WO2014171410A1 - Fuel injection pump - Google Patents

Fuel injection pump Download PDF

Info

Publication number
WO2014171410A1
WO2014171410A1 PCT/JP2014/060520 JP2014060520W WO2014171410A1 WO 2014171410 A1 WO2014171410 A1 WO 2014171410A1 JP 2014060520 W JP2014060520 W JP 2014060520W WO 2014171410 A1 WO2014171410 A1 WO 2014171410A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
barrel
plunger
opening
discharge
Prior art date
Application number
PCT/JP2014/060520
Other languages
French (fr)
Japanese (ja)
Inventor
信也 入口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480011300.8A priority Critical patent/CN105074192A/en
Priority to KR1020157023775A priority patent/KR20150114545A/en
Publication of WO2014171410A1 publication Critical patent/WO2014171410A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • F02M59/265Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders characterised by the arrangement or form of spill port of spill contour on the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0091Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using a special shape of fluid pass, e.g. throttles, ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/148Pistons, piston-rods or piston-rod connections the piston being provided with channels which are coacting with the cylinder and are used as a distribution member for another piston-cylinder unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion

Definitions

  • the present invention relates to a fuel injection pump.
  • a fuel injection pump used for an internal combustion engine that operates by injecting fuel into a combustion chamber, such as a diesel engine, supplies fuel pressurized to a high pressure during operation of the engine to a fuel injection valve attached to a cylinder head
  • a fuel injection device described in Patent Document 1 a plunger which is installed in a pump housing and pressurizes fuel by being driven in an axial direction, a cam shaft which rotates with the rotation of a crankshaft, and a plunger It has a tappet connected and facing the cam on the camshaft.
  • the fuel injection pump can supply fuel to the fuel injection valve side by pressurizing the fuel with a plunger operated by the rotation of the camshaft rotating with the rotation of the crankshaft.
  • the high pressure fuel in the pressurizing chamber constituted by the barrel and the plunger is the oil drain hole of the fuel formed in the barrel (a hole through which the fuel flows, oil passing It is discharged to the outside of the barrel at high speed from the hole.
  • the high-pressure fuel flows out from the pressurizing chamber into the oil drain hole, cavitation may occur due to a sharp drop in fuel pressure.
  • a deflector having a substantially conical protruding portion is provided in an oil discharge hole formed in a barrel to rectify the flow of high pressure fuel discharged through the oil discharge hole. In some cases, the occurrence of cavitation is suppressed.
  • an intake and exhaust port penetrating the peripheral wall portion is formed in a barrel to which a plunger is slidably inserted, and a deflector is fixed to the intake and exhaust port.
  • the fuel flowing through the oil outlet may be a high speed jet like jet due to the pressure difference with the fuel in the barrel. Cavitation may occur when a high-speed jet-like jet flows in the oil drain hole. If cavitation occurs and collides with the inner surface of the oil drainage hole or deflector, the cavitation may collapse and wear, that is, erosion may occur on the surface of the member, resulting in a decrease in product life.
  • This invention is made in view of the above, Comprising: It aims at providing the fuel injection pump which can suppress generation
  • a fuel injection pump includes a pump body, a barrel formed in a tubular shape and inserted into the pump body, and a peripheral wall portion of the barrel An oil passing hole for discharging the fuel in the barrel to the outside of the barrel, and slidably installed in the barrel to pressurize the fuel in the barrel, and A plunger for opening and closing an opening opened to the inner peripheral surface, straightening the fuel flowing in the oil passing hole, and opening the opening by the plunger when the fuel in the barrel is discharged from the oil passing hole And a deflector provided eccentrically in the oil passage on the opening start side in the case.
  • the deflector is disposed eccentrically on the opening start side when the opening is opened by the plunger when the fuel in the barrel is discharged from the oil passing hole, the internal flow when the fuel flows in the oil passing hole Can be made uniform. As a result, it is possible to suppress the local increase in the velocity of the fuel, and to suppress the occurrence of cavitation caused by the increase in the fuel velocity.
  • the oil passage hole penetrates the peripheral wall portion of the barrel in a direction inclined with respect to the radial direction of the barrel.
  • the oil passing hole is formed in the direction inclined with respect to the radial direction of the barrel, the ratio of the change of the opening area of the opening to the lift amount of the plunger can be increased.
  • the pressure difference between the fuel in the barrel and the fuel in the oil passing hole can be reduced in a short time, so that the fuel flowing into the oil passing hole can be prevented from becoming a jet flow. it can.
  • the occurrence of cavitation due to the fuel becoming a jet-like jet can be suppressed.
  • the oil passage hole has a plurality of downstream side holes defined around the deflector, and the downstream side holes are formed by opening the opening by the plunger.
  • the opening area in the flow direction of the fuel flowing through the oil passing hole is the opening area of the downstream side hole located on the open end side of the downstream side hole located on the opening side in the It is preferable to be large.
  • the opening areas of the plurality of wake side holes are made larger in the wake side holes located on the open end side than the wake side holes located on the opening start side of the opening.
  • the internal flow can be made uniform when the fuel flows into the wake side hole.
  • the fuel injection pump according to the present invention includes a pump body, a barrel formed in a tubular shape, and fitted in the pump body and sliding on the barrel
  • a plunger which is internally installed to pressurize the fuel in the barrel, discharges at least the fuel in the barrel to the outside of the barrel, and a peripheral wall portion of the barrel in a direction inclined with respect to the radial direction of the barrel And an oil passing hole through which the plunger opens and closes an opening opened on the inner circumferential surface of the barrel.
  • the oil passing hole is formed in the direction inclined with respect to the radial direction of the barrel, the ratio of the change of the opening area of the opening to the lift amount of the plunger can be increased.
  • the pressure difference between the fuel in the barrel and the fuel in the oil passing hole can be reduced in a short time, so that the fuel flowing into the oil passing hole can be prevented from becoming a jet flow. it can.
  • the occurrence of cavitation due to the fuel becoming a jet-like jet can be suppressed.
  • the fuel injection pump according to the present invention has the effect of being able to suppress the occurrence of cavitation.
  • FIG. 1 is a system diagram of a fuel injection system including a fuel injection pump according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the fuel injection pump shown in FIG.
  • FIG. 3 is a detailed view of part A of FIG.
  • FIG. 4 is a view as viewed in the direction of the arrows BB in FIG.
  • FIG. 5 is an explanatory view when fuel flows into the plunger chamber.
  • FIG. 6 is an explanatory view when the fuel is pressurized in the plunger chamber.
  • FIG. 7 is an explanatory view when the fuel is discharged from the plunger chamber.
  • FIG. 8 is an explanatory view of a state where the oil supply and discharge oil hole starts to open by the lead groove.
  • FIG. 1 is a system diagram of a fuel injection system including a fuel injection pump according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the fuel injection pump shown in FIG.
  • FIG. 3 is a detailed view of part A of FIG
  • FIG. 9 is a cross-sectional view of the plunger barrel of the fuel injection pump according to the second embodiment as viewed in the axial direction.
  • FIG. 10 is an explanatory view of the case where the oil supply and discharge oil holes are formed in the radial direction of the plunger barrel.
  • FIG. 11 is an explanatory view of the change of the opening area of the oil supply and discharge hole with respect to the change of the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG.
  • FIG. 12 is an explanatory view of the change in the opening area of the oil supply and discharge hole with respect to the change in the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG.
  • FIG. 1 is a system diagram of a fuel injection system including a fuel injection pump according to a first embodiment.
  • the fuel injection pump 20 according to the first embodiment is included in a fuel injection system 1 that injects fuel into a combustion chamber 6 of a diesel engine 5 that is an example of an internal combustion engine.
  • the fuel supply pump 12 is connected to a fuel tank 10 storing fuel, and the fuel in the fuel tank 10 flows through the fuel injection system 1 by the fuel supply pump 12. It is possible to pump to the downstream side in the flow direction of.
  • a fuel filter 13 for removing impurities by filtering the fuel is disposed on the downstream side of the fuel pump 12, and the fuel main pipe 14 located on the downstream side of the fuel filter 13 is used for the cylinders of the diesel engine 5.
  • a plurality of fueling branch pipes 15 are branched.
  • a plurality of fuel injection pumps 20 are connected to each fueling branch pipe 15.
  • fuel injection valves 17 are disposed for each cylinder, and each fuel injection pump 20 is connected to the fuel injection valves 17 via injection pipes 16, respectively.
  • FIG. 2 is a cross-sectional view of the fuel injection pump shown in FIG.
  • the fuel injection pump 20 has a pump case 25 which is a pump body, and a plunger barrel 30 which is a cylindrical barrel is internally provided inside the pump case 25.
  • a plurality of oil supply / discharge oil holes (also referred to as holes through which fuel flows, oil passage holes) 35 which are holes penetrating the peripheral wall portion 31 of the plunger barrel 30 are formed in the plunger barrel 30.
  • the oil supply / discharge oil holes 35 are capable of supplying fuel from the outside of the plunger barrel 30 to the inside of the plunger barrel 30 and discharging the fuel from the inside of the plunger barrel 30 to the outside of the plunger barrel 30. It is an oil hole. That is, the oil supply / discharge oil hole 35 doubles as an oil supply hole for supplying fuel into the plunger barrel 30 and an oil discharge hole for discharging the fuel in the plunger barrel 30.
  • an oil supply and discharge oil chamber 26 into which the fuel supplied from the oil supply pump 12 via the oil supply branch pipe 15 and the like flows is formed on the inner surface side.
  • the oil drain hole 35 has an opening on the outer peripheral surface side of the plunger barrel 30 open to the oil drain chamber 26, and between the oil drain chamber 26 and the inside of the plunger barrel 30. It is possible to refuel and discharge fuel.
  • a plunger 45 is provided inside the plunger barrel 30 so as to be reciprocally slidable in the axial direction of the cylinder to pressurize the fuel in the plunger barrel 30, and to the inner peripheral surface of the plunger barrel 30 at the oil supply / discharge oil hole 35.
  • a plunger 45 is provided to open and close the opened opening 36 (see FIG. 3).
  • a discharge valve 55 and a valve seat 56 of the discharge valve 55 are disposed on one end side of the plunger barrel 30, and further, on the opposite side of the discharge valve 55 on which the plunger barrel 30 is located.
  • the discharge connector 60 is disposed.
  • the discharge valve 55 is disposed to be able to reciprocate in the axial direction of the plunger barrel 30 in the same manner as the plunger 45, and a biasing force is applied to the valve seat 56 by the discharge valve spring 57. .
  • the discharge valve 55 reciprocates in this manner and closely adheres to the valve seat 56, so that communication and shutoff between the inside of the plunger barrel 30 and the inside of the discharge connector 60 can be switched.
  • a fuel discharge port 61 for discharging the fuel flowing from the plunger barrel 30 side is formed on the end of the discharge connector 60 opposite to the side where the valve seat 56 is located.
  • the other end side of the injection pipe 16 connected to the fuel injection valve 17 is connected to the discharge connector 60, and the fuel discharged from the fuel discharge port 61 can be supplied to the fuel injection valve 17.
  • the plunger 45 provided in the plunger barrel 30 is provided with an upper end surface 45f, which is an end surface on which the valve seat 56 is located, a surface of the valve seat 56 facing the plunger 45, and an inner surface of the plunger barrel 30.
  • a plunger chamber 50 is defined to pressurize.
  • a lead groove 46 which is an oil passage through which fuel passes, is formed on the outer peripheral surface.
  • the lead groove 46 is formed in a groove shape recessed from the other portion of the outer peripheral surface of the plunger 45, and is formed from the upper end surface 45f of the plunger 45 to a predetermined range of the outer peripheral surface. More specifically, the lead groove 46 is positioned on the upper lead 47 which is a groove wall located on the upper end surface 45 f side, and on the opposite end side opposite to the side where the upper end surface 45 f is located in the plunger 45 And a lower lead 48 which is a groove wall.
  • a fuel cam 65 for transmitting a force for causing the plunger 45 to reciprocate using the power of the diesel engine 5 is disposed.
  • the fuel cam 65 rotates in conjunction with the crankshaft by transmitting to the fuel cam 65 a part of the motive power output by the rotation of the crankshaft (not shown) of the diesel engine 5 via the plurality of gears. It is possible.
  • a tappet 66 is connected to an end of the plunger 45 on the fuel cam 65 side.
  • the tappet 66 is disposed so as to be capable of reciprocating with the plunger 45, and a biasing force in the direction to approach the fuel cam 65 is applied by the tappet spring 68. That is, the plunger 45 is biased by the tappet spring 68 in a direction to move away from the valve seat 56 and approach the fuel cam 65.
  • a tappet roller 67 in contact with the fuel cam 65 is disposed at a portion of the tappet 66 facing the fuel cam 65.
  • the tappet roller 67 is rotatably disposed so that the rotation axis is parallel to the rotation axis of the fuel cam 65, and is pressed against the fuel cam 65 by the biasing force of the tappet spring 68 applied to the tappet 66. In contact with the fuel cam 65.
  • FIG. 3 is a detailed view of part A of FIG.
  • a deflector 40 that rectifies the fuel flowing in the oil supply and discharge hole 35 is provided in the oil supply and discharge oil hole 35.
  • the deflector 40 is provided to a deflector unit 43 in which the deflector 40 and an attachment portion 44 for attaching the deflector 40 to the plunger barrel 30 are integrated.
  • the deflector unit 43 is attached to the plunger barrel 30 by attaching a mounting portion 44 with a screw 33 from the outer peripheral surface side of the plunger barrel 30 in a direction in which the deflector 40 is installed in the oil supply / discharge hole 35.
  • the deflector 40 extends in a direction from the outer peripheral surface side to the inner peripheral surface side of the plunger barrel 30 and is provided in the oil supply / discharge oil hole 35, and the end on the inner peripheral surface side is the oil supply / discharge oil hole 35. It does not go out into the plunger barrel 30 from the opening 36, but is located in the oil supply / discharge oil hole 35.
  • a tip end portion 41 which is a predetermined range from the end portion on the inner peripheral surface side of the plunger barrel 30 in the deflector 40 to the outer peripheral surface side has a substantially conical shape whose diameter decreases toward the inner peripheral surface side of the plunger barrel 30 It is in the shape of a shape.
  • the height direction of the front end portion 41 of the deflector 40 is the formation direction of the oil supply / discharge oil hole 35, the apex is located on the inner peripheral surface side of the plunger barrel 30, and the bottom surface is located on the outer peripheral surface side of the plunger barrel 30.
  • the apex is formed in a curved surface shape.
  • the deflector 40 is eccentric to the opening start side when the opening portion 36 is opened by the plunger 45 when the fuel in the plunger barrel 30 is discharged from the oil supply and discharge hole 35 in the reciprocating direction of the plunger 45 .
  • the plunger 45 moves from the fuel cam 65 side to the direction of the plunger chamber 50, the oil supply / discharge oil hole 35 is in a state where the lead groove 46 faces the opening 36 of the oil supply / discharge oil hole 35.
  • the fuel flowing through the lead groove 46 is discharged to the oil supply and discharge chamber 26 side. Therefore, the deflector 40 is eccentric to the side of the fuel cam 65 which is the opening start side when the opening 36 is opened by the plunger 45.
  • the portion on the discharge valve 55 side of the portion on the fuel cam 65 side is a flow path in the direction of reciprocation of the plunger 45 The width is getting bigger.
  • FIG. 4 is a view as viewed in the direction of the arrows BB in FIG.
  • the oil supply and discharge oil holes 35 have a plurality of wake side holes 37 defined around the deflector 40.
  • the downstream side holes 37 are respectively formed as holes along the direction in which the oil supply and discharge oil holes 35 are formed, and the plurality of downstream side holes 37 are formed around the deflector 40 as the downstream side holes.
