WO2014172841A1 - 光混合器以及应用光混合器进行信号解调的方法 - Google Patents

光混合器以及应用光混合器进行信号解调的方法 Download PDF

Info

Publication number
WO2014172841A1
WO2014172841A1 PCT/CN2013/074558 CN2013074558W WO2014172841A1 WO 2014172841 A1 WO2014172841 A1 WO 2014172841A1 CN 2013074558 W CN2013074558 W CN 2013074558W WO 2014172841 A1 WO2014172841 A1 WO 2014172841A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interface
optical
pbs
polarization state
Prior art date
Application number
PCT/CN2013/074558
Other languages
English (en)
French (fr)
Inventor
陈思乡
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to PCT/CN2013/074558 priority Critical patent/WO2014172841A1/zh
Publication of WO2014172841A1 publication Critical patent/WO2014172841A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining

Definitions

  • the present invention relates to the field of optical fiber communications, and more particularly to an optical hybrid and a method of applying signal demodulation using the optical hybrid. Background technique
  • Optical fiber communication is a communication system that uses light waves as an information carrier to transmit information through optical fibers. Because of its large capacity, long transmission distance and fast transmission speed, it has been widely used in the field of high-speed optical communication.
  • DP-QPSK Double Polarization Quadrature Phase Shift Keying
  • This technology is applied to a coherent optical receiver in a fiber optic communication network to achieve demodulation and reception of DP-QPSK optical signals.
  • Figure 1 is a block diagram showing the internal structure of a coherent optical receiver.
  • the structure in the figure includes a coherent optical demodulator 110, a PD (photodiode) receiving device array 104, and a signal amplifying and controlling circuit 105.
  • the coherent optical demodulator comprises: a polarizing beam splitter PBS 103 and optical hybrids 101 and 102; each PD receiving device array 104 comprises four photodiode devices.
  • the coherent optical demodulator uses an optical hybrid based on PLC (Planar Optical Waveguide) technology to demodulate the optical signal.
  • Figure 2 is a schematic diagram of an optical hybrid based on PLC technology. After the modulated signal of the DP-QPSK optical signal is split by the PBS, a bundle of polarized light is input to the modulation signal input port of the first optical hybrid; at the same time, one beam has the same frequency, the same amplitude, and the same polarization as the polarized light. The local reference laser signal polarized light is input to the reference signal input port (Local) of the first optical hybrid.
  • PLC Planar Optical Waveguide
  • the two polarized lights are mixed by an optical mixer composed of couplers 201-204 and planar optical waveguides 205-208, and then have DP-QPSK optical signal information at output port 1 (OUT1) and output port 2 (OUT2).
  • the two coherent light output signals demodulate the DP-QPSK optical signal of the polarization state.
  • the modulated signal of the DP-QPSK optical signal is input to the modulated signal input port of the second optical hybrid by another beam of polarized light split by the PBS; meanwhile, a beam having the same frequency, the same amplitude, and the same polarization direction as the polarized light
  • the local reference signal polarized light is input to the reference signal input port of the second optical hybrid.
  • two coherent optical output signals are obtained at the output port of the second optical hybrid to demodulate the DP-QPSK optical signal of the polarization state.
  • Embodiments of the present invention provide an optical hybrid and a method of applying signal demodulation using an optical hybrid to reduce the cost of the optical hybrid to achieve demodulation of the DP-QPSK optical signal at a lower cost.
  • an optical hybrid comprising: a two-cube non-polarizing beam splitter BS, and two cubic polarizing beam splitters PBS; wherein
  • Two BSs and two PBSs form a cuboid block, and the splitting interfaces of the two BSs are located in the first plane, and the splitting interfaces of the two PBSs are located in the second plane; the first plane and the second plane are perpendicular to each other;
  • a beam incident interface of the first PBS of the two PBSs serves as a modulation signal incident interface of the optical hybrid;
  • a beam incident interface of the second PBS of the two PBSs is incident as a reference signal of the optical hybrid Interface
  • the two exit interfaces of the first BS of the two BSs respectively serve as two first polarization state output signal exit interfaces of the optical hybrid, and the two exit interfaces of the second BS of the two BSs respectively The two second polarization state output signals exit the interface as the optical hybrid.
  • the first PBS has a beam transmissive interface coinciding with the first beam incident interface of the first BS, and a beam reflection interface coincides with the first beam incident interface of the second BS; modulating the signal from the first PBS beam After the center position of the incident interface is incident on the first PBS, after the transmission of the splitting interface in the first PBS, the optical signal of the first polarization state in the modulated signal is incident from the first beam incident interface of the first BS.
  • the modulated signal is reflected by the beam splitting interface in the first PBS, wherein the light signal of the second polarization state is incident on the second BS from the first beam incident interface of the second BS; the second PBS,
  • the beam transmissive interface coincides with the second beam incident interface of the first BS, and the beam reflection interface coincides with the second beam incident interface of the second BS;
  • the reference signal having the same frequency and the same amplitude as the modulated signal is from the first
  • the optical signal of the first polarization state in the reference signal is from the first BS.
  • the two-beam incident interface is incident on the first BS; after the reference signal is reflected by the splitting interface in the second PBS, the optical signal of the second polarized state is incident from the second beam incident interface of the second BS to the second a first beam incident interface of the first BS and a second beam incident interface are located on both sides of the splitting interface of the first BS;
  • the optical signal of the first polarization state of the modulated signal and the optical signal of the first polarization state of the reference signal are split at the splitting interface in the first BS, and then mixed and coherent to obtain a demodulated output optical signal. And respectively emitted by the two exit interfaces of the first BS; the optical signal of the second polarization state of the modulated signal and the optical signal of the second polarization state of the reference signal are split and coherent after being split at the splitting interface in the second BS.
  • the demodulated output optical signals are obtained and are respectively emitted from the two exit interfaces of the second BS.
  • the BS is bonded by two right-angle prisms, and the bonding faces of the two right-angle prisms are coated with a splitting dielectric film, and the splitting interface of the BS is used to divide the incident beam.
  • the two beams that are polarization-independent have a split ratio of 50:50.
  • the PBS is bonded by two right-angle prisms, and the bonding faces of the two right-angle prisms are coated with a splitting dielectric film, and the splitting interface of the PBS is used to divide the incident beam. Two polarized lights that are orthogonal to the polarization state.
  • an optical hybrid comprising: two unpolarized beam splitters BS, respectively a first BS, a second BS; and two polarized beam splitters PBS, respectively Is a first PBS, a second PBS;
  • a beam transmissive interface coincides with a first beam incident interface of the first BS, and a beam reflection interface coincides with a first beam incident interface of the second BS;
  • the modulated signal is from a center of the first PBS beam incident interface
  • the optical signal of the first polarization state of the modulated signal is incident on the first BS from the first beam incident interface of the first BS;
  • the modulation signal is reflected by the beam splitting interface in the first PBS, the light signal of the second polarization state is incident on the second BS from the first beam incident interface of the second BS;
  • the beam incident interface of the first PBS is a modulation signal incident interface of the optical hybrid;
  • the beam transmissive interface coincides with the second beam incident interface of the first BS, and the beam reflection interface coincides with the second beam incident interface of the second BS;
  • the reference signal is from the second PBS beam incident interface center position After entering the second PBS, after the transmission of the splitting interface in the second PBS, the optical signal of the first polarization state of the reference signal is incident on the first BS from the second beam incident interface of the first BS; After the reference signal is reflected by the beam splitting interface in the second PBS, the light signal of the second polarization state is incident on the second BS from the second beam incident interface of the second BS; wherein, the first of the first BS The beam incident interface and the second beam incident interface are located on both sides of the splitting interface of the first BS; the beam incident interface of the second PBS serves as a reference signal incident interface of the optical hybrid; the first polarization state of the modulated signal The optical signals of the first polarization state of the optical signal and the reference signal are split and combined at the splitting interface in the
