WO2014172931A1 - 基于碳纳米管的x射线管及移动ct扫描仪 - Google Patents

基于碳纳米管的x射线管及移动ct扫描仪 Download PDF

Info

Publication number
WO2014172931A1
WO2014172931A1 PCT/CN2013/075995 CN2013075995W WO2014172931A1 WO 2014172931 A1 WO2014172931 A1 WO 2014172931A1 CN 2013075995 W CN2013075995 W CN 2013075995W WO 2014172931 A1 WO2014172931 A1 WO 2014172931A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
ray tube
anode
cathode
tube according
Prior art date
Application number
PCT/CN2013/075995
Other languages
English (en)
French (fr)
Inventor
徐如祥
代秋声
高枫
张涛
Original Assignee
中国人民解放军北京军区总医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49310555&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014172931(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中国人民解放军北京军区总医院 filed Critical 中国人民解放军北京军区总医院
Publication of WO2014172931A1 publication Critical patent/WO2014172931A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a cold cathode X-ray tube, and more particularly to a carbon nanotube-based X-ray tube and a mobile CT scanner.
  • the current medical X-ray source mainly uses a tungsten (W) hot filament X-ray tube.
  • the basic principle is: energizing the filament to heat, when the filament temperature reaches 1000 degrees Celsius, it emits hot electrons, and the thermoelectric electrons converge under the electric field force to accelerate the impact on the anode, thereby generating X-rays.
  • the mode in which the heat emission produces electrons results in slow start-up and short life of such X-ray sources.
  • the cumulative exposure time of an X-ray tube that rotates the anode is typically only a few tens of hours, and the cumulative exposure time of an X-ray tube with a fixed anode is approximately 2000 hours.
  • the traditional X-ray source When continuous pulse mode scanning is required, the traditional X-ray source will not be able to turn off the electron source. It can only increase the X-ray source by adjusting the bias voltage, suppressing the electron from striking the anode target, or setting the gate at the ray exit. Complexity.
  • the heat-emitting X-ray source also causes the scanned object to receive more radiation dose.
  • the current Computed Tomography (CT) scan requires more than 1000 projection angles per week. From the perspective of image reconstruction algorithms, it does not require so many projection angles, but in order to reduce the tangential direction caused by rotational imaging. With the voxel overlap effect, the number of projection angles cannot be reduced. Because both the detector and the X-ray source are rotating during the continuous sampling of the detector. If the number of projection angles per revolution is reduced, then the unit sampling time is necessarily extended, and the projections of adjacent voxels on the concentric circles of the imaged objects overlap, resulting in motion artifacts.
  • the invention provides an X-ray tube and a mobile CT scanner based on carbon nanotubes, which can meet the application requirements of medical testing and the like.
  • the present invention provides a carbon nanotube-based X-ray tube comprising: an anode and a carbon nanotube cathode, wherein the carbon nanotube cathode bombards the anode by electrons generated by field emission under an applied electric field to generate X-rays.
  • the present invention also provides a mobile CT scanner comprising the above-described carbon nanotube-based X-ray tube.
  • the technical solution provided by the invention adopts carbon nanotubes to develop an X-ray tube, which can easily realize high-frequency pulse emission of an electron beam, has a fast response speed and a long service life, thereby overcoming the inherent disadvantages of the existing hot filament X-ray source. Can better meet the practical needs of medical testing and other applications.
  • FIG. 1 is a schematic structural view of a carbon nanotube-based X-ray tube according to Embodiment 1 of the present invention
  • 2 is a schematic structural diagram of a carbon nanotube-based X-ray tube according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of a radiation damage mechanism of a carbon nanotube cathode according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a mechanism for protecting a carbon nanotube cathode by a gate according to an embodiment of the present invention
  • FIG. 6 is an example of an anode model of an X-ray tube according to an embodiment of the present invention
  • FIG. 7 is an example of a curve of a maximum withstand current of an anode according to a thickness of a tungsten alloy sheet according to an embodiment of the present invention
  • 8 is a schematic structural diagram of a three-pole structure X-ray tube according to Embodiment 3 of the present invention
  • FIG. 9 is an example of an electron beam incident angle (or target tilt angle) and a photon yield according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of an imaging principle of an X-ray tube in a medical examination such as a CT scan of a head according to an embodiment of the present invention
  • FIG. 11 is a diagram showing an example of a distribution curve of a photon surface density at an angle different from a target surface when the target surface angle is 5 degrees according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a distribution curve of the number of X-photons in an exit surface perpendicular to an incident direction of an electron beam at different target tilt angles according to an embodiment of the present invention
  • Figure 13 is a graph showing an example of a relationship between a target tilt angle and an X-photon number usable for imaging according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a carbon nanotube-based X-ray tube according to Embodiment 1 of the present invention.
  • the carbon nanotube-based X-ray tube provided in this embodiment has a two-pole structure.
  • the X-ray tube includes: an anode 1 and a carbon nanotube cathode 2, and the carbon nanotube cathode 2 is applied with a first electric field. The electrons generated by the lower field emission bombard the anode 1 to generate X-rays.
  • a carbon nanotube cathode made of carbon nanotubes as a cathode material is a cold cathode compared to the prior art hot filament cathode.