  • Plural pieces are formed side by side along the circumferential direction of 37. That is, in the oil supply and discharge oil hole 35, a plurality of downstream flow holes 37 are open to the oil supply and discharge oil chamber 26.
  • a plurality of downstream holes 37 formed in this manner are downstream holes located closer to the end of the opening than the downstream holes 37 located on the opening start side when the opening 36 is opened by the plunger 45.
  • the part 37 has a larger opening area when viewed in the flow direction of the fuel flowing through the oil supply and discharge hole 35. That is, the downstream side hole 37 has an opening area in the downstream side hole 37 located closer to the discharge valve 55 than the downstream side hole 37 located closer to the fuel cam 65. It is getting bigger.
  • the fuel injection pump 20 according to the first embodiment is configured as described above, and the operation thereof will be described below.
  • the fuel in the fuel tank 10 is filtered by the fuel filter 13 by driving the fuel supply pump 12 and supplied to the fuel injection pump 20.
  • the fuel supplied to the fuel injection pump 20 flows into the oil supply and discharge oil chamber 26 formed between the pump case 25 and the plunger barrel 30.
  • the fuel injection pump 20 rotates the fuel cam 65 in conjunction with the crankshaft.
  • the tappet roller 67 pressed against the fuel cam 65 by the biasing force from the tappet spring 68 moves in the direction of the reciprocating movement of the plunger 45 along the shape of the surface of the fuel cam 65.
  • the tappet 66 provided with the tappet roller 67 and the plunger 45 connected with the tappet 66 also reciprocate with the tappet roller 67.
  • the plunger 45 of the fuel injection pump 20 reciprocates in conjunction with the rotation of the crankshaft of the diesel engine 5, and the position at the time of the reciprocation is a position corresponding to the rotational position of the crankshaft.
  • the fuel injection pump 20 reciprocates the plunger 45 to take in the fuel that has flowed into the oil supply and discharge chamber 26 from the oil supply and discharge hole 35 into the plunger chamber 50, and pressurizes the fuel in the plunger chamber 50 to discharge the fuel.
  • the discharge valve 55 is normally in a state in which the inside of the plunger barrel 30 and the inside of the discharge connector 60 are shut off by the biasing force of the discharge valve spring 57, but the force applied to the discharge valve 55 from pressurized fuel When the pressure of the discharge valve spring 57 becomes larger than that of the discharge valve spring 57, the discharge valve 55 separates from the valve seat 56.
  • the discharge valve 55 is in communication with the inside of the plunger barrel 30 and the inside of the discharge connector 60, and the fuel pressurized by the plunger chamber 50 flows into the discharge connector 60.
  • the high-pressure fuel flowing into the discharge connector 60 is discharged from the fuel discharge port 61, supplied to the fuel injection valve 17 through the injection pipe 16, and injected from the fuel injection valve 17 into the combustion chamber 6 of the diesel engine 5.
  • the fuel injected into the combustion chamber 6 burns in the combustion chamber 6, and the combustion of the fuel drives the diesel engine 5.
  • the fuel injection pump 20 supplies high-pressure fuel to the fuel injection valve 17 by the reciprocating movement of the plunger 45 in the plunger barrel 30 as described above. Next, the flow of fuel relative to the movement of the plunger 45 explain.
  • FIG. 5 is an explanatory view when fuel flows into the plunger chamber.
  • the plunger 45 opens the opening 36 of the oil supply / discharge oil hole 35, and the plunger 45 faces the fuel cam 65 in a state where the oil supply / discharge oil hole 35 and the plunger chamber 50 are in communication.
  • the plunger chamber 50 is moved to a negative pressure with respect to the oil supply and discharge chamber 26. That is, the direction of the fuel cam 65 is such that the upper end surface 45 f of the plunger 45 is positioned closer to the fuel cam 65 than the end on the discharge valve 55 side of the opening 36 of the oil supply / discharge oil hole 35 of the plunger barrel 30.
  • FIG. 6 is an explanatory view when the fuel is pressurized in the plunger chamber.
  • the plunger 45 moves in the direction of the discharge valve 55 in a state where the fuel flows into the plunger chamber 50, and further moves in the direction of the discharge valve 55 in a state where the opening portion 36 of the oil supply and discharge oil hole 35 is closed.
  • the fuel in the plunger chamber 50 is pressurized. In this case, the fuel in the plunger chamber 50 is pressurized without a pressure relief, so the fuel is at a high pressure.
  • FIG. 7 is an explanatory view when the fuel is discharged from the plunger chamber.
  • the lead groove 46 of the plunger 45 is engaged with the oil supply / discharge oil hole 35. Since the lead groove 46 is in communication with the upper end surface 45 f of the plunger 45, high pressure fuel is flowing through the lead groove 46 in the same manner as in the plunger chamber 50. For this reason, when the opening 36 of the oil supply / discharge hole 35 is opened by the lead groove 46 covering the oil supply / discharge oil hole 35, high pressure fuel flowing through the lead groove 46 is contained in the oil supply / discharge oil hole 35. To flow.
  • the fuel that has flowed into the oil supply and discharge oil holes 35 is rectified by the deflector 40 and discharged to the outside of the plunger 45. Thereby, the fuel in the plunger barrel 30 returns to the oil supply and discharge chamber 26 through the oil supply and discharge oil hole 35.
  • the fuel vigorously flows into the oil supply and drain hole 35 from the opening start side of the oil supply and drain hole 35, but the deflector 40 Since the fuel is disposed eccentrically in the oil supply and discharge hole 35, the fuel flowing into the oil supply and discharge oil hole 35 flows while the flow rate in the oil supply and discharge oil hole 35 is adjusted.
  • FIG. 8 is an explanatory view of a state where the oil supply and discharge oil hole starts to open by the lead groove.
  • the oil supply / discharge oil hole 35 first opens to the inside of the lead groove 46 from the vicinity of the end on the fuel cam 65 side in the opening 36, and the fuel flowing in the lead groove 46 is the fuel cam 65 in the The oil flows into the oil supply and drainage hole 35 from the vicinity of the side end.
  • the fuel flowing in the lead groove 46 in this case has a high pressure
  • the high pressure fuel flows into the oil supply and discharge oil holes 35. That is, when the oil supply and discharge oil hole 35 starts to open, more high pressure fuel flows in a portion near the fuel cam 65 in the oil supply and discharge oil hole 35.
  • the width of the flow passage in the direction of the reciprocation of the plunger 45 becomes larger at the discharge valve 55 side than at the fuel cam 65 side in the oil supply / discharge oil hole 35 Therefore, as the shape of the oil supply and discharge oil holes 35, the fuel tends to flow more toward the discharge valve 55.
  • the downstream side hole 37 formed in the oil supply / discharge oil hole 35 has the downstream side hole 37 closer to the discharge valve 55 than the downstream side hole 37 closer to the fuel cam 65. Since the opening area is large, the flow of the fuel is more facilitated in the wake side hole 37 closer to the discharge valve 55 in the wake side hole 37.
  • the high-pressure fuel flowing in the oil supply and discharge oil hole 35 immediately after the opening 36 starts to open flows more to the portion near the fuel cam 65 in the oil supply and oil drainage hole 35.
  • the tendency of the flow of the fuel due to the shape and the tendency of the flow of the fuel due to the opening of the oil supply and discharge oil holes 35 are in a contradictory state.
  • the flow of fuel flowing in the oil supply and discharge oil hole 35 cancels the tendency of the flow due to both factors, and the same amount of fuel flows between the position near the fuel cam 65 and the position near the discharge valve 55 As a result, high-pressure fuel flows in the oil supply and discharge oil hole 35 immediately after the opening 36 starts to open, without generation of drift. As a result, the oil supply / discharge oil holes 35 can equalize the internal flow and discharge the fuel in the plunger barrel 30 to the outside of the plunger barrel 30, that is, the oil supply / discharge oil chamber 26 side.
  • the deflector 40 is disposed eccentrically to the opening start side when the opening 36 is opened by the plunger 45 when the fuel in the plunger barrel 30 is discharged from the oil supply and discharge oil hole 35.
  • the internal flow when the fuel flows into the oil supply and discharge oil holes 35 can be made uniform.
  • it is possible to suppress the local increase in the velocity of the fuel and to suppress the occurrence of cavitation caused by the increase in the fuel velocity.
  • the occurrence of erosion on the surface of the member due to the collapse of the cavitation can be suppressed, and a decrease in product life can be suppressed.
  • the plurality of downstream flow holes 37 included in the oil supply and discharge oil holes 35 are downstream of the downstream flow holes 37 located on the opening start side of the opening 36 and are located downstream of the downstream flow holes 37. Since the opening area is larger, the internal flow when the fuel flows in the wake side hole 37 can be made uniform. As a result, it is possible to more reliably suppress the local increase in the velocity of the fuel, and to more reliably suppress the occurrence of cavitation.
  • the fuel injection pump 20 according to the second embodiment has substantially the same configuration as the fuel injection pump 20 according to the first embodiment, but is characterized in that the oil supply and discharge oil holes 35 of the plunger barrel 30 are inclined.
  • the other configuration is the same as that of the first embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
  • FIG. 9 is a cross-sectional view of the plunger barrel of the fuel injection pump according to the second embodiment as viewed in the axial direction.
  • the plunger barrel 30 penetrates the peripheral wall 31 and at least the fuel in the plunger barrel 30 is the plunger barrel 30.
  • a plurality of oil supply and discharge oil holes 35 which can be discharged to the outside are formed.
  • the oil supply and discharge oil holes 35 are formed eccentrically from the center of the plunger barrel 30.
  • the oil supply / discharge oil hole 35 is a hole which is perpendicular to the axial center direction of the plunger barrel 30 formed in a cylindrical shape, and which penetrates the peripheral wall 31 in a direction inclined with respect to the radial direction of the plunger barrel 30 It is formed.
  • a deflector 40 is disposed concentrically with the axial center of the oil supply / discharge hole 35 in the oil supply / discharge oil hole 35 formed in this manner.
  • the fuel injection pump 20 according to the second embodiment is configured as described above, and the operation thereof will be described below.
  • the plunger 45 rotates in conjunction with the rotation of the fuel cam 65 in conjunction with the crankshaft of the diesel engine 5. Reciprocate in the plunger barrel 30.
  • the plunger 45 opens and closes the opening 36 of the oil supply / discharge oil hole 35, sucks the fuel into the plunger chamber 50, pressurizes the fuel and supplies it to the fuel injection valve 17 side.
  • the fuel is discharged from the oil supply and discharge port 35 or the like.
  • the oil supply and discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30, the area of the opening 36 is larger than the opening area of the oil supply and discharge oil hole 35 in the formation direction. It is getting bigger. Therefore, in the fuel injection pump 20 according to the second embodiment, the amount of change in the opening area of the opening 36 with respect to the amount of movement of the plunger 45 when the plunger 45 is reciprocated is large.
  • FIG. 10 is an explanatory view of the case where the oil supply and discharge oil holes are formed in the radial direction of the plunger barrel.
  • FIG. 11 is an explanatory view of the change of the opening area of the oil supply and discharge hole with respect to the change of the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG. That is, as shown in FIG. 10, when the oil supply / discharge oil hole 35 is formed in a direction along the radial direction of the plunger barrel 30, the shape of the opening 36 is a shape as viewed in the formation direction of the oil supply / discharge oil hole 35. It becomes an approximate shape. For this reason, the area of the opening 36 is approximately equal to the opening area of the oil supply and discharge hole 35 in the same direction.
  • the opening area of the opening 36 changes the lift amount which is the movement amount of the plunger 45 as shown in FIG. Change as you do. That is, as the lift amount of the plunger 45 increases, the opening area of the opening 36 also increases.
  • the shape of the opening 36 is the same as the shape viewed in the formation direction of the oil supply / discharge oil hole 35.
  • the circumferential size of the plunger barrel 30 is increased. For this reason, the area of the opening 36 is larger than the opening area of the oil supply and discharge hole 35 in the formation direction.
  • FIG. 12 is an explanatory view of the change in the opening area of the oil supply and discharge hole with respect to the change in the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG.
  • the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30
  • the size of the opening 36 in the moving direction of the plunger 45 corresponds to the diameter of the plunger barrel 30 It is the same size as when formed in the direction along the direction. Therefore, the distance from the fully closed position to the fully open position of the opening 36 with respect to the movement range of the plunger barrel 30 is constant regardless of the direction of the oil supply and discharge oil holes 35 with respect to the radial direction of the plunger barrel 30.
  • the change of the opening area of the opening portion 36 with respect to the change of the lift amount of the plunger 45 becomes large. That is, in the fuel injection pump 20 according to the second embodiment, when the lift amount of the plunger 45 is increased from the state where the opening 36 is closed to open the opening 36 of the oil supply / discharge oil hole 35, As compared with the case where the oil supply and discharge holes 35 are formed in the radial direction, the change of the opening area to the change of the lift amount becomes significantly large.
  • the opening area increase rate of the opening 36 per unit lift is large. Therefore, when the high pressure fuel in the plunger barrel 30 is discharged by the oil drain hole 35 by making the opening 36 of the oil drain hole 35 face the lead groove 46 of the plunger 45 and opening the opening 36, The fuel in the plunger barrel 30 can be flowed into the oil supply and discharge port 35 in a short time. Thereby, the pressure difference between the fuel of the plunger barrel 30 and the fuel in the oil supply and discharge port 35 can be reduced in a short time and discharged.
  • the ratio of the change of the opening area to the lift amount of the plunger 45 Can be increased.
  • the pressure difference between the fuel in the plunger barrel 30 and the fuel in the oil supply / discharge port 35 can be reduced in a short time, so that the fuel flowing into the oil supply / discharge port 35 becomes a jet flow.
  • the occurrence of cavitation due to the fuel becoming a jet-like jet can be suppressed.
  • the occurrence of erosion can be suppressed, and a decrease in product life can be suppressed.
  • the deflector 40 is disposed concentrically with the axial center of the oil supply / discharge oil hole 35, but the deflector 40 is the same as the fuel injection pump 20 according to the first embodiment.
  • the oil supply and discharge oil holes 35 may be eccentric. Even when the deflector 40 is disposed concentrically with the axis of the oil supply / discharge hole 35 as in the second embodiment, the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30. Thus, the occurrence of cavitation can be suppressed, and the occurrence of cavitation can be further suppressed when the deflector 40 is eccentric to the oil supply / discharge hole 35.
  • the oil supply and discharge oil holes 35 are formed in a direction inclined with respect to the radial direction of the plunger barrel 30 to make the deflector 40 eccentric, and further, from the wake side hole 37 located on the opening start side of the opening 36 The occurrence of cavitation can be suppressed more effectively by increasing the opening area of the wake-side hole 37 located on the open end side.
  • the fuel injection pump 20 may appropriately combine the configurations and the like used in the above-described embodiment and the modification, or may use a configuration other than the above-described configuration.
  • the deflector 40 is eccentrically installed in the oil supply / discharge hole 35, or the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30.
  • the occurrence of cavitation can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Provided is a fuel injection pump capable of suppressing the occurrence of cavitation. The fuel injection pump comprises: a pump case; a plunger barrel (30) formed in a tube shape and housed inside the pump case; an oil supply/discharge hole (35) penetrating a peripheral wall section (31) of the plunger barrel (30) and discharging at least the fuel inside the plunger barrel (30) to outside the plunger barrel (30); a plunger (45) slidably arranged inside the plunger barrel (30), pressurizing the fuel inside the plunger barrel (30), and opening and closing an opening (36) that opens to the inner peripheral surface of the plunger barrel (30) in the oil supply/discharge hole (35); and a deflector (40) rectifying fuel flowing inside the oil supply/discharge hole (35), and arranged inside the oil supply/discharge hole (35), positioned eccentrically towards the opening commencement side when the opening section (36) is opened using the plunger (45) during discharge of fuel inside the plunger barrel (30) from the oil supply/discharge hole (35).