  • the BS is bonded by two right-angle prisms, and the bonding faces of the two right-angle prisms are coated with a splitting dielectric film, and the splitting interface of the BS is used to divide the incident beam.
  • the PBS is bonded by two right-angle prisms, and the bonding surface of the two right-angle prisms is coated with a splitting dielectric film, and the splitting interface of the PBS is used to divide the incident beam into a polarization state. Two polarized lights are delivered.
  • a coherent optical demodulator comprising: the above optical hybrid and two input collimators and four output collimators;
  • the axial direction of the modulation signal input collimator in the two input collimators is perpendicular to the modulation signal incident interface of the optical hybrid; the modulation signal is input to one end of the collimator as the coherent optical demodulator a modulation signal input end, after the modulation signal is input from a modulation signal input end of the coherent optical demodulator, the modulation signal input collimator collimates the modulation signal; the modulation signal is from the The other end of the modulation signal input collimator is output to the modulation signal incident interface of the optical hybrid;
  • the reference signal input collimator in the 2-way input collimator has an axis direction perpendicular to a reference signal incident interface of the optical hybrid; the reference signal is input to one end of the collimator as the coherent optical demodulator a reference signal input end, after the reference signal is input from a reference signal input end of the coherent optical demodulator, the reference signal input collimator collimates the reference signal; the reference signal is from the reference signal The other end of the reference signal input collimator is output to the reference signal incident interface of the optical hybrid;
  • the axial directions of the four output collimators are perpendicular to the two first polarization output signal exit interfaces and the two second polarization output signal exit interfaces of the optical hybrid, respectively, for outputting the light mixing
  • the output optical signal of the device is collimated; the four output optical signals output by the optical hybrid are respectively input from one end of the four output collimators, and the other end is output; the other ends of the four output collimators are respectively 4 optical signal outputs of the coherent optical demodulator.
  • a coherent optical receiver including: the coherent optical demodulator, the PD receiving device array, and the signal amplifying and controlling circuit;
  • the modulated signal is input by a modulation signal input end of the coherent optical demodulator, and the reference signal is input by a reference signal input end of the coherent optical demodulator; after the modulated signal is demodulated by the coherent optical demodulator, Outputting two first polarization state output signals from four output ends of the coherent optical demodulator And a second polarization state output signal;
  • the PD receiving device array includes four photodiode devices; two of the four photodiode devices serve as the first polarization state optical signal receiving device, and two outputs to the coherent optical demodulator output terminal The first polarization state output signals are respectively received, converted into electrical signals, and then input to the signal amplification and control circuit;
  • the other two of the four photodiode devices are used as the second polarization state optical signal receiving device, and the two second polarization state output signals outputted from the output end of the coherent optical demodulator are respectively received. Converting to an electrical signal and inputting to the signal amplification and control circuit;
  • the signal amplification and control circuit differentiates the electrical signals output by the two first polarization state optical signal receiving devices into one electrical signal; the signal amplification and control circuit divides the two second polarization optical signal receiving devices The output electrical signal is differentiated into another electrical signal; the signal amplification and control circuit also amplifies and controls the two differential electrical signals.
  • the optical hybrid comprises: two cubes of unpolarized beam splitters BS, respectively a first BS, a second BS; and two cubic polarizing beam splitters PBS, respectively a first PBS, a second PBS
  • the beam transmission interface of the first PBS coincides with the first beam incident interface of the first BS
  • the beam reflection interface of the first PBS coincides with the first beam incident interface of the second BS
  • the beam transmission interface of the second PBS Coinciding with the second beam incident interface of the first BS
  • the beam reflection interface of the second PBS coincides with the second beam incident interface of the second BS;
  • the above methods include:
  • the optical signal of the first polarization state in the modulated signal is from the first BS
  • the first beam incident interface is incident on the first BS
  • the optical signal of the second polarization state is incident from the first beam incident interface of the second BS a second BS
  • a beam incident interface of the first PBS is a modulation signal incident interface of the optical hybrid
  • a reference signal having the same frequency and the same amplitude as the modulated signal is injected into the second PBS from a center position of the beam incident interface of the second PBS, and after being transmitted through the beam splitting interface in the second PBS, the reference signal is The optical signal of the first polarization state is incident on the first BS from the second beam incident interface of the first BS; after the reflection of the reference signal through the beam splitting interface in the second PBS, the optical signal of the second polarization state Injecting from the second beam incident interface of the second BS to the second BS; wherein, the first The first beam incident interface of the BS and the second beam incident interface are located at two sides of the beam splitting interface of the first BS; the beam incident interface of the second PBS is a reference signal incident interface of the optical hybrid;
  • the optical signal of the first polarization state of the modulated signal and the optical signal of the first polarization state of the reference signal are split at the splitting interface in the first BS and then mixed to obtain a demodulated output optical signal, respectively
  • Two exit interfaces of a BS are emitted; the optical signal of the second polarization state of the modulated signal and the optical signal of the second polarization state of the reference signal are split at the splitting interface in the second BS, and then demodulated
  • the output optical signals are respectively emitted by the two exit interfaces of the second BS; the two exit interfaces of the first BS are the two first polarization state output signal exit interfaces of the optical hybrid, and the second BS
  • the two exit interfaces are two second polarization state output signal exit interfaces of the optical hybrid.
  • the first polarization state is an X-direction polarization state
  • the second polarization state is a Y-direction polarization state
  • the first polarization state is a Y-direction polarization state
  • the second polarization state is an X-direction polarization state
  • the optical hybrid avoids the use of the planar optical waveguide PLC technology, but adopts the non-polarized beam splitting of the space-based cube based on the lower cost, less insertion loss, and higher temperature stability.
  • the BS and the cube polarizing beam splitter PBS realize demodulation of the modulated signal; thereby reducing the cost of the optical hybrid, reducing the insertion loss of the optical hybrid, and improving the temperature stability of the optical hybrid;
  • the product cost and the required equipment cost of the coherent optical demodulator and the coherent optical receiver to which the optical hybrid is applied are reduced, and demodulation of the demodulated signal of the DP-QPSK optical signal is realized.
  • Figure 1 is a block diagram showing the internal structure of a coherent optical receiver
  • Figure 2 is a schematic diagram of an optical hybrid based on PLC technology
  • FIG. 3 is a diagram showing a method of an optical hybrid and a demodulated signal thereof according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a coherent optical demodulator according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the internal structure of a coherent optical receiver according to an embodiment of the present invention.
  • the BS is bonded by two right-angle prisms, and the bonding faces of the two right-angle prisms are coated with a splitting dielectric film, which becomes a splitting interface of the BS to divide the incident beam into two beams of polarization-independent, and the splitting thereof The ratio is 50:50.
  • the PBS is bonded by two right-angle prisms, and the bonding surface of the two right-angle prisms is coated with a splitting dielectric film.