  • the principle of X-ray generation by X-ray tube based on carbon nanotubes is as follows: The cathode of the carbon nanotube undergoes field emission under the action of an applied electric field to generate electrons, and the electrons accelerate the bombardment of the anode under a high voltage electric field, thereby generating X-rays.
  • Carbon nanotubes have very low field emission on-field strength (1-3 V/ ⁇ ) and high field emission current density ( ⁇ 1 A/cm 2 ), which can be used at ordinary high vacuum ( ⁇ l(T 5 Pa)
  • ⁇ 1 A/cm 2 high field emission current density
  • the response time is on the order of nanoseconds, and the continuous emission is 10,000 hours, and the beam intensity is only reduced by 5%. Therefore, the high-frequency pulse emission of the electron beam can be easily realized by developing the X-ray tube with carbon nanotubes.
  • the speed is fast and the service life is long, thereby overcoming the shortcomings inherent in the existing hot filament X-ray source, and can better meet the practical application requirements such as medical detection.
  • the X-ray tube includes: an anode 1, a carbon nanotube cathode 2, and a cathode 2 and a carbon nanotube cathode 2.
  • a first electric field is applied between the cathode 2 and the gate 3 to cause the cathode of the carbon nanotube to emit electrons
  • a second electric field is applied between the gate 3 and the anode 1 to accelerate through the gate. The electrons of 3 cause it to bombard the anode 1 to generate X-rays.
  • the present embodiment provides a carbon nanotube-based X-ray tube having a three-pole structure, that is, placing a gate between the cathode and the anode of the carbon nanotube, due to the protection of the gate, Most of the air ions can not directly hit the cathode, so the probability of the cathode being damaged by radiation can be reduced.
  • the mechanism for forming the protection of the cathode of the carbon nanotube by the gate is shown in FIG. 4 .
  • the gate may alternatively be a metal mesh gate made of a metal mesh.
  • the carbon nanotube cathode can also be treated, such as a hard radiation-resistant protective film on the surface of the carbon nanotube, that is, a surface of the carbon nanotube cathode is formed with a radiation-resistant protective film.
  • a hard radiation-resistant protective film on the surface of the carbon nanotube, that is, a surface of the carbon nanotube cathode is formed with a radiation-resistant protective film.
  • the pulse emission of the electron beam can be easily realized by controlling the electric field between the gate and the cathode, and the response speed is fast and the service life is long.
  • the number of projection angles and radiation dose of the sample can be significantly reduced, and the rotation artifact can be effectively suppressed, thereby better meeting the practical application requirements such as medical detection.
  • the carbon nanotube cathode 2 comprises: a substrate 21 and a carbon nanotube emission array 22 formed on the substrate 21, wherein the carbon nanotube emission array generates an electron beam by an external electric field, and the electron beam acts on the external electric field. The bottom is accelerated to bombard the anode to generate X-rays.
  • This scheme can significantly increase the electron beam intensity of carbon nanotube cold cathodes.
  • the results of the VI curve experiment of a cold cathode X-ray tube with a two-pole structure may be used as an example for explaining the X-ray tube.
  • the effective focus is less than 1mm.
  • the V-I curve experimental results shown in Fig. 5 were measured under a constant current state.
  • the beam intensity of the carbon nanotube-based X-ray tube of the two-pole structure provided by the embodiment of the present invention can reach 2.5 mA or more under the constant current state.
  • the current intensity is approximately linear with the square of the electric field strength:
  • is the work function of the metal surface, which determines the level of the surface barrier of the material, in units of eV;
  • the current intensity of the field emission can be significantly increased to the desired beam level.
  • the field emission of carbon nanotubes has a higher beam intensity in a pulsed state, whereby the carbon nanotube cold cathode achieves a higher electron beam intensity.
  • the anode 1 includes an anode body 11 and a target surface 12 disposed on the anode body 11.
  • the anode material By reasonably selecting the anode material, the maximum beam intensity that it is subjected to can be effectively increased.
  • the anode body is a copper anode body
  • the target surface is a tungsten alloy target surface.
  • electrons emitted from the cathode are accelerated by an electric field and then impinged on the anode target to generate X-rays, wherein more than 99% of the energy of the electron beam is converted into heat deposited in the anode, and less than about 1% of the energy is converted into X. Rays.
  • the X-ray tube can be designed by using a fixed anode scheme, that is, the anode of the carbon nanotube-based X-ray tube is a fixed anode.
  • the advantage of this scheme is that it effectively reduces the weight and volume of the X-ray source and reduces the difficulty in manufacturing and using the X-ray tube.
  • its heat capacity is limited, and it is necessary to consider how to effectively dissipate heat, otherwise the X-ray tube will not be used normally.
  • the thickness of the tungsten alloy sheet is a key parameter for anode design. If the tungsten alloy sheet is too thick and the heat is too late to pass, the tungsten alloy sheet may be melted first; if the tungsten alloy sheet is too thin and heat is immediately transferred to the copper, the copper may be melted first. In either case, it will affect the normal operation of the X-ray tube. Therefore, the thickness of the tungsten alloy sheet needs to be selected to an optimum value.
  • thermal analysis software can be used to simulate the temperature rise curve of the tungsten alloy sheet with different thicknesses under different electron beam pulse bombardment, tungsten alloy sheet and adjacent metal copper, and heat at the anode.
  • the transfer process the relationship between material thickness, electron beam intensity and temperature is studied. Since the heat generation of the electron beam in the pulse state is lower than that in the constant current state under the same intensity, in order to leave a margin for the design, we mainly simulate the parameters in the constant current state.