Description

燃料噴射ポンプFuel injection pump
 本発明は、燃料噴射ポンプに関する。 The present invention relates to a fuel injection pump.
 ディーゼルエンジン等、燃料を燃焼室内に噴射することによって運転をする内燃機関に用いられる燃料噴射ポンプは、エンジンの運転時に高圧に加圧した燃料を、シリンダヘッドに取り付けられる燃料噴射弁に対して供給することが可能になっている。例えば、特許文献1に記載された燃料噴射装置では、ポンプハウジングに内設されて軸方向に駆動することにより燃料を加圧するプランジャと、クランク軸の回転に伴って回転するカム軸と、プランジャに連結され、カム軸上のカムと向かい合うタペットを有している。これにより、エンジンの運転時には、燃料噴射ポンプは、クランク軸の回転に伴って回転するカム軸の回転によって作動するプランジャで燃料を加圧することにより、燃料噴射弁側に燃料を供給することができる。 A fuel injection pump used for an internal combustion engine that operates by injecting fuel into a combustion chamber, such as a diesel engine, supplies fuel pressurized to a high pressure during operation of the engine to a fuel injection valve attached to a cylinder head It is possible to For example, in a fuel injection device described in Patent Document 1, a plunger which is installed in a pump housing and pressurizes fuel by being driven in an axial direction, a cam shaft which rotates with the rotation of a crankshaft, and a plunger It has a tappet connected and facing the cam on the camshaft. Thus, during operation of the engine, the fuel injection pump can supply fuel to the fuel injection valve side by pressurizing the fuel with a plunger operated by the rotation of the camshaft rotating with the rotation of the crankshaft. .
 また、このような燃料噴射ポンプでは、燃料噴射終了後、バレルとプランジャとにより構成される加圧室内の高圧燃料は、バレルに形成される燃料の排油孔(燃料が流通する孔、通油孔とも言う。)から高速でバレルの外側に排出される。この場合、高圧の燃料が加圧室内から排油孔内に流れ出る際に、燃料圧力が急激に低下することによってキャビテーションが発生することがある。このため、従来の燃料噴射ポンプの中には、バレルに形成される排油孔内に略円錐状の突起部分を有するデフレクタを設け、排油孔を通って排出される高圧燃料の流れを整流することにより、キャビテーションの発生を抑えているものがある。例えば、特許文献2に記載された燃料噴射ポンプでは、プランジャが摺動自在に挿入されるバレルに、その周壁部を貫通する吸排ポートを形成し、吸排ポートにデフレクタを固定している。 Further, in such a fuel injection pump, after completion of fuel injection, the high pressure fuel in the pressurizing chamber constituted by the barrel and the plunger is the oil drain hole of the fuel formed in the barrel (a hole through which the fuel flows, oil passing It is discharged to the outside of the barrel at high speed from the hole. In this case, when the high-pressure fuel flows out from the pressurizing chamber into the oil drain hole, cavitation may occur due to a sharp drop in fuel pressure. For this reason, in a conventional fuel injection pump, a deflector having a substantially conical protruding portion is provided in an oil discharge hole formed in a barrel to rectify the flow of high pressure fuel discharged through the oil discharge hole. In some cases, the occurrence of cavitation is suppressed. For example, in the fuel injection pump described in Patent Document 2, an intake and exhaust port penetrating the peripheral wall portion is formed in a barrel to which a plunger is slidably inserted, and a deflector is fixed to the intake and exhaust port.
特開2002-54530号公報JP 2002-54530 A 特開2000-179428号公報JP 2000-179428 A
 しかしながら、燃料噴射の終了時に高圧燃料が排油孔へ流れる場合、排油孔を流れる燃料が、バレル内の燃料との圧力差により、高速のジェット状の噴流になることがある。排油孔内に高速のジェット状の噴流が流れると、キャビテーションが発生することがある。キャビテーションが発生して排油孔の内面やデフレクタに衝突した場合、キャビテーションが崩壊し、部材表面に損耗、即ちエロージョンが発生し、製品寿命が低下する恐れがある。 However, when high pressure fuel flows to the oil outlet at the end of fuel injection, the fuel flowing through the oil outlet may be a high speed jet like jet due to the pressure difference with the fuel in the barrel. Cavitation may occur when a high-speed jet-like jet flows in the oil drain hole. If cavitation occurs and collides with the inner surface of the oil drainage hole or deflector, the cavitation may collapse and wear, that is, erosion may occur on the surface of the member, resulting in a decrease in product life.
 また、燃料噴射の終了時において、プランジャが作動することによって排油孔の開き始めた直後では、排油孔内を流れる燃料の流れは偏っているため、排油孔内では、局所的に燃料速度が速くなる部分が生じやすくなる。燃料噴射ポンプは、このような局所的な燃料速度の上昇によっても排油孔内でキャビテーションが発生する虞があり、このキャビテーションによってエロージョンが発生する恐れがある。 In addition, at the end of fuel injection, immediately after opening of the oil drain hole by opening of the oil drain hole by actuation of the plunger, the flow of fuel flowing in the oil drain hole is biased. It becomes easy to produce parts where the speed is faster. In the fuel injection pump, cavitation may occur in the oil drain hole even by such a local increase in fuel velocity, and this cavitation may cause erosion.
 本発明は、上記に鑑みてなされたものであって、キャビテーションの発生を抑えることのできる燃料噴射ポンプを提供することを目的とする。 This invention is made in view of the above, Comprising: It aims at providing the fuel injection pump which can suppress generation | occurrence | production of a cavitation.
 上述した課題を解決し、目的を達成するために、本発明に係る燃料噴射ポンプは、ポンプ本体と、筒状に形成されて前記ポンプ本体に内装されるバレルと、前記バレルの周壁部を貫通し、少なくとも前記バレル内の燃料を前記バレルの外に排出させる通油孔と、前記バレルに摺動自在に内設されて前記バレル内の燃料を加圧すると共に、前記通油孔における前記バレルの内周面に開口した開口部の開閉を行うプランジャと、前記通油孔内を流れる燃料を整流すると共に、前記バレル内の燃料の前記通油孔からの排出時に前記開口部を前記プランジャで開く場合における開き始め側に偏心して前記通油孔に内設されるデフレクタと、を備えることを特徴とする。 In order to solve the problems described above and to achieve the object, a fuel injection pump according to the present invention includes a pump body, a barrel formed in a tubular shape and inserted into the pump body, and a peripheral wall portion of the barrel An oil passing hole for discharging the fuel in the barrel to the outside of the barrel, and slidably installed in the barrel to pressurize the fuel in the barrel, and A plunger for opening and closing an opening opened to the inner peripheral surface, straightening the fuel flowing in the oil passing hole, and opening the opening by the plunger when the fuel in the barrel is discharged from the oil passing hole And a deflector provided eccentrically in the oil passage on the opening start side in the case.
 この発明では、デフレクタを、バレル内の燃料の通油孔からの排出時に開口部をプランジャで開く場合における開き始め側に偏心して配設するため、通油孔内に燃料が流れる際の内部流動を均一化することができる。この結果、燃料の速度が局所的に大きくなることを抑制することができ、燃料速度が上昇することに起因するキャビテーションの発生を抑えることができる。 In this invention, since the deflector is disposed eccentrically on the opening start side when the opening is opened by the plunger when the fuel in the barrel is discharged from the oil passing hole, the internal flow when the fuel flows in the oil passing hole Can be made uniform. As a result, it is possible to suppress the local increase in the velocity of the fuel, and to suppress the occurrence of cavitation caused by the increase in the fuel velocity.
 また、上記燃料噴射ポンプにおいて、前記通油孔は、前記バレルの径方向に対して傾斜する向きで前記バレルの周壁部を貫通することが好ましい。 In the fuel injection pump, preferably, the oil passage hole penetrates the peripheral wall portion of the barrel in a direction inclined with respect to the radial direction of the barrel.
 この発明では、通油孔を、バレルの径方向に対して傾斜する向きで形成するため、プランジャのリフト量に対する開口部の開口面積の変化の割合を大きくすることができる。これにより、バレル内の燃料と通油孔内の燃料との圧力差を、短時間で低減させることができるため、通油孔に流入する燃料がジェット状の噴流になることを抑制することができる。この結果、燃料がジェット状の噴流になることに起因するキャビテーションの発生を抑えることができる。 In the present invention, since the oil passing hole is formed in the direction inclined with respect to the radial direction of the barrel, the ratio of the change of the opening area of the opening to the lift amount of the plunger can be increased. Thus, the pressure difference between the fuel in the barrel and the fuel in the oil passing hole can be reduced in a short time, so that the fuel flowing into the oil passing hole can be prevented from becoming a jet flow. it can. As a result, the occurrence of cavitation due to the fuel becoming a jet-like jet can be suppressed.
 また、上記燃料噴射ポンプにおいて、前記通油孔は、前記デフレクタの周囲に複数の後流側孔部が画成されており、前記後流側孔部は、前記開口部を前記プランジャで開く場合における開き始め側に位置する前記後流側孔部よりも、開き終わり側に位置する前記後流側孔部の方が、前記通油孔を流れる燃料の流れ方向に見た場合における開口面積が大きくなっていることが好ましい。 In the fuel injection pump, the oil passage hole has a plurality of downstream side holes defined around the deflector, and the downstream side holes are formed by opening the opening by the plunger. The opening area in the flow direction of the fuel flowing through the oil passing hole is the opening area of the downstream side hole located on the open end side of the downstream side hole located on the opening side in the It is preferable to be large.
 この発明では、複数の後流側孔部の開口面積を、開口部の開き始め側に位置する後流側孔部よりも、開き終わり側に位置する後流側孔部の方を大きくすることにより、後流側孔部内に燃料が流れる際の内部流動を均一化することができる。この結果、燃料の速度が局所的に大きくなることをより確実に抑制することができ、キャビテーションの発生をより確実に抑えることができる。 In the present invention, the opening areas of the plurality of wake side holes are made larger in the wake side holes located on the open end side than the wake side holes located on the opening start side of the opening. As a result, the internal flow can be made uniform when the fuel flows into the wake side hole. As a result, it is possible to more reliably suppress the local increase in the velocity of the fuel, and to more reliably suppress the occurrence of cavitation.
 また、上述した課題を解決し、目的を達成するために、本発明に係る燃料噴射ポンプは、ポンプ本体と、筒状に形成されて前記ポンプ本体に内装されるバレルと、前記バレルに摺動自在に内設されて前記バレル内の燃料を加圧するプランジャと、少なくとも前記バレル内の燃料を前記バレルの外に排出させると共に、前記バレルの径方向に対して傾斜する向きで前記バレルの周壁部を貫通し、前記プランジャにより、前記バレルの内周面に開口した開口部の開閉が行われる通油孔と、を備えることを特徴とする。 Further, in order to solve the problems described above and achieve the object, the fuel injection pump according to the present invention includes a pump body, a barrel formed in a tubular shape, and fitted in the pump body and sliding on the barrel A plunger, which is internally installed to pressurize the fuel in the barrel, discharges at least the fuel in the barrel to the outside of the barrel, and a peripheral wall portion of the barrel in a direction inclined with respect to the radial direction of the barrel And an oil passing hole through which the plunger opens and closes an opening opened on the inner circumferential surface of the barrel.
 この発明では、通油孔を、バレルの径方向に対して傾斜する向きで形成するため、プランジャのリフト量に対する開口部の開口面積の変化の割合を大きくすることができる。これにより、バレル内の燃料と通油孔内の燃料との圧力差を、短時間で低減させることができるため、通油孔に流入する燃料がジェット状の噴流になることを抑制することができる。この結果、燃料がジェット状の噴流になることに起因するキャビテーションの発生を抑えることができる。 In the present invention, since the oil passing hole is formed in the direction inclined with respect to the radial direction of the barrel, the ratio of the change of the opening area of the opening to the lift amount of the plunger can be increased. Thus, the pressure difference between the fuel in the barrel and the fuel in the oil passing hole can be reduced in a short time, so that the fuel flowing into the oil passing hole can be prevented from becoming a jet flow. it can. As a result, the occurrence of cavitation due to the fuel becoming a jet-like jet can be suppressed.
 本発明に係る燃料噴射ポンプは、キャビテーションの発生を抑えることができるという効果を奏する。 The fuel injection pump according to the present invention has the effect of being able to suppress the occurrence of cavitation.
図1は、実施形態1に係る燃料噴射ポンプを含む燃料噴射システムの系統図である。FIG. 1 is a system diagram of a fuel injection system including a fuel injection pump according to a first embodiment. 図2は、図1に示す燃料噴射ポンプの断面図である。FIG. 2 is a cross-sectional view of the fuel injection pump shown in FIG. 図3は、図2のA部詳細図である。FIG. 3 is a detailed view of part A of FIG. 図4は、図3のB-B矢視図である。FIG. 4 is a view as viewed in the direction of the arrows BB in FIG. 図5は、プランジャ室に燃料が流入する際の説明図である。FIG. 5 is an explanatory view when fuel flows into the plunger chamber. 図6は、プランジャ室で燃料を加圧する際の説明図である。FIG. 6 is an explanatory view when the fuel is pressurized in the plunger chamber. 図7は、プランジャ室から燃料を排出する際の説明図である。FIG. 7 is an explanatory view when the fuel is discharged from the plunger chamber. 図8は、リード溝によって給排油孔が開き始める状態の説明図である。FIG. 8 is an explanatory view of a state where the oil supply and discharge oil hole starts to open by the lead groove. 図9は、実施形態2に係る燃料噴射ポンプが有するプランジャバレルの軸心方向視の断面図である。FIG. 9 is a cross-sectional view of the plunger barrel of the fuel injection pump according to the second embodiment as viewed in the axial direction. 図10は、給排油孔がプランジャバレルの径方向に形成されている場合の説明図である。FIG. 10 is an explanatory view of the case where the oil supply and discharge oil holes are formed in the radial direction of the plunger barrel. 図11は、図10に示す給排油孔の開口部をプランジャで開閉する際のプランジャのリフト量の変化に対する給排油孔の開口面積の変化の説明図である。FIG. 11 is an explanatory view of the change of the opening area of the oil supply and discharge hole with respect to the change of the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG. 図12は、図9に示す給排油孔の開口部をプランジャで開閉する際のプランジャのリフト量の変化に対する給排油孔の開口面積の変化の説明図である。FIG. 12 is an explanatory view of the change in the opening area of the oil supply and discharge hole with respect to the change in the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG.
 以下に、本発明に係る燃料噴射ポンプの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, an embodiment of a fuel injection pump according to the present invention will be described in detail based on the drawings. The present invention is not limited by this embodiment. Further, constituent elements in the following embodiments include those that can be easily replaced by persons skilled in the art or those that are substantially the same.
 〔実施形態1〕
 図1は、実施形態1に係る燃料噴射ポンプを含む燃料噴射システムの系統図である。本実施形態1に係る燃料噴射ポンプ20は、内燃機関の一例であるディーゼルエンジン5の燃焼室6内に燃料を噴射する燃料噴射システム1に備えられている。この燃料噴射システム1は、燃料を貯留する燃料タンク10に、給油管11を介して給油ポンプ12が接続されており、燃料タンク10の燃料は、給油ポンプ12によって、燃料噴射システム1を流れる燃料の流れ方向における下流側に圧送可能になっている。
Embodiment 1
FIG. 1 is a system diagram of a fuel injection system including a fuel injection pump according to a first embodiment. The fuel injection pump 20 according to the first embodiment is included in a fuel injection system 1 that injects fuel into a combustion chamber 6 of a diesel engine 5 that is an example of an internal combustion engine. In the fuel injection system 1, the fuel supply pump 12 is connected to a fuel tank 10 storing fuel, and the fuel in the fuel tank 10 flows through the fuel injection system 1 by the fuel supply pump 12. It is possible to pump to the downstream side in the flow direction of.