  • the optical hybrid of the splitting of the PBS reduces the cost of the product and the device, and reduces the insertion loss. And improved temperature stability.
  • the optical hybrid of the present invention comprises a cubic non-polarizing beam splitter first BS 301 and second BS 304 and a cubic polarizing beam splitter first PBS 302 and second PBS 303.
  • the first BS 301, the second BS 304, the second PBS 302, and the first PBS 303 form a rectangular parallelepiped block, the splitting interfaces of the first BS 301 and the second BS 304 are located in the first plane, and the splitting interface of the second PBS 302 and the first PBS 303 is located at the In the two planes; the first plane and the second plane are perpendicular to each other.
  • the beam transmission interface of the first PBS 303 coincides with the first beam incident interface of the first BS 301, and the beam reflection interface of the first PBS 303 coincides with the first beam incident interface of the second BS 304.
  • the beam transmission interface of the second PBS 302 coincides with the second beam incident interface of the first BS 301, and the beam reflection interface of the second PBS 302 coincides with the second beam incident interface of the second BS 304.
  • a method for performing signal demodulation using the optical hybrid of the present invention includes:
  • the modulated signal 310 of the DP-QPSK optical signal is incident on the first PBS 303 from the center position of the beam incident interface of the first PBS 303, and the optical signal of the first polarization state in the modulated signal is modulated by the transmission of the splitting interface in the first PBS 303.
  • the first BS 301 is incident from a beam incident interface of the first BS 301; the modulated signal is reflected by the beam splitting interface in the first PBS 303, wherein the optical signal of the second polarization state is incident from the first beam incident interface of the second BS 304 Go to the second BS304.
  • the beam incident interface of the first PBS 303 is the modulation signal incident interface of the optical hybrid.
  • the reference signal 320 having the same frequency and the same amplitude as the modulated signal is incident on the second PBS 302 from the center position of the beam incident interface of the second PBS 302, and after passing through the beam splitting interface in the second PBS 302, the first of the reference signals
  • the optical signal of the polarization state is incident on the first BS 301 from the second beam incident interface of the first BS 301; after the reflection of the reference signal through the beam splitting interface in the second PBS 302, the optical signal of the second polarization state is from the second BS304
  • the second beam incident interface is incident on the second BS 304; wherein the first beam incident interface of the first BS 301 and the second beam incident interface are located at the second Both sides of a beam splitting interface of BS301.
  • the beam incident interface of the second PBS 302 is the reference signal incident interface of the optical hybrid.
  • the optical signal of the first polarization state of the modulated signal and the optical signal of the first polarization state of the reference signal are split at the splitting interface in the first BS 301 and then mixed and coherent to obtain the demodulated output optical signals 330 and 340. And respectively emitted by the two exit interfaces of the first BS 301; the optical signal of the second polarization state of the modulated signal and the optical signal of the second polarization state of the reference signal are split and coherent after being split at the splitting interface in the second BS 304.
  • the demodulated output optical signals 350 and 360 are respectively output from the two exit interfaces of the second BS 304.
  • the two exit interfaces of the first BS 301 are two first polarization state output signal exit interfaces of the optical hybrid, and the two exit interfaces of the second BS 304 are two second polarization output signal exit interfaces of the optical hybrid. .
  • the first polarization state is an X-direction polarization state
  • the second polarization state is a Y-direction polarization state
  • the first polarization state is a Y-direction polarization state
  • the second polarization state is an X-direction polarization state
  • demodulated output optical signals 330, 340 having DP-QPSK optical signal information are obtained at the two first polarization output signal exit interfaces and the two second polarization output signal exit interfaces of the optical hybrid, 350 and 360, thereby realizing demodulation of the DP-QPSK optical signal.
  • Embodiments of the present invention also provide a coherent optical demodulator constructed using the optical hybrid of the present invention, as shown in Figure 4:
  • the coherent optical demodulator includes the optical hybrid 405 of the present invention and two input collimators 410, 420 and four output collimators 430, 440, 450, 460.
  • the modulation signal input in the 2-channel input collimator 410 is perpendicular to the modulation signal incident interface of the optical hybrid to collimate the modulated signal input to the optical hybrid; one end acts as a coherent optical solution
  • the modulation signal input terminal of the modulator 501 is input from the modulation signal input terminal of the coherent optical demodulator 501, and then outputted from the other end of the modulation signal input collimator 410 to the modulation signal incident interface of the optical hybrid.
  • the reference signal input collimator 420 in the 2-way input collimator has an axis direction perpendicular to the reference signal incident interface of the optical hybrid for collimating the reference signal input to the optical hybrid; one end thereof is coherent
  • the reference signal input end of the optical demodulator 501 is input from the reference signal input terminal of the coherent optical demodulator 501, and then outputted from the other end of the reference signal input collimator 410 to the reference signal incident interface of the optical hybrid.
  • the axial directions of the four output collimators 430, 440, 450 and 460 are perpendicular to the two first polarization output signal exit interfaces and the two second polarization output signal exit interfaces of the optical hybrid, respectively, for respectively outputting
  • the four demodulated output optical signals 330, 340, 350 of the optical hybrid are And 360 for collimation: the output demodulated output optical signals of the output optical mixer are respectively input from one end of the four output collimators, and the other end is output; the other ends of the four output collimators are respectively used as The four optical signal outputs of the coherent optical demodulator.
  • Embodiments of the present invention also provide a coherent optical receiver, as shown in FIG. 5, comprising: a coherent optical demodulator 501, a PD receiving device array 502, and a signal amplification and control circuit 503 of the present invention.
  • the modulated signal is input from the modulation signal input terminal of the coherent optical demodulator 501, and the reference signal is input from the reference signal input terminal of the coherent optical demodulator 501; the modulated signal is demodulated by the coherent optical demodulator 501, and demodulated from the coherent optical.
  • the four output terminals of the 501 output two first polarization state output signals and a second polarization state output signal, respectively.
  • the PD receiving device array 502 includes four photodiode devices; two of the four photodiode devices serve as first polarization state optical signal receiving devices, and two first polarization states output to the coherent optical demodulator outputs 430 and 440
  • the output signals are separately received, converted into electrical signals, and then input to the signal amplification and control circuit 503; the signal amplification and control circuit 503 differentiates the electrical signals output by the two first polarization state optical signal receiving devices into one electrical signal;
  • the other two of the four photodiode devices are used as the second polarization state optical signal receiving device, and the two second polarization state output signals outputted by the coherent optical demodulator output terminals 450 and 460 are respectively received and converted into electrical signals.
  • the signal amplification and control circuit 530 also amplifies and controls the two differential electrical signals to perform demodulation of the optical signals. Thereby, a coherent optical receiver that demodulates and receives the DP-QPSK optical signal is realized.
  • the optical hybrid avoids the use of planar optical waveguide PLC technology, but adopts a space-based optical cube with lower cost, lower insertion loss, and higher temperature stability.
  • the unpolarized beam splitter BS and the cubic polarizing beam splitter PBS realize demodulation of the modulated signal; thereby reducing the cost of the optical hybrid, reducing the insertion loss of the optical hybrid, and increasing the temperature of the optical hybrid. Further, the product cost and the required equipment cost of the coherent optical demodulator and the coherent optical receiver using the optical hybrid are reduced, and demodulation of the demodulated signal of the DP-QPSK optical signal is realized. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

