的连接界面;所述双金属片助推部件在热敏永磁 钢从失磁状态向有磁状态转变的降温过程中,产生形变帮助推动热敏永磁钢软铁驱动对 吸合。
6.如权利要求 2所述的减压空晒保护重力热管真空集热元件,其特征是所述可控传热通道 包括与热力驱动器件传动连接或者与热力驱动器件一体制造的传热直筒,传热直筒与内 玻璃管尾端或者热管热端底端处直接或者通过一个热汇采用一维移动副低热阻连接,传 热直筒可以沿集热元件轴心线方向作前后移动;传热直筒的外端部形状与罩玻璃管尾端 内表面的相吻合。
7.如权利要求 6所述的减压空晒保护重力热管真空集热元件,其特征是包括一块热敏永磁 钢和一块软铁;热敏永磁钢通过热导与热管热端低热阻连接; 软铁受约束可沿集热元件 轴心线方向作前后移动;传热直筒带有一段扩径段,扩径段外端部的形状与罩玻璃管尾 端内表面的相吻合; 罩玻璃管尾端内侧与热管热端底端处之间釆用一个卡簧高热阻连 接;或者用一个与罩玻璃管尾端内表面形状相吻合的散热贴片,并在所述散热贴片与热 管之间采用钢丝卡簧高热阻连接。
8.如权利要求 7所述的减压空晒保护重力热管真空集热元件,其特征是包括带有与集热元 件热管热端或者内玻璃管传热连接界面的助推热力驱动器件,所述助推热力驱动器件包 括一个热敏永磁钢软铁驱动对和一个双金属片助推部件;热敏永磁钢软铁驱动对包括一 块热敏永磁钢和一块软铁;热敏永磁钢通过一块热导与热管热端低热阻连接;软铁受约 束可作沿集热元件轴心线方向的前后移动并通过传动钢丝与传热直筒传动连接;所述热 敏永磁钢软铁驱动对含有与双金属片助推部件的连接界面;所述双金属片助推部件在热 敏永磁钢从失磁状态向有磁状态转变的降温过程中,产生形变帮助推动热敏永磁钢软铁 驱动对吸合。
9.如权利要求 2所述的减压空晒保护重力热管真空集热元件,其特征是包括一个以上热翅 可控传热通道, 所述可控传热通道包括热敏永磁钢、软铁热翅和连接卡簧; 所述可控传 热通道包括热敏永磁钢、软铁热翅和连接卡簧,软铁热翅的固定边低热阻连接内玻璃管 尾端或者热管热端底端处; 热敏永磁钢设置于软铁热翅的活动边下方。
10. 如权利要求 2所述的减压空晒保护重力热管真空集热元件, 其特征是包括一个以上杠 杆可控传热通道,所述可控传热通道包括热敏永磁钢、软铁热翅、传动杠杆和连接卡簧; 软铁热翅的固定边低热阻连接内玻璃管尾端或者热管热端底端处;热敏永磁钢设置于软 铁热翅的活动边下方; 传动杠杆一端固定, 其中段处于热敏永磁钢上方, 其另一端自由 端伸进软铁热翅的活动边下方。
11 .如权利要求 9和 10所述的减压空晒保护重力热管真空集热元件,其特征是所述软铁热 翅通过在热汇上冲制翻边而成; 热汇用薄铁板卷成筒形包裹低热阻连接内玻璃管尾端; 热敏永磁钢通过热导与内玻璃管低热阻连接,热汇和热导含有连接卡簧装配槽;罩玻璃 管尾端内侧与软铁热翅活动边接触处含有一层散热贴片;散热贴片与罩玻璃管尾端贴合 低热阻连接。
PCT/CN2014/000425 2013-04-22 2014-04-21 真空重力热管集热元件减压空晒保护方法及产品 WO2014173178A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310141763.3 2013-04-22
CN201310141763 2013-04-22

Publications (2)

Publication Number Publication Date
WO2014173178A2 true WO2014173178A2 (zh) 2014-10-30
WO2014173178A3 WO2014173178A3 (zh) 2015-01-08

Family

ID=51308833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000425 WO2014173178A2 (zh) 2013-04-22 2014-04-21 真空重力热管集热元件减压空晒保护方法及产品

Country Status (2)