 給油ポンプ12の下流側には、燃料を濾過することによって不純物を除去する燃料フィルタ13が配設されており、燃料フィルタ13の下流側に位置する給油主管14からは、ディーゼルエンジン5の気筒に対応して複数の給油枝管15が分岐している。燃料噴射ポンプ20は、複数が各給油枝管15に接続されている。ディーゼルエンジン5には、気筒ごとに燃料噴射弁17が配設されており、各燃料噴射ポンプ20は、それぞれ噴射管16を介して燃料噴射弁17に接続されている。 A fuel filter 13 for removing impurities by filtering the fuel is disposed on the downstream side of the fuel pump 12, and the fuel main pipe 14 located on the downstream side of the fuel filter 13 is used for the cylinders of the diesel engine 5. Correspondingly, a plurality of fueling branch pipes 15 are branched. A plurality of fuel injection pumps 20 are connected to each fueling branch pipe 15. In the diesel engine 5, fuel injection valves 17 are disposed for each cylinder, and each fuel injection pump 20 is connected to the fuel injection valves 17 via injection pipes 16, respectively.
 図2は、図1に示す燃料噴射ポンプの断面図である。燃料噴射ポンプ20は、ポンプ本体であるポンプケース25を有し、ポンプケース25の内側に、筒状に形成されるバレルであるプランジャバレル30が内装されている。プランジャバレル30には、当該プランジャバレル30の周壁部31を貫通する孔である給排油孔(燃料が流通する孔、通油孔とも言う。)35が複数形成されている。この給排油孔35は、プランジャバレル30の外側からプランジャバレル30の内側への燃料の給油と、プランジャバレル30の内側からプランジャバレル30の外側への燃料の排出とを行うことが可能な通油孔になっている。即ち、給排油孔35は、プランジャバレル30内に燃料を給油する給油孔と、プランジャバレル30内の燃料を排出させる排油孔とを兼ねている。 FIG. 2 is a cross-sectional view of the fuel injection pump shown in FIG. The fuel injection pump 20 has a pump case 25 which is a pump body, and a plunger barrel 30 which is a cylindrical barrel is internally provided inside the pump case 25. A plurality of oil supply / discharge oil holes (also referred to as holes through which fuel flows, oil passage holes) 35 which are holes penetrating the peripheral wall portion 31 of the plunger barrel 30 are formed in the plunger barrel 30. The oil supply / discharge oil holes 35 are capable of supplying fuel from the outside of the plunger barrel 30 to the inside of the plunger barrel 30 and discharging the fuel from the inside of the plunger barrel 30 to the outside of the plunger barrel 30. It is an oil hole. That is, the oil supply / discharge oil hole 35 doubles as an oil supply hole for supplying fuel into the plunger barrel 30 and an oil discharge hole for discharging the fuel in the plunger barrel 30.
 ポンプケース25には、給油枝管15等を介して給油ポンプ12から供給された燃料が流入する給排油室26が、内面側に形成されている。給排油孔35は、プランジャバレル30の外周面側の開口部分は、この給排油室26に対して開口しており、この給排油室26と、プランジャバレル30の内側との間で燃料の給油や排出を行うことが可能になっている。 In the pump case 25, an oil supply and discharge oil chamber 26 into which the fuel supplied from the oil supply pump 12 via the oil supply branch pipe 15 and the like flows is formed on the inner surface side. The oil drain hole 35 has an opening on the outer peripheral surface side of the plunger barrel 30 open to the oil drain chamber 26, and between the oil drain chamber 26 and the inside of the plunger barrel 30. It is possible to refuel and discharge fuel.
 また、プランジャバレル30の内側には、筒状の軸方向に往復摺動自在に内設されてプランジャバレル30内の燃料を加圧すると共に、給排油孔35におけるプランジャバレル30の内周面に開口した開口部36(図3参照)の開閉を行うプランジャ45が設けられている。 Further, it is provided inside the plunger barrel 30 so as to be reciprocally slidable in the axial direction of the cylinder to pressurize the fuel in the plunger barrel 30, and to the inner peripheral surface of the plunger barrel 30 at the oil supply / discharge oil hole 35. A plunger 45 is provided to open and close the opened opening 36 (see FIG. 3).
 また、プランジャバレル30の一端側には、吐出弁55と、吐出弁55の弁座56と、が配設されており、さらに、吐出弁55におけるプランジャバレル30が位置する側の反対側には、吐出コネクタ60が配設されている。このうち、吐出弁55は、プランジャ45と同様にプランジャバレル30の軸方向に往復移動可能に配設されると共に、吐出弁ばね57によって弁座56に密着する方向に付勢力が付与されている。吐出弁55は、このように往復移動すると共に弁座56に密着することにより、プランジャバレル30内と吐出コネクタ60内との連通及び遮断を切り替えることが可能になっている。 A discharge valve 55 and a valve seat 56 of the discharge valve 55 are disposed on one end side of the plunger barrel 30, and further, on the opposite side of the discharge valve 55 on which the plunger barrel 30 is located. The discharge connector 60 is disposed. Among them, the discharge valve 55 is disposed to be able to reciprocate in the axial direction of the plunger barrel 30 in the same manner as the plunger 45, and a biasing force is applied to the valve seat 56 by the discharge valve spring 57. . The discharge valve 55 reciprocates in this manner and closely adheres to the valve seat 56, so that communication and shutoff between the inside of the plunger barrel 30 and the inside of the discharge connector 60 can be switched.
 また、吐出コネクタ60における弁座56が位置する側の反対側の端部側には、プランジャバレル30側から流れてきた燃料を吐出する燃料吐出口61が形成されている。燃料噴射弁17に接続される噴射管16は、他端側が吐出コネクタ60に接続されており、燃料吐出口61から吐出された燃料を燃料噴射弁17に供給することが可能になっている。 Further, a fuel discharge port 61 for discharging the fuel flowing from the plunger barrel 30 side is formed on the end of the discharge connector 60 opposite to the side where the valve seat 56 is located. The other end side of the injection pipe 16 connected to the fuel injection valve 17 is connected to the discharge connector 60, and the fuel discharged from the fuel discharge port 61 can be supplied to the fuel injection valve 17.
 プランジャバレル30に内設されるプランジャ45は、弁座56が位置する側の端面である上端面45fと、弁座56におけるプランジャ45に対向する面と、プランジャバレル30の内面とで、燃料を加圧するプランジャ室50を画成している。 The plunger 45 provided in the plunger barrel 30 is provided with an upper end surface 45f, which is an end surface on which the valve seat 56 is located, a surface of the valve seat 56 facing the plunger 45, and an inner surface of the plunger barrel 30. A plunger chamber 50 is defined to pressurize.
 また、プランジャ45には、外周面に燃料が通る油路であるリード溝46が形成されている。このリード溝46は、プランジャ45の外周面における他の部分から凹んだ溝状に形成されており、プランジャ45の上端面45fから、外周面の所定の範囲にかけて形成されている。詳しくは、リード溝46は、上端面45f側に位置する溝壁である上部リード47と、上部リード47に対向すると共にプランジャ45において上端面45fが位置する側の反対側の端部側に位置する溝壁である下部リード48と、を有している。 Further, in the plunger 45, a lead groove 46, which is an oil passage through which fuel passes, is formed on the outer peripheral surface. The lead groove 46 is formed in a groove shape recessed from the other portion of the outer peripheral surface of the plunger 45, and is formed from the upper end surface 45f of the plunger 45 to a predetermined range of the outer peripheral surface. More specifically, the lead groove 46 is positioned on the upper lead 47 which is a groove wall located on the upper end surface 45 f side, and on the opposite end side opposite to the side where the upper end surface 45 f is located in the plunger 45 And a lower lead 48 which is a groove wall.
 プランジャ45における上端面45fの反対側の端部側には、ディーゼルエンジン5の動力を用いて、プランジャ45を往復させる力をプランジャ45側に伝達する燃料カム65が配設されている。この燃料カム65は、ディーゼルエンジン5がクランク軸(図示省略)の回転によって出力する動力の一部が複数のギヤを介在して燃料カム65に伝達されることにより、クランク軸に連動して回転可能になっている。 At the end of the plunger 45 opposite to the upper end face 45f, a fuel cam 65 for transmitting a force for causing the plunger 45 to reciprocate using the power of the diesel engine 5 is disposed. The fuel cam 65 rotates in conjunction with the crankshaft by transmitting to the fuel cam 65 a part of the motive power output by the rotation of the crankshaft (not shown) of the diesel engine 5 via the plurality of gears. It is possible.
 プランジャ45における燃料カム65側の端部には、タペット66が連結されている。このタペット66は、プランジャ45と共に往復移動可能に配設されており、タペットスプリング68により、燃料カム65に近付く方向の付勢力が付与されている。即ち、プランジャ45は、タペットスプリング68により、弁座56から離れて燃料カム65に近付く方向の付勢力が付与されている。 A tappet 66 is connected to an end of the plunger 45 on the fuel cam 65 side. The tappet 66 is disposed so as to be capable of reciprocating with the plunger 45, and a biasing force in the direction to approach the fuel cam 65 is applied by the tappet spring 68. That is, the plunger 45 is biased by the tappet spring 68 in a direction to move away from the valve seat 56 and approach the fuel cam 65.
 また、タペット66における燃料カム65に対向する部分には、燃料カム65に接触するタペットローラ67が配設されている。このタペットローラ67は、回転軸が、燃料カム65の回転軸と平行になる向きで回転可能に配設されており、タペット66に付与されるタペットスプリング68の付勢力により、燃料カム65に押し付けられる状態で燃料カム65に接触している。 Further, a tappet roller 67 in contact with the fuel cam 65 is disposed at a portion of the tappet 66 facing the fuel cam 65. The tappet roller 67 is rotatably disposed so that the rotation axis is parallel to the rotation axis of the fuel cam 65, and is pressed against the fuel cam 65 by the biasing force of the tappet spring 68 applied to the tappet 66. In contact with the fuel cam 65.
 図3は、図2のA部詳細図である。給排油孔35には、給排油孔35内を流れる燃料を整流するデフレクタ40が内設されている。このデフレクタ40は、当該デフレクタ40と、デフレクタ40をプランジャバレル30に取り付ける取付部44とが一体になったデフレクタユニット43に設けられている。デフレクタユニット43は、デフレクタ40が給排油孔35に内設される向きでプランジャバレル30の外周面側から、スクリュー33によって取付部44を取り付けることにより、プランジャバレル30に取り付けられている。 FIG. 3 is a detailed view of part A of FIG. A deflector 40 that rectifies the fuel flowing in the oil supply and discharge hole 35 is provided in the oil supply and discharge oil hole 35. The deflector 40 is provided to a deflector unit 43 in which the deflector 40 and an attachment portion 44 for attaching the deflector 40 to the plunger barrel 30 are integrated. The deflector unit 43 is attached to the plunger barrel 30 by attaching a mounting portion 44 with a screw 33 from the outer peripheral surface side of the plunger barrel 30 in a direction in which the deflector 40 is installed in the oil supply / discharge hole 35.
 デフレクタ40は、プランジャバレル30の外周面側から内周面側に向かう方向に延在して給排油孔35に内設されており、内周面側の端部は、給排油孔35の開口部36からはプランジャバレル30内に出ておらず、給排油孔35内に位置している。 The deflector 40 extends in a direction from the outer peripheral surface side to the inner peripheral surface side of the plunger barrel 30 and is provided in the oil supply / discharge oil hole 35, and the end on the inner peripheral surface side is the oil supply / discharge oil hole 35. It does not go out into the plunger barrel 30 from the opening 36, but is located in the oil supply / discharge oil hole 35.
 また、デフレクタ40におけるプランジャバレル30の内周面側の端部から外周面側に向かった所定の範囲である先端部41は、プランジャバレル30の内周面側に向かうに従って径が細くなる略円錐形の形状になっている。このデフレクタ40の先端部41は、高さ方向が給排油孔35の形成方向になり、頂点がプランジャバレル30の内周面側に位置し、底面がプランジャバレル30の外周面側に位置し、頂点が曲面状になった形状で形成されている。 Further, a tip end portion 41 which is a predetermined range from the end portion on the inner peripheral surface side of the plunger barrel 30 in the deflector 40 to the outer peripheral surface side has a substantially conical shape whose diameter decreases toward the inner peripheral surface side of the plunger barrel 30 It is in the shape of a shape. The height direction of the front end portion 41 of the deflector 40 is the formation direction of the oil supply / discharge oil hole 35, the apex is located on the inner peripheral surface side of the plunger barrel 30, and the bottom surface is located on the outer peripheral surface side of the plunger barrel 30. , The apex is formed in a curved surface shape.
 また、このデフレクタ40は、プランジャ45の往復移動の方向において、プランジャバレル30内の燃料の給排油孔35からの排出時に、開口部36をプランジャ45で開く場合における開き始め側に偏心している。具体的には、給排油孔35は、プランジャ45が燃料カム65側からプランジャ室50の方向に移動する場合において、リード溝46が給排油孔35の開口部36に対向する状態になった際に、リード溝46を流れる燃料を給排油室26側に排出する。このため、デフレクタ40は、開口部36をプランジャ45で開く場合における開き始め側である燃料カム65側に偏心している。 Further, the deflector 40 is eccentric to the opening start side when the opening portion 36 is opened by the plunger 45 when the fuel in the plunger barrel 30 is discharged from the oil supply and discharge hole 35 in the reciprocating direction of the plunger 45 . Specifically, when the plunger 45 moves from the fuel cam 65 side to the direction of the plunger chamber 50, the oil supply / discharge oil hole 35 is in a state where the lead groove 46 faces the opening 36 of the oil supply / discharge oil hole 35. At the same time, the fuel flowing through the lead groove 46 is discharged to the oil supply and discharge chamber 26 side. Therefore, the deflector 40 is eccentric to the side of the fuel cam 65 which is the opening start side when the opening 36 is opened by the plunger 45.
 またこれにより、給排油孔35におけるデフレクタ40が配設されている部分では、燃料カム65側の部分よりも吐出弁55側の部分の方が、プランジャ45の往復移動の方向における流路の幅が大きくなっている。 Further, as a result, in the portion where the deflector 40 in the oil supply / discharge oil hole 35 is disposed, the portion on the discharge valve 55 side of the portion on the fuel cam 65 side is a flow path in the direction of reciprocation of the plunger 45 The width is getting bigger.
 図4は、図3のB-B矢視図である。給排油孔35は、デフレクタ40の周囲に、複数の後流側孔部37が画成されている。この後流側孔部37は、給排油孔35の形成方向に沿った孔としてそれぞれが形成されており、複数の後流側孔部37は、デフレクタ40の周囲に、後流側孔部37の円周方向に沿って複数が並んで形成されている。即ち、給排油孔35は、給排油室26に対しては、複数の後流側孔部37が開口している。 FIG. 4 is a view as viewed in the direction of the arrows BB in FIG. The oil supply and discharge oil holes 35 have a plurality of wake side holes 37 defined around the deflector 40. The downstream side holes 37 are respectively formed as holes along the direction in which the oil supply and discharge oil holes 35 are formed, and the plurality of downstream side holes 37 are formed around the deflector 40 as the downstream side holes. Plural pieces are formed side by side along the circumferential direction of 37. That is, in the oil supply and discharge oil hole 35, a plurality of downstream flow holes 37 are open to the oil supply and discharge oil chamber 26.
 このように複数形成される後流側孔部37は、開口部36をプランジャ45で開く場合における開き始め側に位置する後流側孔部37よりも、開き終わり側に位置する後流側孔部37の方が、給排油孔35を流れる燃料の流れ方向に見た場合における開口面積が大きくなっている。つまり、後流側孔部37は、燃料カム65寄りに位置している後流側孔部37よりも、吐出弁55寄りに位置している後流側孔部37の方が、開口面積が大きくなっている。 A plurality of downstream holes 37 formed in this manner are downstream holes located closer to the end of the opening than the downstream holes 37 located on the opening start side when the opening 36 is opened by the plunger 45. The part 37 has a larger opening area when viewed in the flow direction of the fuel flowing through the oil supply and discharge hole 35. That is, the downstream side hole 37 has an opening area in the downstream side hole 37 located closer to the discharge valve 55 than the downstream side hole 37 located closer to the fuel cam 65. It is getting bigger.