  • the physical model of the anode is shown in Figure 6 below:
  • the copper anode body has a geometry of 040x50mm, the target surface material is tungsten, the tungsten alloy sheet has a diameter of 01Omm, the focal diameter is 01mm, and the thickness of the tungsten alloy sheet ranges from 20 ⁇ to 2 ⁇ , X.
  • the tube voltage is 140kV and the current range is 2mA ⁇ 10mA.
  • the ANSYS12 can be used to establish an X-ray tube anode finite element model for thermal analysis calculations.
  • the temperature distribution on the anode can be calculated by changing the thickness and current intensity of the tungsten alloy sheet.
  • the electron beam is struck on the surface of tungsten with a focal diameter of 01 mm.
  • the average depth of electrons entering the surface of tungsten is 5 ⁇ m.
  • the electrons generate heat within this tiny volume.
  • the heat flow size Another method is to apply a load in a real situation, and apply a thermal load to the body, that is, the 01x0.005mm mast.
  • Td In the above formula: 2 - the amount of heat transfer or heat flow in time K ⁇ is the thermal conductivity ⁇ - temperature.
  • s is the emissivity of the object;
  • c is the blackbody emissivity, 5.67 W / (m 2 'K 4 );
  • the input power of the anode is 1050W, then i3 ⁇ 4 N).0658, the radiated power accounts for a small proportion of the input power and can be ignored.
  • the following is a simulation result that ignores radiated heat dissipation and insulation.
  • the maximum time for completing a CT scan is 30S, so the X-ray tube must be able to work continuously for 30s during scanning. Based on this, the optimal tungsten alloy sheet thickness and the maximum constant current that can be tolerated are calculated. value. It can be seen from Fig. 7 that in the case of continuous incident electrons, the maximum withstand current is 7.5 mA when the thickness of the tungsten alloy sheet is 400 to 500 ⁇ m.
  • the copper will melt first, and on the right, the tungsten alloy sheet will melt first.
  • the maximum pulse current that a tungsten alloy sheet of the same thickness can withstand at different duty cycles increases as the duty cycle decreases.
  • embodiments of the present invention will select a preferred thickness value of 0.5 mm for the tungsten alloy sheet.
  • the target surface 12 is formed with a predetermined target surface tilt angle ⁇ with respect to the reference direction, and the reference direction is perpendicular to the electron incident direction, as shown in FIG.
  • the target tilt angle ⁇ is a key parameter that directly affects the light yield, effective focus size, heat distribution and transfer of the X-ray tube.
  • Monte Carlo method can be used to simulate the calculation.
  • EGS software was used to simulate lxlO 7 140keV electrons bombarding tungsten targets with different dip angles, and the spatial distribution of light yield and photons was counted.
  • the relationship between target tilt angle and photon yield is shown in Figure 9. As can be seen from Figure 9, the smaller the target tilt angle, the higher the X-photon yield. However, the smaller the target angle, the better, which requires careful analysis.
  • the X-ray photons in the fan beam which are approximately perpendicular to the incident direction of the electron beam are finally used.
  • This part of the X-ray photo is actually contributing to the CT system (as shown in Fig. 10), so this angle The more X-rays in the range, the better.
  • the figure below shows the photon areal density at an angle different from the target surface at a target angle of 5 degrees. As can be seen from Fig. 11, as the angle of the incident surface increases, the areal density of the photons becomes smaller and smaller, and the number of X-photons that can be used for imaging becomes less and less.
  • the size d of the effective focus can be controlled by reducing the target tilt angle a. If the density of the cross-sectional area of the incident electron beam cannot be increased, it can be seen from the following equation that increasing the electron beam width h to reduce the target tilt angle a may increase the total number of imageable X-photons.
  • Fig. 13 The relationship between the target tilt angle and the number of X-photons available for imaging is shown in Fig. 13. As can be seen from Fig. 13, the smaller the target tilt angle, the more the number of X-photons available for imaging can be effectively increased by increasing the beam width. However, as can be seen from the previous figure, at this time, the total amount of incident electron beam current is significantly increased, which in turn increases the heat received by the anode, which poses a challenge to the heat dissipation of the X-ray tube.
  • the determination of the target face tilt angle of the anode requires a balance between the amount of X-photons available for imaging and the heat of incident electrons.
  • the target tilt angle is preferably 11 degrees.
  • the present invention also provides a mobile CT scanner comprising the carbon nanotube-based X-ray tube provided by any of the above embodiments, by which X-rays are generated to the human body such as the brain. The site is medically tested.
  • the carbon nanotube-based X-ray tube utilizes the field emission characteristics of the carbon nanotube to develop a cold cathode X-ray tube, which can overcome the disadvantages inherent in the existing hot filament X-ray tube.
  • the pulse emission of the electron beam can be easily realized by controlling the electric field between the gate and the cathode, and the response speed is fast and the service life is long.
  • the number of projection angles and radiation dose can be significantly reduced, and rotation artifacts can be effectively suppressed.
  • the carbon nanotube-based X-ray tube provided by the embodiment of the invention can well meet the requirements of practical applications such as medical detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种基于碳纳米管的X射线管及移动CT扫描仪,其中,基于碳纳米管的X射线管包括:阳极(1)和碳纳米管阴极(2),所述碳纳米管阴极(2)在外加电场的作用下场致发射产生的电子轰击所述阳极(1)以产生X射线。采用碳纳米管研制X射线管可以很容易实现电子束的高频脉冲发射,响应速度快,使用寿命长,由此克服了现有钨(W)热灯丝X射线源所固有的缺点,可更好满足医学检测等实际应用需求。