一种光混合器以及应用光混合器进行信号解调的方法。光混合器包括:两个立方体的非偏振光束分束器BS(301、304),以及两个立方体的偏振光束分束器PBS(302、303)。其中两个BS和两个PBS组成一个长方体块,且两个BS的分束界面位于第一平面中,两个PBS的分束界面位于第二平面中,第一平面与第二平面相互垂直。该光混合器避免了使用平面光波导PLC技术,而是采用了成本更低、插入损耗较小、温度稳定性较高的,基于空间光学的立方体的非偏振光束分束器BS和立方体的偏振光分束器PBS实现对调制信号的解调。从而,降低了光混合器的成本,减小了插入损耗,提高了温度稳定性。

Description

说 明 书 光混合器以及应用光混合器进行信号解调的方法 技术领域
本发明涉及光纤通信领域, 尤其涉及一种光混合器以及应用光混合器进 行信号解调的方法。 背景技术
光纤通信是一种以光波为信息载体, 通过光纤来传递信息的通讯系统。 因其具有容量大、 传输距离远、 传输速度快等特点, 在高速光通信领域得到 广泛应用。 目前, 在光纤通讯网络中, lOOGpbs以及更高速的光信号的解调和 接收普遍采用基于相干接收的 DP-QPSK ( Dual Polarization Quadrature Phase Shift Keying, 双偏振正交相移键控)调制技术。 该技术应用于光纤通讯网络 中的相干光接收机以实现 DP-QPSK光信号的解调和接收。
图 1是相干光接收机的内部结构框图。图中结构包括:相干光解调器 110, PD (光电二极管)接收器件阵列 104和信号放大及控制电路 105。 其中, 相 干光解调器包括: 偏振光分束器 PBS 103以及光混合器 101和 102; 每个 PD 接收器件阵列 104包括 4个光电二极管器件。
目前, 相干光解调器采用基于 PLC ( Planar Optical Waveguide, 平面光波 导)技术的光混合器来实现光信号的解调。 图 2是基于 PLC技术的光混合器 的原理图。 DP-QPSK光信号的调制信号经 PBS分束后, 一束偏振光输入第一 光混合器的调制信号输入端口 (Signal ); 同时, 一束与该偏振光具有相同频 率、 相同振幅以及相同偏振态的本地参考激光信号偏振光输入第一光混合器 的参考信号输入端口 ( Local )。 这两束偏振光经过由耦合器 201-204以及平面 光波导 205-208组成的光混合器进行混合后, 在输出端口 1 ( OUT1 )和输出 端口 2 ( OUT2 )得到具有 DP-QPSK光信号信息的两束相干光输出信号, 从 而解调出该偏振态的 DP-QPSK光信号。 DP-QPSK光信号的调制信号经 PBS 分束后的另一束偏振光输入第二光混合器的调制信号输入端口; 同时, 一束 与该偏振光具有相同频率、 相同振幅以及相同偏振方向的本地参考信号偏振 光输入第二光混合器的参考信号输入端口。 同理, 在第二光混合器的输出端 口得到两束相干光输出信号, 从而解调出该偏振态的 DP-QPSK光信号。
然而, 采用 PLC技术的产品制作成本高, 所要求的设备投入大, 而且基 于 PLC技术的光混合器插入损耗大, 易受温度影响。 因此, 有必要提供一种成本低, 插入损耗小, 温度稳定性高的光混合器, 以实现对 DP-QPSK光信号的解调信号的解调。 发明内容
本发明的实施例提供了一种光混合器以及应用光混合器进行信号解调的 方法,用以降低光混合器的成本,以较低成本实现对 DP-QPSK光信号的解调。
根据本发明的一个方面, 提供了一种光混合器, 包括: 两个立方体的非 偏振光束分束器 BS, 以及两个立方体的偏振光分束器 PBS; 其中,
两个 BS和两个 PBS组成一个长方体块,且两个 BS的分束界面位于第一 平面中, 两个 PBS的分束界面位于第二平面中; 第一平面与第二平面相互垂 直;
所述两个 PBS中的第一 PBS的光束入射界面作为所述光混合器的调制信 号入射界面; 所述两个 PBS中的第二 PBS的光束入射界面作为所述光混合器 的参考信号入射界面;
所述两个 BS中的第一 BS的两个出射界面分别作为所述光混合器的两个 第一偏振态输出信号出射界面, 所述两个 BS中的第二 BS的两个出射界面分 别作为所述光混合器的两个第二偏振态输出信号出射界面。
较佳地, 第一 PBS, 其光束透射界面与第一 BS的第一光束入射界面相重 合, 其光束反射界面与第二 BS的第一光束入射界面相重合; 调制信号从第一 PBS的光束入射界面中心位置射入第一 PBS后, 经第一 PBS内的分束界面的 透射作用后,所述调制信号中的第一偏振态的光信号从第一 BS的第一光束入 射界面入射到第一 BS;所述调制信号经第一 PBS内的分束界面的反射作用后, 其中第二偏振态的光信号从第二 BS的第一光束入射界面入射到第二 BS; 第二 PBS, 其光束透射界面与第一 BS的第二光束入射界面相重合, 其光 束反射界面与第二 BS的第二光束入射界面相重合;与所述调制信号具有相同 频率和相同振幅的参考信号从第二 PBS 的光束入射界面中心位置射入第二 PBS后, 经第二 PBS内的分束界面的透射作用后, 所述参考信号中的第一偏 振态的光信号从第一 BS的第二光束入射界面入射到第一 BS; 所述参考信号 经第二 PBS内的分束界面的反射作用后,其中第二偏振态的光信号从第二 BS 的第二光束入射界面入射到第二 BS; 其中, 第一 BS的第一光束入射界面与 第二光束入射界面位于第一 BS的分束界面的两侧;
所述调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号 在第一 BS内的分束界面处分束后相混合、 相干后得到解调后的输出光信号, 分别由第一 BS的两个出射界面射出;调制信号的第二偏振态的光信号和参考 信号的第二偏振态的光信号在第二 BS内的分束界面处分束后相混合、相干后 得到解调后的输出光信号, 分别由第二 BS的两个出射界面射出。
较佳地, 所述 BS由两个直角棱镜粘合而成, 且所述两个直角棱镜的粘合 面上涂有分束介质膜,成为所述 BS的分束界面用以将入射光束分为偏振无关 的两束光, 其分光比为 50:50。
较佳地, 所述 PBS由两个直角棱镜粘合而成, 且所述两个直角棱镜的粘 合面上涂有分束介质膜, 成为所述 PBS的分束界面用以将入射光束分为偏振 态正交的两束偏振光。
根据本发明的另一个方面, 还提供了一种光混合器, 包括: 两个非偏振 光束分束器 BS, 分别为第一 BS、 第二 BS; 以及两个偏振光分束器 PBS, 分 别为第一 PBS、 第二 PBS; 其中,
第一 PBS, 其光束透射界面与第一 BS的第一光束入射界面相重合, 其光 束反射界面与第二 BS的第一光束入射界面相重合; 调制信号从第一 PBS的 光束入射界面中心位置射入第一 PBS后, 经第一 PBS内的分束界面的透射作 用后,所述调制信号中的第一偏振态的光信号从第一 BS的第一光束入射界面 入射到第一 BS; 所述调制信号经第一 PBS内的分束界面的反射作用后, 其中 第二偏振态的光信号从第二 BS的第一光束入射界面入射到第二 BS;第一 PBS 的光束入射界面作为所述光混合器的调制信号入射界面;
第二 PBS, 其光束透射界面与第一 BS的第二光束入射界面相重合, 其光 束反射界面与第二 BS的第二光束入射界面相重合; 参考信号从第二 PBS的 光束入射界面中心位置射入第二 PBS后, 经第二 PBS内的分束界面的透射作 用后,所述参考信号中的第一偏振态的光信号从第一 BS的第二光束入射界面 入射到第一 BS; 所述参考信号经第二 PBS内的分束界面的反射作用后, 其中 第二偏振态的光信号从第二 BS的第二光束入射界面入射到第二 BS; 其中, 第一 BS的第一光束入射界面与第二光束入射界面位于第一 BS的分束界面的 两侧; 第二 PBS的光束入射界面作为所述光混合器的参考信号入射界面; 所述调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号 在第一 BS内的分束界面处分束后相混合后得到解调后的输出光信号,分别由 第一 BS的两个出射界面射出;调制信号的第二偏振态的光信号和参考信号的 第二偏振态的光信号在第二 BS 内的分束界面处分束后相混合后得到解调后 的输出光信号, 分别由第二 BS的两个出射界面射出; 第一 BS的两个出射界 面分别作为所述光混合器的两个第一偏振态输出信号出射界面,第二 BS的两 个出射界面分别作为所述光混合器的两个第二偏振态输出信号出射界面。