 この実施形態1に係る燃料噴射ポンプ20は、以上のごとき構成からなり、以下、その作用について説明する。ディーゼルエンジン5の運転時は、給油ポンプ12を駆動させることにより、燃料タンク10内の燃料を燃料フィルタ13で濾過し、燃料噴射ポンプ20に供給する。燃料噴射ポンプ20に供給された燃料は、ポンプケース25とプランジャバレル30との間に形成される給排油室26に流入する。 The fuel injection pump 20 according to the first embodiment is configured as described above, and the operation thereof will be described below. During operation of the diesel engine 5, the fuel in the fuel tank 10 is filtered by the fuel filter 13 by driving the fuel supply pump 12 and supplied to the fuel injection pump 20. The fuel supplied to the fuel injection pump 20 flows into the oil supply and discharge oil chamber 26 formed between the pump case 25 and the plunger barrel 30.
 一方、ディーゼルエンジン5の運転時には、燃料噴射ポンプ20は、クランク軸に連動して燃料カム65が回転する。これにより、タペットスプリング68からの付勢力により燃料カム65に押し付けられているタペットローラ67は、燃料カム65の表面の形状に沿って、プランジャ45の往復移動の方向に移動する。これに伴い、タペットローラ67が設けられるタペット66と、タペット66が接続されるプランジャ45もタペットローラ67と共に往復移動をする。燃料噴射ポンプ20のプランジャ45は、このようにディーゼルエンジン5のクランク軸の回転に連動して往復移動をし、往復移動時における位置は、クランク軸の回転位置に対応した位置になっている。 On the other hand, when the diesel engine 5 is in operation, the fuel injection pump 20 rotates the fuel cam 65 in conjunction with the crankshaft. Thus, the tappet roller 67 pressed against the fuel cam 65 by the biasing force from the tappet spring 68 moves in the direction of the reciprocating movement of the plunger 45 along the shape of the surface of the fuel cam 65. Along with this, the tappet 66 provided with the tappet roller 67 and the plunger 45 connected with the tappet 66 also reciprocate with the tappet roller 67. Thus, the plunger 45 of the fuel injection pump 20 reciprocates in conjunction with the rotation of the crankshaft of the diesel engine 5, and the position at the time of the reciprocation is a position corresponding to the rotational position of the crankshaft.
 燃料噴射ポンプ20は、このようにプランジャ45が往復移動をすることにより、給排油室26に流入した燃料を給排油孔35からプランジャ室50に取り込み、プランジャ室50で加圧して吐出弁55側に送り込む。吐出弁55は、通常時は吐出弁ばね57の付勢力により、プランジャバレル30内と吐出コネクタ60内とを遮断した状態になっているが、加圧した燃料から吐出弁55に付与される力が吐出弁ばね57の付勢力よりも大きくなった場合には、吐出弁55は弁座56から離間する。 The fuel injection pump 20 reciprocates the plunger 45 to take in the fuel that has flowed into the oil supply and discharge chamber 26 from the oil supply and discharge hole 35 into the plunger chamber 50, and pressurizes the fuel in the plunger chamber 50 to discharge the fuel. Send to the 55 side. The discharge valve 55 is normally in a state in which the inside of the plunger barrel 30 and the inside of the discharge connector 60 are shut off by the biasing force of the discharge valve spring 57, but the force applied to the discharge valve 55 from pressurized fuel When the pressure of the discharge valve spring 57 becomes larger than that of the discharge valve spring 57, the discharge valve 55 separates from the valve seat 56.
 これにより、吐出弁55は、プランジャバレル30内と吐出コネクタ60内とを連通する状態になり、プランジャ室50で加圧した燃料は、吐出コネクタ60内に流れる。吐出コネクタ60内に流れた高圧の燃料は、燃料吐出口61から吐出し、噴射管16を通って燃料噴射弁17に供給され、燃料噴射弁17からディーゼルエンジン5の燃焼室6に噴射する。燃焼室6に噴射された燃料は燃焼室6で燃焼し、この燃料の燃焼により、ディーゼルエンジン5は駆動する。 As a result, the discharge valve 55 is in communication with the inside of the plunger barrel 30 and the inside of the discharge connector 60, and the fuel pressurized by the plunger chamber 50 flows into the discharge connector 60. The high-pressure fuel flowing into the discharge connector 60 is discharged from the fuel discharge port 61, supplied to the fuel injection valve 17 through the injection pipe 16, and injected from the fuel injection valve 17 into the combustion chamber 6 of the diesel engine 5. The fuel injected into the combustion chamber 6 burns in the combustion chamber 6, and the combustion of the fuel drives the diesel engine 5.
 燃料噴射ポンプ20は、このようにプランジャバレル30内でプランジャ45が往復移動をすることにより、高圧の燃料を燃料噴射弁17に供給するが、次に、このプランジャ45の動きに対する燃料の流れについて説明する。 The fuel injection pump 20 supplies high-pressure fuel to the fuel injection valve 17 by the reciprocating movement of the plunger 45 in the plunger barrel 30 as described above. Next, the flow of fuel relative to the movement of the plunger 45 explain.
 図5は、プランジャ室に燃料が流入する際の説明図である。プランジャ室50への燃料の流入は、プランジャ45が給排油孔35の開口部36を開き、給排油孔35とプランジャ室50とが連通している状態でプランジャ45が燃料カム65の方向に移動して、プランジャ室50内が給排油室26に対して負圧になることによって行われる。つまり、プランジャ45の上端面45fが、プランジャバレル30の給排油孔35の開口部36における吐出弁55側の端部よりも燃料カム65側に位置する状態でプランジャ45が燃料カム65の方向に移動することにより、給排油室26内の燃料はプランジャ室50に吸引される。これにより、給排油室26内の燃料は、給排油室26内から給排油孔35を通ってプランジャ室50内に流入する。 FIG. 5 is an explanatory view when fuel flows into the plunger chamber. When the fuel flows into the plunger chamber 50, the plunger 45 opens the opening 36 of the oil supply / discharge oil hole 35, and the plunger 45 faces the fuel cam 65 in a state where the oil supply / discharge oil hole 35 and the plunger chamber 50 are in communication. The plunger chamber 50 is moved to a negative pressure with respect to the oil supply and discharge chamber 26. That is, the direction of the fuel cam 65 is such that the upper end surface 45 f of the plunger 45 is positioned closer to the fuel cam 65 than the end on the discharge valve 55 side of the opening 36 of the oil supply / discharge oil hole 35 of the plunger barrel 30. As a result, the fuel in the oil supply and discharge chamber 26 is drawn into the plunger chamber 50. Thereby, the fuel in the oil supply and discharge oil chamber 26 flows from the inside of the oil supply and discharge oil chamber 26 into the plunger chamber 50 through the oil supply and discharge oil hole 35.
 図6は、プランジャ室で燃料を加圧する際の説明図である。プランジャ室50に燃料が流入した状態でプランジャ45が吐出弁55の方向に移動し、プランジャ45が給排油孔35の開口部36を閉じた状態でさらに吐出弁55の方向に移動することにより、プランジャ室50内の燃料に加圧する。この場合、プランジャ室50内の燃料は、圧力の逃げ場が無い状態で加圧されるため、燃料は高圧になる。このように高圧になった燃料から吐出弁55に付与される力が、吐出弁ばね57の付勢力よりも大きくなった場合には、吐出弁55は弁座56から離間し、プランジャ室50内の燃料は、吐出コネクタ60内に流れて燃料吐出口61から吐出される。 FIG. 6 is an explanatory view when the fuel is pressurized in the plunger chamber. The plunger 45 moves in the direction of the discharge valve 55 in a state where the fuel flows into the plunger chamber 50, and further moves in the direction of the discharge valve 55 in a state where the opening portion 36 of the oil supply and discharge oil hole 35 is closed. The fuel in the plunger chamber 50 is pressurized. In this case, the fuel in the plunger chamber 50 is pressurized without a pressure relief, so the fuel is at a high pressure. When the force applied to the discharge valve 55 from the fuel thus high in pressure becomes greater than the biasing force of the discharge valve spring 57, the discharge valve 55 separates from the valve seat 56, and the inside of the plunger chamber 50 The fuel flows into the discharge connector 60 and is discharged from the fuel discharge port 61.
 図7は、プランジャ室から燃料を排出する際の説明図である。プランジャ室50内の燃料をプランジャ室50内から押し出し、さらにプランジャ45が吐出弁55の方向に移動をすると、プランジャ45のリード溝46が給排油孔35にかかる。リード溝46は、プランジャ45の上端面45fに連通しているため、リード溝46には、プランジャ室50内と同様に高圧の燃料が流れている。このため、リード溝46が給排油孔35にかかることにより、給排油孔35の開口部36が開いた場合には、リード溝46を流れる高圧の燃料が、給排油孔35内に流入する。給排油孔35内に流入した燃料は、デフレクタ40によって整流され、プランジャ45の外側に排出される。これにより、プランジャバレル30内の燃料は、給排油孔35を通って給排油室26に戻る。 FIG. 7 is an explanatory view when the fuel is discharged from the plunger chamber. When the fuel in the plunger chamber 50 is pushed out of the plunger chamber 50 and the plunger 45 further moves in the direction of the discharge valve 55, the lead groove 46 of the plunger 45 is engaged with the oil supply / discharge oil hole 35. Since the lead groove 46 is in communication with the upper end surface 45 f of the plunger 45, high pressure fuel is flowing through the lead groove 46 in the same manner as in the plunger chamber 50. For this reason, when the opening 36 of the oil supply / discharge hole 35 is opened by the lead groove 46 covering the oil supply / discharge oil hole 35, high pressure fuel flowing through the lead groove 46 is contained in the oil supply / discharge oil hole 35. To flow. The fuel that has flowed into the oil supply and discharge oil holes 35 is rectified by the deflector 40 and discharged to the outside of the plunger 45. Thereby, the fuel in the plunger barrel 30 returns to the oil supply and discharge chamber 26 through the oil supply and discharge oil hole 35.
 ここで、燃料が高圧になっている状態で給排油孔35が開き始める場合、燃料は給排油孔35における開き始め側から勢いよく給排油孔35内に流入するが、デフレクタ40は給排油孔35内に偏心して配設されているため、給排油孔35内に流入した燃料は、給排油孔35内における流量を調節されながら流れる。 Here, when the oil supply and drain hole 35 starts to open in a high pressure state of fuel, the fuel vigorously flows into the oil supply and drain hole 35 from the opening start side of the oil supply and drain hole 35, but the deflector 40 Since the fuel is disposed eccentrically in the oil supply and discharge hole 35, the fuel flowing into the oil supply and discharge oil hole 35 flows while the flow rate in the oil supply and discharge oil hole 35 is adjusted.
 次に、リード溝46によって給排油孔35が開き始めることにより、高圧の燃料が給排油孔35内に流入し始める場合について説明する。図8は、リード溝によって給排油孔が開き始める状態の説明図である。プランジャ45が吐出弁55の方向に移動している場合、給排油孔35は、プランジャ45のリード溝46の上部リード47が、開口部36における燃料カム65側の端部よりも吐出弁55寄りに位置した場合に開口をする。このため、給排油孔35は、まず開口部36における燃料カム65側の端部付近からリード溝46内に対して開口し、リード溝46内を流れる燃料が、開口部36における燃料カム65側の端部付近から給排油孔35内に流入する。 Next, a case where high-pressure fuel starts to flow into the oil supply and discharge holes 35 when the oil supply and discharge holes 35 begin to open by the lead groove 46 will be described. FIG. 8 is an explanatory view of a state where the oil supply and discharge oil hole starts to open by the lead groove. When the plunger 45 moves in the direction of the discharge valve 55, the upper lead 47 of the lead groove 46 of the plunger 45 is closer to the discharge valve 55 than the end on the fuel cam 65 side in the opening 36. Opening when it is located closer. For this reason, the oil supply / discharge oil hole 35 first opens to the inside of the lead groove 46 from the vicinity of the end on the fuel cam 65 side in the opening 36, and the fuel flowing in the lead groove 46 is the fuel cam 65 in the The oil flows into the oil supply and drainage hole 35 from the vicinity of the side end.
 この場合におけるリード溝46内を流れる燃料は高圧であるため、給排油孔35内には、高圧の燃料が流入する。即ち、給排油孔35が開き始めた場合には、給排油孔35内における燃料カム65寄りの部分に、より多くの高圧の燃料が流れる。 Since the fuel flowing in the lead groove 46 in this case has a high pressure, the high pressure fuel flows into the oil supply and discharge oil holes 35. That is, when the oil supply and discharge oil hole 35 starts to open, more high pressure fuel flows in a portion near the fuel cam 65 in the oil supply and discharge oil hole 35.
 ここで、給排油孔35は、デフレクタ40が配設されている部分では、燃料カム65側よりも吐出弁55側の方が、プランジャ45の往復移動の方向における流路の幅が大きくなっているため、給排油孔35の形状としては、吐出弁55寄りの方が、燃料が流れ易くなっている。また、給排油孔35に複数形成される後流側孔部37も同様に、燃料カム65寄りの後流側孔部37よりも、吐出弁55寄りの後流側孔部37の方が、開口面積が大きくなっているため、後流側孔部37も、吐出弁55寄りの後流側孔部37の方が燃料が流れ易くなっている。 Here, at the portion where the deflector 40 is disposed, the width of the flow passage in the direction of the reciprocation of the plunger 45 becomes larger at the discharge valve 55 side than at the fuel cam 65 side in the oil supply / discharge oil hole 35 Therefore, as the shape of the oil supply and discharge oil holes 35, the fuel tends to flow more toward the discharge valve 55. Similarly, the downstream side hole 37 formed in the oil supply / discharge oil hole 35 has the downstream side hole 37 closer to the discharge valve 55 than the downstream side hole 37 closer to the fuel cam 65. Since the opening area is large, the flow of the fuel is more facilitated in the wake side hole 37 closer to the discharge valve 55 in the wake side hole 37.
 一方、開口部36が開き始めた直後に給排油孔35内を流れる高圧の燃料は、給排油孔35内における燃料カム65寄りの部分に、より多く流れるため、給排油孔35の形状に起因する燃料の流れの傾向と、給排油孔35が開き始めることに起因する燃料の流れの傾向は、相反する状態になる。 On the other hand, the high-pressure fuel flowing in the oil supply and discharge oil hole 35 immediately after the opening 36 starts to open flows more to the portion near the fuel cam 65 in the oil supply and oil drainage hole 35. The tendency of the flow of the fuel due to the shape and the tendency of the flow of the fuel due to the opening of the oil supply and discharge oil holes 35 are in a contradictory state.
 このため、給排油孔35内を流れる燃料は、双方の要因に起因する流れの傾向が相殺され、燃料カム65寄りの位置と吐出弁55寄りの位置とで、同程度の燃料が流れることになり、開口部36が開き始めた直後の給排油孔35内には、偏流が発生することなく、高圧の燃料が流れる。これにより、給排油孔35は、内部流動を均一化してプランジャバレル30内の燃料をプランジャバレル30の外側、即ち、給排油室26側に排出することができる。 For this reason, the flow of fuel flowing in the oil supply and discharge oil hole 35 cancels the tendency of the flow due to both factors, and the same amount of fuel flows between the position near the fuel cam 65 and the position near the discharge valve 55 As a result, high-pressure fuel flows in the oil supply and discharge oil hole 35 immediately after the opening 36 starts to open, without generation of drift. As a result, the oil supply / discharge oil holes 35 can equalize the internal flow and discharge the fuel in the plunger barrel 30 to the outside of the plunger barrel 30, that is, the oil supply / discharge oil chamber 26 side.
 以上の実施形態1に係る燃料噴射ポンプ20は、デフレクタ40を、プランジャバレル30内の燃料の給排油孔35からの排出時に開口部36をプランジャ45で開く場合における開き始め側に偏心して配設するため、給排油孔35内に燃料が流れる際の内部流動を均一化することができる。この結果、燃料の速度が局所的に大きくなることを抑制することができ、燃料速度が上昇することに起因するキャビテーションの発生を抑えることができる。また、キャビテーションの発生を抑えることにより、キャビテーションが崩壊することによる部材表面のエロージョンの発生を抑制することができ、製品寿命の低下を抑えることができる。 In the fuel injection pump 20 according to the first embodiment described above, the deflector 40 is disposed eccentrically to the opening start side when the opening 36 is opened by the plunger 45 when the fuel in the plunger barrel 30 is discharged from the oil supply and discharge oil hole 35. As a result, the internal flow when the fuel flows into the oil supply and discharge oil holes 35 can be made uniform. As a result, it is possible to suppress the local increase in the velocity of the fuel, and to suppress the occurrence of cavitation caused by the increase in the fuel velocity. Further, by suppressing the occurrence of cavitation, the occurrence of erosion on the surface of the member due to the collapse of the cavitation can be suppressed, and a decrease in product life can be suppressed.