Description

基于碳纳米管的 X射线管及移动 CT扫描仪
本发明要求 2013年 4月 27日向中国国家知识产^ ^提交的、申请号 为 201310152609.6、名称为 "基于碳纳米管的 X射线管及移动 CT扫描仪" 的中国专利申请的优先权。
技术领域
本发明涉及一种冷阴极 X射线管,特别是涉及一种基于碳纳米管的 X 射线管及移动 CT扫描仪。
背景技术
现在的医用 X射线源主要采用钨(W )热灯丝 X射线管。 其基本原 理是: 通电给灯丝加热, 当灯丝温度达到上千摄氏度时发射热电子, 热电 子在电场力作用下汇聚、 加速撞击阳极, 从而产生 X射线。 热发射产生 电子的模式导致此类 X射线源的启动速度慢、使用寿命短。旋转阳极的 X 射线管的累积曝光时间一般只有几十个小时, 固定阳极的 X射线管的累 积曝光时间大约是 2000小时。
当要求连续脉冲方式扫描时, 传统 X射线源将不能关闭电子源, 只 能通过调整偏压,抑制电子撞击阳极靶,或者在射线出口设置才^门控的 方式, 从而增加了 X射线源的复杂程度。
除了上述缺点外, 热发射 X射线源还导致被扫描物体接受更多的辐 射剂量。 目前的螺旋计算机断层成像(Computed Tomography, CT )扫 描一周需要获取 1000多个投影角度的数据, 从图像重建算法的角度看, 并不需要这么多投影角度,但是为了降低因旋转成像引起的切向体素重叠 效应, 投影角度数不能减少。 因为在探测器连续采样过程中, 探测器和 X 射线源均在旋转。如果旋转一周的投影角度数减少,那么单位采样时间必 然延长, 则成像物体同心圆上相邻体素的投影就会重叠在一起,从而导致 运动伪影。 虽然现在的高端 CT扫描仪采用飞焦点技术来克服运动伪影, 但是这导致 X射线管的结构和控制变得非常复杂, 成本高昂。 由于现有热灯丝 X射线管存在看上述缺点, 因此迫切需要研究一种 新型的冷阴极 X射线管以代替现有热灯丝 X射线管。
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方 面的基本理解。应当理解, 这个概述并不是关于本发明的穷举性概述。 它 并不是意图确定本发明的关键或重要部分, 也不是意图限定本发明的范 围。其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。
本发明提供一种基于碳纳米管的 X射线管及移动 CT扫描仪,可满足 医学检测等应用需求。
一方面, 本发明提供了一种基于碳纳米管的 X射线管, 包括: 阳极 和碳纳米管阴极,所述碳纳米管阴极在外加电场的作用下场致发射产生的 电子轰击所述阳极以产生 X射线。
另一方面, 本发明还提供了一种移动 CT扫描仪, 包括上述基于碳纳 米管的 X射线管。
本发明提供的技术方案采用碳纳米管研制 X射线管可以很容易实现 电子束的高频脉冲发射, 响应速度快, 使用寿命长, 由此克服了现有热灯 丝 X射线源所固有的缺点, 可更好满足医学检测等实际应用需求。
通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些 以及其它的优点将更加明显。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本 说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
图 1为本发明实施例一提供的基于碳纳米管的 X射线管的结构示意 图; 图 2为本发明实施例二提供的基于碳纳米管的 X射线管的结构示意 图;
图 3为本发明实施例提供的碳纳米管阴极辐射损伤机理的示意图; 图 4为本发明实施例提供的栅极保护碳纳米管阴极的机理的示意图; 图 5为本发明实施例提供的两极结构 X射线管的 V-I曲线实验结果示 例; 图 6为本发明实施例提供的 X射线管阳极模型示例; 图 7 为本发明实施例提供的阳极最大耐受电流随钨合金片厚度变化 曲线示例; 图 8为本发明实施例三提供的三极结构 X射线管的结构示意图; 图 9为本发明实施例提供的电子束入射角(或者靶面倾角)与光子产 额的关系曲线示例;
图 10为本发明实施例提供的 X射线管在如头部 CT扫描成像等医学 检测的成像原理示意图;
图 11为本发明实施例提供的靶面倾角 5度时, 与靶面不同夹角的光 子面密度的分布曲线示例;
图 12为本发明实施例提供的不同靶面倾角下与电子束入射方向垂直 的出射面内 X光子的数量的分布曲线示例;
图 13为本发明实施例提供的靶面倾角与可用于成像的 X光子数的关 系曲线示例。
本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见 而示出的, 而且不一定是按比例绘制的。 例如, 附图中某些元件的尺寸可 能相对于其他元件放大了, 以便有助于提高对本发明实施例的理解。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行详细描述。为了清 楚和简明起见, 在说明书中并未描述实际实施方式的所有特征。 然而, 应 该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方 式的决定, 以便实现开发人员的具体目标, 例如, 符合与系统及业务相关 的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改 变。 此外, 还应该了解, 虽然开发工作有可能是非常复杂和费时的, 但对 得益于^开内容的本领域技术人员来说,这种开发工作仅仅是例行的任 务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发 明,在附图和说明中仅仅描述了与根据本发明的方案密切相关的装置结构 和 /或处理步骤, 而省略了对与本发明关系不大的、 本领域普通技术人员 已知的部件和处理的表示和描述。
图 1为本发明实施例一提供的基于碳纳米管的 X射线管的结构示意 图。 本实施例提供的基于碳纳米管的 X射线管为两极结构, 如图 1所示, 该 X射线管包括: 阳极 1和碳纳米管阴极 2,碳纳米管阴极 2在外加第一 电场的作用下场致发射产生的电子轰击阳极 1以产生 X射线。
将碳纳米管作为阴极材料制成的碳纳米管阴极,相对现有技术中的热 灯丝阴极而言是一种冷阴极。 基于碳纳米管的 X射线管产生 X射线的原 理是: 碳纳米管阴极在外加电场的作用下发生场致发射产生电子, 电子在 高压电场下加速轰击阳极, 从而产生 X射线。
碳纳米管具有很低的场发射开启电场强度 (1-3 V/μιη)和很高的场发射 电流密度(~ 1 A/cm2),可在普通高真空度(~ l(T5Pa)下长期稳定工作,响应 时间为纳秒量级, 连续发射 10000小时, 束流强度只降低 5%。 因此, 采 用碳纳米管研制 X射线管可以很容易实现电子束的高频脉冲发射, 响应速 度快, 使用寿命长, 由此克服了现有热灯丝 X射线源所固有的缺点, 可更 好满足医学检测等实际应用需求。