较佳地, 所述 BS由两个直角棱镜粘合而成, 且所述两个直角棱镜的粘合 面上涂有分束介质膜,成为所述 BS的分束界面用以将入射光束分为偏振无关 的两束光, 其分光比为 50:50; 以及
所述 PBS由两个直角棱镜粘合而成, 且所述两个直角棱镜的粘合面上涂 有分束介质膜, 成为所述 PBS的分束界面用以将入射光束分为偏振态正交的 两束偏振光。
根据本发明的另一个方面, 还提供了一种相干光解调器, 包括: 上述的 光混合器以及 2路输入准直器和 4路输出准直器;
所述 2路输入准直器中的调制信号输入准直器的轴线方向垂直于所述光 混合器的调制信号入射界面; 所述调制信号输入准直器的一端作为所述相干 光解调器的调制信号输入端, 所述调制信号从所述相干光解调器的调制信号 输入端输入后, 所述调制信号输入准直器对所述调制信号进行准直; 所述调 制信号从所述调制信号输入准直器的另一端输出到所述光混合器的调制信号 入射界面;
所述 2路输入准直器中的参考信号输入准直器的轴线方向垂直于所述光 混合器的参考信号入射界面; 所述参考信号输入准直器的一端作为所述相干 光解调器的参考信号输入端, 所述参考信号从所述相干光解调器的参考信号 输入端输入后, 所述参考信号输入准直器对所述参考信号进行准直; 所述参 考信号从所述参考信号输入准直器的另一端输出到光混合器的参考信号入射 界面;
所述 4路输出准直器的轴线方向分别垂直于所述光混合器的两个第一偏 振态输出信号出射界面和两个第二偏振态输出信号出射界面, 用以对输出所 述光混合器的输出光信号进行准直; 所述光混合器输出的 4路输出光信号分 别从 4路输出准直器的一端输入, 另一端输出; 所述 4路输出准直器的另一 端分别作为所述相干光解调器的 4个光信号输出端。
根据本发明的另一个方面, 还提供了一种相干光接收机, 包括: 上述的 相干光解调器, PD接收器件阵列和信号放大及控制电路; 其中,
调制信号由所述相干光解调器的调制信号输入端输入, 参考信号由所述 相干光解调器的参考信号输入端输入; 所述调制信号经所述相干光解调器解 调后, 从所述相干光解调器的 4路输出端分别输出两个第一偏振态输出信号 和第二偏振态输出信号;
所述 PD接收器件阵列包括 4个光电二极管器件;所述 4个光电二极管器 件中的两个作为所述第一偏振态光信号接收器件, 对所述相干光解调器输出 端输出的两个所述第一偏振态输出信号分别进行接收, 转换为电信号后输入 到所述信号放大及控制电路;
所述 4个光电二极管器件中的另两个作为所述第二偏振态光信号接收器 件, 对所述相干光解调器输出端输出的两个所述第二偏振态输出信号分别进 行接收, 转换为电信号后输入到所述信号放大及控制电路;
所述信号放大及控制电路将两个所述第一偏振态光信号接收器件输出的 电信号差分为一路电信号; 所述信号放大及控制电路将两个所述第二偏振态 光信号接收器件输出的电信号差分为另一路电信号; 所述信号放大及控制电 路还对两路差分电信号进行放大和控制。
根据本发明的另一个方面, 还提供了一种应用光混合器进行信号解调的 方法, 其中,
所述光混合器包括:两个立方体的非偏振光束分束器 BS ,分别为第一 BS、 第二 BS; 以及两个立方体的偏振光分束器 PBS,分别为第一 PBS、第二 PBS; 其中, 第一 PBS的光束透射界面与第一 BS的第一光束入射界面相重合, 第 一 PBS的光束反射界面与第二 BS的第一光束入射界面相重合; 第二 PBS的 光束透射界面与第一 BS的第二光束入射界面相重合, 第二 PBS的光束反射 界面与第二 BS的第二光束入射界面相重合;
上述方法包括:
调制信号从第一 PBS的光束入射界面中心位置射入第一 PBS后, 经第一 PBS 内的分束界面的透射作用后, 所述调制信号中的第一偏振态的光信号从 第一 BS的第一光束入射界面入射到第一 BS; 所述调制信号经第一 PBS内的 分束界面的反射作用后,其中第二偏振态的光信号从第二 BS的第一光束入射 界面入射到第二 BS;所述第一 PBS的光束入射界面为所述光混合器的调制信 号入射界面;
与所述调制信号具有相同频率和相同振幅的参考信号从第二 PBS的光束 入射界面中心位置射入第二 PBS后,经第二 PBS内的分束界面的透射作用后, 所述参考信号中的第一偏振态的光信号从第一 BS 的第二光束入射界面入射 到第一 BS; 所述参考信号经第二 PBS内的分束界面的反射作用后, 其中第二 偏振态的光信号从第二 BS的第二光束入射界面入射到第二 BS; 其中, 第一 BS的第一光束入射界面与第二光束入射界面位于第一 BS的分束界面的两侧; 所述第二 PBS的光束入射界面为所述光混合器的参考信号入射界面;
所述调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号 在第一 BS内的分束界面处分束后相混合后得到解调后的输出光信号,分别由 第一 BS的两个出射界面射出;调制信号的第二偏振态的光信号和参考信号的 第二偏振态的光信号在第二 BS 内的分束界面处分束后相混合后得到解调后 的输出光信号, 分别由第二 BS的两个出射界面射出; 所述第一 BS的两个出 射界面为所述光混合器的两个第一偏振态输出信号出射界面,所述第二 BS的 两个出射界面为所述光混合器的两个第二偏振态输出信号出射界面。
较佳地, 第一偏振态为 X方向偏振态, 第二偏振态为 Y方向偏振态; 或 者
第一偏振态为 Y方向偏振态, 第二偏振态为 X方向偏振态。
本发明的技术方案中, 光混合器避免了使用平面光波导 PLC技术, 而是 采用了成本更低、 插入损耗较小、 温度稳定性较高的, 基于空间光学的立方 体的非偏振光束分束器 BS和立方体的偏振光分束器 PBS实现对调制信号的 解调; 从而降低了光混合器的成本, 减小了光混合器的插入损耗, 提高了光 混合器的温度稳定性; 更进一步地, 降低了应用光混合器的相干光解调器和 相干光接收机的产品成本以及所要求的设备成本,并实现了对 DP-QPSK光信 号的解调信号的解调。 附图说明
图 1为相干光接收机的内部结构框图;
图 2为基于 PLC技术的光混合器的原理图;
图 3为本发明实施例的光混合器及其解调信号的方法图;
图 4为本发明实施例的相干光解调器示意图;
图 5为本发明实施例的相干光接收机内部结构框图。
具体实施方式
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图并举 出优选实施例, 对本发明进一步详细说明。 然而, 需要说明的是, 说明书中 列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的 本发明的发明人考虑到, 可以采用成本更低、 插入损耗较小、 温度稳定 性较高的,基于空间光学的立方体的非偏振光束分束器 BS和立方体的偏振光 分束器 PBS来实现 DP-QPSK光信号解调的光混合器。 BS由两个直角棱镜粘 合而成, 且两个直角棱镜的粘合面上涂有分束介质膜, 成为 BS的分束界面用 以将入射光束分为偏振无关的两束光, 其分光比为 50:50。 PBS由两个直角棱 镜粘合而成, 且两个直角棱镜的粘合面上涂有分束介质膜, 成为 PBS的分束 的光混合器降低了产品、 设备的成本, 减小了插入损耗, 且提高了温度稳定 性。
下面结合附图详细说明本发明实施例的技术方案。 本发明实施例提供的 光混合器及其解调信号的方法, 如图 3所示。
本发明的光混合器包括立方体的非偏振光束分束器第一 BS301 和第二 BS304以及立方体的偏振光分束器第一 PBS302和第二 PBS303。第一 BS301、 第二 BS304、 第二 PBS302和第一 PBS303组成一个长方体块, 第一 BS301 和第二 BS304的分束界面位于第一平面中,第二 PBS302和第一 PBS303的分 束界面位于第二平面中; 第一平面与第二平面相互垂直。
第一 PBS303的光束透射界面与第一 BS301的第一光束入射界面相重合, 第一 PBS303的光束反射界面与第二 BS304的第一光束入射界面相重合。 第 二 PBS302的光束透射界面与第一 BS301的第二光束入射界面相重合, 第二 PBS302的光束反射界面与第二 BS304的第二光束入射界面相重合。
应用本发明的光混合器进行信号解调的方法, 包括:
DP-QPSK光信号的调制信号 310从第一 PBS303的光束入射界面中心位 置射入第一 PBS303 , 经第一 PBS303内的分束界面的透射作用后, 调制信号 中的第一偏振态的光信号从第一 BS301 的一个光束入射界面入射到第一 BS301 ; 调制信号经第一 PBS303内的分束界面的反射作用后, 其中第二偏振 态的光信号从第二 BS304 的第一光束入射界面入射到第二 BS304。 第一 PBS303的光束入射界面为光混合器的调制信号入射界面。
与调制信号具有相同频率和相同振幅的参考信号 320从第二 PBS302的光 束入射界面中心位置射入第二 PBS302后, 经第二 PBS302内的分束界面的透 射作用后, 参考信号中的第一偏振态的光信号从第一 BS301的第二光束入射 界面入射到第一 BS301;参考信号经第二 PBS302内的分束界面的反射作用后, 其中第二偏振态的光信号从第二 BS304 的第二光束入射界面入射到第二 BS304; 其中, 第一 BS301 的第一光束入射界面与第二光束入射界面位于第 一 BS301的分束界面的两侧。 第二 PBS302的光束入射界面为光混合器的参 考信号入射界面。
调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号在第 一 BS301内的分束界面处分束后相混合、相干后得到解调后的输出光信号 330 和 340, 分别由第一 BS301 的两个出射界面射出; 调制信号的第二偏振态的 光信号和参考信号的第二偏振态的光信号在第二 BS304内的分束界面处分束 后相混合、 相干后得到解调后的输出光信号 350和 360, 分别由第二 BS304 的两个出射界面射出。,第一 BS301的两个出射界面为光混合器的两个第一偏 振态输出信号出射界面, 第二 BS304的两个出射界面为所述光混合器的两个 第二偏振态输出信号出射界面。
其中, 第一偏振态为 X方向偏振态, 第二偏振态为 Y方向偏振态; 或者 第一偏振态为 Y方向偏振态, 第二偏振态为 X方向偏振态。
因此, 在光混合器的两个第一偏振态输出信号出射界面和两个第二偏振 态输出信号出射界面得到具有 DP-QPSK光信号信息的 4束解调后的输出光信 号 330, 340, 350以及 360, 从而实现了 DP-QPSK光信号的解调。
本发明的实施例还提供了一种采用本发明的光混合器构造的相干光解调 器, 如图 4所示:
该相干光解调器包括本发明的光混合器 405以及 2路输入准直器 410、420 和 4路输出准直器 430、 440、 450、 460。
2路输入准直器中的调制信号输入准直器 410的轴线方向垂直于光混合器 的调制信号入射界面, 用以对输入到光混合器的调制信号进行准直; 其一端 作为相干光解调器 501的调制信号输入端, 调制信号从相干光解调器 501的 调制信号输入端输入后, 从调制信号输入准直器 410 的另一端输出到光混合 器的调制信号入射界面。
2路输入准直器中的参考信号输入准直器 420的轴线方向垂直于光混合器 的参考信号入射界面, 用以对输入到所述光混合器的参考信号进行准直; 其 一端作为相干光解调器 501的参考信号输入端,参考信号从相干光解调器 501 的参考信号输入端输入后, 从参考信号输入准直器 410 的另一端输出到光混 合器的参考信号入射界面。
4路输出准直器 430, 440, 450以及 460的轴线方向分别垂直于光混合器 的两个第一偏振态输出信号出射界面和两个第二偏振态输出信号出射界面, 用以分别对输出所述光混合器的 4路解调后的输出光信号 330, 340, 350以 及 360进行准直: 输出光混合器的 4路解调后的输出光信号分别从 4路输出 准直器的一端输入, 另一端输出; 所述 4路输出准直器的另一端分别作为所 述相干光解调器的 4个光信号输出端。
本发明的实施例还提供了一种相干光接收机, 如图 5所示, 包括: 本发 明的相干光解调器 501 , PD接收器件阵列 502和信号放大及控制电路 503。
调制信号由相干光解调器 501 的调制信号输入端输入, 参考信号由相干 光解调器 501的参考信号输入端输入; 调制信号经相干光解调器 501解调后, 从相干光解调器 501的 4路输出端分别输出两个第一偏振态输出信号和第二 偏振态输出信号。
PD接收器件阵列 502包括 4个光电二极管器件; 4个光电二极管器件中 的两个作为第一偏振态光信号接收器件, 对相干光解调器输出端 430和 440 输出的两个第一偏振态输出信号分别进行接收, 转换为电信号后输入到信号 放大及控制电路 503;信号放大及控制电路 503将两个第一偏振态光信号接收 器件输出的电信号差分为一路电信号;
4个光电二极管器件中的另两个作为第二偏振态光信号接收器件,对相干 光解调器输出端 450和 460输出的两个第二偏振态输出信号分别进行接收, 转换为电信号后输入到信号放大及控制电路 503;信号放大及控制电路 530将 两个第二偏振态光信号接收器件输出的电信号差分为另一路电信号。
信号放大及控制电路 530还对两路差分电信号进行放大和控制, 完成对 光信号的解调。 由此, 实现了解调和接收 DP-QPSK光信号的相干光接收机。
本发明实施例的光混合器技术方案中, 光混合器避免了使用平面光波导 PLC技术, 而是采用了成本更低、 插入损耗较小、 温度稳定性较高的, 基于 空间光学的立方体的非偏振光束分束器 BS和立方体的偏振光分束器 PBS实 现对调制信号的解调; 从而降低了光混合器的成本, 减小了光混合器的插入 损耗, 提高了光混合器的温度稳定性; 更进一步地, 降低了应用光混合器的 相干光解调器和相干光接收机的产品成本以及所要求的设备成本, 并实现了 对 DP-QPSK光信号的解调信号的解调。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种光混合器, 其特征在于, 包括: 两个立方体的非偏振光束分束器 BS, 以及两个立方体的偏振光分束器 PBS; 其中,
两个 BS和两个 PBS组成一个长方体块,且两个 BS的分束界面位于第一 平面中, 两个 PBS的分束界面位于第二平面中; 第一平面与第二平面相互垂 直;
所述两个 PBS中的第一 PBS的光束入射界面作为所述光混合器的调制信 号入射界面; 所述两个 PBS中的第二 PBS的光束入射界面作为所述光混合器 的参考信号入射界面;
所述两个 BS中的第一 BS的两个出射界面分别作为所述光混合器的两个 第一偏振态输出信号出射界面, 所述两个 BS中的第二 BS的两个出射界面分 别作为所述光混合器的两个第二偏振态输出信号出射界面。
2. 如权利要求 1所述的光混合器, 其特征在于,
第一 PBS, 其光束透射界面与第一 BS的第一光束入射界面相重合, 其光 束反射界面与第二 BS的第一光束入射界面相重合; 调制信号从第一 PBS的 光束入射界面中心位置射入第一 PBS后, 经第一 PBS内的分束界面的透射作 用后,所述调制信号中的第一偏振态的光信号从第一 BS的第一光束入射界面 入射到第一 BS; 所述调制信号经第一 PBS内的分束界面的反射作用后, 其中 第二偏振态的光信号从第二 BS的第一光束入射界面入射到第二 BS;
第二 PBS, 其光束透射界面与第一 BS的第二光束入射界面相重合, 其光 束反射界面与第二 BS的第二光束入射界面相重合;与所述调制信号具有相同 频率和相同振幅的参考信号从第二 PBS 的光束入射界面中心位置射入第二 PBS后, 经第二 PBS内的分束界面的透射作用后, 所述参考信号中的第一偏 振态的光信号从第一 BS的第二光束入射界面入射到第一 BS; 所述参考信号 经第二 PBS内的分束界面的反射作用后,其中第二偏振态的光信号从第二 BS 的第二光束入射界面入射到第二 BS; 其中, 第一 BS的第一光束入射界面与 第二光束入射界面位于第一 BS的分束界面的两侧;
所述调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号 在第一 BS内的分束界面处分束后相混合、 相干后得到解调后的输出光信号, 分别由第一 BS的两个出射界面射出;调制信号的第二偏振态的光信号和参考 信号的第二偏振态的光信号在第二 BS内的分束界面处分束后相混合、相干后 得到解调后的输出光信号, 分别由第二 BS的两个出射界面射出。
3. 如权利要求 1或 2所述的光混合器, 其特征在于,
所述 BS由两个直角棱镜粘合而成,且所述两个直角棱镜的粘合面上涂有 光, 其分光比为 50:50。
4. 如权利要求 1或 2所述的光混合器, 其特征在于,