 また、給排油孔35が有する複数の後流側孔部37は、開口部36の開き始め側に位置する後流側孔部37よりも、開き終わり側に位置する後流側孔部37の方が、開口面積が大きくなっているため、後流側孔部37内に燃料が流れる際の内部流動を均一化することができる。この結果、燃料の速度が局所的に大きくなることをより確実に抑制することができ、キャビテーションの発生をより確実に抑えることができる。 Further, the plurality of downstream flow holes 37 included in the oil supply and discharge oil holes 35 are downstream of the downstream flow holes 37 located on the opening start side of the opening 36 and are located downstream of the downstream flow holes 37. Since the opening area is larger, the internal flow when the fuel flows in the wake side hole 37 can be made uniform. As a result, it is possible to more reliably suppress the local increase in the velocity of the fuel, and to more reliably suppress the occurrence of cavitation.
 〔実施形態2〕
 実施形態2に係る燃料噴射ポンプ20は、実施形態1に係る燃料噴射ポンプ20と略同様の構成であるが、プランジャバレル30の給排油孔35が傾斜している点に特徴がある。他の構成は実施形態1と同様なので、その説明を省略すると共に、同一の符号を付す。
Second Embodiment
The fuel injection pump 20 according to the second embodiment has substantially the same configuration as the fuel injection pump 20 according to the first embodiment, but is characterized in that the oil supply and discharge oil holes 35 of the plunger barrel 30 are inclined. The other configuration is the same as that of the first embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
 図9は、実施形態2に係る燃料噴射ポンプが有するプランジャバレルの軸心方向視の断面図である。本実施形態2に係る燃料噴射ポンプ20では、実施形態1に係る燃料噴射ポンプ20と同様に、プランジャバレル30には、周壁部31を貫通すると共に、少なくともプランジャバレル30内の燃料をプランジャバレル30の外に排出させることができる給排油孔35が複数形成されている。この給排油孔35は、実施形態1とは異なり、プランジャバレル30の中心から偏心して形成されている。詳しくは、給排油孔35は、筒状に形成されるプランジャバレル30の軸心方向には直交し、プランジャバレル30の径方向に対しては傾斜する向きで周壁部31を貫通する孔として形成されている。このように形成される給排油孔35には、給排油孔35の軸心と同心にデフレクタ40が配設されている。 FIG. 9 is a cross-sectional view of the plunger barrel of the fuel injection pump according to the second embodiment as viewed in the axial direction. In the fuel injection pump 20 according to the second embodiment, like the fuel injection pump 20 according to the first embodiment, the plunger barrel 30 penetrates the peripheral wall 31 and at least the fuel in the plunger barrel 30 is the plunger barrel 30. A plurality of oil supply and discharge oil holes 35 which can be discharged to the outside are formed. Unlike the first embodiment, the oil supply and discharge oil holes 35 are formed eccentrically from the center of the plunger barrel 30. More specifically, the oil supply / discharge oil hole 35 is a hole which is perpendicular to the axial center direction of the plunger barrel 30 formed in a cylindrical shape, and which penetrates the peripheral wall 31 in a direction inclined with respect to the radial direction of the plunger barrel 30 It is formed. A deflector 40 is disposed concentrically with the axial center of the oil supply / discharge hole 35 in the oil supply / discharge oil hole 35 formed in this manner.
 この実施形態2に係る燃料噴射ポンプ20は、以上のごとき構成からなり、以下、その作用について説明する。本実施形態2に係る燃料噴射ポンプ20も、本実施形態1に係る燃料噴射ポンプ20と同様に、ディーゼルエンジン5のクランク軸に連動して燃料カム65が回転することに伴って、プランジャ45がプランジャバレル30内を往復移動する。これにより、プランジャ45は、給排油孔35の開口部36を開閉し、プランジャ室50内に燃料を吸引して燃料を加圧して燃料噴射弁17側に供給したり、プランジャバレル30内の燃料を給排油孔35から排出したりする。 The fuel injection pump 20 according to the second embodiment is configured as described above, and the operation thereof will be described below. Similarly to the fuel injection pump 20 according to the first embodiment, in the fuel injection pump 20 according to the second embodiment, the plunger 45 rotates in conjunction with the rotation of the fuel cam 65 in conjunction with the crankshaft of the diesel engine 5. Reciprocate in the plunger barrel 30. As a result, the plunger 45 opens and closes the opening 36 of the oil supply / discharge oil hole 35, sucks the fuel into the plunger chamber 50, pressurizes the fuel and supplies it to the fuel injection valve 17 side. The fuel is discharged from the oil supply and discharge port 35 or the like.
 ここで、給排油孔35は、プランジャバレル30の径方向に対して傾斜する向きで形成されているため、開口部36の面積は、給排油孔35の形成方向視の開口面積よりも大きくなっている。このため、本実施形態2に係る燃料噴射ポンプ20では、プランジャ45を往復移動させた場合におけるプランジャ45の移動量に対する開口部36の開口面積の変化量が、大きくなっている。 Here, since the oil supply and discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30, the area of the opening 36 is larger than the opening area of the oil supply and discharge oil hole 35 in the formation direction. It is getting bigger. Therefore, in the fuel injection pump 20 according to the second embodiment, the amount of change in the opening area of the opening 36 with respect to the amount of movement of the plunger 45 when the plunger 45 is reciprocated is large.
 図10は、給排油孔がプランジャバレルの径方向に形成されている場合の説明図である。図11は、図10に示す給排油孔の開口部をプランジャで開閉する際のプランジャのリフト量の変化に対する給排油孔の開口面積の変化の説明図である。つまり、図10に示すように、給排油孔35を、プランジャバレル30の径方向に沿った向きで形成した場合、開口部36の形状は、給排油孔35の形成方向視の形状に近似した形状になる。このため、開口部36の面積は、給排油孔35の同方向の開口面積とほぼ等しくなる。このように給排油孔35が形成される場合において、プランジャ45が往復移動をする場合、開口部36の開口面積は、図11に示すように、プランジャ45の移動量であるリフト量が変化するに従って変化する。即ち、プランジャ45のリフト量が大きくなるに従って、開口部36の開口面積も大きくなる。 FIG. 10 is an explanatory view of the case where the oil supply and discharge oil holes are formed in the radial direction of the plunger barrel. FIG. 11 is an explanatory view of the change of the opening area of the oil supply and discharge hole with respect to the change of the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG. That is, as shown in FIG. 10, when the oil supply / discharge oil hole 35 is formed in a direction along the radial direction of the plunger barrel 30, the shape of the opening 36 is a shape as viewed in the formation direction of the oil supply / discharge oil hole 35. It becomes an approximate shape. For this reason, the area of the opening 36 is approximately equal to the opening area of the oil supply and discharge hole 35 in the same direction. Thus, when the oil supply / discharge oil hole 35 is formed, when the plunger 45 reciprocates, the opening area of the opening 36 changes the lift amount which is the movement amount of the plunger 45 as shown in FIG. Change as you do. That is, as the lift amount of the plunger 45 increases, the opening area of the opening 36 also increases.
 これに対し、給排油孔35を、プランジャバレル30の径方向に対して傾斜する向きで形成した場合、開口部36の形状は、給排油孔35の形成方向視の形状に対して、プランジャバレル30の円周方向の大きさが大きくなる。このため、開口部36の面積は、給排油孔35の形成方向視の開口面積よりも大きくなる。 On the other hand, when the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30, the shape of the opening 36 is the same as the shape viewed in the formation direction of the oil supply / discharge oil hole 35. The circumferential size of the plunger barrel 30 is increased. For this reason, the area of the opening 36 is larger than the opening area of the oil supply and discharge hole 35 in the formation direction.
 図12は、図9に示す給排油孔の開口部をプランジャで開閉する際のプランジャのリフト量の変化に対する給排油孔の開口面積の変化の説明図である。給排油孔35を、プランジャバレル30の径方向に対して傾斜する向きで形成した場合、プランジャ45の移動方向における開口部36の大きさは、給排油孔35を、プランジャバレル30の径方向に沿った向きで形成した場合と同じ大きさになる。このため、プランジャバレル30の移動範囲に対する開口部36の全閉位置から全開位置までの距離は、プランジャバレル30の径方向に対する給排油孔35の向きに関わらず一定になっている。 FIG. 12 is an explanatory view of the change in the opening area of the oil supply and discharge hole with respect to the change in the lift amount of the plunger when opening and closing the opening of the oil supply and oil hole shown in FIG. When the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30, the size of the opening 36 in the moving direction of the plunger 45 corresponds to the diameter of the plunger barrel 30 It is the same size as when formed in the direction along the direction. Therefore, the distance from the fully closed position to the fully open position of the opening 36 with respect to the movement range of the plunger barrel 30 is constant regardless of the direction of the oil supply and discharge oil holes 35 with respect to the radial direction of the plunger barrel 30.
 従って、開口面積が大きくなっている開口部36をプランジャ45で開閉する場合には、図12に示すように、プランジャ45のリフト量の変化に対する開口部36の開口面積の変化が大きくなる。即ち、本実施形態2に係る燃料噴射ポンプ20では、開口部36を閉じた状態からプランジャ45のリフト量を大きくして給排油孔35の開口部36を開く際には、プランジャバレル30の径方向に沿った向きで給排油孔35を形成する場合と比較して、リフト量の変化に対する開口面積の変化が大幅に大きくなる。 Therefore, when the opening portion 36 having the large opening area is opened and closed by the plunger 45, as shown in FIG. 12, the change of the opening area of the opening portion 36 with respect to the change of the lift amount of the plunger 45 becomes large. That is, in the fuel injection pump 20 according to the second embodiment, when the lift amount of the plunger 45 is increased from the state where the opening 36 is closed to open the opening 36 of the oil supply / discharge oil hole 35, As compared with the case where the oil supply and discharge holes 35 are formed in the radial direction, the change of the opening area to the change of the lift amount becomes significantly large.
 換言すると、本実施形態2に係る燃料噴射ポンプ20は、単位リフトあたりの開口部36の開口面積増加率が大きくなっている。このため、給排油孔35の開口部36をプランジャ45のリード溝46に対向させて開口部36を開くことにより、プランジャバレル30内の高圧の燃料を給排油孔35によって排出する場合、プランジャバレル30内の燃料を短時間で給排油孔35内に流入させることができる。これにより、プランジャバレル30の燃料と給排油孔35内の燃料との圧力差を、短時間で低減させて排出することができる。 In other words, in the fuel injection pump 20 according to the second embodiment, the opening area increase rate of the opening 36 per unit lift is large. Therefore, when the high pressure fuel in the plunger barrel 30 is discharged by the oil drain hole 35 by making the opening 36 of the oil drain hole 35 face the lead groove 46 of the plunger 45 and opening the opening 36, The fuel in the plunger barrel 30 can be flowed into the oil supply and discharge port 35 in a short time. Thereby, the pressure difference between the fuel of the plunger barrel 30 and the fuel in the oil supply and discharge port 35 can be reduced in a short time and discharged.
 以上の実施形態2に係る燃料噴射ポンプ20は、プランジャバレル30の径方向に対して傾斜する向きで給排油孔35を形成しているため、プランジャ45のリフト量に対する開口面積の変化の割合を大きくすることができる。これにより、プランジャバレル30内の燃料と給排油孔35内の燃料との圧力差を、短時間で低減させることができるため、給排油孔35に流入する燃料がジェット状の噴流になることを抑制することができる。この結果、燃料がジェット状の噴流になることに起因するキャビテーションの発生を抑えることができる。また、キャビテーションの発生を抑えることにより、エロージョンの発生を抑制することができ、製品寿命の低下を抑えることができる。 In the fuel injection pump 20 according to the second embodiment described above, since the oil supply and discharge oil holes 35 are formed in the direction inclined with respect to the radial direction of the plunger barrel 30, the ratio of the change of the opening area to the lift amount of the plunger 45 Can be increased. As a result, the pressure difference between the fuel in the plunger barrel 30 and the fuel in the oil supply / discharge port 35 can be reduced in a short time, so that the fuel flowing into the oil supply / discharge port 35 becomes a jet flow. Can be suppressed. As a result, the occurrence of cavitation due to the fuel becoming a jet-like jet can be suppressed. In addition, by suppressing the occurrence of cavitation, the occurrence of erosion can be suppressed, and a decrease in product life can be suppressed.
 〔変形例〕
 なお、実施形態2に係る燃料噴射ポンプ20では、デフレクタ40は給排油孔35の軸心と同心にして配設されているが、デフレクタ40は実施形態1に係る燃料噴射ポンプ20と同様に、給排油孔35に対して偏心させてもよい。実施形態2のように、デフレクタ40を給排油孔35の軸心と同心にして配設した場合でも、給排油孔35をプランジャバレル30の径方向に対して傾斜する向きで形成することにより、キャビテーションの発生を抑えることができ、この給排油孔35に対してデフレクタ40を偏心させた場合には、さらにキャビテーションの発生を抑えることができる。また、給排油孔35をプランジャバレル30の径方向に対して傾斜する向きで形成してデフレクタ40を偏心させ、さらに、開口部36の開き始め側に位置する後流側孔部37よりも、開き終わり側に位置する後流側孔部37の開口面積を大きくすることにより、より効果的にキャビテーションの発生を抑えることができる。
[Modification]
In the fuel injection pump 20 according to the second embodiment, the deflector 40 is disposed concentrically with the axial center of the oil supply / discharge oil hole 35, but the deflector 40 is the same as the fuel injection pump 20 according to the first embodiment. The oil supply and discharge oil holes 35 may be eccentric. Even when the deflector 40 is disposed concentrically with the axis of the oil supply / discharge hole 35 as in the second embodiment, the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30. Thus, the occurrence of cavitation can be suppressed, and the occurrence of cavitation can be further suppressed when the deflector 40 is eccentric to the oil supply / discharge hole 35. Further, the oil supply and discharge oil holes 35 are formed in a direction inclined with respect to the radial direction of the plunger barrel 30 to make the deflector 40 eccentric, and further, from the wake side hole 37 located on the opening start side of the opening 36 The occurrence of cavitation can be suppressed more effectively by increasing the opening area of the wake-side hole 37 located on the open end side.
 また、燃料噴射ポンプ20は、上述した実施形態、及び変形例で用いられている構成等を適宜組み合わせてもよく、または、上述した構成以外を用いてもよい。燃料噴射ポンプ20の構成等に関わらず、デフレクタ40を偏心して給排油孔35に内設したり、プランジャバレル30の径方向に対して傾斜する向きで給排油孔35を形成したりすることにより、キャビテーションの発生を抑えることができる。 In addition, the fuel injection pump 20 may appropriately combine the configurations and the like used in the above-described embodiment and the modification, or may use a configuration other than the above-described configuration. Regardless of the configuration of the fuel injection pump 20, the deflector 40 is eccentrically installed in the oil supply / discharge hole 35, or the oil supply / discharge oil hole 35 is formed in a direction inclined with respect to the radial direction of the plunger barrel 30. Thus, the occurrence of cavitation can be suppressed.
 1 燃料噴射システム
 5 ディーゼルエンジン
 10 燃料タンク
 12 給油ポンプ
 17 燃料噴射弁
 20 燃料噴射ポンプ
 25 ポンプケース
 26 給排油室
 30 プランジャバレル
 35 給排油孔
 36 開口部
 37 後流側孔部
 40 デフレクタ
 45 プランジャ
 46 リード溝
 50 プランジャ室
 55 吐出弁
 60 吐出コネクタ
 65 燃料カム
 66 タペット
DESCRIPTION OF SYMBOLS 1 fuel injection system 5 diesel engine 10 fuel tank 12 oil supply pump 17 fuel injection valve 20 fuel injection pump 25 pump case 26 oil supply and discharge chamber 30 plunger barrel 35 oil supply and discharge hole 36 opening 37 wake side hole 40 deflector 45 plunger 46 lead groove 50 plunger chamber 55 discharge valve 60 discharge connector 65 fuel cam 66 tappet