图 2为本发明实施例二提供的基于碳纳米管的 X射线管的结构示意 图。 本实施例提供的基于碳纳米管的 X射线管为三极结构, 如图 2所示, 该 X射线管包括: 阳极 1、碳纳米管阴极 2以及设于阳极 1和碳纳米管阴 极 2之间的栅极 3, 在阴极 2和栅极 3之间外加第一电场以使碳纳米管阴 极场致发射产生电子,在栅极 3和阳极 1之间外加第二电场以加速穿过栅 极 3的电子使之轰击阳极 1以产生 X射线。
虽然 X射线管中碳纳米管是在真空状态下工作, 但是 X射线管内无 法实现绝对真空,依然存在少量空气分子。这些空气分子被高能电子束电 离后,在管内的强电场作用下会向阴极方向加速,有可能轰击到阴极的碳 纳米管,碳纳米管的辐射损伤机理如图 3所示。 由于碳纳米管自身的物理 特点,它抗离子轰击的能力比较差,从而导致其辐射受损,影响工作寿命。 为了解决碳纳米管阴极的辐射损伤问题,本实施例提供了具有三极结 构的基于碳纳米管的 X射线管, 即在碳纳米管阴极与阳极之间放置栅极, 由于栅极的保护, 大部分空气离子无法直接撞击阴极, 因此能够降低阴极 被辐射损伤的概率, 通过栅极对碳纳米管阴极形成保护的机理如图 4 所 示。 为了对碳纳米管阴极形成更好的保护, 可选的, 栅极可为采用金属网 制成的金属网栅极。
为了对碳纳米管阴极形成更好的保护,还可对碳纳米管阴极做一些处 理,如在其表面生长一层坚硬的耐辐射保护膜, 即碳纳米管阴极表面形成 有耐辐射保护膜, 由此提高碳纳米管阴极的抗辐射损伤能力。
此外, 本实施例提供的技术方案中,通过控制栅极与阴极之间的电场 还可以很容易实现电子束的脉冲发射, 响应速度快, 使用寿命长。 当采用 脉冲曝光成像方式工作时, 可以显著降低采样的投影角度数和辐射剂量, 并能有效抑制旋转伪影, 进而更好满足医学检测等实际应用需求。
可选的,碳纳米管阴极 2包括: 基板 21以及形成于基板 21上的碳纳 米管发射阵列 22, 碳纳米管发射阵列在外加电场的作用下场致发射产生 电子束, 电子束在外加电场作用下加速轰击阳极以产生 X射线。 该方案 可显著提高碳纳米管冷阴极的电子束流强度。 为了臉证采用碳纳米管制造的冷阴极 X射线管的束流性能, 不妨以两 极结构的冷阴极 X射线管的 V-I曲线实验结果(如图 5所示)为例进行说 明,该 X射线管的有效焦点小于 lmm。图 5所示的 V-I曲线实验结果是在 恒流状态下测量得到的。 从图 5可以看出, 本发明实施例提供的两极结构的基于碳纳米管的 X 射线管的束流强度在恒流状态下可以达到 2.5mA以上。才艮据场致发射的物 理特性, 电流强度与电场强度的平方近似成线性关系:
其中, Φ是金属表面的功函数, 它决定了材料表面势垒的高低, 单位 为 eV;
B为常数, B= - 6.87xl07; d为阴阳极间距; β为场强增强因子, 与发射体几何尺寸有关, 具有长度的量纲 (cm—1), 主要由尖锥顶部的曲率半径大小决定, 另外还与尖雉高度、形状以及阳极 和栅极的相对位置有关。
通过适当增加电压, 可以显著增大场致发射的电流强度,使之达到预 期的束流水平。 另夕卜,碳纳米管的场致发射在脉冲状态下的束流强度会更 高, 由此碳纳米管冷阴极实现较高的电子束流强度。
可选的,所述阳极 1包括:阳极体 11以及设于阳极体 11上的靶面 12。 通过合理选择阳极材料, 可有效提高其承受的最大束流强度, 优选的, 所 述阳极体为铜阳极体, 所述靶面为钨合金靶面。 在 X射线管中, 阴极发射的电子经电场加速后撞击到阳极靶上产生 X 射线, 其中电子束 99%以上的能量转化成热量沉积在阳极内, 只有不到 1%左右的能量转变成 X射线。 如果电子在阳极靶上产生的大量热量得不 到及时有效的散失, 阳极靶表面的温升很快, 在很短的时间内, 阳极靶的 表面材料就会融化, 导致 X射线管损坏。 因此, 阳极靶的耐热和散热性 能直接影响了 X射线管的使用。 可选的, 可采用固定阳极方案设计 X射线管, 即基于碳纳米管的 X射 线管中阳极为固定阳极。该方案的优点是有效降低 X射线源的重量和体积, 并降低 X射线管的制造和使用难度, 但是其热容量有限, 需要考虑如何有 效散热, 否则 X射线管将无法正常使用。
X射线管的研制过程中一般涉及到以下几种材料: 表 1: 材料特性参数 材料 密 度 比 热 导 热 系 数 熔点 辐 射
(kg/m3) (J/kg K) (W/m K) 率 钨 19350 130 174 3380 0.3 铜 8960 380 401 1080 0.88 石墨 2000 710 129 3652 0.98 绝缘油 800 2000 0.2 0.46 从材料的性能可知, 钨的熔 、咼, 走导热性能差; 铜的导热性能好, 但是熔点低。 石墨虽然熔点和比热都比钨、 铜高, 但是其原子序数低, X 射线的产生效率低。 因此, 我们决定采用铜做阳极体, 以利用其良好的导 热性能, 采用钨合金片做靶面, 以利用其高熔点性能。 由于铜和钨的性能不一致, 钨合金片的厚度是阳极设计的一个关键参 数。 如果钨合金片太厚, 热量来不及传递, 则钨合金片可能先熔化; 如果 钨合金片太薄, 热量立刻传递给铜, 则铜可能先熔化。无论哪种情况出现, 都会影响到 X射线管的正常工作。因此,钨合金片的厚度需要选择最优值。 为了计算钨合金片的最优厚度值, 可使用热分析软件模拟不同厚度的 钨合金片在不同强度的电子束脉冲轰击下, 钨合金片与相邻金属铜的温度 上升曲线, 以及热量在阳极中的传递过程, 研究材料厚度、 电子束流强度 与温度之间的关系。 由于脉冲状态下电子束的热量生成比同强度下恒流状 态下的低, 为了给设计留有余量, 我们主要模拟恒流状态下的参数。 阳极的物理模型如下图 6所示: 铜阳极体的几何尺寸为 040x50mm, 靶面材料为钨, 钨合金片的直径为 01Omm, 焦点直径为 01mm, 钨合金 片的厚度范围为 20μιη~2ιηιη, X 射线管电压为 140kV, 电流范围为 2mA~10mA。 可使用 ANSYS12建立 X射线管阳极有限元模型, 进行热分析计算, 通过更改钨合金片的厚度及电流强度来计算分析阳极上的温度分布。 电子束打在钨表面上, 其焦点直径为 01mm, 电子进入钨的表层平均 深度为 5μιη, 电子是在这段微小的体积内生热。 施加热载荷的方法有两 种: 一种是简化了的施加载荷方法, 将载荷施加在面上, 即在钨的中心 01的表面上施加热载荷, 根据电压和电流可以计算出施加在面上的热流 量大小; 另外一种方法是一局实际情况施加载荷, 将热载荷施加到体上, 即 01x0.005mm的圃柱上。传热率与面积成正比,由于 ^^y^Trr^OJSSmm2, Svol =nr2+2nrh= .S 1 mm2, 如果将载荷以面载荷的方 施加, 二者误差
^ = ^ " ^ = 0.019 , 可以忽略。 为了建模求解方便, 在此使用面载荷的施 加方法, 计算公式如下:
Q _ KA(Thot - Tcold )
t d 上式中: 2——时间 内的传热量或者热流量 K ^为热传导率 τ——温度。