Country Link
CN (1) CN103994589B (zh)
WO (1) WO2014173178A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778942A (zh) * 2019-11-08 2020-02-11 徐永丽 一种基于高温消磁原理的防虫散热led路灯
CN111219888A (zh) * 2020-01-09 2020-06-02 蒋凤歌 一种具有集热管自除垢功能的太阳能热水器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2527924Y (zh) * 2002-02-25 2002-12-25 杨雄声 带有导热片的全玻璃太阳能真空集热管
CN201352017Y (zh) * 2008-11-05 2009-11-25 徐利明 一种罩玻璃输出热能的太阳集热装置
CN101660848B (zh) * 2009-08-31 2011-02-16 王来雨 一种直通式太阳能真空集热管
CN102003816B (zh) * 2009-09-03 2012-09-26 陈霞 抗空晒全玻璃真空热管集热元件
CN102003806B (zh) * 2009-09-03 2012-11-28 邱玉燕 温控真空集热元件罩玻管散热工作点调整方法及器件
CN102052776B (zh) * 2009-11-11 2014-08-06 邱丽琴 罩玻璃管放热真空循环集热元件太阳集热装置
CN102052774B (zh) * 2009-11-11 2016-08-17 邱醒 内凹放热界面真空循环集热元件太阳集热装置
CN201672719U (zh) * 2010-04-02 2010-12-15 邱旭堂 集热换热一体真空翅板太阳热利用元件
CN103225891B (zh) * 2013-04-22 2016-03-09 林根弟 助推减压空晒保护翅板热管真空太阳能集热装置
CN103245111B (zh) * 2013-04-22 2015-10-07 林建平 带热翅减压空晒保护器的真空集热元件
CN103234289B (zh) * 2013-04-22 2014-12-03 赵钦舫 带杠杆减压空晒保护器的真空集热元件
CN103225896B (zh) * 2013-04-22 2014-11-12 方彩琴 嵌入式助推真空热管集热元件减压空晒保护器
CN103225885B (zh) * 2013-04-22 2016-02-24 徐秀萍 减压空晒保护翅板热管真空太阳能集热装置

Also Published As

Publication number Publication date
CN103994589B (zh) 2018-03-16
WO2014173178A3 (zh) 2015-01-08
CN103994589A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2014173178A2 (zh) 真空重力热管集热元件减压空晒保护方法及产品
CN203190688U (zh) 嵌入式助推真空热管集热元件减压空晒保护器
CN203396116U (zh) 嵌入式助推直筒真空热管集热元件减压空晒保护器
CN103225896B (zh) 嵌入式助推真空热管集热元件减压空晒保护器
CN203190687U (zh) 助推减压空晒保护翅板热管真空集热元件
CN203240772U (zh) 工质高位助推减压空晒保护全玻璃真空热管集热元件
CN203240807U (zh) 助推减压空晒保护金属热管真空集热元件
CN203190666U (zh) 减压空晒保护全玻璃真空热管集热元件
CN203274318U (zh) 减压空晒保护插入式热管真空集热元件
CN103225921B (zh) 嵌入式助推直筒真空热管集热元件减压空晒保护器
CN103234289B (zh) 带杠杆减压空晒保护器的真空集热元件
CN103245113B (zh) 嵌入式助推中片真空热管集热元件减压空晒保护器
CN203190685U (zh) 减压空晒保护插入式热管太阳能真空集热装置
CN203190686U (zh) 嵌入式杠杆真空热管集热元件减压空晒保护器
CN103225885B (zh) 减压空晒保护翅板热管真空太阳能集热装置
CN203190691U (zh) 减压空晒保护金属热管真空集热元件
CN103245111B (zh) 带热翅减压空晒保护器的真空集热元件
CN103225893B (zh) 助推减压空晒保护金属热管真空集热元件
CN103234283B (zh) 嵌入式直筒真空热管集热元件减压空晒保护器
CN203190689U (zh) 嵌入式真空热管集热元件减压空晒保护器
CN103225903B (zh) 减压空晒保护插入式热管真空集热元件
CN203240809U (zh) 减压空晒保护真空热管集热元件
CN103234284B (zh) 助推减压空晒保护翅板热管真空集热元件
CN103225920B (zh) 工质高位助推减压空晒保护全玻璃真空热管集热元件
CN103225907B (zh) 减压空晒保护金属热管真空集热元件

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14787985

Country of ref document: EP

Kind code of ref document: A2