Claims (4)

  1.  ポンプ本体と、
     筒状に形成されて前記ポンプ本体に内装されるバレルと、
     前記バレルの周壁部を貫通し、少なくとも前記バレル内の燃料を前記バレルの外に排出させる通油孔と、
     前記バレルに摺動自在に内設されて前記バレル内の燃料を加圧すると共に、前記通油孔における前記バレルの内周面に開口した開口部の開閉を行うプランジャと、
     前記通油孔内を流れる燃料を整流すると共に、前記バレル内の燃料の前記通油孔からの排出時に前記開口部を前記プランジャで開く場合における開き始め側に偏心して前記通油孔に内設されるデフレクタと、
     を備えることを特徴とする燃料噴射ポンプ。
    The pump body,
    A barrel formed in a tubular shape and installed in the pump body;
    An oil passing hole which penetrates the peripheral wall of the barrel and discharges at least the fuel in the barrel to the outside of the barrel;
    A plunger slidably provided in the barrel to pressurize the fuel in the barrel and opening and closing an opening portion of the oil passing hole opened in the inner peripheral surface of the barrel;
    The fuel flowing in the oil passing hole is rectified, and the fuel is discharged from the oil passing hole in the barrel, and the opening is eccentrically installed on the oil passing hole in the opening start side when the plunger is opened by the plunger. The deflector to be
    A fuel injection pump comprising:
  2.  前記通油孔は、前記バレルの径方向に対して傾斜する向きで前記バレルの周壁部を貫通することを特徴とする請求項1に記載の燃料噴射ポンプ。 The fuel injection pump according to claim 1, wherein the oil passage hole penetrates a peripheral wall portion of the barrel in a direction inclined with respect to a radial direction of the barrel.
  3.  前記通油孔は、前記デフレクタの周囲に複数の後流側孔部が画成されており、
     前記後流側孔部は、前記開口部を前記プランジャで開く場合における開き始め側に位置する前記後流側孔部よりも、開き終わり側に位置する前記後流側孔部の方が、前記通油孔を流れる燃料の流れ方向に見た場合における開口面積が大きくなっていることを特徴とする請求項1または2に記載の燃料噴射ポンプ。
    The oil passing hole has a plurality of wake side holes defined around the deflector,
    In the wake-side hole, the wake-side hole located closer to the opening end than the wake-side hole located on the opening start side in the case where the opening is opened by the plunger is the The fuel injection pump according to claim 1 or 2, wherein the opening area in the flow direction of the fuel flowing through the oil passing hole is large.
  4.  ポンプ本体と、
     筒状に形成されて前記ポンプ本体に内装されるバレルと、
     前記バレルに摺動自在に内設されて前記バレル内の燃料を加圧するプランジャと、
     少なくとも前記バレル内の燃料を前記バレルの外に排出させると共に、前記バレルの径方向に対して傾斜する向きで前記バレルの周壁部を貫通し、前記プランジャにより、前記バレルの内周面に開口した開口部の開閉が行われる通油孔と、
     を備えることを特徴とする燃料噴射ポンプ。
    The pump body,
    A barrel formed in a tubular shape and installed in the pump body;
    A plunger slidably installed in the barrel to pressurize fuel in the barrel;
    At least the fuel in the barrel is discharged out of the barrel, penetrates the peripheral wall of the barrel in a direction inclined with respect to the radial direction of the barrel, and is opened to the inner circumferential surface of the barrel by the plunger Oil passing hole where opening and closing are done,
    A fuel injection pump comprising:
PCT/JP2014/060520 2013-04-16 2014-04-11 Fuel injection pump WO2014171410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480011300.8A CN105074192A (en) 2013-04-16 2014-04-11 Fuel injection pump
KR1020157023775A KR20150114545A (en) 2013-04-16 2014-04-11 Fuel injection pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086109 2013-04-16
JP2013086109A JP2014208988A (en) 2013-04-16 2013-04-16 Fuel injection pump