Α ^触面积。 d——两平面之间的 ii巨离。 在 X射线管工作中, 由于传导散热和辐射散热同时发生, 故可计算它 们对阳极温度上升的影响。 在实际使用过程中, 整个 X射线管都被放入油中绝缘、 冷却。 由于油 的导热系数很小, 因此在 X射线管工作的时候, 热量主要存储在阳极上。 扫描结束后, 经过一段时间才能冷却下来。 故在建模时, 可以先忽略油的 冷却效果。可通过热仿真来计算阳极上的温度分布,进而估算整个阳极的 辐射散热。 阳极温度分布中高温区域很小, 主要集中在电子束焦点, 绝大 部分表面的温度低于 468° ( 。 根据斯蒂芬-波尔兹曼定理:
Figure imgf000010_0001
为辐射力, 单位为 W/m2;
s为物体的辐射率; c为黑体辐射系数, 5.67W/(m2'K4);
Γ为物体表面温度。 按照电子束焦点温度 3300摄氏度, 其他表面温度为 400°C进行估算, 则阳极的辐射功率为: 辐射 =4钨 钨" K4 ^铜
=(π*Γ*Γ)* ε4¾* *(Γνΐ00)4+(2*π*Γ11+2*π*Γ1*/ι)* £«*c*(7yi00)4
=92.17(W) 阳极的输入功率为 1050W, 那么 i¾ N).0658, 辐射的功率占输入功 率的比重艮小, 可以忽略掉。 下面是忽略辐射散热和绝缘洄传矛敢热的仿真结果。 根据设计要求, 完成一次 CT扫描的最长时间为 30S, 故在扫描时, X射线管必须可以持 续工作 30s, 此为依据, 计算最优的钨合金片厚度以及可以耐受的最大恒 流电流值。 由图 7可见,在连续入射电子的情况下,当钨合金片厚度为 400~500μιη 的时候,最大耐受电流为 7.5mA。在图中曲线最高点的左边,铜将先熔化, 右边, 钨合金片将先熔化。 对于脉冲工作模式, 不同占空比下, 同一厚度的钨合金片所能够耐受 的最大脉冲电流随着占空比的减少而增加。 考虑阳极靶的使用寿命, 以及电子束的脉冲工作模式, 本发明实施例 将选用 0.5mm为钨合金片的优选厚度值。 可选的, X射线管的阳极 1中, 所述靶面 12相对参考方向形成有预定 的靶面倾角 α, 所述参考方向与电子入射方向垂直, 如图 8所示。 靶面倾角 α是一个关键参数, 它将直接影响到 X射线管的光产额、 有效 焦点尺寸、 热量分布与传递等。 为了研究靶面倾角的变化对 X光子的产额 和角度分布的影响, 可采用蒙特卡罗方法对其进行了模拟计算。 例如使用 EGS软件模拟了 lxlO7个 140keV的电子轰击不同倾角的钨靶, 统计了光产 额和光子的空间分布。 靶面倾角与光子产额的关系见图 9。 从图 9中可以 看出, 靶面倾角越小, X光子产额越高。 不过, 靶面倾角是不是越小越好, 这需要进行仔细的分析。在 CT扫描 过程中最终利用的是以电子束入射方向近似垂直的扇形束之内 X光子,这 部分 X光子才是真正为 CT成係教出贡献的(如图 10所示), 因此这个角 度范围内的 X光子越多越好。 下图为靶面倾角 5度时, 与靶面不同夹角的光子面密度。 从图 11中可 以看出, 随着与靶面夹角的增加, 光子的面密度越来越小, 即可用于成像 的 X光子数越来越少。 因此, 虽然靶面倾角 5度时的总光子产额很高, 但 是与靶面夹角 85度处的光子面密度却很低。 对不同靶面倾角下与电子束入射方向垂直的出射面内 X光子的数量进 行统计, 统计结果见图 12。 从图 12中可以看出, 随着靶面倾角的增加, 出射面的光子数随之增加,但是在 45度左右达到最大值,然后便开始减小。 在 CT成像中, 影响断层图啄分 平 是 X射线管的有效焦点, 而不 是实际焦点。 假设电子束平行入射, 则实际焦点尺寸 L与投影后的有效焦 点尺寸 d之间的关系如下:
d=L sina 从上式可以看出, 如果实际焦点的尺寸 L 4艮难减小时, 可以通过减小 靶面倾角 a来控制有效焦点的尺寸 d。 如果入射的电子束单位横截面积的密度无法提高, 根据下式可知, 增 大电子束流宽度 h减小靶面倾角 a有可能提高可成像 X光子的总数。
d=h tga 保持有效焦点尺寸和电子束单位横截面积的密度不变, 靶面倾角与可 用于成像的 X光子数之间的关系曲线见图 13。 从图 13中可以看出, 靶面倾角越小, 通过增加电子束流宽度可以有效 增加可用于成像的 X光子数量。 不过结合前图可知, 此时, 入射的电子束 流的总量显著增加, 进而增加了阳极所接受的热量, 这将给 X射线管的散 热提出了挑战。 因此, 阳极的靶面倾角的确定需要在可用于成像的 X光子 数量与入射电子的热量之间寻求一种平衡。 经过综合考虑, 靶面倾角优选 为 11度。 此外,本发明还提供了一种移动 CT扫描仪, 该移动 CT扫描仪包括上 述任一实施例提供的基于碳纳米管的 X射线管, 通过该 X射线管产生 X 射线以对脑部等人体部位进行医学检测。 总之, 本发明实施例提供的技术方案中, 基于碳纳米管的 X射线管利 用碳纳米管的场发射特性研制冷阴极 X射线管,可以克服现有热灯丝 X射 线管所固有的缺点。 通过控制栅极与阴极之间的电场可以很容易实现电子 束的脉沖发射, 响应速度快, 使用寿命长。 当采用脉冲曝光成像方式工作 时,可以显著降低采样的投影角度数和辐射剂量,并能有效抑制旋转伪影。 本发明实施例提供的基于碳纳米管的 X射线管可很好满足医学检测等实际 应用的需求。
在本发明上述各实施例中, 实施例的序号仅仅便于描述, 不代表实施 例的优劣。对各个实施例的描述都各有侧重, 某个实施例中没有详述的部 分, 可以参见其他实施例的相关描述。
在本发明的装置和方法等实施例中,显然,各部件或各步骤是可以分 解、 组合和 /或分解后重新组合的。 这些分解和 /或重新组合应视为本发明 替换页 (细则第 26条) 的等效方案。 同时, 在上面对本发明具体实施例的描述中, 针对一种实施 方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多个其它 实施方式中使用, 与其它实施方式中的特征相组合,或替代其它实施方式 中的特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 要素、 步骤或组 件的存在, 但并不排除一个或更多个其它特征、要素、 步骤或组件的存在 或附加。
最后应说明的是: 虽然以上已经详细说明了本发明及其优点,但 当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况 下可以进行各种改变、替代和变换。 而且, 本发明的范围不仅限于说明书 所描述的过程、 设备、 手段、 方法和步骤的具体实施例。 本领域内的普通 技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在 此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现 有和将来要被开发的过程、 设备、 手段、 方法或者步骤。 因此, 所附的权 利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。