所述 PBS由两个直角棱镜粘合而成, 且所述两个直角棱镜的粘合面上涂 有分束介质膜, 成为所述 PBS的分束界面用以将入射光束分为偏振态正交的 两束偏振光。
5. 一种光混合器, 其特征在于, 包括: 两个非偏振光束分束器 BS, 分 别为第一 BS、 第二 BS; 以及两个偏振光分束器 PBS , 分别为第一 PBS、 第 二 PBS; 其中,
第一 PBS, 其光束透射界面与第一 BS的第一光束入射界面相重合, 其光 束反射界面与第二 BS的第一光束入射界面相重合; 调制信号从第一 PBS的 光束入射界面中心位置射入第一 PBS后, 经第一 PBS内的分束界面的透射作 用后,所述调制信号中的第一偏振态的光信号从第一 BS的第一光束入射界面 入射到第一 BS; 所述调制信号经第一 PBS内的分束界面的反射作用后, 其中 第二偏振态的光信号从第二 BS的第一光束入射界面入射到第二 BS;第一 PBS 的光束入射界面作为所述光混合器的调制信号入射界面;
第二 PBS, 其光束透射界面与第一 BS的第二光束入射界面相重合, 其光 束反射界面与第二 BS的第二光束入射界面相重合; 参考信号从第二 PBS的 光束入射界面中心位置射入第二 PBS后, 经第二 PBS内的分束界面的透射作 用后,所述参考信号中的第一偏振态的光信号从第一 BS的第二光束入射界面 入射到第一 BS; 所述参考信号经第二 PBS内的分束界面的反射作用后, 其中 第二偏振态的光信号从第二 BS的第二光束入射界面入射到第二 BS; 其中, 第一 BS的第一光束入射界面与第二光束入射界面位于第一 BS的分束界面的 两侧; 第二 PBS的光束入射界面作为所述光混合器的参考信号入射界面; 所述调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号 在第一 BS内的分束界面处分束后相混合后得到解调后的输出光信号,分别由 第一 BS的两个出射界面射出;调制信号的第二偏振态的光信号和参考信号的 第二偏振态的光信号在第二 BS 内的分束界面处分束后相混合后得到解调后 的输出光信号, 分别由第二 BS的两个出射界面射出; 第一 BS的两个出射界 面分别作为所述光混合器的两个第一偏振态输出信号出射界面,第二 BS的两 个出射界面分别作为所述光混合器的两个第二偏振态输出信号出射界面。
6. 如权利要求 5所述的光混合器, 其特征在于, 所述 BS由两个直角棱 镜粘合而成, 且所述两个直角棱镜的粘合面上涂有分束介质膜, 成为所述 BS 所述 PBS由两个直角棱镜粘合而成, 且所述两个直角棱镜的粘合面上涂 有分束介质膜, 成为所述 PBS的分束界面用以将入射光束分为偏振态正交的 两束偏振光。
7. 一种相干光解调器, 其特征在于, 包括: 如权利要求 1-6所述的光混 合器以及 2路输入准直器和 4路输出准直器;
所述 2路输入准直器中的调制信号输入准直器的轴线方向垂直于所述光 混合器的调制信号入射界面; 所述调制信号输入准直器的一端作为所述相干 光解调器的调制信号输入端, 所述调制信号从所述相干光解调器的调制信号 输入端输入后, 所述调制信号输入准直器对所述调制信号进行准直; 所述调 制信号从所述调制信号输入准直器的另一端输出到所述光混合器的调制信号 入射界面;
所述 2路输入准直器中的参考信号输入准直器的轴线方向垂直于所述光 混合器的参考信号入射界面; 所述参考信号输入准直器的一端作为所述相干 光解调器的参考信号输入端, 所述参考信号从所述相干光解调器的参考信号 输入端输入后, 所述参考信号输入准直器对所述参考信号进行准直; 所述参 考信号从所述参考信号输入准直器的另一端输出到光混合器的参考信号入射 界面;
所述 4路输出准直器的轴线方向分别垂直于所述光混合器的两个第一偏 振态输出信号出射界面和两个第二偏振态输出信号出射界面, 用以对输出所 述光混合器的输出光信号进行准直; 所述光混合器输出的 4路输出光信号分 别从 4路输出准直器的一端输入, 另一端输出; 所述 4路输出准直器的另一 端分别作为所述相干光解调器的 4个光信号输出端。
8. 一种相干光接收机, 其特征在于, 包括: 如权利要求 7所述的相干光 解调器, PD接收器件阵列和信号放大及控制电路; 其中,
调制信号由所述相干光解调器的调制信号输入端输入, 参考信号由所述 相干光解调器的参考信号输入端输入; 所述调制信号经所述相干光解调器解 调后, 从所述相干光解调器的 4路输出端分别输出两个第一偏振态输出信号 和第二偏振态输出信号;
所述 PD接收器件阵列包括 4个光电二极管器件;所述 4个光电二极管器 件中的两个作为所述第一偏振态光信号接收器件, 对所述相干光解调器输出 端输出的两个所述第一偏振态输出信号分别进行接收, 转换为电信号后输入 到所述信号放大及控制电路;
所述 4个光电二极管器件中的另两个作为所述第二偏振态光信号接收器 件, 对所述相干光解调器输出端输出的两个所述第二偏振态输出信号分别进 行接收, 转换为电信号后输入到所述信号放大及控制电路;
所述信号放大及控制电路将两个所述第一偏振态光信号接收器件输出的 电信号差分为一路电信号; 所述信号放大及控制电路将两个所述第二偏振态 光信号接收器件输出的电信号差分为另一路电信号; 所述信号放大及控制电 路还对两路差分电信号进行放大和控制。
9. 一种应用光混合器进行信号解调的方法, 其特征在于, 所述光混合器 包括: 两个立方体的非偏振光束分束器 BS, 分别为第一 BS、 第二 BS; 以及 两个立方体的偏振光分束器 PBS, 分别为第一 PBS、 第二 PBS; 其中, 第一 PBS的光束透射界面与第一 BS的第一光束入射界面相重合, 第一 PBS的光 束反射界面与第二 BS的第一光束入射界面相重合; 第二 PBS的光束透射界 面与第一 BS的第二光束入射界面相重合, 第二 PBS的光束反射界面与第二 BS的第二光束入射界面相重合;
所述方法包括:
调制信号从第一 PBS的光束入射界面中心位置射入第一 PBS后, 经第一 PBS 内的分束界面的透射作用后, 所述调制信号中的第一偏振态的光信号从 第一 BS的第一光束入射界面入射到第一 BS; 所述调制信号经第一 PBS内的 分束界面的反射作用后,其中第二偏振态的光信号从第二 BS的第一光束入射 界面入射到第二 BS;所述第一 PBS的光束入射界面为所述光混合器的调制信 号入射界面; 与所述调制信号具有相同频率和相同振幅的参考信号从第二 PBS的光束 入射界面中心位置射入第二 PBS后,经第二 PBS内的分束界面的透射作用后, 所述参考信号中的第一偏振态的光信号从第一 BS 的第二光束入射界面入射 到第一 BS; 所述参考信号经第二 PBS内的分束界面的反射作用后, 其中第二 偏振态的光信号从第二 BS的第二光束入射界面入射到第二 BS; 其中, 第一 BS的第一光束入射界面与第二光束入射界面位于第一 BS的分束界面的两侧; 所述第二 PBS的光束入射界面为所述光混合器的参考信号入射界面;
所述调制信号的第一偏振态的光信号和参考信号的第一偏振态的光信号 在第一 BS内的分束界面处分束后相混合后得到解调后的输出光信号,分别由 第一 BS的两个出射界面射出;调制信号的第二偏振态的光信号和参考信号的 第二偏振态的光信号在第二 BS 内的分束界面处分束后相混合后得到解调后 的输出光信号, 分别由第二 BS的两个出射界面射出; 所述第一 BS的两个出 射界面为所述光混合器的两个第一偏振态输出信号出射界面,所述第二 BS的 两个出射界面为所述光混合器的两个第二偏振态输出信号出射界面。
10. 如权利要求 9 所述的应用光混合器进行信号解调的方法, 其特征在 于, 第一偏振态为 X方向偏振态, 第二偏振态为 Y方向偏振态; 或者
第一偏振态为 Y方向偏振态, 第二偏振态为 X方向偏振态。
PCT/CN2013/074558 2013-04-23 2013-04-23 光混合器以及应用光混合器进行信号解调的方法 WO2014172841A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074558 WO2014172841A1 (zh) 2013-04-23 2013-04-23 光混合器以及应用光混合器进行信号解调的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074558 WO2014172841A1 (zh) 2013-04-23 2013-04-23 光混合器以及应用光混合器进行信号解调的方法