Publications (1)

Publication Number Publication Date
WO2014171410A1 true WO2014171410A1 (en) 2014-10-23

Family

ID=51731351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060520 WO2014171410A1 (en) 2013-04-16 2014-04-11 Fuel injection pump

Country Status (4)

Country Link
JP (1) JP2014208988A (en)
KR (1) KR20150114545A (en)
CN (1) CN105074192A (en)
WO (1) WO2014171410A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745400Y2 (en) * 1977-05-10 1982-10-06
JPS6066872U (en) * 1983-10-14 1985-05-11 いすゞ自動車株式会社 fuel injection pump
JPH05215041A (en) * 1991-09-30 1993-08-24 Robert Bosch Gmbh Fuel injection pump for internal combustion engine
JP2510337Y2 (en) * 1988-09-30 1996-09-11 三菱重工業株式会社 Fuel injection pump deflector
JP3604294B2 (en) * 1998-12-11 2004-12-22 株式会社ボッシュオートモーティブシステム Fuel injection pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510337B2 (en) * 1990-07-16 1996-06-26 株式会社クボタ Assembly sequence planning system and assembly sequence planning method
WO2006071009A1 (en) * 2004-12-27 2006-07-06 Hyundai Heavy Industries Co., Ltd. Fuel injection pump having cavitation damage-prevention structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745400Y2 (en) * 1977-05-10 1982-10-06
JPS6066872U (en) * 1983-10-14 1985-05-11 いすゞ自動車株式会社 fuel injection pump
JP2510337Y2 (en) * 1988-09-30 1996-09-11 三菱重工業株式会社 Fuel injection pump deflector
JPH05215041A (en) * 1991-09-30 1993-08-24 Robert Bosch Gmbh Fuel injection pump for internal combustion engine
JP3604294B2 (en) * 1998-12-11 2004-12-22 株式会社ボッシュオートモーティブシステム Fuel injection pump

Also Published As

Publication number Publication date
CN105074192A (en) 2015-11-18
KR20150114545A (en) 2015-10-12
JP2014208988A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP4036197B2 (en) Fuel supply pump
RU2631588C2 (en) Injector for lubrication oil injection to engine cylinders and its application
JP3915718B2 (en) Fuel supply pump
US9512836B2 (en) Fuel pump for an internal combustion engine
US8272856B2 (en) High-pressure pump, in particular for a fuel injection apparatus of an internal combustion engine
US8677976B2 (en) High pressure fuel pump
EP1707799A1 (en) Fuel pump having plunger and fuel supply system using the same
US20100242915A1 (en) Safety valve and high-pressure pump comprising said safety valve
US7571713B2 (en) High-pressure pump for a fuel injection system of an internal combustion engine
JP2000154768A (en) Fuel injection device for engine
JP2015014272A (en) Fuel injection valve
WO2014171410A1 (en) Fuel injection pump
CN107076124B (en) Fuel pump
JP3835755B2 (en) Fuel supply pump
CN109196214B (en) Fuel pump
JP3945318B2 (en) Fuel injection nozzle
JP2982542B2 (en) Fuel injection device
WO2017057252A1 (en) Diesel engine
KR101692231B1 (en) Injection pump
JP6806769B2 (en) Fuel pump assembly
JP7412065B2 (en) high pressure pump
JP5335608B2 (en) Fuel injection device for internal combustion engine
JP6015471B2 (en) Fuel supply device
JP5404834B2 (en) Fuel injection pump
JP4640387B2 (en) High pressure pump and fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011300.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023775

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784675

Country of ref document: EP

Kind code of ref document: A1