Claims

权利 要求 书
1、 一种基于碳纳米管的 X射线管, 其特征在于, 包括: 阳极和碳纳 米管阴极,所述碳纳米管阴极在外加电场的作用下场致发射产生的电子轰 击所述阳极以产生 X射线。
2、 根据权利要求 1所述的基于碳纳米管的 X射线管, 其特征在于, 所述阳极和所述碳纳米管阴极之间还设有栅极,在所述阴极和所述栅极之 间外加第一电场以使所述碳纳米管阴极场致发射产生电子,在所述栅极和 所述阳极之间外加第二电场以加速穿过所述栅极的电子使之轰击所述阳 极以产生 X射线。
3、 根据权利要求 2所述的基于碳纳米管的 X射线管, 其特征在于, 所述栅极为金属网栅极。
4、 根据权利要求 1-3任一所述的基于碳纳米管的 X射线管, 其特征 在于, 所述碳纳米管阴极包括:基板以及形成于所述基板上的碳纳米管发 射阵列。
5、 根据权利要求 1-3任一所述的基于碳纳米管的 X射线管, 其特征 在于, 所述阳极包括: 阳极体以及设于所述阳极体上的靶面, 和 /或, 所 述碳纳米管阴极表面形成有耐辐射保护膜。
6、 根据权利要求 5所述的基于碳纳米管的 X射线管, 其特征在于, 所述阳极为固定阳极; 和 /或, 所述阳极体为铜阳极体, 所述靶面为钨合 金靶面。
7、 根据权利要求 6所述的基于碳纳米管的 X射线管, 其特征在于, 所述钨合金靶面的厚度为 400-500umo
8、 根据权利要求 5所述的基于碳纳米管的 X射线管, 其特征在于, 所述靶面相对参考方向形成有预定的靶面倾角,所述参考方向与电子入射 方向垂直。
9、 根据权利要求 8所述的基于碳纳米管的 X射线管, 所述靶面倾角 为 11度。
10、 一种移动 CT扫描仪, 其特征在于, 包括如权利要求 1-9任一所 述的基于碳纳米管的 X射线管。
PCT/CN2013/075995 2013-04-27 2013-05-21 基于碳纳米管的x射线管及移动ct扫描仪 WO2014172931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310152609.6A CN103354200B (zh) 2013-04-27 2013-04-27 基于碳纳米管的x射线管及移动ct扫描仪
CN201310152609.6 2013-04-27