Publications (1)

Publication Number Publication Date
WO2014172841A1 true WO2014172841A1 (zh) 2014-10-30

Family

ID=51790974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074558 WO2014172841A1 (zh) 2013-04-23 2013-04-23 光混合器以及应用光混合器进行信号解调的方法

Country Status (1)

Country Link
WO (1) WO2014172841A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126557A (en) * 1990-06-13 1992-06-30 U.S. Philips Corp. Device for optical heterodyne detection and optical component suitable for use in such a device
US5317382A (en) * 1990-11-29 1994-05-31 Kokusai Denshi Denwa Company, Ltd. Optical phase detection method with orthogonal polarization and phase compensation arrangement
CN101340243A (zh) * 2008-08-11 2009-01-07 福州高意通讯有限公司 一种实现dqpsk解调的方式及其装置
CN101860400A (zh) * 2009-04-03 2010-10-13 富士通株式会社 光接收机及光接收方法
EP2495893A1 (en) * 2011-03-04 2012-09-05 Karlsruher Institut für Technologie Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals
CN103257402A (zh) * 2013-04-23 2013-08-21 青岛海信宽带多媒体技术有限公司 光混合器以及应用光混合器进行信号解调的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126557A (en) * 1990-06-13 1992-06-30 U.S. Philips Corp. Device for optical heterodyne detection and optical component suitable for use in such a device
US5317382A (en) * 1990-11-29 1994-05-31 Kokusai Denshi Denwa Company, Ltd. Optical phase detection method with orthogonal polarization and phase compensation arrangement
CN101340243A (zh) * 2008-08-11 2009-01-07 福州高意通讯有限公司 一种实现dqpsk解调的方式及其装置
CN101860400A (zh) * 2009-04-03 2010-10-13 富士通株式会社 光接收机及光接收方法
EP2495893A1 (en) * 2011-03-04 2012-09-05 Karlsruher Institut für Technologie Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals
CN103257402A (zh) * 2013-04-23 2013-08-21 青岛海信宽带多媒体技术有限公司 光混合器以及应用光混合器进行信号解调的方法

Similar Documents

Publication Publication Date Title
US8538275B2 (en) Multimode optical communication
CN104459904B (zh) 一种单纤双向bosa结构
US7031574B2 (en) Plug-in module for providing bi-directional data transmission
US7573641B2 (en) Free-space optical hybrid
CN101916957B (zh) 一种应用于激光外差干涉仪的基于声光调制的2μm偏振正交激光发射系统
CN104991320A (zh) 一种多波长单纤双向光收发模块及其工作方法
JP2016535326A (ja) シングルファイバ結合の多波長光送受信モジュール
KR101492314B1 (ko) 멀티모드 광 통신
CN106908912A (zh) 用于高速收发系统的单纤双向bosa光学结构
US20040086214A1 (en) Optical circulator for bi-directional communication
CN104169762B (zh) 偏振束合成/分离器、偏振束合成/分离结构、光混合器、光学调制器模块和制造偏振束合成/分离器的方法
CN103257402B (zh) 光混合器以及应用光混合器进行信号解调的方法
US10983276B2 (en) Birefringent waveguide circuit having an optical hybrid
CN104838605B (zh) 一种光收发器及处理光信号的方法
CN111856655B (zh) 一种高隔离度偏振无关微型自由空间环行器
US11391896B2 (en) Optical input/output arrangement for photonic integrated circuits
CN104487878A (zh) 偏振分离器、偏振分离结构、光混合器和偏振分离器的制造方法
CN115225162B (zh) 一种基于往返式延迟干涉仪的集成自相干接收光芯片
WO2014172841A1 (zh) 光混合器以及应用光混合器进行信号解调的方法
CN208984906U (zh) 一种集成化自由空间光环形器
US7864433B1 (en) Free-space optical hybrid
CN218728159U (zh) 一种分光隔离器
CN109960045B (zh) 一种硅基集成的偏振旋转调制装置
CN201886166U (zh) 一种梳状分波器装置
CN202649537U (zh) 一种双光纤三向光波选择器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883339

Country of ref document: EP

Kind code of ref document: A1