Publications (1)

Publication Number Publication Date
WO2014172931A1 true WO2014172931A1 (zh) 2014-10-30

Family

ID=49310555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075995 WO2014172931A1 (zh) 2013-04-27 2013-05-21 基于碳纳米管的x射线管及移动ct扫描仪

Country Status (2)

Country Link
CN (1) CN103354200B (zh)
WO (1) WO2014172931A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104434165A (zh) * 2014-12-19 2015-03-25 深圳先进技术研究院 X射线成像设备
KR101992745B1 (ko) 2019-01-24 2019-06-26 어썸레이 주식회사 구조적 안정성이 우수하고 전자 방출 효율이 향상된 이미터 및 이를 포함하는 x-선 튜브

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069438C (zh) * 1994-10-28 2001-08-08 株式会社岛津制作所 X射线管阳极及其制造方法与静止阳极x射线管
CN1479935A (zh) * 2000-10-06 2004-03-03 北卡罗来纳-查佩尔山大学 使用电子场发射阴极的x-射线发生机构
JP2005243331A (ja) * 2004-02-25 2005-09-08 Shimadzu Corp X線管
US20100260321A1 (en) * 2007-12-17 2010-10-14 Electronics And Telecommunications Research Institute Discretely addressable large-area x-ray system
CN102697517A (zh) * 2012-06-25 2012-10-03 苏州生物医学工程技术研究所 移动ct扫描仪及操作方法
CN102988076A (zh) * 2012-12-11 2013-03-27 苏州生物医学工程技术研究所 Ct扫描仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256850B2 (ja) * 2008-05-29 2013-08-07 ミツミ電機株式会社 電界効果トランジスタ及びその製造方法
CN201936839U (zh) * 2011-01-10 2011-08-17 深圳市晶金电子有限公司 照相设备及其x射线发生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069438C (zh) * 1994-10-28 2001-08-08 株式会社岛津制作所 X射线管阳极及其制造方法与静止阳极x射线管
CN1479935A (zh) * 2000-10-06 2004-03-03 北卡罗来纳-查佩尔山大学 使用电子场发射阴极的x-射线发生机构
JP2005243331A (ja) * 2004-02-25 2005-09-08 Shimadzu Corp X線管
US20100260321A1 (en) * 2007-12-17 2010-10-14 Electronics And Telecommunications Research Institute Discretely addressable large-area x-ray system
CN102697517A (zh) * 2012-06-25 2012-10-03 苏州生物医学工程技术研究所 移动ct扫描仪及操作方法
CN102988076A (zh) * 2012-12-11 2013-03-27 苏州生物医学工程技术研究所 Ct扫描仪

Also Published As

Publication number Publication date
CN103354200B (zh) 2016-04-27
CN103354200A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2014172932A1 (zh) 医学检测用x射线源及移动ct扫描仪
CN109243947B (zh) 用于x射线生成的薄片状靶
Heo et al. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters
WO2014172941A1 (zh) Ct扫描仪脉冲成像系统及其脉冲成像方法
EP1995757B1 (en) Multi x-ray generator and multi-radiography system
JP2017510052A (ja) X線管用の電子エミッタ
WO2014101283A1 (zh) 阴控多阴极分布式x射线装置及具有该装置的ct设备
JP2011222456A (ja) X線源及びx線撮影装置
JP2009059695A (ja) 三点偏向を用いた焦点スポット温度の低減
CN104409303A (zh) 基于碳纳米管/石墨烯复合阴极结构的x射线源
US20110170663A1 (en) Medical x-ray imaging system
JP2015019987A (ja) マルチ放射線発生装置及び放射線撮影システム
EP2775508A2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
KR20100071564A (ko) 엑스선 튜브
WO2014172942A1 (zh) 基于LaB6纳米材料场发射的X射线管及移动CT扫描仪
TW201103062A (en) X-ray source comprising a field emission cathode
WO2014172931A1 (zh) 基于碳纳米管的x射线管及移动ct扫描仪
Walker et al. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
Kandlakunta et al. Design and numerical simulations of W-diamond transmission target for distributed x-ray sources
Tan et al. Beam and image experiment of beam deflection electron gun for distributed X-ray sources
Sharma et al. A carbon nanotube field-emission X-ray tube with a stationary anode target
Shan et al. Anode thermal analysis of high power microfocus CNT x-ray tubes for in vivo small animal imaging
WO2014172936A1 (zh) 基于LaB6纳米材料热发射的X射线管及移动CT扫描仪
JP2005243331A (ja) X線管
WO2024029474A1 (ja) X線撮影装置およびx線管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882691

Country of ref document: EP

Kind code of ref document: A1